PR fortran/17631
[official-gcc.git] / libgfortran / generated / matmul_r4.c
blob7d111369b12ddb88ac00665c16abfefc99febdb2
1 /* Implementation of the MATMUL intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU Lesser General Public License for more details.
17 You should have received a copy of the GNU Lesser General Public
18 License along with libgfor; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 #include "config.h"
23 #include <stdlib.h>
24 #include <assert.h>
25 #include "libgfortran.h"
27 /* Dimensions: retarray(x,y) a(x, count) b(count,y).
28 Either a or b can be rank 1. In this case x or y is 1. */
29 void
30 __matmul_r4 (gfc_array_r4 * retarray, gfc_array_r4 * a, gfc_array_r4 * b)
32 GFC_REAL_4 *abase;
33 GFC_REAL_4 *bbase;
34 GFC_REAL_4 *dest;
35 GFC_REAL_4 res;
36 index_type rxstride;
37 index_type rystride;
38 index_type xcount;
39 index_type ycount;
40 index_type xstride;
41 index_type ystride;
42 index_type x;
43 index_type y;
45 GFC_REAL_4 *pa;
46 GFC_REAL_4 *pb;
47 index_type astride;
48 index_type bstride;
49 index_type count;
50 index_type n;
52 assert (GFC_DESCRIPTOR_RANK (a) == 2
53 || GFC_DESCRIPTOR_RANK (b) == 2);
55 if (retarray->data == NULL)
57 if (GFC_DESCRIPTOR_RANK (a) == 1)
59 retarray->dim[0].lbound = 0;
60 retarray->dim[0].ubound = b->dim[1].ubound - b->dim[1].lbound;
61 retarray->dim[0].stride = 1;
63 else if (GFC_DESCRIPTOR_RANK (b) == 1)
65 retarray->dim[0].lbound = 0;
66 retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
67 retarray->dim[0].stride = 1;
69 else
71 retarray->dim[0].lbound = 0;
72 retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
73 retarray->dim[0].stride = 1;
75 retarray->dim[1].lbound = 0;
76 retarray->dim[1].ubound = b->dim[1].ubound - b->dim[1].lbound;
77 retarray->dim[1].stride = retarray->dim[0].ubound+1;
80 retarray->data = internal_malloc (sizeof (GFC_REAL_4) * size0 (retarray));
81 retarray->base = 0;
84 abase = a->data;
85 bbase = b->data;
86 dest = retarray->data;
88 if (retarray->dim[0].stride == 0)
89 retarray->dim[0].stride = 1;
90 if (a->dim[0].stride == 0)
91 a->dim[0].stride = 1;
92 if (b->dim[0].stride == 0)
93 b->dim[0].stride = 1;
96 if (GFC_DESCRIPTOR_RANK (retarray) == 1)
98 rxstride = retarray->dim[0].stride;
99 rystride = rxstride;
101 else
103 rxstride = retarray->dim[0].stride;
104 rystride = retarray->dim[1].stride;
107 /* If we have rank 1 parameters, zero the absent stride, and set the size to
108 one. */
109 if (GFC_DESCRIPTOR_RANK (a) == 1)
111 astride = a->dim[0].stride;
112 count = a->dim[0].ubound + 1 - a->dim[0].lbound;
113 xstride = 0;
114 rxstride = 0;
115 xcount = 1;
117 else
119 astride = a->dim[1].stride;
120 count = a->dim[1].ubound + 1 - a->dim[1].lbound;
121 xstride = a->dim[0].stride;
122 xcount = a->dim[0].ubound + 1 - a->dim[0].lbound;
124 if (GFC_DESCRIPTOR_RANK (b) == 1)
126 bstride = b->dim[0].stride;
127 assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
128 ystride = 0;
129 rystride = 0;
130 ycount = 1;
132 else
134 bstride = b->dim[0].stride;
135 assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
136 ystride = b->dim[1].stride;
137 ycount = b->dim[1].ubound + 1 - b->dim[1].lbound;
140 for (y = 0; y < ycount; y++)
142 for (x = 0; x < xcount; x++)
144 /* Do the summation for this element. For real and integer types
145 this is the same as DOT_PRODUCT. For complex types we use do
146 a*b, not conjg(a)*b. */
147 pa = abase;
148 pb = bbase;
149 res = 0;
151 for (n = 0; n < count; n++)
153 res += *pa * *pb;
154 pa += astride;
155 pb += bstride;
158 *dest = res;
160 dest += rxstride;
161 abase += xstride;
163 abase -= xstride * xcount;
164 bbase += ystride;
165 dest += rystride - (rxstride * xcount);