PR fortran/17631
[official-gcc.git] / libgfortran / generated / sum_r8.c
blobbdc93e0e47a1fdea4eb1fdb0035983724e2a8fa9
1 /* Implementation of the SUM intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfor).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU Lesser General Public License for more details.
17 You should have received a copy of the GNU Lesser General Public
18 License along with libgfor; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 #include "config.h"
23 #include <stdlib.h>
24 #include <assert.h>
25 #include "libgfortran.h"
27 void
28 __sum_r8 (gfc_array_r8 * retarray, gfc_array_r8 *array, index_type *pdim)
30 index_type count[GFC_MAX_DIMENSIONS - 1];
31 index_type extent[GFC_MAX_DIMENSIONS - 1];
32 index_type sstride[GFC_MAX_DIMENSIONS - 1];
33 index_type dstride[GFC_MAX_DIMENSIONS - 1];
34 GFC_REAL_8 *base;
35 GFC_REAL_8 *dest;
36 index_type rank;
37 index_type n;
38 index_type len;
39 index_type delta;
40 index_type dim;
42 /* Make dim zero based to avoid confusion. */
43 dim = (*pdim) - 1;
44 rank = GFC_DESCRIPTOR_RANK (array) - 1;
45 assert (rank == GFC_DESCRIPTOR_RANK (retarray));
46 if (array->dim[0].stride == 0)
47 array->dim[0].stride = 1;
48 if (retarray->dim[0].stride == 0)
49 retarray->dim[0].stride = 1;
51 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
52 delta = array->dim[dim].stride;
54 for (n = 0; n < dim; n++)
56 sstride[n] = array->dim[n].stride;
57 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
59 for (n = dim; n < rank; n++)
61 sstride[n] = array->dim[n + 1].stride;
62 extent[n] =
63 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
66 if (retarray->data == NULL)
68 for (n = 0; n < rank; n++)
70 retarray->dim[n].lbound = 0;
71 retarray->dim[n].ubound = extent[n]-1;
72 if (n == 0)
73 retarray->dim[n].stride = 1;
74 else
75 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
78 retarray->data = internal_malloc (sizeof (GFC_REAL_8) *
79 (retarray->dim[rank-1].stride * extent[rank-1]));
80 retarray->base = 0;
83 for (n = 0; n < rank; n++)
85 count[n] = 0;
86 dstride[n] = retarray->dim[n].stride;
87 if (extent[n] <= 0)
88 len = 0;
91 base = array->data;
92 dest = retarray->data;
94 while (base)
96 GFC_REAL_8 *src;
97 GFC_REAL_8 result;
98 src = base;
101 result = 0;
102 if (len <= 0)
103 *dest = 0;
104 else
106 for (n = 0; n < len; n++, src += delta)
109 result += *src;
111 *dest = result;
114 /* Advance to the next element. */
115 count[0]++;
116 base += sstride[0];
117 dest += dstride[0];
118 n = 0;
119 while (count[n] == extent[n])
121 /* When we get to the end of a dimension, reset it and increment
122 the next dimension. */
123 count[n] = 0;
124 /* We could precalculate these products, but this is a less
125 frequently used path so proabably not worth it. */
126 base -= sstride[n] * extent[n];
127 dest -= dstride[n] * extent[n];
128 n++;
129 if (n == rank)
131 /* Break out of the look. */
132 base = NULL;
133 break;
135 else
137 count[n]++;
138 base += sstride[n];
139 dest += dstride[n];
145 void
146 __msum_r8 (gfc_array_r8 * retarray, gfc_array_r8 * array, index_type *pdim, gfc_array_l4 * mask)
148 index_type count[GFC_MAX_DIMENSIONS - 1];
149 index_type extent[GFC_MAX_DIMENSIONS - 1];
150 index_type sstride[GFC_MAX_DIMENSIONS - 1];
151 index_type dstride[GFC_MAX_DIMENSIONS - 1];
152 index_type mstride[GFC_MAX_DIMENSIONS - 1];
153 GFC_REAL_8 *dest;
154 GFC_REAL_8 *base;
155 GFC_LOGICAL_4 *mbase;
156 int rank;
157 int dim;
158 index_type n;
159 index_type len;
160 index_type delta;
161 index_type mdelta;
163 dim = (*pdim) - 1;
164 rank = GFC_DESCRIPTOR_RANK (array) - 1;
165 assert (rank == GFC_DESCRIPTOR_RANK (retarray));
166 if (array->dim[0].stride == 0)
167 array->dim[0].stride = 1;
168 if (retarray->dim[0].stride == 0)
169 retarray->dim[0].stride = 1;
171 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
172 if (len <= 0)
173 return;
174 delta = array->dim[dim].stride;
175 mdelta = mask->dim[dim].stride;
177 for (n = 0; n < dim; n++)
179 sstride[n] = array->dim[n].stride;
180 mstride[n] = mask->dim[n].stride;
181 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
183 for (n = dim; n < rank; n++)
185 sstride[n] = array->dim[n + 1].stride;
186 mstride[n] = mask->dim[n + 1].stride;
187 extent[n] =
188 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
191 for (n = 0; n < rank; n++)
193 count[n] = 0;
194 dstride[n] = retarray->dim[n].stride;
195 if (extent[n] <= 0)
196 return;
199 dest = retarray->data;
200 base = array->data;
201 mbase = mask->data;
203 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
205 /* This allows the same loop to be used for all logical types. */
206 assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
207 for (n = 0; n < rank; n++)
208 mstride[n] <<= 1;
209 mdelta <<= 1;
210 mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
213 while (base)
215 GFC_REAL_8 *src;
216 GFC_LOGICAL_4 *msrc;
217 GFC_REAL_8 result;
218 src = base;
219 msrc = mbase;
222 result = 0;
223 if (len <= 0)
224 *dest = 0;
225 else
227 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
230 if (*msrc)
231 result += *src;
233 *dest = result;
236 /* Advance to the next element. */
237 count[0]++;
238 base += sstride[0];
239 mbase += mstride[0];
240 dest += dstride[0];
241 n = 0;
242 while (count[n] == extent[n])
244 /* When we get to the end of a dimension, reset it and increment
245 the next dimension. */
246 count[n] = 0;
247 /* We could precalculate these products, but this is a less
248 frequently used path so proabably not worth it. */
249 base -= sstride[n] * extent[n];
250 mbase -= mstride[n] * extent[n];
251 dest -= dstride[n] * extent[n];
252 n++;
253 if (n == rank)
255 /* Break out of the look. */
256 base = NULL;
257 break;
259 else
261 count[n]++;
262 base += sstride[n];
263 mbase += mstride[n];
264 dest += dstride[n];