1 /* Vectorizer Specific Loop Manipulations
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
29 #include "basic-block.h"
30 #include "gimple-pretty-print.h"
31 #include "tree-flow.h"
32 #include "tree-pass.h"
34 #include "diagnostic-core.h"
35 #include "tree-scalar-evolution.h"
36 #include "tree-vectorizer.h"
37 #include "langhooks.h"
39 /*************************************************************************
40 Simple Loop Peeling Utilities
42 Utilities to support loop peeling for vectorization purposes.
43 *************************************************************************/
46 /* Renames the use *OP_P. */
49 rename_use_op (use_operand_p op_p
)
53 if (TREE_CODE (USE_FROM_PTR (op_p
)) != SSA_NAME
)
56 new_name
= get_current_def (USE_FROM_PTR (op_p
));
58 /* Something defined outside of the loop. */
62 /* An ordinary ssa name defined in the loop. */
64 SET_USE (op_p
, new_name
);
68 /* Renames the variables in basic block BB. */
71 rename_variables_in_bb (basic_block bb
)
73 gimple_stmt_iterator gsi
;
79 struct loop
*loop
= bb
->loop_father
;
81 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
83 stmt
= gsi_stmt (gsi
);
84 FOR_EACH_SSA_USE_OPERAND (use_p
, stmt
, iter
, SSA_OP_ALL_USES
)
85 rename_use_op (use_p
);
88 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
90 if (!flow_bb_inside_loop_p (loop
, e
->src
))
92 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
93 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi_stmt (gsi
), e
));
104 /* A stack of values to be adjusted in debug stmts. We have to
105 process them LIFO, so that the closest substitution applies. If we
106 processed them FIFO, without the stack, we might substitute uses
107 with a PHI DEF that would soon become non-dominant, and when we got
108 to the suitable one, it wouldn't have anything to substitute any
110 static vec
<adjust_info
, va_stack
> adjust_vec
;
112 /* Adjust any debug stmts that referenced AI->from values to use the
113 loop-closed AI->to, if the references are dominated by AI->bb and
114 not by the definition of AI->from. */
117 adjust_debug_stmts_now (adjust_info
*ai
)
119 basic_block bbphi
= ai
->bb
;
120 tree orig_def
= ai
->from
;
121 tree new_def
= ai
->to
;
122 imm_use_iterator imm_iter
;
124 basic_block bbdef
= gimple_bb (SSA_NAME_DEF_STMT (orig_def
));
126 gcc_assert (dom_info_available_p (CDI_DOMINATORS
));
128 /* Adjust any debug stmts that held onto non-loop-closed
130 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, orig_def
)
135 if (!is_gimple_debug (stmt
))
138 gcc_assert (gimple_debug_bind_p (stmt
));
140 bbuse
= gimple_bb (stmt
);
143 || dominated_by_p (CDI_DOMINATORS
, bbuse
, bbphi
))
145 || dominated_by_p (CDI_DOMINATORS
, bbuse
, bbdef
)))
148 FOR_EACH_IMM_USE_ON_STMT (use_p
, imm_iter
)
149 SET_USE (use_p
, new_def
);
152 gimple_debug_bind_reset_value (stmt
);
159 /* Adjust debug stmts as scheduled before. */
162 adjust_vec_debug_stmts (void)
164 if (!MAY_HAVE_DEBUG_STMTS
)
167 gcc_assert (adjust_vec
.exists ());
169 while (!adjust_vec
.is_empty ())
171 adjust_debug_stmts_now (&adjust_vec
.last ());
175 adjust_vec
.release ();
178 /* Adjust any debug stmts that referenced FROM values to use the
179 loop-closed TO, if the references are dominated by BB and not by
180 the definition of FROM. If adjust_vec is non-NULL, adjustments
181 will be postponed until adjust_vec_debug_stmts is called. */
184 adjust_debug_stmts (tree from
, tree to
, basic_block bb
)
188 if (MAY_HAVE_DEBUG_STMTS
189 && TREE_CODE (from
) == SSA_NAME
190 && ! SSA_NAME_IS_DEFAULT_DEF (from
)
191 && ! virtual_operand_p (from
))
197 if (adjust_vec
.exists ())
198 adjust_vec
.safe_push (ai
);
200 adjust_debug_stmts_now (&ai
);
204 /* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
205 to adjust any debug stmts that referenced the old phi arg,
206 presumably non-loop-closed references left over from other
210 adjust_phi_and_debug_stmts (gimple update_phi
, edge e
, tree new_def
)
212 tree orig_def
= PHI_ARG_DEF_FROM_EDGE (update_phi
, e
);
214 SET_PHI_ARG_DEF (update_phi
, e
->dest_idx
, new_def
);
216 if (MAY_HAVE_DEBUG_STMTS
)
217 adjust_debug_stmts (orig_def
, PHI_RESULT (update_phi
),
218 gimple_bb (update_phi
));
222 /* Update PHI nodes for a guard of the LOOP.
225 - LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
226 controls whether LOOP is to be executed. GUARD_EDGE is the edge that
227 originates from the guard-bb, skips LOOP and reaches the (unique) exit
228 bb of LOOP. This loop-exit-bb is an empty bb with one successor.
229 We denote this bb NEW_MERGE_BB because before the guard code was added
230 it had a single predecessor (the LOOP header), and now it became a merge
231 point of two paths - the path that ends with the LOOP exit-edge, and
232 the path that ends with GUARD_EDGE.
233 - NEW_EXIT_BB: New basic block that is added by this function between LOOP
234 and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.
236 ===> The CFG before the guard-code was added:
239 if (exit_loop) goto update_bb
240 else goto LOOP_header_bb
243 ==> The CFG after the guard-code was added:
245 if (LOOP_guard_condition) goto new_merge_bb
246 else goto LOOP_header_bb
249 if (exit_loop_condition) goto new_merge_bb
250 else goto LOOP_header_bb
255 ==> The CFG after this function:
257 if (LOOP_guard_condition) goto new_merge_bb
258 else goto LOOP_header_bb
261 if (exit_loop_condition) goto new_exit_bb
262 else goto LOOP_header_bb
269 1. creates and updates the relevant phi nodes to account for the new
270 incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
271 1.1. Create phi nodes at NEW_MERGE_BB.
272 1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
273 UPDATE_BB). UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
274 2. preserves loop-closed-ssa-form by creating the required phi nodes
275 at the exit of LOOP (i.e, in NEW_EXIT_BB).
277 There are two flavors to this function:
279 slpeel_update_phi_nodes_for_guard1:
280 Here the guard controls whether we enter or skip LOOP, where LOOP is a
281 prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
282 for variables that have phis in the loop header.
284 slpeel_update_phi_nodes_for_guard2:
285 Here the guard controls whether we enter or skip LOOP, where LOOP is an
286 epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
287 for variables that have phis in the loop exit.
289 I.E., the overall structure is:
292 guard1 (goto loop1/merge1_bb)
295 guard2 (goto merge1_bb/merge2_bb)
302 slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
303 loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
304 that have phis in loop1->header).
306 slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
307 loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
308 that have phis in next_bb). It also adds some of these phis to
311 slpeel_update_phi_nodes_for_guard1 is always called before
312 slpeel_update_phi_nodes_for_guard2. They are both needed in order
313 to create correct data-flow and loop-closed-ssa-form.
315 Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
316 that change between iterations of a loop (and therefore have a phi-node
317 at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
318 phis for variables that are used out of the loop (and therefore have
319 loop-closed exit phis). Some variables may be both updated between
320 iterations and used after the loop. This is why in loop1_exit_bb we
321 may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
322 and exit phis (created by slpeel_update_phi_nodes_for_guard2).
324 - IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
325 an original loop. i.e., we have:
328 guard_bb (goto LOOP/new_merge)
334 If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
338 guard_bb (goto LOOP/new_merge)
344 The SSA names defined in the original loop have a current
345 reaching definition that that records the corresponding new
346 ssa-name used in the new duplicated loop copy.
349 /* Function slpeel_update_phi_nodes_for_guard1
352 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
353 - DEFS - a bitmap of ssa names to mark new names for which we recorded
356 In the context of the overall structure, we have:
359 guard1 (goto loop1/merge1_bb)
362 guard2 (goto merge1_bb/merge2_bb)
369 For each name updated between loop iterations (i.e - for each name that has
370 an entry (loop-header) phi in LOOP) we create a new phi in:
371 1. merge1_bb (to account for the edge from guard1)
372 2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
376 slpeel_update_phi_nodes_for_guard1 (edge guard_edge
, struct loop
*loop
,
377 bool is_new_loop
, basic_block
*new_exit_bb
)
379 gimple orig_phi
, new_phi
;
380 gimple update_phi
, update_phi2
;
381 tree guard_arg
, loop_arg
;
382 basic_block new_merge_bb
= guard_edge
->dest
;
383 edge e
= EDGE_SUCC (new_merge_bb
, 0);
384 basic_block update_bb
= e
->dest
;
385 basic_block orig_bb
= loop
->header
;
387 tree current_new_name
;
388 gimple_stmt_iterator gsi_orig
, gsi_update
;
390 /* Create new bb between loop and new_merge_bb. */
391 *new_exit_bb
= split_edge (single_exit (loop
));
393 new_exit_e
= EDGE_SUCC (*new_exit_bb
, 0);
395 for (gsi_orig
= gsi_start_phis (orig_bb
),
396 gsi_update
= gsi_start_phis (update_bb
);
397 !gsi_end_p (gsi_orig
) && !gsi_end_p (gsi_update
);
398 gsi_next (&gsi_orig
), gsi_next (&gsi_update
))
400 source_location loop_locus
, guard_locus
;
402 orig_phi
= gsi_stmt (gsi_orig
);
403 update_phi
= gsi_stmt (gsi_update
);
405 /** 1. Handle new-merge-point phis **/
407 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
408 new_res
= copy_ssa_name (PHI_RESULT (orig_phi
), NULL
);
409 new_phi
= create_phi_node (new_res
, new_merge_bb
);
411 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
412 of LOOP. Set the two phi args in NEW_PHI for these edges: */
413 loop_arg
= PHI_ARG_DEF_FROM_EDGE (orig_phi
, EDGE_SUCC (loop
->latch
, 0));
414 loop_locus
= gimple_phi_arg_location_from_edge (orig_phi
,
415 EDGE_SUCC (loop
->latch
,
417 guard_arg
= PHI_ARG_DEF_FROM_EDGE (orig_phi
, loop_preheader_edge (loop
));
419 = gimple_phi_arg_location_from_edge (orig_phi
,
420 loop_preheader_edge (loop
));
422 add_phi_arg (new_phi
, loop_arg
, new_exit_e
, loop_locus
);
423 add_phi_arg (new_phi
, guard_arg
, guard_edge
, guard_locus
);
425 /* 1.3. Update phi in successor block. */
426 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi
, e
) == loop_arg
427 || PHI_ARG_DEF_FROM_EDGE (update_phi
, e
) == guard_arg
);
428 adjust_phi_and_debug_stmts (update_phi
, e
, PHI_RESULT (new_phi
));
429 update_phi2
= new_phi
;
432 /** 2. Handle loop-closed-ssa-form phis **/
434 if (virtual_operand_p (PHI_RESULT (orig_phi
)))
437 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
438 new_res
= copy_ssa_name (PHI_RESULT (orig_phi
), NULL
);
439 new_phi
= create_phi_node (new_res
, *new_exit_bb
);
441 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
442 add_phi_arg (new_phi
, loop_arg
, single_exit (loop
), loop_locus
);
444 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
445 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2
, new_exit_e
) == loop_arg
);
446 adjust_phi_and_debug_stmts (update_phi2
, new_exit_e
,
447 PHI_RESULT (new_phi
));
449 /* 2.4. Record the newly created name with set_current_def.
