* config/sparc/sparc.c (sparc_option_override): Set MASK_FSMULD flag
[official-gcc.git] / gcc / tree-cfg.c
blob83e4ee60e9f24b23f35cf0e339a5330aaa12a81e
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2017 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "cfghooks.h"
30 #include "tree-pass.h"
31 #include "ssa.h"
32 #include "cgraph.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "trans-mem.h"
37 #include "stor-layout.h"
38 #include "print-tree.h"
39 #include "cfganal.h"
40 #include "gimple-fold.h"
41 #include "tree-eh.h"
42 #include "gimple-iterator.h"
43 #include "gimplify-me.h"
44 #include "gimple-walk.h"
45 #include "tree-cfg.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-into-ssa.h"
49 #include "tree-dfa.h"
50 #include "tree-ssa.h"
51 #include "except.h"
52 #include "cfgloop.h"
53 #include "tree-ssa-propagate.h"
54 #include "value-prof.h"
55 #include "tree-inline.h"
56 #include "tree-ssa-live.h"
57 #include "omp-general.h"
58 #include "omp-expand.h"
59 #include "tree-cfgcleanup.h"
60 #include "gimplify.h"
61 #include "attribs.h"
62 #include "selftest.h"
63 #include "opts.h"
65 /* This file contains functions for building the Control Flow Graph (CFG)
66 for a function tree. */
68 /* Local declarations. */
70 /* Initial capacity for the basic block array. */
71 static const int initial_cfg_capacity = 20;
73 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
74 which use a particular edge. The CASE_LABEL_EXPRs are chained together
75 via their CASE_CHAIN field, which we clear after we're done with the
76 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
78 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
79 update the case vector in response to edge redirections.
81 Right now this table is set up and torn down at key points in the
82 compilation process. It would be nice if we could make the table
83 more persistent. The key is getting notification of changes to
84 the CFG (particularly edge removal, creation and redirection). */
86 static hash_map<edge, tree> *edge_to_cases;
88 /* If we record edge_to_cases, this bitmap will hold indexes
89 of basic blocks that end in a GIMPLE_SWITCH which we touched
90 due to edge manipulations. */
92 static bitmap touched_switch_bbs;
94 /* CFG statistics. */
95 struct cfg_stats_d
97 long num_merged_labels;
100 static struct cfg_stats_d cfg_stats;
102 /* Data to pass to replace_block_vars_by_duplicates_1. */
103 struct replace_decls_d
105 hash_map<tree, tree> *vars_map;
106 tree to_context;
109 /* Hash table to store last discriminator assigned for each locus. */
110 struct locus_discrim_map
112 location_t locus;
113 int discriminator;
116 /* Hashtable helpers. */
118 struct locus_discrim_hasher : free_ptr_hash <locus_discrim_map>
120 static inline hashval_t hash (const locus_discrim_map *);
121 static inline bool equal (const locus_discrim_map *,
122 const locus_discrim_map *);
125 /* Trivial hash function for a location_t. ITEM is a pointer to
126 a hash table entry that maps a location_t to a discriminator. */
128 inline hashval_t
129 locus_discrim_hasher::hash (const locus_discrim_map *item)
131 return LOCATION_LINE (item->locus);
134 /* Equality function for the locus-to-discriminator map. A and B
135 point to the two hash table entries to compare. */
137 inline bool
138 locus_discrim_hasher::equal (const locus_discrim_map *a,
139 const locus_discrim_map *b)
141 return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus);
144 static hash_table<locus_discrim_hasher> *discriminator_per_locus;
146 /* Basic blocks and flowgraphs. */
147 static void make_blocks (gimple_seq);
149 /* Edges. */
150 static void make_edges (void);
151 static void assign_discriminators (void);
152 static void make_cond_expr_edges (basic_block);
153 static void make_gimple_switch_edges (gswitch *, basic_block);
154 static bool make_goto_expr_edges (basic_block);
155 static void make_gimple_asm_edges (basic_block);
156 static edge gimple_redirect_edge_and_branch (edge, basic_block);
157 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
159 /* Various helpers. */
160 static inline bool stmt_starts_bb_p (gimple *, gimple *);
161 static int gimple_verify_flow_info (void);
162 static void gimple_make_forwarder_block (edge);
163 static gimple *first_non_label_stmt (basic_block);
164 static bool verify_gimple_transaction (gtransaction *);
165 static bool call_can_make_abnormal_goto (gimple *);
167 /* Flowgraph optimization and cleanup. */
168 static void gimple_merge_blocks (basic_block, basic_block);
169 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
170 static void remove_bb (basic_block);
171 static edge find_taken_edge_computed_goto (basic_block, tree);
172 static edge find_taken_edge_cond_expr (basic_block, tree);
173 static edge find_taken_edge_switch_expr (gswitch *, basic_block, tree);
174 static tree find_case_label_for_value (gswitch *, tree);
175 static void lower_phi_internal_fn ();
177 void
178 init_empty_tree_cfg_for_function (struct function *fn)
180 /* Initialize the basic block array. */
181 init_flow (fn);
182 profile_status_for_fn (fn) = PROFILE_ABSENT;
183 n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS;
184 last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS;
185 vec_alloc (basic_block_info_for_fn (fn), initial_cfg_capacity);
186 vec_safe_grow_cleared (basic_block_info_for_fn (fn),
187 initial_cfg_capacity);
189 /* Build a mapping of labels to their associated blocks. */
190 vec_alloc (label_to_block_map_for_fn (fn), initial_cfg_capacity);
191 vec_safe_grow_cleared (label_to_block_map_for_fn (fn),
192 initial_cfg_capacity);
194 SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn));
195 SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn));
197 ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb
198 = EXIT_BLOCK_PTR_FOR_FN (fn);
199 EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb
200 = ENTRY_BLOCK_PTR_FOR_FN (fn);
203 void
204 init_empty_tree_cfg (void)
206 init_empty_tree_cfg_for_function (cfun);
209 /*---------------------------------------------------------------------------
210 Create basic blocks
211 ---------------------------------------------------------------------------*/
213 /* Entry point to the CFG builder for trees. SEQ is the sequence of
214 statements to be added to the flowgraph. */
216 static void
217 build_gimple_cfg (gimple_seq seq)
219 /* Register specific gimple functions. */
220 gimple_register_cfg_hooks ();
222 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
224 init_empty_tree_cfg ();
226 make_blocks (seq);
228 /* Make sure there is always at least one block, even if it's empty. */
229 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
230 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
232 /* Adjust the size of the array. */
233 if (basic_block_info_for_fn (cfun)->length ()
234 < (size_t) n_basic_blocks_for_fn (cfun))
235 vec_safe_grow_cleared (basic_block_info_for_fn (cfun),
236 n_basic_blocks_for_fn (cfun));
238 /* To speed up statement iterator walks, we first purge dead labels. */
239 cleanup_dead_labels ();
241 /* Group case nodes to reduce the number of edges.
242 We do this after cleaning up dead labels because otherwise we miss
243 a lot of obvious case merging opportunities. */
244 group_case_labels ();
246 /* Create the edges of the flowgraph. */
247 discriminator_per_locus = new hash_table<locus_discrim_hasher> (13);
248 make_edges ();
249 assign_discriminators ();
250 lower_phi_internal_fn ();
251 cleanup_dead_labels ();
252 delete discriminator_per_locus;
253 discriminator_per_locus = NULL;
256 /* Look for ANNOTATE calls with loop annotation kind in BB; if found, remove
257 them and propagate the information to LOOP. We assume that the annotations
258 come immediately before the condition in BB, if any. */
260 static void
261 replace_loop_annotate_in_block (basic_block bb, struct loop *loop)
263 gimple_stmt_iterator gsi = gsi_last_bb (bb);
264 gimple *stmt = gsi_stmt (gsi);
266 if (!(stmt && gimple_code (stmt) == GIMPLE_COND))
267 return;
269 for (gsi_prev_nondebug (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
271 stmt = gsi_stmt (gsi);
272 if (gimple_code (stmt) != GIMPLE_CALL)
273 break;
274 if (!gimple_call_internal_p (stmt)
275 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
276 break;
278 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
280 case annot_expr_ivdep_kind:
281 loop->safelen = INT_MAX;
282 break;
283 case annot_expr_no_vector_kind:
284 loop->dont_vectorize = true;
285 break;
286 case annot_expr_vector_kind:
287 loop->force_vectorize = true;
288 cfun->has_force_vectorize_loops = true;
289 break;
290 default:
291 gcc_unreachable ();
294 stmt = gimple_build_assign (gimple_call_lhs (stmt),
295 gimple_call_arg (stmt, 0));
296 gsi_replace (&gsi, stmt, true);
300 /* Look for ANNOTATE calls with loop annotation kind; if found, remove
301 them and propagate the information to the loop. We assume that the
302 annotations come immediately before the condition of the loop. */
304 static void
305 replace_loop_annotate (void)
307 struct loop *loop;
308 basic_block bb;
309 gimple_stmt_iterator gsi;
310 gimple *stmt;
312 FOR_EACH_LOOP (loop, 0)
314 /* First look into the header. */
315 replace_loop_annotate_in_block (loop->header, loop);
317 /* Then look into the latch, if any. */
318 if (loop->latch)
319 replace_loop_annotate_in_block (loop->latch, loop);
322 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
323 FOR_EACH_BB_FN (bb, cfun)
325 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
327 stmt = gsi_stmt (gsi);
328 if (gimple_code (stmt) != GIMPLE_CALL)
329 continue;
330 if (!gimple_call_internal_p (stmt)
331 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
332 continue;
334 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
336 case annot_expr_ivdep_kind:
337 case annot_expr_no_vector_kind:
338 case annot_expr_vector_kind:
339 break;
340 default:
341 gcc_unreachable ();
344 warning_at (gimple_location (stmt), 0, "ignoring loop annotation");
345 stmt = gimple_build_assign (gimple_call_lhs (stmt),
346 gimple_call_arg (stmt, 0));
347 gsi_replace (&gsi, stmt, true);
352 /* Lower internal PHI function from GIMPLE FE. */
354 static void
355 lower_phi_internal_fn ()
357 basic_block bb, pred = NULL;
358 gimple_stmt_iterator gsi;
359 tree lhs;
360 gphi *phi_node;
361 gimple *stmt;
363 /* After edge creation, handle __PHI function from GIMPLE FE. */
364 FOR_EACH_BB_FN (bb, cfun)
366 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
368 stmt = gsi_stmt (gsi);
369 if (! gimple_call_internal_p (stmt, IFN_PHI))
370 break;
372 lhs = gimple_call_lhs (stmt);
373 phi_node = create_phi_node (lhs, bb);
375 /* Add arguments to the PHI node. */
376 for (unsigned i = 0; i < gimple_call_num_args (stmt); ++i)
378 tree arg = gimple_call_arg (stmt, i);
379 if (TREE_CODE (arg) == LABEL_DECL)
380 pred = label_to_block (arg);
381 else
383 edge e = find_edge (pred, bb);
384 add_phi_arg (phi_node, arg, e, UNKNOWN_LOCATION);
388 gsi_remove (&gsi, true);
393 static unsigned int
394 execute_build_cfg (void)
396 gimple_seq body = gimple_body (current_function_decl);
398 build_gimple_cfg (body);
399 gimple_set_body (current_function_decl, NULL);
400 if (dump_file && (dump_flags & TDF_DETAILS))
402 fprintf (dump_file, "Scope blocks:\n");
403 dump_scope_blocks (dump_file, dump_flags);
405 cleanup_tree_cfg ();
406 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
407 replace_loop_annotate ();
408 return 0;
411 namespace {
413 const pass_data pass_data_build_cfg =
415 GIMPLE_PASS, /* type */
416 "cfg", /* name */
417 OPTGROUP_NONE, /* optinfo_flags */
418 TV_TREE_CFG, /* tv_id */
419 PROP_gimple_leh, /* properties_required */
420 ( PROP_cfg | PROP_loops ), /* properties_provided */
421 0, /* properties_destroyed */
422 0, /* todo_flags_start */
423 0, /* todo_flags_finish */
426 class pass_build_cfg : public gimple_opt_pass
428 public:
429 pass_build_cfg (gcc::context *ctxt)
430 : gimple_opt_pass (pass_data_build_cfg, ctxt)
433 /* opt_pass methods: */
434 virtual unsigned int execute (function *) { return execute_build_cfg (); }
436 }; // class pass_build_cfg
438 } // anon namespace
440 gimple_opt_pass *
441 make_pass_build_cfg (gcc::context *ctxt)
443 return new pass_build_cfg (ctxt);
447 /* Return true if T is a computed goto. */
449 bool
450 computed_goto_p (gimple *t)
452 return (gimple_code (t) == GIMPLE_GOTO
453 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
456 /* Returns true if the sequence of statements STMTS only contains
457 a call to __builtin_unreachable (). */
459 bool
460 gimple_seq_unreachable_p (gimple_seq stmts)
462 if (stmts == NULL)
463 return false;
465 gimple_stmt_iterator gsi = gsi_last (stmts);
467 if (!gimple_call_builtin_p (gsi_stmt (gsi), BUILT_IN_UNREACHABLE))
468 return false;
470 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
472 gimple *stmt = gsi_stmt (gsi);
473 if (gimple_code (stmt) != GIMPLE_LABEL
474 && !is_gimple_debug (stmt)
475 && !gimple_clobber_p (stmt))
476 return false;
478 return true;
481 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
482 the other edge points to a bb with just __builtin_unreachable ().
483 I.e. return true for C->M edge in:
484 <bb C>:
486 if (something)
487 goto <bb N>;
488 else
489 goto <bb M>;
490 <bb N>:
491 __builtin_unreachable ();
492 <bb M>: */
494 bool
495 assert_unreachable_fallthru_edge_p (edge e)
497 basic_block pred_bb = e->src;
498 gimple *last = last_stmt (pred_bb);
499 if (last && gimple_code (last) == GIMPLE_COND)
501 basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
502 if (other_bb == e->dest)
503 other_bb = EDGE_SUCC (pred_bb, 1)->dest;
504 if (EDGE_COUNT (other_bb->succs) == 0)
505 return gimple_seq_unreachable_p (bb_seq (other_bb));
507 return false;
511 /* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call
512 could alter control flow except via eh. We initialize the flag at
513 CFG build time and only ever clear it later. */
515 static void
516 gimple_call_initialize_ctrl_altering (gimple *stmt)
518 int flags = gimple_call_flags (stmt);
520 /* A call alters control flow if it can make an abnormal goto. */
521 if (call_can_make_abnormal_goto (stmt)
522 /* A call also alters control flow if it does not return. */
523 || flags & ECF_NORETURN
524 /* TM ending statements have backedges out of the transaction.
525 Return true so we split the basic block containing them.
526 Note that the TM_BUILTIN test is merely an optimization. */
527 || ((flags & ECF_TM_BUILTIN)
528 && is_tm_ending_fndecl (gimple_call_fndecl (stmt)))
529 /* BUILT_IN_RETURN call is same as return statement. */
530 || gimple_call_builtin_p (stmt, BUILT_IN_RETURN)
531 /* IFN_UNIQUE should be the last insn, to make checking for it
532 as cheap as possible. */
533 || (gimple_call_internal_p (stmt)
534 && gimple_call_internal_unique_p (stmt)))
535 gimple_call_set_ctrl_altering (stmt, true);
536 else
537 gimple_call_set_ctrl_altering (stmt, false);
541 /* Insert SEQ after BB and build a flowgraph. */
543 static basic_block
544 make_blocks_1 (gimple_seq seq, basic_block bb)
546 gimple_stmt_iterator i = gsi_start (seq);
547 gimple *stmt = NULL;
548 bool start_new_block = true;
549 bool first_stmt_of_seq = true;
551 while (!gsi_end_p (i))
553 gimple *prev_stmt;
555 prev_stmt = stmt;
556 stmt = gsi_stmt (i);
558 if (stmt && is_gimple_call (stmt))
559 gimple_call_initialize_ctrl_altering (stmt);
561 /* If the statement starts a new basic block or if we have determined
562 in a previous pass that we need to create a new block for STMT, do
563 so now. */
564 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
566 if (!first_stmt_of_seq)
567 gsi_split_seq_before (&i, &seq);
568 bb = create_basic_block (seq, bb);
569 start_new_block = false;
572 /* Now add STMT to BB and create the subgraphs for special statement
573 codes. */
574 gimple_set_bb (stmt, bb);
576 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
577 next iteration. */
578 if (stmt_ends_bb_p (stmt))
580 /* If the stmt can make abnormal goto use a new temporary
581 for the assignment to the LHS. This makes sure the old value
582 of the LHS is available on the abnormal edge. Otherwise
583 we will end up with overlapping life-ranges for abnormal
584 SSA names. */
585 if (gimple_has_lhs (stmt)
586 && stmt_can_make_abnormal_goto (stmt)
587 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
589 tree lhs = gimple_get_lhs (stmt);
590 tree tmp = create_tmp_var (TREE_TYPE (lhs));
591 gimple *s = gimple_build_assign (lhs, tmp);
592 gimple_set_location (s, gimple_location (stmt));
593 gimple_set_block (s, gimple_block (stmt));
594 gimple_set_lhs (stmt, tmp);
595 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
596 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
597 DECL_GIMPLE_REG_P (tmp) = 1;
598 gsi_insert_after (&i, s, GSI_SAME_STMT);
600 start_new_block = true;
603 gsi_next (&i);
604 first_stmt_of_seq = false;
606 return bb;
609 /* Build a flowgraph for the sequence of stmts SEQ. */
611 static void
612 make_blocks (gimple_seq seq)
614 make_blocks_1 (seq, ENTRY_BLOCK_PTR_FOR_FN (cfun));
617 /* Create and return a new empty basic block after bb AFTER. */
619 static basic_block
620 create_bb (void *h, void *e, basic_block after)
622 basic_block bb;
624 gcc_assert (!e);
626 /* Create and initialize a new basic block. Since alloc_block uses
627 GC allocation that clears memory to allocate a basic block, we do
628 not have to clear the newly allocated basic block here. */
629 bb = alloc_block ();
631 bb->index = last_basic_block_for_fn (cfun);
632 bb->flags = BB_NEW;
633 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
635 /* Add the new block to the linked list of blocks. */
636 link_block (bb, after);
638 /* Grow the basic block array if needed. */
639 if ((size_t) last_basic_block_for_fn (cfun)
640 == basic_block_info_for_fn (cfun)->length ())
642 size_t new_size =
643 (last_basic_block_for_fn (cfun)
644 + (last_basic_block_for_fn (cfun) + 3) / 4);
645 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
648 /* Add the newly created block to the array. */
649 SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb);
651 n_basic_blocks_for_fn (cfun)++;
652 last_basic_block_for_fn (cfun)++;
654 return bb;
658 /*---------------------------------------------------------------------------
659 Edge creation
660 ---------------------------------------------------------------------------*/
662 /* If basic block BB has an abnormal edge to a basic block
663 containing IFN_ABNORMAL_DISPATCHER internal call, return
664 that the dispatcher's basic block, otherwise return NULL. */
666 basic_block
667 get_abnormal_succ_dispatcher (basic_block bb)
669 edge e;
670 edge_iterator ei;
672 FOR_EACH_EDGE (e, ei, bb->succs)
673 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL)
675 gimple_stmt_iterator gsi
676 = gsi_start_nondebug_after_labels_bb (e->dest);
677 gimple *g = gsi_stmt (gsi);
678 if (g && gimple_call_internal_p (g, IFN_ABNORMAL_DISPATCHER))
679 return e->dest;
681 return NULL;
684 /* Helper function for make_edges. Create a basic block with
685 with ABNORMAL_DISPATCHER internal call in it if needed, and
686 create abnormal edges from BBS to it and from it to FOR_BB
687 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
689 static void
690 handle_abnormal_edges (basic_block *dispatcher_bbs,
691 basic_block for_bb, int *bb_to_omp_idx,
692 auto_vec<basic_block> *bbs, bool computed_goto)
694 basic_block *dispatcher = dispatcher_bbs + (computed_goto ? 1 : 0);
695 unsigned int idx = 0;
696 basic_block bb;
697 bool inner = false;
699 if (bb_to_omp_idx)
701 dispatcher = dispatcher_bbs + 2 * bb_to_omp_idx[for_bb->index];
702 if (bb_to_omp_idx[for_bb->index] != 0)
703 inner = true;
706 /* If the dispatcher has been created already, then there are basic
707 blocks with abnormal edges to it, so just make a new edge to
708 for_bb. */
709 if (*dispatcher == NULL)
711 /* Check if there are any basic blocks that need to have
712 abnormal edges to this dispatcher. If there are none, return
713 early. */
714 if (bb_to_omp_idx == NULL)
716 if (bbs->is_empty ())
717 return;
719 else
721 FOR_EACH_VEC_ELT (*bbs, idx, bb)
722 if (bb_to_omp_idx[bb->index] == bb_to_omp_idx[for_bb->index])
723 break;
724 if (bb == NULL)
725 return;
728 /* Create the dispatcher bb. */
729 *dispatcher = create_basic_block (NULL, for_bb);
730 if (computed_goto)
732 /* Factor computed gotos into a common computed goto site. Also
733 record the location of that site so that we can un-factor the
734 gotos after we have converted back to normal form. */
735 gimple_stmt_iterator gsi = gsi_start_bb (*dispatcher);
737 /* Create the destination of the factored goto. Each original
738 computed goto will put its desired destination into this
739 variable and jump to the label we create immediately below. */
740 tree var = create_tmp_var (ptr_type_node, "gotovar");
742 /* Build a label for the new block which will contain the
743 factored computed goto. */
744 tree factored_label_decl
745 = create_artificial_label (UNKNOWN_LOCATION);
746 gimple *factored_computed_goto_label
747 = gimple_build_label (factored_label_decl);
748 gsi_insert_after (&gsi, factored_computed_goto_label, GSI_NEW_STMT);
750 /* Build our new computed goto. */
751 gimple *factored_computed_goto = gimple_build_goto (var);
752 gsi_insert_after (&gsi, factored_computed_goto, GSI_NEW_STMT);
754 FOR_EACH_VEC_ELT (*bbs, idx, bb)
756 if (bb_to_omp_idx
757 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
758 continue;
760 gsi = gsi_last_bb (bb);
761 gimple *last = gsi_stmt (gsi);
763 gcc_assert (computed_goto_p (last));
765 /* Copy the original computed goto's destination into VAR. */
766 gimple *assignment
767 = gimple_build_assign (var, gimple_goto_dest (last));
768 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
770 edge e = make_edge (bb, *dispatcher, EDGE_FALLTHRU);
771 e->goto_locus = gimple_location (last);
772 gsi_remove (&gsi, true);
775 else
777 tree arg = inner ? boolean_true_node : boolean_false_node;
778 gimple *g = gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER,
779 1, arg);
780 gimple_stmt_iterator gsi = gsi_after_labels (*dispatcher);
781 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
783 /* Create predecessor edges of the dispatcher. */
784 FOR_EACH_VEC_ELT (*bbs, idx, bb)
786 if (bb_to_omp_idx
787 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
788 continue;
789 make_edge (bb, *dispatcher, EDGE_ABNORMAL);
794 make_edge (*dispatcher, for_bb, EDGE_ABNORMAL);
797 /* Creates outgoing edges for BB. Returns 1 when it ends with an
798 computed goto, returns 2 when it ends with a statement that
799 might return to this function via an nonlocal goto, otherwise
800 return 0. Updates *PCUR_REGION with the OMP region this BB is in. */
802 static int
803 make_edges_bb (basic_block bb, struct omp_region **pcur_region, int *pomp_index)
805 gimple *last = last_stmt (bb);
806 bool fallthru = false;
807 int ret = 0;
809 if (!last)
810 return ret;
812 switch (gimple_code (last))
814 case GIMPLE_GOTO:
815 if (make_goto_expr_edges (bb))
816 ret = 1;
817 fallthru = false;
818 break;
819 case GIMPLE_RETURN:
821 edge e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
822 e->goto_locus = gimple_location (last);
823 fallthru = false;
825 break;
826 case GIMPLE_COND:
827 make_cond_expr_edges (bb);
828 fallthru = false;
829 break;
830 case GIMPLE_SWITCH:
831 make_gimple_switch_edges (as_a <gswitch *> (last), bb);
832 fallthru = false;
833 break;
834 case GIMPLE_RESX:
835 make_eh_edges (last);
836 fallthru = false;
837 break;
838 case GIMPLE_EH_DISPATCH:
839 fallthru = make_eh_dispatch_edges (as_a <geh_dispatch *> (last));
840 break;
842 case GIMPLE_CALL:
843 /* If this function receives a nonlocal goto, then we need to
844 make edges from this call site to all the nonlocal goto
845 handlers. */
846 if (stmt_can_make_abnormal_goto (last))
847 ret = 2;
849 /* If this statement has reachable exception handlers, then
850 create abnormal edges to them. */
851 make_eh_edges (last);
853 /* BUILTIN_RETURN is really a return statement. */
854 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
856 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
857 fallthru = false;
859 /* Some calls are known not to return. */
860 else
861 fallthru = !gimple_call_noreturn_p (last);
862 break;
864 case GIMPLE_ASSIGN:
865 /* A GIMPLE_ASSIGN may throw internally and thus be considered
866 control-altering. */
867 if (is_ctrl_altering_stmt (last))
868 make_eh_edges (last);
869 fallthru = true;
870 break;
872 case GIMPLE_ASM:
873 make_gimple_asm_edges (bb);
874 fallthru = true;
875 break;
877 CASE_GIMPLE_OMP:
878 fallthru = omp_make_gimple_edges (bb, pcur_region, pomp_index);
879 break;
881 case GIMPLE_TRANSACTION:
883 gtransaction *txn = as_a <gtransaction *> (last);
884 tree label1 = gimple_transaction_label_norm (txn);
885 tree label2 = gimple_transaction_label_uninst (txn);
887 if (label1)
888 make_edge (bb, label_to_block (label1), EDGE_FALLTHRU);
889 if (label2)
890 make_edge (bb, label_to_block (label2),
891 EDGE_TM_UNINSTRUMENTED | (label1 ? 0 : EDGE_FALLTHRU));
893 tree label3 = gimple_transaction_label_over (txn);
894 if (gimple_transaction_subcode (txn)
895 & (GTMA_HAVE_ABORT | GTMA_IS_OUTER))
896 make_edge (bb, label_to_block (label3), EDGE_TM_ABORT);
898 fallthru = false;
900 break;
902 default:
903 gcc_assert (!stmt_ends_bb_p (last));
904 fallthru = true;
905 break;
908 if (fallthru)
909 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
911 return ret;
914 /* Join all the blocks in the flowgraph. */
916 static void
917 make_edges (void)
919 basic_block bb;
920 struct omp_region *cur_region = NULL;
921 auto_vec<basic_block> ab_edge_goto;
922 auto_vec<basic_block> ab_edge_call;
923 int *bb_to_omp_idx = NULL;
924 int cur_omp_region_idx = 0;
926 /* Create an edge from entry to the first block with executable
927 statements in it. */
928 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun),
929 BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS),
930 EDGE_FALLTHRU);
932 /* Traverse the basic block array placing edges. */
933 FOR_EACH_BB_FN (bb, cfun)
935 int mer;
937 if (bb_to_omp_idx)
938 bb_to_omp_idx[bb->index] = cur_omp_region_idx;
940 mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
941 if (mer == 1)
942 ab_edge_goto.safe_push (bb);
943 else if (mer == 2)
944 ab_edge_call.safe_push (bb);
946 if (cur_region && bb_to_omp_idx == NULL)
947 bb_to_omp_idx = XCNEWVEC (int, n_basic_blocks_for_fn (cfun));
950 /* Computed gotos are hell to deal with, especially if there are
951 lots of them with a large number of destinations. So we factor
952 them to a common computed goto location before we build the
953 edge list. After we convert back to normal form, we will un-factor
954 the computed gotos since factoring introduces an unwanted jump.
