PR c++/53862
[official-gcc.git] / gcc / cp / class.c
blob0d4a40d4dbecd2e3167e6dcd155a341c7ab9ab75
1 /* Functions related to building classes and their related objects.
2 Copyright (C) 1987, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011,
4 2012
5 Free Software Foundation, Inc.
6 Contributed by Michael Tiemann (tiemann@cygnus.com)
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
25 /* High-level class interface. */
27 #include "config.h"
28 #include "system.h"
29 #include "coretypes.h"
30 #include "tm.h"
31 #include "tree.h"
32 #include "cp-tree.h"
33 #include "flags.h"
34 #include "toplev.h"
35 #include "target.h"
36 #include "convert.h"
37 #include "cgraph.h"
38 #include "tree-dump.h"
39 #include "splay-tree.h"
40 #include "pointer-set.h"
42 /* The number of nested classes being processed. If we are not in the
43 scope of any class, this is zero. */
45 int current_class_depth;
47 /* In order to deal with nested classes, we keep a stack of classes.
48 The topmost entry is the innermost class, and is the entry at index
49 CURRENT_CLASS_DEPTH */
51 typedef struct class_stack_node {
52 /* The name of the class. */
53 tree name;
55 /* The _TYPE node for the class. */
56 tree type;
58 /* The access specifier pending for new declarations in the scope of
59 this class. */
60 tree access;
62 /* If were defining TYPE, the names used in this class. */
63 splay_tree names_used;
65 /* Nonzero if this class is no longer open, because of a call to
66 push_to_top_level. */
67 size_t hidden;
68 }* class_stack_node_t;
70 typedef struct vtbl_init_data_s
72 /* The base for which we're building initializers. */
73 tree binfo;
74 /* The type of the most-derived type. */
75 tree derived;
76 /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
77 unless ctor_vtbl_p is true. */
78 tree rtti_binfo;
79 /* The negative-index vtable initializers built up so far. These
80 are in order from least negative index to most negative index. */
81 VEC(constructor_elt,gc) *inits;
82 /* The binfo for the virtual base for which we're building
83 vcall offset initializers. */
84 tree vbase;
85 /* The functions in vbase for which we have already provided vcall
86 offsets. */
87 VEC(tree,gc) *fns;
88 /* The vtable index of the next vcall or vbase offset. */
89 tree index;
90 /* Nonzero if we are building the initializer for the primary
91 vtable. */
92 int primary_vtbl_p;
93 /* Nonzero if we are building the initializer for a construction
94 vtable. */
95 int ctor_vtbl_p;
96 /* True when adding vcall offset entries to the vtable. False when
97 merely computing the indices. */
98 bool generate_vcall_entries;
99 } vtbl_init_data;
101 /* The type of a function passed to walk_subobject_offsets. */
102 typedef int (*subobject_offset_fn) (tree, tree, splay_tree);
104 /* The stack itself. This is a dynamically resized array. The
105 number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
106 static int current_class_stack_size;
107 static class_stack_node_t current_class_stack;
109 /* The size of the largest empty class seen in this translation unit. */
110 static GTY (()) tree sizeof_biggest_empty_class;
112 /* An array of all local classes present in this translation unit, in
113 declaration order. */
114 VEC(tree,gc) *local_classes;
116 static tree get_vfield_name (tree);
117 static void finish_struct_anon (tree);
118 static tree get_vtable_name (tree);
119 static tree get_basefndecls (tree, tree);
120 static int build_primary_vtable (tree, tree);
121 static int build_secondary_vtable (tree);
122 static void finish_vtbls (tree);
123 static void modify_vtable_entry (tree, tree, tree, tree, tree *);
124 static void finish_struct_bits (tree);
125 static int alter_access (tree, tree, tree);
126 static void handle_using_decl (tree, tree);
127 static tree dfs_modify_vtables (tree, void *);
128 static tree modify_all_vtables (tree, tree);
129 static void determine_primary_bases (tree);
130 static void finish_struct_methods (tree);
131 static void maybe_warn_about_overly_private_class (tree);
132 static int method_name_cmp (const void *, const void *);
133 static int resort_method_name_cmp (const void *, const void *);
134 static void add_implicitly_declared_members (tree, int, int);
135 static tree fixed_type_or_null (tree, int *, int *);
136 static tree build_simple_base_path (tree expr, tree binfo);
137 static tree build_vtbl_ref_1 (tree, tree);
138 static void build_vtbl_initializer (tree, tree, tree, tree, int *,
139 VEC(constructor_elt,gc) **);
140 static int count_fields (tree);
141 static int add_fields_to_record_type (tree, struct sorted_fields_type*, int);
142 static void insert_into_classtype_sorted_fields (tree, tree, int);
143 static bool check_bitfield_decl (tree);
144 static void check_field_decl (tree, tree, int *, int *, int *);
145 static void check_field_decls (tree, tree *, int *, int *);
146 static tree *build_base_field (record_layout_info, tree, splay_tree, tree *);
147 static void build_base_fields (record_layout_info, splay_tree, tree *);
148 static void check_methods (tree);
149 static void remove_zero_width_bit_fields (tree);
150 static void check_bases (tree, int *, int *);
151 static void check_bases_and_members (tree);
152 static tree create_vtable_ptr (tree, tree *);
153 static void include_empty_classes (record_layout_info);
154 static void layout_class_type (tree, tree *);
155 static void propagate_binfo_offsets (tree, tree);
156 static void layout_virtual_bases (record_layout_info, splay_tree);
157 static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *);
158 static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *);
159 static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *);
160 static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *);
161 static void add_vcall_offset (tree, tree, vtbl_init_data *);
162 static void layout_vtable_decl (tree, int);
163 static tree dfs_find_final_overrider_pre (tree, void *);
164 static tree dfs_find_final_overrider_post (tree, void *);
165 static tree find_final_overrider (tree, tree, tree);
166 static int make_new_vtable (tree, tree);
167 static tree get_primary_binfo (tree);
168 static int maybe_indent_hierarchy (FILE *, int, int);
169 static tree dump_class_hierarchy_r (FILE *, int, tree, tree, int);
170 static void dump_class_hierarchy (tree);
171 static void dump_class_hierarchy_1 (FILE *, int, tree);
172 static void dump_array (FILE *, tree);
173 static void dump_vtable (tree, tree, tree);
174 static void dump_vtt (tree, tree);
175 static void dump_thunk (FILE *, int, tree);
176 static tree build_vtable (tree, tree, tree);
177 static void initialize_vtable (tree, VEC(constructor_elt,gc) *);
178 static void layout_nonempty_base_or_field (record_layout_info,
179 tree, tree, splay_tree);
180 static tree end_of_class (tree, int);
181 static bool layout_empty_base (record_layout_info, tree, tree, splay_tree);
182 static void accumulate_vtbl_inits (tree, tree, tree, tree, tree,
183 VEC(constructor_elt,gc) **);
184 static void dfs_accumulate_vtbl_inits (tree, tree, tree, tree, tree,
185 VEC(constructor_elt,gc) **);
186 static void build_rtti_vtbl_entries (tree, vtbl_init_data *);
187 static void build_vcall_and_vbase_vtbl_entries (tree, vtbl_init_data *);
188 static void clone_constructors_and_destructors (tree);
189 static tree build_clone (tree, tree);
190 static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned);
191 static void build_ctor_vtbl_group (tree, tree);
192 static void build_vtt (tree);
193 static tree binfo_ctor_vtable (tree);
194 static void build_vtt_inits (tree, tree, VEC(constructor_elt,gc) **, tree *);
195 static tree dfs_build_secondary_vptr_vtt_inits (tree, void *);
196 static tree dfs_fixup_binfo_vtbls (tree, void *);
197 static int record_subobject_offset (tree, tree, splay_tree);
198 static int check_subobject_offset (tree, tree, splay_tree);
199 static int walk_subobject_offsets (tree, subobject_offset_fn,
200 tree, splay_tree, tree, int);
201 static void record_subobject_offsets (tree, tree, splay_tree, bool);
202 static int layout_conflict_p (tree, tree, splay_tree, int);
203 static int splay_tree_compare_integer_csts (splay_tree_key k1,
204 splay_tree_key k2);
205 static void warn_about_ambiguous_bases (tree);
206 static bool type_requires_array_cookie (tree);
207 static bool contains_empty_class_p (tree);
208 static bool base_derived_from (tree, tree);
209 static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree);
210 static tree end_of_base (tree);
211 static tree get_vcall_index (tree, tree);
213 /* Variables shared between class.c and call.c. */
215 #ifdef GATHER_STATISTICS
216 int n_vtables = 0;
217 int n_vtable_entries = 0;
218 int n_vtable_searches = 0;
219 int n_vtable_elems = 0;
220 int n_convert_harshness = 0;
221 int n_compute_conversion_costs = 0;
222 int n_inner_fields_searched = 0;
223 #endif
225 /* Convert to or from a base subobject. EXPR is an expression of type
226 `A' or `A*', an expression of type `B' or `B*' is returned. To
227 convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
228 the B base instance within A. To convert base A to derived B, CODE
229 is MINUS_EXPR and BINFO is the binfo for the A instance within B.
230 In this latter case, A must not be a morally virtual base of B.
231 NONNULL is true if EXPR is known to be non-NULL (this is only
232 needed when EXPR is of pointer type). CV qualifiers are preserved
233 from EXPR. */
235 tree
236 build_base_path (enum tree_code code,
237 tree expr,
238 tree binfo,
239 int nonnull,
240 tsubst_flags_t complain)
242 tree v_binfo = NULL_TREE;
243 tree d_binfo = NULL_TREE;
244 tree probe;
245 tree offset;
246 tree target_type;
247 tree null_test = NULL;
248 tree ptr_target_type;
249 int fixed_type_p;
250 int want_pointer = TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE;
251 bool has_empty = false;
252 bool virtual_access;
254 if (expr == error_mark_node || binfo == error_mark_node || !binfo)
255 return error_mark_node;
257 for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
259 d_binfo = probe;
260 if (is_empty_class (BINFO_TYPE (probe)))
261 has_empty = true;
262 if (!v_binfo && BINFO_VIRTUAL_P (probe))
263 v_binfo = probe;
266 probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
267 if (want_pointer)
268 probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe));
270 if (code == PLUS_EXPR
271 && !SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo), probe))
273 /* This can happen when adjust_result_of_qualified_name_lookup can't
274 find a unique base binfo in a call to a member function. We
275 couldn't give the diagnostic then since we might have been calling
276 a static member function, so we do it now. */
277 if (complain & tf_error)
279 tree base = lookup_base (probe, BINFO_TYPE (d_binfo),
280 ba_unique, NULL);
281 gcc_assert (base == error_mark_node);
283 return error_mark_node;
286 gcc_assert ((code == MINUS_EXPR
287 && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), probe))
288 || code == PLUS_EXPR);
290 if (binfo == d_binfo)
291 /* Nothing to do. */
292 return expr;
294 if (code == MINUS_EXPR && v_binfo)
296 if (complain & tf_error)
297 error ("cannot convert from base %qT to derived type %qT via "
298 "virtual base %qT", BINFO_TYPE (binfo), BINFO_TYPE (d_binfo),
299 BINFO_TYPE (v_binfo));
300 return error_mark_node;
303 if (!want_pointer)
304 /* This must happen before the call to save_expr. */
305 expr = cp_build_addr_expr (expr, complain);
306 else
307 expr = mark_rvalue_use (expr);
309 offset = BINFO_OFFSET (binfo);
310 fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
311 target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo);
312 /* TARGET_TYPE has been extracted from BINFO, and, is therefore always
313 cv-unqualified. Extract the cv-qualifiers from EXPR so that the
314 expression returned matches the input. */
315 target_type = cp_build_qualified_type
316 (target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr))));
317 ptr_target_type = build_pointer_type (target_type);
319 /* Do we need to look in the vtable for the real offset? */
320 virtual_access = (v_binfo && fixed_type_p <= 0);
322 /* Don't bother with the calculations inside sizeof; they'll ICE if the
323 source type is incomplete and the pointer value doesn't matter. In a
324 template (even in fold_non_dependent_expr), we don't have vtables set
325 up properly yet, and the value doesn't matter there either; we're just
326 interested in the result of overload resolution. */
327 if (cp_unevaluated_operand != 0
328 || in_template_function ())
330 expr = build_nop (ptr_target_type, expr);
331 if (!want_pointer)
332 expr = build_indirect_ref (EXPR_LOCATION (expr), expr, RO_NULL);
333 return expr;
336 /* If we're in an NSDMI, we don't have the full constructor context yet
337 that we need for converting to a virtual base, so just build a stub
338 CONVERT_EXPR and expand it later in bot_replace. */
339 if (virtual_access && fixed_type_p < 0
340 && current_scope () != current_function_decl)
342 expr = build1 (CONVERT_EXPR, ptr_target_type, expr);
343 CONVERT_EXPR_VBASE_PATH (expr) = true;
344 if (!want_pointer)
345 expr = build_indirect_ref (EXPR_LOCATION (expr), expr, RO_NULL);
346 return expr;
349 /* Do we need to check for a null pointer? */
350 if (want_pointer && !nonnull)
352 /* If we know the conversion will not actually change the value
353 of EXPR, then we can avoid testing the expression for NULL.
354 We have to avoid generating a COMPONENT_REF for a base class
355 field, because other parts of the compiler know that such
356 expressions are always non-NULL. */
357 if (!virtual_access && integer_zerop (offset))
358 return build_nop (ptr_target_type, expr);
359 null_test = error_mark_node;
362 /* Protect against multiple evaluation if necessary. */
363 if (TREE_SIDE_EFFECTS (expr) && (null_test || virtual_access))
364 expr = save_expr (expr);
366 /* Now that we've saved expr, build the real null test. */
367 if (null_test)
369 tree zero = cp_convert (TREE_TYPE (expr), nullptr_node, complain);
370 null_test = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
371 expr, zero);
374 /* If this is a simple base reference, express it as a COMPONENT_REF. */
375 if (code == PLUS_EXPR && !virtual_access
376 /* We don't build base fields for empty bases, and they aren't very
377 interesting to the optimizers anyway. */
378 && !has_empty)
380 expr = cp_build_indirect_ref (expr, RO_NULL, complain);
381 expr = build_simple_base_path (expr, binfo);
382 if (want_pointer)
383 expr = build_address (expr);
384 target_type = TREE_TYPE (expr);
385 goto out;
388 if (virtual_access)
390 /* Going via virtual base V_BINFO. We need the static offset
391 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
392 V_BINFO. That offset is an entry in D_BINFO's vtable. */
393 tree v_offset;
395 if (fixed_type_p < 0 && in_base_initializer)
397 /* In a base member initializer, we cannot rely on the
398 vtable being set up. We have to indirect via the
399 vtt_parm. */
400 tree t;
402 t = TREE_TYPE (TYPE_VFIELD (current_class_type));
403 t = build_pointer_type (t);
404 v_offset = convert (t, current_vtt_parm);
405 v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain);
407 else
408 v_offset = build_vfield_ref (cp_build_indirect_ref (expr, RO_NULL,
409 complain),
410 TREE_TYPE (TREE_TYPE (expr)));
412 v_offset = fold_build_pointer_plus (v_offset, BINFO_VPTR_FIELD (v_binfo));
413 v_offset = build1 (NOP_EXPR,
414 build_pointer_type (ptrdiff_type_node),
415 v_offset);
416 v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain);
417 TREE_CONSTANT (v_offset) = 1;
419 offset = convert_to_integer (ptrdiff_type_node,
420 size_diffop_loc (input_location, offset,
421 BINFO_OFFSET (v_binfo)));
423 if (!integer_zerop (offset))
424 v_offset = build2 (code, ptrdiff_type_node, v_offset, offset);
426 if (fixed_type_p < 0)
427 /* Negative fixed_type_p means this is a constructor or destructor;
428 virtual base layout is fixed in in-charge [cd]tors, but not in
429 base [cd]tors. */
430 offset = build3 (COND_EXPR, ptrdiff_type_node,
431 build2 (EQ_EXPR, boolean_type_node,
432 current_in_charge_parm, integer_zero_node),
433 v_offset,
434 convert_to_integer (ptrdiff_type_node,
435 BINFO_OFFSET (binfo)));
436 else
437 offset = v_offset;
440 if (want_pointer)
441 target_type = ptr_target_type;
443 expr = build1 (NOP_EXPR, ptr_target_type, expr);
445 if (!integer_zerop (offset))
447 offset = fold_convert (sizetype, offset);
448 if (code == MINUS_EXPR)
449 offset = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, offset);
450 expr = fold_build_pointer_plus (expr, offset);
452 else
453 null_test = NULL;
455 if (!want_pointer)
456 expr = cp_build_indirect_ref (expr, RO_NULL, complain);
458 out:
459 if (null_test)
460 expr = fold_build3_loc (input_location, COND_EXPR, target_type, null_test, expr,
461 build_zero_cst (target_type));
463 return expr;
466 /* Subroutine of build_base_path; EXPR and BINFO are as in that function.
467 Perform a derived-to-base conversion by recursively building up a
468 sequence of COMPONENT_REFs to the appropriate base fields. */
470 static tree
471 build_simple_base_path (tree expr, tree binfo)
473 tree type = BINFO_TYPE (binfo);
474 tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
475 tree field;
477 if (d_binfo == NULL_TREE)
479 tree temp;
481 gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type);
483 /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
484 into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only
485 an lvalue in the front end; only _DECLs and _REFs are lvalues
486 in the back end. */
487 temp = unary_complex_lvalue (ADDR_EXPR, expr);
488 if (temp)
489 expr = cp_build_indirect_ref (temp, RO_NULL, tf_warning_or_error);
491 return expr;
494 /* Recurse. */
495 expr = build_simple_base_path (expr, d_binfo);
497 for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo));
498 field; field = DECL_CHAIN (field))
499 /* Is this the base field created by build_base_field? */
500 if (TREE_CODE (field) == FIELD_DECL
501 && DECL_FIELD_IS_BASE (field)
502 && TREE_TYPE (field) == type
503 /* If we're looking for a field in the most-derived class,
504 also check the field offset; we can have two base fields
505 of the same type if one is an indirect virtual base and one
506 is a direct non-virtual base. */
507 && (BINFO_INHERITANCE_CHAIN (d_binfo)
508 || tree_int_cst_equal (byte_position (field),
509 BINFO_OFFSET (binfo))))
511 /* We don't use build_class_member_access_expr here, as that
512 has unnecessary checks, and more importantly results in
513 recursive calls to dfs_walk_once. */
514 int type_quals = cp_type_quals (TREE_TYPE (expr));
516 expr = build3 (COMPONENT_REF,
517 cp_build_qualified_type (type, type_quals),
518 expr, field, NULL_TREE);
519 expr = fold_if_not_in_template (expr);
521 /* Mark the expression const or volatile, as appropriate.
522 Even though we've dealt with the type above, we still have
523 to mark the expression itself. */
524 if (type_quals & TYPE_QUAL_CONST)
525 TREE_READONLY (expr) = 1;
526 if (type_quals & TYPE_QUAL_VOLATILE)
527 TREE_THIS_VOLATILE (expr) = 1;
529 return expr;
532 /* Didn't find the base field?!? */
533 gcc_unreachable ();
536 /* Convert OBJECT to the base TYPE. OBJECT is an expression whose
537 type is a class type or a pointer to a class type. In the former
538 case, TYPE is also a class type; in the latter it is another
539 pointer type. If CHECK_ACCESS is true, an error message is emitted
540 if TYPE is inaccessible. If OBJECT has pointer type, the value is
541 assumed to be non-NULL. */
543 tree
544 convert_to_base (tree object, tree type, bool check_access, bool nonnull,
545 tsubst_flags_t complain)
547 tree binfo;
548 tree object_type;
549 base_access access;
551 if (TYPE_PTR_P (TREE_TYPE (object)))
553 object_type = TREE_TYPE (TREE_TYPE (object));
554 type = TREE_TYPE (type);
556 else
557 object_type = TREE_TYPE (object);
559 access = check_access ? ba_check : ba_unique;
560 if (!(complain & tf_error))
561 access |= ba_quiet;
562 binfo = lookup_base (object_type, type,
563 access,
564 NULL);
565 if (!binfo || binfo == error_mark_node)
566 return error_mark_node;
568 return build_base_path (PLUS_EXPR, object, binfo, nonnull, complain);
571 /* EXPR is an expression with unqualified class type. BASE is a base
572 binfo of that class type. Returns EXPR, converted to the BASE
573 type. This function assumes that EXPR is the most derived class;
574 therefore virtual bases can be found at their static offsets. */
576 tree
577 convert_to_base_statically (tree expr, tree base)
579 tree expr_type;
581 expr_type = TREE_TYPE (expr);
582 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base), expr_type))
584 /* If this is a non-empty base, use a COMPONENT_REF. */
585 if (!is_empty_class (BINFO_TYPE (base)))
586 return build_simple_base_path (expr, base);
588 /* We use fold_build2 and fold_convert below to simplify the trees
589 provided to the optimizers. It is not safe to call these functions
590 when processing a template because they do not handle C++-specific
591 trees. */
592 gcc_assert (!processing_template_decl);
593 expr = cp_build_addr_expr (expr, tf_warning_or_error);
594 if (!integer_zerop (BINFO_OFFSET (base)))
595 expr = fold_build_pointer_plus_loc (input_location,
596 expr, BINFO_OFFSET (base));
597 expr = fold_convert (build_pointer_type (BINFO_TYPE (base)), expr);
598 expr = build_fold_indirect_ref_loc (input_location, expr);
601 return expr;
605 tree
606 build_vfield_ref (tree datum, tree type)
608 tree vfield, vcontext;
610 if (datum == error_mark_node)
611 return error_mark_node;
613 /* First, convert to the requested type. */
614 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum), type))
615 datum = convert_to_base (datum, type, /*check_access=*/false,
616 /*nonnull=*/true, tf_warning_or_error);
618 /* Second, the requested type may not be the owner of its own vptr.
619 If not, convert to the base class that owns it. We cannot use
620 convert_to_base here, because VCONTEXT may appear more than once
621 in the inheritance hierarchy of TYPE, and thus direct conversion
622 between the types may be ambiguous. Following the path back up
623 one step at a time via primary bases avoids the problem. */
624 vfield = TYPE_VFIELD (type);
625 vcontext = DECL_CONTEXT (vfield);
626 while (!same_type_ignoring_top_level_qualifiers_p (vcontext, type))
628 datum = build_simple_base_path (datum, CLASSTYPE_PRIMARY_BINFO (type));
629 type = TREE_TYPE (datum);
632 return build3 (COMPONENT_REF, TREE_TYPE (vfield), datum, vfield, NULL_TREE);
635 /* Given an object INSTANCE, return an expression which yields the
636 vtable element corresponding to INDEX. There are many special
637 cases for INSTANCE which we take care of here, mainly to avoid
638 creating extra tree nodes when we don't have to. */
640 static tree
641 build_vtbl_ref_1 (tree instance, tree idx)
643 tree aref;
644 tree vtbl = NULL_TREE;
646 /* Try to figure out what a reference refers to, and
647 access its virtual function table directly. */
649 int cdtorp = 0;
650 tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp);
652 tree basetype = non_reference (TREE_TYPE (instance));
654 if (fixed_type && !cdtorp)
656 tree binfo = lookup_base (fixed_type, basetype,
657 ba_unique | ba_quiet, NULL);
658 if (binfo)
659 vtbl = unshare_expr (BINFO_VTABLE (binfo));
662 if (!vtbl)
663 vtbl = build_vfield_ref (instance, basetype);
665 aref = build_array_ref (input_location, vtbl, idx);
666 TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx);
668 return aref;
671 tree
672 build_vtbl_ref (tree instance, tree idx)
674 tree aref = build_vtbl_ref_1 (instance, idx);
676 return aref;
679 /* Given a stable object pointer INSTANCE_PTR, return an expression which
680 yields a function pointer corresponding to vtable element INDEX. */
682 tree
683 build_vfn_ref (tree instance_ptr, tree idx)
685 tree aref;
687 aref = build_vtbl_ref_1 (cp_build_indirect_ref (instance_ptr, RO_NULL,
688 tf_warning_or_error),
689 idx);
691 /* When using function descriptors, the address of the
692 vtable entry is treated as a function pointer. */
693 if (TARGET_VTABLE_USES_DESCRIPTORS)
694 aref = build1 (NOP_EXPR, TREE_TYPE (aref),
695 cp_build_addr_expr (aref, tf_warning_or_error));
697 /* Remember this as a method reference, for later devirtualization. */
698 aref = build3 (OBJ_TYPE_REF, TREE_TYPE (aref), aref, instance_ptr, idx);
700 return aref;
703 /* Return the name of the virtual function table (as an IDENTIFIER_NODE)
704 for the given TYPE. */
706 static tree
707 get_vtable_name (tree type)
709 return mangle_vtbl_for_type (type);
712 /* DECL is an entity associated with TYPE, like a virtual table or an
713 implicitly generated constructor. Determine whether or not DECL
714 should have external or internal linkage at the object file
715 level. This routine does not deal with COMDAT linkage and other
716 similar complexities; it simply sets TREE_PUBLIC if it possible for
717 entities in other translation units to contain copies of DECL, in
718 the abstract. */
720 void
721 set_linkage_according_to_type (tree type ATTRIBUTE_UNUSED, tree decl)
723 TREE_PUBLIC (decl) = 1;
724 determine_visibility (decl);
727 /* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
728 (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
729 Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
731 static tree
732 build_vtable (tree class_type, tree name, tree vtable_type)
734 tree decl;
736 decl = build_lang_decl (VAR_DECL, name, vtable_type);
737 /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
738 now to avoid confusion in mangle_decl. */
739 SET_DECL_ASSEMBLER_NAME (decl, name);
740 DECL_CONTEXT (decl) = class_type;
741 DECL_ARTIFICIAL (decl) = 1;
742 TREE_STATIC (decl) = 1;
743 TREE_READONLY (decl) = 1;
744 DECL_VIRTUAL_P (decl) = 1;
745 DECL_ALIGN (decl) = TARGET_VTABLE_ENTRY_ALIGN;
746 DECL_VTABLE_OR_VTT_P (decl) = 1;
747 /* At one time the vtable info was grabbed 2 words at a time. This
748 fails on sparc unless you have 8-byte alignment. (tiemann) */
749 DECL_ALIGN (decl) = MAX (TYPE_ALIGN (double_type_node),
750 DECL_ALIGN (decl));
751 set_linkage_according_to_type (class_type, decl);
752 /* The vtable has not been defined -- yet. */
753 DECL_EXTERNAL (decl) = 1;
754 DECL_NOT_REALLY_EXTERN (decl) = 1;
756 /* Mark the VAR_DECL node representing the vtable itself as a
757 "gratuitous" one, thereby forcing dwarfout.c to ignore it. It
758 is rather important that such things be ignored because any
759 effort to actually generate DWARF for them will run into
760 trouble when/if we encounter code like:
762 #pragma interface
763 struct S { virtual void member (); };
765 because the artificial declaration of the vtable itself (as
766 manufactured by the g++ front end) will say that the vtable is
767 a static member of `S' but only *after* the debug output for
768 the definition of `S' has already been output. This causes
769 grief because the DWARF entry for the definition of the vtable
770 will try to refer back to an earlier *declaration* of the
771 vtable as a static member of `S' and there won't be one. We
772 might be able to arrange to have the "vtable static member"
773 attached to the member list for `S' before the debug info for
774 `S' get written (which would solve the problem) but that would
775 require more intrusive changes to the g++ front end. */
776 DECL_IGNORED_P (decl) = 1;
778 return decl;
781 /* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
782 or even complete. If this does not exist, create it. If COMPLETE is
783 nonzero, then complete the definition of it -- that will render it
784 impossible to actually build the vtable, but is useful to get at those
785 which are known to exist in the runtime. */
787 tree
788 get_vtable_decl (tree type, int complete)
790 tree decl;
792 if (CLASSTYPE_VTABLES (type))
793 return CLASSTYPE_VTABLES (type);
795 decl = build_vtable (type, get_vtable_name (type), vtbl_type_node);
796 CLASSTYPE_VTABLES (type) = decl;
798 if (complete)
800 DECL_EXTERNAL (decl) = 1;
801 cp_finish_decl (decl, NULL_TREE, false, NULL_TREE, 0);
804 return decl;
807 /* Build the primary virtual function table for TYPE. If BINFO is
808 non-NULL, build the vtable starting with the initial approximation
809 that it is the same as the one which is the head of the association
810 list. Returns a nonzero value if a new vtable is actually
811 created. */
813 static int
814 build_primary_vtable (tree binfo, tree type)
816 tree decl;
817 tree virtuals;
819 decl = get_vtable_decl (type, /*complete=*/0);
821 if (binfo)
823 if (BINFO_NEW_VTABLE_MARKED (binfo))
824 /* We have already created a vtable for this base, so there's
825 no need to do it again. */
826 return 0;
828 virtuals = copy_list (BINFO_VIRTUALS (binfo));
829 TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo));
830 DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl));
831 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl));
833 else
835 gcc_assert (TREE_TYPE (decl) == vtbl_type_node);
836 virtuals = NULL_TREE;
839 #ifdef GATHER_STATISTICS
840 n_vtables += 1;
841 n_vtable_elems += list_length (virtuals);
842 #endif
844 /* Initialize the association list for this type, based
845 on our first approximation. */
846 BINFO_VTABLE (TYPE_BINFO (type)) = decl;
847 BINFO_VIRTUALS (TYPE_BINFO (type)) = virtuals;
848 SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type));
849 return 1;
852 /* Give BINFO a new virtual function table which is initialized
853 with a skeleton-copy of its original initialization. The only
854 entry that changes is the `delta' entry, so we can really
855 share a lot of structure.
857 FOR_TYPE is the most derived type which caused this table to
858 be needed.
860 Returns nonzero if we haven't met BINFO before.
862 The order in which vtables are built (by calling this function) for
863 an object must remain the same, otherwise a binary incompatibility
864 can result. */
866 static int
867 build_secondary_vtable (tree binfo)
869 if (BINFO_NEW_VTABLE_MARKED (binfo))
870 /* We already created a vtable for this base. There's no need to
871 do it again. */
872 return 0;
874 /* Remember that we've created a vtable for this BINFO, so that we
875 don't try to do so again. */
876 SET_BINFO_NEW_VTABLE_MARKED (binfo);
878 /* Make fresh virtual list, so we can smash it later. */
879 BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo));
881 /* Secondary vtables are laid out as part of the same structure as
882 the primary vtable. */
883 BINFO_VTABLE (binfo) = NULL_TREE;
884 return 1;
887 /* Create a new vtable for BINFO which is the hierarchy dominated by
888 T. Return nonzero if we actually created a new vtable. */
890 static int
891 make_new_vtable (tree t, tree binfo)
893 if (binfo == TYPE_BINFO (t))
894 /* In this case, it is *type*'s vtable we are modifying. We start
895 with the approximation that its vtable is that of the
896 immediate base class. */
897 return build_primary_vtable (binfo, t);
898 else
899 /* This is our very own copy of `basetype' to play with. Later,
900 we will fill in all the virtual functions that override the
901 virtual functions in these base classes which are not defined
902 by the current type. */
903 return build_secondary_vtable (binfo);
906 /* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
907 (which is in the hierarchy dominated by T) list FNDECL as its
908 BV_FN. DELTA is the required constant adjustment from the `this'
909 pointer where the vtable entry appears to the `this' required when
910 the function is actually called. */
912 static void
913 modify_vtable_entry (tree t,
914 tree binfo,
915 tree fndecl,
916 tree delta,
917 tree *virtuals)
919 tree v;
921 v = *virtuals;
923 if (fndecl != BV_FN (v)
924 || !tree_int_cst_equal (delta, BV_DELTA (v)))
926 /* We need a new vtable for BINFO. */
927 if (make_new_vtable (t, binfo))
929 /* If we really did make a new vtable, we also made a copy
930 of the BINFO_VIRTUALS list. Now, we have to find the
931 corresponding entry in that list. */
932 *virtuals = BINFO_VIRTUALS (binfo);
933 while (BV_FN (*virtuals) != BV_FN (v))
934 *virtuals = TREE_CHAIN (*virtuals);
935 v = *virtuals;
938 BV_DELTA (v) = delta;
939 BV_VCALL_INDEX (v) = NULL_TREE;
940 BV_FN (v) = fndecl;
945 /* Add method METHOD to class TYPE. If USING_DECL is non-null, it is
946 the USING_DECL naming METHOD. Returns true if the method could be
947 added to the method vec. */
949 bool
950 add_method (tree type, tree method, tree using_decl)
952 unsigned slot;
953 tree overload;
954 bool template_conv_p = false;
955 bool conv_p;
956 VEC(tree,gc) *method_vec;
957 bool complete_p;
958 bool insert_p = false;
959 tree current_fns;
960 tree fns;
962 if (method == error_mark_node)
963 return false;
965 complete_p = COMPLETE_TYPE_P (type);
966 conv_p = DECL_CONV_FN_P (method);
967 if (conv_p)
968 template_conv_p = (TREE_CODE (method) == TEMPLATE_DECL
969 && DECL_TEMPLATE_CONV_FN_P (method));
971 method_vec = CLASSTYPE_METHOD_VEC (type);
972 if (!method_vec)
974 /* Make a new method vector. We start with 8 entries. We must
975 allocate at least two (for constructors and destructors), and
976 we're going to end up with an assignment operator at some
977 point as well. */
978 method_vec = VEC_alloc (tree, gc, 8);
979 /* Create slots for constructors and destructors. */
980 VEC_quick_push (tree, method_vec, NULL_TREE);
981 VEC_quick_push (tree, method_vec, NULL_TREE);
982 CLASSTYPE_METHOD_VEC (type) = method_vec;
985 /* Maintain TYPE_HAS_USER_CONSTRUCTOR, etc. */
986 grok_special_member_properties (method);
988 /* Constructors and destructors go in special slots. */
989 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method))
990 slot = CLASSTYPE_CONSTRUCTOR_SLOT;
991 else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
993 slot = CLASSTYPE_DESTRUCTOR_SLOT;
995 if (TYPE_FOR_JAVA (type))
997 if (!DECL_ARTIFICIAL (method))
998 error ("Java class %qT cannot have a destructor", type);
999 else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
1000 error ("Java class %qT cannot have an implicit non-trivial "
1001 "destructor",
1002 type);
1005 else
1007 tree m;
1009 insert_p = true;
1010 /* See if we already have an entry with this name. */
1011 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1012 VEC_iterate (tree, method_vec, slot, m);
1013 ++slot)
1015 m = OVL_CURRENT (m);
1016 if (template_conv_p)
1018 if (TREE_CODE (m) == TEMPLATE_DECL
1019 && DECL_TEMPLATE_CONV_FN_P (m))
1020 insert_p = false;
1021 break;
1023 if (conv_p && !DECL_CONV_FN_P (m))
1024 break;
1025 if (DECL_NAME (m) == DECL_NAME (method))
1027 insert_p = false;
1028 break;
1030 if (complete_p
1031 && !DECL_CONV_FN_P (m)
1032 && DECL_NAME (m) > DECL_NAME (method))
1033 break;
1036 current_fns = insert_p ? NULL_TREE : VEC_index (tree, method_vec, slot);
1038 /* Check to see if we've already got this method. */
1039 for (fns = current_fns; fns; fns = OVL_NEXT (fns))
1041 tree fn = OVL_CURRENT (fns);
1042 tree fn_type;
1043 tree method_type;
1044 tree parms1;
1045 tree parms2;
1047 if (TREE_CODE (fn) != TREE_CODE (method))
1048 continue;
1050 /* [over.load] Member function declarations with the
1051 same name and the same parameter types cannot be
1052 overloaded if any of them is a static member
1053 function declaration.