450 We want to find a name such that
451 name = get_current_def (orig_loop_name)
452 and to set its current definition as follows:
453 set_current_def (name, new_phi_name)
455 If LOOP is a new loop then loop_arg is already the name we're
456 looking for. If LOOP is the original loop, then loop_arg is
457 the orig_loop_name and the relevant name is recorded in its
458 current reaching definition. */
460 current_new_name
= loop_arg
;
463 current_new_name
= get_current_def (loop_arg
);
464 /* current_def is not available only if the variable does not
465 change inside the loop, in which case we also don't care
466 about recording a current_def for it because we won't be
467 trying to create loop-exit-phis for it. */
468 if (!current_new_name
)
471 gcc_assert (get_current_def (current_new_name
) == NULL_TREE
);
473 set_current_def (current_new_name
, PHI_RESULT (new_phi
));
478 /* Function slpeel_update_phi_nodes_for_guard2
481 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
483 In the context of the overall structure, we have:
486 guard1 (goto loop1/merge1_bb)
489 guard2 (goto merge1_bb/merge2_bb)
496 For each name used out side the loop (i.e - for each name that has an exit
497 phi in next_bb) we create a new phi in:
498 1. merge2_bb (to account for the edge from guard_bb)
499 2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
500 3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
501 if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
505 slpeel_update_phi_nodes_for_guard2 (edge guard_edge
, struct loop
*loop
,
506 bool is_new_loop
, basic_block
*new_exit_bb
)
508 gimple orig_phi
, new_phi
;
509 gimple update_phi
, update_phi2
;
510 tree guard_arg
, loop_arg
;
511 basic_block new_merge_bb
= guard_edge
->dest
;
512 edge e
= EDGE_SUCC (new_merge_bb
, 0);
513 basic_block update_bb
= e
->dest
;
515 tree orig_def
, orig_def_new_name
;
516 tree new_name
, new_name2
;
518 gimple_stmt_iterator gsi
;
520 /* Create new bb between loop and new_merge_bb. */
521 *new_exit_bb
= split_edge (single_exit (loop
));
523 new_exit_e
= EDGE_SUCC (*new_exit_bb
, 0);
525 for (gsi
= gsi_start_phis (update_bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
528 update_phi
= gsi_stmt (gsi
);
529 orig_phi
= update_phi
;
530 orig_def
= PHI_ARG_DEF_FROM_EDGE (orig_phi
, e
);
531 /* This loop-closed-phi actually doesn't represent a use
532 out of the loop - the phi arg is a constant. */
533 if (TREE_CODE (orig_def
) != SSA_NAME
)
535 orig_def_new_name
= get_current_def (orig_def
);
538 /** 1. Handle new-merge-point phis **/
540 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
541 new_res
= copy_ssa_name (PHI_RESULT (orig_phi
), NULL
);
542 new_phi
= create_phi_node (new_res
, new_merge_bb
);
544 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
545 of LOOP. Set the two PHI args in NEW_PHI for these edges: */
547 new_name2
= NULL_TREE
;
548 if (orig_def_new_name
)
550 new_name
= orig_def_new_name
;
551 /* Some variables have both loop-entry-phis and loop-exit-phis.
552 Such variables were given yet newer names by phis placed in
553 guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
554 new_name2 = get_current_def (get_current_def (orig_name)). */
555 new_name2
= get_current_def (new_name
);
560 guard_arg
= orig_def
;
565 guard_arg
= new_name
;
569 guard_arg
= new_name2
;
571 add_phi_arg (new_phi
, loop_arg
, new_exit_e
, UNKNOWN_LOCATION
);
572 add_phi_arg (new_phi
, guard_arg
, guard_edge
, UNKNOWN_LOCATION
);
574 /* 1.3. Update phi in successor block. */
575 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi
, e
) == orig_def
);
576 adjust_phi_and_debug_stmts (update_phi
, e
, PHI_RESULT (new_phi
));
577 update_phi2
= new_phi
;
580 /** 2. Handle loop-closed-ssa-form phis **/
582 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
583 new_res
= copy_ssa_name (PHI_RESULT (orig_phi
), NULL
);
584 new_phi
= create_phi_node (new_res
, *new_exit_bb
);
586 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
587 add_phi_arg (new_phi
, loop_arg
, single_exit (loop
), UNKNOWN_LOCATION
);
589 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
590 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2
, new_exit_e
) == loop_arg
);
591 adjust_phi_and_debug_stmts (update_phi2
, new_exit_e
,
592 PHI_RESULT (new_phi
));
595 /** 3. Handle loop-closed-ssa-form phis for first loop **/
597 /* 3.1. Find the relevant names that need an exit-phi in
598 GUARD_BB, i.e. names for which
599 slpeel_update_phi_nodes_for_guard1 had not already created a
600 phi node. This is the case for names that are used outside
601 the loop (and therefore need an exit phi) but are not updated
602 across loop iterations (and therefore don't have a
605 slpeel_update_phi_nodes_for_guard1 is responsible for
606 creating loop-exit phis in GUARD_BB for names that have a
607 loop-header-phi. When such a phi is created we also record
608 the new name in its current definition. If this new name
609 exists, then guard_arg was set to this new name (see 1.2
610 above). Therefore, if guard_arg is not this new name, this
611 is an indication that an exit-phi in GUARD_BB was not yet
612 created, so we take care of it here. */
613 if (guard_arg
== new_name2
)
617 /* 3.2. Generate new phi node in GUARD_BB: */
618 new_res
= copy_ssa_name (PHI_RESULT (orig_phi
), NULL
);
619 new_phi
= create_phi_node (new_res
, guard_edge
->src
);
621 /* 3.3. GUARD_BB has one incoming edge: */
622 gcc_assert (EDGE_COUNT (guard_edge
->src
->preds
) == 1);
623 add_phi_arg (new_phi
, arg
, EDGE_PRED (guard_edge
->src
, 0),
626 /* 3.4. Update phi in successor of GUARD_BB: */
627 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2
, guard_edge
)
629 adjust_phi_and_debug_stmts (update_phi2
, guard_edge
,
630 PHI_RESULT (new_phi
));
635 /* Make the LOOP iterate NITERS times. This is done by adding a new IV
636 that starts at zero, increases by one and its limit is NITERS.
638 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
641 slpeel_make_loop_iterate_ntimes (struct loop
*loop
, tree niters
)
643 tree indx_before_incr
, indx_after_incr
;
646 edge exit_edge
= single_exit (loop
);
647 gimple_stmt_iterator loop_cond_gsi
;
648 gimple_stmt_iterator incr_gsi
;
650 tree init
= build_int_cst (TREE_TYPE (niters
), 0);
651 tree step
= build_int_cst (TREE_TYPE (niters
), 1);
655 orig_cond
= get_loop_exit_condition (loop
);
656 gcc_assert (orig_cond
);
657 loop_cond_gsi
= gsi_for_stmt (orig_cond
);
659 standard_iv_increment_position (loop
, &incr_gsi
, &insert_after
);
660 create_iv (init
, step
, NULL_TREE
, loop
,
661 &incr_gsi
, insert_after
, &indx_before_incr
, &indx_after_incr
);
663 indx_after_incr
= force_gimple_operand_gsi (&loop_cond_gsi
, indx_after_incr
,
664 true, NULL_TREE
, true,
666 niters
= force_gimple_operand_gsi (&loop_cond_gsi
, niters
, true, NULL_TREE
,
667 true, GSI_SAME_STMT
);
669 code
= (exit_edge
->flags
& EDGE_TRUE_VALUE
) ? GE_EXPR
: LT_EXPR
;
670 cond_stmt
= gimple_build_cond (code
, indx_after_incr
, niters
, NULL_TREE
,
673 gsi_insert_before (&loop_cond_gsi
, cond_stmt
, GSI_SAME_STMT
);
675 /* Remove old loop exit test: */
676 gsi_remove (&loop_cond_gsi
, true);
677 free_stmt_vec_info (orig_cond
);
679 loop_loc
= find_loop_location (loop
);
680 if (dump_enabled_p ())
682 if (LOCATION_LOCUS (loop_loc
) != UNKNOWN_LOC
)
683 dump_printf (MSG_NOTE
, "\nloop at %s:%d: ", LOC_FILE (loop_loc
),
684 LOC_LINE (loop_loc
));
685 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, cond_stmt
, 0);
687 loop
->nb_iterations
= niters
;
691 /* Given LOOP this function generates a new copy of it and puts it
692 on E which is either the entry or exit of LOOP. */
695 slpeel_tree_duplicate_loop_to_edge_cfg (struct loop
*loop
, edge e
)
697 struct loop
*new_loop
;
698 basic_block
*new_bbs
, *bbs
;
701 basic_block exit_dest
;
704 exit
= single_exit (loop
);
705 at_exit
= (e
== exit
);
706 if (!at_exit
&& e
!= loop_preheader_edge (loop
))
709 bbs
= XNEWVEC (basic_block
, loop
->num_nodes
+ 1);
710 get_loop_body_with_size (loop
, bbs
, loop
->num_nodes
);
712 /* Check whether duplication is possible. */
713 if (!can_copy_bbs_p (bbs
, loop
->num_nodes
))
719 /* Generate new loop structure. */
720 new_loop
= duplicate_loop (loop
, loop_outer (loop
));
721 duplicate_subloops (loop
, new_loop
);
723 exit_dest
= exit
->dest
;
724 was_imm_dom
= (get_immediate_dominator (CDI_DOMINATORS
,
725 exit_dest
) == loop
->header
?
