PR fortran/17631
[official-gcc.git] / libgfortran / generated / maxloc1_4_i8.c
blob25a93bae5e57ecdf6f85db9c84439bd200b966a8
1 /* Implementation of the MAXLOC intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfor).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU Lesser General Public License for more details.
17 You should have received a copy of the GNU Lesser General Public
18 License along with libgfor; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 #include "config.h"
23 #include <stdlib.h>
24 #include <assert.h>
25 #include <float.h>
26 #include <limits.h>
27 #include "libgfortran.h"
29 void
30 __maxloc1_4_i8 (gfc_array_i4 * retarray, gfc_array_i8 *array, index_type *pdim)
32 index_type count[GFC_MAX_DIMENSIONS - 1];
33 index_type extent[GFC_MAX_DIMENSIONS - 1];
34 index_type sstride[GFC_MAX_DIMENSIONS - 1];
35 index_type dstride[GFC_MAX_DIMENSIONS - 1];
36 GFC_INTEGER_8 *base;
37 GFC_INTEGER_4 *dest;
38 index_type rank;
39 index_type n;
40 index_type len;
41 index_type delta;
42 index_type dim;
44 /* Make dim zero based to avoid confusion. */
45 dim = (*pdim) - 1;
46 rank = GFC_DESCRIPTOR_RANK (array) - 1;
47 assert (rank == GFC_DESCRIPTOR_RANK (retarray));
48 if (array->dim[0].stride == 0)
49 array->dim[0].stride = 1;
50 if (retarray->dim[0].stride == 0)
51 retarray->dim[0].stride = 1;
53 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
54 delta = array->dim[dim].stride;
56 for (n = 0; n < dim; n++)
58 sstride[n] = array->dim[n].stride;
59 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
61 for (n = dim; n < rank; n++)
63 sstride[n] = array->dim[n + 1].stride;
64 extent[n] =
65 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
68 if (retarray->data == NULL)
70 for (n = 0; n < rank; n++)
72 retarray->dim[n].lbound = 0;
73 retarray->dim[n].ubound = extent[n]-1;
74 if (n == 0)
75 retarray->dim[n].stride = 1;
76 else
77 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
80 retarray->data = internal_malloc (sizeof (GFC_INTEGER_4) *
81 (retarray->dim[rank-1].stride * extent[rank-1]));
82 retarray->base = 0;
85 for (n = 0; n < rank; n++)
87 count[n] = 0;
88 dstride[n] = retarray->dim[n].stride;
89 if (extent[n] <= 0)
90 len = 0;
93 base = array->data;
94 dest = retarray->data;
96 while (base)
98 GFC_INTEGER_8 *src;
99 GFC_INTEGER_4 result;
100 src = base;
103 GFC_INTEGER_8 maxval;
104 maxval = -GFC_INTEGER_8_HUGE;
105 result = 1;
106 if (len <= 0)
107 *dest = 0;
108 else
110 for (n = 0; n < len; n++, src += delta)
113 if (*src > maxval)
115 maxval = *src;
116 result = (GFC_INTEGER_4)n + 1;
119 *dest = result;
122 /* Advance to the next element. */
123 count[0]++;
124 base += sstride[0];
125 dest += dstride[0];
126 n = 0;
127 while (count[n] == extent[n])
129 /* When we get to the end of a dimension, reset it and increment
130 the next dimension. */
131 count[n] = 0;
132 /* We could precalculate these products, but this is a less
133 frequently used path so proabably not worth it. */
134 base -= sstride[n] * extent[n];
135 dest -= dstride[n] * extent[n];
136 n++;
137 if (n == rank)
139 /* Break out of the look. */
140 base = NULL;
141 break;
143 else
145 count[n]++;
146 base += sstride[n];
147 dest += dstride[n];
153 void
154 __mmaxloc1_4_i8 (gfc_array_i4 * retarray, gfc_array_i8 * array, index_type *pdim, gfc_array_l4 * mask)
156 index_type count[GFC_MAX_DIMENSIONS - 1];
157 index_type extent[GFC_MAX_DIMENSIONS - 1];
158 index_type sstride[GFC_MAX_DIMENSIONS - 1];
159 index_type dstride[GFC_MAX_DIMENSIONS - 1];
160 index_type mstride[GFC_MAX_DIMENSIONS - 1];
161 GFC_INTEGER_4 *dest;
162 GFC_INTEGER_8 *base;
163 GFC_LOGICAL_4 *mbase;
164 int rank;
165 int dim;
166 index_type n;
167 index_type len;
168 index_type delta;
169 index_type mdelta;
171 dim = (*pdim) - 1;
172 rank = GFC_DESCRIPTOR_RANK (array) - 1;
173 assert (rank == GFC_DESCRIPTOR_RANK (retarray));
174 if (array->dim[0].stride == 0)
175 array->dim[0].stride = 1;
176 if (retarray->dim[0].stride == 0)
177 retarray->dim[0].stride = 1;
179 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
180 if (len <= 0)
181 return;
182 delta = array->dim[dim].stride;
183 mdelta = mask->dim[dim].stride;
185 for (n = 0; n < dim; n++)
187 sstride[n] = array->dim[n].stride;
188 mstride[n] = mask->dim[n].stride;
189 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
191 for (n = dim; n < rank; n++)
193 sstride[n] = array->dim[n + 1].stride;
194 mstride[n] = mask->dim[n + 1].stride;
195 extent[n] =
196 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
199 for (n = 0; n < rank; n++)
201 count[n] = 0;
202 dstride[n] = retarray->dim[n].stride;
203 if (extent[n] <= 0)
204 return;
207 dest = retarray->data;
208 base = array->data;
209 mbase = mask->data;
211 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
213 /* This allows the same loop to be used for all logical types. */
214 assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
215 for (n = 0; n < rank; n++)
216 mstride[n] <<= 1;
217 mdelta <<= 1;
218 mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
221 while (base)
223 GFC_INTEGER_8 *src;
224 GFC_LOGICAL_4 *msrc;
225 GFC_INTEGER_4 result;
226 src = base;
227 msrc = mbase;
230 GFC_INTEGER_8 maxval;
231 maxval = -GFC_INTEGER_8_HUGE;
232 result = 1;
233 if (len <= 0)
234 *dest = 0;
235 else
237 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
240 if (*msrc && *src > maxval)
242 maxval = *src;
243 result = (GFC_INTEGER_4)n + 1;
246 *dest = result;
249 /* Advance to the next element. */
250 count[0]++;
251 base += sstride[0];
252 mbase += mstride[0];
253 dest += dstride[0];
254 n = 0;
255 while (count[n] == extent[n])
257 /* When we get to the end of a dimension, reset it and increment
258 the next dimension. */
259 count[n] = 0;
260 /* We could precalculate these products, but this is a less
261 frequently used path so proabably not worth it. */
262 base -= sstride[n] * extent[n];
263 mbase -= mstride[n] * extent[n];
264 dest -= dstride[n] * extent[n];
265 n++;
266 if (n == rank)
268 /* Break out of the look. */
269 base = NULL;
270 break;
272 else
274 count[n]++;
275 base += sstride[n];
276 mbase += mstride[n];
277 dest += dstride[n];