1055 [namespace.udecl] When a using-declaration brings names
1056 from a base class into a derived class scope, member
1057 functions in the derived class override and/or hide member
1058 functions with the same name and parameter types in a base
1059 class (rather than conflicting). */
1060 fn_type = TREE_TYPE (fn);
1061 method_type = TREE_TYPE (method);
1062 parms1 = TYPE_ARG_TYPES (fn_type);
1063 parms2 = TYPE_ARG_TYPES (method_type);
1065 /* Compare the quals on the 'this' parm. Don't compare
1066 the whole types, as used functions are treated as
1067 coming from the using class in overload resolution. */
1068 if (! DECL_STATIC_FUNCTION_P (fn)
1069 && ! DECL_STATIC_FUNCTION_P (method)
1070 && TREE_TYPE (TREE_VALUE (parms1)) != error_mark_node
1071 && TREE_TYPE (TREE_VALUE (parms2)) != error_mark_node
1072 && (cp_type_quals (TREE_TYPE (TREE_VALUE (parms1)))
1073 != cp_type_quals (TREE_TYPE (TREE_VALUE (parms2)))))
1074 continue;
1076 /* For templates, the return type and template parameters
1077 must be identical. */
1078 if (TREE_CODE (fn) == TEMPLATE_DECL
1079 && (!same_type_p (TREE_TYPE (fn_type),
1080 TREE_TYPE (method_type))
1081 || !comp_template_parms (DECL_TEMPLATE_PARMS (fn),
1082 DECL_TEMPLATE_PARMS (method))))
1083 continue;
1085 if (! DECL_STATIC_FUNCTION_P (fn))
1086 parms1 = TREE_CHAIN (parms1);
1087 if (! DECL_STATIC_FUNCTION_P (method))
1088 parms2 = TREE_CHAIN (parms2);
1090 if (compparms (parms1, parms2)
1091 && (!DECL_CONV_FN_P (fn)
1092 || same_type_p (TREE_TYPE (fn_type),
1093 TREE_TYPE (method_type))))
1095 if (using_decl)
1097 if (DECL_CONTEXT (fn) == type)
1098 /* Defer to the local function. */
1099 return false;
1101 else
1103 error ("%q+#D cannot be overloaded", method);
1104 error ("with %q+#D", fn);
1107 /* We don't call duplicate_decls here to merge the
1108 declarations because that will confuse things if the
1109 methods have inline definitions. In particular, we
1110 will crash while processing the definitions. */
1111 return false;
1115 /* A class should never have more than one destructor. */
1116 if (current_fns && DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
1117 return false;
1119 /* Add the new binding. */
1120 if (using_decl)
1122 overload = ovl_cons (method, current_fns);
1123 OVL_USED (overload) = true;
1125 else
1126 overload = build_overload (method, current_fns);
1128 if (conv_p)
1129 TYPE_HAS_CONVERSION (type) = 1;
1130 else if (slot >= CLASSTYPE_FIRST_CONVERSION_SLOT && !complete_p)
1131 push_class_level_binding (DECL_NAME (method), overload);
1133 if (insert_p)
1135 bool reallocated;
1137 /* We only expect to add few methods in the COMPLETE_P case, so
1138 just make room for one more method in that case. */
1139 if (complete_p)
1140 reallocated = VEC_reserve_exact (tree, gc, method_vec, 1);
1141 else
1142 reallocated = VEC_reserve (tree, gc, method_vec, 1);
1143 if (reallocated)
1144 CLASSTYPE_METHOD_VEC (type) = method_vec;
1145 if (slot == VEC_length (tree, method_vec))
1146 VEC_quick_push (tree, method_vec, overload);
1147 else
1148 VEC_quick_insert (tree, method_vec, slot, overload);
1150 else
1151 /* Replace the current slot. */
1152 VEC_replace (tree, method_vec, slot, overload);
1153 return true;
1156 /* Subroutines of finish_struct. */
1158 /* Change the access of FDECL to ACCESS in T. Return 1 if change was
1159 legit, otherwise return 0. */
1161 static int
1162 alter_access (tree t, tree fdecl, tree access)
1164 tree elem;
1166 if (!DECL_LANG_SPECIFIC (fdecl))
1167 retrofit_lang_decl (fdecl);
1169 gcc_assert (!DECL_DISCRIMINATOR_P (fdecl));
1171 elem = purpose_member (t, DECL_ACCESS (fdecl));
1172 if (elem)
1174 if (TREE_VALUE (elem) != access)
1176 if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
1177 error ("conflicting access specifications for method"
1178 " %q+D, ignored", TREE_TYPE (fdecl));
1179 else
1180 error ("conflicting access specifications for field %qE, ignored",
1181 DECL_NAME (fdecl));
1183 else
1185 /* They're changing the access to the same thing they changed
1186 it to before. That's OK. */
1190 else
1192 perform_or_defer_access_check (TYPE_BINFO (t), fdecl, fdecl);
1193 DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl));
1194 return 1;
1196 return 0;
1199 /* Process the USING_DECL, which is a member of T. */
1201 static void
1202 handle_using_decl (tree using_decl, tree t)
1204 tree decl = USING_DECL_DECLS (using_decl);
1205 tree name = DECL_NAME (using_decl);
1206 tree access
1207 = TREE_PRIVATE (using_decl) ? access_private_node
1208 : TREE_PROTECTED (using_decl) ? access_protected_node
1209 : access_public_node;
1210 tree flist = NULL_TREE;
1211 tree old_value;
1213 gcc_assert (!processing_template_decl && decl);
1215 old_value = lookup_member (t, name, /*protect=*/0, /*want_type=*/false,
1216 tf_warning_or_error);
1217 if (old_value)
1219 if (is_overloaded_fn (old_value))
1220 old_value = OVL_CURRENT (old_value);
1222 if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t)
1223 /* OK */;
1224 else
1225 old_value = NULL_TREE;
1228 cp_emit_debug_info_for_using (decl, USING_DECL_SCOPE (using_decl));
1230 if (is_overloaded_fn (decl))
1231 flist = decl;
1233 if (! old_value)
1235 else if (is_overloaded_fn (old_value))
1237 if (flist)
1238 /* It's OK to use functions from a base when there are functions with
1239 the same name already present in the current class. */;
1240 else
1242 error ("%q+D invalid in %q#T", using_decl, t);
1243 error (" because of local method %q+#D with same name",
1244 OVL_CURRENT (old_value));
1245 return;
1248 else if (!DECL_ARTIFICIAL (old_value))
1250 error ("%q+D invalid in %q#T", using_decl, t);
1251 error (" because of local member %q+#D with same name", old_value);
1252 return;
1255 /* Make type T see field decl FDECL with access ACCESS. */
1256 if (flist)
1257 for (; flist; flist = OVL_NEXT (flist))
1259 add_method (t, OVL_CURRENT (flist), using_decl);
1260 alter_access (t, OVL_CURRENT (flist), access);
1262 else
1263 alter_access (t, decl, access);
1266 /* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
1267 and NO_CONST_ASN_REF_P. Also set flag bits in T based on
1268 properties of the bases. */
1270 static void
1271 check_bases (tree t,
1272 int* cant_have_const_ctor_p,
1273 int* no_const_asn_ref_p)
1275 int i;
1276 bool seen_non_virtual_nearly_empty_base_p = 0;
1277 int seen_tm_mask = 0;
1278 tree base_binfo;
1279 tree binfo;
1280 tree field = NULL_TREE;
1282 if (!CLASSTYPE_NON_STD_LAYOUT (t))
1283 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
1284 if (TREE_CODE (field) == FIELD_DECL)
1285 break;
1287 for (binfo = TYPE_BINFO (t), i = 0;
1288 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
1290 tree basetype = TREE_TYPE (base_binfo);
1292 gcc_assert (COMPLETE_TYPE_P (basetype));
1294 if (CLASSTYPE_FINAL (basetype))
1295 error ("cannot derive from %<final%> base %qT in derived type %qT",
1296 basetype, t);
1298 /* If any base class is non-literal, so is the derived class. */
1299 if (!CLASSTYPE_LITERAL_P (basetype))
1300 CLASSTYPE_LITERAL_P (t) = false;
1302 /* Effective C++ rule 14. We only need to check TYPE_POLYMORPHIC_P
1303 here because the case of virtual functions but non-virtual
1304 dtor is handled in finish_struct_1. */
1305 if (!TYPE_POLYMORPHIC_P (basetype))
1306 warning (OPT_Weffc__,
1307 "base class %q#T has a non-virtual destructor", basetype);
1309 /* If the base class doesn't have copy constructors or
1310 assignment operators that take const references, then the
1311 derived class cannot have such a member automatically
1312 generated. */
1313 if (TYPE_HAS_COPY_CTOR (basetype)
1314 && ! TYPE_HAS_CONST_COPY_CTOR (basetype))
1315 *cant_have_const_ctor_p = 1;
1316 if (TYPE_HAS_COPY_ASSIGN (basetype)
1317 && !TYPE_HAS_CONST_COPY_ASSIGN (basetype))
1318 *no_const_asn_ref_p = 1;
1320 if (BINFO_VIRTUAL_P (base_binfo))
1321 /* A virtual base does not effect nearly emptiness. */
1323 else if (CLASSTYPE_NEARLY_EMPTY_P (basetype))
1325 if (seen_non_virtual_nearly_empty_base_p)
1326 /* And if there is more than one nearly empty base, then the
1327 derived class is not nearly empty either. */
1328 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1329 else
1330 /* Remember we've seen one. */
1331 seen_non_virtual_nearly_empty_base_p = 1;
1333 else if (!is_empty_class (basetype))
1334 /* If the base class is not empty or nearly empty, then this
1335 class cannot be nearly empty. */
1336 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1338 /* A lot of properties from the bases also apply to the derived
1339 class. */
1340 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
1341 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1342 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype);
1343 TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
1344 |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (basetype)
1345 || !TYPE_HAS_COPY_ASSIGN (basetype));
1346 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (basetype)
1347 || !TYPE_HAS_COPY_CTOR (basetype));
1348 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t)
1349 |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (basetype);
1350 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (basetype);
1351 TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype);
1352 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t)
1353 |= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype);
1354 TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (basetype)
1355 || TYPE_HAS_COMPLEX_DFLT (basetype));
1357 /* A standard-layout class is a class that:
1359 * has no non-standard-layout base classes, */
1360 CLASSTYPE_NON_STD_LAYOUT (t) |= CLASSTYPE_NON_STD_LAYOUT (basetype);
1361 if (!CLASSTYPE_NON_STD_LAYOUT (t))
1363 tree basefield;
1364 /* ...has no base classes of the same type as the first non-static
1365 data member... */
1366 if (field && DECL_CONTEXT (field) == t
1367 && (same_type_ignoring_top_level_qualifiers_p
1368 (TREE_TYPE (field), basetype)))
1369 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
1370 else
1371 /* ...either has no non-static data members in the most-derived
1372 class and at most one base class with non-static data
1373 members, or has no base classes with non-static data
1374 members */
1375 for (basefield = TYPE_FIELDS (basetype); basefield;
1376 basefield = DECL_CHAIN (basefield))
1377 if (TREE_CODE (basefield) == FIELD_DECL)
1379 if (field)
1380 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
1381 else
1382 field = basefield;
1383 break;
1387 /* Don't bother collecting tm attributes if transactional memory
1388 support is not enabled. */
1389 if (flag_tm)
1391 tree tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (basetype));
1392 if (tm_attr)
1393 seen_tm_mask |= tm_attr_to_mask (tm_attr);
1397 /* If one of the base classes had TM attributes, and the current class
1398 doesn't define its own, then the current class inherits one. */
1399 if (seen_tm_mask && !find_tm_attribute (TYPE_ATTRIBUTES (t)))
1401 tree tm_attr = tm_mask_to_attr (seen_tm_mask & -seen_tm_mask);
1402 TYPE_ATTRIBUTES (t) = tree_cons (tm_attr, NULL, TYPE_ATTRIBUTES (t));
1406 /* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for
1407 those that are primaries. Sets BINFO_LOST_PRIMARY_P for those
1408 that have had a nearly-empty virtual primary base stolen by some
1409 other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for
1410 T. */
1412 static void
1413 determine_primary_bases (tree t)
1415 unsigned i;
1416 tree primary = NULL_TREE;
1417 tree type_binfo = TYPE_BINFO (t);
1418 tree base_binfo;
1420 /* Determine the primary bases of our bases. */
1421 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1422 base_binfo = TREE_CHAIN (base_binfo))
1424 tree primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo));
1426 /* See if we're the non-virtual primary of our inheritance
1427 chain. */
1428 if (!BINFO_VIRTUAL_P (base_binfo))
1430 tree parent = BINFO_INHERITANCE_CHAIN (base_binfo);
1431 tree parent_primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent));
1433 if (parent_primary
1434 && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
1435 BINFO_TYPE (parent_primary)))
1436 /* We are the primary binfo. */
1437 BINFO_PRIMARY_P (base_binfo) = 1;
1439 /* Determine if we have a virtual primary base, and mark it so.
1441 if (primary && BINFO_VIRTUAL_P (primary))
1443 tree this_primary = copied_binfo (primary, base_binfo);
1445 if (BINFO_PRIMARY_P (this_primary))
1446 /* Someone already claimed this base. */
1447 BINFO_LOST_PRIMARY_P (base_binfo) = 1;
1448 else
1450 tree delta;
1452 BINFO_PRIMARY_P (this_primary) = 1;
1453 BINFO_INHERITANCE_CHAIN (this_primary) = base_binfo;
1455 /* A virtual binfo might have been copied from within
1456 another hierarchy. As we're about to use it as a
1457 primary base, make sure the offsets match. */
1458 delta = size_diffop_loc (input_location,
1459 convert (ssizetype,
1460 BINFO_OFFSET (base_binfo)),
1461 convert (ssizetype,
1462 BINFO_OFFSET (this_primary)));
1464 propagate_binfo_offsets (this_primary, delta);
1469 /* First look for a dynamic direct non-virtual base. */
1470 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, base_binfo); i++)
1472 tree basetype = BINFO_TYPE (base_binfo);
1474 if (TYPE_CONTAINS_VPTR_P (basetype) && !BINFO_VIRTUAL_P (base_binfo))
1476 primary = base_binfo;
1477 goto found;
1481 /* A "nearly-empty" virtual base class can be the primary base
1482 class, if no non-virtual polymorphic base can be found. Look for
1483 a nearly-empty virtual dynamic base that is not already a primary
1484 base of something in the hierarchy. If there is no such base,
1485 just pick the first nearly-empty virtual base. */
1487 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1488 base_binfo = TREE_CHAIN (base_binfo))
1489 if (BINFO_VIRTUAL_P (base_binfo)
1490 && CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo)))
1492 if (!BINFO_PRIMARY_P (base_binfo))
1494 /* Found one that is not primary. */
1495 primary = base_binfo;
1496 goto found;
1498 else if (!primary)
1499 /* Remember the first candidate. */
1500 primary = base_binfo;
1503 found:
1504 /* If we've got a primary base, use it. */
1505 if (primary)
1507 tree basetype = BINFO_TYPE (primary);
1509 CLASSTYPE_PRIMARY_BINFO (t) = primary;
1510 if (BINFO_PRIMARY_P (primary))
1511 /* We are stealing a primary base. */
1512 BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary)) = 1;
1513 BINFO_PRIMARY_P (primary) = 1;
1514 if (BINFO_VIRTUAL_P (primary))
1516 tree delta;
1518 BINFO_INHERITANCE_CHAIN (primary) = type_binfo;
1519 /* A virtual binfo might have been copied from within
1520 another hierarchy. As we're about to use it as a primary
1521 base, make sure the offsets match. */
1522 delta = size_diffop_loc (input_location, ssize_int (0),
1523 convert (ssizetype, BINFO_OFFSET (primary)));
1525 propagate_binfo_offsets (primary, delta);
1528 primary = TYPE_BINFO (basetype);
1530 TYPE_VFIELD (t) = TYPE_VFIELD (basetype);
1531 BINFO_VTABLE (type_binfo) = BINFO_VTABLE (primary);
1532 BINFO_VIRTUALS (type_binfo) = BINFO_VIRTUALS (primary);
1536 /* Update the variant types of T. */
1538 void
1539 fixup_type_variants (tree t)
1541 tree variants;
1543 if (!t)
1544 return;
1546 for (variants = TYPE_NEXT_VARIANT (t);
1547 variants;
1548 variants = TYPE_NEXT_VARIANT (variants))
1550 /* These fields are in the _TYPE part of the node, not in
1551 the TYPE_LANG_SPECIFIC component, so they are not shared. */
1552 TYPE_HAS_USER_CONSTRUCTOR (variants) = TYPE_HAS_USER_CONSTRUCTOR (t);
1553 TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
1554 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants)
1555 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
1557 TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t);
1559 TYPE_BINFO (variants) = TYPE_BINFO (t);
1561 /* Copy whatever these are holding today. */
1562 TYPE_VFIELD (variants) = TYPE_VFIELD (t);
1563 TYPE_METHODS (variants) = TYPE_METHODS (t);
1564 TYPE_FIELDS (variants) = TYPE_FIELDS (t);
1568 /* Early variant fixups: we apply attributes at the beginning of the class
1569 definition, and we need to fix up any variants that have already been
1570 made via elaborated-type-specifier so that check_qualified_type works. */
1572 void
1573 fixup_attribute_variants (tree t)
1575 tree variants;
1577 if (!t)
1578 return;
1580 for (variants = TYPE_NEXT_VARIANT (t);
1581 variants;
1582 variants = TYPE_NEXT_VARIANT (variants))
1584 /* These are the two fields that check_qualified_type looks at and
1585 are affected by attributes. */
1586 TYPE_ATTRIBUTES (variants) = TYPE_ATTRIBUTES (t);
1587 TYPE_ALIGN (variants) = TYPE_ALIGN (t);
1591 /* Set memoizing fields and bits of T (and its variants) for later
1592 use. */
1594 static void
1595 finish_struct_bits (tree t)
1597 /* Fix up variants (if any). */
1598 fixup_type_variants (t);
1600 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) && TYPE_POLYMORPHIC_P (t))
1601 /* For a class w/o baseclasses, 'finish_struct' has set
1602 CLASSTYPE_PURE_VIRTUALS correctly (by definition).
1603 Similarly for a class whose base classes do not have vtables.
1604 When neither of these is true, we might have removed abstract
1605 virtuals (by providing a definition), added some (by declaring
1606 new ones), or redeclared ones from a base class. We need to
1607 recalculate what's really an abstract virtual at this point (by
1608 looking in the vtables). */
1609 get_pure_virtuals (t);
1611 /* If this type has a copy constructor or a destructor, force its
1612 mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
1613 nonzero. This will cause it to be passed by invisible reference
1614 and prevent it from being returned in a register. */
1615 if (type_has_nontrivial_copy_init (t)
1616 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
1618 tree variants;
1619 DECL_MODE (TYPE_MAIN_DECL (t)) = BLKmode;
1620 for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants))
1622 SET_TYPE_MODE (variants, BLKmode);
1623 TREE_ADDRESSABLE (variants) = 1;
1628 /* Issue warnings about T having private constructors, but no friends,
1629 and so forth.
1631 HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
1632 static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
1633 non-private static member functions. */
1635 static void
1636 maybe_warn_about_overly_private_class (tree t)
1638 int has_member_fn = 0;
1639 int has_nonprivate_method = 0;
1640 tree fn;
1642 if (!warn_ctor_dtor_privacy
1643 /* If the class has friends, those entities might create and
1644 access instances, so we should not warn. */
1645 || (CLASSTYPE_FRIEND_CLASSES (t)
1646 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
1647 /* We will have warned when the template was declared; there's
1648 no need to warn on every instantiation. */
1649 || CLASSTYPE_TEMPLATE_INSTANTIATION (t))
1650 /* There's no reason to even consider warning about this
1651 class. */
1652 return;
1654 /* We only issue one warning, if more than one applies, because
1655 otherwise, on code like:
1657 class A {
1658 // Oops - forgot `public:'
1659 A();
1660 A(const A&);
1661 ~A();
1664 we warn several times about essentially the same problem. */
1666 /* Check to see if all (non-constructor, non-destructor) member
1667 functions are private. (Since there are no friends or
1668 non-private statics, we can't ever call any of the private member
1669 functions.) */
1670 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
1671 /* We're not interested in compiler-generated methods; they don't
1672 provide any way to call private members. */
1673 if (!DECL_ARTIFICIAL (fn))
1675 if (!TREE_PRIVATE (fn))
1677 if (DECL_STATIC_FUNCTION_P (fn))
1678 /* A non-private static member function is just like a
1679 friend; it can create and invoke private member
1680 functions, and be accessed without a class
1681 instance. */
1682 return;
1684 has_nonprivate_method = 1;
1685 /* Keep searching for a static member function. */
1687 else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn))
1688 has_member_fn = 1;
1691 if (!has_nonprivate_method && has_member_fn)
1693 /* There are no non-private methods, and there's at least one
1694 private member function that isn't a constructor or
1695 destructor. (If all the private members are
1696 constructors/destructors we want to use the code below that
1697 issues error messages specifically referring to
1698 constructors/destructors.) */
1699 unsigned i;
1700 tree binfo = TYPE_BINFO (t);
1702 for (i = 0; i != BINFO_N_BASE_BINFOS (binfo); i++)
1703 if (BINFO_BASE_ACCESS (binfo, i) != access_private_node)
1705 has_nonprivate_method = 1;
1706 break;
1708 if (!has_nonprivate_method)
1710 warning (OPT_Wctor_dtor_privacy,
1711 "all member functions in class %qT are private", t);
1712 return;
1716 /* Even if some of the member functions are non-private, the class
1717 won't be useful for much if all the constructors or destructors
1718 are private: such an object can never be created or destroyed. */
1719 fn = CLASSTYPE_DESTRUCTORS (t);
1720 if (fn && TREE_PRIVATE (fn))
1722 warning (OPT_Wctor_dtor_privacy,
1723 "%q#T only defines a private destructor and has no friends",
1725 return;
1728 /* Warn about classes that have private constructors and no friends. */
1729 if (TYPE_HAS_USER_CONSTRUCTOR (t)
1730 /* Implicitly generated constructors are always public. */
1731 && (!CLASSTYPE_LAZY_DEFAULT_CTOR (t)
1732 || !CLASSTYPE_LAZY_COPY_CTOR (t)))
1734 int nonprivate_ctor = 0;
1736 /* If a non-template class does not define a copy
1737 constructor, one is defined for it, enabling it to avoid
1738 this warning. For a template class, this does not
1739 happen, and so we would normally get a warning on:
1741 template <class T> class C { private: C(); };
1743 To avoid this asymmetry, we check TYPE_HAS_COPY_CTOR. All
1744 complete non-template or fully instantiated classes have this
1745 flag set. */
1746 if (!TYPE_HAS_COPY_CTOR (t))
1747 nonprivate_ctor = 1;
1748 else
1749 for (fn = CLASSTYPE_CONSTRUCTORS (t); fn; fn = OVL_NEXT (fn))
1751 tree ctor = OVL_CURRENT (fn);
1752 /* Ideally, we wouldn't count copy constructors (or, in
1753 fact, any constructor that takes an argument of the
1754 class type as a parameter) because such things cannot
1755 be used to construct an instance of the class unless
1756 you already have one. But, for now at least, we're
1757 more generous. */
1758 if (! TREE_PRIVATE (ctor))
1760 nonprivate_ctor = 1;
1761 break;
1765 if (nonprivate_ctor == 0)
1767 warning (OPT_Wctor_dtor_privacy,
1768 "%q#T only defines private constructors and has no friends",
1770 return;
1775 static struct {
1776 gt_pointer_operator new_value;
1777 void *cookie;
1778 } resort_data;
1780 /* Comparison function to compare two TYPE_METHOD_VEC entries by name. */
1782 static int
1783 method_name_cmp (const void* m1_p, const void* m2_p)
1785 const tree *const m1 = (const tree *) m1_p;
1786 const tree *const m2 = (const tree *) m2_p;
1788 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1789 return 0;
1790 if (*m1 == NULL_TREE)
1791 return -1;
1792 if (*m2 == NULL_TREE)
1793 return 1;
1794 if (DECL_NAME (OVL_CURRENT (*m1)) < DECL_NAME (OVL_CURRENT (*m2)))
1795 return -1;
1796 return 1;
1799 /* This routine compares two fields like method_name_cmp but using the
1800 pointer operator in resort_field_decl_data. */
1802 static int
1803 resort_method_name_cmp (const void* m1_p, const void* m2_p)
1805 const tree *const m1 = (const tree *) m1_p;
1806 const tree *const m2 = (const tree *) m2_p;
1807 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1808 return 0;
1809 if (*m1 == NULL_TREE)
1810 return -1;
1811 if (*m2 == NULL_TREE)
1812 return 1;
1814 tree d1 = DECL_NAME (OVL_CURRENT (*m1));
1815 tree d2 = DECL_NAME (OVL_CURRENT (*m2));
1816 resort_data.new_value (&d1, resort_data.cookie);
1817 resort_data.new_value (&d2, resort_data.cookie);
1818 if (d1 < d2)
1819 return -1;
1821 return 1;
1824 /* Resort TYPE_METHOD_VEC because pointers have been reordered. */
1826 void
1827 resort_type_method_vec (void* obj,
1828 void* orig_obj ATTRIBUTE_UNUSED ,
1829 gt_pointer_operator new_value,
1830 void* cookie)
1832 VEC(tree,gc) *method_vec = (VEC(tree,gc) *) obj;
1833 int len = VEC_length (tree, method_vec);
1834 size_t slot;
1835 tree fn;
1837 /* The type conversion ops have to live at the front of the vec, so we
1838 can't sort them. */
1839 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1840 VEC_iterate (tree, method_vec, slot, fn);
1841 ++slot)
1842 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1843 break;
1845 if (len - slot > 1)
1847 resort_data.new_value = new_value;
1848 resort_data.cookie = cookie;
1849 qsort (VEC_address (tree, method_vec) + slot, len - slot, sizeof (tree),
1850 resort_method_name_cmp);
1854 /* Warn about duplicate methods in fn_fields.
1856 Sort methods that are not special (i.e., constructors, destructors,
1857 and type conversion operators) so that we can find them faster in
1858 search. */
1860 static void
1861 finish_struct_methods (tree t)
1863 tree fn_fields;
1864 VEC(tree,gc) *method_vec;
1865 int slot, len;
1867 method_vec = CLASSTYPE_METHOD_VEC (t);
1868 if (!method_vec)
1869 return;
1871 len = VEC_length (tree, method_vec);
1873 /* Clear DECL_IN_AGGR_P for all functions. */
1874 for (fn_fields = TYPE_METHODS (t); fn_fields;
1875 fn_fields = DECL_CHAIN (fn_fields))
1876 DECL_IN_AGGR_P (fn_fields) = 0;
1878 /* Issue warnings about private constructors and such. If there are
1879 no methods, then some public defaults are generated. */
1880 maybe_warn_about_overly_private_class (t);
1882 /* The type conversion ops have to live at the front of the vec, so we
1883 can't sort them. */
1884 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1885 VEC_iterate (tree, method_vec, slot, fn_fields);
1886 ++slot)
1887 if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields)))
1888 break;
1889 if (len - slot > 1)
1890 qsort (VEC_address (tree, method_vec) + slot,
1891 len-slot, sizeof (tree), method_name_cmp);
1894 /* Make BINFO's vtable have N entries, including RTTI entries,
1895 vbase and vcall offsets, etc. Set its type and call the back end
1896 to lay it out. */
1898 static void
1899 layout_vtable_decl (tree binfo, int n)
1901 tree atype;
1902 tree vtable;
1904 atype = build_array_of_n_type (vtable_entry_type, n);
1905 layout_type (atype);
1907 /* We may have to grow the vtable. */
1908 vtable = get_vtbl_decl_for_binfo (binfo);
1909 if (!same_type_p (TREE_TYPE (vtable), atype))
1911 TREE_TYPE (vtable) = atype;
1912 DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE;
1913 layout_decl (vtable, 0);
1917 /* True iff FNDECL and BASE_FNDECL (both non-static member functions)
1918 have the same signature. */
1921 same_signature_p (const_tree fndecl, const_tree base_fndecl)
1923 /* One destructor overrides another if they are the same kind of
1924 destructor. */
1925 if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl)
1926 && special_function_p (base_fndecl) == special_function_p (fndecl))
1927 return 1;
1928 /* But a non-destructor never overrides a destructor, nor vice
1929 versa, nor do different kinds of destructors override
1930 one-another. For example, a complete object destructor does not
1931 override a deleting destructor. */
1932 if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl))
1933 return 0;
1935 if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl)
1936 || (DECL_CONV_FN_P (fndecl)
1937 && DECL_CONV_FN_P (base_fndecl)
1938 && same_type_p (DECL_CONV_FN_TYPE (fndecl),
1939 DECL_CONV_FN_TYPE (base_fndecl))))
1941 tree types, base_types;
1942 types = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
1943 base_types = TYPE_ARG_TYPES (TREE_TYPE (base_fndecl));
1944 if ((cp_type_quals (TREE_TYPE (TREE_VALUE (base_types)))
1945 == cp_type_quals (TREE_TYPE (TREE_VALUE (types))))
1946 && compparms (TREE_CHAIN (base_types), TREE_CHAIN (types)))
1947 return 1;
1949 return 0;
1952 /* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
1953 subobject. */
1955 static bool
1956 base_derived_from (tree derived, tree base)
1958 tree probe;
1960 for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
1962 if (probe == derived)
1963 return true;
1964 else if (BINFO_VIRTUAL_P (probe))
1965 /* If we meet a virtual base, we can't follow the inheritance
1966 any more. See if the complete type of DERIVED contains
1967 such a virtual base. */
1968 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (derived))
1969 != NULL_TREE);
1971 return false;
1974 typedef struct find_final_overrider_data_s {
1975 /* The function for which we are trying to find a final overrider. */
1976 tree fn;
1977 /* The base class in which the function was declared. */
1978 tree declaring_base;
1979 /* The candidate overriders. */
1980 tree candidates;
1981 /* Path to most derived. */
1982 VEC(tree,heap) *path;
1983 } find_final_overrider_data;
1985 /* Add the overrider along the current path to FFOD->CANDIDATES.
1986 Returns true if an overrider was found; false otherwise. */
1988 static bool
1989 dfs_find_final_overrider_1 (tree binfo,
1990 find_final_overrider_data *ffod,
1991 unsigned depth)
1993 tree method;
1995 /* If BINFO is not the most derived type, try a more derived class.
1996 A definition there will overrider a definition here. */
1997 if (depth)
1999 depth--;
2000 if (dfs_find_final_overrider_1
2001 (VEC_index (tree, ffod->path, depth), ffod, depth))
2002 return true;
2005 method = look_for_overrides_here (BINFO_TYPE (binfo), ffod->fn);
2006 if (method)
2008 tree *candidate = &ffod->candidates;
2010 /* Remove any candidates overridden by this new function. */
2011 while (*candidate)
2013 /* If *CANDIDATE overrides METHOD, then METHOD
2014 cannot override anything else on the list. */
2015 if (base_derived_from (TREE_VALUE (*candidate), binfo))
2016 return true;
2017 /* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
2018 if (base_derived_from (binfo, TREE_VALUE (*candidate)))
2019 *candidate = TREE_CHAIN (*candidate);
2020 else
2021 candidate = &TREE_CHAIN (*candidate);
2024 /* Add the new function. */
2025 ffod->candidates = tree_cons (method, binfo, ffod->candidates);
2026 return true;
2029 return false;
2032 /* Called from find_final_overrider via dfs_walk. */
2034 static tree
2035 dfs_find_final_overrider_pre (tree binfo, void *data)
2037 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
2039 if (binfo == ffod->declaring_base)
2040 dfs_find_final_overrider_1 (binfo, ffod, VEC_length (tree, ffod->path));
2041 VEC_safe_push (tree, heap, ffod->path, binfo);
2043 return NULL_TREE;
2046 static tree
2047 dfs_find_final_overrider_post (tree binfo ATTRIBUTE_UNUSED, void *data)
2049 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
2050 VEC_pop (tree, ffod->path);
2052 return NULL_TREE;
2055 /* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
2056 FN and whose TREE_VALUE is the binfo for the base where the
2057 overriding occurs. BINFO (in the hierarchy dominated by the binfo
2058 DERIVED) is the base object in which FN is declared. */
2060 static tree
2061 find_final_overrider (tree derived, tree binfo, tree fn)
2063 find_final_overrider_data ffod;
2065 /* Getting this right is a little tricky. This is valid:
2067 struct S { virtual void f (); };
2068 struct T { virtual void f (); };
2069 struct U : public S, public T { };
2071 even though calling `f' in `U' is ambiguous. But,
2073 struct R { virtual void f(); };
2074 struct S : virtual public R { virtual void f (); };
2075 struct T : virtual public R { virtual void f (); };
2076 struct U : public S, public T { };
2078 is not -- there's no way to decide whether to put `S::f' or
2079 `T::f' in the vtable for `R'.
2081 The solution is to look at all paths to BINFO. If we find
2082 different overriders along any two, then there is a problem. */
2083 if (DECL_THUNK_P (fn))
2084 fn = THUNK_TARGET (fn);
2086 /* Determine the depth of the hierarchy. */
2087 ffod.fn = fn;
2088 ffod.declaring_base = binfo;
2089 ffod.candidates = NULL_TREE;
2090 ffod.path = VEC_alloc (tree, heap, 30);
2092 dfs_walk_all (derived, dfs_find_final_overrider_pre,
2093 dfs_find_final_overrider_post, &ffod);
2095 VEC_free (tree, heap, ffod.path);
2097 /* If there was no winner, issue an error message. */
2098 if (!ffod.candidates || TREE_CHAIN (ffod.candidates))
2099 return error_mark_node;
2101 return ffod.candidates;
2104 /* Return the index of the vcall offset for FN when TYPE is used as a
2105 virtual base. */
2107 static tree
2108 get_vcall_index (tree fn, tree type)
2110 VEC(tree_pair_s,gc) *indices = CLASSTYPE_VCALL_INDICES (type);
2111 tree_pair_p p;
2112 unsigned ix;
2114 FOR_EACH_VEC_ELT (tree_pair_s, indices, ix, p)
2115 if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (p->purpose))
2116 || same_signature_p (fn, p->purpose))
2117 return p->value;
2119 /* There should always be an appropriate index. */
2120 gcc_unreachable ();
2123 /* Update an entry in the vtable for BINFO, which is in the hierarchy
2124 dominated by T. FN is the old function; VIRTUALS points to the
2125 corresponding position in the new BINFO_VIRTUALS list. IX is the index
2126 of that entry in the list. */
2128 static void
2129 update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals,
2130 unsigned ix)
2132 tree b;
2133 tree overrider;
2134 tree delta;
2135 tree virtual_base;
2136 tree first_defn;
2137 tree overrider_fn, overrider_target;
2138 tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn;
2139 tree over_return, base_return;
2140 bool lost = false;
2142 /* Find the nearest primary base (possibly binfo itself) which defines
2143 this function; this is the class the caller will convert to when
2144 calling FN through BINFO. */
2145 for (b = binfo; ; b = get_primary_binfo (b))
2147 gcc_assert (b);
2148 if (look_for_overrides_here (BINFO_TYPE (b), target_fn))
2149 break;
2151 /* The nearest definition is from a lost primary. */
2152 if (BINFO_LOST_PRIMARY_P (b))
2153 lost = true;
2155 first_defn = b;
2157 /* Find the final overrider. */
2158 overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn);
2159 if (overrider == error_mark_node)
2161 error ("no unique final overrider for %qD in %qT", target_fn, t);
2162 return;
2164 overrider_target = overrider_fn = TREE_PURPOSE (overrider);
2166 /* Check for adjusting covariant return types. */
2167 over_return = TREE_TYPE (TREE_TYPE (overrider_target));
2168 base_return = TREE_TYPE (TREE_TYPE (target_fn));
2170 if (POINTER_TYPE_P (over_return)
2171 && TREE_CODE (over_return) == TREE_CODE (base_return)
2172 && CLASS_TYPE_P (TREE_TYPE (over_return))
2173 && CLASS_TYPE_P (TREE_TYPE (base_return))
2174 /* If the overrider is invalid, don't even try. */
2175 && !DECL_INVALID_OVERRIDER_P (overrider_target))
2177 /* If FN is a covariant thunk, we must figure out the adjustment
2178 to the final base FN was converting to. As OVERRIDER_TARGET might
2179 also be converting to the return type of FN, we have to
2180 combine the two conversions here. */
2181 tree fixed_offset, virtual_offset;
2183 over_return = TREE_TYPE (over_return);
2184 base_return = TREE_TYPE (base_return);
2186 if (DECL_THUNK_P (fn))
2188 gcc_assert (DECL_RESULT_THUNK_P (fn));
2189 fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn));
2190 virtual_offset = THUNK_VIRTUAL_OFFSET (fn);
2192 else
2193 fixed_offset = virtual_offset = NULL_TREE;
2195 if (virtual_offset)
2196 /* Find the equivalent binfo within the return type of the
2197 overriding function. We will want the vbase offset from
2198 there. */
2199 virtual_offset = binfo_for_vbase (BINFO_TYPE (virtual_offset),
2200 over_return);
2201 else if (!same_type_ignoring_top_level_qualifiers_p
2202 (over_return, base_return))
2204 /* There was no existing virtual thunk (which takes
2205 precedence). So find the binfo of the base function's
2206 return type within the overriding function's return type.