728 /* Also copy the pre-header, this avoids jumping through hoops to
729 duplicate the loop entry PHI arguments. Create an empty
730 pre-header unconditionally for this. */
731 basic_block preheader
= split_edge (loop_preheader_edge (loop
));
732 edge entry_e
= single_pred_edge (preheader
);
733 bbs
[loop
->num_nodes
] = preheader
;
734 new_bbs
= XNEWVEC (basic_block
, loop
->num_nodes
+ 1);
736 copy_bbs (bbs
, loop
->num_nodes
+ 1, new_bbs
,
737 &exit
, 1, &new_exit
, NULL
,
739 basic_block new_preheader
= new_bbs
[loop
->num_nodes
];
741 add_phi_args_after_copy (new_bbs
, loop
->num_nodes
+ 1, NULL
);
743 if (at_exit
) /* Add the loop copy at exit. */
745 redirect_edge_and_branch_force (e
, new_preheader
);
746 flush_pending_stmts (e
);
747 set_immediate_dominator (CDI_DOMINATORS
, new_preheader
, e
->src
);
749 set_immediate_dominator (CDI_DOMINATORS
, exit_dest
, new_loop
->header
);
751 /* And remove the non-necessary forwarder again. Keep the other
752 one so we have a proper pre-header for the loop at the exit edge. */
753 redirect_edge_pred (single_succ_edge (preheader
), single_pred (preheader
));
754 delete_basic_block (preheader
);
755 set_immediate_dominator (CDI_DOMINATORS
, loop
->header
,
756 loop_preheader_edge (loop
)->src
);
758 else /* Add the copy at entry. */
760 redirect_edge_and_branch_force (entry_e
, new_preheader
);
761 flush_pending_stmts (entry_e
);
762 set_immediate_dominator (CDI_DOMINATORS
, new_preheader
, entry_e
->src
);
764 redirect_edge_and_branch_force (new_exit
, preheader
);
765 flush_pending_stmts (new_exit
);
766 set_immediate_dominator (CDI_DOMINATORS
, preheader
, new_exit
->src
);
768 /* And remove the non-necessary forwarder again. Keep the other
769 one so we have a proper pre-header for the loop at the exit edge. */
770 redirect_edge_pred (single_succ_edge (new_preheader
), single_pred (new_preheader
));
771 delete_basic_block (new_preheader
);
772 set_immediate_dominator (CDI_DOMINATORS
, new_loop
->header
,
773 loop_preheader_edge (new_loop
)->src
);
776 for (unsigned i
= 0; i
< loop
->num_nodes
+1; i
++)
777 rename_variables_in_bb (new_bbs
[i
]);
782 #ifdef ENABLE_CHECKING
783 verify_dominators (CDI_DOMINATORS
);
790 /* Given the condition statement COND, put it as the last statement
791 of GUARD_BB; EXIT_BB is the basic block to skip the loop;
792 Assumes that this is the single exit of the guarded loop.
793 Returns the skip edge, inserts new stmts on the COND_EXPR_STMT_LIST. */
796 slpeel_add_loop_guard (basic_block guard_bb
, tree cond
,
797 gimple_seq cond_expr_stmt_list
,
798 basic_block exit_bb
, basic_block dom_bb
,
801 gimple_stmt_iterator gsi
;
804 gimple_seq gimplify_stmt_list
= NULL
;
806 enter_e
= EDGE_SUCC (guard_bb
, 0);
807 enter_e
->flags
&= ~EDGE_FALLTHRU
;
808 enter_e
->flags
|= EDGE_FALSE_VALUE
;
809 gsi
= gsi_last_bb (guard_bb
);
811 cond
= force_gimple_operand_1 (cond
, &gimplify_stmt_list
, is_gimple_condexpr
,
813 if (gimplify_stmt_list
)
814 gimple_seq_add_seq (&cond_expr_stmt_list
, gimplify_stmt_list
);
815 cond_stmt
= gimple_build_cond_from_tree (cond
, NULL_TREE
, NULL_TREE
);
816 if (cond_expr_stmt_list
)
817 gsi_insert_seq_after (&gsi
, cond_expr_stmt_list
, GSI_NEW_STMT
);
819 gsi
= gsi_last_bb (guard_bb
);
820 gsi_insert_after (&gsi
, cond_stmt
, GSI_NEW_STMT
);
822 /* Add new edge to connect guard block to the merge/loop-exit block. */
823 new_e
= make_edge (guard_bb
, exit_bb
, EDGE_TRUE_VALUE
);
825 new_e
->count
= guard_bb
->count
;
826 new_e
->probability
= probability
;
827 new_e
->count
= apply_probability (enter_e
->count
, probability
);
828 enter_e
->count
-= new_e
->count
;
829 enter_e
->probability
= inverse_probability (probability
);
830 set_immediate_dominator (CDI_DOMINATORS
, exit_bb
, dom_bb
);
835 /* This function verifies that the following restrictions apply to LOOP:
837 (2) it consists of exactly 2 basic blocks - header, and an empty latch.
838 (3) it is single entry, single exit
839 (4) its exit condition is the last stmt in the header
840 (5) E is the entry/exit edge of LOOP.
844 slpeel_can_duplicate_loop_p (const struct loop
*loop
, const_edge e
)
846 edge exit_e
= single_exit (loop
);
847 edge entry_e
= loop_preheader_edge (loop
);
848 gimple orig_cond
= get_loop_exit_condition (loop
);
849 gimple_stmt_iterator loop_exit_gsi
= gsi_last_bb (exit_e
->src
);
851 if (need_ssa_update_p (cfun
))
855 /* All loops have an outer scope; the only case loop->outer is NULL is for
856 the function itself. */
857 || !loop_outer (loop
)
858 || loop
->num_nodes
!= 2
859 || !empty_block_p (loop
->latch
)
860 || !single_exit (loop
)
861 /* Verify that new loop exit condition can be trivially modified. */
862 || (!orig_cond
|| orig_cond
!= gsi_stmt (loop_exit_gsi
))
863 || (e
!= exit_e
&& e
!= entry_e
))
869 #ifdef ENABLE_CHECKING
871 slpeel_verify_cfg_after_peeling (struct loop
*first_loop
,
872 struct loop
*second_loop
)
874 basic_block loop1_exit_bb
= single_exit (first_loop
)->dest
;
875 basic_block loop2_entry_bb
= loop_preheader_edge (second_loop
)->src
;
876 basic_block loop1_entry_bb
= loop_preheader_edge (first_loop
)->src
;
878 /* A guard that controls whether the second_loop is to be executed or skipped
879 is placed in first_loop->exit. first_loop->exit therefore has two
880 successors - one is the preheader of second_loop, and the other is a bb
883 gcc_assert (EDGE_COUNT (loop1_exit_bb
->succs
) == 2);
885 /* 1. Verify that one of the successors of first_loop->exit is the preheader
888 /* The preheader of new_loop is expected to have two predecessors:
889 first_loop->exit and the block that precedes first_loop. */
891 gcc_assert (EDGE_COUNT (loop2_entry_bb
->preds
) == 2
892 && ((EDGE_PRED (loop2_entry_bb
, 0)->src
== loop1_exit_bb
893 && EDGE_PRED (loop2_entry_bb
, 1)->src
== loop1_entry_bb
)
894 || (EDGE_PRED (loop2_entry_bb
, 1)->src
== loop1_exit_bb
895 && EDGE_PRED (loop2_entry_bb
, 0)->src
== loop1_entry_bb
)));
897 /* Verify that the other successor of first_loop->exit is after the
903 /* If the run time cost model check determines that vectorization is
904 not profitable and hence scalar loop should be generated then set
905 FIRST_NITERS to prologue peeled iterations. This will allow all the
906 iterations to be executed in the prologue peeled scalar loop. */
909 set_prologue_iterations (basic_block bb_before_first_loop
,
916 basic_block cond_bb
, then_bb
;
917 tree var
, prologue_after_cost_adjust_name
;
918 gimple_stmt_iterator gsi
;
920 edge e_true
, e_false
, e_fallthru
;
922 gimple_seq stmts
= NULL
;
923 tree cost_pre_condition
= NULL_TREE
;
924 tree scalar_loop_iters
=
925 unshare_expr (LOOP_VINFO_NITERS_UNCHANGED (loop_vec_info_for_loop (loop
)));
927 e
= single_pred_edge (bb_before_first_loop
);
928 cond_bb
= split_edge(e
);
930 e
= single_pred_edge (bb_before_first_loop
);
931 then_bb
= split_edge(e
);
932 set_immediate_dominator (CDI_DOMINATORS
, then_bb
, cond_bb
);
934 e_false
= make_single_succ_edge (cond_bb
, bb_before_first_loop
,
936 set_immediate_dominator (CDI_DOMINATORS
, bb_before_first_loop
, cond_bb
);
938 e_true
= EDGE_PRED (then_bb
, 0);
939 e_true
->flags
&= ~EDGE_FALLTHRU
;
940 e_true
->flags
|= EDGE_TRUE_VALUE
;
942 e_true
->probability
= probability
;
943 e_false
->probability
= inverse_probability (probability
);
944 e_true
->count
= apply_probability (cond_bb
->count
, probability
);
945 e_false
->count
= cond_bb
->count
- e_true
->count
;
946 then_bb
->frequency
= EDGE_FREQUENCY (e_true
);
947 then_bb
->count
= e_true
->count
;
949 e_fallthru
= EDGE_SUCC (then_bb
, 0);
950 e_fallthru
->count
= then_bb
->count
;
952 gsi
= gsi_last_bb (cond_bb
);
954 fold_build2 (LE_EXPR
, boolean_type_node
, scalar_loop_iters
,
955 build_int_cst (TREE_TYPE (scalar_loop_iters
), th
));
957 force_gimple_operand_gsi_1 (&gsi
, cost_pre_condition
, is_gimple_condexpr
,
958 NULL_TREE
, false, GSI_CONTINUE_LINKING
);
959 cond_stmt
= gimple_build_cond_from_tree (cost_pre_condition
,
960 NULL_TREE
, NULL_TREE
);
961 gsi_insert_after (&gsi
, cond_stmt
, GSI_NEW_STMT
);
963 var
= create_tmp_var (TREE_TYPE (scalar_loop_iters
),
964 "prologue_after_cost_adjust");
965 prologue_after_cost_adjust_name
=
966 force_gimple_operand (scalar_loop_iters
, &stmts
, false, var
);
968 gsi
= gsi_last_bb (then_bb
);
970 gsi_insert_seq_after (&gsi
, stmts
, GSI_NEW_STMT
);
972 newphi
= create_phi_node (var
, bb_before_first_loop
);
973 add_phi_arg (newphi
, prologue_after_cost_adjust_name
, e_fallthru
,
975 add_phi_arg (newphi
, *first_niters
, e_false
, UNKNOWN_LOCATION
);
977 *first_niters
= PHI_RESULT (newphi
);
980 /* Function slpeel_tree_peel_loop_to_edge.
