1 /* Implementation of the MINVAL intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfor).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU Lesser General Public License for more details.
17 You should have received a copy of the GNU Lesser General Public
18 License along with libgfor; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
26 #include "libgfortran.h"
29 __minval_i4 (gfc_array_i4
* retarray
, gfc_array_i4
*array
, index_type
*pdim
)
31 index_type count
[GFC_MAX_DIMENSIONS
- 1];
32 index_type extent
[GFC_MAX_DIMENSIONS
- 1];
33 index_type sstride
[GFC_MAX_DIMENSIONS
- 1];
34 index_type dstride
[GFC_MAX_DIMENSIONS
- 1];
43 /* Make dim zero based to avoid confusion. */
45 rank
= GFC_DESCRIPTOR_RANK (array
) - 1;
46 assert (rank
== GFC_DESCRIPTOR_RANK (retarray
));
47 if (array
->dim
[0].stride
== 0)
48 array
->dim
[0].stride
= 1;
49 if (retarray
->dim
[0].stride
== 0)
50 retarray
->dim
[0].stride
= 1;
52 len
= array
->dim
[dim
].ubound
+ 1 - array
->dim
[dim
].lbound
;
53 delta
= array
->dim
[dim
].stride
;
55 for (n
= 0; n
< dim
; n
++)
57 sstride
[n
] = array
->dim
[n
].stride
;
58 extent
[n
] = array
->dim
[n
].ubound
+ 1 - array
->dim
[n
].lbound
;
60 for (n
= dim
; n
< rank
; n
++)
62 sstride
[n
] = array
->dim
[n
+ 1].stride
;
64 array
->dim
[n
+ 1].ubound
+ 1 - array
->dim
[n
+ 1].lbound
;
67 if (retarray
->data
== NULL
)
69 for (n
= 0; n
< rank
; n
++)
71 retarray
->dim
[n
].lbound
= 0;
72 retarray
->dim
[n
].ubound
= extent
[n
]-1;
74 retarray
->dim
[n
].stride
= 1;
76 retarray
->dim
[n
].stride
= retarray
->dim
[n
-1].stride
* extent
[n
-1];
79 retarray
->data
= internal_malloc (sizeof (GFC_INTEGER_4
) *
80 (retarray
->dim
[rank
-1].stride
* extent
[rank
-1]));
84 for (n
= 0; n
< rank
; n
++)
87 dstride
[n
] = retarray
->dim
[n
].stride
;
93 dest
= retarray
->data
;
102 result
= GFC_INTEGER_4_HUGE
;
104 *dest
= GFC_INTEGER_4_HUGE
;
107 for (n
= 0; n
< len
; n
++, src
+= delta
)
116 /* Advance to the next element. */
121 while (count
[n
] == extent
[n
])
123 /* When we get to the end of a dimension, reset it and increment
124 the next dimension. */
126 /* We could precalculate these products, but this is a less
127 frequently used path so proabably not worth it. */
128 base
-= sstride
[n
] * extent
[n
];
129 dest
-= dstride
[n
] * extent
[n
];
133 /* Break out of the look. */
148 __mminval_i4 (gfc_array_i4
* retarray
, gfc_array_i4
* array
, index_type
*pdim
, gfc_array_l4
* mask
)
150 index_type count
[GFC_MAX_DIMENSIONS
- 1];
151 index_type extent
[GFC_MAX_DIMENSIONS
- 1];
152 index_type sstride
[GFC_MAX_DIMENSIONS
- 1];
153 index_type dstride
[GFC_MAX_DIMENSIONS
- 1];
154 index_type mstride
[GFC_MAX_DIMENSIONS
- 1];
157 GFC_LOGICAL_4
*mbase
;
166 rank
= GFC_DESCRIPTOR_RANK (array
) - 1;
167 assert (rank
== GFC_DESCRIPTOR_RANK (retarray
));
168 if (array
->dim
[0].stride
== 0)
169 array
->dim
[0].stride
= 1;
170 if (retarray
->dim
[0].stride
== 0)
171 retarray
->dim
[0].stride
= 1;
173 len
= array
->dim
[dim
].ubound
+ 1 - array
->dim
[dim
].lbound
;
176 delta
= array
->dim
[dim
].stride
;
177 mdelta
= mask
->dim
[dim
].stride
;
179 for (n
= 0; n
< dim
; n
++)
181 sstride
[n
] = array
->dim
[n
].stride
;
182 mstride
[n
] = mask
->dim
[n
].stride
;
183 extent
[n
] = array
->dim
[n
].ubound
+ 1 - array
->dim
[n
].lbound
;
185 for (n
= dim
; n
< rank
; n
++)
187 sstride
[n
] = array
->dim
[n
+ 1].stride
;
188 mstride
[n
] = mask
->dim
[n
+ 1].stride
;
190 array
->dim
[n
+ 1].ubound
+ 1 - array
->dim
[n
+ 1].lbound
;
193 for (n
= 0; n
< rank
; n
++)
196 dstride
[n
] = retarray
->dim
[n
].stride
;
201 dest
= retarray
->data
;
205 if (GFC_DESCRIPTOR_SIZE (mask
) != 4)
207 /* This allows the same loop to be used for all logical types. */
208 assert (GFC_DESCRIPTOR_SIZE (mask
) == 8);
209 for (n
= 0; n
< rank
; n
++)
212 mbase
= (GFOR_POINTER_L8_TO_L4 (mbase
));
219 GFC_INTEGER_4 result
;
224 result
= GFC_INTEGER_4_HUGE
;
226 *dest
= GFC_INTEGER_4_HUGE
;
229 for (n
= 0; n
< len
; n
++, src
+= delta
, msrc
+= mdelta
)
232 if (*msrc
&& *src
< result
)
238 /* Advance to the next element. */
244 while (count
[n
] == extent
[n
])
246 /* When we get to the end of a dimension, reset it and increment
247 the next dimension. */
249 /* We could precalculate these products, but this is a less
250 frequently used path so proabably not worth it. */
251 base
-= sstride
[n
] * extent
[n
];
252 mbase
-= mstride
[n
] * extent
[n
];
253 dest
-= dstride
[n
] * extent
[n
];
257 /* Break out of the look. */