2207 We cannot call lookup base here, because we're inside a
2208 dfs_walk, and will therefore clobber the BINFO_MARKED
2209 flags. Fortunately we know the covariancy is valid (it
2210 has already been checked), so we can just iterate along
2211 the binfos, which have been chained in inheritance graph
2212 order. Of course it is lame that we have to repeat the
2213 search here anyway -- we should really be caching pieces
2214 of the vtable and avoiding this repeated work. */
2215 tree thunk_binfo, base_binfo;
2217 /* Find the base binfo within the overriding function's
2218 return type. We will always find a thunk_binfo, except
2219 when the covariancy is invalid (which we will have
2220 already diagnosed). */
2221 for (base_binfo = TYPE_BINFO (base_return),
2222 thunk_binfo = TYPE_BINFO (over_return);
2223 thunk_binfo;
2224 thunk_binfo = TREE_CHAIN (thunk_binfo))
2225 if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo),
2226 BINFO_TYPE (base_binfo)))
2227 break;
2229 /* See if virtual inheritance is involved. */
2230 for (virtual_offset = thunk_binfo;
2231 virtual_offset;
2232 virtual_offset = BINFO_INHERITANCE_CHAIN (virtual_offset))
2233 if (BINFO_VIRTUAL_P (virtual_offset))
2234 break;
2236 if (virtual_offset
2237 || (thunk_binfo && !BINFO_OFFSET_ZEROP (thunk_binfo)))
2239 tree offset = convert (ssizetype, BINFO_OFFSET (thunk_binfo));
2241 if (virtual_offset)
2243 /* We convert via virtual base. Adjust the fixed
2244 offset to be from there. */
2245 offset =
2246 size_diffop (offset,
2247 convert (ssizetype,
2248 BINFO_OFFSET (virtual_offset)));
2250 if (fixed_offset)
2251 /* There was an existing fixed offset, this must be
2252 from the base just converted to, and the base the
2253 FN was thunking to. */
2254 fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset);
2255 else
2256 fixed_offset = offset;
2260 if (fixed_offset || virtual_offset)
2261 /* Replace the overriding function with a covariant thunk. We
2262 will emit the overriding function in its own slot as
2263 well. */
2264 overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0,
2265 fixed_offset, virtual_offset);
2267 else
2268 gcc_assert (DECL_INVALID_OVERRIDER_P (overrider_target) ||
2269 !DECL_THUNK_P (fn));
2271 /* If we need a covariant thunk, then we may need to adjust first_defn.
2272 The ABI specifies that the thunks emitted with a function are
2273 determined by which bases the function overrides, so we need to be
2274 sure that we're using a thunk for some overridden base; even if we
2275 know that the necessary this adjustment is zero, there may not be an
2276 appropriate zero-this-adjusment thunk for us to use since thunks for
2277 overriding virtual bases always use the vcall offset.
2279 Furthermore, just choosing any base that overrides this function isn't
2280 quite right, as this slot won't be used for calls through a type that
2281 puts a covariant thunk here. Calling the function through such a type
2282 will use a different slot, and that slot is the one that determines
2283 the thunk emitted for that base.
2285 So, keep looking until we find the base that we're really overriding
2286 in this slot: the nearest primary base that doesn't use a covariant
2287 thunk in this slot. */
2288 if (overrider_target != overrider_fn)
2290 if (BINFO_TYPE (b) == DECL_CONTEXT (overrider_target))
2291 /* We already know that the overrider needs a covariant thunk. */
2292 b = get_primary_binfo (b);
2293 for (; ; b = get_primary_binfo (b))
2295 tree main_binfo = TYPE_BINFO (BINFO_TYPE (b));
2296 tree bv = chain_index (ix, BINFO_VIRTUALS (main_binfo));
2297 if (!DECL_THUNK_P (TREE_VALUE (bv)))
2298 break;
2299 if (BINFO_LOST_PRIMARY_P (b))
2300 lost = true;
2302 first_defn = b;
2305 /* Assume that we will produce a thunk that convert all the way to
2306 the final overrider, and not to an intermediate virtual base. */
2307 virtual_base = NULL_TREE;
2309 /* See if we can convert to an intermediate virtual base first, and then
2310 use the vcall offset located there to finish the conversion. */
2311 for (; b; b = BINFO_INHERITANCE_CHAIN (b))
2313 /* If we find the final overrider, then we can stop
2314 walking. */
2315 if (SAME_BINFO_TYPE_P (BINFO_TYPE (b),
2316 BINFO_TYPE (TREE_VALUE (overrider))))
2317 break;
2319 /* If we find a virtual base, and we haven't yet found the
2320 overrider, then there is a virtual base between the
2321 declaring base (first_defn) and the final overrider. */
2322 if (BINFO_VIRTUAL_P (b))
2324 virtual_base = b;
2325 break;
2329 /* Compute the constant adjustment to the `this' pointer. The
2330 `this' pointer, when this function is called, will point at BINFO
2331 (or one of its primary bases, which are at the same offset). */
2332 if (virtual_base)
2333 /* The `this' pointer needs to be adjusted from the declaration to
2334 the nearest virtual base. */
2335 delta = size_diffop_loc (input_location,
2336 convert (ssizetype, BINFO_OFFSET (virtual_base)),
2337 convert (ssizetype, BINFO_OFFSET (first_defn)));
2338 else if (lost)
2339 /* If the nearest definition is in a lost primary, we don't need an
2340 entry in our vtable. Except possibly in a constructor vtable,
2341 if we happen to get our primary back. In that case, the offset
2342 will be zero, as it will be a primary base. */
2343 delta = size_zero_node;
2344 else
2345 /* The `this' pointer needs to be adjusted from pointing to
2346 BINFO to pointing at the base where the final overrider
2347 appears. */
2348 delta = size_diffop_loc (input_location,
2349 convert (ssizetype,
2350 BINFO_OFFSET (TREE_VALUE (overrider))),
2351 convert (ssizetype, BINFO_OFFSET (binfo)));
2353 modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals);
2355 if (virtual_base)
2356 BV_VCALL_INDEX (*virtuals)
2357 = get_vcall_index (overrider_target, BINFO_TYPE (virtual_base));
2358 else
2359 BV_VCALL_INDEX (*virtuals) = NULL_TREE;
2361 BV_LOST_PRIMARY (*virtuals) = lost;
2364 /* Called from modify_all_vtables via dfs_walk. */
2366 static tree
2367 dfs_modify_vtables (tree binfo, void* data)
2369 tree t = (tree) data;
2370 tree virtuals;
2371 tree old_virtuals;
2372 unsigned ix;
2374 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2375 /* A base without a vtable needs no modification, and its bases
2376 are uninteresting. */
2377 return dfs_skip_bases;
2379 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t)
2380 && !CLASSTYPE_HAS_PRIMARY_BASE_P (t))
2381 /* Don't do the primary vtable, if it's new. */
2382 return NULL_TREE;
2384 if (BINFO_PRIMARY_P (binfo) && !BINFO_VIRTUAL_P (binfo))
2385 /* There's no need to modify the vtable for a non-virtual primary
2386 base; we're not going to use that vtable anyhow. We do still
2387 need to do this for virtual primary bases, as they could become
2388 non-primary in a construction vtable. */
2389 return NULL_TREE;
2391 make_new_vtable (t, binfo);
2393 /* Now, go through each of the virtual functions in the virtual
2394 function table for BINFO. Find the final overrider, and update
2395 the BINFO_VIRTUALS list appropriately. */
2396 for (ix = 0, virtuals = BINFO_VIRTUALS (binfo),
2397 old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
2398 virtuals;
2399 ix++, virtuals = TREE_CHAIN (virtuals),
2400 old_virtuals = TREE_CHAIN (old_virtuals))
2401 update_vtable_entry_for_fn (t,
2402 binfo,
2403 BV_FN (old_virtuals),
2404 &virtuals, ix);
2406 return NULL_TREE;
2409 /* Update all of the primary and secondary vtables for T. Create new
2410 vtables as required, and initialize their RTTI information. Each
2411 of the functions in VIRTUALS is declared in T and may override a
2412 virtual function from a base class; find and modify the appropriate
2413 entries to point to the overriding functions. Returns a list, in
2414 declaration order, of the virtual functions that are declared in T,
2415 but do not appear in the primary base class vtable, and which
2416 should therefore be appended to the end of the vtable for T. */
2418 static tree
2419 modify_all_vtables (tree t, tree virtuals)
2421 tree binfo = TYPE_BINFO (t);
2422 tree *fnsp;
2424 /* Update all of the vtables. */
2425 dfs_walk_once (binfo, dfs_modify_vtables, NULL, t);
2427 /* Add virtual functions not already in our primary vtable. These
2428 will be both those introduced by this class, and those overridden
2429 from secondary bases. It does not include virtuals merely
2430 inherited from secondary bases. */
2431 for (fnsp = &virtuals; *fnsp; )
2433 tree fn = TREE_VALUE (*fnsp);
2435 if (!value_member (fn, BINFO_VIRTUALS (binfo))
2436 || DECL_VINDEX (fn) == error_mark_node)
2438 /* We don't need to adjust the `this' pointer when
2439 calling this function. */
2440 BV_DELTA (*fnsp) = integer_zero_node;
2441 BV_VCALL_INDEX (*fnsp) = NULL_TREE;
2443 /* This is a function not already in our vtable. Keep it. */
2444 fnsp = &TREE_CHAIN (*fnsp);
2446 else
2447 /* We've already got an entry for this function. Skip it. */
2448 *fnsp = TREE_CHAIN (*fnsp);
2451 return virtuals;
2454 /* Get the base virtual function declarations in T that have the
2455 indicated NAME. */
2457 static tree
2458 get_basefndecls (tree name, tree t)
2460 tree methods;
2461 tree base_fndecls = NULL_TREE;
2462 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
2463 int i;
2465 /* Find virtual functions in T with the indicated NAME. */
2466 i = lookup_fnfields_1 (t, name);
2467 if (i != -1)
2468 for (methods = VEC_index (tree, CLASSTYPE_METHOD_VEC (t), i);
2469 methods;
2470 methods = OVL_NEXT (methods))
2472 tree method = OVL_CURRENT (methods);
2474 if (TREE_CODE (method) == FUNCTION_DECL
2475 && DECL_VINDEX (method))
2476 base_fndecls = tree_cons (NULL_TREE, method, base_fndecls);
2479 if (base_fndecls)
2480 return base_fndecls;
2482 for (i = 0; i < n_baseclasses; i++)
2484 tree basetype = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t), i));
2485 base_fndecls = chainon (get_basefndecls (name, basetype),
2486 base_fndecls);
2489 return base_fndecls;
2492 /* If this declaration supersedes the declaration of
2493 a method declared virtual in the base class, then
2494 mark this field as being virtual as well. */
2496 void
2497 check_for_override (tree decl, tree ctype)
2499 bool overrides_found = false;
2500 if (TREE_CODE (decl) == TEMPLATE_DECL)
2501 /* In [temp.mem] we have:
2503 A specialization of a member function template does not
2504 override a virtual function from a base class. */
2505 return;
2506 if ((DECL_DESTRUCTOR_P (decl)
2507 || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl))
2508 || DECL_CONV_FN_P (decl))
2509 && look_for_overrides (ctype, decl)
2510 && !DECL_STATIC_FUNCTION_P (decl))
2511 /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
2512 the error_mark_node so that we know it is an overriding
2513 function. */
2515 DECL_VINDEX (decl) = decl;
2516 overrides_found = true;
2519 if (DECL_VIRTUAL_P (decl))
2521 if (!DECL_VINDEX (decl))
2522 DECL_VINDEX (decl) = error_mark_node;
2523 IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1;
2524 if (DECL_DESTRUCTOR_P (decl))
2525 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (ctype) = true;
2527 else if (DECL_FINAL_P (decl))
2528 error ("%q+#D marked final, but is not virtual", decl);
2529 if (DECL_OVERRIDE_P (decl) && !overrides_found)
2530 error ("%q+#D marked override, but does not override", decl);
2533 /* Warn about hidden virtual functions that are not overridden in t.
2534 We know that constructors and destructors don't apply. */
2536 static void
2537 warn_hidden (tree t)
2539 VEC(tree,gc) *method_vec = CLASSTYPE_METHOD_VEC (t);
2540 tree fns;
2541 size_t i;
2543 /* We go through each separately named virtual function. */
2544 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2545 VEC_iterate (tree, method_vec, i, fns);
2546 ++i)
2548 tree fn;
2549 tree name;
2550 tree fndecl;
2551 tree base_fndecls;
2552 tree base_binfo;
2553 tree binfo;
2554 int j;
2556 /* All functions in this slot in the CLASSTYPE_METHOD_VEC will
2557 have the same name. Figure out what name that is. */
2558 name = DECL_NAME (OVL_CURRENT (fns));
2559 /* There are no possibly hidden functions yet. */
2560 base_fndecls = NULL_TREE;
2561 /* Iterate through all of the base classes looking for possibly
2562 hidden functions. */
2563 for (binfo = TYPE_BINFO (t), j = 0;
2564 BINFO_BASE_ITERATE (binfo, j, base_binfo); j++)
2566 tree basetype = BINFO_TYPE (base_binfo);
2567 base_fndecls = chainon (get_basefndecls (name, basetype),
2568 base_fndecls);
2571 /* If there are no functions to hide, continue. */
2572 if (!base_fndecls)
2573 continue;
2575 /* Remove any overridden functions. */
2576 for (fn = fns; fn; fn = OVL_NEXT (fn))
2578 fndecl = OVL_CURRENT (fn);
2579 if (DECL_VINDEX (fndecl))
2581 tree *prev = &base_fndecls;
2583 while (*prev)
2584 /* If the method from the base class has the same
2585 signature as the method from the derived class, it
2586 has been overridden. */
2587 if (same_signature_p (fndecl, TREE_VALUE (*prev)))
2588 *prev = TREE_CHAIN (*prev);
2589 else
2590 prev = &TREE_CHAIN (*prev);
2594 /* Now give a warning for all base functions without overriders,
2595 as they are hidden. */
2596 while (base_fndecls)
2598 /* Here we know it is a hider, and no overrider exists. */
2599 warning (OPT_Woverloaded_virtual, "%q+D was hidden", TREE_VALUE (base_fndecls));
2600 warning (OPT_Woverloaded_virtual, " by %q+D", fns);
2601 base_fndecls = TREE_CHAIN (base_fndecls);
2606 /* Check for things that are invalid. There are probably plenty of other
2607 things we should check for also. */
2609 static void
2610 finish_struct_anon (tree t)
2612 tree field;
2614 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
2616 if (TREE_STATIC (field))
2617 continue;
2618 if (TREE_CODE (field) != FIELD_DECL)
2619 continue;
2621 if (DECL_NAME (field) == NULL_TREE
2622 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
2624 bool is_union = TREE_CODE (TREE_TYPE (field)) == UNION_TYPE;
2625 tree elt = TYPE_FIELDS (TREE_TYPE (field));
2626 for (; elt; elt = DECL_CHAIN (elt))
2628 /* We're generally only interested in entities the user
2629 declared, but we also find nested classes by noticing
2630 the TYPE_DECL that we create implicitly. You're
2631 allowed to put one anonymous union inside another,
2632 though, so we explicitly tolerate that. We use
2633 TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
2634 we also allow unnamed types used for defining fields. */
2635 if (DECL_ARTIFICIAL (elt)
2636 && (!DECL_IMPLICIT_TYPEDEF_P (elt)
2637 || TYPE_ANONYMOUS_P (TREE_TYPE (elt))))
2638 continue;
2640 if (TREE_CODE (elt) != FIELD_DECL)
2642 if (is_union)
2643 permerror (input_location, "%q+#D invalid; an anonymous union can "
2644 "only have non-static data members", elt);
2645 else
2646 permerror (input_location, "%q+#D invalid; an anonymous struct can "
2647 "only have non-static data members", elt);
2648 continue;
2651 if (TREE_PRIVATE (elt))
2653 if (is_union)
2654 permerror (input_location, "private member %q+#D in anonymous union", elt);
2655 else
2656 permerror (input_location, "private member %q+#D in anonymous struct", elt);
2658 else if (TREE_PROTECTED (elt))
2660 if (is_union)
2661 permerror (input_location, "protected member %q+#D in anonymous union", elt);
2662 else
2663 permerror (input_location, "protected member %q+#D in anonymous struct", elt);
2666 TREE_PRIVATE (elt) = TREE_PRIVATE (field);
2667 TREE_PROTECTED (elt) = TREE_PROTECTED (field);
2673 /* Add T to CLASSTYPE_DECL_LIST of current_class_type which
2674 will be used later during class template instantiation.
2675 When FRIEND_P is zero, T can be a static member data (VAR_DECL),
2676 a non-static member data (FIELD_DECL), a member function
2677 (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
2678 a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
2679 When FRIEND_P is nonzero, T is either a friend class
2680 (RECORD_TYPE, TEMPLATE_DECL) or a friend function
2681 (FUNCTION_DECL, TEMPLATE_DECL). */
2683 void
2684 maybe_add_class_template_decl_list (tree type, tree t, int friend_p)
2686 /* Save some memory by not creating TREE_LIST if TYPE is not template. */
2687 if (CLASSTYPE_TEMPLATE_INFO (type))
2688 CLASSTYPE_DECL_LIST (type)
2689 = tree_cons (friend_p ? NULL_TREE : type,
2690 t, CLASSTYPE_DECL_LIST (type));
2693 /* This function is called from declare_virt_assop_and_dtor via
2694 dfs_walk_all.
2696 DATA is a type that direcly or indirectly inherits the base
2697 represented by BINFO. If BINFO contains a virtual assignment [copy
2698 assignment or move assigment] operator or a virtual constructor,
2699 declare that function in DATA if it hasn't been already declared. */
2701 static tree
2702 dfs_declare_virt_assop_and_dtor (tree binfo, void *data)
2704 tree bv, fn, t = (tree)data;
2705 tree opname = ansi_assopname (NOP_EXPR);
2707 gcc_assert (t && CLASS_TYPE_P (t));
2708 gcc_assert (binfo && TREE_CODE (binfo) == TREE_BINFO);
2710 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2711 /* A base without a vtable needs no modification, and its bases
2712 are uninteresting. */
2713 return dfs_skip_bases;
2715 if (BINFO_PRIMARY_P (binfo))
2716 /* If this is a primary base, then we have already looked at the
2717 virtual functions of its vtable. */
2718 return NULL_TREE;
2720 for (bv = BINFO_VIRTUALS (binfo); bv; bv = TREE_CHAIN (bv))
2722 fn = BV_FN (bv);
2724 if (DECL_NAME (fn) == opname)
2726 if (CLASSTYPE_LAZY_COPY_ASSIGN (t))
2727 lazily_declare_fn (sfk_copy_assignment, t);
2728 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
2729 lazily_declare_fn (sfk_move_assignment, t);
2731 else if (DECL_DESTRUCTOR_P (fn)
2732 && CLASSTYPE_LAZY_DESTRUCTOR (t))
2733 lazily_declare_fn (sfk_destructor, t);
2736 return NULL_TREE;
2739 /* If the class type T has a direct or indirect base that contains a
2740 virtual assignment operator or a virtual destructor, declare that
2741 function in T if it hasn't been already declared. */
2743 static void
2744 declare_virt_assop_and_dtor (tree t)
2746 if (!(TYPE_POLYMORPHIC_P (t)
2747 && (CLASSTYPE_LAZY_COPY_ASSIGN (t)
2748 || CLASSTYPE_LAZY_MOVE_ASSIGN (t)
2749 || CLASSTYPE_LAZY_DESTRUCTOR (t))))
2750 return;
2752 dfs_walk_all (TYPE_BINFO (t),
2753 dfs_declare_virt_assop_and_dtor,
2754 NULL, t);
2757 /* Create default constructors, assignment operators, and so forth for
2758 the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR,
2759 and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
2760 the class cannot have a default constructor, copy constructor
2761 taking a const reference argument, or an assignment operator taking
2762 a const reference, respectively. */
2764 static void
2765 add_implicitly_declared_members (tree t,
2766 int cant_have_const_cctor,
2767 int cant_have_const_assignment)
2769 bool move_ok = false;
2771 if (cxx_dialect >= cxx0x && !CLASSTYPE_DESTRUCTORS (t)
2772 && !TYPE_HAS_COPY_CTOR (t) && !TYPE_HAS_COPY_ASSIGN (t)
2773 && !type_has_move_constructor (t) && !type_has_move_assign (t))
2774 move_ok = true;
2776 /* Destructor. */
2777 if (!CLASSTYPE_DESTRUCTORS (t))
2779 /* In general, we create destructors lazily. */
2780 CLASSTYPE_LAZY_DESTRUCTOR (t) = 1;
2782 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
2783 && TYPE_FOR_JAVA (t))
2784 /* But if this is a Java class, any non-trivial destructor is
2785 invalid, even if compiler-generated. Therefore, if the
2786 destructor is non-trivial we create it now. */
2787 lazily_declare_fn (sfk_destructor, t);
2790 /* [class.ctor]
2792 If there is no user-declared constructor for a class, a default
2793 constructor is implicitly declared. */
2794 if (! TYPE_HAS_USER_CONSTRUCTOR (t))
2796 TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1;
2797 CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 1;
2798 if (cxx_dialect >= cxx0x)
2799 TYPE_HAS_CONSTEXPR_CTOR (t)
2800 /* This might force the declaration. */
2801 = type_has_constexpr_default_constructor (t);
2804 /* [class.ctor]
2806 If a class definition does not explicitly declare a copy
2807 constructor, one is declared implicitly. */
2808 if (! TYPE_HAS_COPY_CTOR (t) && ! TYPE_FOR_JAVA (t))
2810 TYPE_HAS_COPY_CTOR (t) = 1;
2811 TYPE_HAS_CONST_COPY_CTOR (t) = !cant_have_const_cctor;
2812 CLASSTYPE_LAZY_COPY_CTOR (t) = 1;
2813 if (move_ok)
2814 CLASSTYPE_LAZY_MOVE_CTOR (t) = 1;
2817 /* If there is no assignment operator, one will be created if and
2818 when it is needed. For now, just record whether or not the type
2819 of the parameter to the assignment operator will be a const or
2820 non-const reference. */
2821 if (!TYPE_HAS_COPY_ASSIGN (t) && !TYPE_FOR_JAVA (t))
2823 TYPE_HAS_COPY_ASSIGN (t) = 1;
2824 TYPE_HAS_CONST_COPY_ASSIGN (t) = !cant_have_const_assignment;
2825 CLASSTYPE_LAZY_COPY_ASSIGN (t) = 1;
2826 if (move_ok)
2827 CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 1;
2830 /* We can't be lazy about declaring functions that might override
2831 a virtual function from a base class. */
2832 declare_virt_assop_and_dtor (t);
2835 /* Subroutine of insert_into_classtype_sorted_fields. Recursively
2836 count the number of fields in TYPE, including anonymous union
2837 members. */
2839 static int
2840 count_fields (tree fields)
2842 tree x;
2843 int n_fields = 0;
2844 for (x = fields; x; x = DECL_CHAIN (x))
2846 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
2847 n_fields += count_fields (TYPE_FIELDS (TREE_TYPE (x)));
2848 else
2849 n_fields += 1;
2851 return n_fields;
2854 /* Subroutine of insert_into_classtype_sorted_fields. Recursively add
2855 all the fields in the TREE_LIST FIELDS to the SORTED_FIELDS_TYPE
2856 elts, starting at offset IDX. */
2858 static int
2859 add_fields_to_record_type (tree fields, struct sorted_fields_type *field_vec, int idx)
2861 tree x;
2862 for (x = fields; x; x = DECL_CHAIN (x))
2864 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
2865 idx = add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x)), field_vec, idx);
2866 else
2867 field_vec->elts[idx++] = x;
2869 return idx;
2872 /* Add all of the enum values of ENUMTYPE, to the FIELD_VEC elts,
2873 starting at offset IDX. */
2875 static int
2876 add_enum_fields_to_record_type (tree enumtype,
2877 struct sorted_fields_type *field_vec,
2878 int idx)
2880 tree values;
2881 for (values = TYPE_VALUES (enumtype); values; values = TREE_CHAIN (values))
2882 field_vec->elts[idx++] = TREE_VALUE (values);
2883 return idx;
2886 /* FIELD is a bit-field. We are finishing the processing for its
2887 enclosing type. Issue any appropriate messages and set appropriate
2888 flags. Returns false if an error has been diagnosed. */
2890 static bool
2891 check_bitfield_decl (tree field)
2893 tree type = TREE_TYPE (field);
2894 tree w;
2896 /* Extract the declared width of the bitfield, which has been
2897 temporarily stashed in DECL_INITIAL. */
2898 w = DECL_INITIAL (field);
2899 gcc_assert (w != NULL_TREE);
2900 /* Remove the bit-field width indicator so that the rest of the
2901 compiler does not treat that value as an initializer. */
2902 DECL_INITIAL (field) = NULL_TREE;
2904 /* Detect invalid bit-field type. */
2905 if (!INTEGRAL_OR_ENUMERATION_TYPE_P (type))
2907 error ("bit-field %q+#D with non-integral type", field);
2908 w = error_mark_node;
2910 else
2912 location_t loc = input_location;
2913 /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
2914 STRIP_NOPS (w);
2916 /* detect invalid field size. */
2917 input_location = DECL_SOURCE_LOCATION (field);
2918 w = cxx_constant_value (w);
2919 input_location = loc;
2921 if (TREE_CODE (w) != INTEGER_CST)
2923 error ("bit-field %q+D width not an integer constant", field);
2924 w = error_mark_node;
2926 else if (tree_int_cst_sgn (w) < 0)
2928 error ("negative width in bit-field %q+D", field);
2929 w = error_mark_node;
2931 else if (integer_zerop (w) && DECL_NAME (field) != 0)
2933 error ("zero width for bit-field %q+D", field);
2934 w = error_mark_node;
2936 else if (compare_tree_int (w, TYPE_PRECISION (type)) > 0
2937 && TREE_CODE (type) != ENUMERAL_TYPE
2938 && TREE_CODE (type) != BOOLEAN_TYPE)
2939 warning (0, "width of %q+D exceeds its type", field);
2940 else if (TREE_CODE (type) == ENUMERAL_TYPE
2941 && (0 > (compare_tree_int
2942 (w, TYPE_PRECISION (ENUM_UNDERLYING_TYPE (type))))))
2943 warning (0, "%q+D is too small to hold all values of %q#T", field, type);
2946 if (w != error_mark_node)
2948 DECL_SIZE (field) = convert (bitsizetype, w);
2949 DECL_BIT_FIELD (field) = 1;
2950 return true;
2952 else
2954 /* Non-bit-fields are aligned for their type. */
2955 DECL_BIT_FIELD (field) = 0;
2956 CLEAR_DECL_C_BIT_FIELD (field);
2957 return false;
2961 /* FIELD is a non bit-field. We are finishing the processing for its
2962 enclosing type T. Issue any appropriate messages and set appropriate
2963 flags. */
2965 static void
2966 check_field_decl (tree field,
2967 tree t,
2968 int* cant_have_const_ctor,
2969 int* no_const_asn_ref,
2970 int* any_default_members)
2972 tree type = strip_array_types (TREE_TYPE (field));
2974 /* In C++98 an anonymous union cannot contain any fields which would change
2975 the settings of CANT_HAVE_CONST_CTOR and friends. */
2976 if (ANON_UNION_TYPE_P (type) && cxx_dialect < cxx0x)
2978 /* And, we don't set TYPE_HAS_CONST_COPY_CTOR, etc., for anonymous
2979 structs. So, we recurse through their fields here. */
2980 else if (ANON_AGGR_TYPE_P (type))
2982 tree fields;
2984 for (fields = TYPE_FIELDS (type); fields; fields = DECL_CHAIN (fields))
2985 if (TREE_CODE (fields) == FIELD_DECL && !DECL_C_BIT_FIELD (field))
2986 check_field_decl (fields, t, cant_have_const_ctor,
2987 no_const_asn_ref, any_default_members);
2989 /* Check members with class type for constructors, destructors,
2990 etc. */
2991 else if (CLASS_TYPE_P (type))
2993 /* Never let anything with uninheritable virtuals
2994 make it through without complaint. */
2995 abstract_virtuals_error (field, type);
2997 if (TREE_CODE (t) == UNION_TYPE && cxx_dialect < cxx0x)
2999 static bool warned;
3000 int oldcount = errorcount;
3001 if (TYPE_NEEDS_CONSTRUCTING (type))
3002 error ("member %q+#D with constructor not allowed in union",
3003 field);
3004 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
3005 error ("member %q+#D with destructor not allowed in union", field);
3006 if (TYPE_HAS_COMPLEX_COPY_ASSIGN (type))
3007 error ("member %q+#D with copy assignment operator not allowed in union",
3008 field);
3009 if (!warned && errorcount > oldcount)
3011 inform (DECL_SOURCE_LOCATION (field), "unrestricted unions "
3012 "only available with -std=c++11 or -std=gnu++11");
3013 warned = true;
3016 else
3018 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
3019 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3020 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type);
3021 TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
3022 |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (type)
3023 || !TYPE_HAS_COPY_ASSIGN (type));
3024 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (type)
3025 || !TYPE_HAS_COPY_CTOR (type));
3026 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (type);
3027 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (type);
3028 TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (type)
3029 || TYPE_HAS_COMPLEX_DFLT (type));
3032 if (TYPE_HAS_COPY_CTOR (type)
3033 && !TYPE_HAS_CONST_COPY_CTOR (type))
3034 *cant_have_const_ctor = 1;
3036 if (TYPE_HAS_COPY_ASSIGN (type)
3037 && !TYPE_HAS_CONST_COPY_ASSIGN (type))
3038 *no_const_asn_ref = 1;
3040 if (DECL_INITIAL (field) != NULL_TREE)
3042 /* `build_class_init_list' does not recognize
3043 non-FIELD_DECLs. */
3044 if (TREE_CODE (t) == UNION_TYPE && *any_default_members != 0)
3045 error ("multiple fields in union %qT initialized", t);
3046 *any_default_members = 1;
3050 /* Check the data members (both static and non-static), class-scoped
3051 typedefs, etc., appearing in the declaration of T. Issue
3052 appropriate diagnostics. Sets ACCESS_DECLS to a list (in
3053 declaration order) of access declarations; each TREE_VALUE in this
3054 list is a USING_DECL.
3056 In addition, set the following flags:
3058 EMPTY_P
3059 The class is empty, i.e., contains no non-static data members.
3061 CANT_HAVE_CONST_CTOR_P
3062 This class cannot have an implicitly generated copy constructor
3063 taking a const reference.
3065 CANT_HAVE_CONST_ASN_REF
3066 This class cannot have an implicitly generated assignment
3067 operator taking a const reference.
3069 All of these flags should be initialized before calling this
3070 function.
3072 Returns a pointer to the end of the TYPE_FIELDs chain; additional
3073 fields can be added by adding to this chain. */
3075 static void
3076 check_field_decls (tree t, tree *access_decls,
3077 int *cant_have_const_ctor_p,
3078 int *no_const_asn_ref_p)
3080 tree *field;
3081 tree *next;
3082 bool has_pointers;
3083 int any_default_members;
3084 int cant_pack = 0;
3085 int field_access = -1;
3087 /* Assume there are no access declarations. */
3088 *access_decls = NULL_TREE;
3089 /* Assume this class has no pointer members. */
3090 has_pointers = false;
3091 /* Assume none of the members of this class have default
3092 initializations. */
3093 any_default_members = 0;
3095 for (field = &TYPE_FIELDS (t); *field; field = next)
3097 tree x = *field;
3098 tree type = TREE_TYPE (x);
3099 int this_field_access;
3101 next = &DECL_CHAIN (x);
3103 if (TREE_CODE (x) == USING_DECL)
3105 /* Save the access declarations for our caller. */
3106 *access_decls = tree_cons (NULL_TREE, x, *access_decls);
3107 continue;
3110 if (TREE_CODE (x) == TYPE_DECL
3111 || TREE_CODE (x) == TEMPLATE_DECL)
3112 continue;
3114 /* If we've gotten this far, it's a data member, possibly static,
3115 or an enumerator. */
3116 if (TREE_CODE (x) != CONST_DECL)
3117 DECL_CONTEXT (x) = t;
3119 /* When this goes into scope, it will be a non-local reference. */
3120 DECL_NONLOCAL (x) = 1;
3122 if (TREE_CODE (t) == UNION_TYPE)
3124 /* [class.union]
3126 If a union contains a static data member, or a member of
3127 reference type, the program is ill-formed. */
3128 if (TREE_CODE (x) == VAR_DECL)
3130 error ("%q+D may not be static because it is a member of a union", x);
3131 continue;
3133 if (TREE_CODE (type) == REFERENCE_TYPE)
3135 error ("%q+D may not have reference type %qT because"
3136 " it is a member of a union",
3137 x, type);
3138 continue;
3142 /* Perform error checking that did not get done in
3143 grokdeclarator. */
3144 if (TREE_CODE (type) == FUNCTION_TYPE)
3146 error ("field %q+D invalidly declared function type", x);
3147 type = build_pointer_type (type);
3148 TREE_TYPE (x) = type;
3150 else if (TREE_CODE (type) == METHOD_TYPE)
3152 error ("field %q+D invalidly declared method type", x);
3153 type = build_pointer_type (type);
3154 TREE_TYPE (x) = type;
3157 if (type == error_mark_node)
3158 continue;
3160 if (TREE_CODE (x) == CONST_DECL || TREE_CODE (x) == VAR_DECL)
3161 continue;
3163 /* Now it can only be a FIELD_DECL. */
3165 if (TREE_PRIVATE (x) || TREE_PROTECTED (x))
3166 CLASSTYPE_NON_AGGREGATE (t) = 1;
3168 /* If at least one non-static data member is non-literal, the whole
3169 class becomes non-literal. Note: if the type is incomplete we
3170 will complain later on. */
3171 if (COMPLETE_TYPE_P (type) && !literal_type_p (type))
3172 CLASSTYPE_LITERAL_P (t) = false;
3174 /* A standard-layout class is a class that:
3176 has the same access control (Clause 11) for all non-static data members,
3177 ... */
3178 this_field_access = TREE_PROTECTED (x) ? 1 : TREE_PRIVATE (x) ? 2 : 0;
3179 if (field_access == -1)
3180 field_access = this_field_access;
3181 else if (this_field_access != field_access)
3182 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3184 /* If this is of reference type, check if it needs an init. */
3185 if (TREE_CODE (type) == REFERENCE_TYPE)
3187 CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3188 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3189 if (DECL_INITIAL (x) == NULL_TREE)
3190 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3192 /* ARM $12.6.2: [A member initializer list] (or, for an
3193 aggregate, initialization by a brace-enclosed list) is the
3194 only way to initialize nonstatic const and reference
3195 members. */
3196 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
3197 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
3200 type = strip_array_types (type);
3202 if (TYPE_PACKED (t))
3204 if (!layout_pod_type_p (type) && !TYPE_PACKED (type))
3206 warning
3208 "ignoring packed attribute because of unpacked non-POD field %q+#D",
3210 cant_pack = 1;
3212 else if (DECL_C_BIT_FIELD (x)
3213 || TYPE_ALIGN (TREE_TYPE (x)) > BITS_PER_UNIT)
3214 DECL_PACKED (x) = 1;
3217 if (DECL_C_BIT_FIELD (x) && integer_zerop (DECL_INITIAL (x)))
3218 /* We don't treat zero-width bitfields as making a class
3219 non-empty. */
3221 else
3223 /* The class is non-empty. */
3224 CLASSTYPE_EMPTY_P (t) = 0;
3225 /* The class is not even nearly empty. */
3226 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3227 /* If one of the data members contains an empty class,
3228 so does T. */
3229 if (CLASS_TYPE_P (type)
3230 && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3231 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
3234 /* This is used by -Weffc++ (see below). Warn only for pointers
3235 to members which might hold dynamic memory. So do not warn
3236 for pointers to functions or pointers to members. */
3237 if (TYPE_PTR_P (type)
3238 && !TYPE_PTRFN_P (type))
3239 has_pointers = true;
3241 if (CLASS_TYPE_P (type))
3243 if (CLASSTYPE_REF_FIELDS_NEED_INIT (type))
3244 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3245 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type))
3246 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3249 if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (type))
3250 CLASSTYPE_HAS_MUTABLE (t) = 1;
3252 if (! layout_pod_type_p (type))
3253 /* DR 148 now allows pointers to members (which are POD themselves),
3254 to be allowed in POD structs. */
3255 CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3257 if (!std_layout_type_p (type))
3258 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3260 if (! zero_init_p (type))
3261 CLASSTYPE_NON_ZERO_INIT_P (t) = 1;
3263 /* We set DECL_C_BIT_FIELD in grokbitfield.