982 Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
983 that is placed on the entry (exit) edge E of LOOP. After this transformation
984 we have two loops one after the other - first-loop iterates FIRST_NITERS
985 times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
986 If the cost model indicates that it is profitable to emit a scalar
987 loop instead of the vector one, then the prolog (epilog) loop will iterate
988 for the entire unchanged scalar iterations of the loop.
991 - LOOP: the loop to be peeled.
992 - E: the exit or entry edge of LOOP.
993 If it is the entry edge, we peel the first iterations of LOOP. In this
994 case first-loop is LOOP, and second-loop is the newly created loop.
995 If it is the exit edge, we peel the last iterations of LOOP. In this
996 case, first-loop is the newly created loop, and second-loop is LOOP.
997 - NITERS: the number of iterations that LOOP iterates.
998 - FIRST_NITERS: the number of iterations that the first-loop should iterate.
999 - UPDATE_FIRST_LOOP_COUNT: specified whether this function is responsible
1000 for updating the loop bound of the first-loop to FIRST_NITERS. If it
1001 is false, the caller of this function may want to take care of this
1002 (this can be useful if we don't want new stmts added to first-loop).
1003 - TH: cost model profitability threshold of iterations for vectorization.
1004 - CHECK_PROFITABILITY: specify whether cost model check has not occurred
1005 during versioning and hence needs to occur during
1006 prologue generation or whether cost model check
1007 has not occurred during prologue generation and hence
1008 needs to occur during epilogue generation.
1009 - BOUND1 is the upper bound on number of iterations of the first loop (if known)
1010 - BOUND2 is the upper bound on number of iterations of the second loop (if known)
1014 The function returns a pointer to the new loop-copy, or NULL if it failed
1015 to perform the transformation.
1017 The function generates two if-then-else guards: one before the first loop,
1018 and the other before the second loop:
1020 if (FIRST_NITERS == 0) then skip the first loop,
1021 and go directly to the second loop.
1022 The second guard is:
1023 if (FIRST_NITERS == NITERS) then skip the second loop.
1025 If the optional COND_EXPR and COND_EXPR_STMT_LIST arguments are given
1026 then the generated condition is combined with COND_EXPR and the
1027 statements in COND_EXPR_STMT_LIST are emitted together with it.
1029 FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
1030 FORNOW the resulting code will not be in loop-closed-ssa form.
1034 slpeel_tree_peel_loop_to_edge (struct loop
*loop
,
1035 edge e
, tree
*first_niters
,
1036 tree niters
, bool update_first_loop_count
,
1037 unsigned int th
, bool check_profitability
,
1038 tree cond_expr
, gimple_seq cond_expr_stmt_list
,
1039 int bound1
, int bound2
)
1041 struct loop
*new_loop
= NULL
, *first_loop
, *second_loop
;
1043 tree pre_condition
= NULL_TREE
;
1044 basic_block bb_before_second_loop
, bb_after_second_loop
;
1045 basic_block bb_before_first_loop
;
1046 basic_block bb_between_loops
;
1047 basic_block new_exit_bb
;
1048 gimple_stmt_iterator gsi
;
1049 edge exit_e
= single_exit (loop
);
1051 tree cost_pre_condition
= NULL_TREE
;
1052 /* There are many aspects to how likely the first loop is going to be executed.
1053 Without histogram we can't really do good job. Simply set it to
1054 2/3, so the first loop is not reordered to the end of function and
1055 the hot path through stays short. */
1056 int first_guard_probability
= 2 * REG_BR_PROB_BASE
/ 3;
1057 int second_guard_probability
= 2 * REG_BR_PROB_BASE
/ 3;
1058 int probability_of_second_loop
;
1060 if (!slpeel_can_duplicate_loop_p (loop
, e
))
1063 /* If the loop has a virtual PHI, but exit bb doesn't, create a virtual PHI
1064 in the exit bb and rename all the uses after the loop. This simplifies
1065 the *guard[12] routines, which assume loop closed SSA form for all PHIs
1066 (but normally loop closed SSA form doesn't require virtual PHIs to be
1067 in the same form). Doing this early simplifies the checking what
1068 uses should be renamed. */
1069 for (gsi
= gsi_start_phis (loop
->header
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1070 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi
))))
1072 gimple phi
= gsi_stmt (gsi
);
1073 for (gsi
= gsi_start_phis (exit_e
->dest
);
1074 !gsi_end_p (gsi
); gsi_next (&gsi
))
1075 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi
))))
1077 if (gsi_end_p (gsi
))
1079 tree new_vop
= copy_ssa_name (PHI_RESULT (phi
), NULL
);
1080 gimple new_phi
= create_phi_node (new_vop
, exit_e
->dest
);
1081 tree vop
= PHI_ARG_DEF_FROM_EDGE (phi
, EDGE_SUCC (loop
->latch
, 0));
1082 imm_use_iterator imm_iter
;
1084 use_operand_p use_p
;
1086 add_phi_arg (new_phi
, vop
, exit_e
, UNKNOWN_LOCATION
);
1087 gimple_phi_set_result (new_phi
, new_vop
);
1088 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, vop
)
1089 if (stmt
!= new_phi
&& gimple_bb (stmt
) != loop
->header
)
1090 FOR_EACH_IMM_USE_ON_STMT (use_p
, imm_iter
)
1091 SET_USE (use_p
, new_vop
);
1096 /* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
1097 Resulting CFG would be:
1110 if (!(new_loop
= slpeel_tree_duplicate_loop_to_edge_cfg (loop
, e
)))
1112 loop_loc
= find_loop_location (loop
);
1113 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, loop_loc
,
1114 "tree_duplicate_loop_to_edge_cfg failed.\n");
1118 if (MAY_HAVE_DEBUG_STMTS
)
1120 gcc_assert (!adjust_vec
.exists ());
1121 vec_stack_alloc (adjust_info
, adjust_vec
, 32);
1126 /* NEW_LOOP was placed after LOOP. */
1128 second_loop
= new_loop
;
1132 /* NEW_LOOP was placed before LOOP. */
1133 first_loop
= new_loop
;
1137 /* 2. Add the guard code in one of the following ways:
1139 2.a Add the guard that controls whether the first loop is executed.
1140 This occurs when this function is invoked for prologue or epilogue
1141 generation and when the cost model check can be done at compile time.
1143 Resulting CFG would be:
1145 bb_before_first_loop:
1146 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1153 bb_before_second_loop:
1161 2.b Add the cost model check that allows the prologue
1162 to iterate for the entire unchanged scalar
1163 iterations of the loop in the event that the cost
1164 model indicates that the scalar loop is more
1165 profitable than the vector one. This occurs when
1166 this function is invoked for prologue generation
1167 and the cost model check needs to be done at run
1170 Resulting CFG after prologue peeling would be:
1172 if (scalar_loop_iterations <= th)
1173 FIRST_NITERS = scalar_loop_iterations
1175 bb_before_first_loop:
1176 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1183 bb_before_second_loop:
1191 2.c Add the cost model check that allows the epilogue
1192 to iterate for the entire unchanged scalar
1193 iterations of the loop in the event that the cost
1194 model indicates that the scalar loop is more
1195 profitable than the vector one. This occurs when
1196 this function is invoked for epilogue generation
1197 and the cost model check needs to be done at run
1198 time. This check is combined with any pre-existing
1199 check in COND_EXPR to avoid versioning.
1201 Resulting CFG after prologue peeling would be:
1203 bb_before_first_loop:
1204 if ((scalar_loop_iterations <= th)
1206 FIRST_NITERS == 0) GOTO bb_before_second_loop
1213 bb_before_second_loop:
1222 bb_before_first_loop
= split_edge (loop_preheader_edge (first_loop
));
1223 /* Loop copying insterted a forwarder block for us here. */
1224 bb_before_second_loop
= single_exit (first_loop
)->dest
;
1226 probability_of_second_loop
= (inverse_probability (first_guard_probability
)
1227 + combine_probabilities (second_guard_probability
,
1228 first_guard_probability
));
1229 /* Theoretically preheader edge of first loop and exit edge should have
1230 same frequencies. Loop exit probablities are however easy to get wrong.
1231 It is safer to copy value from original loop entry. */
1232 bb_before_second_loop
->frequency
1233 = apply_probability (bb_before_first_loop
->frequency
,
1234 probability_of_second_loop
);
1235 bb_before_second_loop
->count
1236 = apply_probability (bb_before_first_loop
->count
,
1237 probability_of_second_loop
);
1238 single_succ_edge (bb_before_second_loop
)->count
1239 = bb_before_second_loop
->count
;
1241 /* Epilogue peeling. */
1242 if (!update_first_loop_count
)
1245 fold_build2 (LE_EXPR
, boolean_type_node
, *first_niters
,
1246 build_int_cst (TREE_TYPE (*first_niters
), 0));
1247 if (check_profitability
)
1249 tree scalar_loop_iters
1250 = unshare_expr (LOOP_VINFO_NITERS_UNCHANGED
1251 (loop_vec_info_for_loop (loop
)));
1252 cost_pre_condition
=
1253 fold_build2 (LE_EXPR
, boolean_type_node
, scalar_loop_iters
,
1254 build_int_cst (TREE_TYPE (scalar_loop_iters
), th
));
1256 pre_condition
= fold_build2 (TRUTH_OR_EXPR
, boolean_type_node
,
1257 cost_pre_condition
, pre_condition
);
1262 fold_build2 (TRUTH_OR_EXPR
, boolean_type_node
,
1264 fold_build1 (TRUTH_NOT_EXPR
, boolean_type_node
,
1269 /* Prologue peeling. */
1272 if (check_profitability
)
1273 set_prologue_iterations (bb_before_first_loop
, first_niters
,
1274 loop
, th
, first_guard_probability
);
1277 fold_build2 (LE_EXPR
, boolean_type_node
, *first_niters
,
1278 build_int_cst (TREE_TYPE (*first_niters
), 0));
1281 skip_e
= slpeel_add_loop_guard (bb_before_first_loop
, pre_condition
,
1282 cond_expr_stmt_list
,
1283 bb_before_second_loop
, bb_before_first_loop
,
1284 inverse_probability (first_guard_probability
));
1285 scale_loop_profile (first_loop
, first_guard_probability
,
1286 check_profitability
&& (int)th
> bound1
? th
: bound1
);
1287 slpeel_update_phi_nodes_for_guard1 (skip_e
, first_loop
,
1288 first_loop
== new_loop
,
1292 /* 3. Add the guard that controls whether the second loop is executed.