955 For non-local gotos and abnormal edges from calls to calls that return
956 twice or forced labels, factor the abnormal edges too, by having all
957 abnormal edges from the calls go to a common artificial basic block
958 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
959 basic block to all forced labels and calls returning twice.
960 We do this per-OpenMP structured block, because those regions
961 are guaranteed to be single entry single exit by the standard,
962 so it is not allowed to enter or exit such regions abnormally this way,
963 thus all computed gotos, non-local gotos and setjmp/longjmp calls
964 must not transfer control across SESE region boundaries. */
965 if (!ab_edge_goto.is_empty () || !ab_edge_call.is_empty ())
967 gimple_stmt_iterator gsi;
968 basic_block dispatcher_bb_array[2] = { NULL, NULL };
969 basic_block *dispatcher_bbs = dispatcher_bb_array;
970 int count = n_basic_blocks_for_fn (cfun);
972 if (bb_to_omp_idx)
973 dispatcher_bbs = XCNEWVEC (basic_block, 2 * count);
975 FOR_EACH_BB_FN (bb, cfun)
977 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
979 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
980 tree target;
982 if (!label_stmt)
983 break;
985 target = gimple_label_label (label_stmt);
987 /* Make an edge to every label block that has been marked as a
988 potential target for a computed goto or a non-local goto. */
989 if (FORCED_LABEL (target))
990 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
991 &ab_edge_goto, true);
992 if (DECL_NONLOCAL (target))
994 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
995 &ab_edge_call, false);
996 break;
1000 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
1001 gsi_next_nondebug (&gsi);
1002 if (!gsi_end_p (gsi))
1004 /* Make an edge to every setjmp-like call. */
1005 gimple *call_stmt = gsi_stmt (gsi);
1006 if (is_gimple_call (call_stmt)
1007 && ((gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE)
1008 || gimple_call_builtin_p (call_stmt,
1009 BUILT_IN_SETJMP_RECEIVER)))
1010 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
1011 &ab_edge_call, false);
1015 if (bb_to_omp_idx)
1016 XDELETE (dispatcher_bbs);
1019 XDELETE (bb_to_omp_idx);
1021 omp_free_regions ();
1024 /* Add SEQ after GSI. Start new bb after GSI, and created further bbs as
1025 needed. Returns true if new bbs were created.
1026 Note: This is transitional code, and should not be used for new code. We
1027 should be able to get rid of this by rewriting all target va-arg
1028 gimplification hooks to use an interface gimple_build_cond_value as described
1029 in https://gcc.gnu.org/ml/gcc-patches/2015-02/msg01194.html. */
1031 bool
1032 gimple_find_sub_bbs (gimple_seq seq, gimple_stmt_iterator *gsi)
1034 gimple *stmt = gsi_stmt (*gsi);
1035 basic_block bb = gimple_bb (stmt);
1036 basic_block lastbb, afterbb;
1037 int old_num_bbs = n_basic_blocks_for_fn (cfun);
1038 edge e;
1039 lastbb = make_blocks_1 (seq, bb);
1040 if (old_num_bbs == n_basic_blocks_for_fn (cfun))
1041 return false;
1042 e = split_block (bb, stmt);
1043 /* Move e->dest to come after the new basic blocks. */
1044 afterbb = e->dest;
1045 unlink_block (afterbb);
1046 link_block (afterbb, lastbb);
1047 redirect_edge_succ (e, bb->next_bb);
1048 bb = bb->next_bb;
1049 while (bb != afterbb)
1051 struct omp_region *cur_region = NULL;
1052 profile_count cnt = profile_count::zero ();
1053 int freq = 0;
1054 bool all = true;
1056 int cur_omp_region_idx = 0;
1057 int mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
1058 gcc_assert (!mer && !cur_region);
1059 add_bb_to_loop (bb, afterbb->loop_father);
1061 edge e;
1062 edge_iterator ei;
1063 FOR_EACH_EDGE (e, ei, bb->preds)
1065 if (e->count.initialized_p ())
1066 cnt += e->count;
1067 else
1068 all = false;
1069 freq += EDGE_FREQUENCY (e);
1071 tree_guess_outgoing_edge_probabilities (bb);
1072 if (all || profile_status_for_fn (cfun) == PROFILE_READ)
1073 bb->count = cnt;
1074 bb->frequency = freq;
1075 FOR_EACH_EDGE (e, ei, bb->succs)
1076 e->count = bb->count.apply_probability (e->probability);
1078 bb = bb->next_bb;
1080 return true;
1083 /* Find the next available discriminator value for LOCUS. The
1084 discriminator distinguishes among several basic blocks that
1085 share a common locus, allowing for more accurate sample-based
1086 profiling. */
1088 static int
1089 next_discriminator_for_locus (location_t locus)
1091 struct locus_discrim_map item;
1092 struct locus_discrim_map **slot;
1094 item.locus = locus;
1095 item.discriminator = 0;
1096 slot = discriminator_per_locus->find_slot_with_hash (
1097 &item, LOCATION_LINE (locus), INSERT);
1098 gcc_assert (slot);
1099 if (*slot == HTAB_EMPTY_ENTRY)
1101 *slot = XNEW (struct locus_discrim_map);
1102 gcc_assert (*slot);
1103 (*slot)->locus = locus;
1104 (*slot)->discriminator = 0;
1106 (*slot)->discriminator++;
1107 return (*slot)->discriminator;
1110 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
1112 static bool
1113 same_line_p (location_t locus1, location_t locus2)
1115 expanded_location from, to;
1117 if (locus1 == locus2)
1118 return true;
1120 from = expand_location (locus1);
1121 to = expand_location (locus2);
1123 if (from.line != to.line)
1124 return false;
1125 if (from.file == to.file)
1126 return true;
1127 return (from.file != NULL
1128 && to.file != NULL
1129 && filename_cmp (from.file, to.file) == 0);
1132 /* Assign discriminators to each basic block. */
1134 static void
1135 assign_discriminators (void)
1137 basic_block bb;
1139 FOR_EACH_BB_FN (bb, cfun)
1141 edge e;
1142 edge_iterator ei;
1143 gimple *last = last_stmt (bb);
1144 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
1146 if (locus == UNKNOWN_LOCATION)
1147 continue;
1149 FOR_EACH_EDGE (e, ei, bb->succs)
1151 gimple *first = first_non_label_stmt (e->dest);
1152 gimple *last = last_stmt (e->dest);
1153 if ((first && same_line_p (locus, gimple_location (first)))
1154 || (last && same_line_p (locus, gimple_location (last))))
1156 if (e->dest->discriminator != 0 && bb->discriminator == 0)
1157 bb->discriminator = next_discriminator_for_locus (locus);
1158 else
1159 e->dest->discriminator = next_discriminator_for_locus (locus);
1165 /* Create the edges for a GIMPLE_COND starting at block BB. */
1167 static void
1168 make_cond_expr_edges (basic_block bb)
1170 gcond *entry = as_a <gcond *> (last_stmt (bb));
1171 gimple *then_stmt, *else_stmt;
1172 basic_block then_bb, else_bb;
1173 tree then_label, else_label;
1174 edge e;
1176 gcc_assert (entry);
1177 gcc_assert (gimple_code (entry) == GIMPLE_COND);
1179 /* Entry basic blocks for each component. */
1180 then_label = gimple_cond_true_label (entry);
1181 else_label = gimple_cond_false_label (entry);
1182 then_bb = label_to_block (then_label);
1183 else_bb = label_to_block (else_label);
1184 then_stmt = first_stmt (then_bb);
1185 else_stmt = first_stmt (else_bb);
1187 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
1188 e->goto_locus = gimple_location (then_stmt);
1189 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
1190 if (e)
1191 e->goto_locus = gimple_location (else_stmt);
1193 /* We do not need the labels anymore. */
1194 gimple_cond_set_true_label (entry, NULL_TREE);
1195 gimple_cond_set_false_label (entry, NULL_TREE);
1199 /* Called for each element in the hash table (P) as we delete the
1200 edge to cases hash table.
1202 Clear all the CASE_CHAINs to prevent problems with copying of
1203 SWITCH_EXPRs and structure sharing rules, then free the hash table
1204 element. */
1206 bool
1207 edge_to_cases_cleanup (edge const &, tree const &value, void *)
1209 tree t, next;
1211 for (t = value; t; t = next)
1213 next = CASE_CHAIN (t);
1214 CASE_CHAIN (t) = NULL;
1217 return true;
1220 /* Start recording information mapping edges to case labels. */
1222 void
1223 start_recording_case_labels (void)
1225 gcc_assert (edge_to_cases == NULL);
1226 edge_to_cases = new hash_map<edge, tree>;
1227 touched_switch_bbs = BITMAP_ALLOC (NULL);
1230 /* Return nonzero if we are recording information for case labels. */
1232 static bool
1233 recording_case_labels_p (void)
1235 return (edge_to_cases != NULL);
1238 /* Stop recording information mapping edges to case labels and
1239 remove any information we have recorded. */
1240 void
1241 end_recording_case_labels (void)
1243 bitmap_iterator bi;
1244 unsigned i;
1245 edge_to_cases->traverse<void *, edge_to_cases_cleanup> (NULL);
1246 delete edge_to_cases;
1247 edge_to_cases = NULL;
1248 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
1250 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
1251 if (bb)
1253 gimple *stmt = last_stmt (bb);
1254 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1255 group_case_labels_stmt (as_a <gswitch *> (stmt));
1258 BITMAP_FREE (touched_switch_bbs);
1261 /* If we are inside a {start,end}_recording_cases block, then return
1262 a chain of CASE_LABEL_EXPRs from T which reference E.
1264 Otherwise return NULL. */
1266 static tree
1267 get_cases_for_edge (edge e, gswitch *t)
1269 tree *slot;
1270 size_t i, n;
1272 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1273 chains available. Return NULL so the caller can detect this case. */
1274 if (!recording_case_labels_p ())
1275 return NULL;
1277 slot = edge_to_cases->get (e);
1278 if (slot)
1279 return *slot;
1281 /* If we did not find E in the hash table, then this must be the first
1282 time we have been queried for information about E & T. Add all the
1283 elements from T to the hash table then perform the query again. */
1285 n = gimple_switch_num_labels (t);
1286 for (i = 0; i < n; i++)
1288 tree elt = gimple_switch_label (t, i);
1289 tree lab = CASE_LABEL (elt);
1290 basic_block label_bb = label_to_block (lab);
1291 edge this_edge = find_edge (e->src, label_bb);
1293 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1294 a new chain. */
1295 tree &s = edge_to_cases->get_or_insert (this_edge);
1296 CASE_CHAIN (elt) = s;
1297 s = elt;
1300 return *edge_to_cases->get (e);
1303 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1305 static void
1306 make_gimple_switch_edges (gswitch *entry, basic_block bb)
1308 size_t i, n;
1310 n = gimple_switch_num_labels (entry);
1312 for (i = 0; i < n; ++i)
1314 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
1315 basic_block label_bb = label_to_block (lab);
1316 make_edge (bb, label_bb, 0);
1321 /* Return the basic block holding label DEST. */
1323 basic_block
1324 label_to_block_fn (struct function *ifun, tree dest)
1326 int uid = LABEL_DECL_UID (dest);
1328 /* We would die hard when faced by an undefined label. Emit a label to
1329 the very first basic block. This will hopefully make even the dataflow
1330 and undefined variable warnings quite right. */
1331 if (seen_error () && uid < 0)
1333 gimple_stmt_iterator gsi =
1334 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS));
1335 gimple *stmt;
1337 stmt = gimple_build_label (dest);
1338 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1339 uid = LABEL_DECL_UID (dest);
1341 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
1342 return NULL;
1343 return (*ifun->cfg->x_label_to_block_map)[uid];
1346 /* Create edges for a goto statement at block BB. Returns true
1347 if abnormal edges should be created. */
1349 static bool
1350 make_goto_expr_edges (basic_block bb)
1352 gimple_stmt_iterator last = gsi_last_bb (bb);
1353 gimple *goto_t = gsi_stmt (last);
1355 /* A simple GOTO creates normal edges. */
1356 if (simple_goto_p (goto_t))
1358 tree dest = gimple_goto_dest (goto_t);
1359 basic_block label_bb = label_to_block (dest);
1360 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1361 e->goto_locus = gimple_location (goto_t);
1362 gsi_remove (&last, true);
1363 return false;
1366 /* A computed GOTO creates abnormal edges. */
1367 return true;
1370 /* Create edges for an asm statement with labels at block BB. */
1372 static void
1373 make_gimple_asm_edges (basic_block bb)
1375 gasm *stmt = as_a <gasm *> (last_stmt (bb));
1376 int i, n = gimple_asm_nlabels (stmt);
1378 for (i = 0; i < n; ++i)
1380 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1381 basic_block label_bb = label_to_block (label);
1382 make_edge (bb, label_bb, 0);
1386 /*---------------------------------------------------------------------------
1387 Flowgraph analysis
1388 ---------------------------------------------------------------------------*/
1390 /* Cleanup useless labels in basic blocks. This is something we wish
1391 to do early because it allows us to group case labels before creating
1392 the edges for the CFG, and it speeds up block statement iterators in
1393 all passes later on.
1394 We rerun this pass after CFG is created, to get rid of the labels that
1395 are no longer referenced. After then we do not run it any more, since
1396 (almost) no new labels should be created. */
1398 /* A map from basic block index to the leading label of that block. */
1399 static struct label_record
1401 /* The label. */
1402 tree label;
1404 /* True if the label is referenced from somewhere. */
1405 bool used;
1406 } *label_for_bb;
1408 /* Given LABEL return the first label in the same basic block. */
1410 static tree
1411 main_block_label (tree label)
1413 basic_block bb = label_to_block (label);
1414 tree main_label = label_for_bb[bb->index].label;
1416 /* label_to_block possibly inserted undefined label into the chain. */
1417 if (!main_label)
1419 label_for_bb[bb->index].label = label;
1420 main_label = label;
1423 label_for_bb[bb->index].used = true;
1424 return main_label;
1427 /* Clean up redundant labels within the exception tree. */
1429 static void
1430 cleanup_dead_labels_eh (void)
1432 eh_landing_pad lp;
1433 eh_region r;
1434 tree lab;
1435 int i;
1437 if (cfun->eh == NULL)
1438 return;
1440 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1441 if (lp && lp->post_landing_pad)
1443 lab = main_block_label (lp->post_landing_pad);
1444 if (lab != lp->post_landing_pad)
1446 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1447 EH_LANDING_PAD_NR (lab) = lp->index;
1451 FOR_ALL_EH_REGION (r)
1452 switch (r->type)
1454 case ERT_CLEANUP:
1455 case ERT_MUST_NOT_THROW:
1456 break;
1458 case ERT_TRY:
1460 eh_catch c;
1461 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1463 lab = c->label;
1464 if (lab)
1465 c->label = main_block_label (lab);
1468 break;
1470 case ERT_ALLOWED_EXCEPTIONS:
1471 lab = r->u.allowed.label;
1472 if (lab)
1473 r->u.allowed.label = main_block_label (lab);
1474 break;
1479 /* Cleanup redundant labels. This is a three-step process:
1480 1) Find the leading label for each block.
1481 2) Redirect all references to labels to the leading labels.
1482 3) Cleanup all useless labels. */
1484 void
1485 cleanup_dead_labels (void)
1487 basic_block bb;
1488 label_for_bb = XCNEWVEC (struct label_record, last_basic_block_for_fn (cfun));
1490 /* Find a suitable label for each block. We use the first user-defined
1491 label if there is one, or otherwise just the first label we see. */
1492 FOR_EACH_BB_FN (bb, cfun)
1494 gimple_stmt_iterator i;
1496 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1498 tree label;
1499 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1501 if (!label_stmt)
1502 break;
1504 label = gimple_label_label (label_stmt);
1506 /* If we have not yet seen a label for the current block,
1507 remember this one and see if there are more labels. */
1508 if (!label_for_bb[bb->index].label)
1510 label_for_bb[bb->index].label = label;
1511 continue;
1514 /* If we did see a label for the current block already, but it
1515 is an artificially created label, replace it if the current
1516 label is a user defined label. */
1517 if (!DECL_ARTIFICIAL (label)
1518 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1520 label_for_bb[bb->index].label = label;
1521 break;
1526 /* Now redirect all jumps/branches to the selected label.