3264 If the type and width are valid, we'll also set DECL_BIT_FIELD. */
3265 if (! DECL_C_BIT_FIELD (x) || ! check_bitfield_decl (x))
3266 check_field_decl (x, t,
3267 cant_have_const_ctor_p,
3268 no_const_asn_ref_p,
3269 &any_default_members);
3271 /* Now that we've removed bit-field widths from DECL_INITIAL,
3272 anything left in DECL_INITIAL is an NSDMI that makes the class
3273 non-aggregate. */
3274 if (DECL_INITIAL (x))
3275 CLASSTYPE_NON_AGGREGATE (t) = true;
3277 /* If any field is const, the structure type is pseudo-const. */
3278 if (CP_TYPE_CONST_P (type))
3280 C_TYPE_FIELDS_READONLY (t) = 1;
3281 if (DECL_INITIAL (x) == NULL_TREE)
3282 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3284 /* ARM $12.6.2: [A member initializer list] (or, for an
3285 aggregate, initialization by a brace-enclosed list) is the
3286 only way to initialize nonstatic const and reference
3287 members. */
3288 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
3289 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
3291 /* A field that is pseudo-const makes the structure likewise. */
3292 else if (CLASS_TYPE_P (type))
3294 C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type);
3295 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t,
3296 CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
3297 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type));
3300 /* Core issue 80: A nonstatic data member is required to have a
3301 different name from the class iff the class has a
3302 user-declared constructor. */
3303 if (constructor_name_p (DECL_NAME (x), t)
3304 && TYPE_HAS_USER_CONSTRUCTOR (t))
3305 permerror (input_location, "field %q+#D with same name as class", x);
3308 /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
3309 it should also define a copy constructor and an assignment operator to
3310 implement the correct copy semantic (deep vs shallow, etc.). As it is
3311 not feasible to check whether the constructors do allocate dynamic memory
3312 and store it within members, we approximate the warning like this:
3314 -- Warn only if there are members which are pointers
3315 -- Warn only if there is a non-trivial constructor (otherwise,
3316 there cannot be memory allocated).
3317 -- Warn only if there is a non-trivial destructor. We assume that the
3318 user at least implemented the cleanup correctly, and a destructor
3319 is needed to free dynamic memory.
3321 This seems enough for practical purposes. */
3322 if (warn_ecpp
3323 && has_pointers
3324 && TYPE_HAS_USER_CONSTRUCTOR (t)
3325 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3326 && !(TYPE_HAS_COPY_CTOR (t) && TYPE_HAS_COPY_ASSIGN (t)))
3328 warning (OPT_Weffc__, "%q#T has pointer data members", t);
3330 if (! TYPE_HAS_COPY_CTOR (t))
3332 warning (OPT_Weffc__,
3333 " but does not override %<%T(const %T&)%>", t, t);
3334 if (!TYPE_HAS_COPY_ASSIGN (t))
3335 warning (OPT_Weffc__, " or %<operator=(const %T&)%>", t);
3337 else if (! TYPE_HAS_COPY_ASSIGN (t))
3338 warning (OPT_Weffc__,
3339 " but does not override %<operator=(const %T&)%>", t);
3342 /* Non-static data member initializers make the default constructor
3343 non-trivial. */
3344 if (any_default_members)
3346 TYPE_NEEDS_CONSTRUCTING (t) = true;
3347 TYPE_HAS_COMPLEX_DFLT (t) = true;
3350 /* If any of the fields couldn't be packed, unset TYPE_PACKED. */
3351 if (cant_pack)
3352 TYPE_PACKED (t) = 0;
3354 /* Check anonymous struct/anonymous union fields. */
3355 finish_struct_anon (t);
3357 /* We've built up the list of access declarations in reverse order.
3358 Fix that now. */
3359 *access_decls = nreverse (*access_decls);
3362 /* If TYPE is an empty class type, records its OFFSET in the table of
3363 OFFSETS. */
3365 static int
3366 record_subobject_offset (tree type, tree offset, splay_tree offsets)
3368 splay_tree_node n;
3370 if (!is_empty_class (type))
3371 return 0;
3373 /* Record the location of this empty object in OFFSETS. */
3374 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3375 if (!n)
3376 n = splay_tree_insert (offsets,
3377 (splay_tree_key) offset,
3378 (splay_tree_value) NULL_TREE);
3379 n->value = ((splay_tree_value)
3380 tree_cons (NULL_TREE,
3381 type,
3382 (tree) n->value));
3384 return 0;
3387 /* Returns nonzero if TYPE is an empty class type and there is
3388 already an entry in OFFSETS for the same TYPE as the same OFFSET. */
3390 static int
3391 check_subobject_offset (tree type, tree offset, splay_tree offsets)
3393 splay_tree_node n;
3394 tree t;
3396 if (!is_empty_class (type))
3397 return 0;
3399 /* Record the location of this empty object in OFFSETS. */
3400 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3401 if (!n)
3402 return 0;
3404 for (t = (tree) n->value; t; t = TREE_CHAIN (t))
3405 if (same_type_p (TREE_VALUE (t), type))
3406 return 1;
3408 return 0;
3411 /* Walk through all the subobjects of TYPE (located at OFFSET). Call
3412 F for every subobject, passing it the type, offset, and table of
3413 OFFSETS. If VBASES_P is one, then virtual non-primary bases should
3414 be traversed.
3416 If MAX_OFFSET is non-NULL, then subobjects with an offset greater
3417 than MAX_OFFSET will not be walked.
3419 If F returns a nonzero value, the traversal ceases, and that value
3420 is returned. Otherwise, returns zero. */
3422 static int
3423 walk_subobject_offsets (tree type,
3424 subobject_offset_fn f,
3425 tree offset,
3426 splay_tree offsets,
3427 tree max_offset,
3428 int vbases_p)
3430 int r = 0;
3431 tree type_binfo = NULL_TREE;
3433 /* If this OFFSET is bigger than the MAX_OFFSET, then we should
3434 stop. */
3435 if (max_offset && INT_CST_LT (max_offset, offset))
3436 return 0;
3438 if (type == error_mark_node)
3439 return 0;
3441 if (!TYPE_P (type))
3443 if (abi_version_at_least (2))
3444 type_binfo = type;
3445 type = BINFO_TYPE (type);
3448 if (CLASS_TYPE_P (type))
3450 tree field;
3451 tree binfo;
3452 int i;
3454 /* Avoid recursing into objects that are not interesting. */
3455 if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3456 return 0;
3458 /* Record the location of TYPE. */
3459 r = (*f) (type, offset, offsets);
3460 if (r)
3461 return r;
3463 /* Iterate through the direct base classes of TYPE. */
3464 if (!type_binfo)
3465 type_binfo = TYPE_BINFO (type);
3466 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, binfo); i++)
3468 tree binfo_offset;
3470 if (abi_version_at_least (2)
3471 && BINFO_VIRTUAL_P (binfo))
3472 continue;
3474 if (!vbases_p
3475 && BINFO_VIRTUAL_P (binfo)
3476 && !BINFO_PRIMARY_P (binfo))
3477 continue;
3479 if (!abi_version_at_least (2))
3480 binfo_offset = size_binop (PLUS_EXPR,
3481 offset,
3482 BINFO_OFFSET (binfo));
3483 else
3485 tree orig_binfo;
3486 /* We cannot rely on BINFO_OFFSET being set for the base
3487 class yet, but the offsets for direct non-virtual
3488 bases can be calculated by going back to the TYPE. */
3489 orig_binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i);
3490 binfo_offset = size_binop (PLUS_EXPR,
3491 offset,
3492 BINFO_OFFSET (orig_binfo));
3495 r = walk_subobject_offsets (binfo,
3497 binfo_offset,
3498 offsets,
3499 max_offset,
3500 (abi_version_at_least (2)
3501 ? /*vbases_p=*/0 : vbases_p));
3502 if (r)
3503 return r;
3506 if (abi_version_at_least (2) && CLASSTYPE_VBASECLASSES (type))
3508 unsigned ix;
3509 VEC(tree,gc) *vbases;
3511 /* Iterate through the virtual base classes of TYPE. In G++
3512 3.2, we included virtual bases in the direct base class
3513 loop above, which results in incorrect results; the
3514 correct offsets for virtual bases are only known when
3515 working with the most derived type. */
3516 if (vbases_p)
3517 for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0;
3518 VEC_iterate (tree, vbases, ix, binfo); ix++)
3520 r = walk_subobject_offsets (binfo,
3522 size_binop (PLUS_EXPR,
3523 offset,
3524 BINFO_OFFSET (binfo)),
3525 offsets,
3526 max_offset,
3527 /*vbases_p=*/0);
3528 if (r)
3529 return r;
3531 else
3533 /* We still have to walk the primary base, if it is
3534 virtual. (If it is non-virtual, then it was walked
3535 above.) */
3536 tree vbase = get_primary_binfo (type_binfo);
3538 if (vbase && BINFO_VIRTUAL_P (vbase)
3539 && BINFO_PRIMARY_P (vbase)
3540 && BINFO_INHERITANCE_CHAIN (vbase) == type_binfo)
3542 r = (walk_subobject_offsets
3543 (vbase, f, offset,
3544 offsets, max_offset, /*vbases_p=*/0));
3545 if (r)
3546 return r;
3551 /* Iterate through the fields of TYPE. */
3552 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3553 if (TREE_CODE (field) == FIELD_DECL && !DECL_ARTIFICIAL (field))
3555 tree field_offset;
3557 if (abi_version_at_least (2))
3558 field_offset = byte_position (field);
3559 else
3560 /* In G++ 3.2, DECL_FIELD_OFFSET was used. */
3561 field_offset = DECL_FIELD_OFFSET (field);
3563 r = walk_subobject_offsets (TREE_TYPE (field),
3565 size_binop (PLUS_EXPR,
3566 offset,
3567 field_offset),
3568 offsets,
3569 max_offset,
3570 /*vbases_p=*/1);
3571 if (r)
3572 return r;
3575 else if (TREE_CODE (type) == ARRAY_TYPE)
3577 tree element_type = strip_array_types (type);
3578 tree domain = TYPE_DOMAIN (type);
3579 tree index;
3581 /* Avoid recursing into objects that are not interesting. */
3582 if (!CLASS_TYPE_P (element_type)
3583 || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
3584 return 0;
3586 /* Step through each of the elements in the array. */
3587 for (index = size_zero_node;
3588 /* G++ 3.2 had an off-by-one error here. */
3589 (abi_version_at_least (2)
3590 ? !INT_CST_LT (TYPE_MAX_VALUE (domain), index)
3591 : INT_CST_LT (index, TYPE_MAX_VALUE (domain)));
3592 index = size_binop (PLUS_EXPR, index, size_one_node))
3594 r = walk_subobject_offsets (TREE_TYPE (type),
3596 offset,
3597 offsets,
3598 max_offset,
3599 /*vbases_p=*/1);
3600 if (r)
3601 return r;
3602 offset = size_binop (PLUS_EXPR, offset,
3603 TYPE_SIZE_UNIT (TREE_TYPE (type)));
3604 /* If this new OFFSET is bigger than the MAX_OFFSET, then
3605 there's no point in iterating through the remaining
3606 elements of the array. */
3607 if (max_offset && INT_CST_LT (max_offset, offset))
3608 break;
3612 return 0;
3615 /* Record all of the empty subobjects of TYPE (either a type or a
3616 binfo). If IS_DATA_MEMBER is true, then a non-static data member
3617 is being placed at OFFSET; otherwise, it is a base class that is
3618 being placed at OFFSET. */
3620 static void
3621 record_subobject_offsets (tree type,
3622 tree offset,
3623 splay_tree offsets,
3624 bool is_data_member)
3626 tree max_offset;
3627 /* If recording subobjects for a non-static data member or a
3628 non-empty base class , we do not need to record offsets beyond
3629 the size of the biggest empty class. Additional data members
3630 will go at the end of the class. Additional base classes will go
3631 either at offset zero (if empty, in which case they cannot
3632 overlap with offsets past the size of the biggest empty class) or
3633 at the end of the class.
3635 However, if we are placing an empty base class, then we must record
3636 all offsets, as either the empty class is at offset zero (where
3637 other empty classes might later be placed) or at the end of the
3638 class (where other objects might then be placed, so other empty
3639 subobjects might later overlap). */
3640 if (is_data_member
3641 || !is_empty_class (BINFO_TYPE (type)))
3642 max_offset = sizeof_biggest_empty_class;
3643 else
3644 max_offset = NULL_TREE;
3645 walk_subobject_offsets (type, record_subobject_offset, offset,
3646 offsets, max_offset, is_data_member);
3649 /* Returns nonzero if any of the empty subobjects of TYPE (located at
3650 OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
3651 virtual bases of TYPE are examined. */
3653 static int
3654 layout_conflict_p (tree type,
3655 tree offset,
3656 splay_tree offsets,
3657 int vbases_p)
3659 splay_tree_node max_node;
3661 /* Get the node in OFFSETS that indicates the maximum offset where
3662 an empty subobject is located. */
3663 max_node = splay_tree_max (offsets);
3664 /* If there aren't any empty subobjects, then there's no point in
3665 performing this check. */
3666 if (!max_node)
3667 return 0;
3669 return walk_subobject_offsets (type, check_subobject_offset, offset,
3670 offsets, (tree) (max_node->key),
3671 vbases_p);
3674 /* DECL is a FIELD_DECL corresponding either to a base subobject of a
3675 non-static data member of the type indicated by RLI. BINFO is the
3676 binfo corresponding to the base subobject, OFFSETS maps offsets to
3677 types already located at those offsets. This function determines
3678 the position of the DECL. */
3680 static void
3681 layout_nonempty_base_or_field (record_layout_info rli,
3682 tree decl,
3683 tree binfo,
3684 splay_tree offsets)
3686 tree offset = NULL_TREE;
3687 bool field_p;
3688 tree type;
3690 if (binfo)
3692 /* For the purposes of determining layout conflicts, we want to
3693 use the class type of BINFO; TREE_TYPE (DECL) will be the
3694 CLASSTYPE_AS_BASE version, which does not contain entries for
3695 zero-sized bases. */
3696 type = TREE_TYPE (binfo);
3697 field_p = false;
3699 else
3701 type = TREE_TYPE (decl);
3702 field_p = true;
3705 /* Try to place the field. It may take more than one try if we have
3706 a hard time placing the field without putting two objects of the
3707 same type at the same address. */
3708 while (1)
3710 struct record_layout_info_s old_rli = *rli;
3712 /* Place this field. */
3713 place_field (rli, decl);
3714 offset = byte_position (decl);
3716 /* We have to check to see whether or not there is already
3717 something of the same type at the offset we're about to use.
3718 For example, consider:
3720 struct S {};
3721 struct T : public S { int i; };
3722 struct U : public S, public T {};
3724 Here, we put S at offset zero in U. Then, we can't put T at
3725 offset zero -- its S component would be at the same address
3726 as the S we already allocated. So, we have to skip ahead.
3727 Since all data members, including those whose type is an
3728 empty class, have nonzero size, any overlap can happen only
3729 with a direct or indirect base-class -- it can't happen with
3730 a data member. */
3731 /* In a union, overlap is permitted; all members are placed at
3732 offset zero. */
3733 if (TREE_CODE (rli->t) == UNION_TYPE)
3734 break;
3735 /* G++ 3.2 did not check for overlaps when placing a non-empty
3736 virtual base. */
3737 if (!abi_version_at_least (2) && binfo && BINFO_VIRTUAL_P (binfo))
3738 break;
3739 if (layout_conflict_p (field_p ? type : binfo, offset,
3740 offsets, field_p))
3742 /* Strip off the size allocated to this field. That puts us
3743 at the first place we could have put the field with
3744 proper alignment. */
3745 *rli = old_rli;
3747 /* Bump up by the alignment required for the type. */
3748 rli->bitpos
3749 = size_binop (PLUS_EXPR, rli->bitpos,
3750 bitsize_int (binfo
3751 ? CLASSTYPE_ALIGN (type)
3752 : TYPE_ALIGN (type)));
3753 normalize_rli (rli);
3755 else
3756 /* There was no conflict. We're done laying out this field. */
3757 break;
3760 /* Now that we know where it will be placed, update its
3761 BINFO_OFFSET. */
3762 if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo)))
3763 /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
3764 this point because their BINFO_OFFSET is copied from another
3765 hierarchy. Therefore, we may not need to add the entire
3766 OFFSET. */
3767 propagate_binfo_offsets (binfo,
3768 size_diffop_loc (input_location,
3769 convert (ssizetype, offset),
3770 convert (ssizetype,
3771 BINFO_OFFSET (binfo))));
3774 /* Returns true if TYPE is empty and OFFSET is nonzero. */
3776 static int
3777 empty_base_at_nonzero_offset_p (tree type,
3778 tree offset,
3779 splay_tree offsets ATTRIBUTE_UNUSED)
3781 return is_empty_class (type) && !integer_zerop (offset);
3784 /* Layout the empty base BINFO. EOC indicates the byte currently just
3785 past the end of the class, and should be correctly aligned for a
3786 class of the type indicated by BINFO; OFFSETS gives the offsets of
3787 the empty bases allocated so far. T is the most derived
3788 type. Return nonzero iff we added it at the end. */
3790 static bool
3791 layout_empty_base (record_layout_info rli, tree binfo,
3792 tree eoc, splay_tree offsets)
3794 tree alignment;
3795 tree basetype = BINFO_TYPE (binfo);
3796 bool atend = false;
3798 /* This routine should only be used for empty classes. */
3799 gcc_assert (is_empty_class (basetype));
3800 alignment = ssize_int (CLASSTYPE_ALIGN_UNIT (basetype));
3802 if (!integer_zerop (BINFO_OFFSET (binfo)))
3804 if (abi_version_at_least (2))
3805 propagate_binfo_offsets
3806 (binfo, size_diffop_loc (input_location,
3807 size_zero_node, BINFO_OFFSET (binfo)));
3808 else
3809 warning (OPT_Wabi,
3810 "offset of empty base %qT may not be ABI-compliant and may"
3811 "change in a future version of GCC",
3812 BINFO_TYPE (binfo));
3815 /* This is an empty base class. We first try to put it at offset
3816 zero. */
3817 if (layout_conflict_p (binfo,
3818 BINFO_OFFSET (binfo),
3819 offsets,
3820 /*vbases_p=*/0))
3822 /* That didn't work. Now, we move forward from the next
3823 available spot in the class. */
3824 atend = true;
3825 propagate_binfo_offsets (binfo, convert (ssizetype, eoc));
3826 while (1)
3828 if (!layout_conflict_p (binfo,
3829 BINFO_OFFSET (binfo),
3830 offsets,
3831 /*vbases_p=*/0))
3832 /* We finally found a spot where there's no overlap. */
3833 break;
3835 /* There's overlap here, too. Bump along to the next spot. */
3836 propagate_binfo_offsets (binfo, alignment);
3840 if (CLASSTYPE_USER_ALIGN (basetype))
3842 rli->record_align = MAX (rli->record_align, CLASSTYPE_ALIGN (basetype));
3843 if (warn_packed)
3844 rli->unpacked_align = MAX (rli->unpacked_align, CLASSTYPE_ALIGN (basetype));
3845 TYPE_USER_ALIGN (rli->t) = 1;
3848 return atend;
3851 /* Layout the base given by BINFO in the class indicated by RLI.
3852 *BASE_ALIGN is a running maximum of the alignments of
3853 any base class. OFFSETS gives the location of empty base
3854 subobjects. T is the most derived type. Return nonzero if the new
3855 object cannot be nearly-empty. A new FIELD_DECL is inserted at
3856 *NEXT_FIELD, unless BINFO is for an empty base class.
3858 Returns the location at which the next field should be inserted. */
3860 static tree *
3861 build_base_field (record_layout_info rli, tree binfo,
3862 splay_tree offsets, tree *next_field)
3864 tree t = rli->t;
3865 tree basetype = BINFO_TYPE (binfo);
3867 if (!COMPLETE_TYPE_P (basetype))
3868 /* This error is now reported in xref_tag, thus giving better
3869 location information. */
3870 return next_field;
3872 /* Place the base class. */
3873 if (!is_empty_class (basetype))
3875 tree decl;
3877 /* The containing class is non-empty because it has a non-empty
3878 base class. */
3879 CLASSTYPE_EMPTY_P (t) = 0;
3881 /* Create the FIELD_DECL. */
3882 decl = build_decl (input_location,
3883 FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype));
3884 DECL_ARTIFICIAL (decl) = 1;
3885 DECL_IGNORED_P (decl) = 1;
3886 DECL_FIELD_CONTEXT (decl) = t;
3887 if (CLASSTYPE_AS_BASE (basetype))
3889 DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype);
3890 DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype);
3891 DECL_ALIGN (decl) = CLASSTYPE_ALIGN (basetype);
3892 DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype);
3893 DECL_MODE (decl) = TYPE_MODE (basetype);
3894 DECL_FIELD_IS_BASE (decl) = 1;
3896 /* Try to place the field. It may take more than one try if we
3897 have a hard time placing the field without putting two
3898 objects of the same type at the same address. */
3899 layout_nonempty_base_or_field (rli, decl, binfo, offsets);
3900 /* Add the new FIELD_DECL to the list of fields for T. */
3901 DECL_CHAIN (decl) = *next_field;
3902 *next_field = decl;
3903 next_field = &DECL_CHAIN (decl);
3906 else
3908 tree eoc;
3909 bool atend;
3911 /* On some platforms (ARM), even empty classes will not be
3912 byte-aligned. */
3913 eoc = round_up_loc (input_location,
3914 rli_size_unit_so_far (rli),
3915 CLASSTYPE_ALIGN_UNIT (basetype));
3916 atend = layout_empty_base (rli, binfo, eoc, offsets);
3917 /* A nearly-empty class "has no proper base class that is empty,
3918 not morally virtual, and at an offset other than zero." */
3919 if (!BINFO_VIRTUAL_P (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t))
3921 if (atend)
3922 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3923 /* The check above (used in G++ 3.2) is insufficient because
3924 an empty class placed at offset zero might itself have an
3925 empty base at a nonzero offset. */
3926 else if (walk_subobject_offsets (basetype,
3927 empty_base_at_nonzero_offset_p,
3928 size_zero_node,
3929 /*offsets=*/NULL,
3930 /*max_offset=*/NULL_TREE,
3931 /*vbases_p=*/true))
3933 if (abi_version_at_least (2))
3934 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3935 else
3936 warning (OPT_Wabi,
3937 "class %qT will be considered nearly empty in a "
3938 "future version of GCC", t);
3942 /* We do not create a FIELD_DECL for empty base classes because
3943 it might overlap some other field. We want to be able to
3944 create CONSTRUCTORs for the class by iterating over the
3945 FIELD_DECLs, and the back end does not handle overlapping
3946 FIELD_DECLs. */
3948 /* An empty virtual base causes a class to be non-empty
3949 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
3950 here because that was already done when the virtual table
3951 pointer was created. */
3954 /* Record the offsets of BINFO and its base subobjects. */
3955 record_subobject_offsets (binfo,
3956 BINFO_OFFSET (binfo),
3957 offsets,
3958 /*is_data_member=*/false);
3960 return next_field;
3963 /* Layout all of the non-virtual base classes. Record empty
3964 subobjects in OFFSETS. T is the most derived type. Return nonzero
3965 if the type cannot be nearly empty. The fields created
3966 corresponding to the base classes will be inserted at
3967 *NEXT_FIELD. */
3969 static void
3970 build_base_fields (record_layout_info rli,
3971 splay_tree offsets, tree *next_field)
3973 /* Chain to hold all the new FIELD_DECLs which stand in for base class
3974 subobjects. */
3975 tree t = rli->t;
3976 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
3977 int i;
3979 /* The primary base class is always allocated first. */
3980 if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
3981 next_field = build_base_field (rli, CLASSTYPE_PRIMARY_BINFO (t),
3982 offsets, next_field);
3984 /* Now allocate the rest of the bases. */
3985 for (i = 0; i < n_baseclasses; ++i)
3987 tree base_binfo;
3989 base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i);
3991 /* The primary base was already allocated above, so we don't
3992 need to allocate it again here. */
3993 if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
3994 continue;
3996 /* Virtual bases are added at the end (a primary virtual base
3997 will have already been added). */
3998 if (BINFO_VIRTUAL_P (base_binfo))
3999 continue;
4001 next_field = build_base_field (rli, base_binfo,
4002 offsets, next_field);
4006 /* Go through the TYPE_METHODS of T issuing any appropriate
4007 diagnostics, figuring out which methods override which other
4008 methods, and so forth. */
4010 static void
4011 check_methods (tree t)
4013 tree x;
4015 for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x))
4017 check_for_override (x, t);
4018 if (DECL_PURE_VIRTUAL_P (x) && ! DECL_VINDEX (x))
4019 error ("initializer specified for non-virtual method %q+D", x);
4020 /* The name of the field is the original field name
4021 Save this in auxiliary field for later overloading. */
4022 if (DECL_VINDEX (x))
4024 TYPE_POLYMORPHIC_P (t) = 1;
4025 if (DECL_PURE_VIRTUAL_P (x))
4026 VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (t), x);
4028 /* All user-provided destructors are non-trivial.
4029 Constructors and assignment ops are handled in
4030 grok_special_member_properties. */
4031 if (DECL_DESTRUCTOR_P (x) && user_provided_p (x))
4032 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = 1;
4036 /* FN is a constructor or destructor. Clone the declaration to create
4037 a specialized in-charge or not-in-charge version, as indicated by
4038 NAME. */
4040 static tree
4041 build_clone (tree fn, tree name)
4043 tree parms;
4044 tree clone;
4046 /* Copy the function. */
4047 clone = copy_decl (fn);
4048 /* Reset the function name. */
4049 DECL_NAME (clone) = name;
4050 SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE);
4051 /* Remember where this function came from. */
4052 DECL_ABSTRACT_ORIGIN (clone) = fn;
4053 /* Make it easy to find the CLONE given the FN. */
4054 DECL_CHAIN (clone) = DECL_CHAIN (fn);
4055 DECL_CHAIN (fn) = clone;
4057 /* If this is a template, do the rest on the DECL_TEMPLATE_RESULT. */
4058 if (TREE_CODE (clone) == TEMPLATE_DECL)
4060 tree result = build_clone (DECL_TEMPLATE_RESULT (clone), name);
4061 DECL_TEMPLATE_RESULT (clone) = result;
4062 DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result));
4063 DECL_TI_TEMPLATE (result) = clone;
4064 TREE_TYPE (clone) = TREE_TYPE (result);
4065 return clone;
4068 DECL_CLONED_FUNCTION (clone) = fn;
4069 /* There's no pending inline data for this function. */
4070 DECL_PENDING_INLINE_INFO (clone) = NULL;
4071 DECL_PENDING_INLINE_P (clone) = 0;
4073 /* The base-class destructor is not virtual. */
4074 if (name == base_dtor_identifier)
4076 DECL_VIRTUAL_P (clone) = 0;
4077 if (TREE_CODE (clone) != TEMPLATE_DECL)
4078 DECL_VINDEX (clone) = NULL_TREE;
4081 /* If there was an in-charge parameter, drop it from the function
4082 type. */
4083 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
4085 tree basetype;
4086 tree parmtypes;
4087 tree exceptions;
4089 exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4090 basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4091 parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone));
4092 /* Skip the `this' parameter. */
4093 parmtypes = TREE_CHAIN (parmtypes);
4094 /* Skip the in-charge parameter. */
4095 parmtypes = TREE_CHAIN (parmtypes);
4096 /* And the VTT parm, in a complete [cd]tor. */
4097 if (DECL_HAS_VTT_PARM_P (fn)
4098 && ! DECL_NEEDS_VTT_PARM_P (clone))
4099 parmtypes = TREE_CHAIN (parmtypes);
4100 /* If this is subobject constructor or destructor, add the vtt
4101 parameter. */
4102 TREE_TYPE (clone)
4103 = build_method_type_directly (basetype,
4104 TREE_TYPE (TREE_TYPE (clone)),
4105 parmtypes);
4106 if (exceptions)
4107 TREE_TYPE (clone) = build_exception_variant (TREE_TYPE (clone),
4108 exceptions);
4109 TREE_TYPE (clone)
4110 = cp_build_type_attribute_variant (TREE_TYPE (clone),
4111 TYPE_ATTRIBUTES (TREE_TYPE (fn)));
4114 /* Copy the function parameters. */
4115 DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone));
4116 /* Remove the in-charge parameter. */
4117 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
4119 DECL_CHAIN (DECL_ARGUMENTS (clone))
4120 = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
4121 DECL_HAS_IN_CHARGE_PARM_P (clone) = 0;
4123 /* And the VTT parm, in a complete [cd]tor. */
4124 if (DECL_HAS_VTT_PARM_P (fn))
4126 if (DECL_NEEDS_VTT_PARM_P (clone))
4127 DECL_HAS_VTT_PARM_P (clone) = 1;
4128 else
4130 DECL_CHAIN (DECL_ARGUMENTS (clone))
4131 = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
4132 DECL_HAS_VTT_PARM_P (clone) = 0;
4136 for (parms = DECL_ARGUMENTS (clone); parms; parms = DECL_CHAIN (parms))
4138 DECL_CONTEXT (parms) = clone;
4139 cxx_dup_lang_specific_decl (parms);
4142 /* Create the RTL for this function. */
4143 SET_DECL_RTL (clone, NULL);
4144 rest_of_decl_compilation (clone, /*top_level=*/1, at_eof);
4146 if (pch_file)
4147 note_decl_for_pch (clone);
4149 return clone;
4152 /* Implementation of DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P, do
4153 not invoke this function directly.
4155 For a non-thunk function, returns the address of the slot for storing
4156 the function it is a clone of. Otherwise returns NULL_TREE.
4158 If JUST_TESTING, looks through TEMPLATE_DECL and returns NULL if
4159 cloned_function is unset. This is to support the separate
4160 DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P modes; using the latter
4161 on a template makes sense, but not the former. */
4163 tree *
4164 decl_cloned_function_p (const_tree decl, bool just_testing)
4166 tree *ptr;
4167 if (just_testing)
4168 decl = STRIP_TEMPLATE (decl);
4170 if (TREE_CODE (decl) != FUNCTION_DECL
4171 || !DECL_LANG_SPECIFIC (decl)
4172 || DECL_LANG_SPECIFIC (decl)->u.fn.thunk_p)
4174 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4175 if (!just_testing)
4176 lang_check_failed (__FILE__, __LINE__, __FUNCTION__);
4177 else
4178 #endif
4179 return NULL;
4182 ptr = &DECL_LANG_SPECIFIC (decl)->u.fn.u5.cloned_function;
4183 if (just_testing && *ptr == NULL_TREE)
4184 return NULL;
4185 else
4186 return ptr;
4189 /* Produce declarations for all appropriate clones of FN. If
4190 UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
4191 CLASTYPE_METHOD_VEC as well. */
4193 void
4194 clone_function_decl (tree fn, int update_method_vec_p)
4196 tree clone;
4198 /* Avoid inappropriate cloning. */
4199 if (DECL_CHAIN (fn)
4200 && DECL_CLONED_FUNCTION_P (DECL_CHAIN (fn)))
4201 return;
4203 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn))
4205 /* For each constructor, we need two variants: an in-charge version
4206 and a not-in-charge version. */
4207 clone = build_clone (fn, complete_ctor_identifier);
4208 if (update_method_vec_p)
4209 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4210 clone = build_clone (fn, base_ctor_identifier);
4211 if (update_method_vec_p)
4212 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4214 else
4216 gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn));
4218 /* For each destructor, we need three variants: an in-charge
4219 version, a not-in-charge version, and an in-charge deleting
4220 version. We clone the deleting version first because that
4221 means it will go second on the TYPE_METHODS list -- and that
4222 corresponds to the correct layout order in the virtual
4223 function table.