1293 Resulting CFG would be:
1295 bb_before_first_loop:
1296 if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
1304 if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
1305 GOTO bb_before_second_loop
1307 bb_before_second_loop:
1313 bb_after_second_loop:
1318 bb_between_loops
= new_exit_bb
;
1319 bb_after_second_loop
= split_edge (single_exit (second_loop
));
1322 fold_build2 (EQ_EXPR
, boolean_type_node
, *first_niters
, niters
);
1323 skip_e
= slpeel_add_loop_guard (bb_between_loops
, pre_condition
, NULL
,
1324 bb_after_second_loop
, bb_before_first_loop
,
1325 inverse_probability (second_guard_probability
));
1326 scale_loop_profile (second_loop
, probability_of_second_loop
, bound2
);
1327 slpeel_update_phi_nodes_for_guard2 (skip_e
, second_loop
,
1328 second_loop
== new_loop
, &new_exit_bb
);
1330 /* 4. Make first-loop iterate FIRST_NITERS times, if requested.
1332 if (update_first_loop_count
)
1333 slpeel_make_loop_iterate_ntimes (first_loop
, *first_niters
);
1335 delete_update_ssa ();
1337 adjust_vec_debug_stmts ();
1342 /* Function vect_get_loop_location.
1344 Extract the location of the loop in the source code.
1345 If the loop is not well formed for vectorization, an estimated
1346 location is calculated.
1347 Return the loop location if succeed and NULL if not. */
1350 find_loop_location (struct loop
*loop
)
1354 gimple_stmt_iterator si
;
1359 stmt
= get_loop_exit_condition (loop
);
1362 && LOCATION_LOCUS (gimple_location (stmt
)) > BUILTINS_LOCATION
)
1363 return gimple_location (stmt
);
1365 /* If we got here the loop is probably not "well formed",
1366 try to estimate the loop location */
1373 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
1375 stmt
= gsi_stmt (si
);
1376 if (LOCATION_LOCUS (gimple_location (stmt
)) > BUILTINS_LOCATION
)
1377 return gimple_location (stmt
);
1384 /* This function builds ni_name = number of iterations loop executes
1385 on the loop preheader. If SEQ is given the stmt is instead emitted
1389 vect_build_loop_niters (loop_vec_info loop_vinfo
, gimple_seq seq
)
1392 gimple_seq stmts
= NULL
;
1394 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
1395 tree ni
= unshare_expr (LOOP_VINFO_NITERS (loop_vinfo
));
1397 var
= create_tmp_var (TREE_TYPE (ni
), "niters");
1398 ni_name
= force_gimple_operand (ni
, &stmts
, false, var
);
1400 pe
= loop_preheader_edge (loop
);
1404 gimple_seq_add_seq (&seq
, stmts
);
1407 basic_block new_bb
= gsi_insert_seq_on_edge_immediate (pe
, stmts
);
1408 gcc_assert (!new_bb
);
1416 /* This function generates the following statements:
1418 ni_name = number of iterations loop executes
1419 ratio = ni_name / vf
1420 ratio_mult_vf_name = ratio * vf
1422 and places them at the loop preheader edge or in COND_EXPR_STMT_LIST
1423 if that is non-NULL. */
1426 vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo
,
1428 tree
*ratio_mult_vf_name_ptr
,
1429 tree
*ratio_name_ptr
,
1430 gimple_seq cond_expr_stmt_list
)
1436 tree ni_name
, ni_minus_gap_name
;
1439 tree ratio_mult_vf_name
;
1440 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
1441 tree ni
= LOOP_VINFO_NITERS (loop_vinfo
);
1442 int vf
= LOOP_VINFO_VECT_FACTOR (loop_vinfo
);
1445 pe
= loop_preheader_edge (loop
);
1447 /* Generate temporary variable that contains
1448 number of iterations loop executes. */
1450 ni_name
= vect_build_loop_niters (loop_vinfo
, cond_expr_stmt_list
);
1451 log_vf
= build_int_cst (TREE_TYPE (ni
), exact_log2 (vf
));
1453 /* If epilogue loop is required because of data accesses with gaps, we
1454 subtract one iteration from the total number of iterations here for
1455 correct calculation of RATIO. */
1456 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo
))
1458 ni_minus_gap_name
= fold_build2 (MINUS_EXPR
, TREE_TYPE (ni_name
),
1460 build_one_cst (TREE_TYPE (ni_name
)));
1461 if (!is_gimple_val (ni_minus_gap_name
))
1463 var
= create_tmp_var (TREE_TYPE (ni
), "ni_gap");
1466 ni_minus_gap_name
= force_gimple_operand (ni_minus_gap_name
, &stmts
,
1468 if (cond_expr_stmt_list
)
1469 gimple_seq_add_seq (&cond_expr_stmt_list
, stmts
);
1472 pe
= loop_preheader_edge (loop
);
1473 new_bb
= gsi_insert_seq_on_edge_immediate (pe
, stmts
);
1474 gcc_assert (!new_bb
);
1479 ni_minus_gap_name
= ni_name
;
1481 /* Create: ratio = ni >> log2(vf) */
1483 ratio_name
= fold_build2 (RSHIFT_EXPR
, TREE_TYPE (ni_minus_gap_name
),
1484 ni_minus_gap_name
, log_vf
);
1485 if (!is_gimple_val (ratio_name
))
1487 var
= create_tmp_var (TREE_TYPE (ni
), "bnd");
1490 ratio_name
= force_gimple_operand (ratio_name
, &stmts
, true, var
);
1491 if (cond_expr_stmt_list
)
1492 gimple_seq_add_seq (&cond_expr_stmt_list
, stmts
);
1495 pe
= loop_preheader_edge (loop
);
1496 new_bb
= gsi_insert_seq_on_edge_immediate (pe
, stmts
);
1497 gcc_assert (!new_bb
);
1501 /* Create: ratio_mult_vf = ratio << log2 (vf). */
1503 ratio_mult_vf_name
= fold_build2 (LSHIFT_EXPR
, TREE_TYPE (ratio_name
),
1504 ratio_name
, log_vf
);
1505 if (!is_gimple_val (ratio_mult_vf_name
))
1507 var
= create_tmp_var (TREE_TYPE (ni
), "ratio_mult_vf");
1510 ratio_mult_vf_name
= force_gimple_operand (ratio_mult_vf_name
, &stmts
,
1512 if (cond_expr_stmt_list
)
1513 gimple_seq_add_seq (&cond_expr_stmt_list
, stmts
);
1516 pe
= loop_preheader_edge (loop
);
1517 new_bb
= gsi_insert_seq_on_edge_immediate (pe
, stmts
);
1518 gcc_assert (!new_bb
);
1522 *ni_name_ptr
= ni_name
;
1523 *ratio_mult_vf_name_ptr
= ratio_mult_vf_name
;
1524 *ratio_name_ptr
= ratio_name
;
1529 /* Function vect_can_advance_ivs_p
1531 In case the number of iterations that LOOP iterates is unknown at compile
1532 time, an epilog loop will be generated, and the loop induction variables
1533 (IVs) will be "advanced" to the value they are supposed to take just before
1534 the epilog loop. Here we check that the access function of the loop IVs
1535 and the expression that represents the loop bound are simple enough.
1536 These restrictions will be relaxed in the future. */
1539 vect_can_advance_ivs_p (loop_vec_info loop_vinfo
)
1541 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
1542 basic_block bb
= loop
->header
;
1544 gimple_stmt_iterator gsi
;
1546 /* Analyze phi functions of the loop header. */
1548 if (dump_enabled_p ())
1549 dump_printf_loc (MSG_NOTE
, vect_location
, "vect_can_advance_ivs_p:");
1550 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1552 tree access_fn
= NULL
;
1553 tree evolution_part
;
1555 phi
= gsi_stmt (gsi
);
1556 if (dump_enabled_p ())
1558 dump_printf_loc (MSG_NOTE
, vect_location
, "Analyze phi: ");
1559 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, phi
, 0);
1562 /* Skip virtual phi's. The data dependences that are associated with
1563 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
1565 if (virtual_operand_p (PHI_RESULT (phi
)))
1567 if (dump_enabled_p ())
1568 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1569 "virtual phi. skip.");
1573 /* Skip reduction phis. */
1575 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi
)) == vect_reduction_def
)
1577 if (dump_enabled_p ())
1578 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1579 "reduc phi. skip.");
1583 /* Analyze the evolution function. */
1585 access_fn
= instantiate_parameters
1586 (loop
, analyze_scalar_evolution (loop
, PHI_RESULT (phi
)));
1590 if (dump_enabled_p ())
1591 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1592 "No Access function.");
1596 STRIP_NOPS (access_fn
);
1597 if (dump_enabled_p ())
1599 dump_printf_loc (MSG_NOTE
, vect_location
,
1600 "Access function of PHI: ");
1601 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, access_fn
);
1604 evolution_part
= evolution_part_in_loop_num (access_fn
, loop
->num
);
1606 if (evolution_part
== NULL_TREE
)
1608 if (dump_enabled_p ())
1609 dump_printf (MSG_MISSED_OPTIMIZATION
, "No evolution.");
1613 /* FORNOW: We do not transform initial conditions of IVs
1614 which evolution functions are a polynomial of degree >= 2. */
1616 if (tree_is_chrec (evolution_part
))
1624 /* Function vect_update_ivs_after_vectorizer.
1626 "Advance" the induction variables of LOOP to the value they should take
1627 after the execution of LOOP. This is currently necessary because the
1628 vectorizer does not handle induction variables that are used after the
1629 loop. Such a situation occurs when the last iterations of LOOP are
1631 1. We introduced new uses after LOOP for IVs that were not originally used
1632 after LOOP: the IVs of LOOP are now used by an epilog loop.
1633 2. LOOP is going to be vectorized; this means that it will iterate N/VF
1634 times, whereas the loop IVs should be bumped N times.
1637 - LOOP - a loop that is going to be vectorized. The last few iterations
1638 of LOOP were peeled.
1639 - NITERS - the number of iterations that LOOP executes (before it is
1640 vectorized). i.e, the number of times the ivs should be bumped.
1641 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
1642 coming out from LOOP on which there are uses of the LOOP ivs
1643 (this is the path from LOOP->exit to epilog_loop->preheader).
1645 The new definitions of the ivs are placed in LOOP->exit.
1646 The phi args associated with the edge UPDATE_E in the bb
1647 UPDATE_E->dest are updated accordingly.
1649 Assumption 1: Like the rest of the vectorizer, this function assumes
1650 a single loop exit that has a single predecessor.
1652 Assumption 2: The phi nodes in the LOOP header and in update_bb are
1653 organized in the same order.
1655 Assumption 3: The access function of the ivs is simple enough (see
1656 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
1658 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
1659 coming out of LOOP on which the ivs of LOOP are used (this is the path
1660 that leads to the epilog loop; other paths skip the epilog loop). This
1661 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
1662 needs to have its phis updated.