1527 First do so for each block ending in a control statement. */
1528 FOR_EACH_BB_FN (bb, cfun)
1530 gimple *stmt = last_stmt (bb);
1531 tree label, new_label;
1533 if (!stmt)
1534 continue;
1536 switch (gimple_code (stmt))
1538 case GIMPLE_COND:
1540 gcond *cond_stmt = as_a <gcond *> (stmt);
1541 label = gimple_cond_true_label (cond_stmt);
1542 if (label)
1544 new_label = main_block_label (label);
1545 if (new_label != label)
1546 gimple_cond_set_true_label (cond_stmt, new_label);
1549 label = gimple_cond_false_label (cond_stmt);
1550 if (label)
1552 new_label = main_block_label (label);
1553 if (new_label != label)
1554 gimple_cond_set_false_label (cond_stmt, new_label);
1557 break;
1559 case GIMPLE_SWITCH:
1561 gswitch *switch_stmt = as_a <gswitch *> (stmt);
1562 size_t i, n = gimple_switch_num_labels (switch_stmt);
1564 /* Replace all destination labels. */
1565 for (i = 0; i < n; ++i)
1567 tree case_label = gimple_switch_label (switch_stmt, i);
1568 label = CASE_LABEL (case_label);
1569 new_label = main_block_label (label);
1570 if (new_label != label)
1571 CASE_LABEL (case_label) = new_label;
1573 break;
1576 case GIMPLE_ASM:
1578 gasm *asm_stmt = as_a <gasm *> (stmt);
1579 int i, n = gimple_asm_nlabels (asm_stmt);
1581 for (i = 0; i < n; ++i)
1583 tree cons = gimple_asm_label_op (asm_stmt, i);
1584 tree label = main_block_label (TREE_VALUE (cons));
1585 TREE_VALUE (cons) = label;
1587 break;
1590 /* We have to handle gotos until they're removed, and we don't
1591 remove them until after we've created the CFG edges. */
1592 case GIMPLE_GOTO:
1593 if (!computed_goto_p (stmt))
1595 ggoto *goto_stmt = as_a <ggoto *> (stmt);
1596 label = gimple_goto_dest (goto_stmt);
1597 new_label = main_block_label (label);
1598 if (new_label != label)
1599 gimple_goto_set_dest (goto_stmt, new_label);
1601 break;
1603 case GIMPLE_TRANSACTION:
1605 gtransaction *txn = as_a <gtransaction *> (stmt);
1607 label = gimple_transaction_label_norm (txn);
1608 if (label)
1610 new_label = main_block_label (label);
1611 if (new_label != label)
1612 gimple_transaction_set_label_norm (txn, new_label);
1615 label = gimple_transaction_label_uninst (txn);
1616 if (label)
1618 new_label = main_block_label (label);
1619 if (new_label != label)
1620 gimple_transaction_set_label_uninst (txn, new_label);
1623 label = gimple_transaction_label_over (txn);
1624 if (label)
1626 new_label = main_block_label (label);
1627 if (new_label != label)
1628 gimple_transaction_set_label_over (txn, new_label);
1631 break;
1633 default:
1634 break;
1638 /* Do the same for the exception region tree labels. */
1639 cleanup_dead_labels_eh ();
1641 /* Finally, purge dead labels. All user-defined labels and labels that
1642 can be the target of non-local gotos and labels which have their
1643 address taken are preserved. */
1644 FOR_EACH_BB_FN (bb, cfun)
1646 gimple_stmt_iterator i;
1647 tree label_for_this_bb = label_for_bb[bb->index].label;
1649 if (!label_for_this_bb)
1650 continue;
1652 /* If the main label of the block is unused, we may still remove it. */
1653 if (!label_for_bb[bb->index].used)
1654 label_for_this_bb = NULL;
1656 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1658 tree label;
1659 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1661 if (!label_stmt)
1662 break;
1664 label = gimple_label_label (label_stmt);
1666 if (label == label_for_this_bb
1667 || !DECL_ARTIFICIAL (label)
1668 || DECL_NONLOCAL (label)
1669 || FORCED_LABEL (label))
1670 gsi_next (&i);
1671 else
1672 gsi_remove (&i, true);
1676 free (label_for_bb);
1679 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1680 the ones jumping to the same label.
1681 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1683 bool
1684 group_case_labels_stmt (gswitch *stmt)
1686 int old_size = gimple_switch_num_labels (stmt);
1687 int i, next_index, new_size;
1688 basic_block default_bb = NULL;
1690 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1692 /* Look for possible opportunities to merge cases. */
1693 new_size = i = 1;
1694 while (i < old_size)
1696 tree base_case, base_high;
1697 basic_block base_bb;
1699 base_case = gimple_switch_label (stmt, i);
1701 gcc_assert (base_case);
1702 base_bb = label_to_block (CASE_LABEL (base_case));
1704 /* Discard cases that have the same destination as the default case. */
1705 if (base_bb == default_bb)
1707 i++;
1708 continue;
1711 base_high = CASE_HIGH (base_case)
1712 ? CASE_HIGH (base_case)
1713 : CASE_LOW (base_case);
1714 next_index = i + 1;
1716 /* Try to merge case labels. Break out when we reach the end
1717 of the label vector or when we cannot merge the next case
1718 label with the current one. */
1719 while (next_index < old_size)
1721 tree merge_case = gimple_switch_label (stmt, next_index);
1722 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1723 wide_int bhp1 = wi::add (base_high, 1);
1725 /* Merge the cases if they jump to the same place,
1726 and their ranges are consecutive. */
1727 if (merge_bb == base_bb
1728 && wi::eq_p (CASE_LOW (merge_case), bhp1))
1730 base_high = CASE_HIGH (merge_case) ?
1731 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1732 CASE_HIGH (base_case) = base_high;
1733 next_index++;
1735 else
1736 break;
1739 /* Discard cases that have an unreachable destination block. */
1740 if (EDGE_COUNT (base_bb->succs) == 0
1741 && gimple_seq_unreachable_p (bb_seq (base_bb)))
1743 edge base_edge = find_edge (gimple_bb (stmt), base_bb);
1744 if (base_edge != NULL)
1745 remove_edge_and_dominated_blocks (base_edge);
1746 i = next_index;
1747 continue;
1750 if (new_size < i)
1751 gimple_switch_set_label (stmt, new_size,
1752 gimple_switch_label (stmt, i));
1753 i = next_index;
1754 new_size++;
1757 gcc_assert (new_size <= old_size);
1759 if (new_size < old_size)
1760 gimple_switch_set_num_labels (stmt, new_size);
1762 return new_size < old_size;
1765 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1766 and scan the sorted vector of cases. Combine the ones jumping to the
1767 same label. */
1769 bool
1770 group_case_labels (void)
1772 basic_block bb;
1773 bool changed = false;
1775 FOR_EACH_BB_FN (bb, cfun)
1777 gimple *stmt = last_stmt (bb);
1778 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1779 changed |= group_case_labels_stmt (as_a <gswitch *> (stmt));
1782 return changed;
1785 /* Checks whether we can merge block B into block A. */
1787 static bool
1788 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1790 gimple *stmt;
1792 if (!single_succ_p (a))
1793 return false;
1795 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1796 return false;
1798 if (single_succ (a) != b)
1799 return false;
1801 if (!single_pred_p (b))
1802 return false;
1804 if (a == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1805 || b == EXIT_BLOCK_PTR_FOR_FN (cfun))
1806 return false;
1808 /* If A ends by a statement causing exceptions or something similar, we
1809 cannot merge the blocks. */
1810 stmt = last_stmt (a);
1811 if (stmt && stmt_ends_bb_p (stmt))
1812 return false;
1814 /* Do not allow a block with only a non-local label to be merged. */
1815 if (stmt)
1816 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
1817 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
1818 return false;
1820 /* Examine the labels at the beginning of B. */
1821 for (gimple_stmt_iterator gsi = gsi_start_bb (b); !gsi_end_p (gsi);
1822 gsi_next (&gsi))
1824 tree lab;
1825 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
1826 if (!label_stmt)
1827 break;
1828 lab = gimple_label_label (label_stmt);
1830 /* Do not remove user forced labels or for -O0 any user labels. */
1831 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1832 return false;
1835 /* Protect simple loop latches. We only want to avoid merging
1836 the latch with the loop header or with a block in another
1837 loop in this case. */
1838 if (current_loops
1839 && b->loop_father->latch == b
1840 && loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES)
1841 && (b->loop_father->header == a
1842 || b->loop_father != a->loop_father))
1843 return false;
1845 /* It must be possible to eliminate all phi nodes in B. If ssa form
1846 is not up-to-date and a name-mapping is registered, we cannot eliminate
1847 any phis. Symbols marked for renaming are never a problem though. */
1848 for (gphi_iterator gsi = gsi_start_phis (b); !gsi_end_p (gsi);
1849 gsi_next (&gsi))
1851 gphi *phi = gsi.phi ();
1852 /* Technically only new names matter. */
1853 if (name_registered_for_update_p (PHI_RESULT (phi)))
1854 return false;
1857 /* When not optimizing, don't merge if we'd lose goto_locus. */
1858 if (!optimize
1859 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1861 location_t goto_locus = single_succ_edge (a)->goto_locus;
1862 gimple_stmt_iterator prev, next;
1863 prev = gsi_last_nondebug_bb (a);
1864 next = gsi_after_labels (b);
1865 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1866 gsi_next_nondebug (&next);
1867 if ((gsi_end_p (prev)
1868 || gimple_location (gsi_stmt (prev)) != goto_locus)
1869 && (gsi_end_p (next)
1870 || gimple_location (gsi_stmt (next)) != goto_locus))
1871 return false;
1874 return true;
1877 /* Replaces all uses of NAME by VAL. */
1879 void
1880 replace_uses_by (tree name, tree val)
1882 imm_use_iterator imm_iter;
1883 use_operand_p use;
1884 gimple *stmt;
1885 edge e;
1887 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1889 /* Mark the block if we change the last stmt in it. */
1890 if (cfgcleanup_altered_bbs
1891 && stmt_ends_bb_p (stmt))
1892 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1894 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1896 replace_exp (use, val);
1898 if (gimple_code (stmt) == GIMPLE_PHI)
1900 e = gimple_phi_arg_edge (as_a <gphi *> (stmt),
1901 PHI_ARG_INDEX_FROM_USE (use));
1902 if (e->flags & EDGE_ABNORMAL
1903 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val))
1905 /* This can only occur for virtual operands, since
1906 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1907 would prevent replacement. */
1908 gcc_checking_assert (virtual_operand_p (name));
1909 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1914 if (gimple_code (stmt) != GIMPLE_PHI)
1916 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1917 gimple *orig_stmt = stmt;
1918 size_t i;
1920 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1921 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1922 only change sth from non-invariant to invariant, and only
1923 when propagating constants. */
1924 if (is_gimple_min_invariant (val))
1925 for (i = 0; i < gimple_num_ops (stmt); i++)
1927 tree op = gimple_op (stmt, i);
1928 /* Operands may be empty here. For example, the labels
1929 of a GIMPLE_COND are nulled out following the creation
1930 of the corresponding CFG edges. */
1931 if (op && TREE_CODE (op) == ADDR_EXPR)
1932 recompute_tree_invariant_for_addr_expr (op);
1935 if (fold_stmt (&gsi))
1936 stmt = gsi_stmt (gsi);
1938 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
1939 gimple_purge_dead_eh_edges (gimple_bb (stmt));
1941 update_stmt (stmt);
1945 gcc_checking_assert (has_zero_uses (name));
1947 /* Also update the trees stored in loop structures. */
1948 if (current_loops)
1950 struct loop *loop;
1952 FOR_EACH_LOOP (loop, 0)
1954 substitute_in_loop_info (loop, name, val);
1959 /* Merge block B into block A. */
1961 static void
1962 gimple_merge_blocks (basic_block a, basic_block b)
1964 gimple_stmt_iterator last, gsi;
1965 gphi_iterator psi;
1967 if (dump_file)
1968 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1970 /* Remove all single-valued PHI nodes from block B of the form
1971 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1972 gsi = gsi_last_bb (a);
1973 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
1975 gimple *phi = gsi_stmt (psi);
1976 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1977 gimple *copy;
1978 bool may_replace_uses = (virtual_operand_p (def)
1979 || may_propagate_copy (def, use));
1981 /* In case we maintain loop closed ssa form, do not propagate arguments
1982 of loop exit phi nodes. */
1983 if (current_loops
1984 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1985 && !virtual_operand_p (def)
1986 && TREE_CODE (use) == SSA_NAME
1987 && a->loop_father != b->loop_father)
1988 may_replace_uses = false;
1990 if (!may_replace_uses)
1992 gcc_assert (!virtual_operand_p (def));
1994 /* Note that just emitting the copies is fine -- there is no problem
1995 with ordering of phi nodes. This is because A is the single
1996 predecessor of B, therefore results of the phi nodes cannot
1997 appear as arguments of the phi nodes. */
1998 copy = gimple_build_assign (def, use);
1999 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
2000 remove_phi_node (&psi, false);
2002 else
2004 /* If we deal with a PHI for virtual operands, we can simply
2005 propagate these without fussing with folding or updating
2006 the stmt. */
2007 if (virtual_operand_p (def))
2009 imm_use_iterator iter;
2010 use_operand_p use_p;
2011 gimple *stmt;
2013 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
2014 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2015 SET_USE (use_p, use);
2017 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
2018 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
2020 else
2021 replace_uses_by (def, use);
2023 remove_phi_node (&psi, true);
2027 /* Ensure that B follows A. */
2028 move_block_after (b, a);
2030 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
2031 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
2033 /* Remove labels from B and set gimple_bb to A for other statements. */
2034 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
2036 gimple *stmt = gsi_stmt (gsi);
2037 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2039 tree label = gimple_label_label (label_stmt);
2040 int lp_nr;
2042 gsi_remove (&gsi, false);
2044 /* Now that we can thread computed gotos, we might have
2045 a situation where we have a forced label in block B
2046 However, the label at the start of block B might still be
2047 used in other ways (think about the runtime checking for
2048 Fortran assigned gotos). So we can not just delete the
2049 label. Instead we move the label to the start of block A. */
2050 if (FORCED_LABEL (label))
2052 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
2053 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
2055 /* Other user labels keep around in a form of a debug stmt. */
2056 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
2058 gimple *dbg = gimple_build_debug_bind (label,
2059 integer_zero_node,
2060 stmt);
2061 gimple_debug_bind_reset_value (dbg);
2062 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
2065 lp_nr = EH_LANDING_PAD_NR (label);
2066 if (lp_nr)
2068 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
2069 lp->post_landing_pad = NULL;
2072 else
2074 gimple_set_bb (stmt, a);
2075 gsi_next (&gsi);
2079 /* When merging two BBs, if their counts are different, the larger count
2080 is selected as the new bb count. This is to handle inconsistent
2081 profiles. */
2082 if (a->loop_father == b->loop_father)
2084 a->count = a->count.merge (b->count);
2085 a->frequency = MAX (a->frequency, b->frequency);
2088 /* Merge the sequences. */
2089 last = gsi_last_bb (a);
2090 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
2091 set_bb_seq (b, NULL);
2093 if (cfgcleanup_altered_bbs)
2094 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
2098 /* Return the one of two successors of BB that is not reachable by a
2099 complex edge, if there is one. Else, return BB. We use
2100 this in optimizations that use post-dominators for their heuristics,
2101 to catch the cases in C++ where function calls are involved. */
2103 basic_block
2104 single_noncomplex_succ (basic_block bb)
2106 edge e0, e1;
2107 if (EDGE_COUNT (bb->succs) != 2)
2108 return bb;
2110 e0 = EDGE_SUCC (bb, 0);
2111 e1 = EDGE_SUCC (bb, 1);
2112 if (e0->flags & EDGE_COMPLEX)
2113 return e1->dest;
2114 if (e1->flags & EDGE_COMPLEX)
2115 return e0->dest;
2117 return bb;
2120 /* T is CALL_EXPR. Set current_function_calls_* flags. */
2122 void
2123 notice_special_calls (gcall *call)
2125 int flags = gimple_call_flags (call);
2127 if (flags & ECF_MAY_BE_ALLOCA)
2128 cfun->calls_alloca = true;
2129 if (flags & ECF_RETURNS_TWICE)
2130 cfun->calls_setjmp = true;
2134 /* Clear flags set by notice_special_calls. Used by dead code removal
2135 to update the flags. */
2137 void
2138 clear_special_calls (void)
2140 cfun->calls_alloca = false;
2141 cfun->calls_setjmp = false;
2144 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2146 static void
2147 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
2149 /* Since this block is no longer reachable, we can just delete all
2150 of its PHI nodes. */
2151 remove_phi_nodes (bb);
2153 /* Remove edges to BB's successors. */
2154 while (EDGE_COUNT (bb->succs) > 0)
2155 remove_edge (EDGE_SUCC (bb, 0));
2159 /* Remove statements of basic block BB. */
2161 static void
2162 remove_bb (basic_block bb)
2164 gimple_stmt_iterator i;
2166 if (dump_file)
2168 fprintf (dump_file, "Removing basic block %d\n", bb->index);
2169 if (dump_flags & TDF_DETAILS)
2171 dump_bb (dump_file, bb, 0, TDF_BLOCKS);
2172 fprintf (dump_file, "\n");
2176 if (current_loops)
2178 struct loop *loop = bb->loop_father;
2180 /* If a loop gets removed, clean up the information associated
2181 with it. */
2182 if (loop->latch == bb
2183 || loop->header == bb)
2184 free_numbers_of_iterations_estimates (loop);
2187 /* Remove all the instructions in the block. */
2188 if (bb_seq (bb) != NULL)
2190 /* Walk backwards so as to get a chance to substitute all
2191 released DEFs into debug stmts. See
2192 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
2193 details. */
2194 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
2196 gimple *stmt = gsi_stmt (i);
2197 glabel *label_stmt = dyn_cast <glabel *> (stmt);
2198 if (label_stmt
2199 && (FORCED_LABEL (gimple_label_label (label_stmt))
2200 || DECL_NONLOCAL (gimple_label_label (label_stmt))))
2202 basic_block new_bb;
2203 gimple_stmt_iterator new_gsi;
2205 /* A non-reachable non-local label may still be referenced.
2206 But it no longer needs to carry the extra semantics of
2207 non-locality. */
2208 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
2210 DECL_NONLOCAL (gimple_label_label (label_stmt)) = 0;
2211 FORCED_LABEL (gimple_label_label (label_stmt)) = 1;
2214 new_bb = bb->prev_bb;
2215 new_gsi = gsi_start_bb (new_bb);
2216 gsi_remove (&i, false);
2217 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
2219 else
2221 /* Release SSA definitions. */
2222 release_defs (stmt);
2223 gsi_remove (&i, true);
2226 if (gsi_end_p (i))
2227 i = gsi_last_bb (bb);
2228 else
2229 gsi_prev (&i);
2233 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2234 bb->il.gimple.seq = NULL;
2235 bb->il.gimple.phi_nodes = NULL;
2239 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
2240 predicate VAL, return the edge that will be taken out of the block.
2241 If VAL does not match a unique edge, NULL is returned. */
2243 edge
2244 find_taken_edge (basic_block bb, tree val)
2246 gimple *stmt;
2248 stmt = last_stmt (bb);
2250 gcc_assert (is_ctrl_stmt (stmt));
2252 if (gimple_code (stmt) == GIMPLE_COND)
2253 return find_taken_edge_cond_expr (bb, val);
2255 if (gimple_code (stmt) == GIMPLE_SWITCH)
2256 return find_taken_edge_switch_expr (as_a <gswitch *> (stmt), bb, val);
2258 if (computed_goto_p (stmt))
2260 /* Only optimize if the argument is a label, if the argument is
2261 not a label then we can not construct a proper CFG.
2263 It may be the case that we only need to allow the LABEL_REF to
2264 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2265 appear inside a LABEL_EXPR just to be safe. */
2266 if (val
2267 && (TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2268 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2269 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2270 return NULL;
2273 gcc_unreachable ();
2276 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2277 statement, determine which of the outgoing edges will be taken out of the
2278 block. Return NULL if either edge may be taken. */
2280 static edge
2281 find_taken_edge_computed_goto (basic_block bb, tree val)
2283 basic_block dest;
2284 edge e = NULL;
2286 dest = label_to_block (val);
2287 if (dest)
2289 e = find_edge (bb, dest);
2290 gcc_assert (e != NULL);
2293 return e;
2296 /* Given a constant value VAL and the entry block BB to a COND_EXPR
2297 statement, determine which of the two edges will be taken out of the
2298 block. Return NULL if either edge may be taken. */
2300 static edge
2301 find_taken_edge_cond_expr (basic_block bb, tree val)
2303 edge true_edge, false_edge;
2305 if (val == NULL
2306 || TREE_CODE (val) != INTEGER_CST)
2307 return NULL;
2309 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2311 return (integer_zerop (val) ? false_edge : true_edge);
2314 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2315 statement, determine which edge will be taken out of the block. Return
2316 NULL if any edge may be taken. */
2318 static edge
2319 find_taken_edge_switch_expr (gswitch *switch_stmt, basic_block bb,
2320 tree val)
2322 basic_block dest_bb;
2323 edge e;
2324 tree taken_case;
2326 if (gimple_switch_num_labels (switch_stmt) == 1)
2327 taken_case = gimple_switch_default_label (switch_stmt);
2328 else if (! val || TREE_CODE (val) != INTEGER_CST)
2329 return NULL;
2330 else
2331 taken_case = find_case_label_for_value (switch_stmt, val);
2332 dest_bb = label_to_block (CASE_LABEL (taken_case));
2334 e = find_edge (bb, dest_bb);
2335 gcc_assert (e);
2336 return e;
2340 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2341 We can make optimal use here of the fact that the case labels are
2342 sorted: We can do a binary search for a case matching VAL. */
2344 static tree
2345 find_case_label_for_value (gswitch *switch_stmt, tree val)
2347 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2348 tree default_case = gimple_switch_default_label (switch_stmt);
2350 for (low = 0, high = n; high - low > 1; )
2352 size_t i = (high + low) / 2;
2353 tree t = gimple_switch_label (switch_stmt, i);
2354 int cmp;
2356 /* Cache the result of comparing CASE_LOW and val. */
2357 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2359 if (cmp > 0)
2360 high = i;
2361 else
2362 low = i;
2364 if (CASE_HIGH (t) == NULL)
2366 /* A singe-valued case label. */
2367 if (cmp == 0)
2368 return t;
2370 else
2372 /* A case range. We can only handle integer ranges. */
2373 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2374 return t;
2378 return default_case;
2382 /* Dump a basic block on stderr. */
2384 void
2385 gimple_debug_bb (basic_block bb)
2387 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2391 /* Dump basic block with index N on stderr. */
2393 basic_block
2394 gimple_debug_bb_n (int n)
2396 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n));
2397 return BASIC_BLOCK_FOR_FN (cfun, n);
2401 /* Dump the CFG on stderr.
