* parser.c (cp_parser_ctor_initializer_opt_and_function_body):
[official-gcc.git] / gcc / cp / init.c
blob3a6e2e7f4ebd2e55953623cf4ab519b09ce537c8
1 /* Handle initialization things in C++.
2 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* High-level class interface. */
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "tree.h"
30 #include "cp-tree.h"
31 #include "flags.h"
32 #include "output.h"
33 #include "toplev.h"
34 #include "target.h"
36 static bool begin_init_stmts (tree *, tree *);
37 static tree finish_init_stmts (bool, tree, tree);
38 static void construct_virtual_base (tree, tree);
39 static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
40 static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
41 static tree build_vec_delete_1 (tree, tree, tree, special_function_kind, int);
42 static void perform_member_init (tree, tree);
43 static tree build_builtin_delete_call (tree);
44 static int member_init_ok_or_else (tree, tree, tree);
45 static void expand_virtual_init (tree, tree);
46 static tree sort_mem_initializers (tree, tree);
47 static tree initializing_context (tree);
48 static void expand_cleanup_for_base (tree, tree);
49 static tree get_temp_regvar (tree, tree);
50 static tree dfs_initialize_vtbl_ptrs (tree, void *);
51 static tree build_dtor_call (tree, special_function_kind, int);
52 static tree build_field_list (tree, tree, int *);
53 static tree build_vtbl_address (tree);
54 static int diagnose_uninitialized_cst_or_ref_member_1 (tree, tree, bool, bool);
56 /* We are about to generate some complex initialization code.
57 Conceptually, it is all a single expression. However, we may want
58 to include conditionals, loops, and other such statement-level
59 constructs. Therefore, we build the initialization code inside a
60 statement-expression. This function starts such an expression.
61 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
62 pass them back to finish_init_stmts when the expression is
63 complete. */
65 static bool
66 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
68 bool is_global = !building_stmt_tree ();
70 *stmt_expr_p = begin_stmt_expr ();
71 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
73 return is_global;
76 /* Finish out the statement-expression begun by the previous call to
77 begin_init_stmts. Returns the statement-expression itself. */
79 static tree
80 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
82 finish_compound_stmt (compound_stmt);
84 stmt_expr = finish_stmt_expr (stmt_expr, true);
86 gcc_assert (!building_stmt_tree () == is_global);
88 return stmt_expr;
91 /* Constructors */
93 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
94 which we want to initialize the vtable pointer for, DATA is
95 TREE_LIST whose TREE_VALUE is the this ptr expression. */
97 static tree
98 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
100 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
101 return dfs_skip_bases;
103 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
105 tree base_ptr = TREE_VALUE ((tree) data);
107 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1);
109 expand_virtual_init (binfo, base_ptr);
112 return NULL_TREE;
115 /* Initialize all the vtable pointers in the object pointed to by
116 ADDR. */
118 void
119 initialize_vtbl_ptrs (tree addr)
121 tree list;
122 tree type;
124 type = TREE_TYPE (TREE_TYPE (addr));
125 list = build_tree_list (type, addr);
127 /* Walk through the hierarchy, initializing the vptr in each base
128 class. We do these in pre-order because we can't find the virtual
129 bases for a class until we've initialized the vtbl for that
130 class. */
131 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
134 /* Return an expression for the zero-initialization of an object with
135 type T. This expression will either be a constant (in the case
136 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
137 aggregate), or NULL (in the case that T does not require
138 initialization). In either case, the value can be used as
139 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
140 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
141 is the number of elements in the array. If STATIC_STORAGE_P is
142 TRUE, initializers are only generated for entities for which
143 zero-initialization does not simply mean filling the storage with
144 zero bytes. */
146 tree
147 build_zero_init (tree type, tree nelts, bool static_storage_p)
149 tree init = NULL_TREE;
151 /* [dcl.init]
153 To zero-initialize an object of type T means:
155 -- if T is a scalar type, the storage is set to the value of zero
156 converted to T.
158 -- if T is a non-union class type, the storage for each nonstatic
159 data member and each base-class subobject is zero-initialized.
161 -- if T is a union type, the storage for its first data member is
162 zero-initialized.
164 -- if T is an array type, the storage for each element is
165 zero-initialized.
167 -- if T is a reference type, no initialization is performed. */
169 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
171 if (type == error_mark_node)
173 else if (static_storage_p && zero_init_p (type))
174 /* In order to save space, we do not explicitly build initializers
175 for items that do not need them. GCC's semantics are that
176 items with static storage duration that are not otherwise
177 initialized are initialized to zero. */
179 else if (SCALAR_TYPE_P (type))
180 init = convert (type, integer_zero_node);
181 else if (CLASS_TYPE_P (type))
183 tree field;
184 VEC(constructor_elt,gc) *v = NULL;
186 /* Iterate over the fields, building initializations. */
187 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
189 if (TREE_CODE (field) != FIELD_DECL)
190 continue;
192 /* Note that for class types there will be FIELD_DECLs
193 corresponding to base classes as well. Thus, iterating
194 over TYPE_FIELDs will result in correct initialization of
195 all of the subobjects. */
196 if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
198 tree value = build_zero_init (TREE_TYPE (field),
199 /*nelts=*/NULL_TREE,
200 static_storage_p);
201 if (value)
202 CONSTRUCTOR_APPEND_ELT(v, field, value);
205 /* For unions, only the first field is initialized. */
206 if (TREE_CODE (type) == UNION_TYPE)
207 break;
210 /* Build a constructor to contain the initializations. */
211 init = build_constructor (type, v);
213 else if (TREE_CODE (type) == ARRAY_TYPE)
215 tree max_index;
216 VEC(constructor_elt,gc) *v = NULL;
218 /* Iterate over the array elements, building initializations. */
219 if (nelts)
220 max_index = fold_build2_loc (input_location,
221 MINUS_EXPR, TREE_TYPE (nelts),
222 nelts, integer_one_node);
223 else
224 max_index = array_type_nelts (type);
226 /* If we have an error_mark here, we should just return error mark
227 as we don't know the size of the array yet. */
228 if (max_index == error_mark_node)
229 return error_mark_node;
230 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
232 /* A zero-sized array, which is accepted as an extension, will
233 have an upper bound of -1. */
234 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
236 constructor_elt *ce;
238 v = VEC_alloc (constructor_elt, gc, 1);
239 ce = VEC_quick_push (constructor_elt, v, NULL);
241 /* If this is a one element array, we just use a regular init. */
242 if (tree_int_cst_equal (size_zero_node, max_index))
243 ce->index = size_zero_node;
244 else
245 ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
246 max_index);
248 ce->value = build_zero_init (TREE_TYPE (type),
249 /*nelts=*/NULL_TREE,
250 static_storage_p);
253 /* Build a constructor to contain the initializations. */
254 init = build_constructor (type, v);
256 else if (TREE_CODE (type) == VECTOR_TYPE)
257 init = fold_convert (type, integer_zero_node);
258 else
259 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
261 /* In all cases, the initializer is a constant. */
262 if (init)
263 TREE_CONSTANT (init) = 1;
265 return init;
268 /* Return a suitable initializer for value-initializing an object of type
269 TYPE, as described in [dcl.init]. */
271 tree
272 build_value_init (tree type, tsubst_flags_t complain)
274 /* [dcl.init]
276 To value-initialize an object of type T means:
278 - if T is a class type (clause 9) with a user-provided constructor
279 (12.1), then the default constructor for T is called (and the
280 initialization is ill-formed if T has no accessible default
281 constructor);
283 - if T is a non-union class type without a user-provided constructor,
284 then every non-static data member and base-class component of T is
285 value-initialized;92)
287 - if T is an array type, then each element is value-initialized;
289 - otherwise, the object is zero-initialized.
291 A program that calls for default-initialization or
292 value-initialization of an entity of reference type is ill-formed.
294 92) Value-initialization for such a class object may be implemented by
295 zero-initializing the object and then calling the default
296 constructor. */
298 /* The AGGR_INIT_EXPR tweaking below breaks in templates. */
299 gcc_assert (!processing_template_decl);
301 if (CLASS_TYPE_P (type))
303 if (type_has_user_provided_constructor (type))
304 return build_aggr_init_expr
305 (type,
306 build_special_member_call (NULL_TREE, complete_ctor_identifier,
307 NULL, type, LOOKUP_NORMAL,
308 complain));
309 else if (TREE_CODE (type) != UNION_TYPE && TYPE_NEEDS_CONSTRUCTING (type))
311 /* This is a class that needs constructing, but doesn't have
312 a user-provided constructor. So we need to zero-initialize
313 the object and then call the implicitly defined ctor.
314 This will be handled in simplify_aggr_init_expr. */
315 tree ctor = build_special_member_call
316 (NULL_TREE, complete_ctor_identifier,
317 NULL, type, LOOKUP_NORMAL, complain);
319 ctor = build_aggr_init_expr (type, ctor);
320 AGGR_INIT_ZERO_FIRST (ctor) = 1;
321 return ctor;
324 return build_value_init_noctor (type, complain);
327 /* Like build_value_init, but don't call the constructor for TYPE. Used
328 for base initializers. */
330 tree
331 build_value_init_noctor (tree type, tsubst_flags_t complain)
333 if (CLASS_TYPE_P (type))
335 gcc_assert (!TYPE_NEEDS_CONSTRUCTING (type));
337 if (TREE_CODE (type) != UNION_TYPE)
339 tree field;
340 VEC(constructor_elt,gc) *v = NULL;
342 /* Iterate over the fields, building initializations. */
343 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
345 tree ftype, value;
347 if (TREE_CODE (field) != FIELD_DECL)
348 continue;
350 ftype = TREE_TYPE (field);
352 if (TREE_CODE (ftype) == REFERENCE_TYPE)
354 if (complain & tf_error)
355 error ("value-initialization of reference");
356 else
357 return error_mark_node;
360 /* We could skip vfields and fields of types with
361 user-defined constructors, but I think that won't improve
362 performance at all; it should be simpler in general just
363 to zero out the entire object than try to only zero the
364 bits that actually need it. */
366 /* Note that for class types there will be FIELD_DECLs
367 corresponding to base classes as well. Thus, iterating
368 over TYPE_FIELDs will result in correct initialization of
369 all of the subobjects. */
370 value = build_value_init (ftype, complain);
372 if (value)
373 CONSTRUCTOR_APPEND_ELT(v, field, value);
376 /* Build a constructor to contain the zero- initializations. */
377 return build_constructor (type, v);
380 else if (TREE_CODE (type) == ARRAY_TYPE)
382 VEC(constructor_elt,gc) *v = NULL;
384 /* Iterate over the array elements, building initializations. */
385 tree max_index = array_type_nelts (type);
387 /* If we have an error_mark here, we should just return error mark
388 as we don't know the size of the array yet. */
389 if (max_index == error_mark_node)
391 error ("cannot value-initialize array of unknown bound %qT", type);
392 return error_mark_node;
394 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
396 /* A zero-sized array, which is accepted as an extension, will
397 have an upper bound of -1. */
398 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
400 constructor_elt *ce;
402 v = VEC_alloc (constructor_elt, gc, 1);
403 ce = VEC_quick_push (constructor_elt, v, NULL);
405 /* If this is a one element array, we just use a regular init. */
406 if (tree_int_cst_equal (size_zero_node, max_index))
407 ce->index = size_zero_node;
408 else
409 ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
410 max_index);
412 ce->value = build_value_init (TREE_TYPE (type), complain);
414 /* The gimplifier can't deal with a RANGE_EXPR of TARGET_EXPRs. */
415 gcc_assert (TREE_CODE (ce->value) != TARGET_EXPR
416 && TREE_CODE (ce->value) != AGGR_INIT_EXPR);
419 /* Build a constructor to contain the initializations. */
420 return build_constructor (type, v);
423 return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
426 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
427 arguments. If TREE_LIST is void_type_node, an empty initializer
428 list was given; if NULL_TREE no initializer was given. */
430 static void
431 perform_member_init (tree member, tree init)
433 tree decl;
434 tree type = TREE_TYPE (member);
436 /* Effective C++ rule 12 requires that all data members be
437 initialized. */
438 if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
439 warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__,
440 "%qD should be initialized in the member initialization list",
441 member);
443 /* Get an lvalue for the data member. */
444 decl = build_class_member_access_expr (current_class_ref, member,
445 /*access_path=*/NULL_TREE,
446 /*preserve_reference=*/true,
447 tf_warning_or_error);
448 if (decl == error_mark_node)
449 return;
451 if (init == void_type_node)
453 /* mem() means value-initialization. */
454 if (TREE_CODE (type) == ARRAY_TYPE)
456 init = build_vec_init (decl, NULL_TREE, NULL_TREE,
457 /*explicit_value_init_p=*/true,
458 /* from_array=*/0,
459 tf_warning_or_error);
460 finish_expr_stmt (init);
462 else
464 if (TREE_CODE (type) == REFERENCE_TYPE)
465 permerror (DECL_SOURCE_LOCATION (current_function_decl),
466 "value-initialization of %q#D, which has reference type",
467 member);
468 else
470 init = build2 (INIT_EXPR, type, decl,
471 build_value_init (type, tf_warning_or_error));
472 finish_expr_stmt (init);
476 /* Deal with this here, as we will get confused if we try to call the
477 assignment op for an anonymous union. This can happen in a
478 synthesized copy constructor. */