1666 vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo
, tree niters
,
1669 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
1670 basic_block exit_bb
= single_exit (loop
)->dest
;
1672 gimple_stmt_iterator gsi
, gsi1
;
1673 basic_block update_bb
= update_e
->dest
;
1675 /* gcc_assert (vect_can_advance_ivs_p (loop_vinfo)); */
1677 /* Make sure there exists a single-predecessor exit bb: */
1678 gcc_assert (single_pred_p (exit_bb
));
1680 for (gsi
= gsi_start_phis (loop
->header
), gsi1
= gsi_start_phis (update_bb
);
1681 !gsi_end_p (gsi
) && !gsi_end_p (gsi1
);
1682 gsi_next (&gsi
), gsi_next (&gsi1
))
1685 tree step_expr
, off
;
1687 tree var
, ni
, ni_name
;
1688 gimple_stmt_iterator last_gsi
;
1689 stmt_vec_info stmt_info
;
1691 phi
= gsi_stmt (gsi
);
1692 phi1
= gsi_stmt (gsi1
);
1693 if (dump_enabled_p ())
1695 dump_printf_loc (MSG_NOTE
, vect_location
,
1696 "vect_update_ivs_after_vectorizer: phi: ");
1697 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, phi
, 0);
1700 /* Skip virtual phi's. */
1701 if (virtual_operand_p (PHI_RESULT (phi
)))
1703 if (dump_enabled_p ())
1704 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1705 "virtual phi. skip.");
1709 /* Skip reduction phis. */
1710 stmt_info
= vinfo_for_stmt (phi
);
1711 if (STMT_VINFO_DEF_TYPE (stmt_info
) == vect_reduction_def
)
1713 if (dump_enabled_p ())
1714 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1715 "reduc phi. skip.");
1719 type
= TREE_TYPE (gimple_phi_result (phi
));
1720 step_expr
= STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info
);
1721 step_expr
= unshare_expr (step_expr
);
1723 /* FORNOW: We do not support IVs whose evolution function is a polynomial
1724 of degree >= 2 or exponential. */
1725 gcc_assert (!tree_is_chrec (step_expr
));
1727 init_expr
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (loop
));
1729 off
= fold_build2 (MULT_EXPR
, TREE_TYPE (step_expr
),
1730 fold_convert (TREE_TYPE (step_expr
), niters
),
1732 if (POINTER_TYPE_P (type
))
1733 ni
= fold_build_pointer_plus (init_expr
, off
);
1735 ni
= fold_build2 (PLUS_EXPR
, type
,
1736 init_expr
, fold_convert (type
, off
));
1738 var
= create_tmp_var (type
, "tmp");
1740 last_gsi
= gsi_last_bb (exit_bb
);
1741 ni_name
= force_gimple_operand_gsi (&last_gsi
, ni
, false, var
,
1742 true, GSI_SAME_STMT
);
1744 /* Fix phi expressions in the successor bb. */
1745 adjust_phi_and_debug_stmts (phi1
, update_e
, ni_name
);
1749 /* Function vect_do_peeling_for_loop_bound
1751 Peel the last iterations of the loop represented by LOOP_VINFO.
1752 The peeled iterations form a new epilog loop. Given that the loop now
1753 iterates NITERS times, the new epilog loop iterates
1754 NITERS % VECTORIZATION_FACTOR times.
1756 The original loop will later be made to iterate
1757 NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO).
1759 COND_EXPR and COND_EXPR_STMT_LIST are combined with a new generated
1763 vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo
, tree
*ratio
,
1764 unsigned int th
, bool check_profitability
)
1766 tree ni_name
, ratio_mult_vf_name
;
1767 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
1768 struct loop
*new_loop
;
1770 basic_block preheader
;
1773 tree cond_expr
= NULL_TREE
;
1774 gimple_seq cond_expr_stmt_list
= NULL
;
1776 if (dump_enabled_p ())
1777 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS
, vect_location
,
1778 "=== vect_do_peeling_for_loop_bound ===");
1780 initialize_original_copy_tables ();
1782 /* Generate the following variables on the preheader of original loop:
1784 ni_name = number of iteration the original loop executes
1785 ratio = ni_name / vf
1786 ratio_mult_vf_name = ratio * vf */
1787 vect_generate_tmps_on_preheader (loop_vinfo
, &ni_name
,
1788 &ratio_mult_vf_name
, ratio
,
1789 cond_expr_stmt_list
);
1791 loop_num
= loop
->num
;
1793 new_loop
= slpeel_tree_peel_loop_to_edge (loop
, single_exit (loop
),
1794 &ratio_mult_vf_name
, ni_name
, false,
1795 th
, check_profitability
,
1796 cond_expr
, cond_expr_stmt_list
,
1797 0, LOOP_VINFO_VECT_FACTOR (loop_vinfo
));
1798 gcc_assert (new_loop
);
1799 gcc_assert (loop_num
== loop
->num
);
1800 #ifdef ENABLE_CHECKING
1801 slpeel_verify_cfg_after_peeling (loop
, new_loop
);
1804 /* A guard that controls whether the new_loop is to be executed or skipped
1805 is placed in LOOP->exit. LOOP->exit therefore has two successors - one
1806 is the preheader of NEW_LOOP, where the IVs from LOOP are used. The other
1807 is a bb after NEW_LOOP, where these IVs are not used. Find the edge that
1808 is on the path where the LOOP IVs are used and need to be updated. */
1810 preheader
= loop_preheader_edge (new_loop
)->src
;
1811 if (EDGE_PRED (preheader
, 0)->src
== single_exit (loop
)->dest
)
1812 update_e
= EDGE_PRED (preheader
, 0);
1814 update_e
= EDGE_PRED (preheader
, 1);
1816 /* Update IVs of original loop as if they were advanced
1817 by ratio_mult_vf_name steps. */
1818 vect_update_ivs_after_vectorizer (loop_vinfo
, ratio_mult_vf_name
, update_e
);
1820 /* For vectorization factor N, we need to copy last N-1 values in epilogue
1821 and this means N-2 loopback edge executions.
1823 PEELING_FOR_GAPS works by subtracting last iteration and thus the epilogue
1824 will execute at least LOOP_VINFO_VECT_FACTOR times. */
1825 max_iter
= (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo
)
1826 ? LOOP_VINFO_VECT_FACTOR (loop_vinfo
) * 2
1827 : LOOP_VINFO_VECT_FACTOR (loop_vinfo
)) - 2;
1828 if (check_profitability
)
1829 max_iter
= MAX (max_iter
, (int) th
- 1);
1830 record_niter_bound (new_loop
, double_int::from_shwi (max_iter
), false, true);
1831 dump_printf (MSG_OPTIMIZED_LOCATIONS
,
1832 "Setting upper bound of nb iterations for epilogue "
1833 "loop to %d\n", max_iter
);
1835 /* After peeling we have to reset scalar evolution analyzer. */
1838 free_original_copy_tables ();
1842 /* Function vect_gen_niters_for_prolog_loop
1844 Set the number of iterations for the loop represented by LOOP_VINFO
1845 to the minimum between LOOP_NITERS (the original iteration count of the loop)
1846 and the misalignment of DR - the data reference recorded in
1847 LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO). As a result, after the execution of
1848 this loop, the data reference DR will refer to an aligned location.
1850 The following computation is generated:
1852 If the misalignment of DR is known at compile time:
1853 addr_mis = int mis = DR_MISALIGNMENT (dr);
1854 Else, compute address misalignment in bytes:
1855 addr_mis = addr & (vectype_align - 1)
1857 prolog_niters = min (LOOP_NITERS, ((VF - addr_mis/elem_size)&(VF-1))/step)
1859 (elem_size = element type size; an element is the scalar element whose type
1860 is the inner type of the vectype)
1862 When the step of the data-ref in the loop is not 1 (as in interleaved data
1863 and SLP), the number of iterations of the prolog must be divided by the step
1864 (which is equal to the size of interleaved group).
1866 The above formulas assume that VF == number of elements in the vector. This
1867 may not hold when there are multiple-types in the loop.
1868 In this case, for some data-references in the loop the VF does not represent
1869 the number of elements that fit in the vector. Therefore, instead of VF we
1870 use TYPE_VECTOR_SUBPARTS. */
1873 vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo
, tree loop_niters
, int *bound
)
1875 struct data_reference
*dr
= LOOP_VINFO_UNALIGNED_DR (loop_vinfo
);
1876 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
1879 tree iters
, iters_name
;
1882 gimple dr_stmt
= DR_STMT (dr
);
1883 stmt_vec_info stmt_info
= vinfo_for_stmt (dr_stmt
);
1884 tree vectype
= STMT_VINFO_VECTYPE (stmt_info
);
1885 int vectype_align
= TYPE_ALIGN (vectype
) / BITS_PER_UNIT
;
1886 tree niters_type
= TREE_TYPE (loop_niters
);
1887 int nelements
= TYPE_VECTOR_SUBPARTS (vectype
);
1889 pe
= loop_preheader_edge (loop
);
1891 if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo
) > 0)
1893 int npeel
= LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo
);
1895 if (dump_enabled_p ())
1896 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS
, vect_location
,
1897 "known peeling = %d.", npeel
);
1899 iters
= build_int_cst (niters_type
, npeel
);
1900 *bound
= LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo
);
1904 gimple_seq new_stmts
= NULL
;
1905 bool negative
= tree_int_cst_compare (DR_STEP (dr
), size_zero_node
) < 0;
1906 tree offset
= negative
1907 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype
) + 1) : NULL_TREE
;
1908 tree start_addr
= vect_create_addr_base_for_vector_ref (dr_stmt
,
1909 &new_stmts
, offset
, loop
);
1910 tree type
= unsigned_type_for (TREE_TYPE (start_addr
));
1911 tree vectype_align_minus_1
= build_int_cst (type
, vectype_align
- 1);
1912 HOST_WIDE_INT elem_size
=
1913 int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype
)));
1914 tree elem_size_log
= build_int_cst (type
, exact_log2 (elem_size
));
1915 tree nelements_minus_1
= build_int_cst (type
, nelements
- 1);
1916 tree nelements_tree
= build_int_cst (type
, nelements
);
1920 new_bb
= gsi_insert_seq_on_edge_immediate (pe
, new_stmts
);
1921 gcc_assert (!new_bb
);
1923 /* Create: byte_misalign = addr & (vectype_align - 1) */
1925 fold_build2 (BIT_AND_EXPR
, type
, fold_convert (type
, start_addr
),
1926 vectype_align_minus_1
);
1928 /* Create: elem_misalign = byte_misalign / element_size */
1930 fold_build2 (RSHIFT_EXPR
, type
, byte_misalign
, elem_size_log
);
1932 /* Create: (niters_type) (nelements - elem_misalign)&(nelements - 1) */
1934 iters
= fold_build2 (MINUS_EXPR
, type
, elem_misalign
, nelements_tree
);
1936 iters
= fold_build2 (MINUS_EXPR
, type
, nelements_tree
, elem_misalign
);
1937 iters
= fold_build2 (BIT_AND_EXPR
, type
, iters
, nelements_minus_1
);
1938 iters
= fold_convert (niters_type
, iters
);
1942 /* Create: prolog_loop_niters = min (iters, loop_niters) */
1943 /* If the loop bound is known at compile time we already verified that it is
1944 greater than vf; since the misalignment ('iters') is at most vf, there's
1945 no need to generate the MIN_EXPR in this case. */
1946 if (TREE_CODE (loop_niters
) != INTEGER_CST
)
1947 iters
= fold_build2 (MIN_EXPR
, niters_type
, iters
, loop_niters
);
1949 if (dump_enabled_p ())
1951 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS
, vect_location
,
1952 "niters for prolog loop: ");
1953 dump_generic_expr (MSG_OPTIMIZED_LOCATIONS
, TDF_SLIM
, iters
);
1956 var
= create_tmp_var (niters_type
, "prolog_loop_niters");
1958 iters_name
= force_gimple_operand (iters
, &stmts
, false, var
);
1960 /* Insert stmt on loop preheader edge. */
1963 basic_block new_bb
= gsi_insert_seq_on_edge_immediate (pe
, stmts
);
1964 gcc_assert (!new_bb
);
1971 /* Function vect_update_init_of_dr
1973 NITERS iterations were peeled from LOOP. DR represents a data reference
1974 in LOOP. This function updates the information recorded in DR to
1975 account for the fact that the first NITERS iterations had already been
1976 executed. Specifically, it updates the OFFSET field of DR. */
1979 vect_update_init_of_dr (struct data_reference
*dr
, tree niters
)
1981 tree offset
= DR_OFFSET (dr
);
1983 niters
= fold_build2 (MULT_EXPR
, sizetype
,
1984 fold_convert (sizetype
, niters
),
1985 fold_convert (sizetype
, DR_STEP (dr
)));
1986 offset
= fold_build2 (PLUS_EXPR
, sizetype
,
1987 fold_convert (sizetype
, offset
), niters
);
1988 DR_OFFSET (dr
) = offset
;