2403 FLAGS are the same used by the tree dumping functions
2404 (see TDF_* in dumpfile.h). */
2406 void
2407 gimple_debug_cfg (dump_flags_t flags)
2409 gimple_dump_cfg (stderr, flags);
2413 /* Dump the program showing basic block boundaries on the given FILE.
2415 FLAGS are the same used by the tree dumping functions (see TDF_* in
2416 tree.h). */
2418 void
2419 gimple_dump_cfg (FILE *file, dump_flags_t flags)
2421 if (flags & TDF_DETAILS)
2423 dump_function_header (file, current_function_decl, flags);
2424 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2425 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
2426 last_basic_block_for_fn (cfun));
2428 brief_dump_cfg (file, flags);
2429 fprintf (file, "\n");
2432 if (flags & TDF_STATS)
2433 dump_cfg_stats (file);
2435 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2439 /* Dump CFG statistics on FILE. */
2441 void
2442 dump_cfg_stats (FILE *file)
2444 static long max_num_merged_labels = 0;
2445 unsigned long size, total = 0;
2446 long num_edges;
2447 basic_block bb;
2448 const char * const fmt_str = "%-30s%-13s%12s\n";
2449 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2450 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2451 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2452 const char *funcname = current_function_name ();
2454 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2456 fprintf (file, "---------------------------------------------------------\n");
2457 fprintf (file, fmt_str, "", " Number of ", "Memory");
2458 fprintf (file, fmt_str, "", " instances ", "used ");
2459 fprintf (file, "---------------------------------------------------------\n");
2461 size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def);
2462 total += size;
2463 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun),
2464 SCALE (size), LABEL (size));
2466 num_edges = 0;
2467 FOR_EACH_BB_FN (bb, cfun)
2468 num_edges += EDGE_COUNT (bb->succs);
2469 size = num_edges * sizeof (struct edge_def);
2470 total += size;
2471 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2473 fprintf (file, "---------------------------------------------------------\n");
2474 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2475 LABEL (total));
2476 fprintf (file, "---------------------------------------------------------\n");
2477 fprintf (file, "\n");
2479 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2480 max_num_merged_labels = cfg_stats.num_merged_labels;
2482 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2483 cfg_stats.num_merged_labels, max_num_merged_labels);
2485 fprintf (file, "\n");
2489 /* Dump CFG statistics on stderr. Keep extern so that it's always
2490 linked in the final executable. */
2492 DEBUG_FUNCTION void
2493 debug_cfg_stats (void)
2495 dump_cfg_stats (stderr);
2498 /*---------------------------------------------------------------------------
2499 Miscellaneous helpers
2500 ---------------------------------------------------------------------------*/
2502 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2503 flow. Transfers of control flow associated with EH are excluded. */
2505 static bool
2506 call_can_make_abnormal_goto (gimple *t)
2508 /* If the function has no non-local labels, then a call cannot make an
2509 abnormal transfer of control. */
2510 if (!cfun->has_nonlocal_label
2511 && !cfun->calls_setjmp)
2512 return false;
2514 /* Likewise if the call has no side effects. */
2515 if (!gimple_has_side_effects (t))
2516 return false;
2518 /* Likewise if the called function is leaf. */
2519 if (gimple_call_flags (t) & ECF_LEAF)
2520 return false;
2522 return true;
2526 /* Return true if T can make an abnormal transfer of control flow.
2527 Transfers of control flow associated with EH are excluded. */
2529 bool
2530 stmt_can_make_abnormal_goto (gimple *t)
2532 if (computed_goto_p (t))
2533 return true;
2534 if (is_gimple_call (t))
2535 return call_can_make_abnormal_goto (t);
2536 return false;
2540 /* Return true if T represents a stmt that always transfers control. */
2542 bool
2543 is_ctrl_stmt (gimple *t)
2545 switch (gimple_code (t))
2547 case GIMPLE_COND:
2548 case GIMPLE_SWITCH:
2549 case GIMPLE_GOTO:
2550 case GIMPLE_RETURN:
2551 case GIMPLE_RESX:
2552 return true;
2553 default:
2554 return false;
2559 /* Return true if T is a statement that may alter the flow of control
2560 (e.g., a call to a non-returning function). */
2562 bool
2563 is_ctrl_altering_stmt (gimple *t)
2565 gcc_assert (t);
2567 switch (gimple_code (t))
2569 case GIMPLE_CALL:
2570 /* Per stmt call flag indicates whether the call could alter
2571 controlflow. */
2572 if (gimple_call_ctrl_altering_p (t))
2573 return true;
2574 break;
2576 case GIMPLE_EH_DISPATCH:
2577 /* EH_DISPATCH branches to the individual catch handlers at
2578 this level of a try or allowed-exceptions region. It can
2579 fallthru to the next statement as well. */
2580 return true;
2582 case GIMPLE_ASM:
2583 if (gimple_asm_nlabels (as_a <gasm *> (t)) > 0)
2584 return true;
2585 break;
2587 CASE_GIMPLE_OMP:
2588 /* OpenMP directives alter control flow. */
2589 return true;
2591 case GIMPLE_TRANSACTION:
2592 /* A transaction start alters control flow. */
2593 return true;
2595 default:
2596 break;
2599 /* If a statement can throw, it alters control flow. */
2600 return stmt_can_throw_internal (t);
2604 /* Return true if T is a simple local goto. */
2606 bool
2607 simple_goto_p (gimple *t)
2609 return (gimple_code (t) == GIMPLE_GOTO
2610 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2614 /* Return true if STMT should start a new basic block. PREV_STMT is
2615 the statement preceding STMT. It is used when STMT is a label or a
2616 case label. Labels should only start a new basic block if their
2617 previous statement wasn't a label. Otherwise, sequence of labels
2618 would generate unnecessary basic blocks that only contain a single
2619 label. */
2621 static inline bool
2622 stmt_starts_bb_p (gimple *stmt, gimple *prev_stmt)
2624 if (stmt == NULL)
2625 return false;
2627 /* Labels start a new basic block only if the preceding statement
2628 wasn't a label of the same type. This prevents the creation of
2629 consecutive blocks that have nothing but a single label. */
2630 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2632 /* Nonlocal and computed GOTO targets always start a new block. */
2633 if (DECL_NONLOCAL (gimple_label_label (label_stmt))
2634 || FORCED_LABEL (gimple_label_label (label_stmt)))
2635 return true;
2637 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2639 if (DECL_NONLOCAL (gimple_label_label (
2640 as_a <glabel *> (prev_stmt))))
2641 return true;
2643 cfg_stats.num_merged_labels++;
2644 return false;
2646 else
2647 return true;
2649 else if (gimple_code (stmt) == GIMPLE_CALL)
2651 if (gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2652 /* setjmp acts similar to a nonlocal GOTO target and thus should
2653 start a new block. */
2654 return true;
2655 if (gimple_call_internal_p (stmt, IFN_PHI)
2656 && prev_stmt
2657 && gimple_code (prev_stmt) != GIMPLE_LABEL
2658 && (gimple_code (prev_stmt) != GIMPLE_CALL
2659 || ! gimple_call_internal_p (prev_stmt, IFN_PHI)))
2660 /* PHI nodes start a new block unless preceeded by a label
2661 or another PHI. */
2662 return true;
2665 return false;
2669 /* Return true if T should end a basic block. */
2671 bool
2672 stmt_ends_bb_p (gimple *t)
2674 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2677 /* Remove block annotations and other data structures. */
2679 void
2680 delete_tree_cfg_annotations (struct function *fn)
2682 vec_free (label_to_block_map_for_fn (fn));
2685 /* Return the virtual phi in BB. */
2687 gphi *
2688 get_virtual_phi (basic_block bb)
2690 for (gphi_iterator gsi = gsi_start_phis (bb);
2691 !gsi_end_p (gsi);
2692 gsi_next (&gsi))
2694 gphi *phi = gsi.phi ();
2696 if (virtual_operand_p (PHI_RESULT (phi)))
2697 return phi;
2700 return NULL;
2703 /* Return the first statement in basic block BB. */
2705 gimple *
2706 first_stmt (basic_block bb)
2708 gimple_stmt_iterator i = gsi_start_bb (bb);
2709 gimple *stmt = NULL;
2711 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2713 gsi_next (&i);
2714 stmt = NULL;
2716 return stmt;
2719 /* Return the first non-label statement in basic block BB. */
2721 static gimple *
2722 first_non_label_stmt (basic_block bb)
2724 gimple_stmt_iterator i = gsi_start_bb (bb);
2725 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2726 gsi_next (&i);
2727 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2730 /* Return the last statement in basic block BB. */
2732 gimple *
2733 last_stmt (basic_block bb)
2735 gimple_stmt_iterator i = gsi_last_bb (bb);
2736 gimple *stmt = NULL;
2738 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2740 gsi_prev (&i);
2741 stmt = NULL;
2743 return stmt;
2746 /* Return the last statement of an otherwise empty block. Return NULL
2747 if the block is totally empty, or if it contains more than one
2748 statement. */
2750 gimple *
2751 last_and_only_stmt (basic_block bb)
2753 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2754 gimple *last, *prev;
2756 if (gsi_end_p (i))
2757 return NULL;
2759 last = gsi_stmt (i);
2760 gsi_prev_nondebug (&i);
2761 if (gsi_end_p (i))
2762 return last;
2764 /* Empty statements should no longer appear in the instruction stream.
2765 Everything that might have appeared before should be deleted by
2766 remove_useless_stmts, and the optimizers should just gsi_remove
2767 instead of smashing with build_empty_stmt.
2769 Thus the only thing that should appear here in a block containing
2770 one executable statement is a label. */
2771 prev = gsi_stmt (i);
2772 if (gimple_code (prev) == GIMPLE_LABEL)
2773 return last;
2774 else
2775 return NULL;
2778 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2780 static void
2781 reinstall_phi_args (edge new_edge, edge old_edge)
2783 edge_var_map *vm;
2784 int i;
2785 gphi_iterator phis;
2787 vec<edge_var_map> *v = redirect_edge_var_map_vector (old_edge);
2788 if (!v)
2789 return;
2791 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2792 v->iterate (i, &vm) && !gsi_end_p (phis);
2793 i++, gsi_next (&phis))
2795 gphi *phi = phis.phi ();
2796 tree result = redirect_edge_var_map_result (vm);
2797 tree arg = redirect_edge_var_map_def (vm);
2799 gcc_assert (result == gimple_phi_result (phi));
2801 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2804 redirect_edge_var_map_clear (old_edge);
2807 /* Returns the basic block after which the new basic block created
2808 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2809 near its "logical" location. This is of most help to humans looking
2810 at debugging dumps. */
2812 basic_block
2813 split_edge_bb_loc (edge edge_in)
2815 basic_block dest = edge_in->dest;
2816 basic_block dest_prev = dest->prev_bb;
2818 if (dest_prev)
2820 edge e = find_edge (dest_prev, dest);
2821 if (e && !(e->flags & EDGE_COMPLEX))
2822 return edge_in->src;
2824 return dest_prev;
2827 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2828 Abort on abnormal edges. */
2830 static basic_block
2831 gimple_split_edge (edge edge_in)
2833 basic_block new_bb, after_bb, dest;
2834 edge new_edge, e;
2836 /* Abnormal edges cannot be split. */
2837 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2839 dest = edge_in->dest;
2841 after_bb = split_edge_bb_loc (edge_in);
2843 new_bb = create_empty_bb (after_bb);
2844 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2845 new_bb->count = edge_in->count;
2846 new_edge = make_single_succ_edge (new_bb, dest, EDGE_FALLTHRU);
2848 e = redirect_edge_and_branch (edge_in, new_bb);
2849 gcc_assert (e == edge_in);
2850 reinstall_phi_args (new_edge, e);
2852 return new_bb;
2856 /* Verify properties of the address expression T with base object BASE. */
2858 static tree
2859 verify_address (tree t, tree base)
2861 bool old_constant;
2862 bool old_side_effects;
2863 bool new_constant;
2864 bool new_side_effects;
2866 old_constant = TREE_CONSTANT (t);
2867 old_side_effects = TREE_SIDE_EFFECTS (t);
2869 recompute_tree_invariant_for_addr_expr (t);
2870 new_side_effects = TREE_SIDE_EFFECTS (t);
2871 new_constant = TREE_CONSTANT (t);
2873 if (old_constant != new_constant)
2875 error ("constant not recomputed when ADDR_EXPR changed");
2876 return t;
2878 if (old_side_effects != new_side_effects)
2880 error ("side effects not recomputed when ADDR_EXPR changed");
2881 return t;
2884 if (!(VAR_P (base)
2885 || TREE_CODE (base) == PARM_DECL
2886 || TREE_CODE (base) == RESULT_DECL))
2887 return NULL_TREE;
2889 if (DECL_GIMPLE_REG_P (base))
2891 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2892 return base;
2895 return NULL_TREE;
2898 /* Callback for walk_tree, check that all elements with address taken are
2899 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2900 inside a PHI node. */
2902 static tree
2903 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2905 tree t = *tp, x;
2907 if (TYPE_P (t))
2908 *walk_subtrees = 0;
2910 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2911 #define CHECK_OP(N, MSG) \
2912 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2913 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2915 switch (TREE_CODE (t))
2917 case SSA_NAME:
2918 if (SSA_NAME_IN_FREE_LIST (t))
2920 error ("SSA name in freelist but still referenced");
2921 return *tp;
2923 break;
2925 case PARM_DECL:
2926 case VAR_DECL:
2927 case RESULT_DECL:
2929 tree context = decl_function_context (t);
2930 if (context != cfun->decl
2931 && !SCOPE_FILE_SCOPE_P (context)
2932 && !TREE_STATIC (t)
2933 && !DECL_EXTERNAL (t))
2935 error ("Local declaration from a different function");
2936 return t;
2939 break;
2941 case INDIRECT_REF:
2942 error ("INDIRECT_REF in gimple IL");
2943 return t;
2945 case MEM_REF:
2946 x = TREE_OPERAND (t, 0);
2947 if (!POINTER_TYPE_P (TREE_TYPE (x))
2948 || !is_gimple_mem_ref_addr (x))
2950 error ("invalid first operand of MEM_REF");
2951 return x;
2953 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2954 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2956 error ("invalid offset operand of MEM_REF");
2957 return TREE_OPERAND (t, 1);
2959 if (TREE_CODE (x) == ADDR_EXPR)
2961 tree va = verify_address (x, TREE_OPERAND (x, 0));
2962 if (va)
2963 return va;
2964 x = TREE_OPERAND (x, 0);
2966 walk_tree (&x, verify_expr, data, NULL);
2967 *walk_subtrees = 0;
2968 break;
2970 case ASSERT_EXPR:
2971 x = fold (ASSERT_EXPR_COND (t));
2972 if (x == boolean_false_node)
2974 error ("ASSERT_EXPR with an always-false condition");
2975 return *tp;
2977 break;
2979 case MODIFY_EXPR:
2980 error ("MODIFY_EXPR not expected while having tuples");
2981 return *tp;
2983 case ADDR_EXPR:
2985 tree tem;
2987 gcc_assert (is_gimple_address (t));
2989 /* Skip any references (they will be checked when we recurse down the
2990 tree) and ensure that any variable used as a prefix is marked
2991 addressable. */
2992 for (x = TREE_OPERAND (t, 0);
2993 handled_component_p (x);
2994 x = TREE_OPERAND (x, 0))
2997 if ((tem = verify_address (t, x)))
2998 return tem;
3000 if (!(VAR_P (x)
3001 || TREE_CODE (x) == PARM_DECL
3002 || TREE_CODE (x) == RESULT_DECL))
3003 return NULL;
3005 if (!TREE_ADDRESSABLE (x))
3007 error ("address taken, but ADDRESSABLE bit not set");
3008 return x;
3011 break;
3014 case COND_EXPR:
3015 x = COND_EXPR_COND (t);
3016 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
3018 error ("non-integral used in condition");
3019 return x;
3021 if (!is_gimple_condexpr (x))
3023 error ("invalid conditional operand");
3024 return x;
3026 break;
3028 case NON_LVALUE_EXPR:
3029 case TRUTH_NOT_EXPR:
3030 gcc_unreachable ();
3032 CASE_CONVERT:
3033 case FIX_TRUNC_EXPR:
3034 case FLOAT_EXPR:
3035 case NEGATE_EXPR:
3036 case ABS_EXPR:
3037 case BIT_NOT_EXPR:
3038 CHECK_OP (0, "invalid operand to unary operator");
3039 break;
3041 case REALPART_EXPR:
3042 case IMAGPART_EXPR:
3043 case BIT_FIELD_REF:
3044 if (!is_gimple_reg_type (TREE_TYPE (t)))
3046 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
3047 return t;
3050 if (TREE_CODE (t) == BIT_FIELD_REF)
3052 tree t0 = TREE_OPERAND (t, 0);
3053 tree t1 = TREE_OPERAND (t, 1);
3054 tree t2 = TREE_OPERAND (t, 2);
3055 if (!tree_fits_uhwi_p (t1)
3056 || !tree_fits_uhwi_p (t2))
3058 error ("invalid position or size operand to BIT_FIELD_REF");
3059 return t;
3061 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
3062 && (TYPE_PRECISION (TREE_TYPE (t))
3063 != tree_to_uhwi (t1)))
3065 error ("integral result type precision does not match "
3066 "field size of BIT_FIELD_REF");
3067 return t;
3069 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
3070 && TYPE_MODE (TREE_TYPE (t)) != BLKmode
3071 && (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t)))
3072 != tree_to_uhwi (t1)))
3074 error ("mode size of non-integral result does not "
3075 "match field size of BIT_FIELD_REF");
3076 return t;
3078 if (!AGGREGATE_TYPE_P (TREE_TYPE (t0))
3079 && (tree_to_uhwi (t1) + tree_to_uhwi (t2)
3080 > tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t0)))))
3082 error ("position plus size exceeds size of referenced object in "
3083 "BIT_FIELD_REF");
3084 return t;
3087 t = TREE_OPERAND (t, 0);
3089 /* Fall-through. */
3090 case COMPONENT_REF:
3091 case ARRAY_REF:
3092 case ARRAY_RANGE_REF:
3093 case VIEW_CONVERT_EXPR:
3094 /* We have a nest of references. Verify that each of the operands
3095 that determine where to reference is either a constant or a variable,
3096 verify that the base is valid, and then show we've already checked
3097 the subtrees. */
3098 while (handled_component_p (t))
3100 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
3101 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
3102 else if (TREE_CODE (t) == ARRAY_REF
3103 || TREE_CODE (t) == ARRAY_RANGE_REF)
3105 CHECK_OP (1, "invalid array index");
3106 if (TREE_OPERAND (t, 2))
3107 CHECK_OP (2, "invalid array lower bound");
3108 if (TREE_OPERAND (t, 3))
3109 CHECK_OP (3, "invalid array stride");
3111 else if (TREE_CODE (t) == BIT_FIELD_REF
3112 || TREE_CODE (t) == REALPART_EXPR
3113 || TREE_CODE (t) == IMAGPART_EXPR)
3115 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
3116 "REALPART_EXPR");
3117 return t;
3120 t = TREE_OPERAND (t, 0);
3123 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
3125 error ("invalid reference prefix");
3126 return t;
3128 walk_tree (&t, verify_expr, data, NULL);
3129 *walk_subtrees = 0;
3130 break;
3131 case PLUS_EXPR:
3132 case MINUS_EXPR:
3133 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
3134 POINTER_PLUS_EXPR. */
3135 if (POINTER_TYPE_P (TREE_TYPE (t)))
3137 error ("invalid operand to plus/minus, type is a pointer");
3138 return t;
3140 CHECK_OP (0, "invalid operand to binary operator");
3141 CHECK_OP (1, "invalid operand to binary operator");
3142 break;
3144 case POINTER_PLUS_EXPR:
3145 /* Check to make sure the first operand is a pointer or reference type. */
3146 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
3148 error ("invalid operand to pointer plus, first operand is not a pointer");
3149 return t;
3151 /* Check to make sure the second operand is a ptrofftype. */
3152 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
3154 error ("invalid operand to pointer plus, second operand is not an "
3155 "integer type of appropriate width");
3156 return t;
3158 /* FALLTHROUGH */
3159 case LT_EXPR:
3160 case LE_EXPR:
3161 case GT_EXPR:
3162 case GE_EXPR:
3163 case EQ_EXPR:
3164 case NE_EXPR:
3165 case UNORDERED_EXPR:
3166 case ORDERED_EXPR:
3167 case UNLT_EXPR:
3168 case UNLE_EXPR:
3169 case UNGT_EXPR:
3170 case UNGE_EXPR:
3171 case UNEQ_EXPR:
3172 case LTGT_EXPR:
3173 case MULT_EXPR:
3174 case TRUNC_DIV_EXPR:
3175 case CEIL_DIV_EXPR:
3176 case FLOOR_DIV_EXPR:
3177 case ROUND_DIV_EXPR:
3178 case TRUNC_MOD_EXPR:
3179 case CEIL_MOD_EXPR:
3180 case FLOOR_MOD_EXPR:
3181 case ROUND_MOD_EXPR:
3182 case RDIV_EXPR:
3183 case EXACT_DIV_EXPR:
3184 case MIN_EXPR:
3185 case MAX_EXPR:
3186 case LSHIFT_EXPR:
3187 case RSHIFT_EXPR:
3188 case LROTATE_EXPR:
3189 case RROTATE_EXPR:
3190 case BIT_IOR_EXPR:
3191 case BIT_XOR_EXPR:
3192 case BIT_AND_EXPR:
3193 CHECK_OP (0, "invalid operand to binary operator");
3194 CHECK_OP (1, "invalid operand to binary operator");
3195 break;
3197 case CONSTRUCTOR:
3198 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
3199 *walk_subtrees = 0;
3200 break;
3202 case CASE_LABEL_EXPR:
3203 if (CASE_CHAIN (t))
3205 error ("invalid CASE_CHAIN");
3206 return t;
3208 break;
3210 default:
3211 break;
3213 return NULL;
3215 #undef CHECK_OP
3219 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
3220 Returns true if there is an error, otherwise false. */
3222 static bool
3223 verify_types_in_gimple_min_lval (tree expr)
3225 tree op;
3227 if (is_gimple_id (expr))
3228 return false;
3230 if (TREE_CODE (expr) != TARGET_MEM_REF
3231 && TREE_CODE (expr) != MEM_REF)
3233 error ("invalid expression for min lvalue");
3234 return true;
3237 /* TARGET_MEM_REFs are strange beasts. */
3238 if (TREE_CODE (expr) == TARGET_MEM_REF)
3239 return false;
3241 op = TREE_OPERAND (expr, 0);
3242 if (!is_gimple_val (op))
3244 error ("invalid operand in indirect reference");
3245 debug_generic_stmt (op);
3246 return true;
3248 /* Memory references now generally can involve a value conversion. */
3250 return false;
3253 /* Verify if EXPR is a valid GIMPLE reference expression. If
3254 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3255 if there is an error, otherwise false. */
3257 static bool
3258 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
3260 while (handled_component_p (expr))