479 else if (ANON_AGGR_TYPE_P (type))
481 if (init)
483 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
484 finish_expr_stmt (init);
487 else if (TYPE_NEEDS_CONSTRUCTING (type))
489 if (TREE_CODE (type) == ARRAY_TYPE)
491 if (init)
493 gcc_assert (TREE_CHAIN (init) == NULL_TREE);
494 init = TREE_VALUE (init);
496 if (init == NULL_TREE
497 || same_type_ignoring_top_level_qualifiers_p (type,
498 TREE_TYPE (init)))
500 init = build_vec_init_expr (type, init);
501 init = build2 (INIT_EXPR, type, decl, init);
502 finish_expr_stmt (init);
504 else
505 error ("invalid initializer for array member %q#D", member);
507 else
509 if (CP_TYPE_CONST_P (type)
510 && init == NULL_TREE
511 && !type_has_user_provided_default_constructor (type))
512 /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
513 vtable; still give this diagnostic. */
514 permerror (DECL_SOURCE_LOCATION (current_function_decl),
515 "uninitialized member %qD with %<const%> type %qT",
516 member, type);
517 finish_expr_stmt (build_aggr_init (decl, init, 0,
518 tf_warning_or_error));
521 else
523 if (init == NULL_TREE)
525 tree core_type;
526 /* member traversal: note it leaves init NULL */
527 if (TREE_CODE (type) == REFERENCE_TYPE)
528 permerror (DECL_SOURCE_LOCATION (current_function_decl),
529 "uninitialized reference member %qD",
530 member);
531 else if (CP_TYPE_CONST_P (type))
532 permerror (DECL_SOURCE_LOCATION (current_function_decl),
533 "uninitialized member %qD with %<const%> type %qT",
534 member, type);
536 if (DECL_DECLARED_CONSTEXPR_P (current_function_decl)
537 && !type_has_constexpr_default_constructor (type))
539 if (!DECL_TEMPLATE_INSTANTIATION (current_function_decl))
540 error ("uninitialized member %qD in %<constexpr%> constructor",
541 member);
542 DECL_DECLARED_CONSTEXPR_P (current_function_decl) = false;
545 core_type = strip_array_types (type);
546 if (CLASS_TYPE_P (core_type)
547 && (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type)
548 || CLASSTYPE_REF_FIELDS_NEED_INIT (core_type)))
549 diagnose_uninitialized_cst_or_ref_member (core_type,
550 /*using_new=*/false,
551 /*complain=*/true);
553 else if (TREE_CODE (init) == TREE_LIST)
554 /* There was an explicit member initialization. Do some work
555 in that case. */
556 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
557 tf_warning_or_error);
559 if (init)
560 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
561 tf_warning_or_error));
564 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
566 tree expr;
568 expr = build_class_member_access_expr (current_class_ref, member,
569 /*access_path=*/NULL_TREE,
570 /*preserve_reference=*/false,
571 tf_warning_or_error);
572 expr = build_delete (type, expr, sfk_complete_destructor,
573 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
575 if (expr != error_mark_node)
576 finish_eh_cleanup (expr);
580 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
581 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
583 static tree
584 build_field_list (tree t, tree list, int *uses_unions_p)
586 tree fields;
588 *uses_unions_p = 0;
590 /* Note whether or not T is a union. */
591 if (TREE_CODE (t) == UNION_TYPE)
592 *uses_unions_p = 1;
594 for (fields = TYPE_FIELDS (t); fields; fields = DECL_CHAIN (fields))
596 tree fieldtype;
598 /* Skip CONST_DECLs for enumeration constants and so forth. */
599 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
600 continue;
602 fieldtype = TREE_TYPE (fields);
603 /* Keep track of whether or not any fields are unions. */
604 if (TREE_CODE (fieldtype) == UNION_TYPE)
605 *uses_unions_p = 1;
607 /* For an anonymous struct or union, we must recursively
608 consider the fields of the anonymous type. They can be
609 directly initialized from the constructor. */
610 if (ANON_AGGR_TYPE_P (fieldtype))
612 /* Add this field itself. Synthesized copy constructors
613 initialize the entire aggregate. */
614 list = tree_cons (fields, NULL_TREE, list);
615 /* And now add the fields in the anonymous aggregate. */
616 list = build_field_list (fieldtype, list, uses_unions_p);
618 /* Add this field. */
619 else if (DECL_NAME (fields))
620 list = tree_cons (fields, NULL_TREE, list);
623 return list;
626 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
627 a FIELD_DECL or BINFO in T that needs initialization. The
628 TREE_VALUE gives the initializer, or list of initializer arguments.
630 Return a TREE_LIST containing all of the initializations required
631 for T, in the order in which they should be performed. The output
632 list has the same format as the input. */
634 static tree
635 sort_mem_initializers (tree t, tree mem_inits)
637 tree init;
638 tree base, binfo, base_binfo;
639 tree sorted_inits;
640 tree next_subobject;
641 VEC(tree,gc) *vbases;
642 int i;
643 int uses_unions_p;
645 /* Build up a list of initializations. The TREE_PURPOSE of entry
646 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
647 TREE_VALUE will be the constructor arguments, or NULL if no
648 explicit initialization was provided. */
649 sorted_inits = NULL_TREE;
651 /* Process the virtual bases. */
652 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
653 VEC_iterate (tree, vbases, i, base); i++)
654 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
656 /* Process the direct bases. */
657 for (binfo = TYPE_BINFO (t), i = 0;
658 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
659 if (!BINFO_VIRTUAL_P (base_binfo))
660 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
662 /* Process the non-static data members. */
663 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
664 /* Reverse the entire list of initializations, so that they are in
665 the order that they will actually be performed. */
666 sorted_inits = nreverse (sorted_inits);
668 /* If the user presented the initializers in an order different from
669 that in which they will actually occur, we issue a warning. Keep
670 track of the next subobject which can be explicitly initialized
671 without issuing a warning. */
672 next_subobject = sorted_inits;
674 /* Go through the explicit initializers, filling in TREE_PURPOSE in
675 the SORTED_INITS. */
676 for (init = mem_inits; init; init = TREE_CHAIN (init))
678 tree subobject;
679 tree subobject_init;
681 subobject = TREE_PURPOSE (init);
683 /* If the explicit initializers are in sorted order, then
684 SUBOBJECT will be NEXT_SUBOBJECT, or something following
685 it. */
686 for (subobject_init = next_subobject;
687 subobject_init;
688 subobject_init = TREE_CHAIN (subobject_init))
689 if (TREE_PURPOSE (subobject_init) == subobject)
690 break;
692 /* Issue a warning if the explicit initializer order does not
693 match that which will actually occur.
694 ??? Are all these on the correct lines? */
695 if (warn_reorder && !subobject_init)
697 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
698 warning (OPT_Wreorder, "%q+D will be initialized after",
699 TREE_PURPOSE (next_subobject));
700 else
701 warning (OPT_Wreorder, "base %qT will be initialized after",
702 TREE_PURPOSE (next_subobject));
703 if (TREE_CODE (subobject) == FIELD_DECL)
704 warning (OPT_Wreorder, " %q+#D", subobject);
705 else
706 warning (OPT_Wreorder, " base %qT", subobject);
707 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
708 OPT_Wreorder, " when initialized here");
711 /* Look again, from the beginning of the list. */
712 if (!subobject_init)
714 subobject_init = sorted_inits;
715 while (TREE_PURPOSE (subobject_init) != subobject)
716 subobject_init = TREE_CHAIN (subobject_init);
719 /* It is invalid to initialize the same subobject more than
720 once. */
721 if (TREE_VALUE (subobject_init))
723 if (TREE_CODE (subobject) == FIELD_DECL)
724 error_at (DECL_SOURCE_LOCATION (current_function_decl),
725 "multiple initializations given for %qD",
726 subobject);
727 else
728 error_at (DECL_SOURCE_LOCATION (current_function_decl),
729 "multiple initializations given for base %qT",
730 subobject);
733 /* Record the initialization. */
734 TREE_VALUE (subobject_init) = TREE_VALUE (init);
735 next_subobject = subobject_init;
738 /* [class.base.init]
740 If a ctor-initializer specifies more than one mem-initializer for
741 multiple members of the same union (including members of
742 anonymous unions), the ctor-initializer is ill-formed.
744 Here we also splice out uninitialized union members. */
745 if (uses_unions_p)
747 tree last_field = NULL_TREE;
748 tree *p;
749 for (p = &sorted_inits; *p; )
751 tree field;
752 tree ctx;
753 int done;
755 init = *p;
757 field = TREE_PURPOSE (init);
759 /* Skip base classes. */
760 if (TREE_CODE (field) != FIELD_DECL)
761 goto next;
763 /* If this is an anonymous union with no explicit initializer,
764 splice it out. */
765 if (!TREE_VALUE (init) && ANON_UNION_TYPE_P (TREE_TYPE (field)))
766 goto splice;
768 /* See if this field is a member of a union, or a member of a
769 structure contained in a union, etc. */
770 for (ctx = DECL_CONTEXT (field);
771 !same_type_p (ctx, t);
772 ctx = TYPE_CONTEXT (ctx))
773 if (TREE_CODE (ctx) == UNION_TYPE)
774 break;
775 /* If this field is not a member of a union, skip it. */
776 if (TREE_CODE (ctx) != UNION_TYPE)
777 goto next;
779 /* If this union member has no explicit initializer, splice
780 it out. */
781 if (!TREE_VALUE (init))
782 goto splice;
784 /* It's only an error if we have two initializers for the same
785 union type. */
786 if (!last_field)
788 last_field = field;
789 goto next;
792 /* See if LAST_FIELD and the field initialized by INIT are
793 members of the same union. If so, there's a problem,
794 unless they're actually members of the same structure
795 which is itself a member of a union. For example, given:
797 union { struct { int i; int j; }; };
799 initializing both `i' and `j' makes sense. */
800 ctx = DECL_CONTEXT (field);
801 done = 0;
804 tree last_ctx;
806 last_ctx = DECL_CONTEXT (last_field);
807 while (1)
809 if (same_type_p (last_ctx, ctx))
811 if (TREE_CODE (ctx) == UNION_TYPE)
812 error_at (DECL_SOURCE_LOCATION (current_function_decl),
813 "initializations for multiple members of %qT",
814 last_ctx);
815 done = 1;
816 break;
819 if (same_type_p (last_ctx, t))
820 break;
822 last_ctx = TYPE_CONTEXT (last_ctx);
825 /* If we've reached the outermost class, then we're
826 done. */
827 if (same_type_p (ctx, t))
828 break;
830 ctx = TYPE_CONTEXT (ctx);
832 while (!done);
834 last_field = field;
836 next:
837 p = &TREE_CHAIN (*p);
838 continue;
839 splice:
840 *p = TREE_CHAIN (*p);
841 continue;
845 return sorted_inits;
848 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
849 is a TREE_LIST giving the explicit mem-initializer-list for the
850 constructor. The TREE_PURPOSE of each entry is a subobject (a
851 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
852 is a TREE_LIST giving the arguments to the constructor or
853 void_type_node for an empty list of arguments. */
855 void
856 emit_mem_initializers (tree mem_inits)
858 /* We will already have issued an error message about the fact that
859 the type is incomplete. */
860 if (!COMPLETE_TYPE_P (current_class_type))
861 return;
863 /* Sort the mem-initializers into the order in which the
864 initializations should be performed. */
865 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
867 in_base_initializer = 1;
869 /* Initialize base classes. */
870 while (mem_inits
871 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
873 tree subobject = TREE_PURPOSE (mem_inits);
874 tree arguments = TREE_VALUE (mem_inits);
876 if (arguments == NULL_TREE)
878 /* If these initializations are taking place in a copy constructor,
879 the base class should probably be explicitly initialized if there
880 is a user-defined constructor in the base class (other than the
881 default constructor, which will be called anyway). */
882 if (extra_warnings
883 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
884 && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
885 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
886 OPT_Wextra, "base class %q#T should be explicitly "
887 "initialized in the copy constructor",
888 BINFO_TYPE (subobject));
890 if (DECL_DECLARED_CONSTEXPR_P (current_function_decl)
891 && !(type_has_constexpr_default_constructor
892 (BINFO_TYPE (subobject))))
894 if (!DECL_TEMPLATE_INSTANTIATION (current_function_decl))
895 error ("uninitialized base %qT in %<constexpr%> constructor",
896 BINFO_TYPE (subobject));
897 DECL_DECLARED_CONSTEXPR_P (current_function_decl) = false;
901 /* Initialize the base. */
902 if (BINFO_VIRTUAL_P (subobject))
903 construct_virtual_base (subobject, arguments);
904 else
906 tree base_addr;
908 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
909 subobject, 1);
910 expand_aggr_init_1 (subobject, NULL_TREE,
911 cp_build_indirect_ref (base_addr, RO_NULL,
912 tf_warning_or_error),
913 arguments,
914 LOOKUP_NORMAL,
915 tf_warning_or_error);
916 expand_cleanup_for_base (subobject, NULL_TREE);
919 mem_inits = TREE_CHAIN (mem_inits);
921 in_base_initializer = 0;
923 /* Initialize the vptrs. */
924 initialize_vtbl_ptrs (current_class_ptr);
926 /* Initialize the data members. */
927 while (mem_inits)
929 perform_member_init (TREE_PURPOSE (mem_inits),
930 TREE_VALUE (mem_inits));
931 mem_inits = TREE_CHAIN (mem_inits);
935 /* Returns the address of the vtable (i.e., the value that should be
936 assigned to the vptr) for BINFO. */
938 static tree
939 build_vtbl_address (tree binfo)
941 tree binfo_for = binfo;
942 tree vtbl;
944 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
945 /* If this is a virtual primary base, then the vtable we want to store
946 is that for the base this is being used as the primary base of. We
947 can't simply skip the initialization, because we may be expanding the
948 inits of a subobject constructor where the virtual base layout
949 can be different. */
950 while (BINFO_PRIMARY_P (binfo_for))
951 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
953 /* Figure out what vtable BINFO's vtable is based on, and mark it as
954 used. */
955 vtbl = get_vtbl_decl_for_binfo (binfo_for);
956 TREE_USED (vtbl) = 1;
958 /* Now compute the address to use when initializing the vptr. */
959 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
960 if (TREE_CODE (vtbl) == VAR_DECL)
961 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
963 return vtbl;
966 /* This code sets up the virtual function tables appropriate for
967 the pointer DECL. It is a one-ply initialization.