1992 /* Function vect_update_inits_of_drs
1994 NITERS iterations were peeled from the loop represented by LOOP_VINFO.
1995 This function updates the information recorded for the data references in
1996 the loop to account for the fact that the first NITERS iterations had
1997 already been executed. Specifically, it updates the initial_condition of
1998 the access_function of all the data_references in the loop. */
2001 vect_update_inits_of_drs (loop_vec_info loop_vinfo
, tree niters
)
2004 vec
<data_reference_p
> datarefs
= LOOP_VINFO_DATAREFS (loop_vinfo
);
2005 struct data_reference
*dr
;
2007 if (dump_enabled_p ())
2008 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS
, vect_location
,
2009 "=== vect_update_inits_of_dr ===");
2011 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
2012 vect_update_init_of_dr (dr
, niters
);
2016 /* Function vect_do_peeling_for_alignment
2018 Peel the first 'niters' iterations of the loop represented by LOOP_VINFO.
2019 'niters' is set to the misalignment of one of the data references in the
2020 loop, thereby forcing it to refer to an aligned location at the beginning
2021 of the execution of this loop. The data reference for which we are
2022 peeling is recorded in LOOP_VINFO_UNALIGNED_DR. */
2025 vect_do_peeling_for_alignment (loop_vec_info loop_vinfo
,
2026 unsigned int th
, bool check_profitability
)
2028 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
2029 tree niters_of_prolog_loop
, ni_name
;
2031 tree wide_prolog_niters
;
2032 struct loop
*new_loop
;
2036 if (dump_enabled_p ())
2037 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS
, vect_location
,
2038 "=== vect_do_peeling_for_alignment ===");
2040 initialize_original_copy_tables ();
2042 ni_name
= vect_build_loop_niters (loop_vinfo
, NULL
);
2043 niters_of_prolog_loop
= vect_gen_niters_for_prolog_loop (loop_vinfo
,
2047 /* Peel the prolog loop and iterate it niters_of_prolog_loop. */
2049 slpeel_tree_peel_loop_to_edge (loop
, loop_preheader_edge (loop
),
2050 &niters_of_prolog_loop
, ni_name
, true,
2051 th
, check_profitability
, NULL_TREE
, NULL
,
2055 gcc_assert (new_loop
);
2056 #ifdef ENABLE_CHECKING
2057 slpeel_verify_cfg_after_peeling (new_loop
, loop
);
2059 /* For vectorization factor N, we need to copy at most N-1 values
2060 for alignment and this means N-2 loopback edge executions. */
2061 max_iter
= LOOP_VINFO_VECT_FACTOR (loop_vinfo
) - 2;
2062 if (check_profitability
)
2063 max_iter
= MAX (max_iter
, (int) th
- 1);
2064 record_niter_bound (new_loop
, double_int::from_shwi (max_iter
), false, true);
2065 dump_printf (MSG_OPTIMIZED_LOCATIONS
,
2066 "Setting upper bound of nb iterations for prologue "
2067 "loop to %d\n", max_iter
);
2069 /* Update number of times loop executes. */
2070 n_iters
= LOOP_VINFO_NITERS (loop_vinfo
);
2071 LOOP_VINFO_NITERS (loop_vinfo
) = fold_build2 (MINUS_EXPR
,
2072 TREE_TYPE (n_iters
), n_iters
, niters_of_prolog_loop
);
2074 if (types_compatible_p (sizetype
, TREE_TYPE (niters_of_prolog_loop
)))
2075 wide_prolog_niters
= niters_of_prolog_loop
;
2078 gimple_seq seq
= NULL
;
2079 edge pe
= loop_preheader_edge (loop
);
2080 tree wide_iters
= fold_convert (sizetype
, niters_of_prolog_loop
);
2081 tree var
= create_tmp_var (sizetype
, "prolog_loop_adjusted_niters");
2082 wide_prolog_niters
= force_gimple_operand (wide_iters
, &seq
, false,
2086 /* Insert stmt on loop preheader edge. */
2087 basic_block new_bb
= gsi_insert_seq_on_edge_immediate (pe
, seq
);
2088 gcc_assert (!new_bb
);
2092 /* Update the init conditions of the access functions of all data refs. */
2093 vect_update_inits_of_drs (loop_vinfo
, wide_prolog_niters
);
2095 /* After peeling we have to reset scalar evolution analyzer. */
2098 free_original_copy_tables ();
2102 /* Function vect_create_cond_for_align_checks.
2104 Create a conditional expression that represents the alignment checks for
2105 all of data references (array element references) whose alignment must be
2109 COND_EXPR - input conditional expression. New conditions will be chained
2110 with logical AND operation.
2111 LOOP_VINFO - two fields of the loop information are used.
2112 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
2113 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
2116 COND_EXPR_STMT_LIST - statements needed to construct the conditional
2118 The returned value is the conditional expression to be used in the if
2119 statement that controls which version of the loop gets executed at runtime.
2121 The algorithm makes two assumptions:
2122 1) The number of bytes "n" in a vector is a power of 2.
2123 2) An address "a" is aligned if a%n is zero and that this
2124 test can be done as a&(n-1) == 0. For example, for 16
2125 byte vectors the test is a&0xf == 0. */
2128 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo
,
2130 gimple_seq
*cond_expr_stmt_list
)
2132 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
2133 vec
<gimple
> may_misalign_stmts
2134 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo
);
2136 int mask
= LOOP_VINFO_PTR_MASK (loop_vinfo
);
2139 tree int_ptrsize_type
;
2141 tree or_tmp_name
= NULL_TREE
;
2145 tree part_cond_expr
;
2147 /* Check that mask is one less than a power of 2, i.e., mask is
2148 all zeros followed by all ones. */
2149 gcc_assert ((mask
!= 0) && ((mask
& (mask
+1)) == 0));
2151 int_ptrsize_type
= signed_type_for (ptr_type_node
);
2153 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
2154 of the first vector of the i'th data reference. */
2156 FOR_EACH_VEC_ELT (may_misalign_stmts
, i
, ref_stmt
)
2158 gimple_seq new_stmt_list
= NULL
;
2161 tree new_or_tmp_name
;
2162 gimple addr_stmt
, or_stmt
;
2163 stmt_vec_info stmt_vinfo
= vinfo_for_stmt (ref_stmt
);
2164 tree vectype
= STMT_VINFO_VECTYPE (stmt_vinfo
);
2165 bool negative
= tree_int_cst_compare
2166 (DR_STEP (STMT_VINFO_DATA_REF (stmt_vinfo
)), size_zero_node
) < 0;
2167 tree offset
= negative
2168 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype
) + 1) : NULL_TREE
;
2170 /* create: addr_tmp = (int)(address_of_first_vector) */
2172 vect_create_addr_base_for_vector_ref (ref_stmt
, &new_stmt_list
,
2174 if (new_stmt_list
!= NULL
)
2175 gimple_seq_add_seq (cond_expr_stmt_list
, new_stmt_list
);
2177 sprintf (tmp_name
, "addr2int%d", i
);
2178 addr_tmp_name
= make_temp_ssa_name (int_ptrsize_type
, NULL
, tmp_name
);
2179 addr_stmt
= gimple_build_assign_with_ops (NOP_EXPR
, addr_tmp_name
,
2180 addr_base
, NULL_TREE
);
2181 gimple_seq_add_stmt (cond_expr_stmt_list
, addr_stmt
);
2183 /* The addresses are OR together. */
2185 if (or_tmp_name
!= NULL_TREE
)
2187 /* create: or_tmp = or_tmp | addr_tmp */
2188 sprintf (tmp_name
, "orptrs%d", i
);
2189 new_or_tmp_name
= make_temp_ssa_name (int_ptrsize_type
, NULL
, tmp_name
);
2190 or_stmt
= gimple_build_assign_with_ops (BIT_IOR_EXPR
,
2192 or_tmp_name
, addr_tmp_name
);
2193 gimple_seq_add_stmt (cond_expr_stmt_list
, or_stmt
);
2194 or_tmp_name
= new_or_tmp_name
;
2197 or_tmp_name
= addr_tmp_name
;
2201 mask_cst
= build_int_cst (int_ptrsize_type
, mask
);
2203 /* create: and_tmp = or_tmp & mask */
2204 and_tmp_name
= make_temp_ssa_name (int_ptrsize_type
, NULL
, "andmask");
2206 and_stmt
= gimple_build_assign_with_ops (BIT_AND_EXPR
, and_tmp_name
,
2207 or_tmp_name
, mask_cst
);
2208 gimple_seq_add_stmt (cond_expr_stmt_list
, and_stmt
);
2210 /* Make and_tmp the left operand of the conditional test against zero.