4225 For a non-virtual destructor, we do not build a deleting
4226 destructor. */
4227 if (DECL_VIRTUAL_P (fn))
4229 clone = build_clone (fn, deleting_dtor_identifier);
4230 if (update_method_vec_p)
4231 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4233 clone = build_clone (fn, complete_dtor_identifier);
4234 if (update_method_vec_p)
4235 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4236 clone = build_clone (fn, base_dtor_identifier);
4237 if (update_method_vec_p)
4238 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4241 /* Note that this is an abstract function that is never emitted. */
4242 DECL_ABSTRACT (fn) = 1;
4245 /* DECL is an in charge constructor, which is being defined. This will
4246 have had an in class declaration, from whence clones were
4247 declared. An out-of-class definition can specify additional default
4248 arguments. As it is the clones that are involved in overload
4249 resolution, we must propagate the information from the DECL to its
4250 clones. */
4252 void
4253 adjust_clone_args (tree decl)
4255 tree clone;
4257 for (clone = DECL_CHAIN (decl); clone && DECL_CLONED_FUNCTION_P (clone);
4258 clone = DECL_CHAIN (clone))
4260 tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone));
4261 tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl));
4262 tree decl_parms, clone_parms;
4264 clone_parms = orig_clone_parms;
4266 /* Skip the 'this' parameter. */
4267 orig_clone_parms = TREE_CHAIN (orig_clone_parms);
4268 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4270 if (DECL_HAS_IN_CHARGE_PARM_P (decl))
4271 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4272 if (DECL_HAS_VTT_PARM_P (decl))
4273 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4275 clone_parms = orig_clone_parms;
4276 if (DECL_HAS_VTT_PARM_P (clone))
4277 clone_parms = TREE_CHAIN (clone_parms);
4279 for (decl_parms = orig_decl_parms; decl_parms;
4280 decl_parms = TREE_CHAIN (decl_parms),
4281 clone_parms = TREE_CHAIN (clone_parms))
4283 gcc_assert (same_type_p (TREE_TYPE (decl_parms),
4284 TREE_TYPE (clone_parms)));
4286 if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms))
4288 /* A default parameter has been added. Adjust the
4289 clone's parameters. */
4290 tree exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4291 tree attrs = TYPE_ATTRIBUTES (TREE_TYPE (clone));
4292 tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4293 tree type;
4295 clone_parms = orig_decl_parms;
4297 if (DECL_HAS_VTT_PARM_P (clone))
4299 clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms),
4300 TREE_VALUE (orig_clone_parms),
4301 clone_parms);
4302 TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms);
4304 type = build_method_type_directly (basetype,
4305 TREE_TYPE (TREE_TYPE (clone)),
4306 clone_parms);
4307 if (exceptions)
4308 type = build_exception_variant (type, exceptions);
4309 if (attrs)
4310 type = cp_build_type_attribute_variant (type, attrs);
4311 TREE_TYPE (clone) = type;
4313 clone_parms = NULL_TREE;
4314 break;
4317 gcc_assert (!clone_parms);
4321 /* For each of the constructors and destructors in T, create an
4322 in-charge and not-in-charge variant. */
4324 static void
4325 clone_constructors_and_destructors (tree t)
4327 tree fns;
4329 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4330 out now. */
4331 if (!CLASSTYPE_METHOD_VEC (t))
4332 return;
4334 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4335 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4336 for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4337 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4340 /* Deduce noexcept for a destructor DTOR. */
4342 void
4343 deduce_noexcept_on_destructor (tree dtor)
4345 if (!TYPE_RAISES_EXCEPTIONS (TREE_TYPE (dtor)))
4347 tree ctx = DECL_CONTEXT (dtor);
4348 tree implicit_fn = implicitly_declare_fn (sfk_destructor, ctx,
4349 /*const_p=*/false);
4350 tree eh_spec = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (implicit_fn));
4351 TREE_TYPE (dtor) = build_exception_variant (TREE_TYPE (dtor), eh_spec);
4355 /* For each destructor in T, deduce noexcept:
4357 12.4/3: A declaration of a destructor that does not have an
4358 exception-specification is implicitly considered to have the
4359 same exception-specification as an implicit declaration (15.4). */
4361 static void
4362 deduce_noexcept_on_destructors (tree t)
4364 tree fns;
4366 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4367 out now. */
4368 if (!CLASSTYPE_METHOD_VEC (t))
4369 return;
4371 for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4372 deduce_noexcept_on_destructor (OVL_CURRENT (fns));
4375 /* Subroutine of set_one_vmethod_tm_attributes. Search base classes
4376 of TYPE for virtual functions which FNDECL overrides. Return a
4377 mask of the tm attributes found therein. */
4379 static int
4380 look_for_tm_attr_overrides (tree type, tree fndecl)
4382 tree binfo = TYPE_BINFO (type);
4383 tree base_binfo;
4384 int ix, found = 0;
4386 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ++ix)
4388 tree o, basetype = BINFO_TYPE (base_binfo);
4390 if (!TYPE_POLYMORPHIC_P (basetype))
4391 continue;
4393 o = look_for_overrides_here (basetype, fndecl);
4394 if (o)
4395 found |= tm_attr_to_mask (find_tm_attribute
4396 (TYPE_ATTRIBUTES (TREE_TYPE (o))));
4397 else
4398 found |= look_for_tm_attr_overrides (basetype, fndecl);
4401 return found;
4404 /* Subroutine of set_method_tm_attributes. Handle the checks and
4405 inheritance for one virtual method FNDECL. */
4407 static void
4408 set_one_vmethod_tm_attributes (tree type, tree fndecl)
4410 tree tm_attr;
4411 int found, have;
4413 found = look_for_tm_attr_overrides (type, fndecl);
4415 /* If FNDECL doesn't actually override anything (i.e. T is the
4416 class that first declares FNDECL virtual), then we're done. */
4417 if (found == 0)
4418 return;
4420 tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl)));
4421 have = tm_attr_to_mask (tm_attr);
4423 /* Intel STM Language Extension 3.0, Section 4.2 table 4:
4424 tm_pure must match exactly, otherwise no weakening of
4425 tm_safe > tm_callable > nothing. */
4426 /* ??? The tm_pure attribute didn't make the transition to the
4427 multivendor language spec. */
4428 if (have == TM_ATTR_PURE)
4430 if (found != TM_ATTR_PURE)
4432 found &= -found;
4433 goto err_override;
4436 /* If the overridden function is tm_pure, then FNDECL must be. */
4437 else if (found == TM_ATTR_PURE && tm_attr)
4438 goto err_override;
4439 /* Look for base class combinations that cannot be satisfied. */
4440 else if (found != TM_ATTR_PURE && (found & TM_ATTR_PURE))
4442 found &= ~TM_ATTR_PURE;
4443 found &= -found;
4444 error_at (DECL_SOURCE_LOCATION (fndecl),
4445 "method overrides both %<transaction_pure%> and %qE methods",
4446 tm_mask_to_attr (found));
4448 /* If FNDECL did not declare an attribute, then inherit the most
4449 restrictive one. */
4450 else if (tm_attr == NULL)
4452 apply_tm_attr (fndecl, tm_mask_to_attr (found & -found));
4454 /* Otherwise validate that we're not weaker than a function
4455 that is being overridden. */
4456 else
4458 found &= -found;
4459 if (found <= TM_ATTR_CALLABLE && have > found)
4460 goto err_override;
4462 return;
4464 err_override:
4465 error_at (DECL_SOURCE_LOCATION (fndecl),
4466 "method declared %qE overriding %qE method",
4467 tm_attr, tm_mask_to_attr (found));
4470 /* For each of the methods in T, propagate a class-level tm attribute. */
4472 static void
4473 set_method_tm_attributes (tree t)
4475 tree class_tm_attr, fndecl;
4477 /* Don't bother collecting tm attributes if transactional memory
4478 support is not enabled. */
4479 if (!flag_tm)
4480 return;
4482 /* Process virtual methods first, as they inherit directly from the
4483 base virtual function and also require validation of new attributes. */
4484 if (TYPE_CONTAINS_VPTR_P (t))
4486 tree vchain;
4487 for (vchain = BINFO_VIRTUALS (TYPE_BINFO (t)); vchain;
4488 vchain = TREE_CHAIN (vchain))
4490 fndecl = BV_FN (vchain);
4491 if (DECL_THUNK_P (fndecl))
4492 fndecl = THUNK_TARGET (fndecl);
4493 set_one_vmethod_tm_attributes (t, fndecl);
4497 /* If the class doesn't have an attribute, nothing more to do. */
4498 class_tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (t));
4499 if (class_tm_attr == NULL)
4500 return;
4502 /* Any method that does not yet have a tm attribute inherits
4503 the one from the class. */
4504 for (fndecl = TYPE_METHODS (t); fndecl; fndecl = TREE_CHAIN (fndecl))
4506 if (!find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
4507 apply_tm_attr (fndecl, class_tm_attr);
4511 /* Returns true iff class T has a user-defined constructor other than
4512 the default constructor. */
4514 bool
4515 type_has_user_nondefault_constructor (tree t)
4517 tree fns;
4519 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4520 return false;
4522 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4524 tree fn = OVL_CURRENT (fns);
4525 if (!DECL_ARTIFICIAL (fn)
4526 && (TREE_CODE (fn) == TEMPLATE_DECL
4527 || (skip_artificial_parms_for (fn, DECL_ARGUMENTS (fn))
4528 != NULL_TREE)))
4529 return true;
4532 return false;
4535 /* Returns the defaulted constructor if T has one. Otherwise, returns
4536 NULL_TREE. */
4538 tree
4539 in_class_defaulted_default_constructor (tree t)
4541 tree fns, args;
4543 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4544 return NULL_TREE;
4546 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4548 tree fn = OVL_CURRENT (fns);
4550 if (DECL_DEFAULTED_IN_CLASS_P (fn))
4552 args = FUNCTION_FIRST_USER_PARMTYPE (fn);
4553 while (args && TREE_PURPOSE (args))
4554 args = TREE_CHAIN (args);
4555 if (!args || args == void_list_node)
4556 return fn;
4560 return NULL_TREE;
4563 /* Returns true iff FN is a user-provided function, i.e. user-declared
4564 and not defaulted at its first declaration; or explicit, private,
4565 protected, or non-const. */
4567 bool
4568 user_provided_p (tree fn)
4570 if (TREE_CODE (fn) == TEMPLATE_DECL)
4571 return true;
4572 else
4573 return (!DECL_ARTIFICIAL (fn)
4574 && !DECL_DEFAULTED_IN_CLASS_P (fn));
4577 /* Returns true iff class T has a user-provided constructor. */
4579 bool
4580 type_has_user_provided_constructor (tree t)
4582 tree fns;
4584 if (!CLASS_TYPE_P (t))
4585 return false;
4587 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4588 return false;
4590 /* This can happen in error cases; avoid crashing. */
4591 if (!CLASSTYPE_METHOD_VEC (t))
4592 return false;
4594 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4595 if (user_provided_p (OVL_CURRENT (fns)))
4596 return true;
4598 return false;
4601 /* Returns true iff class T has a user-provided default constructor. */
4603 bool
4604 type_has_user_provided_default_constructor (tree t)
4606 tree fns;
4608 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4609 return false;
4611 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4613 tree fn = OVL_CURRENT (fns);
4614 if (TREE_CODE (fn) == FUNCTION_DECL
4615 && user_provided_p (fn)
4616 && sufficient_parms_p (FUNCTION_FIRST_USER_PARMTYPE (fn)))
4617 return true;
4620 return false;
4623 /* If default-initialization leaves part of TYPE uninitialized, returns
4624 a DECL for the field or TYPE itself (DR 253). */
4626 tree
4627 default_init_uninitialized_part (tree type)
4629 tree t, r, binfo;
4630 int i;
4632 type = strip_array_types (type);
4633 if (!CLASS_TYPE_P (type))
4634 return type;
4635 if (type_has_user_provided_default_constructor (type))
4636 return NULL_TREE;
4637 for (binfo = TYPE_BINFO (type), i = 0;
4638 BINFO_BASE_ITERATE (binfo, i, t); ++i)
4640 r = default_init_uninitialized_part (BINFO_TYPE (t));
4641 if (r)
4642 return r;
4644 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
4645 if (TREE_CODE (t) == FIELD_DECL
4646 && !DECL_ARTIFICIAL (t)
4647 && !DECL_INITIAL (t))
4649 r = default_init_uninitialized_part (TREE_TYPE (t));
4650 if (r)
4651 return DECL_P (r) ? r : t;
4654 return NULL_TREE;
4657 /* Returns true iff for class T, a trivial synthesized default constructor
4658 would be constexpr. */
4660 bool
4661 trivial_default_constructor_is_constexpr (tree t)
4663 /* A defaulted trivial default constructor is constexpr
4664 if there is nothing to initialize. */
4665 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (t));
4666 return is_really_empty_class (t);
4669 /* Returns true iff class T has a constexpr default constructor. */
4671 bool
4672 type_has_constexpr_default_constructor (tree t)
4674 tree fns;
4676 if (!CLASS_TYPE_P (t))
4678 /* The caller should have stripped an enclosing array. */
4679 gcc_assert (TREE_CODE (t) != ARRAY_TYPE);
4680 return false;
4682 if (CLASSTYPE_LAZY_DEFAULT_CTOR (t))
4684 if (!TYPE_HAS_COMPLEX_DFLT (t))
4685 return trivial_default_constructor_is_constexpr (t);
4686 /* Non-trivial, we need to check subobject constructors. */
4687 lazily_declare_fn (sfk_constructor, t);
4689 fns = locate_ctor (t);
4690 return (fns && DECL_DECLARED_CONSTEXPR_P (fns));
4693 /* Returns true iff class TYPE has a virtual destructor. */
4695 bool
4696 type_has_virtual_destructor (tree type)
4698 tree dtor;
4700 if (!CLASS_TYPE_P (type))
4701 return false;
4703 gcc_assert (COMPLETE_TYPE_P (type));
4704 dtor = CLASSTYPE_DESTRUCTORS (type);
4705 return (dtor && DECL_VIRTUAL_P (dtor));
4708 /* Returns true iff class T has a move constructor. */
4710 bool
4711 type_has_move_constructor (tree t)
4713 tree fns;
4715 if (CLASSTYPE_LAZY_MOVE_CTOR (t))
4717 gcc_assert (COMPLETE_TYPE_P (t));
4718 lazily_declare_fn (sfk_move_constructor, t);
4721 if (!CLASSTYPE_METHOD_VEC (t))
4722 return false;
4724 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4725 if (move_fn_p (OVL_CURRENT (fns)))
4726 return true;
4728 return false;
4731 /* Returns true iff class T has a move assignment operator. */
4733 bool
4734 type_has_move_assign (tree t)
4736 tree fns;
4738 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
4740 gcc_assert (COMPLETE_TYPE_P (t));
4741 lazily_declare_fn (sfk_move_assignment, t);
4744 for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR));
4745 fns; fns = OVL_NEXT (fns))
4746 if (move_fn_p (OVL_CURRENT (fns)))
4747 return true;
4749 return false;
4752 /* Returns true iff class T has a move constructor that was explicitly
4753 declared in the class body. Note that this is different from
4754 "user-provided", which doesn't include functions that are defaulted in
4755 the class. */
4757 bool
4758 type_has_user_declared_move_constructor (tree t)
4760 tree fns;
4762 if (CLASSTYPE_LAZY_MOVE_CTOR (t))
4763 return false;
4765 if (!CLASSTYPE_METHOD_VEC (t))
4766 return false;
4768 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4770 tree fn = OVL_CURRENT (fns);
4771 if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn))
4772 return true;
4775 return false;
4778 /* Returns true iff class T has a move assignment operator that was
4779 explicitly declared in the class body. */
4781 bool
4782 type_has_user_declared_move_assign (tree t)
4784 tree fns;
4786 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
4787 return false;
4789 for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR));
4790 fns; fns = OVL_NEXT (fns))
4792 tree fn = OVL_CURRENT (fns);
4793 if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn))
4794 return true;
4797 return false;
4800 /* Nonzero if we need to build up a constructor call when initializing an
4801 object of this class, either because it has a user-provided constructor
4802 or because it doesn't have a default constructor (so we need to give an
4803 error if no initializer is provided). Use TYPE_NEEDS_CONSTRUCTING when
4804 what you care about is whether or not an object can be produced by a
4805 constructor (e.g. so we don't set TREE_READONLY on const variables of
4806 such type); use this function when what you care about is whether or not
4807 to try to call a constructor to create an object. The latter case is
4808 the former plus some cases of constructors that cannot be called. */
4810 bool
4811 type_build_ctor_call (tree t)
4813 tree inner;
4814 if (TYPE_NEEDS_CONSTRUCTING (t))
4815 return true;
4816 inner = strip_array_types (t);
4817 return (CLASS_TYPE_P (inner) && !TYPE_HAS_DEFAULT_CONSTRUCTOR (inner)
4818 && !ANON_AGGR_TYPE_P (inner));
4821 /* Remove all zero-width bit-fields from T. */
4823 static void
4824 remove_zero_width_bit_fields (tree t)
4826 tree *fieldsp;
4828 fieldsp = &TYPE_FIELDS (t);
4829 while (*fieldsp)
4831 if (TREE_CODE (*fieldsp) == FIELD_DECL
4832 && DECL_C_BIT_FIELD (*fieldsp)
4833 /* We should not be confused by the fact that grokbitfield
4834 temporarily sets the width of the bit field into
4835 DECL_INITIAL (*fieldsp).
4836 check_bitfield_decl eventually sets DECL_SIZE (*fieldsp)
4837 to that width. */
4838 && integer_zerop (DECL_SIZE (*fieldsp)))
4839 *fieldsp = DECL_CHAIN (*fieldsp);
4840 else
4841 fieldsp = &DECL_CHAIN (*fieldsp);
4845 /* Returns TRUE iff we need a cookie when dynamically allocating an
4846 array whose elements have the indicated class TYPE. */
4848 static bool
4849 type_requires_array_cookie (tree type)
4851 tree fns;
4852 bool has_two_argument_delete_p = false;
4854 gcc_assert (CLASS_TYPE_P (type));
4856 /* If there's a non-trivial destructor, we need a cookie. In order
4857 to iterate through the array calling the destructor for each
4858 element, we'll have to know how many elements there are. */
4859 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
4860 return true;
4862 /* If the usual deallocation function is a two-argument whose second
4863 argument is of type `size_t', then we have to pass the size of
4864 the array to the deallocation function, so we will need to store
4865 a cookie. */
4866 fns = lookup_fnfields (TYPE_BINFO (type),
4867 ansi_opname (VEC_DELETE_EXPR),
4868 /*protect=*/0);
4869 /* If there are no `operator []' members, or the lookup is
4870 ambiguous, then we don't need a cookie. */
4871 if (!fns || fns == error_mark_node)
4872 return false;
4873 /* Loop through all of the functions. */
4874 for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
4876 tree fn;
4877 tree second_parm;
4879 /* Select the current function. */
4880 fn = OVL_CURRENT (fns);
4881 /* See if this function is a one-argument delete function. If
4882 it is, then it will be the usual deallocation function. */
4883 second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn)));
4884 if (second_parm == void_list_node)
4885 return false;
4886 /* Do not consider this function if its second argument is an
4887 ellipsis. */
4888 if (!second_parm)
4889 continue;
4890 /* Otherwise, if we have a two-argument function and the second
4891 argument is `size_t', it will be the usual deallocation
4892 function -- unless there is one-argument function, too. */
4893 if (TREE_CHAIN (second_parm) == void_list_node
4894 && same_type_p (TREE_VALUE (second_parm), size_type_node))
4895 has_two_argument_delete_p = true;
4898 return has_two_argument_delete_p;
4901 /* Finish computing the `literal type' property of class type T.
4903 At this point, we have already processed base classes and
4904 non-static data members. We need to check whether the copy
4905 constructor is trivial, the destructor is trivial, and there
4906 is a trivial default constructor or at least one constexpr
4907 constructor other than the copy constructor. */
4909 static void
4910 finalize_literal_type_property (tree t)
4912 tree fn;
4914 if (cxx_dialect < cxx0x
4915 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
4916 CLASSTYPE_LITERAL_P (t) = false;
4917 else if (CLASSTYPE_LITERAL_P (t) && !TYPE_HAS_TRIVIAL_DFLT (t)
4918 && CLASSTYPE_NON_AGGREGATE (t)
4919 && !TYPE_HAS_CONSTEXPR_CTOR (t))
4920 CLASSTYPE_LITERAL_P (t) = false;
4922 if (!CLASSTYPE_LITERAL_P (t))
4923 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
4924 if (DECL_DECLARED_CONSTEXPR_P (fn)
4925 && TREE_CODE (fn) != TEMPLATE_DECL
4926 && DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
4927 && !DECL_CONSTRUCTOR_P (fn))
4929 DECL_DECLARED_CONSTEXPR_P (fn) = false;
4930 if (!DECL_GENERATED_P (fn))
4932 error ("enclosing class of constexpr non-static member "
4933 "function %q+#D is not a literal type", fn);
4934 explain_non_literal_class (t);
4939 /* T is a non-literal type used in a context which requires a constant
4940 expression. Explain why it isn't literal. */
4942 void
4943 explain_non_literal_class (tree t)
4945 static struct pointer_set_t *diagnosed;
4947 if (!CLASS_TYPE_P (t))
4948 return;
4949 t = TYPE_MAIN_VARIANT (t);
4951 if (diagnosed == NULL)
4952 diagnosed = pointer_set_create ();
4953 if (pointer_set_insert (diagnosed, t) != 0)
4954 /* Already explained. */
4955 return;
4957 inform (0, "%q+T is not literal because:", t);
4958 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
4959 inform (0, " %q+T has a non-trivial destructor", t);
4960 else if (CLASSTYPE_NON_AGGREGATE (t)
4961 && !TYPE_HAS_TRIVIAL_DFLT (t)
4962 && !TYPE_HAS_CONSTEXPR_CTOR (t))
4964 inform (0, " %q+T is not an aggregate, does not have a trivial "
4965 "default constructor, and has no constexpr constructor that "
4966 "is not a copy or move constructor", t);
4967 if (TYPE_HAS_DEFAULT_CONSTRUCTOR (t)
4968 && !type_has_user_provided_default_constructor (t))
4970 /* Note that we can't simply call locate_ctor because when the
4971 constructor is deleted it just returns NULL_TREE. */
4972 tree fns;
4973 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4975 tree fn = OVL_CURRENT (fns);
4976 tree parms = TYPE_ARG_TYPES (TREE_TYPE (fn));
4978 parms = skip_artificial_parms_for (fn, parms);
4980 if (sufficient_parms_p (parms))
4982 if (DECL_DELETED_FN (fn))
4983 maybe_explain_implicit_delete (fn);
4984 else
4985 explain_invalid_constexpr_fn (fn);
4986 break;
4991 else
4993 tree binfo, base_binfo, field; int i;
4994 for (binfo = TYPE_BINFO (t), i = 0;
4995 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
4997 tree basetype = TREE_TYPE (base_binfo);
4998 if (!CLASSTYPE_LITERAL_P (basetype))
5000 inform (0, " base class %qT of %q+T is non-literal",
5001 basetype, t);
5002 explain_non_literal_class (basetype);
5003 return;
5006 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
5008 tree ftype;
5009 if (TREE_CODE (field) != FIELD_DECL)
5010 continue;
5011 ftype = TREE_TYPE (field);
5012 if (!literal_type_p (ftype))
5014 inform (0, " non-static data member %q+D has "
5015 "non-literal type", field);
5016 if (CLASS_TYPE_P (ftype))
5017 explain_non_literal_class (ftype);
5023 /* Check the validity of the bases and members declared in T. Add any
5024 implicitly-generated functions (like copy-constructors and
5025 assignment operators). Compute various flag bits (like
5026 CLASSTYPE_NON_LAYOUT_POD_T) for T. This routine works purely at the C++
5027 level: i.e., independently of the ABI in use. */
5029 static void
5030 check_bases_and_members (tree t)
5032 /* Nonzero if the implicitly generated copy constructor should take
5033 a non-const reference argument. */
5034 int cant_have_const_ctor;
5035 /* Nonzero if the implicitly generated assignment operator
5036 should take a non-const reference argument. */
5037 int no_const_asn_ref;
5038 tree access_decls;
5039 bool saved_complex_asn_ref;
5040 bool saved_nontrivial_dtor;
5041 tree fn;
5043 /* By default, we use const reference arguments and generate default
5044 constructors. */
5045 cant_have_const_ctor = 0;
5046 no_const_asn_ref = 0;
5048 /* Deduce noexcept on destructors. */
5049 if (cxx_dialect >= cxx0x)
5050 deduce_noexcept_on_destructors (t);
5052 /* Check all the base-classes. */
5053 check_bases (t, &cant_have_const_ctor,
5054 &no_const_asn_ref);
5056 /* Check all the method declarations. */
5057 check_methods (t);
5059 /* Save the initial values of these flags which only indicate whether
5060 or not the class has user-provided functions. As we analyze the
5061 bases and members we can set these flags for other reasons. */
5062 saved_complex_asn_ref = TYPE_HAS_COMPLEX_COPY_ASSIGN (t);
5063 saved_nontrivial_dtor = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
5065 /* Check all the data member declarations. We cannot call
5066 check_field_decls until we have called check_bases check_methods,
5067 as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
5068 being set appropriately. */
5069 check_field_decls (t, &access_decls,
5070 &cant_have_const_ctor,
5071 &no_const_asn_ref);
5073 /* A nearly-empty class has to be vptr-containing; a nearly empty
5074 class contains just a vptr. */
5075 if (!TYPE_CONTAINS_VPTR_P (t))
5076 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
5078 /* Do some bookkeeping that will guide the generation of implicitly
5079 declared member functions. */
5080 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
5081 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
5082 /* We need to call a constructor for this class if it has a
5083 user-provided constructor, or if the default constructor is going
5084 to initialize the vptr. (This is not an if-and-only-if;
5085 TYPE_NEEDS_CONSTRUCTING is set elsewhere if bases or members
5086 themselves need constructing.) */
5087 TYPE_NEEDS_CONSTRUCTING (t)
5088 |= (type_has_user_provided_constructor (t) || TYPE_CONTAINS_VPTR_P (t));
5089 /* [dcl.init.aggr]
5091 An aggregate is an array or a class with no user-provided
5092 constructors ... and no virtual functions.
5094 Again, other conditions for being an aggregate are checked
5095 elsewhere. */
5096 CLASSTYPE_NON_AGGREGATE (t)
5097 |= (type_has_user_provided_constructor (t) || TYPE_POLYMORPHIC_P (t));
5098 /* This is the C++98/03 definition of POD; it changed in C++0x, but we
5099 retain the old definition internally for ABI reasons. */
5100 CLASSTYPE_NON_LAYOUT_POD_P (t)
5101 |= (CLASSTYPE_NON_AGGREGATE (t)
5102 || saved_nontrivial_dtor || saved_complex_asn_ref);
5103 CLASSTYPE_NON_STD_LAYOUT (t) |= TYPE_CONTAINS_VPTR_P (t);
5104 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
5105 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
5106 TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_CONTAINS_VPTR_P (t);
5108 /* If the class has no user-declared constructor, but does have
5109 non-static const or reference data members that can never be
5110 initialized, issue a warning. */
5111 if (warn_uninitialized
5112 /* Classes with user-declared constructors are presumed to
5113 initialize these members. */
5114 && !TYPE_HAS_USER_CONSTRUCTOR (t)
5115 /* Aggregates can be initialized with brace-enclosed
5116 initializers. */
5117 && CLASSTYPE_NON_AGGREGATE (t))
5119 tree field;
5121 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
5123 tree type;
5125 if (TREE_CODE (field) != FIELD_DECL
5126 || DECL_INITIAL (field) != NULL_TREE)
5127 continue;
5129 type = TREE_TYPE (field);
5130 if (TREE_CODE (type) == REFERENCE_TYPE)
5131 warning (OPT_Wuninitialized, "non-static reference %q+#D "
5132 "in class without a constructor", field);
5133 else if (CP_TYPE_CONST_P (type)
5134 && (!CLASS_TYPE_P (type)
5135 || !TYPE_HAS_DEFAULT_CONSTRUCTOR (type)))
5136 warning (OPT_Wuninitialized, "non-static const member %q+#D "
5137 "in class without a constructor", field);
5141 /* Synthesize any needed methods. */
5142 add_implicitly_declared_members (t,
5143 cant_have_const_ctor,
5144 no_const_asn_ref);
5146 /* Check defaulted declarations here so we have cant_have_const_ctor
5147 and don't need to worry about clones. */
5148 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5149 if (DECL_DEFAULTED_IN_CLASS_P (fn))
5151 int copy = copy_fn_p (fn);
5152 if (copy > 0)
5154 bool imp_const_p
5155 = (DECL_CONSTRUCTOR_P (fn) ? !cant_have_const_ctor
5156 : !no_const_asn_ref);
5157 bool fn_const_p = (copy == 2);
5159 if (fn_const_p && !imp_const_p)
5160 /* If the function is defaulted outside the class, we just
5161 give the synthesis error. */
5162 error ("%q+D declared to take const reference, but implicit "
5163 "declaration would take non-const", fn);
5165 defaulted_late_check (fn);
5168 if (LAMBDA_TYPE_P (t))
5170 /* "The closure type associated with a lambda-expression has a deleted
5171 default constructor and a deleted copy assignment operator." */
5172 TYPE_NEEDS_CONSTRUCTING (t) = 1;
5173 TYPE_HAS_COMPLEX_DFLT (t) = 1;
5174 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
5175 CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 0;
5177 /* "This class type is not an aggregate." */
5178 CLASSTYPE_NON_AGGREGATE (t) = 1;
5181 /* Compute the 'literal type' property before we
5182 do anything with non-static member functions. */
5183 finalize_literal_type_property (t);
5185 /* Create the in-charge and not-in-charge variants of constructors
5186 and destructors. */
5187 clone_constructors_and_destructors (t);
5189 /* Process the using-declarations. */
5190 for (; access_decls; access_decls = TREE_CHAIN (access_decls))
5191 handle_using_decl (TREE_VALUE (access_decls), t);
5193 /* Build and sort the CLASSTYPE_METHOD_VEC. */
5194 finish_struct_methods (t);
5196 /* Figure out whether or not we will need a cookie when dynamically
5197 allocating an array of this type. */
5198 TYPE_LANG_SPECIFIC (t)->u.c.vec_new_uses_cookie
5199 = type_requires_array_cookie (t);
5202 /* If T needs a pointer to its virtual function table, set TYPE_VFIELD
5203 accordingly. If a new vfield was created (because T doesn't have a
5204 primary base class), then the newly created field is returned. It
5205 is not added to the TYPE_FIELDS list; it is the caller's
5206 responsibility to do that. Accumulate declared virtual functions
5207 on VIRTUALS_P. */
5209 static tree
5210 create_vtable_ptr (tree t, tree* virtuals_p)
5212 tree fn;
5214 /* Collect the virtual functions declared in T. */
5215 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5216 if (DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)
5217 && TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST)
5219 tree new_virtual = make_node (TREE_LIST);
5221 BV_FN (new_virtual) = fn;
5222 BV_DELTA (new_virtual) = integer_zero_node;
5223 BV_VCALL_INDEX (new_virtual) = NULL_TREE;
5225 TREE_CHAIN (new_virtual) = *virtuals_p;
5226 *virtuals_p = new_virtual;
5229 /* If we couldn't find an appropriate base class, create a new field
5230 here. Even if there weren't any new virtual functions, we might need a
5231 new virtual function table if we're supposed to include vptrs in
5232 all classes that need them. */
5233 if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t)))
5235 /* We build this decl with vtbl_ptr_type_node, which is a
5236 `vtable_entry_type*'. It might seem more precise to use
5237 `vtable_entry_type (*)[N]' where N is the number of virtual
5238 functions. However, that would require the vtable pointer in
5239 base classes to have a different type than the vtable pointer
5240 in derived classes. We could make that happen, but that
5241 still wouldn't solve all the problems. In particular, the
5242 type-based alias analysis code would decide that assignments
5243 to the base class vtable pointer can't alias assignments to
5244 the derived class vtable pointer, since they have different
5245 types. Thus, in a derived class destructor, where the base
5246 class constructor was inlined, we could generate bad code for
5247 setting up the vtable pointer.
5249 Therefore, we use one type for all vtable pointers. We still
5250 use a type-correct type; it's just doesn't indicate the array
5251 bounds. That's better than using `void*' or some such; it's
5252 cleaner, and it let's the alias analysis code know that these
5253 stores cannot alias stores to void*! */
5254 tree field;
5256 field = build_decl (input_location,
5257 FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node);
5258 DECL_VIRTUAL_P (field) = 1;
5259 DECL_ARTIFICIAL (field) = 1;
5260 DECL_FIELD_CONTEXT (field) = t;
5261 DECL_FCONTEXT (field) = t;
5262 if (TYPE_PACKED (t))
5263 DECL_PACKED (field) = 1;
5265 TYPE_VFIELD (t) = field;
5267 /* This class is non-empty. */
5268 CLASSTYPE_EMPTY_P (t) = 0;
5270 return field;
5273 return NULL_TREE;
5276 /* Add OFFSET to all base types of BINFO which is a base in the
5277 hierarchy dominated by T.
5279 OFFSET, which is a type offset, is number of bytes. */
5281 static void
5282 propagate_binfo_offsets (tree binfo, tree offset)
5284 int i;
5285 tree primary_binfo;
5286 tree base_binfo;
5288 /* Update BINFO's offset. */
5289 BINFO_OFFSET (binfo)
5290 = convert (sizetype,
5291 size_binop (PLUS_EXPR,
5292 convert (ssizetype, BINFO_OFFSET (binfo)),
5293 offset));
5295 /* Find the primary base class. */
5296 primary_binfo = get_primary_binfo (binfo);
5298 if (primary_binfo && BINFO_INHERITANCE_CHAIN (primary_binfo) == binfo)
5299 propagate_binfo_offsets (primary_binfo, offset);
5301 /* Scan all of the bases, pushing the BINFO_OFFSET adjust
5302 downwards. */
5303 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5305 /* Don't do the primary base twice. */
5306 if (base_binfo == primary_binfo)
5307 continue;
5309 if (BINFO_VIRTUAL_P (base_binfo))
5310 continue;
5312 propagate_binfo_offsets (base_binfo, offset);
5316 /* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
5317 TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
5318 empty subobjects of T. */
5320 static void
5321 layout_virtual_bases (record_layout_info rli, splay_tree offsets)
5323 tree vbase;
5324 tree t = rli->t;
5325 bool first_vbase = true;
5326 tree *next_field;
5328 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) == 0)
5329 return;
5331 if (!abi_version_at_least(2))
5333 /* In G++ 3.2, we incorrectly rounded the size before laying out
5334 the virtual bases. */
5335 finish_record_layout (rli, /*free_p=*/false);
5336 #ifdef STRUCTURE_SIZE_BOUNDARY
5337 /* Packed structures don't need to have minimum size. */
5338 if (! TYPE_PACKED (t))
5339 TYPE_ALIGN (t) = MAX (TYPE_ALIGN (t), (unsigned) STRUCTURE_SIZE_BOUNDARY);
5340 #endif
5341 rli->offset = TYPE_SIZE_UNIT (t);
5342 rli->bitpos = bitsize_zero_node;
5343 rli->record_align = TYPE_ALIGN (t);
5346 /* Find the last field. The artificial fields created for virtual
5347 bases will go after the last extant field to date. */
5348 next_field = &TYPE_FIELDS (t);
5349 while (*next_field)
5350 next_field = &DECL_CHAIN (*next_field);
5352 /* Go through the virtual bases, allocating space for each virtual
5353 base that is not already a primary base class. These are
5354 allocated in inheritance graph order. */
5355 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
5357 if (!BINFO_VIRTUAL_P (vbase))
5358 continue;
5360 if (!BINFO_PRIMARY_P (vbase))
5362 tree basetype = TREE_TYPE (vbase);
5364 /* This virtual base is not a primary base of any class in the
5365 hierarchy, so we have to add space for it. */
5366 next_field = build_base_field (rli, vbase,
5367 offsets, next_field);
5369 /* If the first virtual base might have been placed at a
5370 lower address, had we started from CLASSTYPE_SIZE, rather
5371 than TYPE_SIZE, issue a warning. There can be both false
5372 positives and false negatives from this warning in rare
5373 cases; to deal with all the possibilities would probably
5374 require performing both layout algorithms and comparing
5375 the results which is not particularly tractable. */
5376 if (warn_abi
5377 && first_vbase
5378 && (tree_int_cst_lt
5379 (size_binop (CEIL_DIV_EXPR,
5380 round_up_loc (input_location,
5381 CLASSTYPE_SIZE (t),
5382 CLASSTYPE_ALIGN (basetype)),
5383 bitsize_unit_node),
5384 BINFO_OFFSET (vbase))))
5385 warning (OPT_Wabi,
5386 "offset of virtual base %qT is not ABI-compliant and "
5387 "may change in a future version of GCC",
5388 basetype);
5390 first_vbase = false;
5395 /* Returns the offset of the byte just past the end of the base class
5396 BINFO. */
5398 static tree
5399 end_of_base (tree binfo)
5401 tree size;
5403 if (!CLASSTYPE_AS_BASE (BINFO_TYPE (binfo)))
5404 size = TYPE_SIZE_UNIT (char_type_node);
5405 else if (is_empty_class (BINFO_TYPE (binfo)))
5406 /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
5407 allocate some space for it. It cannot have virtual bases, so
5408 TYPE_SIZE_UNIT is fine. */
5409 size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo));
5410 else
5411 size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo));
5413 return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size);
5416 /* Returns the offset of the byte just past the end of the base class
5417 with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then
5418 only non-virtual bases are included. */
5420 static tree
5421 end_of_class (tree t, int include_virtuals_p)
5423 tree result = size_zero_node;
5424 VEC(tree,gc) *vbases;
5425 tree binfo;
5426 tree base_binfo;
5427 tree offset;
5428 int i;
5430 for (binfo = TYPE_BINFO (t), i = 0;
5431 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5433 if (!include_virtuals_p
5434 && BINFO_VIRTUAL_P (base_binfo)
5435 && (!BINFO_PRIMARY_P (base_binfo)
5436 || BINFO_INHERITANCE_CHAIN (base_binfo) != TYPE_BINFO (t)))
5437 continue;
5439 offset = end_of_base (base_binfo);
5440 if (INT_CST_LT_UNSIGNED (result, offset))
5441 result = offset;
5444 /* G++ 3.2 did not check indirect virtual bases. */
5445 if (abi_version_at_least (2) && include_virtuals_p)
5446 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
5447 VEC_iterate (tree, vbases, i, base_binfo); i++)
5449 offset = end_of_base (base_binfo);
5450 if (INT_CST_LT_UNSIGNED (result, offset))
5451 result = offset;
5454 return result;
5457 /* Warn about bases of T that are inaccessible because they are
5458 ambiguous. For example:
5460 struct S {};
5461 struct T : public S {};
5462 struct U : public S, public T {};
5464 Here, `(S*) new U' is not allowed because there are two `S'
5465 subobjects of U. */
5467 static void
5468 warn_about_ambiguous_bases (tree t)
5470 int i;
5471 VEC(tree,gc) *vbases;
5472 tree basetype;
5473 tree binfo;
5474 tree base_binfo;
5476 /* If there are no repeated bases, nothing can be ambiguous. */
5477 if (!CLASSTYPE_REPEATED_BASE_P (t))
5478 return;
5480 /* Check direct bases. */
5481 for (binfo = TYPE_BINFO (t), i = 0;
5482 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5484 basetype = BINFO_TYPE (base_binfo);
5486 if (!lookup_base (t, basetype, ba_unique | ba_quiet, NULL))
5487 warning (0, "direct base %qT inaccessible in %qT due to ambiguity",
5488 basetype, t);
5491 /* Check for ambiguous virtual bases. */
5492 if (extra_warnings)
5493 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
5494 VEC_iterate (tree, vbases, i, binfo); i++)
5496 basetype = BINFO_TYPE (binfo);
5498 if (!lookup_base (t, basetype, ba_unique | ba_quiet, NULL))
5499 warning (OPT_Wextra, "virtual base %qT inaccessible in %qT due to ambiguity",
5500 basetype, t);
5504 /* Compare two INTEGER_CSTs K1 and K2. */
5506 static int
5507 splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2)
5509 return tree_int_cst_compare ((tree) k1, (tree) k2);
5512 /* Increase the size indicated in RLI to account for empty classes
5513 that are "off the end" of the class. */
5515 static void
5516 include_empty_classes (record_layout_info rli)
5518 tree eoc;
5519 tree rli_size;
5521 /* It might be the case that we grew the class to allocate a
5522 zero-sized base class. That won't be reflected in RLI, yet,
5523 because we are willing to overlay multiple bases at the same
5524 offset. However, now we need to make sure that RLI is big enough
5525 to reflect the entire class. */
5526 eoc = end_of_class (rli->t,
5527 CLASSTYPE_AS_BASE (rli->t) != NULL_TREE);
5528 rli_size = rli_size_unit_so_far (rli);
5529 if (TREE_CODE (rli_size) == INTEGER_CST
5530 && INT_CST_LT_UNSIGNED (rli_size, eoc))
5532 if (!abi_version_at_least (2))
5533 /* In version 1 of the ABI, the size of a class that ends with
5534 a bitfield was not rounded up to a whole multiple of a
5535 byte. Because rli_size_unit_so_far returns only the number
5536 of fully allocated bytes, any extra bits were not included
5537 in the size. */
5538 rli->bitpos = round_down (rli->bitpos, BITS_PER_UNIT);
5539 else
5540 /* The size should have been rounded to a whole byte. */
5541 gcc_assert (tree_int_cst_equal
5542 (rli->bitpos, round_down (rli->bitpos, BITS_PER_UNIT)));
5543 rli->bitpos
5544 = size_binop (PLUS_EXPR,
5545 rli->bitpos,
5546 size_binop (MULT_EXPR,
5547 convert (bitsizetype,
5548 size_binop (MINUS_EXPR,
5549 eoc, rli_size)),
5550 bitsize_int (BITS_PER_UNIT)));
5551 normalize_rli (rli);
5555 /* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
5556 BINFO_OFFSETs for all of the base-classes. Position the vtable
5557 pointer. Accumulate declared virtual functions on VIRTUALS_P. */
5559 static void
5560 layout_class_type (tree t, tree *virtuals_p)
5562 tree non_static_data_members;
5563 tree field;
5564 tree vptr;
5565 record_layout_info rli;
5566 /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
5567 types that appear at that offset. */
5568 splay_tree empty_base_offsets;
5569 /* True if the last field layed out was a bit-field. */
5570 bool last_field_was_bitfield = false;
5571 /* The location at which the next field should be inserted. */
5572 tree *next_field;
5573 /* T, as a base class. */
5574 tree base_t;
5576 /* Keep track of the first non-static data member. */
5577 non_static_data_members = TYPE_FIELDS (t);
5579 /* Start laying out the record. */
5580 rli = start_record_layout (t);
5582 /* Mark all the primary bases in the hierarchy. */
5583 determine_primary_bases (t);
5585 /* Create a pointer to our virtual function table. */
5586 vptr = create_vtable_ptr (t, virtuals_p);
5588 /* The vptr is always the first thing in the class. */
5589 if (vptr)
5591 DECL_CHAIN (vptr) = TYPE_FIELDS (t);
5592 TYPE_FIELDS (t) = vptr;
5593 next_field = &DECL_CHAIN (vptr);
5594 place_field (rli, vptr);
5596 else
5597 next_field = &TYPE_FIELDS (t);
5599 /* Build FIELD_DECLs for all of the non-virtual base-types. */
5600 empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts,
5601 NULL, NULL);
5602 build_base_fields (rli, empty_base_offsets, next_field);
5604 /* Layout the non-static data members. */
5605 for (field = non_static_data_members; field; field = DECL_CHAIN (field))
5607 tree type;
5608 tree padding;
5610 /* We still pass things that aren't non-static data members to
5611 the back end, in case it wants to do something with them. */
5612 if (TREE_CODE (field) != FIELD_DECL)
5614 place_field (rli, field);
5615 /* If the static data member has incomplete type, keep track
5616 of it so that it can be completed later. (The handling
5617 of pending statics in finish_record_layout is
5618 insufficient; consider:
5620 struct S1;
5621 struct S2 { static S1 s1; };
5623 At this point, finish_record_layout will be called, but
5624 S1 is still incomplete.) */
5625 if (TREE_CODE (field) == VAR_DECL)
5627 maybe_register_incomplete_var (field);
5628 /* The visibility of static data members is determined
5629 at their point of declaration, not their point of
5630 definition. */
5631 determine_visibility (field);
5633 continue;
5636 type = TREE_TYPE (field);
5637 if (type == error_mark_node)
5638 continue;
5640 padding = NULL_TREE;
5642 /* If this field is a bit-field whose width is greater than its
5643 type, then there are some special rules for allocating
5644 it. */
5645 if (DECL_C_BIT_FIELD (field)
5646 && INT_CST_LT (TYPE_SIZE (type), DECL_SIZE (field)))
5648 unsigned int itk;
5649 tree integer_type;
5650 bool was_unnamed_p = false;
5651 /* We must allocate the bits as if suitably aligned for the
5652 longest integer type that fits in this many bits. type
5653 of the field. Then, we are supposed to use the left over
5654 bits as additional padding. */
5655 for (itk = itk_char; itk != itk_none; ++itk)
5656 if (integer_types[itk] != NULL_TREE
5657 && (INT_CST_LT (size_int (MAX_FIXED_MODE_SIZE),
5658 TYPE_SIZE (integer_types[itk]))
5659 || INT_CST_LT (DECL_SIZE (field),
5660 TYPE_SIZE (integer_types[itk]))))
5661 break;
5663 /* ITK now indicates a type that is too large for the
5664 field. We have to back up by one to find the largest
5665 type that fits. */
5668 --itk;
5669 integer_type = integer_types[itk];
5670 } while (itk > 0 && integer_type == NULL_TREE);
5672 /* Figure out how much additional padding is required. GCC
5673 3.2 always created a padding field, even if it had zero
5674 width. */
5675 if (!abi_version_at_least (2)
5676 || INT_CST_LT (TYPE_SIZE (integer_type), DECL_SIZE (field)))
5678 if (abi_version_at_least (2) && TREE_CODE (t) == UNION_TYPE)
5679 /* In a union, the padding field must have the full width
5680 of the bit-field; all fields start at offset zero. */
5681 padding = DECL_SIZE (field);
5682 else
5684 if (TREE_CODE (t) == UNION_TYPE)
5685 warning (OPT_Wabi, "size assigned to %qT may not be "
5686 "ABI-compliant and may change in a future "
5687 "version of GCC",
5689 padding = size_binop (MINUS_EXPR, DECL_SIZE (field),
5690 TYPE_SIZE (integer_type));
5693 #ifdef PCC_BITFIELD_TYPE_MATTERS
5694 /* An unnamed bitfield does not normally affect the
5695 alignment of the containing class on a target where
5696 PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
5697 make any exceptions for unnamed bitfields when the
5698 bitfields are longer than their types. Therefore, we
5699 temporarily give the field a name. */
5700 if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field))
5702 was_unnamed_p = true;
5703 DECL_NAME (field) = make_anon_name ();
5705 #endif
5706 DECL_SIZE (field) = TYPE_SIZE (integer_type);
5707 DECL_ALIGN (field) = TYPE_ALIGN (integer_type);
5708 DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type);
5709 layout_nonempty_base_or_field (rli, field, NULL_TREE,
5710 empty_base_offsets);
5711 if (was_unnamed_p)
5712 DECL_NAME (field) = NULL_TREE;
5713 /* Now that layout has been performed, set the size of the
5714 field to the size of its declared type; the rest of the
5715 field is effectively invisible. */
5716 DECL_SIZE (field) = TYPE_SIZE (type);
5717 /* We must also reset the DECL_MODE of the field. */
5718 if (abi_version_at_least (2))
5719 DECL_MODE (field) = TYPE_MODE (type);
5720 else if (warn_abi
5721 && DECL_MODE (field) != TYPE_MODE (type))
5722 /* Versions of G++ before G++ 3.4 did not reset the
5723 DECL_MODE. */
5724 warning (OPT_Wabi,
5725 "the offset of %qD may not be ABI-compliant and may "
5726 "change in a future version of GCC", field);
5728 else
5729 layout_nonempty_base_or_field (rli, field, NULL_TREE,
5730 empty_base_offsets);
5732 /* Remember the location of any empty classes in FIELD. */
5733 if (abi_version_at_least (2))
5734 record_subobject_offsets (TREE_TYPE (field),
5735 byte_position(field),
5736 empty_base_offsets,
5737 /*is_data_member=*/true);
5739 /* If a bit-field does not immediately follow another bit-field,
5740 and yet it starts in the middle of a byte, we have failed to
5741 comply with the ABI. */
5742 if (warn_abi
5743 && DECL_C_BIT_FIELD (field)
5744 /* The TREE_NO_WARNING flag gets set by Objective-C when
5745 laying out an Objective-C class. The ObjC ABI differs
5746 from the C++ ABI, and so we do not want a warning
5747 here. */
5748 && !TREE_NO_WARNING (field)
5749 && !last_field_was_bitfield
5750 && !integer_zerop (size_binop (TRUNC_MOD_EXPR,
5751 DECL_FIELD_BIT_OFFSET (field),
5752 bitsize_unit_node)))
5753 warning (OPT_Wabi, "offset of %q+D is not ABI-compliant and may "
5754 "change in a future version of GCC", field);
5756 /* G++ used to use DECL_FIELD_OFFSET as if it were the byte
5757 offset of the field. */
5758 if (warn_abi
5759 && !abi_version_at_least (2)
5760 && !tree_int_cst_equal (DECL_FIELD_OFFSET (field),
5761 byte_position (field))
5762 && contains_empty_class_p (TREE_TYPE (field)))
5763 warning (OPT_Wabi, "%q+D contains empty classes which may cause base "
5764 "classes to be placed at different locations in a "
5765 "future version of GCC", field);
5767 /* The middle end uses the type of expressions to determine the
5768 possible range of expression values. In order to optimize
5769 "x.i > 7" to "false" for a 2-bit bitfield "i", the middle end
5770 must be made aware of the width of "i", via its type.