969 BINFO is the exact type that DECL is supposed to be. In
970 multiple inheritance, this might mean "C's A" if C : A, B. */
972 static void
973 expand_virtual_init (tree binfo, tree decl)
975 tree vtbl, vtbl_ptr;
976 tree vtt_index;
978 /* Compute the initializer for vptr. */
979 vtbl = build_vtbl_address (binfo);
981 /* We may get this vptr from a VTT, if this is a subobject
982 constructor or subobject destructor. */
983 vtt_index = BINFO_VPTR_INDEX (binfo);
984 if (vtt_index)
986 tree vtbl2;
987 tree vtt_parm;
989 /* Compute the value to use, when there's a VTT. */
990 vtt_parm = current_vtt_parm;
991 vtbl2 = build2 (POINTER_PLUS_EXPR,
992 TREE_TYPE (vtt_parm),
993 vtt_parm,
994 vtt_index);
995 vtbl2 = cp_build_indirect_ref (vtbl2, RO_NULL, tf_warning_or_error);
996 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
998 /* The actual initializer is the VTT value only in the subobject
999 constructor. In maybe_clone_body we'll substitute NULL for
1000 the vtt_parm in the case of the non-subobject constructor. */
1001 vtbl = build3 (COND_EXPR,
1002 TREE_TYPE (vtbl),
1003 build2 (EQ_EXPR, boolean_type_node,
1004 current_in_charge_parm, integer_zero_node),
1005 vtbl2,
1006 vtbl);
1009 /* Compute the location of the vtpr. */
1010 vtbl_ptr = build_vfield_ref (cp_build_indirect_ref (decl, RO_NULL,
1011 tf_warning_or_error),
1012 TREE_TYPE (binfo));
1013 gcc_assert (vtbl_ptr != error_mark_node);
1015 /* Assign the vtable to the vptr. */
1016 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
1017 finish_expr_stmt (cp_build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl,
1018 tf_warning_or_error));
1021 /* If an exception is thrown in a constructor, those base classes already
1022 constructed must be destroyed. This function creates the cleanup
1023 for BINFO, which has just been constructed. If FLAG is non-NULL,
1024 it is a DECL which is nonzero when this base needs to be
1025 destroyed. */
1027 static void
1028 expand_cleanup_for_base (tree binfo, tree flag)
1030 tree expr;
1032 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
1033 return;
1035 /* Call the destructor. */
1036 expr = build_special_member_call (current_class_ref,
1037 base_dtor_identifier,
1038 NULL,
1039 binfo,
1040 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
1041 tf_warning_or_error);
1042 if (flag)
1043 expr = fold_build3_loc (input_location,
1044 COND_EXPR, void_type_node,
1045 c_common_truthvalue_conversion (input_location, flag),
1046 expr, integer_zero_node);
1048 finish_eh_cleanup (expr);
1051 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
1052 constructor. */
1054 static void
1055 construct_virtual_base (tree vbase, tree arguments)
1057 tree inner_if_stmt;
1058 tree exp;
1059 tree flag;
1061 /* If there are virtual base classes with destructors, we need to
1062 emit cleanups to destroy them if an exception is thrown during
1063 the construction process. These exception regions (i.e., the
1064 period during which the cleanups must occur) begin from the time
1065 the construction is complete to the end of the function. If we
1066 create a conditional block in which to initialize the
1067 base-classes, then the cleanup region for the virtual base begins
1068 inside a block, and ends outside of that block. This situation
1069 confuses the sjlj exception-handling code. Therefore, we do not
1070 create a single conditional block, but one for each
1071 initialization. (That way the cleanup regions always begin
1072 in the outer block.) We trust the back end to figure out
1073 that the FLAG will not change across initializations, and
1074 avoid doing multiple tests. */
1075 flag = DECL_CHAIN (DECL_ARGUMENTS (current_function_decl));
1076 inner_if_stmt = begin_if_stmt ();
1077 finish_if_stmt_cond (flag, inner_if_stmt);
1079 /* Compute the location of the virtual base. If we're
1080 constructing virtual bases, then we must be the most derived
1081 class. Therefore, we don't have to look up the virtual base;
1082 we already know where it is. */
1083 exp = convert_to_base_statically (current_class_ref, vbase);
1085 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
1086 LOOKUP_COMPLAIN, tf_warning_or_error);
1087 finish_then_clause (inner_if_stmt);
1088 finish_if_stmt (inner_if_stmt);
1090 expand_cleanup_for_base (vbase, flag);
1093 /* Find the context in which this FIELD can be initialized. */
1095 static tree
1096 initializing_context (tree field)
1098 tree t = DECL_CONTEXT (field);
1100 /* Anonymous union members can be initialized in the first enclosing
1101 non-anonymous union context. */
1102 while (t && ANON_AGGR_TYPE_P (t))
1103 t = TYPE_CONTEXT (t);
1104 return t;
1107 /* Function to give error message if member initialization specification
1108 is erroneous. FIELD is the member we decided to initialize.
1109 TYPE is the type for which the initialization is being performed.
1110 FIELD must be a member of TYPE.
1112 MEMBER_NAME is the name of the member. */
1114 static int
1115 member_init_ok_or_else (tree field, tree type, tree member_name)
1117 if (field == error_mark_node)
1118 return 0;
1119 if (!field)
1121 error ("class %qT does not have any field named %qD", type,
1122 member_name);
1123 return 0;
1125 if (TREE_CODE (field) == VAR_DECL)
1127 error ("%q#D is a static data member; it can only be "
1128 "initialized at its definition",
1129 field);
1130 return 0;
1132 if (TREE_CODE (field) != FIELD_DECL)
1134 error ("%q#D is not a non-static data member of %qT",
1135 field, type);
1136 return 0;
1138 if (initializing_context (field) != type)
1140 error ("class %qT does not have any field named %qD", type,
1141 member_name);
1142 return 0;
1145 return 1;
1148 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
1149 is a _TYPE node or TYPE_DECL which names a base for that type.
1150 Check the validity of NAME, and return either the base _TYPE, base
1151 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
1152 NULL_TREE and issue a diagnostic.
1154 An old style unnamed direct single base construction is permitted,
1155 where NAME is NULL. */
1157 tree
1158 expand_member_init (tree name)
1160 tree basetype;
1161 tree field;
1163 if (!current_class_ref)
1164 return NULL_TREE;
1166 if (!name)
1168 /* This is an obsolete unnamed base class initializer. The
1169 parser will already have warned about its use. */
1170 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
1172 case 0:
1173 error ("unnamed initializer for %qT, which has no base classes",
1174 current_class_type);
1175 return NULL_TREE;
1176 case 1:
1177 basetype = BINFO_TYPE
1178 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
1179 break;
1180 default:
1181 error ("unnamed initializer for %qT, which uses multiple inheritance",
1182 current_class_type);
1183 return NULL_TREE;
1186 else if (TYPE_P (name))
1188 basetype = TYPE_MAIN_VARIANT (name);
1189 name = TYPE_NAME (name);
1191 else if (TREE_CODE (name) == TYPE_DECL)
1192 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
1193 else
1194 basetype = NULL_TREE;
1196 if (basetype)
1198 tree class_binfo;
1199 tree direct_binfo;
1200 tree virtual_binfo;
1201 int i;
1203 if (current_template_parms)
1204 return basetype;
1206 class_binfo = TYPE_BINFO (current_class_type);
1207 direct_binfo = NULL_TREE;
1208 virtual_binfo = NULL_TREE;
1210 /* Look for a direct base. */
1211 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1212 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1213 break;
1215 /* Look for a virtual base -- unless the direct base is itself
1216 virtual. */
1217 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1218 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1220 /* [class.base.init]
1222 If a mem-initializer-id is ambiguous because it designates
1223 both a direct non-virtual base class and an inherited virtual
1224 base class, the mem-initializer is ill-formed. */
1225 if (direct_binfo && virtual_binfo)
1227 error ("%qD is both a direct base and an indirect virtual base",
1228 basetype);
1229 return NULL_TREE;
1232 if (!direct_binfo && !virtual_binfo)
1234 if (CLASSTYPE_VBASECLASSES (current_class_type))
1235 error ("type %qT is not a direct or virtual base of %qT",
1236 basetype, current_class_type);
1237 else
1238 error ("type %qT is not a direct base of %qT",
1239 basetype, current_class_type);
1240 return NULL_TREE;
1243 return direct_binfo ? direct_binfo : virtual_binfo;
1245 else
1247 if (TREE_CODE (name) == IDENTIFIER_NODE)
1248 field = lookup_field (current_class_type, name, 1, false);
1249 else
1250 field = name;
1252 if (member_init_ok_or_else (field, current_class_type, name))
1253 return field;
1256 return NULL_TREE;
1259 /* This is like `expand_member_init', only it stores one aggregate
1260 value into another.
1262 INIT comes in two flavors: it is either a value which
1263 is to be stored in EXP, or it is a parameter list
1264 to go to a constructor, which will operate on EXP.
1265 If INIT is not a parameter list for a constructor, then set
1266 LOOKUP_ONLYCONVERTING.
1267 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1268 the initializer, if FLAGS is 0, then it is the (init) form.
1269 If `init' is a CONSTRUCTOR, then we emit a warning message,
1270 explaining that such initializations are invalid.
1272 If INIT resolves to a CALL_EXPR which happens to return
1273 something of the type we are looking for, then we know
1274 that we can safely use that call to perform the
1275 initialization.
1277 The virtual function table pointer cannot be set up here, because
1278 we do not really know its type.
1280 This never calls operator=().
1282 When initializing, nothing is CONST.
1284 A default copy constructor may have to be used to perform the
1285 initialization.
1287 A constructor or a conversion operator may have to be used to
1288 perform the initialization, but not both, as it would be ambiguous. */
1290 tree
1291 build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
1293 tree stmt_expr;
1294 tree compound_stmt;
1295 int destroy_temps;
1296 tree type = TREE_TYPE (exp);
1297 int was_const = TREE_READONLY (exp);
1298 int was_volatile = TREE_THIS_VOLATILE (exp);
1299 int is_global;
1301 if (init == error_mark_node)
1302 return error_mark_node;
1304 TREE_READONLY (exp) = 0;
1305 TREE_THIS_VOLATILE (exp) = 0;
1307 if (init && TREE_CODE (init) != TREE_LIST
1308 && !(BRACE_ENCLOSED_INITIALIZER_P (init)
1309 && CONSTRUCTOR_IS_DIRECT_INIT (init)))
1310 flags |= LOOKUP_ONLYCONVERTING;
1312 if (TREE_CODE (type) == ARRAY_TYPE)
1314 tree itype;
1316 /* An array may not be initialized use the parenthesized
1317 initialization form -- unless the initializer is "()". */
1318 if (init && TREE_CODE (init) == TREE_LIST)
1320 if (complain & tf_error)
1321 error ("bad array initializer");
1322 return error_mark_node;
1324 /* Must arrange to initialize each element of EXP
1325 from elements of INIT. */
1326 itype = init ? TREE_TYPE (init) : NULL_TREE;
1327 if (cv_qualified_p (type))
1328 TREE_TYPE (exp) = cv_unqualified (type);
1329 if (itype && cv_qualified_p (itype))
1330 TREE_TYPE (init) = cv_unqualified (itype);
1331 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1332 /*explicit_value_init_p=*/false,
1333 itype && same_type_p (TREE_TYPE (init),
1334 TREE_TYPE (exp)),
1335 complain);
1336 TREE_READONLY (exp) = was_const;
1337 TREE_THIS_VOLATILE (exp) = was_volatile;
1338 TREE_TYPE (exp) = type;
1339 if (init)
1340 TREE_TYPE (init) = itype;
1341 return stmt_expr;
1344 if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
1345 /* Just know that we've seen something for this node. */
1346 TREE_USED (exp) = 1;
1348 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1349 destroy_temps = stmts_are_full_exprs_p ();
1350 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1351 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1352 init, LOOKUP_NORMAL|flags, complain);
1353 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1354 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1355 TREE_READONLY (exp) = was_const;
1356 TREE_THIS_VOLATILE (exp) = was_volatile;
1358 return stmt_expr;
1361 static void
1362 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
1363 tsubst_flags_t complain)
1365 tree type = TREE_TYPE (exp);
1366 tree ctor_name;
1368 /* It fails because there may not be a constructor which takes
1369 its own type as the first (or only parameter), but which does
1370 take other types via a conversion. So, if the thing initializing
1371 the expression is a unit element of type X, first try X(X&),
1372 followed by initialization by X. If neither of these work
1373 out, then look hard. */
1374 tree rval;
1375 VEC(tree,gc) *parms;
1377 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
1378 && CP_AGGREGATE_TYPE_P (type))
1380 /* A brace-enclosed initializer for an aggregate. In C++0x this can
1381 happen for direct-initialization, too. */
1382 init = digest_init (type, init);
1383 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1384 TREE_SIDE_EFFECTS (init) = 1;
1385 finish_expr_stmt (init);
1386 return;
1389 if (init && TREE_CODE (init) != TREE_LIST
1390 && (flags & LOOKUP_ONLYCONVERTING))
1392 /* Base subobjects should only get direct-initialization. */
1393 gcc_assert (true_exp == exp);
1395 if (flags & DIRECT_BIND)
1396 /* Do nothing. We hit this in two cases: Reference initialization,
1397 where we aren't initializing a real variable, so we don't want
1398 to run a new constructor; and catching an exception, where we
1399 have already built up the constructor call so we could wrap it
1400 in an exception region. */;
1401 else
1402 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
1404 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1405 /* We need to protect the initialization of a catch parm with a
1406 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1407 around the TARGET_EXPR for the copy constructor. See
1408 initialize_handler_parm. */
1410 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1411 TREE_OPERAND (init, 0));
1412 TREE_TYPE (init) = void_type_node;
1414 else
1415 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1416 TREE_SIDE_EFFECTS (init) = 1;
1417 finish_expr_stmt (init);
1418 return;
1421 if (init == NULL_TREE)
1422 parms = NULL;
1423 else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init))
1425 parms = make_tree_vector ();
1426 for (; init != NULL_TREE; init = TREE_CHAIN (init))
1427 VEC_safe_push (tree, gc, parms, TREE_VALUE (init));
1429 else
1430 parms = make_tree_vector_single (init);
1432 if (true_exp == exp)
1433 ctor_name = complete_ctor_identifier;
1434 else
1435 ctor_name = base_ctor_identifier;
1437 rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags,
1438 complain);
1440 if (parms != NULL)
1441 release_tree_vector (parms);
1443 if (TREE_SIDE_EFFECTS (rval))
1444 finish_expr_stmt (convert_to_void (rval, ICV_CAST, complain));
1447 /* This function is responsible for initializing EXP with INIT
1448 (if any).