3262 tree op = TREE_OPERAND (expr, 0);
3264 if (TREE_CODE (expr) == ARRAY_REF
3265 || TREE_CODE (expr) == ARRAY_RANGE_REF)
3267 if (!is_gimple_val (TREE_OPERAND (expr, 1))
3268 || (TREE_OPERAND (expr, 2)
3269 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3270 || (TREE_OPERAND (expr, 3)
3271 && !is_gimple_val (TREE_OPERAND (expr, 3))))
3273 error ("invalid operands to array reference");
3274 debug_generic_stmt (expr);
3275 return true;
3279 /* Verify if the reference array element types are compatible. */
3280 if (TREE_CODE (expr) == ARRAY_REF
3281 && !useless_type_conversion_p (TREE_TYPE (expr),
3282 TREE_TYPE (TREE_TYPE (op))))
3284 error ("type mismatch in array reference");
3285 debug_generic_stmt (TREE_TYPE (expr));
3286 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3287 return true;
3289 if (TREE_CODE (expr) == ARRAY_RANGE_REF
3290 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3291 TREE_TYPE (TREE_TYPE (op))))
3293 error ("type mismatch in array range reference");
3294 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3295 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3296 return true;
3299 if ((TREE_CODE (expr) == REALPART_EXPR
3300 || TREE_CODE (expr) == IMAGPART_EXPR)
3301 && !useless_type_conversion_p (TREE_TYPE (expr),
3302 TREE_TYPE (TREE_TYPE (op))))
3304 error ("type mismatch in real/imagpart reference");
3305 debug_generic_stmt (TREE_TYPE (expr));
3306 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3307 return true;
3310 if (TREE_CODE (expr) == COMPONENT_REF
3311 && !useless_type_conversion_p (TREE_TYPE (expr),
3312 TREE_TYPE (TREE_OPERAND (expr, 1))))
3314 error ("type mismatch in component reference");
3315 debug_generic_stmt (TREE_TYPE (expr));
3316 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3317 return true;
3320 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3322 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3323 that their operand is not an SSA name or an invariant when
3324 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3325 bug). Otherwise there is nothing to verify, gross mismatches at
3326 most invoke undefined behavior. */
3327 if (require_lvalue
3328 && (TREE_CODE (op) == SSA_NAME
3329 || is_gimple_min_invariant (op)))
3331 error ("conversion of an SSA_NAME on the left hand side");
3332 debug_generic_stmt (expr);
3333 return true;
3335 else if (TREE_CODE (op) == SSA_NAME
3336 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3338 error ("conversion of register to a different size");
3339 debug_generic_stmt (expr);
3340 return true;
3342 else if (!handled_component_p (op))
3343 return false;
3346 expr = op;
3349 if (TREE_CODE (expr) == MEM_REF)
3351 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
3353 error ("invalid address operand in MEM_REF");
3354 debug_generic_stmt (expr);
3355 return true;
3357 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
3358 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3360 error ("invalid offset operand in MEM_REF");
3361 debug_generic_stmt (expr);
3362 return true;
3365 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3367 if (!TMR_BASE (expr)
3368 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3370 error ("invalid address operand in TARGET_MEM_REF");
3371 return true;
3373 if (!TMR_OFFSET (expr)
3374 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3375 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3377 error ("invalid offset operand in TARGET_MEM_REF");
3378 debug_generic_stmt (expr);
3379 return true;
3383 return ((require_lvalue || !is_gimple_min_invariant (expr))
3384 && verify_types_in_gimple_min_lval (expr));
3387 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3388 list of pointer-to types that is trivially convertible to DEST. */
3390 static bool
3391 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3393 tree src;
3395 if (!TYPE_POINTER_TO (src_obj))
3396 return true;
3398 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3399 if (useless_type_conversion_p (dest, src))
3400 return true;
3402 return false;
3405 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3406 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3408 static bool
3409 valid_fixed_convert_types_p (tree type1, tree type2)
3411 return (FIXED_POINT_TYPE_P (type1)
3412 && (INTEGRAL_TYPE_P (type2)
3413 || SCALAR_FLOAT_TYPE_P (type2)
3414 || FIXED_POINT_TYPE_P (type2)));
3417 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3418 is a problem, otherwise false. */
3420 static bool
3421 verify_gimple_call (gcall *stmt)
3423 tree fn = gimple_call_fn (stmt);
3424 tree fntype, fndecl;
3425 unsigned i;
3427 if (gimple_call_internal_p (stmt))
3429 if (fn)
3431 error ("gimple call has two targets");
3432 debug_generic_stmt (fn);
3433 return true;
3435 /* FIXME : for passing label as arg in internal fn PHI from GIMPLE FE*/
3436 else if (gimple_call_internal_fn (stmt) == IFN_PHI)
3438 return false;
3441 else
3443 if (!fn)
3445 error ("gimple call has no target");
3446 return true;
3450 if (fn && !is_gimple_call_addr (fn))
3452 error ("invalid function in gimple call");
3453 debug_generic_stmt (fn);
3454 return true;
3457 if (fn
3458 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3459 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3460 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3462 error ("non-function in gimple call");
3463 return true;
3466 fndecl = gimple_call_fndecl (stmt);
3467 if (fndecl
3468 && TREE_CODE (fndecl) == FUNCTION_DECL
3469 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3470 && !DECL_PURE_P (fndecl)
3471 && !TREE_READONLY (fndecl))
3473 error ("invalid pure const state for function");
3474 return true;
3477 tree lhs = gimple_call_lhs (stmt);
3478 if (lhs
3479 && (!is_gimple_lvalue (lhs)
3480 || verify_types_in_gimple_reference (lhs, true)))
3482 error ("invalid LHS in gimple call");
3483 return true;
3486 if (gimple_call_ctrl_altering_p (stmt)
3487 && gimple_call_noreturn_p (stmt)
3488 && should_remove_lhs_p (lhs))
3490 error ("LHS in noreturn call");
3491 return true;
3494 fntype = gimple_call_fntype (stmt);
3495 if (fntype
3496 && lhs
3497 && !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (fntype))
3498 /* ??? At least C++ misses conversions at assignments from
3499 void * call results.
3500 For now simply allow arbitrary pointer type conversions. */
3501 && !(POINTER_TYPE_P (TREE_TYPE (lhs))
3502 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3504 error ("invalid conversion in gimple call");
3505 debug_generic_stmt (TREE_TYPE (lhs));
3506 debug_generic_stmt (TREE_TYPE (fntype));
3507 return true;
3510 if (gimple_call_chain (stmt)
3511 && !is_gimple_val (gimple_call_chain (stmt)))
3513 error ("invalid static chain in gimple call");
3514 debug_generic_stmt (gimple_call_chain (stmt));
3515 return true;
3518 /* If there is a static chain argument, the call should either be
3519 indirect, or the decl should have DECL_STATIC_CHAIN set. */
3520 if (gimple_call_chain (stmt)
3521 && fndecl
3522 && !DECL_STATIC_CHAIN (fndecl))
3524 error ("static chain with function that doesn%'t use one");
3525 return true;
3528 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3530 switch (DECL_FUNCTION_CODE (fndecl))
3532 case BUILT_IN_UNREACHABLE:
3533 case BUILT_IN_TRAP:
3534 if (gimple_call_num_args (stmt) > 0)
3536 /* Built-in unreachable with parameters might not be caught by
3537 undefined behavior sanitizer. Front-ends do check users do not
3538 call them that way but we also produce calls to
3539 __builtin_unreachable internally, for example when IPA figures
3540 out a call cannot happen in a legal program. In such cases,
3541 we must make sure arguments are stripped off. */
3542 error ("__builtin_unreachable or __builtin_trap call with "
3543 "arguments");
3544 return true;
3546 break;
3547 default:
3548 break;
3552 /* ??? The C frontend passes unpromoted arguments in case it
3553 didn't see a function declaration before the call. So for now
3554 leave the call arguments mostly unverified. Once we gimplify
3555 unit-at-a-time we have a chance to fix this. */
3557 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3559 tree arg = gimple_call_arg (stmt, i);
3560 if ((is_gimple_reg_type (TREE_TYPE (arg))
3561 && !is_gimple_val (arg))
3562 || (!is_gimple_reg_type (TREE_TYPE (arg))
3563 && !is_gimple_lvalue (arg)))
3565 error ("invalid argument to gimple call");
3566 debug_generic_expr (arg);
3567 return true;
3571 return false;
3574 /* Verifies the gimple comparison with the result type TYPE and
3575 the operands OP0 and OP1, comparison code is CODE. */
3577 static bool
3578 verify_gimple_comparison (tree type, tree op0, tree op1, enum tree_code code)
3580 tree op0_type = TREE_TYPE (op0);
3581 tree op1_type = TREE_TYPE (op1);
3583 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3585 error ("invalid operands in gimple comparison");
3586 return true;
3589 /* For comparisons we do not have the operations type as the
3590 effective type the comparison is carried out in. Instead
3591 we require that either the first operand is trivially
3592 convertible into the second, or the other way around.
3593 Because we special-case pointers to void we allow
3594 comparisons of pointers with the same mode as well. */
3595 if (!useless_type_conversion_p (op0_type, op1_type)
3596 && !useless_type_conversion_p (op1_type, op0_type)
3597 && (!POINTER_TYPE_P (op0_type)
3598 || !POINTER_TYPE_P (op1_type)
3599 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3601 error ("mismatching comparison operand types");
3602 debug_generic_expr (op0_type);
3603 debug_generic_expr (op1_type);
3604 return true;
3607 /* The resulting type of a comparison may be an effective boolean type. */
3608 if (INTEGRAL_TYPE_P (type)
3609 && (TREE_CODE (type) == BOOLEAN_TYPE
3610 || TYPE_PRECISION (type) == 1))
3612 if ((TREE_CODE (op0_type) == VECTOR_TYPE
3613 || TREE_CODE (op1_type) == VECTOR_TYPE)
3614 && code != EQ_EXPR && code != NE_EXPR
3615 && !VECTOR_BOOLEAN_TYPE_P (op0_type)
3616 && !VECTOR_INTEGER_TYPE_P (op0_type))
3618 error ("unsupported operation or type for vector comparison"
3619 " returning a boolean");
3620 debug_generic_expr (op0_type);
3621 debug_generic_expr (op1_type);
3622 return true;
3625 /* Or a boolean vector type with the same element count
3626 as the comparison operand types. */
3627 else if (TREE_CODE (type) == VECTOR_TYPE
3628 && TREE_CODE (TREE_TYPE (type)) == BOOLEAN_TYPE)
3630 if (TREE_CODE (op0_type) != VECTOR_TYPE
3631 || TREE_CODE (op1_type) != VECTOR_TYPE)
3633 error ("non-vector operands in vector comparison");
3634 debug_generic_expr (op0_type);
3635 debug_generic_expr (op1_type);
3636 return true;
3639 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type))
3641 error ("invalid vector comparison resulting type");
3642 debug_generic_expr (type);
3643 return true;
3646 else
3648 error ("bogus comparison result type");
3649 debug_generic_expr (type);
3650 return true;
3653 return false;
3656 /* Verify a gimple assignment statement STMT with an unary rhs.
3657 Returns true if anything is wrong. */
3659 static bool
3660 verify_gimple_assign_unary (gassign *stmt)
3662 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3663 tree lhs = gimple_assign_lhs (stmt);
3664 tree lhs_type = TREE_TYPE (lhs);
3665 tree rhs1 = gimple_assign_rhs1 (stmt);
3666 tree rhs1_type = TREE_TYPE (rhs1);
3668 if (!is_gimple_reg (lhs))
3670 error ("non-register as LHS of unary operation");
3671 return true;
3674 if (!is_gimple_val (rhs1))
3676 error ("invalid operand in unary operation");
3677 return true;
3680 /* First handle conversions. */
3681 switch (rhs_code)
3683 CASE_CONVERT:
3685 /* Allow conversions from pointer type to integral type only if
3686 there is no sign or zero extension involved.
3687 For targets were the precision of ptrofftype doesn't match that
3688 of pointers we need to allow arbitrary conversions to ptrofftype. */
3689 if ((POINTER_TYPE_P (lhs_type)
3690 && INTEGRAL_TYPE_P (rhs1_type))
3691 || (POINTER_TYPE_P (rhs1_type)
3692 && INTEGRAL_TYPE_P (lhs_type)
3693 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3694 || ptrofftype_p (sizetype))))
3695 return false;
3697 /* Allow conversion from integral to offset type and vice versa. */
3698 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3699 && INTEGRAL_TYPE_P (rhs1_type))
3700 || (INTEGRAL_TYPE_P (lhs_type)
3701 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3702 return false;
3704 /* Otherwise assert we are converting between types of the
3705 same kind. */
3706 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3708 error ("invalid types in nop conversion");
3709 debug_generic_expr (lhs_type);
3710 debug_generic_expr (rhs1_type);
3711 return true;
3714 return false;
3717 case ADDR_SPACE_CONVERT_EXPR:
3719 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3720 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3721 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3723 error ("invalid types in address space conversion");
3724 debug_generic_expr (lhs_type);
3725 debug_generic_expr (rhs1_type);
3726 return true;
3729 return false;
3732 case FIXED_CONVERT_EXPR:
3734 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3735 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3737 error ("invalid types in fixed-point conversion");
3738 debug_generic_expr (lhs_type);
3739 debug_generic_expr (rhs1_type);
3740 return true;
3743 return false;
3746 case FLOAT_EXPR:
3748 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3749 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3750 || !VECTOR_FLOAT_TYPE_P (lhs_type)))
3752 error ("invalid types in conversion to floating point");
3753 debug_generic_expr (lhs_type);
3754 debug_generic_expr (rhs1_type);
3755 return true;
3758 return false;
3761 case FIX_TRUNC_EXPR:
3763 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3764 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3765 || !VECTOR_FLOAT_TYPE_P (rhs1_type)))
3767 error ("invalid types in conversion to integer");
3768 debug_generic_expr (lhs_type);
3769 debug_generic_expr (rhs1_type);
3770 return true;
3773 return false;
3775 case REDUC_MAX_EXPR:
3776 case REDUC_MIN_EXPR:
3777 case REDUC_PLUS_EXPR:
3778 if (!VECTOR_TYPE_P (rhs1_type)
3779 || !useless_type_conversion_p (lhs_type, TREE_TYPE (rhs1_type)))
3781 error ("reduction should convert from vector to element type");
3782 debug_generic_expr (lhs_type);
3783 debug_generic_expr (rhs1_type);
3784 return true;
3786 return false;
3788 case VEC_UNPACK_HI_EXPR:
3789 case VEC_UNPACK_LO_EXPR:
3790 case VEC_UNPACK_FLOAT_HI_EXPR:
3791 case VEC_UNPACK_FLOAT_LO_EXPR:
3792 /* FIXME. */
3793 return false;
3795 case NEGATE_EXPR:
3796 case ABS_EXPR:
3797 case BIT_NOT_EXPR:
3798 case PAREN_EXPR:
3799 case CONJ_EXPR:
3800 break;
3802 default:
3803 gcc_unreachable ();
3806 /* For the remaining codes assert there is no conversion involved. */
3807 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3809 error ("non-trivial conversion in unary operation");
3810 debug_generic_expr (lhs_type);
3811 debug_generic_expr (rhs1_type);
3812 return true;
3815 return false;
3818 /* Verify a gimple assignment statement STMT with a binary rhs.
3819 Returns true if anything is wrong. */
3821 static bool
3822 verify_gimple_assign_binary (gassign *stmt)
3824 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3825 tree lhs = gimple_assign_lhs (stmt);
3826 tree lhs_type = TREE_TYPE (lhs);
3827 tree rhs1 = gimple_assign_rhs1 (stmt);
3828 tree rhs1_type = TREE_TYPE (rhs1);
3829 tree rhs2 = gimple_assign_rhs2 (stmt);
3830 tree rhs2_type = TREE_TYPE (rhs2);
3832 if (!is_gimple_reg (lhs))
3834 error ("non-register as LHS of binary operation");
3835 return true;
3838 if (!is_gimple_val (rhs1)
3839 || !is_gimple_val (rhs2))
3841 error ("invalid operands in binary operation");
3842 return true;
3845 /* First handle operations that involve different types. */
3846 switch (rhs_code)
3848 case COMPLEX_EXPR:
3850 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3851 || !(INTEGRAL_TYPE_P (rhs1_type)
3852 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3853 || !(INTEGRAL_TYPE_P (rhs2_type)
3854 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3856 error ("type mismatch in complex expression");
3857 debug_generic_expr (lhs_type);
3858 debug_generic_expr (rhs1_type);
3859 debug_generic_expr (rhs2_type);
3860 return true;
3863 return false;
3866 case LSHIFT_EXPR:
3867 case RSHIFT_EXPR:
3868 case LROTATE_EXPR:
3869 case RROTATE_EXPR:
3871 /* Shifts and rotates are ok on integral types, fixed point
3872 types and integer vector types. */
3873 if ((!INTEGRAL_TYPE_P (rhs1_type)
3874 && !FIXED_POINT_TYPE_P (rhs1_type)
3875 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3876 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3877 || (!INTEGRAL_TYPE_P (rhs2_type)
3878 /* Vector shifts of vectors are also ok. */
3879 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3880 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3881 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3882 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3883 || !useless_type_conversion_p (lhs_type, rhs1_type))
3885 error ("type mismatch in shift expression");
3886 debug_generic_expr (lhs_type);
3887 debug_generic_expr (rhs1_type);
3888 debug_generic_expr (rhs2_type);
3889 return true;
3892 return false;
3895 case WIDEN_LSHIFT_EXPR:
3897 if (!INTEGRAL_TYPE_P (lhs_type)
3898 || !INTEGRAL_TYPE_P (rhs1_type)
3899 || TREE_CODE (rhs2) != INTEGER_CST
3900 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3902 error ("type mismatch in widening vector shift expression");
3903 debug_generic_expr (lhs_type);
3904 debug_generic_expr (rhs1_type);
3905 debug_generic_expr (rhs2_type);
3906 return true;
3909 return false;
3912 case VEC_WIDEN_LSHIFT_HI_EXPR:
3913 case VEC_WIDEN_LSHIFT_LO_EXPR:
3915 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3916 || TREE_CODE (lhs_type) != VECTOR_TYPE
3917 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3918 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3919 || TREE_CODE (rhs2) != INTEGER_CST
3920 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3921 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3923 error ("type mismatch in widening vector shift expression");
3924 debug_generic_expr (lhs_type);
3925 debug_generic_expr (rhs1_type);
3926 debug_generic_expr (rhs2_type);
3927 return true;
3930 return false;
3933 case PLUS_EXPR:
3934 case MINUS_EXPR:
3936 tree lhs_etype = lhs_type;
3937 tree rhs1_etype = rhs1_type;
3938 tree rhs2_etype = rhs2_type;
3939 if (TREE_CODE (lhs_type) == VECTOR_TYPE)
3941 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3942 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3944 error ("invalid non-vector operands to vector valued plus");
3945 return true;
3947 lhs_etype = TREE_TYPE (lhs_type);
3948 rhs1_etype = TREE_TYPE (rhs1_type);
3949 rhs2_etype = TREE_TYPE (rhs2_type);
3951 if (POINTER_TYPE_P (lhs_etype)
3952 || POINTER_TYPE_P (rhs1_etype)
3953 || POINTER_TYPE_P (rhs2_etype))
3955 error ("invalid (pointer) operands to plus/minus");
3956 return true;
3959 /* Continue with generic binary expression handling. */
3960 break;
3963 case POINTER_PLUS_EXPR:
3965 if (!POINTER_TYPE_P (rhs1_type)
3966 || !useless_type_conversion_p (lhs_type, rhs1_type)
3967 || !ptrofftype_p (rhs2_type))
3969 error ("type mismatch in pointer plus expression");
3970 debug_generic_stmt (lhs_type);
3971 debug_generic_stmt (rhs1_type);
3972 debug_generic_stmt (rhs2_type);
3973 return true;
3976 return false;
3979 case TRUTH_ANDIF_EXPR:
3980 case TRUTH_ORIF_EXPR:
3981 case TRUTH_AND_EXPR:
3982 case TRUTH_OR_EXPR:
3983 case TRUTH_XOR_EXPR:
3985 gcc_unreachable ();
3987 case LT_EXPR:
3988 case LE_EXPR:
3989 case GT_EXPR:
3990 case GE_EXPR:
3991 case EQ_EXPR:
3992 case NE_EXPR:
3993 case UNORDERED_EXPR:
3994 case ORDERED_EXPR:
3995 case UNLT_EXPR:
3996 case UNLE_EXPR:
3997 case UNGT_EXPR:
3998 case UNGE_EXPR:
3999 case UNEQ_EXPR:
4000 case LTGT_EXPR:
4001 /* Comparisons are also binary, but the result type is not
4002 connected to the operand types. */
4003 return verify_gimple_comparison (lhs_type, rhs1, rhs2, rhs_code);
4005 case WIDEN_MULT_EXPR:
4006 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
4007 return true;
4008 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
4009 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
4011 case WIDEN_SUM_EXPR:
4012 case VEC_WIDEN_MULT_HI_EXPR:
4013 case VEC_WIDEN_MULT_LO_EXPR:
4014 case VEC_WIDEN_MULT_EVEN_EXPR:
4015 case VEC_WIDEN_MULT_ODD_EXPR:
4016 case VEC_PACK_TRUNC_EXPR:
4017 case VEC_PACK_SAT_EXPR:
4018 case VEC_PACK_FIX_TRUNC_EXPR:
4019 /* FIXME. */
4020 return false;
4022 case MULT_EXPR:
4023 case MULT_HIGHPART_EXPR:
4024 case TRUNC_DIV_EXPR:
4025 case CEIL_DIV_EXPR:
4026 case FLOOR_DIV_EXPR:
4027 case ROUND_DIV_EXPR:
4028 case TRUNC_MOD_EXPR:
4029 case CEIL_MOD_EXPR:
4030 case FLOOR_MOD_EXPR:
4031 case ROUND_MOD_EXPR:
4032 case RDIV_EXPR:
4033 case EXACT_DIV_EXPR:
4034 case MIN_EXPR:
4035 case MAX_EXPR:
4036 case BIT_IOR_EXPR:
4037 case BIT_XOR_EXPR:
4038 case BIT_AND_EXPR:
4039 /* Continue with generic binary expression handling. */
4040 break;
4042 default:
4043 gcc_unreachable ();
4046 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4047 || !useless_type_conversion_p (lhs_type, rhs2_type))
4049 error ("type mismatch in binary expression");
4050 debug_generic_stmt (lhs_type);
4051 debug_generic_stmt (rhs1_type);
4052 debug_generic_stmt (rhs2_type);
4053 return true;
4056 return false;
4059 /* Verify a gimple assignment statement STMT with a ternary rhs.
