1 /* Implementation of the SUM intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfor).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU Lesser General Public License for more details.
17 You should have received a copy of the GNU Lesser General Public
18 License along with libgfor; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
25 #include "libgfortran.h"
28 __sum_r8 (gfc_array_r8
* retarray
, gfc_array_r8
*array
, index_type
*pdim
)
30 index_type count
[GFC_MAX_DIMENSIONS
- 1];
31 index_type extent
[GFC_MAX_DIMENSIONS
- 1];
32 index_type sstride
[GFC_MAX_DIMENSIONS
- 1];
33 index_type dstride
[GFC_MAX_DIMENSIONS
- 1];
42 /* Make dim zero based to avoid confusion. */
44 rank
= GFC_DESCRIPTOR_RANK (array
) - 1;
45 assert (rank
== GFC_DESCRIPTOR_RANK (retarray
));
46 if (array
->dim
[0].stride
== 0)
47 array
->dim
[0].stride
= 1;
48 if (retarray
->dim
[0].stride
== 0)
49 retarray
->dim
[0].stride
= 1;
51 len
= array
->dim
[dim
].ubound
+ 1 - array
->dim
[dim
].lbound
;
52 delta
= array
->dim
[dim
].stride
;
54 for (n
= 0; n
< dim
; n
++)
56 sstride
[n
] = array
->dim
[n
].stride
;
57 extent
[n
] = array
->dim
[n
].ubound
+ 1 - array
->dim
[n
].lbound
;
59 for (n
= dim
; n
< rank
; n
++)
61 sstride
[n
] = array
->dim
[n
+ 1].stride
;
63 array
->dim
[n
+ 1].ubound
+ 1 - array
->dim
[n
+ 1].lbound
;
66 if (retarray
->data
== NULL
)
68 for (n
= 0; n
< rank
; n
++)
70 retarray
->dim
[n
].lbound
= 0;
71 retarray
->dim
[n
].ubound
= extent
[n
]-1;
73 retarray
->dim
[n
].stride
= 1;
75 retarray
->dim
[n
].stride
= retarray
->dim
[n
-1].stride
* extent
[n
-1];
78 retarray
->data
= internal_malloc (sizeof (GFC_REAL_8
) *
79 (retarray
->dim
[rank
-1].stride
* extent
[rank
-1]));
83 for (n
= 0; n
< rank
; n
++)
86 dstride
[n
] = retarray
->dim
[n
].stride
;
92 dest
= retarray
->data
;
106 for (n
= 0; n
< len
; n
++, src
+= delta
)
114 /* Advance to the next element. */
119 while (count
[n
] == extent
[n
])
121 /* When we get to the end of a dimension, reset it and increment
122 the next dimension. */
124 /* We could precalculate these products, but this is a less
125 frequently used path so proabably not worth it. */
126 base
-= sstride
[n
] * extent
[n
];
127 dest
-= dstride
[n
] * extent
[n
];
131 /* Break out of the look. */
146 __msum_r8 (gfc_array_r8
* retarray
, gfc_array_r8
* array
, index_type
*pdim
, gfc_array_l4
* mask
)
148 index_type count
[GFC_MAX_DIMENSIONS
- 1];
149 index_type extent
[GFC_MAX_DIMENSIONS
- 1];
150 index_type sstride
[GFC_MAX_DIMENSIONS
- 1];
151 index_type dstride
[GFC_MAX_DIMENSIONS
- 1];
152 index_type mstride
[GFC_MAX_DIMENSIONS
- 1];
155 GFC_LOGICAL_4
*mbase
;
164 rank
= GFC_DESCRIPTOR_RANK (array
) - 1;
165 assert (rank
== GFC_DESCRIPTOR_RANK (retarray
));
166 if (array
->dim
[0].stride
== 0)
167 array
->dim
[0].stride
= 1;
168 if (retarray
->dim
[0].stride
== 0)
169 retarray
->dim
[0].stride
= 1;
171 len
= array
->dim
[dim
].ubound
+ 1 - array
->dim
[dim
].lbound
;
174 delta
= array
->dim
[dim
].stride
;
175 mdelta
= mask
->dim
[dim
].stride
;
177 for (n
= 0; n
< dim
; n
++)
179 sstride
[n
] = array
->dim
[n
].stride
;
180 mstride
[n
] = mask
->dim
[n
].stride
;
181 extent
[n
] = array
->dim
[n
].ubound
+ 1 - array
->dim
[n
].lbound
;
183 for (n
= dim
; n
< rank
; n
++)
185 sstride
[n
] = array
->dim
[n
+ 1].stride
;
186 mstride
[n
] = mask
->dim
[n
+ 1].stride
;
188 array
->dim
[n
+ 1].ubound
+ 1 - array
->dim
[n
+ 1].lbound
;
191 for (n
= 0; n
< rank
; n
++)
194 dstride
[n
] = retarray
->dim
[n
].stride
;
199 dest
= retarray
->data
;
203 if (GFC_DESCRIPTOR_SIZE (mask
) != 4)
205 /* This allows the same loop to be used for all logical types. */
206 assert (GFC_DESCRIPTOR_SIZE (mask
) == 8);
207 for (n
= 0; n
< rank
; n
++)
210 mbase
= (GFOR_POINTER_L8_TO_L4 (mbase
));
227 for (n
= 0; n
< len
; n
++, src
+= delta
, msrc
+= mdelta
)
236 /* Advance to the next element. */
242 while (count
[n
] == extent
[n
])
244 /* When we get to the end of a dimension, reset it and increment
245 the next dimension. */
247 /* We could precalculate these products, but this is a less
248 frequently used path so proabably not worth it. */
249 base
-= sstride
[n
] * extent
[n
];
250 mbase
-= mstride
[n
] * extent
[n
];
251 dest
-= dstride
[n
] * extent
[n
];
255 /* Break out of the look. */