1450 BINFO is the binfo of the type for who we are performing the
1451 initialization. For example, if W is a virtual base class of A and B,
1452 and C : A, B.
1453 If we are initializing B, then W must contain B's W vtable, whereas
1454 were we initializing C, W must contain C's W vtable.
1456 TRUE_EXP is nonzero if it is the true expression being initialized.
1457 In this case, it may be EXP, or may just contain EXP. The reason we
1458 need this is because if EXP is a base element of TRUE_EXP, we
1459 don't necessarily know by looking at EXP where its virtual
1460 baseclass fields should really be pointing. But we do know
1461 from TRUE_EXP. In constructors, we don't know anything about
1462 the value being initialized.
1464 FLAGS is just passed to `build_new_method_call'. See that function
1465 for its description. */
1467 static void
1468 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
1469 tsubst_flags_t complain)
1471 tree type = TREE_TYPE (exp);
1473 gcc_assert (init != error_mark_node && type != error_mark_node);
1474 gcc_assert (building_stmt_tree ());
1476 /* Use a function returning the desired type to initialize EXP for us.
1477 If the function is a constructor, and its first argument is
1478 NULL_TREE, know that it was meant for us--just slide exp on
1479 in and expand the constructor. Constructors now come
1480 as TARGET_EXPRs. */
1482 if (init && TREE_CODE (exp) == VAR_DECL
1483 && COMPOUND_LITERAL_P (init))
1485 /* If store_init_value returns NULL_TREE, the INIT has been
1486 recorded as the DECL_INITIAL for EXP. That means there's
1487 nothing more we have to do. */
1488 init = store_init_value (exp, init, flags);
1489 if (init)
1490 finish_expr_stmt (init);
1491 return;
1494 /* If an explicit -- but empty -- initializer list was present,
1495 that's value-initialization. */
1496 if (init == void_type_node)
1498 /* If there's a user-provided constructor, we just call that. */
1499 if (type_has_user_provided_constructor (type))
1500 /* Fall through. */;
1501 /* If there isn't, but we still need to call the constructor,
1502 zero out the object first. */
1503 else if (TYPE_NEEDS_CONSTRUCTING (type))
1505 init = build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
1506 init = build2 (INIT_EXPR, type, exp, init);
1507 finish_expr_stmt (init);
1508 /* And then call the constructor. */
1510 /* If we don't need to mess with the constructor at all,
1511 then just zero out the object and we're done. */
1512 else
1514 init = build2 (INIT_EXPR, type, exp,
1515 build_value_init_noctor (type, complain));
1516 finish_expr_stmt (init);
1517 return;
1519 init = NULL_TREE;
1522 /* We know that expand_default_init can handle everything we want
1523 at this point. */
1524 expand_default_init (binfo, true_exp, exp, init, flags, complain);
1527 /* Report an error if TYPE is not a user-defined, class type. If
1528 OR_ELSE is nonzero, give an error message. */
1531 is_class_type (tree type, int or_else)
1533 if (type == error_mark_node)
1534 return 0;
1536 if (! CLASS_TYPE_P (type))
1538 if (or_else)
1539 error ("%qT is not a class type", type);
1540 return 0;
1542 return 1;
1545 tree
1546 get_type_value (tree name)
1548 if (name == error_mark_node)
1549 return NULL_TREE;
1551 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1552 return IDENTIFIER_TYPE_VALUE (name);
1553 else
1554 return NULL_TREE;
1557 /* Build a reference to a member of an aggregate. This is not a C++
1558 `&', but really something which can have its address taken, and
1559 then act as a pointer to member, for example TYPE :: FIELD can have
1560 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1561 this expression is the operand of "&".
1563 @@ Prints out lousy diagnostics for operator <typename>
1564 @@ fields.
1566 @@ This function should be rewritten and placed in search.c. */
1568 tree
1569 build_offset_ref (tree type, tree member, bool address_p)
1571 tree decl;
1572 tree basebinfo = NULL_TREE;
1574 /* class templates can come in as TEMPLATE_DECLs here. */
1575 if (TREE_CODE (member) == TEMPLATE_DECL)
1576 return member;
1578 if (dependent_scope_p (type) || type_dependent_expression_p (member))
1579 return build_qualified_name (NULL_TREE, type, member,
1580 /*template_p=*/false);
1582 gcc_assert (TYPE_P (type));
1583 if (! is_class_type (type, 1))
1584 return error_mark_node;
1586 gcc_assert (DECL_P (member) || BASELINK_P (member));
1587 /* Callers should call mark_used before this point. */
1588 gcc_assert (!DECL_P (member) || TREE_USED (member));
1590 type = TYPE_MAIN_VARIANT (type);
1591 if (!COMPLETE_OR_OPEN_TYPE_P (complete_type (type)))
1593 error ("incomplete type %qT does not have member %qD", type, member);
1594 return error_mark_node;
1597 /* Entities other than non-static members need no further
1598 processing. */
1599 if (TREE_CODE (member) == TYPE_DECL)
1600 return member;
1601 if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == CONST_DECL)
1602 return convert_from_reference (member);
1604 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1606 error ("invalid pointer to bit-field %qD", member);
1607 return error_mark_node;
1610 /* Set up BASEBINFO for member lookup. */
1611 decl = maybe_dummy_object (type, &basebinfo);
1613 /* A lot of this logic is now handled in lookup_member. */
1614 if (BASELINK_P (member))
1616 /* Go from the TREE_BASELINK to the member function info. */
1617 tree t = BASELINK_FUNCTIONS (member);
1619 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1621 /* Get rid of a potential OVERLOAD around it. */
1622 t = OVL_CURRENT (t);
1624 /* Unique functions are handled easily. */
1626 /* For non-static member of base class, we need a special rule
1627 for access checking [class.protected]:
1629 If the access is to form a pointer to member, the
1630 nested-name-specifier shall name the derived class
1631 (or any class derived from that class). */
1632 if (address_p && DECL_P (t)
1633 && DECL_NONSTATIC_MEMBER_P (t))
1634 perform_or_defer_access_check (TYPE_BINFO (type), t, t);
1635 else
1636 perform_or_defer_access_check (basebinfo, t, t);
1638 if (DECL_STATIC_FUNCTION_P (t))
1639 return t;
1640 member = t;
1642 else
1643 TREE_TYPE (member) = unknown_type_node;
1645 else if (address_p && TREE_CODE (member) == FIELD_DECL)
1646 /* We need additional test besides the one in
1647 check_accessibility_of_qualified_id in case it is
1648 a pointer to non-static member. */
1649 perform_or_defer_access_check (TYPE_BINFO (type), member, member);
1651 if (!address_p)
1653 /* If MEMBER is non-static, then the program has fallen afoul of
1654 [expr.prim]:
1656 An id-expression that denotes a nonstatic data member or
1657 nonstatic member function of a class can only be used:
1659 -- as part of a class member access (_expr.ref_) in which the
1660 object-expression refers to the member's class or a class
1661 derived from that class, or
1663 -- to form a pointer to member (_expr.unary.op_), or
1665 -- in the body of a nonstatic member function of that class or
1666 of a class derived from that class (_class.mfct.nonstatic_), or
1668 -- in a mem-initializer for a constructor for that class or for
1669 a class derived from that class (_class.base.init_). */
1670 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
1672 /* Build a representation of the qualified name suitable
1673 for use as the operand to "&" -- even though the "&" is
1674 not actually present. */
1675 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1676 /* In Microsoft mode, treat a non-static member function as if
1677 it were a pointer-to-member. */
1678 if (flag_ms_extensions)
1680 PTRMEM_OK_P (member) = 1;
1681 return cp_build_addr_expr (member, tf_warning_or_error);
1683 error ("invalid use of non-static member function %qD",
1684 TREE_OPERAND (member, 1));
1685 return error_mark_node;
1687 else if (TREE_CODE (member) == FIELD_DECL)
1689 error ("invalid use of non-static data member %qD", member);
1690 return error_mark_node;
1692 return member;
1695 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1696 PTRMEM_OK_P (member) = 1;
1697 return member;
1700 /* If DECL is a scalar enumeration constant or variable with a
1701 constant initializer, return the initializer (or, its initializers,
1702 recursively); otherwise, return DECL. If INTEGRAL_P, the
1703 initializer is only returned if DECL is an integral
1704 constant-expression. */
1706 static tree
1707 constant_value_1 (tree decl, bool integral_p)
1709 while (TREE_CODE (decl) == CONST_DECL
1710 || (integral_p
1711 ? DECL_INTEGRAL_CONSTANT_VAR_P (decl)
1712 : (TREE_CODE (decl) == VAR_DECL
1713 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
1715 tree init;
1716 /* Static data members in template classes may have
1717 non-dependent initializers. References to such non-static
1718 data members are not value-dependent, so we must retrieve the
1719 initializer here. The DECL_INITIAL will have the right type,
1720 but will not have been folded because that would prevent us
1721 from performing all appropriate semantic checks at
1722 instantiation time. */
1723 if (DECL_CLASS_SCOPE_P (decl)
1724 && CLASSTYPE_TEMPLATE_INFO (DECL_CONTEXT (decl))
1725 && uses_template_parms (CLASSTYPE_TI_ARGS
1726 (DECL_CONTEXT (decl))))
1728 ++processing_template_decl;
1729 init = fold_non_dependent_expr (DECL_INITIAL (decl));
1730 --processing_template_decl;
1732 else
1734 /* If DECL is a static data member in a template
1735 specialization, we must instantiate it here. The
1736 initializer for the static data member is not processed
1737 until needed; we need it now. */
1738 mark_used (decl);
1739 init = DECL_INITIAL (decl);
1741 if (init == error_mark_node)
1743 if (DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
1744 /* Treat the error as a constant to avoid cascading errors on
1745 excessively recursive template instantiation (c++/9335). */
1746 return init;
1747 else
1748 return decl;
1750 /* Initializers in templates are generally expanded during
1751 instantiation, so before that for const int i(2)
1752 INIT is a TREE_LIST with the actual initializer as
1753 TREE_VALUE. */
1754 if (processing_template_decl
1755 && init
1756 && TREE_CODE (init) == TREE_LIST
1757 && TREE_CHAIN (init) == NULL_TREE)
1758 init = TREE_VALUE (init);
1759 if (!init
1760 || !TREE_TYPE (init)
1761 || (integral_p
1762 ? !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (init))
1763 : (!TREE_CONSTANT (init)
1764 /* Do not return an aggregate constant (of which
1765 string literals are a special case), as we do not
1766 want to make inadvertent copies of such entities,
1767 and we must be sure that their addresses are the
1768 same everywhere. */
1769 || TREE_CODE (init) == CONSTRUCTOR
1770 || TREE_CODE (init) == STRING_CST)))
1771 break;
1772 decl = unshare_expr (init);
1774 return decl;
1777 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by
1778 constant of integral or enumeration type, then return that value.
1779 These are those variables permitted in constant expressions by
1780 [5.19/1]. */
1782 tree
1783 integral_constant_value (tree decl)
1785 return constant_value_1 (decl, /*integral_p=*/true);
1788 /* A more relaxed version of integral_constant_value, used by the
1789 common C/C++ code and by the C++ front end for optimization
1790 purposes. */
1792 tree
1793 decl_constant_value (tree decl)
1795 return constant_value_1 (decl,
1796 /*integral_p=*/processing_template_decl);
1799 /* Common subroutines of build_new and build_vec_delete. */
1801 /* Call the global __builtin_delete to delete ADDR. */
1803 static tree
1804 build_builtin_delete_call (tree addr)
1806 mark_used (global_delete_fndecl);
1807 return build_call_n (global_delete_fndecl, 1, addr);
1810 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
1811 the type of the object being allocated; otherwise, it's just TYPE.
1812 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
1813 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
1814 a vector of arguments to be provided as arguments to a placement
1815 new operator. This routine performs no semantic checks; it just
1816 creates and returns a NEW_EXPR. */
1818 static tree
1819 build_raw_new_expr (VEC(tree,gc) *placement, tree type, tree nelts,
1820 VEC(tree,gc) *init, int use_global_new)
1822 tree init_list;
1823 tree new_expr;
1825 /* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR.