4060 Returns true if anything is wrong. */
4062 static bool
4063 verify_gimple_assign_ternary (gassign *stmt)
4065 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4066 tree lhs = gimple_assign_lhs (stmt);
4067 tree lhs_type = TREE_TYPE (lhs);
4068 tree rhs1 = gimple_assign_rhs1 (stmt);
4069 tree rhs1_type = TREE_TYPE (rhs1);
4070 tree rhs2 = gimple_assign_rhs2 (stmt);
4071 tree rhs2_type = TREE_TYPE (rhs2);
4072 tree rhs3 = gimple_assign_rhs3 (stmt);
4073 tree rhs3_type = TREE_TYPE (rhs3);
4075 if (!is_gimple_reg (lhs))
4077 error ("non-register as LHS of ternary operation");
4078 return true;
4081 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
4082 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
4083 || !is_gimple_val (rhs2)
4084 || !is_gimple_val (rhs3))
4086 error ("invalid operands in ternary operation");
4087 return true;
4090 /* First handle operations that involve different types. */
4091 switch (rhs_code)
4093 case WIDEN_MULT_PLUS_EXPR:
4094 case WIDEN_MULT_MINUS_EXPR:
4095 if ((!INTEGRAL_TYPE_P (rhs1_type)
4096 && !FIXED_POINT_TYPE_P (rhs1_type))
4097 || !useless_type_conversion_p (rhs1_type, rhs2_type)
4098 || !useless_type_conversion_p (lhs_type, rhs3_type)
4099 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
4100 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
4102 error ("type mismatch in widening multiply-accumulate expression");
4103 debug_generic_expr (lhs_type);
4104 debug_generic_expr (rhs1_type);
4105 debug_generic_expr (rhs2_type);
4106 debug_generic_expr (rhs3_type);
4107 return true;
4109 break;
4111 case FMA_EXPR:
4112 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4113 || !useless_type_conversion_p (lhs_type, rhs2_type)
4114 || !useless_type_conversion_p (lhs_type, rhs3_type))
4116 error ("type mismatch in fused multiply-add expression");
4117 debug_generic_expr (lhs_type);
4118 debug_generic_expr (rhs1_type);
4119 debug_generic_expr (rhs2_type);
4120 debug_generic_expr (rhs3_type);
4121 return true;
4123 break;
4125 case VEC_COND_EXPR:
4126 if (!VECTOR_BOOLEAN_TYPE_P (rhs1_type)
4127 || TYPE_VECTOR_SUBPARTS (rhs1_type)
4128 != TYPE_VECTOR_SUBPARTS (lhs_type))
4130 error ("the first argument of a VEC_COND_EXPR must be of a "
4131 "boolean vector type of the same number of elements "
4132 "as the result");
4133 debug_generic_expr (lhs_type);
4134 debug_generic_expr (rhs1_type);
4135 return true;
4137 /* Fallthrough. */
4138 case COND_EXPR:
4139 if (!useless_type_conversion_p (lhs_type, rhs2_type)
4140 || !useless_type_conversion_p (lhs_type, rhs3_type))
4142 error ("type mismatch in conditional expression");
4143 debug_generic_expr (lhs_type);
4144 debug_generic_expr (rhs2_type);
4145 debug_generic_expr (rhs3_type);
4146 return true;
4148 break;
4150 case VEC_PERM_EXPR:
4151 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4152 || !useless_type_conversion_p (lhs_type, rhs2_type))
4154 error ("type mismatch in vector permute expression");
4155 debug_generic_expr (lhs_type);
4156 debug_generic_expr (rhs1_type);
4157 debug_generic_expr (rhs2_type);
4158 debug_generic_expr (rhs3_type);
4159 return true;
4162 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4163 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4164 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4166 error ("vector types expected in vector permute expression");
4167 debug_generic_expr (lhs_type);
4168 debug_generic_expr (rhs1_type);
4169 debug_generic_expr (rhs2_type);
4170 debug_generic_expr (rhs3_type);
4171 return true;
4174 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
4175 || TYPE_VECTOR_SUBPARTS (rhs2_type)
4176 != TYPE_VECTOR_SUBPARTS (rhs3_type)
4177 || TYPE_VECTOR_SUBPARTS (rhs3_type)
4178 != TYPE_VECTOR_SUBPARTS (lhs_type))
4180 error ("vectors with different element number found "
4181 "in vector permute expression");
4182 debug_generic_expr (lhs_type);
4183 debug_generic_expr (rhs1_type);
4184 debug_generic_expr (rhs2_type);
4185 debug_generic_expr (rhs3_type);
4186 return true;
4189 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
4190 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
4191 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
4193 error ("invalid mask type in vector permute expression");
4194 debug_generic_expr (lhs_type);
4195 debug_generic_expr (rhs1_type);
4196 debug_generic_expr (rhs2_type);
4197 debug_generic_expr (rhs3_type);
4198 return true;
4201 return false;
4203 case SAD_EXPR:
4204 if (!useless_type_conversion_p (rhs1_type, rhs2_type)
4205 || !useless_type_conversion_p (lhs_type, rhs3_type)
4206 || 2 * GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type)))
4207 > GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (lhs_type))))
4209 error ("type mismatch in sad expression");
4210 debug_generic_expr (lhs_type);
4211 debug_generic_expr (rhs1_type);
4212 debug_generic_expr (rhs2_type);
4213 debug_generic_expr (rhs3_type);
4214 return true;
4217 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4218 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4219 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4221 error ("vector types expected in sad expression");
4222 debug_generic_expr (lhs_type);
4223 debug_generic_expr (rhs1_type);
4224 debug_generic_expr (rhs2_type);
4225 debug_generic_expr (rhs3_type);
4226 return true;
4229 return false;
4231 case BIT_INSERT_EXPR:
4232 if (! useless_type_conversion_p (lhs_type, rhs1_type))
4234 error ("type mismatch in BIT_INSERT_EXPR");
4235 debug_generic_expr (lhs_type);
4236 debug_generic_expr (rhs1_type);
4237 return true;
4239 if (! ((INTEGRAL_TYPE_P (rhs1_type)
4240 && INTEGRAL_TYPE_P (rhs2_type))
4241 || (VECTOR_TYPE_P (rhs1_type)
4242 && types_compatible_p (TREE_TYPE (rhs1_type), rhs2_type))))
4244 error ("not allowed type combination in BIT_INSERT_EXPR");
4245 debug_generic_expr (rhs1_type);
4246 debug_generic_expr (rhs2_type);
4247 return true;
4249 if (! tree_fits_uhwi_p (rhs3)
4250 || ! tree_fits_uhwi_p (TYPE_SIZE (rhs2_type)))
4252 error ("invalid position or size in BIT_INSERT_EXPR");
4253 return true;
4255 if (INTEGRAL_TYPE_P (rhs1_type))
4257 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3);
4258 if (bitpos >= TYPE_PRECISION (rhs1_type)
4259 || (bitpos + TYPE_PRECISION (rhs2_type)
4260 > TYPE_PRECISION (rhs1_type)))
4262 error ("insertion out of range in BIT_INSERT_EXPR");
4263 return true;
4266 else if (VECTOR_TYPE_P (rhs1_type))
4268 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3);
4269 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (TYPE_SIZE (rhs2_type));
4270 if (bitpos % bitsize != 0)
4272 error ("vector insertion not at element boundary");
4273 return true;
4276 return false;
4278 case DOT_PROD_EXPR:
4279 case REALIGN_LOAD_EXPR:
4280 /* FIXME. */
4281 return false;
4283 default:
4284 gcc_unreachable ();
4286 return false;
4289 /* Verify a gimple assignment statement STMT with a single rhs.
4290 Returns true if anything is wrong. */
4292 static bool
4293 verify_gimple_assign_single (gassign *stmt)
4295 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4296 tree lhs = gimple_assign_lhs (stmt);
4297 tree lhs_type = TREE_TYPE (lhs);
4298 tree rhs1 = gimple_assign_rhs1 (stmt);
4299 tree rhs1_type = TREE_TYPE (rhs1);
4300 bool res = false;
4302 if (!useless_type_conversion_p (lhs_type, rhs1_type))
4304 error ("non-trivial conversion at assignment");
4305 debug_generic_expr (lhs_type);
4306 debug_generic_expr (rhs1_type);
4307 return true;
4310 if (gimple_clobber_p (stmt)
4311 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
4313 error ("non-decl/MEM_REF LHS in clobber statement");
4314 debug_generic_expr (lhs);
4315 return true;
4318 if (handled_component_p (lhs)
4319 || TREE_CODE (lhs) == MEM_REF
4320 || TREE_CODE (lhs) == TARGET_MEM_REF)
4321 res |= verify_types_in_gimple_reference (lhs, true);
4323 /* Special codes we cannot handle via their class. */
4324 switch (rhs_code)
4326 case ADDR_EXPR:
4328 tree op = TREE_OPERAND (rhs1, 0);
4329 if (!is_gimple_addressable (op))
4331 error ("invalid operand in unary expression");
4332 return true;
4335 /* Technically there is no longer a need for matching types, but
4336 gimple hygiene asks for this check. In LTO we can end up
4337 combining incompatible units and thus end up with addresses
4338 of globals that change their type to a common one. */
4339 if (!in_lto_p
4340 && !types_compatible_p (TREE_TYPE (op),
4341 TREE_TYPE (TREE_TYPE (rhs1)))
4342 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
4343 TREE_TYPE (op)))
4345 error ("type mismatch in address expression");
4346 debug_generic_stmt (TREE_TYPE (rhs1));
4347 debug_generic_stmt (TREE_TYPE (op));
4348 return true;
4351 return verify_types_in_gimple_reference (op, true);
4354 /* tcc_reference */
4355 case INDIRECT_REF:
4356 error ("INDIRECT_REF in gimple IL");
4357 return true;
4359 case COMPONENT_REF:
4360 case BIT_FIELD_REF:
4361 case ARRAY_REF:
4362 case ARRAY_RANGE_REF:
4363 case VIEW_CONVERT_EXPR:
4364 case REALPART_EXPR:
4365 case IMAGPART_EXPR:
4366 case TARGET_MEM_REF:
4367 case MEM_REF:
4368 if (!is_gimple_reg (lhs)
4369 && is_gimple_reg_type (TREE_TYPE (lhs)))
4371 error ("invalid rhs for gimple memory store");
4372 debug_generic_stmt (lhs);
4373 debug_generic_stmt (rhs1);
4374 return true;
4376 return res || verify_types_in_gimple_reference (rhs1, false);
4378 /* tcc_constant */
4379 case SSA_NAME:
4380 case INTEGER_CST:
4381 case REAL_CST:
4382 case FIXED_CST:
4383 case COMPLEX_CST:
4384 case VECTOR_CST:
4385 case STRING_CST:
4386 return res;
4388 /* tcc_declaration */
4389 case CONST_DECL:
4390 return res;
4391 case VAR_DECL:
4392 case PARM_DECL:
4393 if (!is_gimple_reg (lhs)
4394 && !is_gimple_reg (rhs1)
4395 && is_gimple_reg_type (TREE_TYPE (lhs)))
4397 error ("invalid rhs for gimple memory store");
4398 debug_generic_stmt (lhs);
4399 debug_generic_stmt (rhs1);
4400 return true;
4402 return res;
4404 case CONSTRUCTOR:
4405 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
4407 unsigned int i;
4408 tree elt_i, elt_v, elt_t = NULL_TREE;
4410 if (CONSTRUCTOR_NELTS (rhs1) == 0)
4411 return res;
4412 /* For vector CONSTRUCTORs we require that either it is empty
4413 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4414 (then the element count must be correct to cover the whole
4415 outer vector and index must be NULL on all elements, or it is
4416 a CONSTRUCTOR of scalar elements, where we as an exception allow
4417 smaller number of elements (assuming zero filling) and
4418 consecutive indexes as compared to NULL indexes (such
4419 CONSTRUCTORs can appear in the IL from FEs). */
4420 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
4422 if (elt_t == NULL_TREE)
4424 elt_t = TREE_TYPE (elt_v);
4425 if (TREE_CODE (elt_t) == VECTOR_TYPE)
4427 tree elt_t = TREE_TYPE (elt_v);
4428 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4429 TREE_TYPE (elt_t)))
4431 error ("incorrect type of vector CONSTRUCTOR"
4432 " elements");
4433 debug_generic_stmt (rhs1);
4434 return true;
4436 else if (CONSTRUCTOR_NELTS (rhs1)
4437 * TYPE_VECTOR_SUBPARTS (elt_t)
4438 != TYPE_VECTOR_SUBPARTS (rhs1_type))
4440 error ("incorrect number of vector CONSTRUCTOR"
4441 " elements");
4442 debug_generic_stmt (rhs1);
4443 return true;
4446 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4447 elt_t))
4449 error ("incorrect type of vector CONSTRUCTOR elements");
4450 debug_generic_stmt (rhs1);
4451 return true;
4453 else if (CONSTRUCTOR_NELTS (rhs1)
4454 > TYPE_VECTOR_SUBPARTS (rhs1_type))
4456 error ("incorrect number of vector CONSTRUCTOR elements");
4457 debug_generic_stmt (rhs1);
4458 return true;
4461 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4463 error ("incorrect type of vector CONSTRUCTOR elements");
4464 debug_generic_stmt (rhs1);
4465 return true;
4467 if (elt_i != NULL_TREE
4468 && (TREE_CODE (elt_t) == VECTOR_TYPE
4469 || TREE_CODE (elt_i) != INTEGER_CST
4470 || compare_tree_int (elt_i, i) != 0))
4472 error ("vector CONSTRUCTOR with non-NULL element index");
4473 debug_generic_stmt (rhs1);
4474 return true;
4476 if (!is_gimple_val (elt_v))
4478 error ("vector CONSTRUCTOR element is not a GIMPLE value");
4479 debug_generic_stmt (rhs1);
4480 return true;
4484 else if (CONSTRUCTOR_NELTS (rhs1) != 0)
4486 error ("non-vector CONSTRUCTOR with elements");
4487 debug_generic_stmt (rhs1);
4488 return true;
4490 return res;
4491 case OBJ_TYPE_REF:
4492 case ASSERT_EXPR:
4493 case WITH_SIZE_EXPR:
4494 /* FIXME. */
4495 return res;
4497 default:;
4500 return res;
4503 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4504 is a problem, otherwise false. */
4506 static bool
4507 verify_gimple_assign (gassign *stmt)
4509 switch (gimple_assign_rhs_class (stmt))
4511 case GIMPLE_SINGLE_RHS:
4512 return verify_gimple_assign_single (stmt);
4514 case GIMPLE_UNARY_RHS:
4515 return verify_gimple_assign_unary (stmt);
4517 case GIMPLE_BINARY_RHS:
4518 return verify_gimple_assign_binary (stmt);
4520 case GIMPLE_TERNARY_RHS:
4521 return verify_gimple_assign_ternary (stmt);
4523 default:
4524 gcc_unreachable ();
4528 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4529 is a problem, otherwise false. */
4531 static bool
4532 verify_gimple_return (greturn *stmt)
4534 tree op = gimple_return_retval (stmt);
4535 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4537 /* We cannot test for present return values as we do not fix up missing
4538 return values from the original source. */
4539 if (op == NULL)
4540 return false;
4542 if (!is_gimple_val (op)
4543 && TREE_CODE (op) != RESULT_DECL)
4545 error ("invalid operand in return statement");
4546 debug_generic_stmt (op);
4547 return true;
4550 if ((TREE_CODE (op) == RESULT_DECL
4551 && DECL_BY_REFERENCE (op))
4552 || (TREE_CODE (op) == SSA_NAME
4553 && SSA_NAME_VAR (op)
4554 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4555 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4556 op = TREE_TYPE (op);
4558 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4560 error ("invalid conversion in return statement");
4561 debug_generic_stmt (restype);
4562 debug_generic_stmt (TREE_TYPE (op));
4563 return true;
4566 return false;
4570 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4571 is a problem, otherwise false. */
4573 static bool
4574 verify_gimple_goto (ggoto *stmt)
4576 tree dest = gimple_goto_dest (stmt);
4578 /* ??? We have two canonical forms of direct goto destinations, a
4579 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4580 if (TREE_CODE (dest) != LABEL_DECL
4581 && (!is_gimple_val (dest)
4582 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4584 error ("goto destination is neither a label nor a pointer");
4585 return true;
4588 return false;
4591 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4592 is a problem, otherwise false. */
4594 static bool
4595 verify_gimple_switch (gswitch *stmt)
4597 unsigned int i, n;
4598 tree elt, prev_upper_bound = NULL_TREE;
4599 tree index_type, elt_type = NULL_TREE;
4601 if (!is_gimple_val (gimple_switch_index (stmt)))
4603 error ("invalid operand to switch statement");
4604 debug_generic_stmt (gimple_switch_index (stmt));
4605 return true;
4608 index_type = TREE_TYPE (gimple_switch_index (stmt));
4609 if (! INTEGRAL_TYPE_P (index_type))
4611 error ("non-integral type switch statement");
4612 debug_generic_expr (index_type);
4613 return true;
4616 elt = gimple_switch_label (stmt, 0);
4617 if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
4619 error ("invalid default case label in switch statement");
4620 debug_generic_expr (elt);
4621 return true;
4624 n = gimple_switch_num_labels (stmt);
4625 for (i = 1; i < n; i++)
4627 elt = gimple_switch_label (stmt, i);
4629 if (! CASE_LOW (elt))
4631 error ("invalid case label in switch statement");
4632 debug_generic_expr (elt);
4633 return true;
4635 if (CASE_HIGH (elt)
4636 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4638 error ("invalid case range in switch statement");
4639 debug_generic_expr (elt);
4640 return true;
4643 if (elt_type)
4645 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4646 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4648 error ("type mismatch for case label in switch statement");
4649 debug_generic_expr (elt);
4650 return true;
4653 else
4655 elt_type = TREE_TYPE (CASE_LOW (elt));
4656 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4658 error ("type precision mismatch in switch statement");
4659 return true;
4663 if (prev_upper_bound)
4665 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4667 error ("case labels not sorted in switch statement");
4668 return true;
4672 prev_upper_bound = CASE_HIGH (elt);
4673 if (! prev_upper_bound)
4674 prev_upper_bound = CASE_LOW (elt);
4677 return false;
4680 /* Verify a gimple debug statement STMT.
4681 Returns true if anything is wrong. */
4683 static bool
4684 verify_gimple_debug (gimple *stmt ATTRIBUTE_UNUSED)
4686 /* There isn't much that could be wrong in a gimple debug stmt. A
4687 gimple debug bind stmt, for example, maps a tree, that's usually
4688 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4689 component or member of an aggregate type, to another tree, that
4690 can be an arbitrary expression. These stmts expand into debug
4691 insns, and are converted to debug notes by var-tracking.c. */
4692 return false;
4695 /* Verify a gimple label statement STMT.
