1 /* Implementation of the MAXLOC intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfor).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU Lesser General Public License for more details.
17 You should have received a copy of the GNU Lesser General Public
18 License along with libgfor; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
27 #include "libgfortran.h"
30 __maxloc1_4_r8 (gfc_array_i4
* retarray
, gfc_array_r8
*array
, index_type
*pdim
)
32 index_type count
[GFC_MAX_DIMENSIONS
- 1];
33 index_type extent
[GFC_MAX_DIMENSIONS
- 1];
34 index_type sstride
[GFC_MAX_DIMENSIONS
- 1];
35 index_type dstride
[GFC_MAX_DIMENSIONS
- 1];
44 /* Make dim zero based to avoid confusion. */
46 rank
= GFC_DESCRIPTOR_RANK (array
) - 1;
47 assert (rank
== GFC_DESCRIPTOR_RANK (retarray
));
48 if (array
->dim
[0].stride
== 0)
49 array
->dim
[0].stride
= 1;
50 if (retarray
->dim
[0].stride
== 0)
51 retarray
->dim
[0].stride
= 1;
53 len
= array
->dim
[dim
].ubound
+ 1 - array
->dim
[dim
].lbound
;
54 delta
= array
->dim
[dim
].stride
;
56 for (n
= 0; n
< dim
; n
++)
58 sstride
[n
] = array
->dim
[n
].stride
;
59 extent
[n
] = array
->dim
[n
].ubound
+ 1 - array
->dim
[n
].lbound
;
61 for (n
= dim
; n
< rank
; n
++)
63 sstride
[n
] = array
->dim
[n
+ 1].stride
;
65 array
->dim
[n
+ 1].ubound
+ 1 - array
->dim
[n
+ 1].lbound
;
68 if (retarray
->data
== NULL
)
70 for (n
= 0; n
< rank
; n
++)
72 retarray
->dim
[n
].lbound
= 0;
73 retarray
->dim
[n
].ubound
= extent
[n
]-1;
75 retarray
->dim
[n
].stride
= 1;
77 retarray
->dim
[n
].stride
= retarray
->dim
[n
-1].stride
* extent
[n
-1];
80 retarray
->data
= internal_malloc (sizeof (GFC_INTEGER_4
) *
81 (retarray
->dim
[rank
-1].stride
* extent
[rank
-1]));
85 for (n
= 0; n
< rank
; n
++)
88 dstride
[n
] = retarray
->dim
[n
].stride
;
94 dest
= retarray
->data
;
104 maxval
= -GFC_REAL_8_HUGE
;
110 for (n
= 0; n
< len
; n
++, src
+= delta
)
116 result
= (GFC_INTEGER_4
)n
+ 1;
122 /* Advance to the next element. */
127 while (count
[n
] == extent
[n
])
129 /* When we get to the end of a dimension, reset it and increment
130 the next dimension. */
132 /* We could precalculate these products, but this is a less
133 frequently used path so proabably not worth it. */
134 base
-= sstride
[n
] * extent
[n
];
135 dest
-= dstride
[n
] * extent
[n
];
139 /* Break out of the look. */
154 __mmaxloc1_4_r8 (gfc_array_i4
* retarray
, gfc_array_r8
* array
, index_type
*pdim
, gfc_array_l4
* mask
)
156 index_type count
[GFC_MAX_DIMENSIONS
- 1];
157 index_type extent
[GFC_MAX_DIMENSIONS
- 1];
158 index_type sstride
[GFC_MAX_DIMENSIONS
- 1];
159 index_type dstride
[GFC_MAX_DIMENSIONS
- 1];
160 index_type mstride
[GFC_MAX_DIMENSIONS
- 1];
163 GFC_LOGICAL_4
*mbase
;
172 rank
= GFC_DESCRIPTOR_RANK (array
) - 1;
173 assert (rank
== GFC_DESCRIPTOR_RANK (retarray
));
174 if (array
->dim
[0].stride
== 0)
175 array
->dim
[0].stride
= 1;
176 if (retarray
->dim
[0].stride
== 0)
177 retarray
->dim
[0].stride
= 1;
179 len
= array
->dim
[dim
].ubound
+ 1 - array
->dim
[dim
].lbound
;
182 delta
= array
->dim
[dim
].stride
;
183 mdelta
= mask
->dim
[dim
].stride
;
185 for (n
= 0; n
< dim
; n
++)
187 sstride
[n
] = array
->dim
[n
].stride
;
188 mstride
[n
] = mask
->dim
[n
].stride
;
189 extent
[n
] = array
->dim
[n
].ubound
+ 1 - array
->dim
[n
].lbound
;
191 for (n
= dim
; n
< rank
; n
++)
193 sstride
[n
] = array
->dim
[n
+ 1].stride
;
194 mstride
[n
] = mask
->dim
[n
+ 1].stride
;
196 array
->dim
[n
+ 1].ubound
+ 1 - array
->dim
[n
+ 1].lbound
;
199 for (n
= 0; n
< rank
; n
++)
202 dstride
[n
] = retarray
->dim
[n
].stride
;
207 dest
= retarray
->data
;
211 if (GFC_DESCRIPTOR_SIZE (mask
) != 4)
213 /* This allows the same loop to be used for all logical types. */
214 assert (GFC_DESCRIPTOR_SIZE (mask
) == 8);
215 for (n
= 0; n
< rank
; n
++)
218 mbase
= (GFOR_POINTER_L8_TO_L4 (mbase
));
225 GFC_INTEGER_4 result
;
231 maxval
= -GFC_REAL_8_HUGE
;
237 for (n
= 0; n
< len
; n
++, src
+= delta
, msrc
+= mdelta
)
240 if (*msrc
&& *src
> maxval
)
243 result
= (GFC_INTEGER_4
)n
+ 1;
249 /* Advance to the next element. */
255 while (count
[n
] == extent
[n
])
257 /* When we get to the end of a dimension, reset it and increment
258 the next dimension. */
260 /* We could precalculate these products, but this is a less
261 frequently used path so proabably not worth it. */
262 base
-= sstride
[n
] * extent
[n
];
263 mbase
-= mstride
[n
] * extent
[n
];
264 dest
-= dstride
[n
] * extent
[n
];
268 /* Break out of the look. */