5772 Because C++ does not have integer types of arbitrary width,
5773 we must (for the purposes of the front end) convert from the
5774 type assigned here to the declared type of the bitfield
5775 whenever a bitfield expression is used as an rvalue.
5776 Similarly, when assigning a value to a bitfield, the value
5777 must be converted to the type given the bitfield here. */
5778 if (DECL_C_BIT_FIELD (field))
5780 unsigned HOST_WIDE_INT width;
5781 tree ftype = TREE_TYPE (field);
5782 width = tree_low_cst (DECL_SIZE (field), /*unsignedp=*/1);
5783 if (width != TYPE_PRECISION (ftype))
5785 TREE_TYPE (field)
5786 = c_build_bitfield_integer_type (width,
5787 TYPE_UNSIGNED (ftype));
5788 TREE_TYPE (field)
5789 = cp_build_qualified_type (TREE_TYPE (field),
5790 cp_type_quals (ftype));
5794 /* If we needed additional padding after this field, add it
5795 now. */
5796 if (padding)
5798 tree padding_field;
5800 padding_field = build_decl (input_location,
5801 FIELD_DECL,
5802 NULL_TREE,
5803 char_type_node);
5804 DECL_BIT_FIELD (padding_field) = 1;
5805 DECL_SIZE (padding_field) = padding;
5806 DECL_CONTEXT (padding_field) = t;
5807 DECL_ARTIFICIAL (padding_field) = 1;
5808 DECL_IGNORED_P (padding_field) = 1;
5809 layout_nonempty_base_or_field (rli, padding_field,
5810 NULL_TREE,
5811 empty_base_offsets);
5814 last_field_was_bitfield = DECL_C_BIT_FIELD (field);
5817 if (abi_version_at_least (2) && !integer_zerop (rli->bitpos))
5819 /* Make sure that we are on a byte boundary so that the size of
5820 the class without virtual bases will always be a round number
5821 of bytes. */
5822 rli->bitpos = round_up_loc (input_location, rli->bitpos, BITS_PER_UNIT);
5823 normalize_rli (rli);
5826 /* G++ 3.2 does not allow virtual bases to be overlaid with tail
5827 padding. */
5828 if (!abi_version_at_least (2))
5829 include_empty_classes(rli);
5831 /* Delete all zero-width bit-fields from the list of fields. Now
5832 that the type is laid out they are no longer important. */
5833 remove_zero_width_bit_fields (t);
5835 /* Create the version of T used for virtual bases. We do not use
5836 make_class_type for this version; this is an artificial type. For
5837 a POD type, we just reuse T. */
5838 if (CLASSTYPE_NON_LAYOUT_POD_P (t) || CLASSTYPE_EMPTY_P (t))
5840 base_t = make_node (TREE_CODE (t));
5842 /* Set the size and alignment for the new type. In G++ 3.2, all
5843 empty classes were considered to have size zero when used as
5844 base classes. */
5845 if (!abi_version_at_least (2) && CLASSTYPE_EMPTY_P (t))
5847 TYPE_SIZE (base_t) = bitsize_zero_node;
5848 TYPE_SIZE_UNIT (base_t) = size_zero_node;
5849 if (warn_abi && !integer_zerop (rli_size_unit_so_far (rli)))
5850 warning (OPT_Wabi,
5851 "layout of classes derived from empty class %qT "
5852 "may change in a future version of GCC",
5855 else
5857 tree eoc;
5859 /* If the ABI version is not at least two, and the last
5860 field was a bit-field, RLI may not be on a byte
5861 boundary. In particular, rli_size_unit_so_far might
5862 indicate the last complete byte, while rli_size_so_far
5863 indicates the total number of bits used. Therefore,
5864 rli_size_so_far, rather than rli_size_unit_so_far, is
5865 used to compute TYPE_SIZE_UNIT. */
5866 eoc = end_of_class (t, /*include_virtuals_p=*/0);
5867 TYPE_SIZE_UNIT (base_t)
5868 = size_binop (MAX_EXPR,
5869 convert (sizetype,
5870 size_binop (CEIL_DIV_EXPR,
5871 rli_size_so_far (rli),
5872 bitsize_int (BITS_PER_UNIT))),
5873 eoc);
5874 TYPE_SIZE (base_t)
5875 = size_binop (MAX_EXPR,
5876 rli_size_so_far (rli),
5877 size_binop (MULT_EXPR,
5878 convert (bitsizetype, eoc),
5879 bitsize_int (BITS_PER_UNIT)));
5881 TYPE_ALIGN (base_t) = rli->record_align;
5882 TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t);
5884 /* Copy the fields from T. */
5885 next_field = &TYPE_FIELDS (base_t);
5886 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
5887 if (TREE_CODE (field) == FIELD_DECL)
5889 *next_field = build_decl (input_location,
5890 FIELD_DECL,
5891 DECL_NAME (field),
5892 TREE_TYPE (field));
5893 DECL_CONTEXT (*next_field) = base_t;
5894 DECL_FIELD_OFFSET (*next_field) = DECL_FIELD_OFFSET (field);
5895 DECL_FIELD_BIT_OFFSET (*next_field)
5896 = DECL_FIELD_BIT_OFFSET (field);
5897 DECL_SIZE (*next_field) = DECL_SIZE (field);
5898 DECL_MODE (*next_field) = DECL_MODE (field);
5899 next_field = &DECL_CHAIN (*next_field);
5902 /* Record the base version of the type. */
5903 CLASSTYPE_AS_BASE (t) = base_t;
5904 TYPE_CONTEXT (base_t) = t;
5906 else
5907 CLASSTYPE_AS_BASE (t) = t;
5909 /* Every empty class contains an empty class. */
5910 if (CLASSTYPE_EMPTY_P (t))
5911 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
5913 /* Set the TYPE_DECL for this type to contain the right
5914 value for DECL_OFFSET, so that we can use it as part
5915 of a COMPONENT_REF for multiple inheritance. */
5916 layout_decl (TYPE_MAIN_DECL (t), 0);
5918 /* Now fix up any virtual base class types that we left lying
5919 around. We must get these done before we try to lay out the
5920 virtual function table. As a side-effect, this will remove the
5921 base subobject fields. */
5922 layout_virtual_bases (rli, empty_base_offsets);
5924 /* Make sure that empty classes are reflected in RLI at this
5925 point. */
5926 include_empty_classes(rli);
5928 /* Make sure not to create any structures with zero size. */
5929 if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t))
5930 place_field (rli,
5931 build_decl (input_location,
5932 FIELD_DECL, NULL_TREE, char_type_node));
5934 /* If this is a non-POD, declaring it packed makes a difference to how it
5935 can be used as a field; don't let finalize_record_size undo it. */
5936 if (TYPE_PACKED (t) && !layout_pod_type_p (t))
5937 rli->packed_maybe_necessary = true;
5939 /* Let the back end lay out the type. */
5940 finish_record_layout (rli, /*free_p=*/true);
5942 /* Warn about bases that can't be talked about due to ambiguity. */
5943 warn_about_ambiguous_bases (t);
5945 /* Now that we're done with layout, give the base fields the real types. */
5946 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
5947 if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field)))
5948 TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field));
5950 /* Clean up. */
5951 splay_tree_delete (empty_base_offsets);
5953 if (CLASSTYPE_EMPTY_P (t)
5954 && tree_int_cst_lt (sizeof_biggest_empty_class,
5955 TYPE_SIZE_UNIT (t)))
5956 sizeof_biggest_empty_class = TYPE_SIZE_UNIT (t);
5959 /* Determine the "key method" for the class type indicated by TYPE,
5960 and set CLASSTYPE_KEY_METHOD accordingly. */
5962 void
5963 determine_key_method (tree type)
5965 tree method;
5967 if (TYPE_FOR_JAVA (type)
5968 || processing_template_decl
5969 || CLASSTYPE_TEMPLATE_INSTANTIATION (type)
5970 || CLASSTYPE_INTERFACE_KNOWN (type))
5971 return;
5973 /* The key method is the first non-pure virtual function that is not
5974 inline at the point of class definition. On some targets the
5975 key function may not be inline; those targets should not call
5976 this function until the end of the translation unit. */
5977 for (method = TYPE_METHODS (type); method != NULL_TREE;
5978 method = DECL_CHAIN (method))
5979 if (DECL_VINDEX (method) != NULL_TREE
5980 && ! DECL_DECLARED_INLINE_P (method)
5981 && ! DECL_PURE_VIRTUAL_P (method))
5983 CLASSTYPE_KEY_METHOD (type) = method;
5984 break;
5987 return;
5991 /* Allocate and return an instance of struct sorted_fields_type with
5992 N fields. */
5994 static struct sorted_fields_type *
5995 sorted_fields_type_new (int n)
5997 struct sorted_fields_type *sft;
5998 sft = ggc_alloc_sorted_fields_type (sizeof (struct sorted_fields_type)
5999 + n * sizeof (tree));
6000 sft->len = n;
6002 return sft;
6006 /* Perform processing required when the definition of T (a class type)
6007 is complete. */
6009 void
6010 finish_struct_1 (tree t)
6012 tree x;
6013 /* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
6014 tree virtuals = NULL_TREE;
6016 if (COMPLETE_TYPE_P (t))
6018 gcc_assert (MAYBE_CLASS_TYPE_P (t));
6019 error ("redefinition of %q#T", t);
6020 popclass ();
6021 return;
6024 /* If this type was previously laid out as a forward reference,
6025 make sure we lay it out again. */
6026 TYPE_SIZE (t) = NULL_TREE;
6027 CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE;
6029 /* Make assumptions about the class; we'll reset the flags if
6030 necessary. */
6031 CLASSTYPE_EMPTY_P (t) = 1;
6032 CLASSTYPE_NEARLY_EMPTY_P (t) = 1;
6033 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0;
6034 CLASSTYPE_LITERAL_P (t) = true;
6036 /* Do end-of-class semantic processing: checking the validity of the
6037 bases and members and add implicitly generated methods. */
6038 check_bases_and_members (t);
6040 /* Find the key method. */
6041 if (TYPE_CONTAINS_VPTR_P (t))
6043 /* The Itanium C++ ABI permits the key method to be chosen when
6044 the class is defined -- even though the key method so
6045 selected may later turn out to be an inline function. On
6046 some systems (such as ARM Symbian OS) the key method cannot
6047 be determined until the end of the translation unit. On such
6048 systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
6049 will cause the class to be added to KEYED_CLASSES. Then, in
6050 finish_file we will determine the key method. */
6051 if (targetm.cxx.key_method_may_be_inline ())
6052 determine_key_method (t);
6054 /* If a polymorphic class has no key method, we may emit the vtable
6055 in every translation unit where the class definition appears. */
6056 if (CLASSTYPE_KEY_METHOD (t) == NULL_TREE)
6057 keyed_classes = tree_cons (NULL_TREE, t, keyed_classes);
6060 /* Layout the class itself. */
6061 layout_class_type (t, &virtuals);
6062 if (CLASSTYPE_AS_BASE (t) != t)
6063 /* We use the base type for trivial assignments, and hence it
6064 needs a mode. */
6065 compute_record_mode (CLASSTYPE_AS_BASE (t));
6067 virtuals = modify_all_vtables (t, nreverse (virtuals));
6069 /* If necessary, create the primary vtable for this class. */
6070 if (virtuals || TYPE_CONTAINS_VPTR_P (t))
6072 /* We must enter these virtuals into the table. */
6073 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
6074 build_primary_vtable (NULL_TREE, t);
6075 else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
6076 /* Here we know enough to change the type of our virtual
6077 function table, but we will wait until later this function. */
6078 build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t);
6081 if (TYPE_CONTAINS_VPTR_P (t))
6083 int vindex;
6084 tree fn;
6086 if (BINFO_VTABLE (TYPE_BINFO (t)))
6087 gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t))));
6088 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
6089 gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t)) == NULL_TREE);
6091 /* Add entries for virtual functions introduced by this class. */
6092 BINFO_VIRTUALS (TYPE_BINFO (t))
6093 = chainon (BINFO_VIRTUALS (TYPE_BINFO (t)), virtuals);
6095 /* Set DECL_VINDEX for all functions declared in this class. */
6096 for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t));
6098 fn = TREE_CHAIN (fn),
6099 vindex += (TARGET_VTABLE_USES_DESCRIPTORS
6100 ? TARGET_VTABLE_USES_DESCRIPTORS : 1))
6102 tree fndecl = BV_FN (fn);
6104 if (DECL_THUNK_P (fndecl))
6105 /* A thunk. We should never be calling this entry directly
6106 from this vtable -- we'd use the entry for the non
6107 thunk base function. */
6108 DECL_VINDEX (fndecl) = NULL_TREE;
6109 else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
6110 DECL_VINDEX (fndecl) = build_int_cst (NULL_TREE, vindex);
6114 finish_struct_bits (t);
6115 set_method_tm_attributes (t);
6117 /* Complete the rtl for any static member objects of the type we're
6118 working on. */
6119 for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
6120 if (TREE_CODE (x) == VAR_DECL && TREE_STATIC (x)
6121 && TREE_TYPE (x) != error_mark_node
6122 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t))
6123 DECL_MODE (x) = TYPE_MODE (t);
6125 /* Done with FIELDS...now decide whether to sort these for
6126 faster lookups later.
6128 We use a small number because most searches fail (succeeding
6129 ultimately as the search bores through the inheritance
6130 hierarchy), and we want this failure to occur quickly. */
6132 insert_into_classtype_sorted_fields (TYPE_FIELDS (t), t, 8);
6134 /* Complain if one of the field types requires lower visibility. */
6135 constrain_class_visibility (t);
6137 /* Make the rtl for any new vtables we have created, and unmark
6138 the base types we marked. */
6139 finish_vtbls (t);
6141 /* Build the VTT for T. */
6142 build_vtt (t);
6144 /* This warning does not make sense for Java classes, since they
6145 cannot have destructors. */
6146 if (!TYPE_FOR_JAVA (t) && warn_nonvdtor && TYPE_POLYMORPHIC_P (t))
6148 tree dtor;
6150 dtor = CLASSTYPE_DESTRUCTORS (t);
6151 if (/* An implicitly declared destructor is always public. And,
6152 if it were virtual, we would have created it by now. */
6153 !dtor
6154 || (!DECL_VINDEX (dtor)
6155 && (/* public non-virtual */
6156 (!TREE_PRIVATE (dtor) && !TREE_PROTECTED (dtor))
6157 || (/* non-public non-virtual with friends */
6158 (TREE_PRIVATE (dtor) || TREE_PROTECTED (dtor))
6159 && (CLASSTYPE_FRIEND_CLASSES (t)
6160 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))))))
6161 warning (OPT_Wnon_virtual_dtor,
6162 "%q#T has virtual functions and accessible"
6163 " non-virtual destructor", t);
6166 complete_vars (t);
6168 if (warn_overloaded_virtual)
6169 warn_hidden (t);
6171 /* Class layout, assignment of virtual table slots, etc., is now
6172 complete. Give the back end a chance to tweak the visibility of
6173 the class or perform any other required target modifications. */
6174 targetm.cxx.adjust_class_at_definition (t);
6176 maybe_suppress_debug_info (t);
6178 dump_class_hierarchy (t);
6180 /* Finish debugging output for this type. */
6181 rest_of_type_compilation (t, ! LOCAL_CLASS_P (t));
6183 if (TYPE_TRANSPARENT_AGGR (t))
6185 tree field = first_field (t);
6186 if (field == NULL_TREE || error_operand_p (field))
6188 error ("type transparent class %qT does not have any fields", t);
6189 TYPE_TRANSPARENT_AGGR (t) = 0;
6191 else if (DECL_ARTIFICIAL (field))
6193 if (DECL_FIELD_IS_BASE (field))
6194 error ("type transparent class %qT has base classes", t);
6195 else
6197 gcc_checking_assert (DECL_VIRTUAL_P (field));
6198 error ("type transparent class %qT has virtual functions", t);
6200 TYPE_TRANSPARENT_AGGR (t) = 0;
6205 /* Insert FIELDS into T for the sorted case if the FIELDS count is
6206 equal to THRESHOLD or greater than THRESHOLD. */
6208 static void
6209 insert_into_classtype_sorted_fields (tree fields, tree t, int threshold)
6211 int n_fields = count_fields (fields);
6212 if (n_fields >= threshold)
6214 struct sorted_fields_type *field_vec = sorted_fields_type_new (n_fields);
6215 add_fields_to_record_type (fields, field_vec, 0);
6216 qsort (field_vec->elts, n_fields, sizeof (tree), field_decl_cmp);
6217 CLASSTYPE_SORTED_FIELDS (t) = field_vec;
6221 /* Insert lately defined enum ENUMTYPE into T for the sorted case. */
6223 void
6224 insert_late_enum_def_into_classtype_sorted_fields (tree enumtype, tree t)
6226 struct sorted_fields_type *sorted_fields = CLASSTYPE_SORTED_FIELDS (t);
6227 if (sorted_fields)
6229 int i;
6230 int n_fields
6231 = list_length (TYPE_VALUES (enumtype)) + sorted_fields->len;
6232 struct sorted_fields_type *field_vec = sorted_fields_type_new (n_fields);
6234 for (i = 0; i < sorted_fields->len; ++i)
6235 field_vec->elts[i] = sorted_fields->elts[i];
6237 add_enum_fields_to_record_type (enumtype, field_vec,
6238 sorted_fields->len);
6239 qsort (field_vec->elts, n_fields, sizeof (tree), field_decl_cmp);
6240 CLASSTYPE_SORTED_FIELDS (t) = field_vec;
6244 /* When T was built up, the member declarations were added in reverse
6245 order. Rearrange them to declaration order. */
6247 void
6248 unreverse_member_declarations (tree t)
6250 tree next;
6251 tree prev;
6252 tree x;
6254 /* The following lists are all in reverse order. Put them in
6255 declaration order now. */
6256 TYPE_METHODS (t) = nreverse (TYPE_METHODS (t));
6257 CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t));
6259 /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
6260 reverse order, so we can't just use nreverse. */
6261 prev = NULL_TREE;
6262 for (x = TYPE_FIELDS (t);
6263 x && TREE_CODE (x) != TYPE_DECL;
6264 x = next)
6266 next = DECL_CHAIN (x);
6267 DECL_CHAIN (x) = prev;
6268 prev = x;
6270 if (prev)
6272 DECL_CHAIN (TYPE_FIELDS (t)) = x;
6273 if (prev)
6274 TYPE_FIELDS (t) = prev;
6278 tree
6279 finish_struct (tree t, tree attributes)
6281 location_t saved_loc = input_location;
6283 /* Now that we've got all the field declarations, reverse everything
6284 as necessary. */
6285 unreverse_member_declarations (t);
6287 cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
6289 /* Nadger the current location so that diagnostics point to the start of
6290 the struct, not the end. */
6291 input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t));
6293 if (processing_template_decl)
6295 tree x;
6297 finish_struct_methods (t);
6298 TYPE_SIZE (t) = bitsize_zero_node;
6299 TYPE_SIZE_UNIT (t) = size_zero_node;
6301 /* We need to emit an error message if this type was used as a parameter
6302 and it is an abstract type, even if it is a template. We construct
6303 a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
6304 account and we call complete_vars with this type, which will check
6305 the PARM_DECLS. Note that while the type is being defined,
6306 CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
6307 (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */
6308 CLASSTYPE_PURE_VIRTUALS (t) = NULL;
6309 for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x))
6310 if (DECL_PURE_VIRTUAL_P (x))
6311 VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (t), x);
6312 complete_vars (t);
6313 /* We need to add the target functions to the CLASSTYPE_METHOD_VEC if
6314 an enclosing scope is a template class, so that this function be
6315 found by lookup_fnfields_1 when the using declaration is not
6316 instantiated yet. */
6317 for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
6318 if (TREE_CODE (x) == USING_DECL)
6320 tree fn = strip_using_decl (x);
6321 if (is_overloaded_fn (fn))
6322 for (; fn; fn = OVL_NEXT (fn))
6323 add_method (t, OVL_CURRENT (fn), x);
6326 /* Remember current #pragma pack value. */
6327 TYPE_PRECISION (t) = maximum_field_alignment;
6329 else
6330 finish_struct_1 (t);
6332 input_location = saved_loc;
6334 TYPE_BEING_DEFINED (t) = 0;
6336 if (current_class_type)
6337 popclass ();
6338 else
6339 error ("trying to finish struct, but kicked out due to previous parse errors");
6341 if (processing_template_decl && at_function_scope_p ()
6342 /* Lambdas are defined by the LAMBDA_EXPR. */
6343 && !LAMBDA_TYPE_P (t))
6344 add_stmt (build_min (TAG_DEFN, t));
6346 return t;
6349 /* Return the dynamic type of INSTANCE, if known.
6350 Used to determine whether the virtual function table is needed
6351 or not.
6353 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
6354 of our knowledge of its type. *NONNULL should be initialized
6355 before this function is called. */
6357 static tree
6358 fixed_type_or_null (tree instance, int *nonnull, int *cdtorp)
6360 #define RECUR(T) fixed_type_or_null((T), nonnull, cdtorp)
6362 switch (TREE_CODE (instance))
6364 case INDIRECT_REF:
6365 if (POINTER_TYPE_P (TREE_TYPE (instance)))
6366 return NULL_TREE;
6367 else
6368 return RECUR (TREE_OPERAND (instance, 0));
6370 case CALL_EXPR:
6371 /* This is a call to a constructor, hence it's never zero. */
6372 if (TREE_HAS_CONSTRUCTOR (instance))
6374 if (nonnull)
6375 *nonnull = 1;
6376 return TREE_TYPE (instance);
6378 return NULL_TREE;
6380 case SAVE_EXPR:
6381 /* This is a call to a constructor, hence it's never zero. */
6382 if (TREE_HAS_CONSTRUCTOR (instance))
6384 if (nonnull)
6385 *nonnull = 1;
6386 return TREE_TYPE (instance);
6388 return RECUR (TREE_OPERAND (instance, 0));
6390 case POINTER_PLUS_EXPR:
6391 case PLUS_EXPR:
6392 case MINUS_EXPR:
6393 if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
6394 return RECUR (TREE_OPERAND (instance, 0));
6395 if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
6396 /* Propagate nonnull. */
6397 return RECUR (TREE_OPERAND (instance, 0));
6399 return NULL_TREE;
6401 CASE_CONVERT:
6402 return RECUR (TREE_OPERAND (instance, 0));
6404 case ADDR_EXPR:
6405 instance = TREE_OPERAND (instance, 0);
6406 if (nonnull)
6408 /* Just because we see an ADDR_EXPR doesn't mean we're dealing
6409 with a real object -- given &p->f, p can still be null. */
6410 tree t = get_base_address (instance);
6411 /* ??? Probably should check DECL_WEAK here. */
6412 if (t && DECL_P (t))
6413 *nonnull = 1;
6415 return RECUR (instance);
6417 case COMPONENT_REF:
6418 /* If this component is really a base class reference, then the field
6419 itself isn't definitive. */
6420 if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance, 1)))
6421 return RECUR (TREE_OPERAND (instance, 0));
6422 return RECUR (TREE_OPERAND (instance, 1));
6424 case VAR_DECL:
6425 case FIELD_DECL:
6426 if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
6427 && MAYBE_CLASS_TYPE_P (TREE_TYPE (TREE_TYPE (instance))))
6429 if (nonnull)
6430 *nonnull = 1;
6431 return TREE_TYPE (TREE_TYPE (instance));
6433 /* fall through... */
6434 case TARGET_EXPR:
6435 case PARM_DECL:
6436 case RESULT_DECL:
6437 if (MAYBE_CLASS_TYPE_P (TREE_TYPE (instance)))
6439 if (nonnull)
6440 *nonnull = 1;
6441 return TREE_TYPE (instance);
6443 else if (instance == current_class_ptr)
6445 if (nonnull)
6446 *nonnull = 1;
6448 /* if we're in a ctor or dtor, we know our type. If
6449 current_class_ptr is set but we aren't in a function, we're in
6450 an NSDMI (and therefore a constructor). */
6451 if (current_scope () != current_function_decl
6452 || (DECL_LANG_SPECIFIC (current_function_decl)
6453 && (DECL_CONSTRUCTOR_P (current_function_decl)
6454 || DECL_DESTRUCTOR_P (current_function_decl))))
6456 if (cdtorp)
6457 *cdtorp = 1;
6458 return TREE_TYPE (TREE_TYPE (instance));
6461 else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
6463 /* We only need one hash table because it is always left empty. */
6464 static htab_t ht;
6465 if (!ht)
6466 ht = htab_create (37,
6467 htab_hash_pointer,
6468 htab_eq_pointer,
6469 /*htab_del=*/NULL);
6471 /* Reference variables should be references to objects. */
6472 if (nonnull)
6473 *nonnull = 1;
6475 /* Enter the INSTANCE in a table to prevent recursion; a
6476 variable's initializer may refer to the variable
6477 itself. */
6478 if (TREE_CODE (instance) == VAR_DECL
6479 && DECL_INITIAL (instance)
6480 && !type_dependent_expression_p_push (DECL_INITIAL (instance))
6481 && !htab_find (ht, instance))
6483 tree type;
6484 void **slot;
6486 slot = htab_find_slot (ht, instance, INSERT);
6487 *slot = instance;
6488 type = RECUR (DECL_INITIAL (instance));
6489 htab_remove_elt (ht, instance);
6491 return type;
6494 return NULL_TREE;
6496 default:
6497 return NULL_TREE;
6499 #undef RECUR
6502 /* Return nonzero if the dynamic type of INSTANCE is known, and
6503 equivalent to the static type. We also handle the case where
6504 INSTANCE is really a pointer. Return negative if this is a
6505 ctor/dtor. There the dynamic type is known, but this might not be
6506 the most derived base of the original object, and hence virtual
6507 bases may not be layed out according to this type.
6509 Used to determine whether the virtual function table is needed
6510 or not.
6512 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
6513 of our knowledge of its type. *NONNULL should be initialized
6514 before this function is called. */
6517 resolves_to_fixed_type_p (tree instance, int* nonnull)
6519 tree t = TREE_TYPE (instance);
6520 int cdtorp = 0;
6521 tree fixed;
6523 /* processing_template_decl can be false in a template if we're in
6524 fold_non_dependent_expr, but we still want to suppress this check. */
6525 if (in_template_function ())
6527 /* In a template we only care about the type of the result. */
6528 if (nonnull)
6529 *nonnull = true;
6530 return true;
6533 fixed = fixed_type_or_null (instance, nonnull, &cdtorp);
6534 if (fixed == NULL_TREE)
6535 return 0;
6536 if (POINTER_TYPE_P (t))
6537 t = TREE_TYPE (t);
6538 if (!same_type_ignoring_top_level_qualifiers_p (t, fixed))
6539 return 0;
6540 return cdtorp ? -1 : 1;
6544 void
6545 init_class_processing (void)
6547 current_class_depth = 0;
6548 current_class_stack_size = 10;
6549 current_class_stack
6550 = XNEWVEC (struct class_stack_node, current_class_stack_size);
6551 local_classes = VEC_alloc (tree, gc, 8);
6552 sizeof_biggest_empty_class = size_zero_node;
6554 ridpointers[(int) RID_PUBLIC] = access_public_node;
6555 ridpointers[(int) RID_PRIVATE] = access_private_node;
6556 ridpointers[(int) RID_PROTECTED] = access_protected_node;
6559 /* Restore the cached PREVIOUS_CLASS_LEVEL. */
6561 static void
6562 restore_class_cache (void)
6564 tree type;
6566 /* We are re-entering the same class we just left, so we don't
6567 have to search the whole inheritance matrix to find all the
6568 decls to bind again. Instead, we install the cached
6569 class_shadowed list and walk through it binding names. */
6570 push_binding_level (previous_class_level);
6571 class_binding_level = previous_class_level;
6572 /* Restore IDENTIFIER_TYPE_VALUE. */
6573 for (type = class_binding_level->type_shadowed;
6574 type;
6575 type = TREE_CHAIN (type))
6576 SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type), TREE_TYPE (type));
6579 /* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
6580 appropriate for TYPE.