4696 Returns true if anything is wrong. */
4698 static bool
4699 verify_gimple_label (glabel *stmt)
4701 tree decl = gimple_label_label (stmt);
4702 int uid;
4703 bool err = false;
4705 if (TREE_CODE (decl) != LABEL_DECL)
4706 return true;
4707 if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
4708 && DECL_CONTEXT (decl) != current_function_decl)
4710 error ("label's context is not the current function decl");
4711 err |= true;
4714 uid = LABEL_DECL_UID (decl);
4715 if (cfun->cfg
4716 && (uid == -1
4717 || (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt)))
4719 error ("incorrect entry in label_to_block_map");
4720 err |= true;
4723 uid = EH_LANDING_PAD_NR (decl);
4724 if (uid)
4726 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4727 if (decl != lp->post_landing_pad)
4729 error ("incorrect setting of landing pad number");
4730 err |= true;
4734 return err;
4737 /* Verify a gimple cond statement STMT.
4738 Returns true if anything is wrong. */
4740 static bool
4741 verify_gimple_cond (gcond *stmt)
4743 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4745 error ("invalid comparison code in gimple cond");
4746 return true;
4748 if (!(!gimple_cond_true_label (stmt)
4749 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4750 || !(!gimple_cond_false_label (stmt)
4751 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4753 error ("invalid labels in gimple cond");
4754 return true;
4757 return verify_gimple_comparison (boolean_type_node,
4758 gimple_cond_lhs (stmt),
4759 gimple_cond_rhs (stmt),
4760 gimple_cond_code (stmt));
4763 /* Verify the GIMPLE statement STMT. Returns true if there is an
4764 error, otherwise false. */
4766 static bool
4767 verify_gimple_stmt (gimple *stmt)
4769 switch (gimple_code (stmt))
4771 case GIMPLE_ASSIGN:
4772 return verify_gimple_assign (as_a <gassign *> (stmt));
4774 case GIMPLE_LABEL:
4775 return verify_gimple_label (as_a <glabel *> (stmt));
4777 case GIMPLE_CALL:
4778 return verify_gimple_call (as_a <gcall *> (stmt));
4780 case GIMPLE_COND:
4781 return verify_gimple_cond (as_a <gcond *> (stmt));
4783 case GIMPLE_GOTO:
4784 return verify_gimple_goto (as_a <ggoto *> (stmt));
4786 case GIMPLE_SWITCH:
4787 return verify_gimple_switch (as_a <gswitch *> (stmt));
4789 case GIMPLE_RETURN:
4790 return verify_gimple_return (as_a <greturn *> (stmt));
4792 case GIMPLE_ASM:
4793 return false;
4795 case GIMPLE_TRANSACTION:
4796 return verify_gimple_transaction (as_a <gtransaction *> (stmt));
4798 /* Tuples that do not have tree operands. */
4799 case GIMPLE_NOP:
4800 case GIMPLE_PREDICT:
4801 case GIMPLE_RESX:
4802 case GIMPLE_EH_DISPATCH:
4803 case GIMPLE_EH_MUST_NOT_THROW:
4804 return false;
4806 CASE_GIMPLE_OMP:
4807 /* OpenMP directives are validated by the FE and never operated
4808 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4809 non-gimple expressions when the main index variable has had
4810 its address taken. This does not affect the loop itself
4811 because the header of an GIMPLE_OMP_FOR is merely used to determine
4812 how to setup the parallel iteration. */
4813 return false;
4815 case GIMPLE_DEBUG:
4816 return verify_gimple_debug (stmt);
4818 default:
4819 gcc_unreachable ();
4823 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4824 and false otherwise. */
4826 static bool
4827 verify_gimple_phi (gimple *phi)
4829 bool err = false;
4830 unsigned i;
4831 tree phi_result = gimple_phi_result (phi);
4832 bool virtual_p;
4834 if (!phi_result)
4836 error ("invalid PHI result");
4837 return true;
4840 virtual_p = virtual_operand_p (phi_result);
4841 if (TREE_CODE (phi_result) != SSA_NAME
4842 || (virtual_p
4843 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4845 error ("invalid PHI result");
4846 err = true;
4849 for (i = 0; i < gimple_phi_num_args (phi); i++)
4851 tree t = gimple_phi_arg_def (phi, i);
4853 if (!t)
4855 error ("missing PHI def");
4856 err |= true;
4857 continue;
4859 /* Addressable variables do have SSA_NAMEs but they
4860 are not considered gimple values. */
4861 else if ((TREE_CODE (t) == SSA_NAME
4862 && virtual_p != virtual_operand_p (t))
4863 || (virtual_p
4864 && (TREE_CODE (t) != SSA_NAME
4865 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4866 || (!virtual_p
4867 && !is_gimple_val (t)))
4869 error ("invalid PHI argument");
4870 debug_generic_expr (t);
4871 err |= true;
4873 #ifdef ENABLE_TYPES_CHECKING
4874 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4876 error ("incompatible types in PHI argument %u", i);
4877 debug_generic_stmt (TREE_TYPE (phi_result));
4878 debug_generic_stmt (TREE_TYPE (t));
4879 err |= true;
4881 #endif
4884 return err;
4887 /* Verify the GIMPLE statements inside the sequence STMTS. */
4889 static bool
4890 verify_gimple_in_seq_2 (gimple_seq stmts)
4892 gimple_stmt_iterator ittr;
4893 bool err = false;
4895 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4897 gimple *stmt = gsi_stmt (ittr);
4899 switch (gimple_code (stmt))
4901 case GIMPLE_BIND:
4902 err |= verify_gimple_in_seq_2 (
4903 gimple_bind_body (as_a <gbind *> (stmt)));
4904 break;
4906 case GIMPLE_TRY:
4907 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4908 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4909 break;
4911 case GIMPLE_EH_FILTER:
4912 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4913 break;
4915 case GIMPLE_EH_ELSE:
4917 geh_else *eh_else = as_a <geh_else *> (stmt);
4918 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (eh_else));
4919 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (eh_else));
4921 break;
4923 case GIMPLE_CATCH:
4924 err |= verify_gimple_in_seq_2 (gimple_catch_handler (
4925 as_a <gcatch *> (stmt)));
4926 break;
4928 case GIMPLE_TRANSACTION:
4929 err |= verify_gimple_transaction (as_a <gtransaction *> (stmt));
4930 break;
4932 default:
4934 bool err2 = verify_gimple_stmt (stmt);
4935 if (err2)
4936 debug_gimple_stmt (stmt);
4937 err |= err2;
4942 return err;
4945 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4946 is a problem, otherwise false. */
4948 static bool
4949 verify_gimple_transaction (gtransaction *stmt)
4951 tree lab;
4953 lab = gimple_transaction_label_norm (stmt);
4954 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4955 return true;
4956 lab = gimple_transaction_label_uninst (stmt);
4957 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4958 return true;
4959 lab = gimple_transaction_label_over (stmt);
4960 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4961 return true;
4963 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
4967 /* Verify the GIMPLE statements inside the statement list STMTS. */
4969 DEBUG_FUNCTION void
4970 verify_gimple_in_seq (gimple_seq stmts)
4972 timevar_push (TV_TREE_STMT_VERIFY);
4973 if (verify_gimple_in_seq_2 (stmts))
4974 internal_error ("verify_gimple failed");
4975 timevar_pop (TV_TREE_STMT_VERIFY);
4978 /* Return true when the T can be shared. */
4980 static bool
4981 tree_node_can_be_shared (tree t)
4983 if (IS_TYPE_OR_DECL_P (t)
4984 || is_gimple_min_invariant (t)
4985 || TREE_CODE (t) == SSA_NAME
4986 || t == error_mark_node
4987 || TREE_CODE (t) == IDENTIFIER_NODE)
4988 return true;
4990 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4991 return true;
4993 if (DECL_P (t))
4994 return true;
4996 return false;
4999 /* Called via walk_tree. Verify tree sharing. */
5001 static tree
5002 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
5004 hash_set<void *> *visited = (hash_set<void *> *) data;
5006 if (tree_node_can_be_shared (*tp))
5008 *walk_subtrees = false;
5009 return NULL;
5012 if (visited->add (*tp))
5013 return *tp;
5015 return NULL;
5018 /* Called via walk_gimple_stmt. Verify tree sharing. */
5020 static tree
5021 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
5023 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5024 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
5027 static bool eh_error_found;
5028 bool
5029 verify_eh_throw_stmt_node (gimple *const &stmt, const int &,
5030 hash_set<gimple *> *visited)
5032 if (!visited->contains (stmt))
5034 error ("dead STMT in EH table");
5035 debug_gimple_stmt (stmt);
5036 eh_error_found = true;
5038 return true;
5041 /* Verify if the location LOCs block is in BLOCKS. */
5043 static bool
5044 verify_location (hash_set<tree> *blocks, location_t loc)
5046 tree block = LOCATION_BLOCK (loc);
5047 if (block != NULL_TREE
5048 && !blocks->contains (block))
5050 error ("location references block not in block tree");
5051 return true;
5053 if (block != NULL_TREE)
5054 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
5055 return false;
5058 /* Called via walk_tree. Verify that expressions have no blocks. */
5060 static tree
5061 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
5063 if (!EXPR_P (*tp))
5065 *walk_subtrees = false;
5066 return NULL;
5069 location_t loc = EXPR_LOCATION (*tp);
5070 if (LOCATION_BLOCK (loc) != NULL)
5071 return *tp;
5073 return NULL;
5076 /* Called via walk_tree. Verify locations of expressions. */
5078 static tree
5079 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
5081 hash_set<tree> *blocks = (hash_set<tree> *) data;
5083 if (VAR_P (*tp) && DECL_HAS_DEBUG_EXPR_P (*tp))
5085 tree t = DECL_DEBUG_EXPR (*tp);
5086 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
5087 if (addr)
5088 return addr;
5090 if ((VAR_P (*tp)
5091 || TREE_CODE (*tp) == PARM_DECL
5092 || TREE_CODE (*tp) == RESULT_DECL)
5093 && DECL_HAS_VALUE_EXPR_P (*tp))
5095 tree t = DECL_VALUE_EXPR (*tp);
5096 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
5097 if (addr)
5098 return addr;
5101 if (!EXPR_P (*tp))
5103 *walk_subtrees = false;
5104 return NULL;
5107 location_t loc = EXPR_LOCATION (*tp);
5108 if (verify_location (blocks, loc))
5109 return *tp;
5111 return NULL;
5114 /* Called via walk_gimple_op. Verify locations of expressions. */
5116 static tree
5117 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
5119 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5120 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
5123 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
5125 static void
5126 collect_subblocks (hash_set<tree> *blocks, tree block)
5128 tree t;
5129 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
5131 blocks->add (t);
5132 collect_subblocks (blocks, t);
5136 /* Verify the GIMPLE statements in the CFG of FN. */
5138 DEBUG_FUNCTION void
5139 verify_gimple_in_cfg (struct function *fn, bool verify_nothrow)
5141 basic_block bb;
5142 bool err = false;
5144 timevar_push (TV_TREE_STMT_VERIFY);
5145 hash_set<void *> visited;
5146 hash_set<gimple *> visited_stmts;
5148 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
5149 hash_set<tree> blocks;
5150 if (DECL_INITIAL (fn->decl))
5152 blocks.add (DECL_INITIAL (fn->decl));
5153 collect_subblocks (&blocks, DECL_INITIAL (fn->decl));
5156 FOR_EACH_BB_FN (bb, fn)
5158 gimple_stmt_iterator gsi;
5160 for (gphi_iterator gpi = gsi_start_phis (bb);
5161 !gsi_end_p (gpi);
5162 gsi_next (&gpi))
5164 gphi *phi = gpi.phi ();
5165 bool err2 = false;
5166 unsigned i;
5168 visited_stmts.add (phi);
5170 if (gimple_bb (phi) != bb)
5172 error ("gimple_bb (phi) is set to a wrong basic block");
5173 err2 = true;
5176 err2 |= verify_gimple_phi (phi);
5178 /* Only PHI arguments have locations. */
5179 if (gimple_location (phi) != UNKNOWN_LOCATION)
5181 error ("PHI node with location");
5182 err2 = true;
5185 for (i = 0; i < gimple_phi_num_args (phi); i++)
5187 tree arg = gimple_phi_arg_def (phi, i);
5188 tree addr = walk_tree (&arg, verify_node_sharing_1,
5189 &visited, NULL);
5190 if (addr)
5192 error ("incorrect sharing of tree nodes");
5193 debug_generic_expr (addr);
5194 err2 |= true;
5196 location_t loc = gimple_phi_arg_location (phi, i);
5197 if (virtual_operand_p (gimple_phi_result (phi))
5198 && loc != UNKNOWN_LOCATION)
5200 error ("virtual PHI with argument locations");
5201 err2 = true;
5203 addr = walk_tree (&arg, verify_expr_location_1, &blocks, NULL);
5204 if (addr)
5206 debug_generic_expr (addr);
5207 err2 = true;
5209 err2 |= verify_location (&blocks, loc);
5212 if (err2)
5213 debug_gimple_stmt (phi);
5214 err |= err2;
5217 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5219 gimple *stmt = gsi_stmt (gsi);
5220 bool err2 = false;
5221 struct walk_stmt_info wi;
5222 tree addr;
5223 int lp_nr;
5225 visited_stmts.add (stmt);
5227 if (gimple_bb (stmt) != bb)
5229 error ("gimple_bb (stmt) is set to a wrong basic block");
5230 err2 = true;
5233 err2 |= verify_gimple_stmt (stmt);
5234 err2 |= verify_location (&blocks, gimple_location (stmt));
5236 memset (&wi, 0, sizeof (wi));
5237 wi.info = (void *) &visited;
5238 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
5239 if (addr)
5241 error ("incorrect sharing of tree nodes");
5242 debug_generic_expr (addr);
5243 err2 |= true;
5246 memset (&wi, 0, sizeof (wi));
5247 wi.info = (void *) &blocks;
5248 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
5249 if (addr)
5251 debug_generic_expr (addr);
5252 err2 |= true;
5255 /* ??? Instead of not checking these stmts at all the walker
5256 should know its context via wi. */
5257 if (!is_gimple_debug (stmt)
5258 && !is_gimple_omp (stmt))
5260 memset (&wi, 0, sizeof (wi));
5261 addr = walk_gimple_op (stmt, verify_expr, &wi);
5262 if (addr)
5264 debug_generic_expr (addr);
5265 inform (gimple_location (stmt), "in statement");
5266 err2 |= true;
5270 /* If the statement is marked as part of an EH region, then it is
5271 expected that the statement could throw. Verify that when we
5272 have optimizations that simplify statements such that we prove
5273 that they cannot throw, that we update other data structures
5274 to match. */
5275 lp_nr = lookup_stmt_eh_lp (stmt);
5276 if (lp_nr > 0)
5278 if (!stmt_could_throw_p (stmt))
5280 if (verify_nothrow)
5282 error ("statement marked for throw, but doesn%'t");
5283 err2 |= true;
5286 else if (!gsi_one_before_end_p (gsi))
5288 error ("statement marked for throw in middle of block");
5289 err2 |= true;
5293 if (err2)
5294 debug_gimple_stmt (stmt);
5295 err |= err2;
5299 eh_error_found = false;
5300 hash_map<gimple *, int> *eh_table = get_eh_throw_stmt_table (cfun);
5301 if (eh_table)
5302 eh_table->traverse<hash_set<gimple *> *, verify_eh_throw_stmt_node>
5303 (&visited_stmts);
5305 if (err || eh_error_found)
5306 internal_error ("verify_gimple failed");
5308 verify_histograms ();
5309 timevar_pop (TV_TREE_STMT_VERIFY);
5313 /* Verifies that the flow information is OK. */
5315 static int
5316 gimple_verify_flow_info (void)
5318 int err = 0;
5319 basic_block bb;
5320 gimple_stmt_iterator gsi;
5321 gimple *stmt;
5322 edge e;
5323 edge_iterator ei;
5325 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5326 || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5328 error ("ENTRY_BLOCK has IL associated with it");
5329 err = 1;
5332 if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5333 || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5335 error ("EXIT_BLOCK has IL associated with it");
5336 err = 1;
5339 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5340 if (e->flags & EDGE_FALLTHRU)
5342 error ("fallthru to exit from bb %d", e->src->index);
5343 err = 1;
5346 FOR_EACH_BB_FN (bb, cfun)
5348 bool found_ctrl_stmt = false;
5350 stmt = NULL;
5352 /* Skip labels on the start of basic block. */
5353 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5355 tree label;
5356 gimple *prev_stmt = stmt;
5358 stmt = gsi_stmt (gsi);
5360 if (gimple_code (stmt) != GIMPLE_LABEL)
5361 break;
5363 label = gimple_label_label (as_a <glabel *> (stmt));
5364 if (prev_stmt && DECL_NONLOCAL (label))
5366 error ("nonlocal label ");
5367 print_generic_expr (stderr, label);
5368 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5369 bb->index);
5370 err = 1;
5373 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
5375 error ("EH landing pad label ");
5376 print_generic_expr (stderr, label);
5377 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5378 bb->index);
5379 err = 1;
5382 if (label_to_block (label) != bb)
5384 error ("label ");
5385 print_generic_expr (stderr, label);
5386 fprintf (stderr, " to block does not match in bb %d",
5387 bb->index);
5388 err = 1;
5391 if (decl_function_context (label) != current_function_decl)
5393 error ("label ");
5394 print_generic_expr (stderr, label);
5395 fprintf (stderr, " has incorrect context in bb %d",
5396 bb->index);
5397 err = 1;
5401 /* Verify that body of basic block BB is free of control flow. */
5402 for (; !gsi_end_p (gsi); gsi_next (&gsi))
5404 gimple *stmt = gsi_stmt (gsi);
5406 if (found_ctrl_stmt)
5408 error ("control flow in the middle of basic block %d",
5409 bb->index);
5410 err = 1;
5413 if (stmt_ends_bb_p (stmt))
5414 found_ctrl_stmt = true;
5416 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
5418 error ("label ");
5419 print_generic_expr (stderr, gimple_label_label (label_stmt));
5420 fprintf (stderr, " in the middle of basic block %d", bb->index);
5421 err = 1;
5425 gsi = gsi_last_bb (bb);
5426 if (gsi_end_p (gsi))
5427 continue;
5429 stmt = gsi_stmt (gsi);
5431 if (gimple_code (stmt) == GIMPLE_LABEL)
5432 continue;
5434 err |= verify_eh_edges (stmt);
5436 if (is_ctrl_stmt (stmt))
5438 FOR_EACH_EDGE (e, ei, bb->succs)
5439 if (e->flags & EDGE_FALLTHRU)
5441 error ("fallthru edge after a control statement in bb %d",
5442 bb->index);
5443 err = 1;
5447 if (gimple_code (stmt) != GIMPLE_COND)
5449 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5450 after anything else but if statement. */
5451 FOR_EACH_EDGE (e, ei, bb->succs)
5452 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
5454 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5455 bb->index);
5456 err = 1;
5460 switch (gimple_code (stmt))
5462 case GIMPLE_COND:
5464 edge true_edge;
5465 edge false_edge;
5467 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
5469 if (!true_edge
5470 || !false_edge
5471 || !(true_edge->flags & EDGE_TRUE_VALUE)
5472 || !(false_edge->flags & EDGE_FALSE_VALUE)
5473 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5474 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5475 || EDGE_COUNT (bb->succs) >= 3)
5477 error ("wrong outgoing edge flags at end of bb %d",
5478 bb->index);
5479 err = 1;
5482 break;
5484 case GIMPLE_GOTO:
5485 if (simple_goto_p (stmt))
5487 error ("explicit goto at end of bb %d", bb->index);
5488 err = 1;
5490 else
5492 /* FIXME. We should double check that the labels in the
5493 destination blocks have their address taken. */
5494 FOR_EACH_EDGE (e, ei, bb->succs)
5495 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
5496 | EDGE_FALSE_VALUE))
5497 || !(e->flags & EDGE_ABNORMAL))
5499 error ("wrong outgoing edge flags at end of bb %d",
5500 bb->index);
5501 err = 1;
5504 break;
5506 case GIMPLE_CALL:
5507 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5508 break;
5509 /* fallthru */
5510 case GIMPLE_RETURN:
5511 if (!single_succ_p (bb)
5512 || (single_succ_edge (bb)->flags
5513 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5514 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5516 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5517 err = 1;
5519 if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun))
5521 error ("return edge does not point to exit in bb %d",
5522 bb->index);
5523 err = 1;
5525 break;
5527 case GIMPLE_SWITCH:
5529 gswitch *switch_stmt = as_a <gswitch *> (stmt);
5530 tree prev;
5531 edge e;
5532 size_t i, n;
5534 n = gimple_switch_num_labels (switch_stmt);
5536 /* Mark all the destination basic blocks. */
5537 for (i = 0; i < n; ++i)
5539 tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i));
5540 basic_block label_bb = label_to_block (lab);
5541 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5542 label_bb->aux = (void *)1;
5545 /* Verify that the case labels are sorted. */
5546 prev = gimple_switch_label (switch_stmt, 0);
5547 for (i = 1; i < n; ++i)
5549 tree c = gimple_switch_label (switch_stmt, i);
5550 if (!CASE_LOW (c))
5552 error ("found default case not at the start of "
5553 "case vector");
5554 err = 1;
5555 continue;
5557 if (CASE_LOW (prev)
5558 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5560 error ("case labels not sorted: ");
5561 print_generic_expr (stderr, prev);
5562 fprintf (stderr," is greater than ");
5563 print_generic_expr (stderr, c);
5564 fprintf (stderr," but comes before it.\n");
5565 err = 1;
5567 prev = c;
5569 /* VRP will remove the default case if it can prove it will
5570 never be executed. So do not verify there always exists
5571 a default case here. */
5573 FOR_EACH_EDGE (e, ei, bb->succs)
5575 if (!e->dest->aux)
5577 error ("extra outgoing edge %d->%d",
5578 bb->index, e->dest->index);
5579 err = 1;
5582 e->dest->aux = (void *)2;
5583 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5584 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5586 error ("wrong outgoing edge flags at end of bb %d",
5587 bb->index);
5588 err = 1;
5592 /* Check that we have all of them. */
5593 for (i = 0; i < n; ++i)
5595 tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i));
5596 basic_block label_bb = label_to_block (lab);
5598 if (label_bb->aux != (void *)2)
5600 error ("missing edge %i->%i", bb->index, label_bb->index);
5601 err = 1;
5605 FOR_EACH_EDGE (e, ei, bb->succs)
5606 e->dest->aux = (void *)0;
5608 break;
5610 case GIMPLE_EH_DISPATCH:
5611 err |= verify_eh_dispatch_edge (as_a <geh_dispatch *> (stmt));
5612 break;
5614 default:
5615 break;
5619 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5620 verify_dominators (CDI_DOMINATORS);
5622 return err;
5626 /* Updates phi nodes after creating a forwarder block joined
5627 by edge FALLTHRU. */
5629 static void
5630 gimple_make_forwarder_block (edge fallthru)
5632 edge e;
5633 edge_iterator ei;
5634 basic_block dummy, bb;
5635 tree var;
5636 gphi_iterator gsi;
5638 dummy = fallthru->src;
5639 bb = fallthru->dest;
5641 if (single_pred_p (bb))
5642 return;
5644 /* If we redirected a branch we must create new PHI nodes at the
5645 start of BB. */
5646 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5648 gphi *phi, *new_phi;
5650 phi = gsi.phi ();
5651 var = gimple_phi_result (phi);
5652 new_phi = create_phi_node (var, bb);
5653 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5654 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5655 UNKNOWN_LOCATION);
5658 /* Add the arguments we have stored on edges. */
5659 FOR_EACH_EDGE (e, ei, bb->preds)
5661 if (e == fallthru)
5662 continue;
5664 flush_pending_stmts (e);
5669 /* Return a non-special label in the head of basic block BLOCK.