1826 If INIT is not NULL, then we want to store VOID_ZERO_NODE. This
1827 permits us to distinguish the case of a missing initializer "new
1828 int" from an empty initializer "new int()". */
1829 if (init == NULL)
1830 init_list = NULL_TREE;
1831 else if (VEC_empty (tree, init))
1832 init_list = void_zero_node;
1833 else
1834 init_list = build_tree_list_vec (init);
1836 new_expr = build4 (NEW_EXPR, build_pointer_type (type),
1837 build_tree_list_vec (placement), type, nelts,
1838 init_list);
1839 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
1840 TREE_SIDE_EFFECTS (new_expr) = 1;
1842 return new_expr;
1845 /* Diagnose uninitialized const members or reference members of type
1846 TYPE. USING_NEW is used to disambiguate the diagnostic between a
1847 new expression without a new-initializer and a declaration. Returns
1848 the error count. */
1850 static int
1851 diagnose_uninitialized_cst_or_ref_member_1 (tree type, tree origin,
1852 bool using_new, bool complain)
1854 tree field;
1855 int error_count = 0;
1857 if (type_has_user_provided_constructor (type))
1858 return 0;
1860 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1862 tree field_type;
1864 if (TREE_CODE (field) != FIELD_DECL)
1865 continue;
1867 field_type = strip_array_types (TREE_TYPE (field));
1869 if (TREE_CODE (field_type) == REFERENCE_TYPE)
1871 ++ error_count;
1872 if (complain)
1874 if (using_new)
1875 error ("uninitialized reference member in %q#T "
1876 "using %<new%> without new-initializer", origin);
1877 else
1878 error ("uninitialized reference member in %q#T", origin);
1879 inform (DECL_SOURCE_LOCATION (field),
1880 "%qD should be initialized", field);
1884 if (CP_TYPE_CONST_P (field_type))
1886 ++ error_count;
1887 if (complain)
1889 if (using_new)
1890 error ("uninitialized const member in %q#T "
1891 "using %<new%> without new-initializer", origin);
1892 else
1893 error ("uninitialized const member in %q#T", origin);
1894 inform (DECL_SOURCE_LOCATION (field),
1895 "%qD should be initialized", field);
1899 if (CLASS_TYPE_P (field_type))
1900 error_count
1901 += diagnose_uninitialized_cst_or_ref_member_1 (field_type, origin,
1902 using_new, complain);
1904 return error_count;
1908 diagnose_uninitialized_cst_or_ref_member (tree type, bool using_new, bool complain)
1910 return diagnose_uninitialized_cst_or_ref_member_1 (type, type, using_new, complain);
1913 /* Generate code for a new-expression, including calling the "operator
1914 new" function, initializing the object, and, if an exception occurs
1915 during construction, cleaning up. The arguments are as for
1916 build_raw_new_expr. This may change PLACEMENT and INIT. */
1918 static tree
1919 build_new_1 (VEC(tree,gc) **placement, tree type, tree nelts,
1920 VEC(tree,gc) **init, bool globally_qualified_p,
1921 tsubst_flags_t complain)
1923 tree size, rval;
1924 /* True iff this is a call to "operator new[]" instead of just
1925 "operator new". */
1926 bool array_p = false;
1927 /* If ARRAY_P is true, the element type of the array. This is never
1928 an ARRAY_TYPE; for something like "new int[3][4]", the
1929 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
1930 TYPE. */
1931 tree elt_type;
1932 /* The type of the new-expression. (This type is always a pointer
1933 type.) */
1934 tree pointer_type;
1935 tree non_const_pointer_type;
1936 tree outer_nelts = NULL_TREE;
1937 tree alloc_call, alloc_expr;
1938 /* The address returned by the call to "operator new". This node is
1939 a VAR_DECL and is therefore reusable. */
1940 tree alloc_node;
1941 tree alloc_fn;
1942 tree cookie_expr, init_expr;
1943 int nothrow, check_new;
1944 int use_java_new = 0;
1945 /* If non-NULL, the number of extra bytes to allocate at the
1946 beginning of the storage allocated for an array-new expression in
1947 order to store the number of elements. */
1948 tree cookie_size = NULL_TREE;
1949 tree placement_first;
1950 tree placement_expr = NULL_TREE;
1951 /* True if the function we are calling is a placement allocation
1952 function. */
1953 bool placement_allocation_fn_p;
1954 /* True if the storage must be initialized, either by a constructor
1955 or due to an explicit new-initializer. */
1956 bool is_initialized;
1957 /* The address of the thing allocated, not including any cookie. In
1958 particular, if an array cookie is in use, DATA_ADDR is the
1959 address of the first array element. This node is a VAR_DECL, and
1960 is therefore reusable. */
1961 tree data_addr;
1962 tree init_preeval_expr = NULL_TREE;
1964 if (nelts)
1966 outer_nelts = nelts;
1967 array_p = true;
1969 else if (TREE_CODE (type) == ARRAY_TYPE)
1971 array_p = true;
1972 nelts = array_type_nelts_top (type);
1973 outer_nelts = nelts;
1974 type = TREE_TYPE (type);
1977 /* If our base type is an array, then make sure we know how many elements
1978 it has. */
1979 for (elt_type = type;
1980 TREE_CODE (elt_type) == ARRAY_TYPE;
1981 elt_type = TREE_TYPE (elt_type))
1982 nelts = cp_build_binary_op (input_location,
1983 MULT_EXPR, nelts,
1984 array_type_nelts_top (elt_type),
1985 complain);
1987 if (TREE_CODE (elt_type) == VOID_TYPE)
1989 if (complain & tf_error)
1990 error ("invalid type %<void%> for new");
1991 return error_mark_node;
1994 if (abstract_virtuals_error (NULL_TREE, elt_type))
1995 return error_mark_node;
1997 is_initialized = (TYPE_NEEDS_CONSTRUCTING (elt_type) || *init != NULL);
1999 if (*init == NULL)
2001 bool maybe_uninitialized_error = false;
2002 /* A program that calls for default-initialization [...] of an
2003 entity of reference type is ill-formed. */
2004 if (CLASSTYPE_REF_FIELDS_NEED_INIT (elt_type))
2005 maybe_uninitialized_error = true;
2007 /* A new-expression that creates an object of type T initializes
2008 that object as follows:
2009 - If the new-initializer is omitted:
2010 -- If T is a (possibly cv-qualified) non-POD class type
2011 (or array thereof), the object is default-initialized (8.5).
2012 [...]
2013 -- Otherwise, the object created has indeterminate
2014 value. If T is a const-qualified type, or a (possibly
2015 cv-qualified) POD class type (or array thereof)
2016 containing (directly or indirectly) a member of
2017 const-qualified type, the program is ill-formed; */
2019 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (elt_type))
2020 maybe_uninitialized_error = true;
2022 if (maybe_uninitialized_error
2023 && diagnose_uninitialized_cst_or_ref_member (elt_type,
2024 /*using_new=*/true,
2025 complain & tf_error))
2026 return error_mark_node;
2029 if (CP_TYPE_CONST_P (elt_type) && *init == NULL
2030 && !type_has_user_provided_default_constructor (elt_type))
2032 if (complain & tf_error)
2033 error ("uninitialized const in %<new%> of %q#T", elt_type);
2034 return error_mark_node;
2037 size = size_in_bytes (elt_type);
2038 if (array_p)
2039 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
2041 alloc_fn = NULL_TREE;
2043 /* If PLACEMENT is a single simple pointer type not passed by
2044 reference, prepare to capture it in a temporary variable. Do
2045 this now, since PLACEMENT will change in the calls below. */
2046 placement_first = NULL_TREE;
2047 if (VEC_length (tree, *placement) == 1
2048 && (TREE_CODE (TREE_TYPE (VEC_index (tree, *placement, 0)))
2049 == POINTER_TYPE))
2050 placement_first = VEC_index (tree, *placement, 0);
2052 /* Allocate the object. */
2053 if (VEC_empty (tree, *placement) && TYPE_FOR_JAVA (elt_type))
2055 tree class_addr;
2056 tree class_decl = build_java_class_ref (elt_type);
2057 static const char alloc_name[] = "_Jv_AllocObject";
2059 if (class_decl == error_mark_node)
2060 return error_mark_node;
2062 use_java_new = 1;
2063 if (!get_global_value_if_present (get_identifier (alloc_name),
2064 &alloc_fn))
2066 if (complain & tf_error)
2067 error ("call to Java constructor with %qs undefined", alloc_name);
2068 return error_mark_node;
2070 else if (really_overloaded_fn (alloc_fn))
2072 if (complain & tf_error)
2073 error ("%qD should never be overloaded", alloc_fn);
2074 return error_mark_node;
2076 alloc_fn = OVL_CURRENT (alloc_fn);
2077 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
2078 alloc_call = cp_build_function_call_nary (alloc_fn, complain,
2079 class_addr, NULL_TREE);
2081 else if (TYPE_FOR_JAVA (elt_type) && MAYBE_CLASS_TYPE_P (elt_type))
2083 error ("Java class %q#T object allocated using placement new", elt_type);
2084 return error_mark_node;
2086 else
2088 tree fnname;
2089 tree fns;
2091 fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
2093 if (!globally_qualified_p
2094 && CLASS_TYPE_P (elt_type)
2095 && (array_p
2096 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
2097 : TYPE_HAS_NEW_OPERATOR (elt_type)))
2099 /* Use a class-specific operator new. */
2100 /* If a cookie is required, add some extra space. */
2101 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
2103 cookie_size = targetm.cxx.get_cookie_size (elt_type);
2104 size = size_binop (PLUS_EXPR, size, cookie_size);
2106 /* Create the argument list. */
2107 VEC_safe_insert (tree, gc, *placement, 0, size);
2108 /* Do name-lookup to find the appropriate operator. */
2109 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
2110 if (fns == NULL_TREE)
2112 if (complain & tf_error)
2113 error ("no suitable %qD found in class %qT", fnname, elt_type);
2114 return error_mark_node;
2116 if (TREE_CODE (fns) == TREE_LIST)
2118 if (complain & tf_error)
2120 error ("request for member %qD is ambiguous", fnname);
2121 print_candidates (fns);
2123 return error_mark_node;
2125 alloc_call = build_new_method_call (build_dummy_object (elt_type),
2126 fns, placement,
2127 /*conversion_path=*/NULL_TREE,
2128 LOOKUP_NORMAL,
2129 &alloc_fn,
2130 complain);
2132 else
2134 /* Use a global operator new. */
2135 /* See if a cookie might be required. */
2136 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
2137 cookie_size = targetm.cxx.get_cookie_size (elt_type);
2138 else
2139 cookie_size = NULL_TREE;
2141 alloc_call = build_operator_new_call (fnname, placement,
2142 &size, &cookie_size,
2143 &alloc_fn);
2147 if (alloc_call == error_mark_node)
2148 return error_mark_node;
2150 gcc_assert (alloc_fn != NULL_TREE);
2152 /* If we found a simple case of PLACEMENT_EXPR above, then copy it
2153 into a temporary variable. */
2154 if (!processing_template_decl
2155 && placement_first != NULL_TREE
2156 && TREE_CODE (alloc_call) == CALL_EXPR
2157 && call_expr_nargs (alloc_call) == 2
2158 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
2159 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))) == POINTER_TYPE)
2161 tree placement_arg = CALL_EXPR_ARG (alloc_call, 1);
2163 if (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg)))
2164 || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg))))
2166 placement_expr = get_target_expr (placement_first);
2167 CALL_EXPR_ARG (alloc_call, 1)
2168 = convert (TREE_TYPE (placement_arg), placement_expr);
2172 /* In the simple case, we can stop now. */
2173 pointer_type = build_pointer_type (type);
2174 if (!cookie_size && !is_initialized)
2175 return build_nop (pointer_type, alloc_call);
2177 /* Store the result of the allocation call in a variable so that we can
2178 use it more than once. */
2179 alloc_expr = get_target_expr (alloc_call);
2180 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
2182 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
2183 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
2184 alloc_call = TREE_OPERAND (alloc_call, 1);
2186 /* Now, check to see if this function is actually a placement
2187 allocation function. This can happen even when PLACEMENT is NULL
2188 because we might have something like:
2190 struct S { void* operator new (size_t, int i = 0); };
2192 A call to `new S' will get this allocation function, even though
2193 there is no explicit placement argument. If there is more than
2194 one argument, or there are variable arguments, then this is a
2195 placement allocation function. */
2196 placement_allocation_fn_p
2197 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
2198 || varargs_function_p (alloc_fn));
2200 /* Preevaluate the placement args so that we don't reevaluate them for a
2201 placement delete. */
2202 if (placement_allocation_fn_p)
2204 tree inits;
2205 stabilize_call (alloc_call, &inits);
2206 if (inits)
2207 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
2208 alloc_expr);
2211 /* unless an allocation function is declared with an empty excep-
2212 tion-specification (_except.spec_), throw(), it indicates failure to
2213 allocate storage by throwing a bad_alloc exception (clause _except_,
2214 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
2215 cation function is declared with an empty exception-specification,
2216 throw(), it returns null to indicate failure to allocate storage and a
2217 non-null pointer otherwise.