6582 So that we may avoid calls to lookup_name, we cache the _TYPE
6583 nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
6585 For multiple inheritance, we perform a two-pass depth-first search
6586 of the type lattice. */
6588 void
6589 pushclass (tree type)
6591 class_stack_node_t csn;
6593 type = TYPE_MAIN_VARIANT (type);
6595 /* Make sure there is enough room for the new entry on the stack. */
6596 if (current_class_depth + 1 >= current_class_stack_size)
6598 current_class_stack_size *= 2;
6599 current_class_stack
6600 = XRESIZEVEC (struct class_stack_node, current_class_stack,
6601 current_class_stack_size);
6604 /* Insert a new entry on the class stack. */
6605 csn = current_class_stack + current_class_depth;
6606 csn->name = current_class_name;
6607 csn->type = current_class_type;
6608 csn->access = current_access_specifier;
6609 csn->names_used = 0;
6610 csn->hidden = 0;
6611 current_class_depth++;
6613 /* Now set up the new type. */
6614 current_class_name = TYPE_NAME (type);
6615 if (TREE_CODE (current_class_name) == TYPE_DECL)
6616 current_class_name = DECL_NAME (current_class_name);
6617 current_class_type = type;
6619 /* By default, things in classes are private, while things in
6620 structures or unions are public. */
6621 current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type)
6622 ? access_private_node
6623 : access_public_node);
6625 if (previous_class_level
6626 && type != previous_class_level->this_entity
6627 && current_class_depth == 1)
6629 /* Forcibly remove any old class remnants. */
6630 invalidate_class_lookup_cache ();
6633 if (!previous_class_level
6634 || type != previous_class_level->this_entity
6635 || current_class_depth > 1)
6636 pushlevel_class ();
6637 else
6638 restore_class_cache ();
6641 /* When we exit a toplevel class scope, we save its binding level so
6642 that we can restore it quickly. Here, we've entered some other
6643 class, so we must invalidate our cache. */
6645 void
6646 invalidate_class_lookup_cache (void)
6648 previous_class_level = NULL;
6651 /* Get out of the current class scope. If we were in a class scope
6652 previously, that is the one popped to. */
6654 void
6655 popclass (void)
6657 poplevel_class ();
6659 current_class_depth--;
6660 current_class_name = current_class_stack[current_class_depth].name;
6661 current_class_type = current_class_stack[current_class_depth].type;
6662 current_access_specifier = current_class_stack[current_class_depth].access;
6663 if (current_class_stack[current_class_depth].names_used)
6664 splay_tree_delete (current_class_stack[current_class_depth].names_used);
6667 /* Mark the top of the class stack as hidden. */
6669 void
6670 push_class_stack (void)
6672 if (current_class_depth)
6673 ++current_class_stack[current_class_depth - 1].hidden;
6676 /* Mark the top of the class stack as un-hidden. */
6678 void
6679 pop_class_stack (void)
6681 if (current_class_depth)
6682 --current_class_stack[current_class_depth - 1].hidden;
6685 /* Returns 1 if the class type currently being defined is either T or
6686 a nested type of T. */
6688 bool
6689 currently_open_class (tree t)
6691 int i;
6693 if (!CLASS_TYPE_P (t))
6694 return false;
6696 t = TYPE_MAIN_VARIANT (t);
6698 /* We start looking from 1 because entry 0 is from global scope,
6699 and has no type. */
6700 for (i = current_class_depth; i > 0; --i)
6702 tree c;
6703 if (i == current_class_depth)
6704 c = current_class_type;
6705 else
6707 if (current_class_stack[i].hidden)
6708 break;
6709 c = current_class_stack[i].type;
6711 if (!c)
6712 continue;
6713 if (same_type_p (c, t))
6714 return true;
6716 return false;
6719 /* If either current_class_type or one of its enclosing classes are derived
6720 from T, return the appropriate type. Used to determine how we found
6721 something via unqualified lookup. */
6723 tree
6724 currently_open_derived_class (tree t)
6726 int i;
6728 /* The bases of a dependent type are unknown. */
6729 if (dependent_type_p (t))
6730 return NULL_TREE;
6732 if (!current_class_type)
6733 return NULL_TREE;
6735 if (DERIVED_FROM_P (t, current_class_type))
6736 return current_class_type;
6738 for (i = current_class_depth - 1; i > 0; --i)
6740 if (current_class_stack[i].hidden)
6741 break;
6742 if (DERIVED_FROM_P (t, current_class_stack[i].type))
6743 return current_class_stack[i].type;
6746 return NULL_TREE;
6749 /* Returns the innermost class type which is not a lambda closure type. */
6751 tree
6752 current_nonlambda_class_type (void)
6754 int i;
6756 /* We start looking from 1 because entry 0 is from global scope,
6757 and has no type. */
6758 for (i = current_class_depth; i > 0; --i)
6760 tree c;
6761 if (i == current_class_depth)
6762 c = current_class_type;
6763 else
6765 if (current_class_stack[i].hidden)
6766 break;
6767 c = current_class_stack[i].type;
6769 if (!c)
6770 continue;
6771 if (!LAMBDA_TYPE_P (c))
6772 return c;
6774 return NULL_TREE;
6777 /* When entering a class scope, all enclosing class scopes' names with
6778 static meaning (static variables, static functions, types and
6779 enumerators) have to be visible. This recursive function calls
6780 pushclass for all enclosing class contexts until global or a local
6781 scope is reached. TYPE is the enclosed class. */
6783 void
6784 push_nested_class (tree type)
6786 /* A namespace might be passed in error cases, like A::B:C. */
6787 if (type == NULL_TREE
6788 || !CLASS_TYPE_P (type))
6789 return;
6791 push_nested_class (DECL_CONTEXT (TYPE_MAIN_DECL (type)));
6793 pushclass (type);
6796 /* Undoes a push_nested_class call. */
6798 void
6799 pop_nested_class (void)
6801 tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type));
6803 popclass ();
6804 if (context && CLASS_TYPE_P (context))
6805 pop_nested_class ();
6808 /* Returns the number of extern "LANG" blocks we are nested within. */
6811 current_lang_depth (void)
6813 return VEC_length (tree, current_lang_base);
6816 /* Set global variables CURRENT_LANG_NAME to appropriate value
6817 so that behavior of name-mangling machinery is correct. */
6819 void
6820 push_lang_context (tree name)
6822 VEC_safe_push (tree, gc, current_lang_base, current_lang_name);
6824 if (name == lang_name_cplusplus)
6826 current_lang_name = name;
6828 else if (name == lang_name_java)
6830 current_lang_name = name;
6831 /* DECL_IGNORED_P is initially set for these types, to avoid clutter.
6832 (See record_builtin_java_type in decl.c.) However, that causes
6833 incorrect debug entries if these types are actually used.
6834 So we re-enable debug output after extern "Java". */
6835 DECL_IGNORED_P (TYPE_NAME (java_byte_type_node)) = 0;
6836 DECL_IGNORED_P (TYPE_NAME (java_short_type_node)) = 0;
6837 DECL_IGNORED_P (TYPE_NAME (java_int_type_node)) = 0;
6838 DECL_IGNORED_P (TYPE_NAME (java_long_type_node)) = 0;
6839 DECL_IGNORED_P (TYPE_NAME (java_float_type_node)) = 0;
6840 DECL_IGNORED_P (TYPE_NAME (java_double_type_node)) = 0;
6841 DECL_IGNORED_P (TYPE_NAME (java_char_type_node)) = 0;
6842 DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node)) = 0;
6844 else if (name == lang_name_c)
6846 current_lang_name = name;
6848 else
6849 error ("language string %<\"%E\"%> not recognized", name);
6852 /* Get out of the current language scope. */
6854 void
6855 pop_lang_context (void)
6857 current_lang_name = VEC_pop (tree, current_lang_base);
6860 /* Type instantiation routines. */
6862 /* Given an OVERLOAD and a TARGET_TYPE, return the function that
6863 matches the TARGET_TYPE. If there is no satisfactory match, return
6864 error_mark_node, and issue an error & warning messages under
6865 control of FLAGS. Permit pointers to member function if FLAGS
6866 permits. If TEMPLATE_ONLY, the name of the overloaded function was
6867 a template-id, and EXPLICIT_TARGS are the explicitly provided
6868 template arguments.
6870 If OVERLOAD is for one or more member functions, then ACCESS_PATH
6871 is the base path used to reference those member functions. If
6872 TF_NO_ACCESS_CONTROL is not set in FLAGS, and the address is
6873 resolved to a member function, access checks will be performed and
6874 errors issued if appropriate. */
6876 static tree
6877 resolve_address_of_overloaded_function (tree target_type,
6878 tree overload,
6879 tsubst_flags_t flags,
6880 bool template_only,
6881 tree explicit_targs,
6882 tree access_path)
6884 /* Here's what the standard says:
6886 [over.over]
6888 If the name is a function template, template argument deduction
6889 is done, and if the argument deduction succeeds, the deduced
6890 arguments are used to generate a single template function, which
6891 is added to the set of overloaded functions considered.
6893 Non-member functions and static member functions match targets of
6894 type "pointer-to-function" or "reference-to-function." Nonstatic
6895 member functions match targets of type "pointer-to-member
6896 function;" the function type of the pointer to member is used to
6897 select the member function from the set of overloaded member
6898 functions. If a nonstatic member function is selected, the
6899 reference to the overloaded function name is required to have the
6900 form of a pointer to member as described in 5.3.1.
6902 If more than one function is selected, any template functions in
6903 the set are eliminated if the set also contains a non-template
6904 function, and any given template function is eliminated if the
6905 set contains a second template function that is more specialized
6906 than the first according to the partial ordering rules 14.5.5.2.
6907 After such eliminations, if any, there shall remain exactly one
6908 selected function. */
6910 int is_ptrmem = 0;
6911 /* We store the matches in a TREE_LIST rooted here. The functions
6912 are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
6913 interoperability with most_specialized_instantiation. */
6914 tree matches = NULL_TREE;
6915 tree fn;
6916 tree target_fn_type;
6918 /* By the time we get here, we should be seeing only real
6919 pointer-to-member types, not the internal POINTER_TYPE to
6920 METHOD_TYPE representation. */
6921 gcc_assert (TREE_CODE (target_type) != POINTER_TYPE
6922 || TREE_CODE (TREE_TYPE (target_type)) != METHOD_TYPE);
6924 gcc_assert (is_overloaded_fn (overload));
6926 /* Check that the TARGET_TYPE is reasonable. */
6927 if (TYPE_PTRFN_P (target_type))
6928 /* This is OK. */;
6929 else if (TYPE_PTRMEMFUNC_P (target_type))
6930 /* This is OK, too. */
6931 is_ptrmem = 1;
6932 else if (TREE_CODE (target_type) == FUNCTION_TYPE)
6933 /* This is OK, too. This comes from a conversion to reference
6934 type. */
6935 target_type = build_reference_type (target_type);
6936 else
6938 if (flags & tf_error)
6939 error ("cannot resolve overloaded function %qD based on"
6940 " conversion to type %qT",
6941 DECL_NAME (OVL_FUNCTION (overload)), target_type);
6942 return error_mark_node;
6945 /* Non-member functions and static member functions match targets of type
6946 "pointer-to-function" or "reference-to-function." Nonstatic member
6947 functions match targets of type "pointer-to-member-function;" the
6948 function type of the pointer to member is used to select the member
6949 function from the set of overloaded member functions.
6951 So figure out the FUNCTION_TYPE that we want to match against. */
6952 target_fn_type = static_fn_type (target_type);
6954 /* If we can find a non-template function that matches, we can just
6955 use it. There's no point in generating template instantiations
6956 if we're just going to throw them out anyhow. But, of course, we
6957 can only do this when we don't *need* a template function. */
6958 if (!template_only)
6960 tree fns;
6962 for (fns = overload; fns; fns = OVL_NEXT (fns))
6964 tree fn = OVL_CURRENT (fns);
6966 if (TREE_CODE (fn) == TEMPLATE_DECL)
6967 /* We're not looking for templates just yet. */
6968 continue;
6970 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
6971 != is_ptrmem)
6972 /* We're looking for a non-static member, and this isn't
6973 one, or vice versa. */
6974 continue;
6976 /* Ignore functions which haven't been explicitly
6977 declared. */
6978 if (DECL_ANTICIPATED (fn))
6979 continue;
6981 /* See if there's a match. */
6982 if (same_type_p (target_fn_type, static_fn_type (fn)))
6983 matches = tree_cons (fn, NULL_TREE, matches);
6987 /* Now, if we've already got a match (or matches), there's no need
6988 to proceed to the template functions. But, if we don't have a
6989 match we need to look at them, too. */
6990 if (!matches)
6992 tree target_arg_types;
6993 tree target_ret_type;
6994 tree fns;
6995 tree *args;
6996 unsigned int nargs, ia;
6997 tree arg;
6999 target_arg_types = TYPE_ARG_TYPES (target_fn_type);
7000 target_ret_type = TREE_TYPE (target_fn_type);
7002 nargs = list_length (target_arg_types);
7003 args = XALLOCAVEC (tree, nargs);
7004 for (arg = target_arg_types, ia = 0;
7005 arg != NULL_TREE && arg != void_list_node;
7006 arg = TREE_CHAIN (arg), ++ia)
7007 args[ia] = TREE_VALUE (arg);
7008 nargs = ia;
7010 for (fns = overload; fns; fns = OVL_NEXT (fns))
7012 tree fn = OVL_CURRENT (fns);
7013 tree instantiation;
7014 tree targs;
7016 if (TREE_CODE (fn) != TEMPLATE_DECL)
7017 /* We're only looking for templates. */
7018 continue;
7020 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
7021 != is_ptrmem)
7022 /* We're not looking for a non-static member, and this is
7023 one, or vice versa. */
7024 continue;
7026 /* Try to do argument deduction. */
7027 targs = make_tree_vec (DECL_NTPARMS (fn));
7028 if (fn_type_unification (fn, explicit_targs, targs, args, nargs,
7029 target_ret_type, DEDUCE_EXACT,
7030 LOOKUP_NORMAL, false))
7031 /* Argument deduction failed. */
7032 continue;
7034 /* Instantiate the template. */
7035 instantiation = instantiate_template (fn, targs, flags);
7036 if (instantiation == error_mark_node)
7037 /* Instantiation failed. */
7038 continue;
7040 /* See if there's a match. */
7041 if (same_type_p (target_fn_type, static_fn_type (instantiation)))
7042 matches = tree_cons (instantiation, fn, matches);
7045 /* Now, remove all but the most specialized of the matches. */
7046 if (matches)
7048 tree match = most_specialized_instantiation (matches);
7050 if (match != error_mark_node)
7051 matches = tree_cons (TREE_PURPOSE (match),
7052 NULL_TREE,
7053 NULL_TREE);
7057 /* Now we should have exactly one function in MATCHES. */
7058 if (matches == NULL_TREE)
7060 /* There were *no* matches. */
7061 if (flags & tf_error)
7063 error ("no matches converting function %qD to type %q#T",
7064 DECL_NAME (OVL_CURRENT (overload)),
7065 target_type);
7067 print_candidates (overload);
7069 return error_mark_node;
7071 else if (TREE_CHAIN (matches))
7073 /* There were too many matches. First check if they're all
7074 the same function. */
7075 tree match;
7077 fn = TREE_PURPOSE (matches);
7078 for (match = TREE_CHAIN (matches); match; match = TREE_CHAIN (match))
7079 if (!decls_match (fn, TREE_PURPOSE (match)))
7080 break;
7082 if (match)
7084 if (flags & tf_error)
7086 error ("converting overloaded function %qD to type %q#T is ambiguous",
7087 DECL_NAME (OVL_FUNCTION (overload)),
7088 target_type);
7090 /* Since print_candidates expects the functions in the
7091 TREE_VALUE slot, we flip them here. */
7092 for (match = matches; match; match = TREE_CHAIN (match))
7093 TREE_VALUE (match) = TREE_PURPOSE (match);
7095 print_candidates (matches);
7098 return error_mark_node;
7102 /* Good, exactly one match. Now, convert it to the correct type. */
7103 fn = TREE_PURPOSE (matches);
7105 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
7106 && !(flags & tf_ptrmem_ok) && !flag_ms_extensions)
7108 static int explained;
7110 if (!(flags & tf_error))
7111 return error_mark_node;
7113 permerror (input_location, "assuming pointer to member %qD", fn);
7114 if (!explained)
7116 inform (input_location, "(a pointer to member can only be formed with %<&%E%>)", fn);
7117 explained = 1;
7121 /* If we're doing overload resolution purely for the purpose of
7122 determining conversion sequences, we should not consider the
7123 function used. If this conversion sequence is selected, the
7124 function will be marked as used at this point. */
7125 if (!(flags & tf_conv))
7127 /* Make =delete work with SFINAE. */
7128 if (DECL_DELETED_FN (fn) && !(flags & tf_error))
7129 return error_mark_node;
7131 mark_used (fn);
7134 /* We could not check access to member functions when this
7135 expression was originally created since we did not know at that
7136 time to which function the expression referred. */
7137 if (!(flags & tf_no_access_control)
7138 && DECL_FUNCTION_MEMBER_P (fn))
7140 gcc_assert (access_path);
7141 perform_or_defer_access_check (access_path, fn, fn);
7144 if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type))
7145 return cp_build_addr_expr (fn, flags);
7146 else
7148 /* The target must be a REFERENCE_TYPE. Above, cp_build_unary_op
7149 will mark the function as addressed, but here we must do it
7150 explicitly. */
7151 cxx_mark_addressable (fn);
7153 return fn;
7157 /* This function will instantiate the type of the expression given in
7158 RHS to match the type of LHSTYPE. If errors exist, then return
7159 error_mark_node. FLAGS is a bit mask. If TF_ERROR is set, then
7160 we complain on errors. If we are not complaining, never modify rhs,
7161 as overload resolution wants to try many possible instantiations, in
7162 the hope that at least one will work.
7164 For non-recursive calls, LHSTYPE should be a function, pointer to
7165 function, or a pointer to member function. */
7167 tree
7168 instantiate_type (tree lhstype, tree rhs, tsubst_flags_t flags)
7170 tsubst_flags_t flags_in = flags;
7171 tree access_path = NULL_TREE;
7173 flags &= ~tf_ptrmem_ok;
7175 if (lhstype == unknown_type_node)
7177 if (flags & tf_error)
7178 error ("not enough type information");
7179 return error_mark_node;
7182 if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
7184 if (same_type_p (lhstype, TREE_TYPE (rhs)))
7185 return rhs;
7186 if (flag_ms_extensions
7187 && TYPE_PTRMEMFUNC_P (lhstype)
7188 && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs)))
7189 /* Microsoft allows `A::f' to be resolved to a
7190 pointer-to-member. */
7192 else
7194 if (flags & tf_error)
7195 error ("cannot convert %qE from type %qT to type %qT",
7196 rhs, TREE_TYPE (rhs), lhstype);
7197 return error_mark_node;
7201 if (BASELINK_P (rhs))
7203 access_path = BASELINK_ACCESS_BINFO (rhs);
7204 rhs = BASELINK_FUNCTIONS (rhs);
7207 /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
7208 deduce any type information. */
7209 if (TREE_CODE (rhs) == NON_DEPENDENT_EXPR)
7211 if (flags & tf_error)
7212 error ("not enough type information");
7213 return error_mark_node;
7216 /* There only a few kinds of expressions that may have a type
7217 dependent on overload resolution. */
7218 gcc_assert (TREE_CODE (rhs) == ADDR_EXPR
7219 || TREE_CODE (rhs) == COMPONENT_REF
7220 || really_overloaded_fn (rhs)
7221 || (flag_ms_extensions && TREE_CODE (rhs) == FUNCTION_DECL));
7223 /* This should really only be used when attempting to distinguish
7224 what sort of a pointer to function we have. For now, any
7225 arithmetic operation which is not supported on pointers
7226 is rejected as an error. */
7228 switch (TREE_CODE (rhs))
7230 case COMPONENT_REF:
7232 tree member = TREE_OPERAND (rhs, 1);
7234 member = instantiate_type (lhstype, member, flags);
7235 if (member != error_mark_node
7236 && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0)))
7237 /* Do not lose object's side effects. */
7238 return build2 (COMPOUND_EXPR, TREE_TYPE (member),
7239 TREE_OPERAND (rhs, 0), member);
7240 return member;
7243 case OFFSET_REF:
7244 rhs = TREE_OPERAND (rhs, 1);
7245 if (BASELINK_P (rhs))
7246 return instantiate_type (lhstype, rhs, flags_in);
7248 /* This can happen if we are forming a pointer-to-member for a
7249 member template. */
7250 gcc_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR);
7252 /* Fall through. */
7254 case TEMPLATE_ID_EXPR:
7256 tree fns = TREE_OPERAND (rhs, 0);
7257 tree args = TREE_OPERAND (rhs, 1);
7259 return
7260 resolve_address_of_overloaded_function (lhstype, fns, flags_in,
7261 /*template_only=*/true,
7262 args, access_path);
7265 case OVERLOAD:
7266 case FUNCTION_DECL:
7267 return
7268 resolve_address_of_overloaded_function (lhstype, rhs, flags_in,
7269 /*template_only=*/false,
7270 /*explicit_targs=*/NULL_TREE,
7271 access_path);
7273 case ADDR_EXPR:
7275 if (PTRMEM_OK_P (rhs))
7276 flags |= tf_ptrmem_ok;
7278 return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
7281 case ERROR_MARK:
7282 return error_mark_node;
7284 default:
7285 gcc_unreachable ();
7287 return error_mark_node;
7290 /* Return the name of the virtual function pointer field
7291 (as an IDENTIFIER_NODE) for the given TYPE. Note that
7292 this may have to look back through base types to find the
7293 ultimate field name. (For single inheritance, these could
7294 all be the same name. Who knows for multiple inheritance). */
7296 static tree
7297 get_vfield_name (tree type)
7299 tree binfo, base_binfo;
7300 char *buf;
7302 for (binfo = TYPE_BINFO (type);
7303 BINFO_N_BASE_BINFOS (binfo);
7304 binfo = base_binfo)
7306 base_binfo = BINFO_BASE_BINFO (binfo, 0);
7308 if (BINFO_VIRTUAL_P (base_binfo)
7309 || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo)))
7310 break;
7313 type = BINFO_TYPE (binfo);
7314 buf = (char *) alloca (sizeof (VFIELD_NAME_FORMAT)
7315 + TYPE_NAME_LENGTH (type) + 2);
7316 sprintf (buf, VFIELD_NAME_FORMAT,
7317 IDENTIFIER_POINTER (constructor_name (type)));
7318 return get_identifier (buf);
7321 void
7322 print_class_statistics (void)
7324 #ifdef GATHER_STATISTICS
7325 fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness);
7326 fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs);
7327 if (n_vtables)
7329 fprintf (stderr, "vtables = %d; vtable searches = %d\n",
7330 n_vtables, n_vtable_searches);
7331 fprintf (stderr, "vtable entries = %d; vtable elems = %d\n",
7332 n_vtable_entries, n_vtable_elems);
7334 #endif
7337 /* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
7338 according to [class]:
7339 The class-name is also inserted
7340 into the scope of the class itself. For purposes of access checking,
7341 the inserted class name is treated as if it were a public member name. */
7343 void
7344 build_self_reference (void)
7346 tree name = constructor_name (current_class_type);
7347 tree value = build_lang_decl (TYPE_DECL, name, current_class_type);
7348 tree saved_cas;
7350 DECL_NONLOCAL (value) = 1;
7351 DECL_CONTEXT (value) = current_class_type;
7352 DECL_ARTIFICIAL (value) = 1;
7353 SET_DECL_SELF_REFERENCE_P (value);
7354 set_underlying_type (value);
7356 if (processing_template_decl)
7357 value = push_template_decl (value);
7359 saved_cas = current_access_specifier;
7360 current_access_specifier = access_public_node;
7361 finish_member_declaration (value);
7362 current_access_specifier = saved_cas;
7365 /* Returns 1 if TYPE contains only padding bytes. */
7368 is_empty_class (tree type)
7370 if (type == error_mark_node)
7371 return 0;
7373 if (! CLASS_TYPE_P (type))
7374 return 0;
7376 /* In G++ 3.2, whether or not a class was empty was determined by
7377 looking at its size. */
7378 if (abi_version_at_least (2))
7379 return CLASSTYPE_EMPTY_P (type);
7380 else
7381 return integer_zerop (CLASSTYPE_SIZE (type));
7384 /* Returns true if TYPE contains an empty class. */
7386 static bool
7387 contains_empty_class_p (tree type)
7389 if (is_empty_class (type))
7390 return true;
7391 if (CLASS_TYPE_P (type))
7393 tree field;
7394 tree binfo;
7395 tree base_binfo;
7396 int i;
7398 for (binfo = TYPE_BINFO (type), i = 0;
7399 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7400 if (contains_empty_class_p (BINFO_TYPE (base_binfo)))
7401 return true;
7402 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
7403 if (TREE_CODE (field) == FIELD_DECL
7404 && !DECL_ARTIFICIAL (field)
7405 && is_empty_class (TREE_TYPE (field)))
7406 return true;
7408 else if (TREE_CODE (type) == ARRAY_TYPE)
7409 return contains_empty_class_p (TREE_TYPE (type));
7410 return false;
7413 /* Returns true if TYPE contains no actual data, just various
7414 possible combinations of empty classes and possibly a vptr. */
7416 bool
7417 is_really_empty_class (tree type)
7419 if (CLASS_TYPE_P (type))
7421 tree field;
7422 tree binfo;
7423 tree base_binfo;
7424 int i;
7426 /* CLASSTYPE_EMPTY_P isn't set properly until the class is actually laid
7427 out, but we'd like to be able to check this before then. */
7428 if (COMPLETE_TYPE_P (type) && is_empty_class (type))
7429 return true;
7431 for (binfo = TYPE_BINFO (type), i = 0;
7432 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7433 if (!is_really_empty_class (BINFO_TYPE (base_binfo)))
7434 return false;
7435 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
7436 if (TREE_CODE (field) == FIELD_DECL
7437 && !DECL_ARTIFICIAL (field)
7438 && !is_really_empty_class (TREE_TYPE (field)))
7439 return false;
7440 return true;
7442 else if (TREE_CODE (type) == ARRAY_TYPE)
7443 return is_really_empty_class (TREE_TYPE (type));
7444 return false;
7447 /* Note that NAME was looked up while the current class was being
7448 defined and that the result of that lookup was DECL. */
7450 void
7451 maybe_note_name_used_in_class (tree name, tree decl)
7453 splay_tree names_used;
7455 /* If we're not defining a class, there's nothing to do. */
7456 if (!(innermost_scope_kind() == sk_class
7457 && TYPE_BEING_DEFINED (current_class_type)
7458 && !LAMBDA_TYPE_P (current_class_type)))
7459 return;
7461 /* If there's already a binding for this NAME, then we don't have
7462 anything to worry about. */
7463 if (lookup_member (current_class_type, name,
7464 /*protect=*/0, /*want_type=*/false, tf_warning_or_error))
7465 return;
7467 if (!current_class_stack[current_class_depth - 1].names_used)
7468 current_class_stack[current_class_depth - 1].names_used
7469 = splay_tree_new (splay_tree_compare_pointers, 0, 0);
7470 names_used = current_class_stack[current_class_depth - 1].names_used;
7472 splay_tree_insert (names_used,
7473 (splay_tree_key) name,
7474 (splay_tree_value) decl);
7477 /* Note that NAME was declared (as DECL) in the current class. Check
7478 to see that the declaration is valid. */
7480 void
7481 note_name_declared_in_class (tree name, tree decl)
7483 splay_tree names_used;
7484 splay_tree_node n;
7486 /* Look to see if we ever used this name. */
7487 names_used
7488 = current_class_stack[current_class_depth - 1].names_used;
7489 if (!names_used)
7490 return;
7491 /* The C language allows members to be declared with a type of the same
7492 name, and the C++ standard says this diagnostic is not required. So
7493 allow it in extern "C" blocks unless predantic is specified.
7494 Allow it in all cases if -ms-extensions is specified. */
7495 if ((!pedantic && current_lang_name == lang_name_c)
7496 || flag_ms_extensions)
7497 return;
7498 n = splay_tree_lookup (names_used, (splay_tree_key) name);
7499 if (n)
7501 /* [basic.scope.class]
7503 A name N used in a class S shall refer to the same declaration
7504 in its context and when re-evaluated in the completed scope of
7505 S. */
7506 permerror (input_location, "declaration of %q#D", decl);
7507 permerror (input_location, "changes meaning of %qD from %q+#D",
7508 DECL_NAME (OVL_CURRENT (decl)), (tree) n->value);
7512 /* Returns the VAR_DECL for the complete vtable associated with BINFO.
7513 Secondary vtables are merged with primary vtables; this function
7514 will return the VAR_DECL for the primary vtable. */
7516 tree
7517 get_vtbl_decl_for_binfo (tree binfo)
7519 tree decl;
7521 decl = BINFO_VTABLE (binfo);
7522 if (decl && TREE_CODE (decl) == POINTER_PLUS_EXPR)
7524 gcc_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR);
7525 decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0);
7527 if (decl)
7528 gcc_assert (TREE_CODE (decl) == VAR_DECL);
7529 return decl;
7533 /* Returns the binfo for the primary base of BINFO. If the resulting
7534 BINFO is a virtual base, and it is inherited elsewhere in the
7535 hierarchy, then the returned binfo might not be the primary base of
7536 BINFO in the complete object. Check BINFO_PRIMARY_P or
7537 BINFO_LOST_PRIMARY_P to be sure. */
7539 static tree
7540 get_primary_binfo (tree binfo)
7542 tree primary_base;
7544 primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo));
7545 if (!primary_base)
7546 return NULL_TREE;
7548 return copied_binfo (primary_base, binfo);
7551 /* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
7553 static int
7554 maybe_indent_hierarchy (FILE * stream, int indent, int indented_p)
7556 if (!indented_p)
7557 fprintf (stream, "%*s", indent, "");
7558 return 1;
7561 /* Dump the offsets of all the bases rooted at BINFO to STREAM.
7562 INDENT should be zero when called from the top level; it is
7563 incremented recursively. IGO indicates the next expected BINFO in
7564 inheritance graph ordering. */
7566 static tree
7567 dump_class_hierarchy_r (FILE *stream,
7568 int flags,
7569 tree binfo,
7570 tree igo,
7571 int indent)
7573 int indented = 0;
7574 tree base_binfo;
7575 int i;
7577 indented = maybe_indent_hierarchy (stream, indent, 0);
7578 fprintf (stream, "%s (0x%lx) ",
7579 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER),
7580 (unsigned long) binfo);
7581 if (binfo != igo)
7583 fprintf (stream, "alternative-path\n");
7584 return igo;
7586 igo = TREE_CHAIN (binfo);
7588 fprintf (stream, HOST_WIDE_INT_PRINT_DEC,
7589 tree_low_cst (BINFO_OFFSET (binfo), 0));
7590 if (is_empty_class (BINFO_TYPE (binfo)))
7591 fprintf (stream, " empty");
7592 else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo)))
7593 fprintf (stream, " nearly-empty");
7594 if (BINFO_VIRTUAL_P (binfo))
7595 fprintf (stream, " virtual");
7596 fprintf (stream, "\n");
7598 indented = 0;
7599 if (BINFO_PRIMARY_P (binfo))
7601 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7602 fprintf (stream, " primary-for %s (0x%lx)",
7603 type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)),
7604 TFF_PLAIN_IDENTIFIER),
7605 (unsigned long)BINFO_INHERITANCE_CHAIN (binfo));
7607 if (BINFO_LOST_PRIMARY_P (binfo))
7609 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7610 fprintf (stream, " lost-primary");
7612 if (indented)
7613 fprintf (stream, "\n");
7615 if (!(flags & TDF_SLIM))
7617 int indented = 0;
7619 if (BINFO_SUBVTT_INDEX (binfo))
7621 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7622 fprintf (stream, " subvttidx=%s",
7623 expr_as_string (BINFO_SUBVTT_INDEX (binfo),
7624 TFF_PLAIN_IDENTIFIER));
7626 if (BINFO_VPTR_INDEX (binfo))
7628 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7629 fprintf (stream, " vptridx=%s",
7630 expr_as_string (BINFO_VPTR_INDEX (binfo),
7631 TFF_PLAIN_IDENTIFIER));
7633 if (BINFO_VPTR_FIELD (binfo))
7635 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7636 fprintf (stream, " vbaseoffset=%s",
7637 expr_as_string (BINFO_VPTR_FIELD (binfo),
7638 TFF_PLAIN_IDENTIFIER));
7640 if (BINFO_VTABLE (binfo))
7642 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7643 fprintf (stream, " vptr=%s",
7644 expr_as_string (BINFO_VTABLE (binfo),
7645 TFF_PLAIN_IDENTIFIER));
7648 if (indented)
7649 fprintf (stream, "\n");
7652 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
7653 igo = dump_class_hierarchy_r (stream, flags, base_binfo, igo, indent + 2);
7655 return igo;
7658 /* Dump the BINFO hierarchy for T. */
7660 static void
7661 dump_class_hierarchy_1 (FILE *stream, int flags, tree t)
7663 fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER));
7664 fprintf (stream, " size=%lu align=%lu\n",
7665 (unsigned long)(tree_low_cst (TYPE_SIZE (t), 0) / BITS_PER_UNIT),
7666 (unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT));
7667 fprintf (stream, " base size=%lu base align=%lu\n",
7668 (unsigned long)(tree_low_cst (TYPE_SIZE (CLASSTYPE_AS_BASE (t)), 0)
7669 / BITS_PER_UNIT),
7670 (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t))
7671 / BITS_PER_UNIT));
7672 dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0);
7673 fprintf (stream, "\n");
7676 /* Debug interface to hierarchy dumping. */
7678 void
7679 debug_class (tree t)
7681 dump_class_hierarchy_1 (stderr, TDF_SLIM, t);
7684 static void
7685 dump_class_hierarchy (tree t)
7687 int flags;
7688 FILE *stream = dump_begin (TDI_class, &flags);
7690 if (stream)
7692 dump_class_hierarchy_1 (stream, flags, t);
7693 dump_end (TDI_class, stream);
7697 static void
7698 dump_array (FILE * stream, tree decl)
7700 tree value;
7701 unsigned HOST_WIDE_INT ix;
7702 HOST_WIDE_INT elt;
7703 tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl)));
7705 elt = (tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl))), 0)
7706 / BITS_PER_UNIT);
7707 fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER));
7708 fprintf (stream, " %s entries",
7709 expr_as_string (size_binop (PLUS_EXPR, size, size_one_node),
7710 TFF_PLAIN_IDENTIFIER));
7711 fprintf (stream, "\n");
7713 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl)),
7714 ix, value)
7715 fprintf (stream, "%-4ld %s\n", (long)(ix * elt),
7716 expr_as_string (value, TFF_PLAIN_IDENTIFIER));
7719 static void
7720 dump_vtable (tree t, tree binfo, tree vtable)
7722 int flags;
7723 FILE *stream = dump_begin (TDI_class, &flags);
7725 if (!stream)
7726 return;
7728 if (!(flags & TDF_SLIM))
7730 int ctor_vtbl_p = TYPE_BINFO (t) != binfo;
7732 fprintf (stream, "%s for %s",
7733 ctor_vtbl_p ? "Construction vtable" : "Vtable",
7734 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER));
7735 if (ctor_vtbl_p)
7737 if (!BINFO_VIRTUAL_P (binfo))
7738 fprintf (stream, " (0x%lx instance)", (unsigned long)binfo);
7739 fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER));
7741 fprintf (stream, "\n");
7742 dump_array (stream, vtable);
7743 fprintf (stream, "\n");
7746 dump_end (TDI_class, stream);
7749 static void
7750 dump_vtt (tree t, tree vtt)
7752 int flags;
7753 FILE *stream = dump_begin (TDI_class, &flags);
7755 if (!stream)
7756 return;
7758 if (!(flags & TDF_SLIM))
7760 fprintf (stream, "VTT for %s\n",
7761 type_as_string (t, TFF_PLAIN_IDENTIFIER));
7762 dump_array (stream, vtt);
7763 fprintf (stream, "\n");
7766 dump_end (TDI_class, stream);
7769 /* Dump a function or thunk and its thunkees. */
7771 static void
7772 dump_thunk (FILE *stream, int indent, tree thunk)
7774 static const char spaces[] = " ";
7775 tree name = DECL_NAME (thunk);
7776 tree thunks;
7778 fprintf (stream, "%.*s%p %s %s", indent, spaces,
7779 (void *)thunk,
7780 !DECL_THUNK_P (thunk) ? "function"
7781 : DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk",
7782 name ? IDENTIFIER_POINTER (name) : "<unset>");
7783 if (DECL_THUNK_P (thunk))
7785 HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk);
7786 tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk);
7788 fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust);
7789 if (!virtual_adjust)
7790 /*NOP*/;
7791 else if (DECL_THIS_THUNK_P (thunk))
7792 fprintf (stream, " vcall=" HOST_WIDE_INT_PRINT_DEC,
7793 tree_low_cst (virtual_adjust, 0));
7794 else
7795 fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)",
7796 tree_low_cst (BINFO_VPTR_FIELD (virtual_adjust), 0),
7797 type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE));
7798 if (THUNK_ALIAS (thunk))
7799 fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk));
7801 fprintf (stream, "\n");
7802 for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks))
7803 dump_thunk (stream, indent + 2, thunks);
7806 /* Dump the thunks for FN. */
7808 void
7809 debug_thunks (tree fn)
7811 dump_thunk (stderr, 0, fn);
7814 /* Virtual function table initialization. */
7816 /* Create all the necessary vtables for T and its base classes. */
7818 static void
7819 finish_vtbls (tree t)
7821 tree vbase;
7822 VEC(constructor_elt,gc) *v = NULL;
7823 tree vtable = BINFO_VTABLE (TYPE_BINFO (t));
7825 /* We lay out the primary and secondary vtables in one contiguous
7826 vtable. The primary vtable is first, followed by the non-virtual
7827 secondary vtables in inheritance graph order. */
7828 accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t), TYPE_BINFO (t),
7829 vtable, t, &v);
7831 /* Then come the virtual bases, also in inheritance graph order. */
7832 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
7834 if (!BINFO_VIRTUAL_P (vbase))
7835 continue;
7836 accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), vtable, t, &v);
7839 if (BINFO_VTABLE (TYPE_BINFO (t)))
7840 initialize_vtable (TYPE_BINFO (t), v);
7843 /* Initialize the vtable for BINFO with the INITS. */
7845 static void
7846 initialize_vtable (tree binfo, VEC(constructor_elt,gc) *inits)
7848 tree decl;
7850 layout_vtable_decl (binfo, VEC_length (constructor_elt, inits));
7851 decl = get_vtbl_decl_for_binfo (binfo);
7852 initialize_artificial_var (decl, inits);
7853 dump_vtable (BINFO_TYPE (binfo), binfo, decl);
7856 /* Build the VTT (virtual table table) for T.