2211 if and_tmp has a nonzero bit then some address is unaligned. */
2212 ptrsize_zero
= build_int_cst (int_ptrsize_type
, 0);
2213 part_cond_expr
= fold_build2 (EQ_EXPR
, boolean_type_node
,
2214 and_tmp_name
, ptrsize_zero
);
2216 *cond_expr
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
2217 *cond_expr
, part_cond_expr
);
2219 *cond_expr
= part_cond_expr
;
2223 /* Function vect_vfa_segment_size.
2225 Create an expression that computes the size of segment
2226 that will be accessed for a data reference. The functions takes into
2227 account that realignment loads may access one more vector.
2230 DR: The data reference.
2231 LENGTH_FACTOR: segment length to consider.
2233 Return an expression whose value is the size of segment which will be
2237 vect_vfa_segment_size (struct data_reference
*dr
, tree length_factor
)
2239 tree segment_length
;
2241 if (integer_zerop (DR_STEP (dr
)))
2242 segment_length
= TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr
)));
2244 segment_length
= size_binop (MULT_EXPR
,
2245 fold_convert (sizetype
, DR_STEP (dr
)),
2246 fold_convert (sizetype
, length_factor
));
2248 if (vect_supportable_dr_alignment (dr
, false)
2249 == dr_explicit_realign_optimized
)
2251 tree vector_size
= TYPE_SIZE_UNIT
2252 (STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr
))));
2254 segment_length
= size_binop (PLUS_EXPR
, segment_length
, vector_size
);
2256 return segment_length
;
2260 /* Function vect_create_cond_for_alias_checks.
2262 Create a conditional expression that represents the run-time checks for
2263 overlapping of address ranges represented by a list of data references
2264 relations passed as input.
2267 COND_EXPR - input conditional expression. New conditions will be chained
2268 with logical AND operation.
2269 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
2273 COND_EXPR - conditional expression.
2274 COND_EXPR_STMT_LIST - statements needed to construct the conditional
2278 The returned value is the conditional expression to be used in the if
2279 statement that controls which version of the loop gets executed at runtime.
2283 vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo
,
2285 gimple_seq
* cond_expr_stmt_list
)
2287 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
2288 vec
<ddr_p
> may_alias_ddrs
=
2289 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo
);
2290 int vect_factor
= LOOP_VINFO_VECT_FACTOR (loop_vinfo
);
2291 tree scalar_loop_iters
= LOOP_VINFO_NITERS (loop_vinfo
);
2295 tree part_cond_expr
, length_factor
;
2297 /* Create expression
2298 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
2299 || (load_ptr_0 + load_segment_length_0) <= store_ptr_0))
2303 ((store_ptr_n + store_segment_length_n) <= load_ptr_n)
2304 || (load_ptr_n + load_segment_length_n) <= store_ptr_n)) */
2306 if (may_alias_ddrs
.is_empty ())
2309 FOR_EACH_VEC_ELT (may_alias_ddrs
, i
, ddr
)
2311 struct data_reference
*dr_a
, *dr_b
;
2312 gimple dr_group_first_a
, dr_group_first_b
;
2313 tree addr_base_a
, addr_base_b
;
2314 tree segment_length_a
, segment_length_b
;
2315 gimple stmt_a
, stmt_b
;
2316 tree seg_a_min
, seg_a_max
, seg_b_min
, seg_b_max
;
2319 stmt_a
= DR_STMT (DDR_A (ddr
));
2320 dr_group_first_a
= GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_a
));
2321 if (dr_group_first_a
)
2323 stmt_a
= dr_group_first_a
;
2324 dr_a
= STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_a
));
2328 stmt_b
= DR_STMT (DDR_B (ddr
));
2329 dr_group_first_b
= GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_b
));
2330 if (dr_group_first_b
)
2332 stmt_b
= dr_group_first_b
;
2333 dr_b
= STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_b
));
2337 vect_create_addr_base_for_vector_ref (stmt_a
, cond_expr_stmt_list
,
2340 vect_create_addr_base_for_vector_ref (stmt_b
, cond_expr_stmt_list
,
2343 if (!operand_equal_p (DR_STEP (dr_a
), DR_STEP (dr_b
), 0))
2344 length_factor
= scalar_loop_iters
;
2346 length_factor
= size_int (vect_factor
);
2347 segment_length_a
= vect_vfa_segment_size (dr_a
, length_factor
);
2348 segment_length_b
= vect_vfa_segment_size (dr_b
, length_factor
);
2350 if (dump_enabled_p ())
2352 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS
, vect_location
,
2353 "create runtime check for data references ");
2354 dump_generic_expr (MSG_OPTIMIZED_LOCATIONS
, TDF_SLIM
, DR_REF (dr_a
));
2355 dump_printf (MSG_OPTIMIZED_LOCATIONS
, " and ");
2356 dump_generic_expr (MSG_OPTIMIZED_LOCATIONS
, TDF_SLIM
, DR_REF (dr_b
));
2359 seg_a_min
= addr_base_a
;
2360 seg_a_max
= fold_build_pointer_plus (addr_base_a
, segment_length_a
);
2361 if (tree_int_cst_compare (DR_STEP (dr_a
), size_zero_node
) < 0)
2362 seg_a_min
= seg_a_max
, seg_a_max
= addr_base_a
;
2364 seg_b_min
= addr_base_b
;
2365 seg_b_max
= fold_build_pointer_plus (addr_base_b
, segment_length_b
);
2366 if (tree_int_cst_compare (DR_STEP (dr_b
), size_zero_node
) < 0)
2367 seg_b_min
= seg_b_max
, seg_b_max
= addr_base_b
;
2370 fold_build2 (TRUTH_OR_EXPR
, boolean_type_node
,
2371 fold_build2 (LE_EXPR
, boolean_type_node
, seg_a_max
, seg_b_min
),
2372 fold_build2 (LE_EXPR
, boolean_type_node
, seg_b_max
, seg_a_min
));
2375 *cond_expr
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
2376 *cond_expr
, part_cond_expr
);
2378 *cond_expr
= part_cond_expr
;
2381 if (dump_enabled_p ())
2382 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS
, vect_location
,
2383 "created %u versioning for alias checks.\n",
2384 may_alias_ddrs
.length ());
2388 /* Function vect_loop_versioning.
2390 If the loop has data references that may or may not be aligned or/and
2391 has data reference relations whose independence was not proven then
2392 two versions of the loop need to be generated, one which is vectorized
2393 and one which isn't. A test is then generated to control which of the
2394 loops is executed. The test checks for the alignment of all of the
2395 data references that may or may not be aligned. An additional
2396 sequence of runtime tests is generated for each pairs of DDRs whose
2397 independence was not proven. The vectorized version of loop is
2398 executed only if both alias and alignment tests are passed.
2400 The test generated to check which version of loop is executed
2401 is modified to also check for profitability as indicated by the
2402 cost model initially.
2404 The versioning precondition(s) are placed in *COND_EXPR and
2405 *COND_EXPR_STMT_LIST. */
2408 vect_loop_versioning (loop_vec_info loop_vinfo
,
2409 unsigned int th
, bool check_profitability
)
2411 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
2412 basic_block condition_bb
;
2413 gimple_stmt_iterator gsi
, cond_exp_gsi
;
2414 basic_block merge_bb
;
2415 basic_block new_exit_bb
;
2417 gimple orig_phi
, new_phi
;
2418 tree cond_expr
= NULL_TREE
;
2419 gimple_seq cond_expr_stmt_list
= NULL
;
2421 unsigned prob
= 4 * REG_BR_PROB_BASE
/ 5;
2422 gimple_seq gimplify_stmt_list
= NULL
;
2423 tree scalar_loop_iters
= LOOP_VINFO_NITERS (loop_vinfo
);
2425 if (check_profitability
)
2427 cond_expr
= fold_build2 (GT_EXPR
, boolean_type_node
, scalar_loop_iters
,
2428 build_int_cst (TREE_TYPE (scalar_loop_iters
), th
));
2429 cond_expr
= force_gimple_operand_1 (cond_expr
, &cond_expr_stmt_list
,
2430 is_gimple_condexpr
, NULL_TREE
);
2433 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo
))
2434 vect_create_cond_for_align_checks (loop_vinfo
, &cond_expr
,
2435 &cond_expr_stmt_list
);
2437 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo
))
2438 vect_create_cond_for_alias_checks (loop_vinfo
, &cond_expr
,
2439 &cond_expr_stmt_list
);
2441 cond_expr
= force_gimple_operand_1 (cond_expr
, &gimplify_stmt_list
,
2442 is_gimple_condexpr
, NULL_TREE
);
2443 gimple_seq_add_seq (&cond_expr_stmt_list
, gimplify_stmt_list
);
2445 initialize_original_copy_tables ();
2446 loop_version (loop
, cond_expr
, &condition_bb
,
2447 prob
, prob
, REG_BR_PROB_BASE
- prob
, true);
2448 free_original_copy_tables();
2450 /* Loop versioning violates an assumption we try to maintain during
2451 vectorization - that the loop exit block has a single predecessor.
2452 After versioning, the exit block of both loop versions is the same
2453 basic block (i.e. it has two predecessors). Just in order to simplify
2454 following transformations in the vectorizer, we fix this situation
2455 here by adding a new (empty) block on the exit-edge of the loop,
2456 with the proper loop-exit phis to maintain loop-closed-form. */
2458 merge_bb
= single_exit (loop
)->dest
;
2459 gcc_assert (EDGE_COUNT (merge_bb
->preds
) == 2);
2460 new_exit_bb
= split_edge (single_exit (loop
));
2461 new_exit_e
= single_exit (loop
);
2462 e
= EDGE_SUCC (new_exit_bb
, 0);
2464 for (gsi
= gsi_start_phis (merge_bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2467 orig_phi
= gsi_stmt (gsi
);
2468 new_res
= copy_ssa_name (PHI_RESULT (orig_phi
), NULL
);
2469 new_phi
= create_phi_node (new_res
, new_exit_bb
);
2470 arg
= PHI_ARG_DEF_FROM_EDGE (orig_phi
, e
);
2471 add_phi_arg (new_phi
, arg
, new_exit_e
,
2472 gimple_phi_arg_location_from_edge (orig_phi
, e
));
2473 adjust_phi_and_debug_stmts (orig_phi
, e
, PHI_RESULT (new_phi
));
2476 /* End loop-exit-fixes after versioning. */
2478 update_ssa (TODO_update_ssa
);
2479 if (cond_expr_stmt_list
)
2481 cond_exp_gsi
= gsi_last_bb (condition_bb
);
2482 gsi_insert_seq_before (&cond_exp_gsi
, cond_expr_stmt_list
,