2219 So check for a null exception spec on the op new we just called. */
2221 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
2222 check_new = (flag_check_new || nothrow) && ! use_java_new;
2224 if (cookie_size)
2226 tree cookie;
2227 tree cookie_ptr;
2228 tree size_ptr_type;
2230 /* Adjust so we're pointing to the start of the object. */
2231 data_addr = build2 (POINTER_PLUS_EXPR, TREE_TYPE (alloc_node),
2232 alloc_node, cookie_size);
2234 /* Store the number of bytes allocated so that we can know how
2235 many elements to destroy later. We use the last sizeof
2236 (size_t) bytes to store the number of elements. */
2237 cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
2238 cookie_ptr = fold_build2_loc (input_location,
2239 POINTER_PLUS_EXPR, TREE_TYPE (alloc_node),
2240 alloc_node, cookie_ptr);
2241 size_ptr_type = build_pointer_type (sizetype);
2242 cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
2243 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
2245 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
2247 if (targetm.cxx.cookie_has_size ())
2249 /* Also store the element size. */
2250 cookie_ptr = build2 (POINTER_PLUS_EXPR, size_ptr_type, cookie_ptr,
2251 fold_build1_loc (input_location,
2252 NEGATE_EXPR, sizetype,
2253 size_in_bytes (sizetype)));
2255 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
2256 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
2257 size_in_bytes (elt_type));
2258 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
2259 cookie, cookie_expr);
2262 else
2264 cookie_expr = NULL_TREE;
2265 data_addr = alloc_node;
2268 /* Now use a pointer to the type we've actually allocated. */
2270 /* But we want to operate on a non-const version to start with,
2271 since we'll be modifying the elements. */
2272 non_const_pointer_type = build_pointer_type
2273 (cp_build_qualified_type (type, cp_type_quals (type) & ~TYPE_QUAL_CONST));
2275 data_addr = fold_convert (non_const_pointer_type, data_addr);
2276 /* Any further uses of alloc_node will want this type, too. */
2277 alloc_node = fold_convert (non_const_pointer_type, alloc_node);
2279 /* Now initialize the allocated object. Note that we preevaluate the
2280 initialization expression, apart from the actual constructor call or
2281 assignment--we do this because we want to delay the allocation as long
2282 as possible in order to minimize the size of the exception region for
2283 placement delete. */
2284 if (is_initialized)
2286 bool stable;
2287 bool explicit_value_init_p = false;
2289 if (*init != NULL && VEC_empty (tree, *init))
2291 *init = NULL;
2292 explicit_value_init_p = true;
2295 if (array_p)
2297 tree vecinit = NULL_TREE;
2298 if (*init && VEC_length (tree, *init) == 1
2299 && BRACE_ENCLOSED_INITIALIZER_P (VEC_index (tree, *init, 0))
2300 && CONSTRUCTOR_IS_DIRECT_INIT (VEC_index (tree, *init, 0)))
2302 tree arraytype, domain;
2303 vecinit = VEC_index (tree, *init, 0);
2304 if (TREE_CONSTANT (nelts))
2305 domain = compute_array_index_type (NULL_TREE, nelts);
2306 else
2308 domain = NULL_TREE;
2309 if (CONSTRUCTOR_NELTS (vecinit) > 0)
2310 warning (0, "non-constant array size in new, unable to "
2311 "verify length of initializer-list");
2313 arraytype = build_cplus_array_type (type, domain);
2314 vecinit = digest_init (arraytype, vecinit);
2316 else if (*init)
2318 if (complain & tf_error)
2319 permerror (input_location, "ISO C++ forbids initialization in array new");
2320 else
2321 return error_mark_node;
2322 vecinit = build_tree_list_vec (*init);
2324 init_expr
2325 = build_vec_init (data_addr,
2326 cp_build_binary_op (input_location,
2327 MINUS_EXPR, outer_nelts,
2328 integer_one_node,
2329 complain),
2330 vecinit,
2331 explicit_value_init_p,
2332 /*from_array=*/0,
2333 complain);
2335 /* An array initialization is stable because the initialization
2336 of each element is a full-expression, so the temporaries don't
2337 leak out. */
2338 stable = true;
2340 else
2342 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
2344 if (TYPE_NEEDS_CONSTRUCTING (type)
2345 && (!explicit_value_init_p || processing_template_decl))
2347 init_expr = build_special_member_call (init_expr,
2348 complete_ctor_identifier,
2349 init, elt_type,
2350 LOOKUP_NORMAL,
2351 complain);
2353 else if (explicit_value_init_p)
2355 if (processing_template_decl)
2356 /* Don't worry about it, we'll handle this properly at
2357 instantiation time. */;
2358 else
2360 /* Something like `new int()'. */
2361 tree val = build_value_init (type, complain);
2362 if (val == error_mark_node)
2363 return error_mark_node;
2364 init_expr = build2 (INIT_EXPR, type, init_expr, val);
2367 else
2369 tree ie;
2371 /* We are processing something like `new int (10)', which
2372 means allocate an int, and initialize it with 10. */
2374 ie = build_x_compound_expr_from_vec (*init, "new initializer");
2375 init_expr = cp_build_modify_expr (init_expr, INIT_EXPR, ie,
2376 complain);
2378 stable = stabilize_init (init_expr, &init_preeval_expr);
2381 if (init_expr == error_mark_node)
2382 return error_mark_node;
2384 /* If any part of the object initialization terminates by throwing an
2385 exception and a suitable deallocation function can be found, the
2386 deallocation function is called to free the memory in which the
2387 object was being constructed, after which the exception continues
2388 to propagate in the context of the new-expression. If no
2389 unambiguous matching deallocation function can be found,
2390 propagating the exception does not cause the object's memory to be
2391 freed. */
2392 if (flag_exceptions && ! use_java_new)
2394 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
2395 tree cleanup;
2397 /* The Standard is unclear here, but the right thing to do
2398 is to use the same method for finding deallocation
2399 functions that we use for finding allocation functions. */
2400 cleanup = (build_op_delete_call
2401 (dcode,
2402 alloc_node,
2403 size,
2404 globally_qualified_p,
2405 placement_allocation_fn_p ? alloc_call : NULL_TREE,
2406 alloc_fn));
2408 if (!cleanup)
2409 /* We're done. */;
2410 else if (stable)
2411 /* This is much simpler if we were able to preevaluate all of
2412 the arguments to the constructor call. */
2414 /* CLEANUP is compiler-generated, so no diagnostics. */
2415 TREE_NO_WARNING (cleanup) = true;
2416 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
2417 init_expr, cleanup);
2418 /* Likewise, this try-catch is compiler-generated. */
2419 TREE_NO_WARNING (init_expr) = true;
2421 else
2422 /* Ack! First we allocate the memory. Then we set our sentry
2423 variable to true, and expand a cleanup that deletes the
2424 memory if sentry is true. Then we run the constructor, and
2425 finally clear the sentry.
2427 We need to do this because we allocate the space first, so
2428 if there are any temporaries with cleanups in the
2429 constructor args and we weren't able to preevaluate them, we
2430 need this EH region to extend until end of full-expression
2431 to preserve nesting. */
2433 tree end, sentry, begin;
2435 begin = get_target_expr (boolean_true_node);
2436 CLEANUP_EH_ONLY (begin) = 1;
2438 sentry = TARGET_EXPR_SLOT (begin);
2440 /* CLEANUP is compiler-generated, so no diagnostics. */
2441 TREE_NO_WARNING (cleanup) = true;
2443 TARGET_EXPR_CLEANUP (begin)
2444 = build3 (COND_EXPR, void_type_node, sentry,
2445 cleanup, void_zero_node);
2447 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
2448 sentry, boolean_false_node);
2450 init_expr
2451 = build2 (COMPOUND_EXPR, void_type_node, begin,
2452 build2 (COMPOUND_EXPR, void_type_node, init_expr,
2453 end));
2454 /* Likewise, this is compiler-generated. */
2455 TREE_NO_WARNING (init_expr) = true;
2459 else
2460 init_expr = NULL_TREE;
2462 /* Now build up the return value in reverse order. */
2464 rval = data_addr;
2466 if (init_expr)
2467 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2468 if (cookie_expr)
2469 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2471 if (rval == data_addr)
2472 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2473 and return the call (which doesn't need to be adjusted). */
2474 rval = TARGET_EXPR_INITIAL (alloc_expr);
2475 else
2477 if (check_new)
2479 tree ifexp = cp_build_binary_op (input_location,
2480 NE_EXPR, alloc_node,
2481 integer_zero_node,
2482 complain);
2483 rval = build_conditional_expr (ifexp, rval, alloc_node,
2484 complain);
2487 /* Perform the allocation before anything else, so that ALLOC_NODE
2488 has been initialized before we start using it. */
2489 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2492 if (init_preeval_expr)
2493 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
2495 /* A new-expression is never an lvalue. */
2496 gcc_assert (!lvalue_p (rval));
2498 return convert (pointer_type, rval);
2501 /* Generate a representation for a C++ "new" expression. *PLACEMENT
2502 is a vector of placement-new arguments (or NULL if none). If NELTS
2503 is NULL, TYPE is the type of the storage to be allocated. If NELTS
2504 is not NULL, then this is an array-new allocation; TYPE is the type
2505 of the elements in the array and NELTS is the number of elements in
2506 the array. *INIT, if non-NULL, is the initializer for the new
2507 object, or an empty vector to indicate an initializer of "()". If
2508 USE_GLOBAL_NEW is true, then the user explicitly wrote "::new"
2509 rather than just "new". This may change PLACEMENT and INIT. */
2511 tree
2512 build_new (VEC(tree,gc) **placement, tree type, tree nelts,
2513 VEC(tree,gc) **init, int use_global_new, tsubst_flags_t complain)
2515 tree rval;
2516 VEC(tree,gc) *orig_placement = NULL;
2517 tree orig_nelts = NULL_TREE;
2518 VEC(tree,gc) *orig_init = NULL;
2520 if (type == error_mark_node)
2521 return error_mark_node;
2523 if (nelts == NULL_TREE && VEC_length (tree, *init) == 1)
2525 tree auto_node = type_uses_auto (type);
2526 if (auto_node && describable_type (VEC_index (tree, *init, 0)))
2527 type = do_auto_deduction (type, VEC_index (tree, *init, 0), auto_node);
2530 if (processing_template_decl)
2532 if (dependent_type_p (type)
2533 || any_type_dependent_arguments_p (*placement)
2534 || (nelts && type_dependent_expression_p (nelts))
2535 || any_type_dependent_arguments_p (*init))
2536 return build_raw_new_expr (*placement, type, nelts, *init,
2537 use_global_new);
2539 orig_placement = make_tree_vector_copy (*placement);
2540 orig_nelts = nelts;
2541 orig_init = make_tree_vector_copy (*init);
2543 make_args_non_dependent (*placement);
2544 if (nelts)
2545 nelts = build_non_dependent_expr (nelts);
2546 make_args_non_dependent (*init);
2549 if (nelts)
2551 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
2553 if (complain & tf_error)
2554 permerror (input_location, "size in array new must have integral type");
2555 else
2556 return error_mark_node;
2558 nelts = mark_rvalue_use (nelts);
2559 nelts = cp_save_expr (cp_convert (sizetype, nelts));
2562 /* ``A reference cannot be created by the new operator. A reference
2563 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
2564 returned by new.'' ARM 5.3.3 */
2565 if (TREE_CODE (type) == REFERENCE_TYPE)
2567 if (complain & tf_error)
2568 error ("new cannot be applied to a reference type");
2569 else
2570 return error_mark_node;
2571 type = TREE_TYPE (type);
2574 if (TREE_CODE (type) == FUNCTION_TYPE)
2576 if (complain & tf_error)
2577 error ("new cannot be applied to a function type");
2578 return error_mark_node;
2581 /* The type allocated must be complete. If the new-type-id was
2582 "T[N]" then we are just checking that "T" is complete here, but
2583 that is equivalent, since the value of "N" doesn't matter. */
2584 if (!complete_type_or_maybe_complain (type, NULL_TREE, complain))
2585 return error_mark_node;
2587 rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
2588 if (rval == error_mark_node)
2589 return error_mark_node;
2591 if (processing_template_decl)
2593 tree ret = build_raw_new_expr (orig_placement, type, orig_nelts,
2594 orig_init, use_global_new);
2595 release_tree_vector (orig_placement);
2596 release_tree_vector (orig_init);
2597 return ret;
2600 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
2601 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
2602 TREE_NO_WARNING (rval) = 1;
2604 return rval;
2607 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
2609 tree
2610 build_java_class_ref (tree type)
2612 tree name = NULL_TREE, class_decl;
2613 static tree CL_suffix = NULL_TREE;
2614 if (CL_suffix == NULL_TREE)
2615 CL_suffix = get_identifier("class$");
2616 if (jclass_node == NULL_TREE)
2618 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
2619 if (jclass_node == NULL_TREE)
2621 error ("call to Java constructor, while %<jclass%> undefined");
2622 return error_mark_node;
2624 jclass_node = TREE_TYPE (jclass_node);
2627 /* Mangle the class$ field. */
2629 tree field;
2630 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2631 if (DECL_NAME (field) == CL_suffix)
2633 mangle_decl (field);
2634 name = DECL_ASSEMBLER_NAME (field);
2635 break;
2637 if (!field)
2639 error ("can't find %<class$%> in %qT", type);
2640 return error_mark_node;
2644 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
2645 if (class_decl == NULL_TREE)
2647 class_decl = build_decl (input_location,
2648 VAR_DECL, name, TREE_TYPE (jclass_node));
2649 TREE_STATIC (class_decl) = 1;
2650 DECL_EXTERNAL (class_decl) = 1;
2651 TREE_PUBLIC (class_decl) = 1;
2652 DECL_ARTIFICIAL (class_decl) = 1;
2653 DECL_IGNORED_P (class_decl) = 1;
2654 pushdecl_top_level (class_decl);
2655 make_decl_rtl (class_decl);
2657 return class_decl;
2660 static tree
2661 build_vec_delete_1 (tree base, tree maxindex, tree type,
2662 special_function_kind auto_delete_vec, int use_global_delete)
2664 tree virtual_size;
2665 tree ptype = build_pointer_type (type = complete_type (type));
2666 tree size_exp = size_in_bytes (type);
2668 /* Temporary variables used by the loop. */
2669 tree tbase, tbase_init;
2671 /* This is the body of the loop that implements the deletion of a
2672 single element, and moves temp variables to next elements. */
2673 tree body;
2675 /* This is the LOOP_EXPR that governs the deletion of the elements. */
2676 tree loop = 0;
2678 /* This is the thing that governs what to do after the loop has run. */
2679 tree deallocate_expr = 0;
2681 /* This is the BIND_EXPR which holds the outermost iterator of the
2682 loop. It is convenient to set this variable up and test it before
2683 executing any other code in the loop.