7857 A class requires a VTT if it has virtual bases.
7859 This holds
7860 1 - primary virtual pointer for complete object T
7861 2 - secondary VTTs for each direct non-virtual base of T which requires a
7863 3 - secondary virtual pointers for each direct or indirect base of T which
7864 has virtual bases or is reachable via a virtual path from T.
7865 4 - secondary VTTs for each direct or indirect virtual base of T.
7867 Secondary VTTs look like complete object VTTs without part 4. */
7869 static void
7870 build_vtt (tree t)
7872 tree type;
7873 tree vtt;
7874 tree index;
7875 VEC(constructor_elt,gc) *inits;
7877 /* Build up the initializers for the VTT. */
7878 inits = NULL;
7879 index = size_zero_node;
7880 build_vtt_inits (TYPE_BINFO (t), t, &inits, &index);
7882 /* If we didn't need a VTT, we're done. */
7883 if (!inits)
7884 return;
7886 /* Figure out the type of the VTT. */
7887 type = build_array_of_n_type (const_ptr_type_node,
7888 VEC_length (constructor_elt, inits));
7890 /* Now, build the VTT object itself. */
7891 vtt = build_vtable (t, mangle_vtt_for_type (t), type);
7892 initialize_artificial_var (vtt, inits);
7893 /* Add the VTT to the vtables list. */
7894 DECL_CHAIN (vtt) = DECL_CHAIN (CLASSTYPE_VTABLES (t));
7895 DECL_CHAIN (CLASSTYPE_VTABLES (t)) = vtt;
7897 dump_vtt (t, vtt);
7900 /* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
7901 PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
7902 and CHAIN the vtable pointer for this binfo after construction is
7903 complete. VALUE can also be another BINFO, in which case we recurse. */
7905 static tree
7906 binfo_ctor_vtable (tree binfo)
7908 tree vt;
7910 while (1)
7912 vt = BINFO_VTABLE (binfo);
7913 if (TREE_CODE (vt) == TREE_LIST)
7914 vt = TREE_VALUE (vt);
7915 if (TREE_CODE (vt) == TREE_BINFO)
7916 binfo = vt;
7917 else
7918 break;
7921 return vt;
7924 /* Data for secondary VTT initialization. */
7925 typedef struct secondary_vptr_vtt_init_data_s
7927 /* Is this the primary VTT? */
7928 bool top_level_p;
7930 /* Current index into the VTT. */
7931 tree index;
7933 /* Vector of initializers built up. */
7934 VEC(constructor_elt,gc) *inits;
7936 /* The type being constructed by this secondary VTT. */
7937 tree type_being_constructed;
7938 } secondary_vptr_vtt_init_data;
7940 /* Recursively build the VTT-initializer for BINFO (which is in the
7941 hierarchy dominated by T). INITS points to the end of the initializer
7942 list to date. INDEX is the VTT index where the next element will be
7943 replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
7944 not a subvtt for some base of T). When that is so, we emit the sub-VTTs
7945 for virtual bases of T. When it is not so, we build the constructor
7946 vtables for the BINFO-in-T variant. */
7948 static void
7949 build_vtt_inits (tree binfo, tree t, VEC(constructor_elt,gc) **inits, tree *index)
7951 int i;
7952 tree b;
7953 tree init;
7954 secondary_vptr_vtt_init_data data;
7955 int top_level_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
7957 /* We only need VTTs for subobjects with virtual bases. */
7958 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
7959 return;
7961 /* We need to use a construction vtable if this is not the primary
7962 VTT. */
7963 if (!top_level_p)
7965 build_ctor_vtbl_group (binfo, t);
7967 /* Record the offset in the VTT where this sub-VTT can be found. */
7968 BINFO_SUBVTT_INDEX (binfo) = *index;
7971 /* Add the address of the primary vtable for the complete object. */
7972 init = binfo_ctor_vtable (binfo);
7973 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
7974 if (top_level_p)
7976 gcc_assert (!BINFO_VPTR_INDEX (binfo));
7977 BINFO_VPTR_INDEX (binfo) = *index;
7979 *index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node));
7981 /* Recursively add the secondary VTTs for non-virtual bases. */
7982 for (i = 0; BINFO_BASE_ITERATE (binfo, i, b); ++i)
7983 if (!BINFO_VIRTUAL_P (b))
7984 build_vtt_inits (b, t, inits, index);
7986 /* Add secondary virtual pointers for all subobjects of BINFO with
7987 either virtual bases or reachable along a virtual path, except
7988 subobjects that are non-virtual primary bases. */
7989 data.top_level_p = top_level_p;
7990 data.index = *index;
7991 data.inits = *inits;
7992 data.type_being_constructed = BINFO_TYPE (binfo);
7994 dfs_walk_once (binfo, dfs_build_secondary_vptr_vtt_inits, NULL, &data);
7996 *index = data.index;
7998 /* data.inits might have grown as we added secondary virtual pointers.
7999 Make sure our caller knows about the new vector. */
8000 *inits = data.inits;
8002 if (top_level_p)
8003 /* Add the secondary VTTs for virtual bases in inheritance graph
8004 order. */
8005 for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b))
8007 if (!BINFO_VIRTUAL_P (b))
8008 continue;
8010 build_vtt_inits (b, t, inits, index);
8012 else
8013 /* Remove the ctor vtables we created. */
8014 dfs_walk_all (binfo, dfs_fixup_binfo_vtbls, NULL, binfo);
8017 /* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
8018 in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */
8020 static tree
8021 dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data_)
8023 secondary_vptr_vtt_init_data *data = (secondary_vptr_vtt_init_data *)data_;
8025 /* We don't care about bases that don't have vtables. */
8026 if (!TYPE_VFIELD (BINFO_TYPE (binfo)))
8027 return dfs_skip_bases;
8029 /* We're only interested in proper subobjects of the type being
8030 constructed. */
8031 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->type_being_constructed))
8032 return NULL_TREE;
8034 /* We're only interested in bases with virtual bases or reachable
8035 via a virtual path from the type being constructed. */
8036 if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
8037 || binfo_via_virtual (binfo, data->type_being_constructed)))
8038 return dfs_skip_bases;
8040 /* We're not interested in non-virtual primary bases. */
8041 if (!BINFO_VIRTUAL_P (binfo) && BINFO_PRIMARY_P (binfo))
8042 return NULL_TREE;
8044 /* Record the index where this secondary vptr can be found. */
8045 if (data->top_level_p)
8047 gcc_assert (!BINFO_VPTR_INDEX (binfo));
8048 BINFO_VPTR_INDEX (binfo) = data->index;
8050 if (BINFO_VIRTUAL_P (binfo))
8052 /* It's a primary virtual base, and this is not a
8053 construction vtable. Find the base this is primary of in
8054 the inheritance graph, and use that base's vtable
8055 now. */
8056 while (BINFO_PRIMARY_P (binfo))
8057 binfo = BINFO_INHERITANCE_CHAIN (binfo);
8061 /* Add the initializer for the secondary vptr itself. */
8062 CONSTRUCTOR_APPEND_ELT (data->inits, NULL_TREE, binfo_ctor_vtable (binfo));
8064 /* Advance the vtt index. */
8065 data->index = size_binop (PLUS_EXPR, data->index,
8066 TYPE_SIZE_UNIT (ptr_type_node));
8068 return NULL_TREE;
8071 /* Called from build_vtt_inits via dfs_walk. After building
8072 constructor vtables and generating the sub-vtt from them, we need
8073 to restore the BINFO_VTABLES that were scribbled on. DATA is the
8074 binfo of the base whose sub vtt was generated. */
8076 static tree
8077 dfs_fixup_binfo_vtbls (tree binfo, void* data)
8079 tree vtable = BINFO_VTABLE (binfo);
8081 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
8082 /* If this class has no vtable, none of its bases do. */
8083 return dfs_skip_bases;
8085 if (!vtable)
8086 /* This might be a primary base, so have no vtable in this
8087 hierarchy. */
8088 return NULL_TREE;
8090 /* If we scribbled the construction vtable vptr into BINFO, clear it
8091 out now. */
8092 if (TREE_CODE (vtable) == TREE_LIST
8093 && (TREE_PURPOSE (vtable) == (tree) data))
8094 BINFO_VTABLE (binfo) = TREE_CHAIN (vtable);
8096 return NULL_TREE;
8099 /* Build the construction vtable group for BINFO which is in the
8100 hierarchy dominated by T. */
8102 static void
8103 build_ctor_vtbl_group (tree binfo, tree t)
8105 tree type;
8106 tree vtbl;
8107 tree id;
8108 tree vbase;
8109 VEC(constructor_elt,gc) *v;
8111 /* See if we've already created this construction vtable group. */
8112 id = mangle_ctor_vtbl_for_type (t, binfo);
8113 if (IDENTIFIER_GLOBAL_VALUE (id))
8114 return;
8116 gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t));
8117 /* Build a version of VTBL (with the wrong type) for use in
8118 constructing the addresses of secondary vtables in the
8119 construction vtable group. */
8120 vtbl = build_vtable (t, id, ptr_type_node);
8121 DECL_CONSTRUCTION_VTABLE_P (vtbl) = 1;
8123 v = NULL;
8124 accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)),
8125 binfo, vtbl, t, &v);
8127 /* Add the vtables for each of our virtual bases using the vbase in T
8128 binfo. */
8129 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
8130 vbase;
8131 vbase = TREE_CHAIN (vbase))
8133 tree b;
8135 if (!BINFO_VIRTUAL_P (vbase))
8136 continue;
8137 b = copied_binfo (vbase, binfo);
8139 accumulate_vtbl_inits (b, vbase, binfo, vtbl, t, &v);
8142 /* Figure out the type of the construction vtable. */
8143 type = build_array_of_n_type (vtable_entry_type,
8144 VEC_length (constructor_elt, v));
8145 layout_type (type);
8146 TREE_TYPE (vtbl) = type;
8147 DECL_SIZE (vtbl) = DECL_SIZE_UNIT (vtbl) = NULL_TREE;
8148 layout_decl (vtbl, 0);
8150 /* Initialize the construction vtable. */
8151 CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl);
8152 initialize_artificial_var (vtbl, v);
8153 dump_vtable (t, binfo, vtbl);
8156 /* Add the vtbl initializers for BINFO (and its bases other than
8157 non-virtual primaries) to the list of INITS. BINFO is in the
8158 hierarchy dominated by T. RTTI_BINFO is the binfo within T of
8159 the constructor the vtbl inits should be accumulated for. (If this
8160 is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
8161 ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
8162 BINFO is the active base equivalent of ORIG_BINFO in the inheritance
8163 graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
8164 but are not necessarily the same in terms of layout. */
8166 static void
8167 accumulate_vtbl_inits (tree binfo,
8168 tree orig_binfo,
8169 tree rtti_binfo,
8170 tree vtbl,
8171 tree t,
8172 VEC(constructor_elt,gc) **inits)
8174 int i;
8175 tree base_binfo;
8176 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8178 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (orig_binfo)));
8180 /* If it doesn't have a vptr, we don't do anything. */
8181 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
8182 return;
8184 /* If we're building a construction vtable, we're not interested in
8185 subobjects that don't require construction vtables. */
8186 if (ctor_vtbl_p
8187 && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
8188 && !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo)))
8189 return;
8191 /* Build the initializers for the BINFO-in-T vtable. */
8192 dfs_accumulate_vtbl_inits (binfo, orig_binfo, rtti_binfo, vtbl, t, inits);
8194 /* Walk the BINFO and its bases. We walk in preorder so that as we
8195 initialize each vtable we can figure out at what offset the
8196 secondary vtable lies from the primary vtable. We can't use
8197 dfs_walk here because we need to iterate through bases of BINFO
8198 and RTTI_BINFO simultaneously. */
8199 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
8201 /* Skip virtual bases. */
8202 if (BINFO_VIRTUAL_P (base_binfo))
8203 continue;
8204 accumulate_vtbl_inits (base_binfo,
8205 BINFO_BASE_BINFO (orig_binfo, i),
8206 rtti_binfo, vtbl, t,
8207 inits);
8211 /* Called from accumulate_vtbl_inits. Adds the initializers for the
8212 BINFO vtable to L. */
8214 static void
8215 dfs_accumulate_vtbl_inits (tree binfo,
8216 tree orig_binfo,
8217 tree rtti_binfo,
8218 tree orig_vtbl,
8219 tree t,
8220 VEC(constructor_elt,gc) **l)
8222 tree vtbl = NULL_TREE;
8223 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8224 int n_inits;
8226 if (ctor_vtbl_p
8227 && BINFO_VIRTUAL_P (orig_binfo) && BINFO_PRIMARY_P (orig_binfo))
8229 /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
8230 primary virtual base. If it is not the same primary in
8231 the hierarchy of T, we'll need to generate a ctor vtable
8232 for it, to place at its location in T. If it is the same
8233 primary, we still need a VTT entry for the vtable, but it
8234 should point to the ctor vtable for the base it is a
8235 primary for within the sub-hierarchy of RTTI_BINFO.
8237 There are three possible cases:
8239 1) We are in the same place.
8240 2) We are a primary base within a lost primary virtual base of
8241 RTTI_BINFO.
8242 3) We are primary to something not a base of RTTI_BINFO. */
8244 tree b;
8245 tree last = NULL_TREE;
8247 /* First, look through the bases we are primary to for RTTI_BINFO
8248 or a virtual base. */
8249 b = binfo;
8250 while (BINFO_PRIMARY_P (b))
8252 b = BINFO_INHERITANCE_CHAIN (b);
8253 last = b;
8254 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
8255 goto found;
8257 /* If we run out of primary links, keep looking down our
8258 inheritance chain; we might be an indirect primary. */
8259 for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b))
8260 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
8261 break;
8262 found:
8264 /* If we found RTTI_BINFO, this is case 1. If we found a virtual
8265 base B and it is a base of RTTI_BINFO, this is case 2. In
8266 either case, we share our vtable with LAST, i.e. the
8267 derived-most base within B of which we are a primary. */
8268 if (b == rtti_binfo
8269 || (b && binfo_for_vbase (BINFO_TYPE (b), BINFO_TYPE (rtti_binfo))))
8270 /* Just set our BINFO_VTABLE to point to LAST, as we may not have
8271 set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
8272 binfo_ctor_vtable after everything's been set up. */
8273 vtbl = last;
8275 /* Otherwise, this is case 3 and we get our own. */
8277 else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo))
8278 return;
8280 n_inits = VEC_length (constructor_elt, *l);
8282 if (!vtbl)
8284 tree index;
8285 int non_fn_entries;
8287 /* Add the initializer for this vtable. */
8288 build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo,
8289 &non_fn_entries, l);
8291 /* Figure out the position to which the VPTR should point. */
8292 vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, orig_vtbl);
8293 index = size_binop (MULT_EXPR,
8294 TYPE_SIZE_UNIT (vtable_entry_type),
8295 size_int (non_fn_entries + n_inits));
8296 vtbl = fold_build_pointer_plus (vtbl, index);
8299 if (ctor_vtbl_p)
8300 /* For a construction vtable, we can't overwrite BINFO_VTABLE.
8301 So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
8302 straighten this out. */
8303 BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo));
8304 else if (BINFO_PRIMARY_P (binfo) && BINFO_VIRTUAL_P (binfo))
8305 /* Throw away any unneeded intializers. */
8306 VEC_truncate (constructor_elt, *l, n_inits);
8307 else
8308 /* For an ordinary vtable, set BINFO_VTABLE. */
8309 BINFO_VTABLE (binfo) = vtbl;
8312 static GTY(()) tree abort_fndecl_addr;
8314 /* Construct the initializer for BINFO's virtual function table. BINFO
8315 is part of the hierarchy dominated by T. If we're building a
8316 construction vtable, the ORIG_BINFO is the binfo we should use to
8317 find the actual function pointers to put in the vtable - but they
8318 can be overridden on the path to most-derived in the graph that
8319 ORIG_BINFO belongs. Otherwise,
8320 ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
8321 BINFO that should be indicated by the RTTI information in the
8322 vtable; it will be a base class of T, rather than T itself, if we
8323 are building a construction vtable.
8325 The value returned is a TREE_LIST suitable for wrapping in a
8326 CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
8327 NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
8328 number of non-function entries in the vtable.
8330 It might seem that this function should never be called with a
8331 BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
8332 base is always subsumed by a derived class vtable. However, when
8333 we are building construction vtables, we do build vtables for
8334 primary bases; we need these while the primary base is being
8335 constructed. */
8337 static void
8338 build_vtbl_initializer (tree binfo,
8339 tree orig_binfo,
8340 tree t,
8341 tree rtti_binfo,
8342 int* non_fn_entries_p,
8343 VEC(constructor_elt,gc) **inits)
8345 tree v;
8346 vtbl_init_data vid;
8347 unsigned ix, jx;
8348 tree vbinfo;
8349 VEC(tree,gc) *vbases;
8350 constructor_elt *e;
8352 /* Initialize VID. */
8353 memset (&vid, 0, sizeof (vid));
8354 vid.binfo = binfo;
8355 vid.derived = t;
8356 vid.rtti_binfo = rtti_binfo;
8357 vid.primary_vtbl_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
8358 vid.ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8359 vid.generate_vcall_entries = true;
8360 /* The first vbase or vcall offset is at index -3 in the vtable. */
8361 vid.index = ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE);
8363 /* Add entries to the vtable for RTTI. */
8364 build_rtti_vtbl_entries (binfo, &vid);
8366 /* Create an array for keeping track of the functions we've
8367 processed. When we see multiple functions with the same
8368 signature, we share the vcall offsets. */
8369 vid.fns = VEC_alloc (tree, gc, 32);
8370 /* Add the vcall and vbase offset entries. */
8371 build_vcall_and_vbase_vtbl_entries (binfo, &vid);
8373 /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
8374 build_vbase_offset_vtbl_entries. */
8375 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
8376 VEC_iterate (tree, vbases, ix, vbinfo); ix++)
8377 BINFO_VTABLE_PATH_MARKED (vbinfo) = 0;
8379 /* If the target requires padding between data entries, add that now. */
8380 if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1)
8382 int n_entries = VEC_length (constructor_elt, vid.inits);
8384 VEC_safe_grow (constructor_elt, gc, vid.inits,
8385 TARGET_VTABLE_DATA_ENTRY_DISTANCE * n_entries);
8387 /* Move data entries into their new positions and add padding
8388 after the new positions. Iterate backwards so we don't
8389 overwrite entries that we would need to process later. */
8390 for (ix = n_entries - 1;
8391 VEC_iterate (constructor_elt, vid.inits, ix, e);
8392 ix--)
8394 int j;
8395 int new_position = (TARGET_VTABLE_DATA_ENTRY_DISTANCE * ix
8396 + (TARGET_VTABLE_DATA_ENTRY_DISTANCE - 1));
8398 VEC_replace (constructor_elt, vid.inits, new_position, e);
8400 for (j = 1; j < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++j)
8402 constructor_elt *f = VEC_index (constructor_elt, vid.inits,
8403 new_position - j);
8404 f->index = NULL_TREE;
8405 f->value = build1 (NOP_EXPR, vtable_entry_type,
8406 null_pointer_node);
8411 if (non_fn_entries_p)
8412 *non_fn_entries_p = VEC_length (constructor_elt, vid.inits);
8414 /* The initializers for virtual functions were built up in reverse
8415 order. Straighten them out and add them to the running list in one
8416 step. */
8417 jx = VEC_length (constructor_elt, *inits);
8418 VEC_safe_grow (constructor_elt, gc, *inits,
8419 (jx + VEC_length (constructor_elt, vid.inits)));
8421 for (ix = VEC_length (constructor_elt, vid.inits) - 1;
8422 VEC_iterate (constructor_elt, vid.inits, ix, e);
8423 ix--, jx++)
8424 VEC_replace (constructor_elt, *inits, jx, e);
8426 /* Go through all the ordinary virtual functions, building up
8427 initializers. */
8428 for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v))
8430 tree delta;
8431 tree vcall_index;
8432 tree fn, fn_original;
8433 tree init = NULL_TREE;
8435 fn = BV_FN (v);
8436 fn_original = fn;
8437 if (DECL_THUNK_P (fn))
8439 if (!DECL_NAME (fn))
8440 finish_thunk (fn);
8441 if (THUNK_ALIAS (fn))
8443 fn = THUNK_ALIAS (fn);
8444 BV_FN (v) = fn;
8446 fn_original = THUNK_TARGET (fn);
8449 /* If the only definition of this function signature along our
8450 primary base chain is from a lost primary, this vtable slot will
8451 never be used, so just zero it out. This is important to avoid
8452 requiring extra thunks which cannot be generated with the function.
8454 We first check this in update_vtable_entry_for_fn, so we handle
8455 restored primary bases properly; we also need to do it here so we
8456 zero out unused slots in ctor vtables, rather than filling them
8457 with erroneous values (though harmless, apart from relocation
8458 costs). */
8459 if (BV_LOST_PRIMARY (v))
8460 init = size_zero_node;
8462 if (! init)
8464 /* Pull the offset for `this', and the function to call, out of
8465 the list. */
8466 delta = BV_DELTA (v);
8467 vcall_index = BV_VCALL_INDEX (v);
8469 gcc_assert (TREE_CODE (delta) == INTEGER_CST);
8470 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
8472 /* You can't call an abstract virtual function; it's abstract.
8473 So, we replace these functions with __pure_virtual. */
8474 if (DECL_PURE_VIRTUAL_P (fn_original))
8476 fn = abort_fndecl;
8477 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8479 if (abort_fndecl_addr == NULL)
8480 abort_fndecl_addr
8481 = fold_convert (vfunc_ptr_type_node,
8482 build_fold_addr_expr (fn));
8483 init = abort_fndecl_addr;
8486 /* Likewise for deleted virtuals. */
8487 else if (DECL_DELETED_FN (fn_original))
8489 fn = get_identifier ("__cxa_deleted_virtual");
8490 if (!get_global_value_if_present (fn, &fn))
8491 fn = push_library_fn (fn, (build_function_type_list
8492 (void_type_node, NULL_TREE)),
8493 NULL_TREE);
8494 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8495 init = fold_convert (vfunc_ptr_type_node,
8496 build_fold_addr_expr (fn));
8498 else
8500 if (!integer_zerop (delta) || vcall_index)
8502 fn = make_thunk (fn, /*this_adjusting=*/1, delta, vcall_index);
8503 if (!DECL_NAME (fn))
8504 finish_thunk (fn);
8506 /* Take the address of the function, considering it to be of an
8507 appropriate generic type. */
8508 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8509 init = fold_convert (vfunc_ptr_type_node,
8510 build_fold_addr_expr (fn));
8514 /* And add it to the chain of initializers. */
8515 if (TARGET_VTABLE_USES_DESCRIPTORS)
8517 int i;
8518 if (init == size_zero_node)
8519 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
8520 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8521 else
8522 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
8524 tree fdesc = build2 (FDESC_EXPR, vfunc_ptr_type_node,
8525 fn, build_int_cst (NULL_TREE, i));
8526 TREE_CONSTANT (fdesc) = 1;
8528 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, fdesc);
8531 else
8532 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8536 /* Adds to vid->inits the initializers for the vbase and vcall
8537 offsets in BINFO, which is in the hierarchy dominated by T. */
8539 static void
8540 build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid)
8542 tree b;
8544 /* If this is a derived class, we must first create entries
8545 corresponding to the primary base class. */
8546 b = get_primary_binfo (binfo);
8547 if (b)
8548 build_vcall_and_vbase_vtbl_entries (b, vid);
8550 /* Add the vbase entries for this base. */
8551 build_vbase_offset_vtbl_entries (binfo, vid);
8552 /* Add the vcall entries for this base. */
8553 build_vcall_offset_vtbl_entries (binfo, vid);
8556 /* Returns the initializers for the vbase offset entries in the vtable
8557 for BINFO (which is part of the class hierarchy dominated by T), in
8558 reverse order. VBASE_OFFSET_INDEX gives the vtable index
8559 where the next vbase offset will go. */
8561 static void
8562 build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
8564 tree vbase;
8565 tree t;
8566 tree non_primary_binfo;
8568 /* If there are no virtual baseclasses, then there is nothing to
8569 do. */
8570 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
8571 return;
8573 t = vid->derived;
8575 /* We might be a primary base class. Go up the inheritance hierarchy
8576 until we find the most derived class of which we are a primary base:
8577 it is the offset of that which we need to use. */
8578 non_primary_binfo = binfo;
8579 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
8581 tree b;
8583 /* If we have reached a virtual base, then it must be a primary
8584 base (possibly multi-level) of vid->binfo, or we wouldn't
8585 have called build_vcall_and_vbase_vtbl_entries for it. But it
8586 might be a lost primary, so just skip down to vid->binfo. */
8587 if (BINFO_VIRTUAL_P (non_primary_binfo))
8589 non_primary_binfo = vid->binfo;
8590 break;
8593 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
8594 if (get_primary_binfo (b) != non_primary_binfo)
8595 break;
8596 non_primary_binfo = b;
8599 /* Go through the virtual bases, adding the offsets. */
8600 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
8601 vbase;
8602 vbase = TREE_CHAIN (vbase))
8604 tree b;
8605 tree delta;
8607 if (!BINFO_VIRTUAL_P (vbase))
8608 continue;
8610 /* Find the instance of this virtual base in the complete
8611 object. */
8612 b = copied_binfo (vbase, binfo);
8614 /* If we've already got an offset for this virtual base, we
8615 don't need another one. */
8616 if (BINFO_VTABLE_PATH_MARKED (b))
8617 continue;
8618 BINFO_VTABLE_PATH_MARKED (b) = 1;
8620 /* Figure out where we can find this vbase offset. */
8621 delta = size_binop (MULT_EXPR,
8622 vid->index,
8623 convert (ssizetype,
8624 TYPE_SIZE_UNIT (vtable_entry_type)));
8625 if (vid->primary_vtbl_p)
8626 BINFO_VPTR_FIELD (b) = delta;
8628 if (binfo != TYPE_BINFO (t))
8629 /* The vbase offset had better be the same. */
8630 gcc_assert (tree_int_cst_equal (delta, BINFO_VPTR_FIELD (vbase)));
8632 /* The next vbase will come at a more negative offset. */
8633 vid->index = size_binop (MINUS_EXPR, vid->index,
8634 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
8636 /* The initializer is the delta from BINFO to this virtual base.
8637 The vbase offsets go in reverse inheritance-graph order, and
8638 we are walking in inheritance graph order so these end up in
8639 the right order. */
8640 delta = size_diffop_loc (input_location,
8641 BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo));
8643 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE,
8644 fold_build1_loc (input_location, NOP_EXPR,
8645 vtable_entry_type, delta));
8649 /* Adds the initializers for the vcall offset entries in the vtable
8650 for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
8651 to VID->INITS. */
8653 static void
8654 build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
8656 /* We only need these entries if this base is a virtual base. We
8657 compute the indices -- but do not add to the vtable -- when
8658 building the main vtable for a class. */
8659 if (binfo == TYPE_BINFO (vid->derived)
8660 || (BINFO_VIRTUAL_P (binfo)
8661 /* If BINFO is RTTI_BINFO, then (since BINFO does not
8662 correspond to VID->DERIVED), we are building a primary
8663 construction virtual table. Since this is a primary
8664 virtual table, we do not need the vcall offsets for
8665 BINFO. */
8666 && binfo != vid->rtti_binfo))
8668 /* We need a vcall offset for each of the virtual functions in this
8669 vtable. For example:
8671 class A { virtual void f (); };
8672 class B1 : virtual public A { virtual void f (); };
8673 class B2 : virtual public A { virtual void f (); };
8674 class C: public B1, public B2 { virtual void f (); };
8676 A C object has a primary base of B1, which has a primary base of A. A
8677 C also has a secondary base of B2, which no longer has a primary base
8678 of A. So the B2-in-C construction vtable needs a secondary vtable for
8679 A, which will adjust the A* to a B2* to call f. We have no way of
8680 knowing what (or even whether) this offset will be when we define B2,
8681 so we store this "vcall offset" in the A sub-vtable and look it up in
8682 a "virtual thunk" for B2::f.
8684 We need entries for all the functions in our primary vtable and
8685 in our non-virtual bases' secondary vtables. */
8686 vid->vbase = binfo;
8687 /* If we are just computing the vcall indices -- but do not need
8688 the actual entries -- not that. */
8689 if (!BINFO_VIRTUAL_P (binfo))
8690 vid->generate_vcall_entries = false;
8691 /* Now, walk through the non-virtual bases, adding vcall offsets. */
8692 add_vcall_offset_vtbl_entries_r (binfo, vid);
8696 /* Build vcall offsets, starting with those for BINFO. */
8698 static void
8699 add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid)
8701 int i;
8702 tree primary_binfo;
8703 tree base_binfo;
8705 /* Don't walk into virtual bases -- except, of course, for the
8706 virtual base for which we are building vcall offsets. Any
8707 primary virtual base will have already had its offsets generated
8708 through the recursion in build_vcall_and_vbase_vtbl_entries. */
8709 if (BINFO_VIRTUAL_P (binfo) && vid->vbase != binfo)
8710 return;
8712 /* If BINFO has a primary base, process it first. */
8713 primary_binfo = get_primary_binfo (binfo);
8714 if (primary_binfo)
8715 add_vcall_offset_vtbl_entries_r (primary_binfo, vid);
8717 /* Add BINFO itself to the list. */
8718 add_vcall_offset_vtbl_entries_1 (binfo, vid);
8720 /* Scan the non-primary bases of BINFO. */
8721 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
8722 if (base_binfo != primary_binfo)
8723 add_vcall_offset_vtbl_entries_r (base_binfo, vid);
8726 /* Called from build_vcall_offset_vtbl_entries_r. */
8728 static void
8729 add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid)
8731 /* Make entries for the rest of the virtuals. */
8732 if (abi_version_at_least (2))
8734 tree orig_fn;
8736 /* The ABI requires that the methods be processed in declaration
8737 order. G++ 3.2 used the order in the vtable. */
8738 for (orig_fn = TYPE_METHODS (BINFO_TYPE (binfo));
8739 orig_fn;
8740 orig_fn = DECL_CHAIN (orig_fn))
8741 if (DECL_VINDEX (orig_fn))
8742 add_vcall_offset (orig_fn, binfo, vid);
8744 else
8746 tree derived_virtuals;
8747 tree base_virtuals;
8748 tree orig_virtuals;
8749 /* If BINFO is a primary base, the most derived class which has
8750 BINFO as a primary base; otherwise, just BINFO. */
8751 tree non_primary_binfo;
8753 /* We might be a primary base class. Go up the inheritance hierarchy
8754 until we find the most derived class of which we are a primary base:
8755 it is the BINFO_VIRTUALS there that we need to consider. */
8756 non_primary_binfo = binfo;
8757 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
8759 tree b;
8761 /* If we have reached a virtual base, then it must be vid->vbase,
8762 because we ignore other virtual bases in
8763 add_vcall_offset_vtbl_entries_r. In turn, it must be a primary
8764 base (possibly multi-level) of vid->binfo, or we wouldn't
8765 have called build_vcall_and_vbase_vtbl_entries for it. But it
8766 might be a lost primary, so just skip down to vid->binfo. */
8767 if (BINFO_VIRTUAL_P (non_primary_binfo))
8769 gcc_assert (non_primary_binfo == vid->vbase);
8770 non_primary_binfo = vid->binfo;
8771 break;
8774 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
8775 if (get_primary_binfo (b) != non_primary_binfo)
8776 break;
8777 non_primary_binfo = b;
8780 if (vid->ctor_vtbl_p)
8781 /* For a ctor vtable we need the equivalent binfo within the hierarchy
8782 where rtti_binfo is the most derived type. */
8783 non_primary_binfo
8784 = original_binfo (non_primary_binfo, vid->rtti_binfo);
8786 for (base_virtuals = BINFO_VIRTUALS (binfo),
8787 derived_virtuals = BINFO_VIRTUALS (non_primary_binfo),
8788 orig_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
8789 base_virtuals;
8790 base_virtuals = TREE_CHAIN (base_virtuals),
8791 derived_virtuals = TREE_CHAIN (derived_virtuals),
8792 orig_virtuals = TREE_CHAIN (orig_virtuals))
8794 tree orig_fn;
8796 /* Find the declaration that originally caused this function to
8797 be present in BINFO_TYPE (binfo). */
8798 orig_fn = BV_FN (orig_virtuals);
8800 /* When processing BINFO, we only want to generate vcall slots for
8801 function slots introduced in BINFO. So don't try to generate
8802 one if the function isn't even defined in BINFO. */
8803 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), DECL_CONTEXT (orig_fn)))
8804 continue;
8806 add_vcall_offset (orig_fn, binfo, vid);
8811 /* Add a vcall offset entry for ORIG_FN to the vtable. */
8813 static void
8814 add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid)
8816 size_t i;
8817 tree vcall_offset;
8818 tree derived_entry;
8820 /* If there is already an entry for a function with the same
8821 signature as FN, then we do not need a second vcall offset.
8822 Check the list of functions already present in the derived
8823 class vtable. */
8824 FOR_EACH_VEC_ELT (tree, vid->fns, i, derived_entry)
8826 if (same_signature_p (derived_entry, orig_fn)
8827 /* We only use one vcall offset for virtual destructors,
8828 even though there are two virtual table entries. */
8829 || (DECL_DESTRUCTOR_P (derived_entry)
8830 && DECL_DESTRUCTOR_P (orig_fn)))
8831 return;
8834 /* If we are building these vcall offsets as part of building
8835 the vtable for the most derived class, remember the vcall
8836 offset. */
8837 if (vid->binfo == TYPE_BINFO (vid->derived))
8839 tree_pair_p elt = VEC_safe_push (tree_pair_s, gc,
8840 CLASSTYPE_VCALL_INDICES (vid->derived),
8841 NULL);
8842 elt->purpose = orig_fn;
8843 elt->value = vid->index;
8846 /* The next vcall offset will be found at a more negative
8847 offset. */
8848 vid->index = size_binop (MINUS_EXPR, vid->index,
8849 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
8851 /* Keep track of this function. */
8852 VEC_safe_push (tree, gc, vid->fns, orig_fn);
8854 if (vid->generate_vcall_entries)
8856 tree base;
8857 tree fn;
8859 /* Find the overriding function. */
8860 fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn);
8861 if (fn == error_mark_node)
8862 vcall_offset = build_zero_cst (vtable_entry_type);
8863 else
8865 base = TREE_VALUE (fn);
8867 /* The vbase we're working on is a primary base of
8868 vid->binfo. But it might be a lost primary, so its
8869 BINFO_OFFSET might be wrong, so we just use the
8870 BINFO_OFFSET from vid->binfo. */
8871 vcall_offset = size_diffop_loc (input_location,
8872 BINFO_OFFSET (base),
8873 BINFO_OFFSET (vid->binfo));
8874 vcall_offset = fold_build1_loc (input_location,
8875 NOP_EXPR, vtable_entry_type,
8876 vcall_offset);
8878 /* Add the initializer to the vtable. */
8879 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, vcall_offset);
8883 /* Return vtbl initializers for the RTTI entries corresponding to the
8884 BINFO's vtable. The RTTI entries should indicate the object given
8885 by VID->rtti_binfo. */
8887 static void
8888 build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid)
8890 tree b;
8891 tree t;
8892 tree offset;
8893 tree decl;
8894 tree init;
8896 t = BINFO_TYPE (vid->rtti_binfo);
8898 /* To find the complete object, we will first convert to our most
8899 primary base, and then add the offset in the vtbl to that value. */
8900 b = binfo;
8901 while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b))
8902 && !BINFO_LOST_PRIMARY_P (b))
8904 tree primary_base;
8906 primary_base = get_primary_binfo (b);
8907 gcc_assert (BINFO_PRIMARY_P (primary_base)
8908 && BINFO_INHERITANCE_CHAIN (primary_base) == b);
8909 b = primary_base;
8911 offset = size_diffop_loc (input_location,
8912 BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b));
8914 /* The second entry is the address of the typeinfo object. */
8915 if (flag_rtti)
8916 decl = build_address (get_tinfo_decl (t));
8917 else
8918 decl = integer_zero_node;
8920 /* Convert the declaration to a type that can be stored in the
8921 vtable. */
8922 init = build_nop (vfunc_ptr_type_node, decl);
8923 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
8925 /* Add the offset-to-top entry. It comes earlier in the vtable than
8926 the typeinfo entry. Convert the offset to look like a
8927 function pointer, so that we can put it in the vtable. */
8928 init = build_nop (vfunc_ptr_type_node, offset);
8929 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
8932 #include "gt-cp-class.h"