2684 This is also the containing expression returned by this function. */
2685 tree controller = NULL_TREE;
2686 tree tmp;
2688 /* We should only have 1-D arrays here. */
2689 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
2691 if (! MAYBE_CLASS_TYPE_P (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2692 goto no_destructor;
2694 /* The below is short by the cookie size. */
2695 virtual_size = size_binop (MULT_EXPR, size_exp,
2696 convert (sizetype, maxindex));
2698 tbase = create_temporary_var (ptype);
2699 tbase_init = cp_build_modify_expr (tbase, NOP_EXPR,
2700 fold_build2_loc (input_location,
2701 POINTER_PLUS_EXPR, ptype,
2702 fold_convert (ptype, base),
2703 virtual_size),
2704 tf_warning_or_error);
2705 controller = build3 (BIND_EXPR, void_type_node, tbase,
2706 NULL_TREE, NULL_TREE);
2707 TREE_SIDE_EFFECTS (controller) = 1;
2709 body = build1 (EXIT_EXPR, void_type_node,
2710 build2 (EQ_EXPR, boolean_type_node, tbase,
2711 fold_convert (ptype, base)));
2712 tmp = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, size_exp);
2713 body = build_compound_expr
2714 (input_location,
2715 body, cp_build_modify_expr (tbase, NOP_EXPR,
2716 build2 (POINTER_PLUS_EXPR, ptype, tbase, tmp),
2717 tf_warning_or_error));
2718 body = build_compound_expr
2719 (input_location,
2720 body, build_delete (ptype, tbase, sfk_complete_destructor,
2721 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1));
2723 loop = build1 (LOOP_EXPR, void_type_node, body);
2724 loop = build_compound_expr (input_location, tbase_init, loop);
2726 no_destructor:
2727 /* If the delete flag is one, or anything else with the low bit set,
2728 delete the storage. */
2729 if (auto_delete_vec != sfk_base_destructor)
2731 tree base_tbd;
2733 /* The below is short by the cookie size. */
2734 virtual_size = size_binop (MULT_EXPR, size_exp,
2735 convert (sizetype, maxindex));
2737 if (! TYPE_VEC_NEW_USES_COOKIE (type))
2738 /* no header */
2739 base_tbd = base;
2740 else
2742 tree cookie_size;
2744 cookie_size = targetm.cxx.get_cookie_size (type);
2745 base_tbd
2746 = cp_convert (ptype,
2747 cp_build_binary_op (input_location,
2748 MINUS_EXPR,
2749 cp_convert (string_type_node,
2750 base),
2751 cookie_size,
2752 tf_warning_or_error));
2753 /* True size with header. */
2754 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
2757 if (auto_delete_vec == sfk_deleting_destructor)
2758 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
2759 base_tbd, virtual_size,
2760 use_global_delete & 1,
2761 /*placement=*/NULL_TREE,
2762 /*alloc_fn=*/NULL_TREE);
2765 body = loop;
2766 if (!deallocate_expr)
2768 else if (!body)
2769 body = deallocate_expr;
2770 else
2771 body = build_compound_expr (input_location, body, deallocate_expr);
2773 if (!body)
2774 body = integer_zero_node;
2776 /* Outermost wrapper: If pointer is null, punt. */
2777 body = fold_build3_loc (input_location, COND_EXPR, void_type_node,
2778 fold_build2_loc (input_location,
2779 NE_EXPR, boolean_type_node, base,
2780 convert (TREE_TYPE (base),
2781 integer_zero_node)),
2782 body, integer_zero_node);
2783 body = build1 (NOP_EXPR, void_type_node, body);
2785 if (controller)
2787 TREE_OPERAND (controller, 1) = body;
2788 body = controller;
2791 if (TREE_CODE (base) == SAVE_EXPR)
2792 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
2793 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
2795 return convert_to_void (body, ICV_CAST, tf_warning_or_error);
2798 /* Create an unnamed variable of the indicated TYPE. */
2800 tree
2801 create_temporary_var (tree type)
2803 tree decl;
2805 decl = build_decl (input_location,
2806 VAR_DECL, NULL_TREE, type);
2807 TREE_USED (decl) = 1;
2808 DECL_ARTIFICIAL (decl) = 1;
2809 DECL_IGNORED_P (decl) = 1;
2810 DECL_CONTEXT (decl) = current_function_decl;
2812 return decl;
2815 /* Create a new temporary variable of the indicated TYPE, initialized
2816 to INIT.
2818 It is not entered into current_binding_level, because that breaks
2819 things when it comes time to do final cleanups (which take place
2820 "outside" the binding contour of the function). */
2822 static tree
2823 get_temp_regvar (tree type, tree init)
2825 tree decl;
2827 decl = create_temporary_var (type);
2828 add_decl_expr (decl);
2830 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
2831 tf_warning_or_error));
2833 return decl;
2836 /* `build_vec_init' returns tree structure that performs
2837 initialization of a vector of aggregate types.
2839 BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
2840 to the first element, of POINTER_TYPE.
2841 MAXINDEX is the maximum index of the array (one less than the
2842 number of elements). It is only used if BASE is a pointer or
2843 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
2845 INIT is the (possibly NULL) initializer.
2847 If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All
2848 elements in the array are value-initialized.
2850 FROM_ARRAY is 0 if we should init everything with INIT
2851 (i.e., every element initialized from INIT).
2852 FROM_ARRAY is 1 if we should index into INIT in parallel
2853 with initialization of DECL.
2854 FROM_ARRAY is 2 if we should index into INIT in parallel,
2855 but use assignment instead of initialization. */
2857 tree
2858 build_vec_init (tree base, tree maxindex, tree init,
2859 bool explicit_value_init_p,
2860 int from_array, tsubst_flags_t complain)
2862 tree rval;
2863 tree base2 = NULL_TREE;
2864 tree itype = NULL_TREE;
2865 tree iterator;
2866 /* The type of BASE. */
2867 tree atype = TREE_TYPE (base);
2868 /* The type of an element in the array. */
2869 tree type = TREE_TYPE (atype);
2870 /* The element type reached after removing all outer array
2871 types. */
2872 tree inner_elt_type;
2873 /* The type of a pointer to an element in the array. */
2874 tree ptype;
2875 tree stmt_expr;
2876 tree compound_stmt;
2877 int destroy_temps;
2878 tree try_block = NULL_TREE;
2879 int num_initialized_elts = 0;
2880 bool is_global;
2881 bool xvalue = false;
2883 if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
2884 maxindex = array_type_nelts (atype);
2886 if (maxindex == NULL_TREE || maxindex == error_mark_node)
2887 return error_mark_node;
2889 if (explicit_value_init_p)
2890 gcc_assert (!init);
2892 inner_elt_type = strip_array_types (type);
2894 /* Look through the TARGET_EXPR around a compound literal. */
2895 if (init && TREE_CODE (init) == TARGET_EXPR
2896 && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR
2897 && from_array != 2)
2898 init = TARGET_EXPR_INITIAL (init);
2900 if (init
2901 && TREE_CODE (atype) == ARRAY_TYPE
2902 && (from_array == 2
2903 ? (!CLASS_TYPE_P (inner_elt_type)
2904 || !TYPE_HAS_COMPLEX_COPY_ASSIGN (inner_elt_type))
2905 : !TYPE_NEEDS_CONSTRUCTING (type))
2906 && ((TREE_CODE (init) == CONSTRUCTOR
2907 /* Don't do this if the CONSTRUCTOR might contain something
2908 that might throw and require us to clean up. */
2909 && (VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (init))
2910 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
2911 || from_array))
2913 /* Do non-default initialization of trivial arrays resulting from
2914 brace-enclosed initializers. In this case, digest_init and
2915 store_constructor will handle the semantics for us. */
2917 stmt_expr = build2 (INIT_EXPR, atype, base, init);
2918 return stmt_expr;
2921 maxindex = cp_convert (ptrdiff_type_node, maxindex);
2922 if (TREE_CODE (atype) == ARRAY_TYPE)
2924 ptype = build_pointer_type (type);
2925 base = cp_convert (ptype, decay_conversion (base));
2927 else
2928 ptype = atype;
2930 /* The code we are generating looks like:
2932 T* t1 = (T*) base;
2933 T* rval = t1;
2934 ptrdiff_t iterator = maxindex;
2935 try {
2936 for (; iterator != -1; --iterator) {
2937 ... initialize *t1 ...
2938 ++t1;
2940 } catch (...) {
2941 ... destroy elements that were constructed ...
2943 rval;
2946 We can omit the try and catch blocks if we know that the
2947 initialization will never throw an exception, or if the array
2948 elements do not have destructors. We can omit the loop completely if
2949 the elements of the array do not have constructors.
2951 We actually wrap the entire body of the above in a STMT_EXPR, for
2952 tidiness.
2954 When copying from array to another, when the array elements have
2955 only trivial copy constructors, we should use __builtin_memcpy
2956 rather than generating a loop. That way, we could take advantage
2957 of whatever cleverness the back end has for dealing with copies
2958 of blocks of memory. */
2960 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
2961 destroy_temps = stmts_are_full_exprs_p ();
2962 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2963 rval = get_temp_regvar (ptype, base);
2964 base = get_temp_regvar (ptype, rval);
2965 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
2967 /* If initializing one array from another, initialize element by
2968 element. We rely upon the below calls to do the argument
2969 checking. Evaluate the initializer before entering the try block. */
2970 if (from_array && init && TREE_CODE (init) != CONSTRUCTOR)
2972 if (lvalue_kind (init) & clk_rvalueref)
2973 xvalue = true;
2974 base2 = decay_conversion (init);
2975 itype = TREE_TYPE (base2);
2976 base2 = get_temp_regvar (itype, base2);
2977 itype = TREE_TYPE (itype);
2980 /* Protect the entire array initialization so that we can destroy
2981 the partially constructed array if an exception is thrown.
2982 But don't do this if we're assigning. */
2983 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2984 && from_array != 2)
2986 try_block = begin_try_block ();
2989 if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
2991 /* Do non-default initialization of non-trivial arrays resulting from
2992 brace-enclosed initializers. */
2993 unsigned HOST_WIDE_INT idx;
2994 tree elt;
2995 from_array = 0;
2997 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
2999 tree baseref = build1 (INDIRECT_REF, type, base);
3001 num_initialized_elts++;
3003 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
3004 if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
3005 finish_expr_stmt (build_aggr_init (baseref, elt, 0, complain));
3006 else
3007 finish_expr_stmt (cp_build_modify_expr (baseref, NOP_EXPR,
3008 elt, complain));
3009 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3011 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
3012 complain));
3013 finish_expr_stmt (cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
3014 complain));
3017 /* Clear out INIT so that we don't get confused below. */
3018 init = NULL_TREE;
3020 else if (from_array)
3022 if (init)
3023 /* OK, we set base2 above. */;
3024 else if (TYPE_LANG_SPECIFIC (type)
3025 && TYPE_NEEDS_CONSTRUCTING (type)
3026 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
3028 if (complain & tf_error)
3029 error ("initializer ends prematurely");
3030 return error_mark_node;
3034 /* Now, default-initialize any remaining elements. We don't need to
3035 do that if a) the type does not need constructing, or b) we've
3036 already initialized all the elements.
3038 We do need to keep going if we're copying an array. */
3040 if (from_array
3041 || ((TYPE_NEEDS_CONSTRUCTING (type) || explicit_value_init_p)
3042 && ! (host_integerp (maxindex, 0)
3043 && (num_initialized_elts
3044 == tree_low_cst (maxindex, 0) + 1))))
3046 /* If the ITERATOR is equal to -1, then we don't have to loop;
3047 we've already initialized all the elements. */
3048 tree for_stmt;
3049 tree elt_init;
3050 tree to;
3052 for_stmt = begin_for_stmt ();
3053 finish_for_init_stmt (for_stmt);
3054 finish_for_cond (build2 (NE_EXPR, boolean_type_node, iterator,
3055 build_int_cst (TREE_TYPE (iterator), -1)),
3056 for_stmt);
3057 finish_for_expr (cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
3058 complain),
3059 for_stmt);
3061 to = build1 (INDIRECT_REF, type, base);
3063 if (from_array)
3065 tree from;
3067 if (base2)
3069 from = build1 (INDIRECT_REF, itype, base2);
3070 if (xvalue)
3071 from = move (from);
3073 else
3074 from = NULL_TREE;
3076 if (from_array == 2)
3077 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
3078 complain);
3079 else if (TYPE_NEEDS_CONSTRUCTING (type))
3080 elt_init = build_aggr_init (to, from, 0, complain);
3081 else if (from)
3082 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
3083 complain);
3084 else
3085 gcc_unreachable ();
3087 else if (TREE_CODE (type) == ARRAY_TYPE)
3089 if (init != 0)
3090 sorry
3091 ("cannot initialize multi-dimensional array with initializer");
3092 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
3093 0, 0,
3094 explicit_value_init_p,
3095 0, complain);
3097 else if (explicit_value_init_p)
3099 elt_init = build_value_init (type, complain);
3100 if (elt_init == error_mark_node)
3101 return error_mark_node;
3102 else
3103 elt_init = build2 (INIT_EXPR, type, to, elt_init);
3105 else
3107 gcc_assert (TYPE_NEEDS_CONSTRUCTING (type));
3108 elt_init = build_aggr_init (to, init, 0, complain);
3111 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
3112 finish_expr_stmt (elt_init);
3113 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3115 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
3116 complain));
3117 if (base2)
3118 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, 0,
3119 complain));
3121 finish_for_stmt (for_stmt);
3124 /* Make sure to cleanup any partially constructed elements. */
3125 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
3126 && from_array != 2)
3128 tree e;
3129 tree m = cp_build_binary_op (input_location,
3130 MINUS_EXPR, maxindex, iterator,
3131 complain);
3133 /* Flatten multi-dimensional array since build_vec_delete only
3134 expects one-dimensional array. */
3135 if (TREE_CODE (type) == ARRAY_TYPE)
3136 m = cp_build_binary_op (input_location,
3137 MULT_EXPR, m,
3138 array_type_nelts_total (type),
3139 complain);
3141 finish_cleanup_try_block (try_block);
3142 e = build_vec_delete_1 (rval, m,
3143 inner_elt_type, sfk_base_destructor,
3144 /*use_global_delete=*/0);
3145 finish_cleanup (e, try_block);
3148 /* The value of the array initialization is the array itself, RVAL
3149 is a pointer to the first element. */
3150 finish_stmt_expr_expr (rval, stmt_expr);
3152 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
3154 /* Now make the result have the correct type. */
3155 if (TREE_CODE (atype) == ARRAY_TYPE)
3157 atype = build_pointer_type (atype);
3158 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
3159 stmt_expr = cp_build_indirect_ref (stmt_expr, RO_NULL, complain);
3160 TREE_NO_WARNING (stmt_expr) = 1;
3163 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
3164 return stmt_expr;
3167 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
3168 build_delete. */
3170 static tree
3171 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags)
3173 tree name;
3174 tree fn;
3175 switch (dtor_kind)
3177 case sfk_complete_destructor:
3178 name = complete_dtor_identifier;
3179 break;
3181 case sfk_base_destructor:
3182 name = base_dtor_identifier;
3183 break;
3185 case sfk_deleting_destructor:
3186 name = deleting_dtor_identifier;
3187 break;
3189 default:
3190 gcc_unreachable ();
3192 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
3193 return build_new_method_call (exp, fn,
3194 /*args=*/NULL,
3195 /*conversion_path=*/NULL_TREE,
3196 flags,
3197 /*fn_p=*/NULL,
3198 tf_warning_or_error);
3201 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
3202 ADDR is an expression which yields the store to be destroyed.
3203 AUTO_DELETE is the name of the destructor to call, i.e., either
3204 sfk_complete_destructor, sfk_base_destructor, or
3205 sfk_deleting_destructor.
3207 FLAGS is the logical disjunction of zero or more LOOKUP_
3208 flags. See cp-tree.h for more info. */
3210 tree
3211 build_delete (tree type, tree addr, special_function_kind auto_delete,
3212 int flags, int use_global_delete)
3214 tree expr;
3216 if (addr == error_mark_node)
3217 return error_mark_node;
3219 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
3220 set to `error_mark_node' before it gets properly cleaned up. */
3221 if (type == error_mark_node)
3222 return error_mark_node;
3224 type = TYPE_MAIN_VARIANT (type);
3226 addr = mark_rvalue_use (addr);
3228 if (TREE_CODE (type) == POINTER_TYPE)
3230 bool complete_p = true;
3232 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
3233 if (TREE_CODE (type) == ARRAY_TYPE)
3234 goto handle_array;
3236 /* We don't want to warn about delete of void*, only other
3237 incomplete types. Deleting other incomplete types
3238 invokes undefined behavior, but it is not ill-formed, so
3239 compile to something that would even do The Right Thing
3240 (TM) should the type have a trivial dtor and no delete
3241 operator. */
3242 if (!VOID_TYPE_P (type))
3244 complete_type (type);
3245 if (!COMPLETE_TYPE_P (type))
3247 if (warning (0, "possible problem detected in invocation of "
3248 "delete operator:"))
3250 cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
3251 inform (input_location, "neither the destructor nor the class-specific "
3252 "operator delete will be called, even if they are "
3253 "declared when the class is defined.");
3255 complete_p = false;
3258 if (VOID_TYPE_P (type) || !complete_p || !MAYBE_CLASS_TYPE_P (type))
3259 /* Call the builtin operator delete. */
3260 return build_builtin_delete_call (addr);
3261 if (TREE_SIDE_EFFECTS (addr))
3262 addr = save_expr (addr);
3264 /* Throw away const and volatile on target type of addr. */
3265 addr = convert_force (build_pointer_type (type), addr, 0);
3267 else if (TREE_CODE (type) == ARRAY_TYPE)
3269 handle_array:
3271 if (TYPE_DOMAIN (type) == NULL_TREE)
3273 error ("unknown array size in delete");
3274 return error_mark_node;
3276 return build_vec_delete (addr, array_type_nelts (type),
3277 auto_delete, use_global_delete);
3279 else
3281 /* Don't check PROTECT here; leave that decision to the
3282 destructor. If the destructor is accessible, call it,
3283 else report error. */
3284 addr = cp_build_addr_expr (addr, tf_warning_or_error);
3285 if (TREE_SIDE_EFFECTS (addr))
3286 addr = save_expr (addr);
3288 addr = convert_force (build_pointer_type (type), addr, 0);
3291 gcc_assert (MAYBE_CLASS_TYPE_P (type));
3293 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3295 if (auto_delete != sfk_deleting_destructor)
3296 return void_zero_node;
3298 return build_op_delete_call (DELETE_EXPR, addr,
3299 cxx_sizeof_nowarn (type),
3300 use_global_delete,
3301 /*placement=*/NULL_TREE,
3302 /*alloc_fn=*/NULL_TREE);
3304 else
3306 tree head = NULL_TREE;
3307 tree do_delete = NULL_TREE;
3308 tree ifexp;
3310 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
3311 lazily_declare_fn (sfk_destructor, type);
3313 /* For `::delete x', we must not use the deleting destructor
3314 since then we would not be sure to get the global `operator
3315 delete'. */
3316 if (use_global_delete && auto_delete == sfk_deleting_destructor)
3318 /* We will use ADDR multiple times so we must save it. */
3319 addr = save_expr (addr);
3320 head = get_target_expr (build_headof (addr));
3321 /* Delete the object. */
3322 do_delete = build_builtin_delete_call (head);
3323 /* Otherwise, treat this like a complete object destructor
3324 call. */
3325 auto_delete = sfk_complete_destructor;
3327 /* If the destructor is non-virtual, there is no deleting
3328 variant. Instead, we must explicitly call the appropriate
3329 `operator delete' here. */
3330 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
3331 && auto_delete == sfk_deleting_destructor)
3333 /* We will use ADDR multiple times so we must save it. */
3334 addr = save_expr (addr);
3335 /* Build the call. */
3336 do_delete = build_op_delete_call (DELETE_EXPR,
3337 addr,
3338 cxx_sizeof_nowarn (type),
3339 /*global_p=*/false,
3340 /*placement=*/NULL_TREE,
3341 /*alloc_fn=*/NULL_TREE);
3342 /* Call the complete object destructor. */
3343 auto_delete = sfk_complete_destructor;
3345 else if (auto_delete == sfk_deleting_destructor
3346 && TYPE_GETS_REG_DELETE (type))
3348 /* Make sure we have access to the member op delete, even though
3349 we'll actually be calling it from the destructor. */
3350 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
3351 /*global_p=*/false,
3352 /*placement=*/NULL_TREE,
3353 /*alloc_fn=*/NULL_TREE);
3356 expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL,
3357 tf_warning_or_error),
3358 auto_delete, flags);
3359 if (do_delete)
3360 expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
3362 /* We need to calculate this before the dtor changes the vptr. */
3363 if (head)
3364 expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
3366 if (flags & LOOKUP_DESTRUCTOR)
3367 /* Explicit destructor call; don't check for null pointer. */
3368 ifexp = integer_one_node;
3369 else
3370 /* Handle deleting a null pointer. */
3371 ifexp = fold (cp_build_binary_op (input_location,
3372 NE_EXPR, addr, integer_zero_node,
3373 tf_warning_or_error));
3375 if (ifexp != integer_one_node)
3376 expr = build3 (COND_EXPR, void_type_node,
3377 ifexp, expr, void_zero_node);
3379 return expr;
3383 /* At the beginning of a destructor, push cleanups that will call the
3384 destructors for our base classes and members.
3386 Called from begin_destructor_body. */
3388 void
3389 push_base_cleanups (void)
3391 tree binfo, base_binfo;
3392 int i;
3393 tree member;
3394 tree expr;
3395 VEC(tree,gc) *vbases;
3397 /* Run destructors for all virtual baseclasses. */
3398 if (CLASSTYPE_VBASECLASSES (current_class_type))
3400 tree cond = (condition_conversion
3401 (build2 (BIT_AND_EXPR, integer_type_node,
3402 current_in_charge_parm,
3403 integer_two_node)));
3405 /* The CLASSTYPE_VBASECLASSES vector is in initialization
3406 order, which is also the right order for pushing cleanups. */
3407 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
3408 VEC_iterate (tree, vbases, i, base_binfo); i++)
3410 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
3412 expr = build_special_member_call (current_class_ref,
3413 base_dtor_identifier,
3414 NULL,
3415 base_binfo,
3416 (LOOKUP_NORMAL
3417 | LOOKUP_NONVIRTUAL),
3418 tf_warning_or_error);
3419 expr = build3 (COND_EXPR, void_type_node, cond,
3420 expr, void_zero_node);
3421 finish_decl_cleanup (NULL_TREE, expr);
3426 /* Take care of the remaining baseclasses. */
3427 for (binfo = TYPE_BINFO (current_class_type), i = 0;
3428 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
3430 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
3431 || BINFO_VIRTUAL_P (base_binfo))
3432 continue;
3434 expr = build_special_member_call (current_class_ref,
3435 base_dtor_identifier,
3436 NULL, base_binfo,
3437 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
3438 tf_warning_or_error);
3439 finish_decl_cleanup (NULL_TREE, expr);
3442 /* Don't automatically destroy union members. */
3443 if (TREE_CODE (current_class_type) == UNION_TYPE)
3444 return;
3446 for (member = TYPE_FIELDS (current_class_type); member;
3447 member = DECL_CHAIN (member))
3449 tree this_type = TREE_TYPE (member);
3450 if (this_type == error_mark_node
3451 || TREE_CODE (member) != FIELD_DECL
3452 || DECL_ARTIFICIAL (member))
3453 continue;
3454 if (ANON_UNION_TYPE_P (this_type))
3455 continue;
3456 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (this_type))
3458 tree this_member = (build_class_member_access_expr
3459 (current_class_ref, member,
3460 /*access_path=*/NULL_TREE,
3461 /*preserve_reference=*/false,
3462 tf_warning_or_error));
3463 expr = build_delete (this_type, this_member,
3464 sfk_complete_destructor,
3465 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
3467 finish_decl_cleanup (NULL_TREE, expr);
3472 /* Build a C++ vector delete expression.
3473 MAXINDEX is the number of elements to be deleted.
3474 ELT_SIZE is the nominal size of each element in the vector.
3475 BASE is the expression that should yield the store to be deleted.
3476 This function expands (or synthesizes) these calls itself.
3477 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
3479 This also calls delete for virtual baseclasses of elements of the vector.
3481 Update: MAXINDEX is no longer needed. The size can be extracted from the
3482 start of the vector for pointers, and from the type for arrays. We still
3483 use MAXINDEX for arrays because it happens to already have one of the
3484 values we'd have to extract. (We could use MAXINDEX with pointers to
3485 confirm the size, and trap if the numbers differ; not clear that it'd
3486 be worth bothering.) */
3488 tree
3489 build_vec_delete (tree base, tree maxindex,
3490 special_function_kind auto_delete_vec, int use_global_delete)
3492 tree type;
3493 tree rval;
3494 tree base_init = NULL_TREE;
3496 type = TREE_TYPE (base);
3498 if (TREE_CODE (type) == POINTER_TYPE)
3500 /* Step back one from start of vector, and read dimension. */
3501 tree cookie_addr;
3502 tree size_ptr_type = build_pointer_type (sizetype);
3504 if (TREE_SIDE_EFFECTS (base))
3506 base_init = get_target_expr (base);
3507 base = TARGET_EXPR_SLOT (base_init);
3509 type = strip_array_types (TREE_TYPE (type));
3510 cookie_addr = fold_build1_loc (input_location, NEGATE_EXPR,
3511 sizetype, TYPE_SIZE_UNIT (sizetype));
3512 cookie_addr = build2 (POINTER_PLUS_EXPR,
3513 size_ptr_type,
3514 fold_convert (size_ptr_type, base),
3515 cookie_addr);
3516 maxindex = cp_build_indirect_ref (cookie_addr, RO_NULL, tf_warning_or_error);
3518 else if (TREE_CODE (type) == ARRAY_TYPE)
3520 /* Get the total number of things in the array, maxindex is a
3521 bad name. */
3522 maxindex = array_type_nelts_total (type);
3523 type = strip_array_types (type);
3524 base = cp_build_addr_expr (base, tf_warning_or_error);
3525 if (TREE_SIDE_EFFECTS (base))
3527 base_init = get_target_expr (base);
3528 base = TARGET_EXPR_SLOT (base_init);
3531 else
3533 if (base != error_mark_node)
3534 error ("type to vector delete is neither pointer or array type");
3535 return error_mark_node;
3538 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
3539 use_global_delete);
3540 if (base_init)
3541 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
3543 return rval;