5670 Create one if it doesn't exist. */
5672 tree
5673 gimple_block_label (basic_block bb)
5675 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5676 bool first = true;
5677 tree label;
5678 glabel *stmt;
5680 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5682 stmt = dyn_cast <glabel *> (gsi_stmt (i));
5683 if (!stmt)
5684 break;
5685 label = gimple_label_label (stmt);
5686 if (!DECL_NONLOCAL (label))
5688 if (!first)
5689 gsi_move_before (&i, &s);
5690 return label;
5694 label = create_artificial_label (UNKNOWN_LOCATION);
5695 stmt = gimple_build_label (label);
5696 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5697 return label;
5701 /* Attempt to perform edge redirection by replacing a possibly complex
5702 jump instruction by a goto or by removing the jump completely.
5703 This can apply only if all edges now point to the same block. The
5704 parameters and return values are equivalent to
5705 redirect_edge_and_branch. */
5707 static edge
5708 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5710 basic_block src = e->src;
5711 gimple_stmt_iterator i;
5712 gimple *stmt;
5714 /* We can replace or remove a complex jump only when we have exactly
5715 two edges. */
5716 if (EDGE_COUNT (src->succs) != 2
5717 /* Verify that all targets will be TARGET. Specifically, the
5718 edge that is not E must also go to TARGET. */
5719 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5720 return NULL;
5722 i = gsi_last_bb (src);
5723 if (gsi_end_p (i))
5724 return NULL;
5726 stmt = gsi_stmt (i);
5728 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5730 gsi_remove (&i, true);
5731 e = ssa_redirect_edge (e, target);
5732 e->flags = EDGE_FALLTHRU;
5733 return e;
5736 return NULL;
5740 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5741 edge representing the redirected branch. */
5743 static edge
5744 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5746 basic_block bb = e->src;
5747 gimple_stmt_iterator gsi;
5748 edge ret;
5749 gimple *stmt;
5751 if (e->flags & EDGE_ABNORMAL)
5752 return NULL;
5754 if (e->dest == dest)
5755 return NULL;
5757 if (e->flags & EDGE_EH)
5758 return redirect_eh_edge (e, dest);
5760 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5762 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5763 if (ret)
5764 return ret;
5767 gsi = gsi_last_bb (bb);
5768 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5770 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5772 case GIMPLE_COND:
5773 /* For COND_EXPR, we only need to redirect the edge. */
5774 break;
5776 case GIMPLE_GOTO:
5777 /* No non-abnormal edges should lead from a non-simple goto, and
5778 simple ones should be represented implicitly. */
5779 gcc_unreachable ();
5781 case GIMPLE_SWITCH:
5783 gswitch *switch_stmt = as_a <gswitch *> (stmt);
5784 tree label = gimple_block_label (dest);
5785 tree cases = get_cases_for_edge (e, switch_stmt);
5787 /* If we have a list of cases associated with E, then use it
5788 as it's a lot faster than walking the entire case vector. */
5789 if (cases)
5791 edge e2 = find_edge (e->src, dest);
5792 tree last, first;
5794 first = cases;
5795 while (cases)
5797 last = cases;
5798 CASE_LABEL (cases) = label;
5799 cases = CASE_CHAIN (cases);
5802 /* If there was already an edge in the CFG, then we need
5803 to move all the cases associated with E to E2. */
5804 if (e2)
5806 tree cases2 = get_cases_for_edge (e2, switch_stmt);
5808 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5809 CASE_CHAIN (cases2) = first;
5811 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5813 else
5815 size_t i, n = gimple_switch_num_labels (switch_stmt);
5817 for (i = 0; i < n; i++)
5819 tree elt = gimple_switch_label (switch_stmt, i);
5820 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5821 CASE_LABEL (elt) = label;
5825 break;
5827 case GIMPLE_ASM:
5829 gasm *asm_stmt = as_a <gasm *> (stmt);
5830 int i, n = gimple_asm_nlabels (asm_stmt);
5831 tree label = NULL;
5833 for (i = 0; i < n; ++i)
5835 tree cons = gimple_asm_label_op (asm_stmt, i);
5836 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5838 if (!label)
5839 label = gimple_block_label (dest);
5840 TREE_VALUE (cons) = label;
5844 /* If we didn't find any label matching the former edge in the
5845 asm labels, we must be redirecting the fallthrough
5846 edge. */
5847 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5849 break;
5851 case GIMPLE_RETURN:
5852 gsi_remove (&gsi, true);
5853 e->flags |= EDGE_FALLTHRU;
5854 break;
5856 case GIMPLE_OMP_RETURN:
5857 case GIMPLE_OMP_CONTINUE:
5858 case GIMPLE_OMP_SECTIONS_SWITCH:
5859 case GIMPLE_OMP_FOR:
5860 /* The edges from OMP constructs can be simply redirected. */
5861 break;
5863 case GIMPLE_EH_DISPATCH:
5864 if (!(e->flags & EDGE_FALLTHRU))
5865 redirect_eh_dispatch_edge (as_a <geh_dispatch *> (stmt), e, dest);
5866 break;
5868 case GIMPLE_TRANSACTION:
5869 if (e->flags & EDGE_TM_ABORT)
5870 gimple_transaction_set_label_over (as_a <gtransaction *> (stmt),
5871 gimple_block_label (dest));
5872 else if (e->flags & EDGE_TM_UNINSTRUMENTED)
5873 gimple_transaction_set_label_uninst (as_a <gtransaction *> (stmt),
5874 gimple_block_label (dest));
5875 else
5876 gimple_transaction_set_label_norm (as_a <gtransaction *> (stmt),
5877 gimple_block_label (dest));
5878 break;
5880 default:
5881 /* Otherwise it must be a fallthru edge, and we don't need to
5882 do anything besides redirecting it. */
5883 gcc_assert (e->flags & EDGE_FALLTHRU);
5884 break;
5887 /* Update/insert PHI nodes as necessary. */
5889 /* Now update the edges in the CFG. */
5890 e = ssa_redirect_edge (e, dest);
5892 return e;
5895 /* Returns true if it is possible to remove edge E by redirecting
5896 it to the destination of the other edge from E->src. */
5898 static bool
5899 gimple_can_remove_branch_p (const_edge e)
5901 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5902 return false;
5904 return true;
5907 /* Simple wrapper, as we can always redirect fallthru edges. */
5909 static basic_block
5910 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5912 e = gimple_redirect_edge_and_branch (e, dest);
5913 gcc_assert (e);
5915 return NULL;
5919 /* Splits basic block BB after statement STMT (but at least after the
5920 labels). If STMT is NULL, BB is split just after the labels. */
5922 static basic_block
5923 gimple_split_block (basic_block bb, void *stmt)
5925 gimple_stmt_iterator gsi;
5926 gimple_stmt_iterator gsi_tgt;
5927 gimple_seq list;
5928 basic_block new_bb;
5929 edge e;
5930 edge_iterator ei;
5932 new_bb = create_empty_bb (bb);
5934 /* Redirect the outgoing edges. */
5935 new_bb->succs = bb->succs;
5936 bb->succs = NULL;
5937 FOR_EACH_EDGE (e, ei, new_bb->succs)
5938 e->src = new_bb;
5940 /* Get a stmt iterator pointing to the first stmt to move. */
5941 if (!stmt || gimple_code ((gimple *) stmt) == GIMPLE_LABEL)
5942 gsi = gsi_after_labels (bb);
5943 else
5945 gsi = gsi_for_stmt ((gimple *) stmt);
5946 gsi_next (&gsi);
5949 /* Move everything from GSI to the new basic block. */
5950 if (gsi_end_p (gsi))
5951 return new_bb;
5953 /* Split the statement list - avoid re-creating new containers as this
5954 brings ugly quadratic memory consumption in the inliner.
5955 (We are still quadratic since we need to update stmt BB pointers,
5956 sadly.) */
5957 gsi_split_seq_before (&gsi, &list);
5958 set_bb_seq (new_bb, list);
5959 for (gsi_tgt = gsi_start (list);
5960 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5961 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5963 return new_bb;
5967 /* Moves basic block BB after block AFTER. */
5969 static bool
5970 gimple_move_block_after (basic_block bb, basic_block after)
5972 if (bb->prev_bb == after)
5973 return true;
5975 unlink_block (bb);
5976 link_block (bb, after);
5978 return true;
5982 /* Return TRUE if block BB has no executable statements, otherwise return
5983 FALSE. */
5985 static bool
5986 gimple_empty_block_p (basic_block bb)
5988 /* BB must have no executable statements. */
5989 gimple_stmt_iterator gsi = gsi_after_labels (bb);
5990 if (phi_nodes (bb))
5991 return false;
5992 if (gsi_end_p (gsi))
5993 return true;
5994 if (is_gimple_debug (gsi_stmt (gsi)))
5995 gsi_next_nondebug (&gsi);
5996 return gsi_end_p (gsi);
6000 /* Split a basic block if it ends with a conditional branch and if the
6001 other part of the block is not empty. */
6003 static basic_block
6004 gimple_split_block_before_cond_jump (basic_block bb)
6006 gimple *last, *split_point;
6007 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6008 if (gsi_end_p (gsi))
6009 return NULL;
6010 last = gsi_stmt (gsi);
6011 if (gimple_code (last) != GIMPLE_COND
6012 && gimple_code (last) != GIMPLE_SWITCH)
6013 return NULL;
6014 gsi_prev (&gsi);
6015 split_point = gsi_stmt (gsi);
6016 return split_block (bb, split_point)->dest;
6020 /* Return true if basic_block can be duplicated. */
6022 static bool
6023 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
6025 return true;
6028 /* Create a duplicate of the basic block BB. NOTE: This does not
6029 preserve SSA form. */
6031 static basic_block
6032 gimple_duplicate_bb (basic_block bb)
6034 basic_block new_bb;
6035 gimple_stmt_iterator gsi_tgt;
6037 new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
6039 /* Copy the PHI nodes. We ignore PHI node arguments here because
6040 the incoming edges have not been setup yet. */
6041 for (gphi_iterator gpi = gsi_start_phis (bb);
6042 !gsi_end_p (gpi);
6043 gsi_next (&gpi))
6045 gphi *phi, *copy;
6046 phi = gpi.phi ();
6047 copy = create_phi_node (NULL_TREE, new_bb);
6048 create_new_def_for (gimple_phi_result (phi), copy,
6049 gimple_phi_result_ptr (copy));
6050 gimple_set_uid (copy, gimple_uid (phi));
6053 gsi_tgt = gsi_start_bb (new_bb);
6054 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
6055 !gsi_end_p (gsi);
6056 gsi_next (&gsi))
6058 def_operand_p def_p;
6059 ssa_op_iter op_iter;
6060 tree lhs;
6061 gimple *stmt, *copy;
6063 stmt = gsi_stmt (gsi);
6064 if (gimple_code (stmt) == GIMPLE_LABEL)
6065 continue;
6067 /* Don't duplicate label debug stmts. */
6068 if (gimple_debug_bind_p (stmt)
6069 && TREE_CODE (gimple_debug_bind_get_var (stmt))
6070 == LABEL_DECL)
6071 continue;
6073 /* Create a new copy of STMT and duplicate STMT's virtual
6074 operands. */
6075 copy = gimple_copy (stmt);
6076 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
6078 maybe_duplicate_eh_stmt (copy, stmt);
6079 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
6081 /* When copying around a stmt writing into a local non-user
6082 aggregate, make sure it won't share stack slot with other
6083 vars. */
6084 lhs = gimple_get_lhs (stmt);
6085 if (lhs && TREE_CODE (lhs) != SSA_NAME)
6087 tree base = get_base_address (lhs);
6088 if (base
6089 && (VAR_P (base) || TREE_CODE (base) == RESULT_DECL)
6090 && DECL_IGNORED_P (base)
6091 && !TREE_STATIC (base)
6092 && !DECL_EXTERNAL (base)
6093 && (!VAR_P (base) || !DECL_HAS_VALUE_EXPR_P (base)))
6094 DECL_NONSHAREABLE (base) = 1;
6097 /* Create new names for all the definitions created by COPY and
6098 add replacement mappings for each new name. */
6099 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
6100 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
6103 return new_bb;
6106 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
6108 static void
6109 add_phi_args_after_copy_edge (edge e_copy)
6111 basic_block bb, bb_copy = e_copy->src, dest;
6112 edge e;
6113 edge_iterator ei;
6114 gphi *phi, *phi_copy;
6115 tree def;
6116 gphi_iterator psi, psi_copy;
6118 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
6119 return;
6121 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
6123 if (e_copy->dest->flags & BB_DUPLICATED)
6124 dest = get_bb_original (e_copy->dest);
6125 else
6126 dest = e_copy->dest;
6128 e = find_edge (bb, dest);
6129 if (!e)
6131 /* During loop unrolling the target of the latch edge is copied.
6132 In this case we are not looking for edge to dest, but to
6133 duplicated block whose original was dest. */
6134 FOR_EACH_EDGE (e, ei, bb->succs)
6136 if ((e->dest->flags & BB_DUPLICATED)
6137 && get_bb_original (e->dest) == dest)
6138 break;
6141 gcc_assert (e != NULL);
6144 for (psi = gsi_start_phis (e->dest),
6145 psi_copy = gsi_start_phis (e_copy->dest);
6146 !gsi_end_p (psi);
6147 gsi_next (&psi), gsi_next (&psi_copy))
6149 phi = psi.phi ();
6150 phi_copy = psi_copy.phi ();
6151 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
6152 add_phi_arg (phi_copy, def, e_copy,
6153 gimple_phi_arg_location_from_edge (phi, e));
6158 /* Basic block BB_COPY was created by code duplication. Add phi node
6159 arguments for edges going out of BB_COPY. The blocks that were
6160 duplicated have BB_DUPLICATED set. */
6162 void
6163 add_phi_args_after_copy_bb (basic_block bb_copy)
6165 edge e_copy;
6166 edge_iterator ei;
6168 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
6170 add_phi_args_after_copy_edge (e_copy);
6174 /* Blocks in REGION_COPY array of length N_REGION were created by
6175 duplication of basic blocks. Add phi node arguments for edges
6176 going from these blocks. If E_COPY is not NULL, also add
6177 phi node arguments for its destination.*/
6179 void
6180 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
6181 edge e_copy)
6183 unsigned i;
6185 for (i = 0; i < n_region; i++)
6186 region_copy[i]->flags |= BB_DUPLICATED;
6188 for (i = 0; i < n_region; i++)
6189 add_phi_args_after_copy_bb (region_copy[i]);
6190 if (e_copy)
6191 add_phi_args_after_copy_edge (e_copy);
6193 for (i = 0; i < n_region; i++)
6194 region_copy[i]->flags &= ~BB_DUPLICATED;
6197 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
6198 important exit edge EXIT. By important we mean that no SSA name defined
6199 inside region is live over the other exit edges of the region. All entry
6200 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
6201 to the duplicate of the region. Dominance and loop information is
6202 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
6203 UPDATE_DOMINANCE is false then we assume that the caller will update the
6204 dominance information after calling this function. The new basic
6205 blocks are stored to REGION_COPY in the same order as they had in REGION,
6206 provided that REGION_COPY is not NULL.
6207 The function returns false if it is unable to copy the region,
6208 true otherwise. */
6210 bool
6211 gimple_duplicate_sese_region (edge entry, edge exit,
6212 basic_block *region, unsigned n_region,
6213 basic_block *region_copy,
6214 bool update_dominance)
6216 unsigned i;
6217 bool free_region_copy = false, copying_header = false;
6218 struct loop *loop = entry->dest->loop_father;
6219 edge exit_copy;
6220 vec<basic_block> doms;
6221 edge redirected;
6222 int total_freq = 0, entry_freq = 0;
6223 profile_count total_count = profile_count::uninitialized ();
6224 profile_count entry_count = profile_count::uninitialized ();
6226 if (!can_copy_bbs_p (region, n_region))
6227 return false;
6229 /* Some sanity checking. Note that we do not check for all possible
6230 missuses of the functions. I.e. if you ask to copy something weird,
6231 it will work, but the state of structures probably will not be
6232 correct. */
6233 for (i = 0; i < n_region; i++)
6235 /* We do not handle subloops, i.e. all the blocks must belong to the
6236 same loop. */
6237 if (region[i]->loop_father != loop)
6238 return false;
6240 if (region[i] != entry->dest
6241 && region[i] == loop->header)
6242 return false;
6245 /* In case the function is used for loop header copying (which is the primary
6246 use), ensure that EXIT and its copy will be new latch and entry edges. */
6247 if (loop->header == entry->dest)
6249 copying_header = true;
6251 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
6252 return false;
6254 for (i = 0; i < n_region; i++)
6255 if (region[i] != exit->src
6256 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
6257 return false;
6260 initialize_original_copy_tables ();
6262 if (copying_header)
6263 set_loop_copy (loop, loop_outer (loop));
6264 else
6265 set_loop_copy (loop, loop);
6267 if (!region_copy)
6269 region_copy = XNEWVEC (basic_block, n_region);
6270 free_region_copy = true;
6273 /* Record blocks outside the region that are dominated by something
6274 inside. */
6275 if (update_dominance)
6277 doms.create (0);
6278 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6281 if (entry->dest->count.initialized_p ())
6283 total_count = entry->dest->count;
6284 entry_count = entry->count;
6285 /* Fix up corner cases, to avoid division by zero or creation of negative
6286 frequencies. */
6287 if (entry_count > total_count)
6288 entry_count = total_count;
6290 if (!(total_count > 0) || !(entry_count > 0))
6292 total_freq = entry->dest->frequency;
6293 entry_freq = EDGE_FREQUENCY (entry);
6294 /* Fix up corner cases, to avoid division by zero or creation of negative
6295 frequencies. */
6296 if (total_freq == 0)
6297 total_freq = 1;
6298 else if (entry_freq > total_freq)
6299 entry_freq = total_freq;
6302 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
6303 split_edge_bb_loc (entry), update_dominance);
6304 if (total_count > 0 && entry_count > 0)
6306 scale_bbs_frequencies_profile_count (region, n_region,
6307 total_count - entry_count,
6308 total_count);
6309 scale_bbs_frequencies_profile_count (region_copy, n_region, entry_count,
6310 total_count);
6312 else
6314 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
6315 total_freq);
6316 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
6319 if (copying_header)
6321 loop->header = exit->dest;
6322 loop->latch = exit->src;
6325 /* Redirect the entry and add the phi node arguments. */
6326 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
6327 gcc_assert (redirected != NULL);
6328 flush_pending_stmts (entry);
6330 /* Concerning updating of dominators: We must recount dominators
6331 for entry block and its copy. Anything that is outside of the
6332 region, but was dominated by something inside needs recounting as
6333 well. */
6334 if (update_dominance)
6336 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
6337 doms.safe_push (get_bb_original (entry->dest));
6338 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6339 doms.release ();
6342 /* Add the other PHI node arguments. */
6343 add_phi_args_after_copy (region_copy, n_region, NULL);
6345 if (free_region_copy)
6346 free (region_copy);
6348 free_original_copy_tables ();
6349 return true;
6352 /* Checks if BB is part of the region defined by N_REGION BBS. */
6353 static bool
6354 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
6356 unsigned int n;
6358 for (n = 0; n < n_region; n++)
6360 if (bb == bbs[n])
6361 return true;
6363 return false;
6366 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6367 are stored to REGION_COPY in the same order in that they appear
6368 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6369 the region, EXIT an exit from it. The condition guarding EXIT
6370 is moved to ENTRY. Returns true if duplication succeeds, false
6371 otherwise.
6373 For example,
6375 some_code;
6376 if (cond)
6378 else
6381 is transformed to
6383 if (cond)
6385 some_code;
6388 else
6390 some_code;
6395 bool
6396 gimple_duplicate_sese_tail (edge entry, edge exit,
6397 basic_block *region, unsigned n_region,
6398 basic_block *region_copy)
6400 unsigned i;
6401 bool free_region_copy = false;
6402 struct loop *loop = exit->dest->loop_father;
6403 struct loop *orig_loop = entry->dest->loop_father;
6404 basic_block switch_bb, entry_bb, nentry_bb;
6405 vec<basic_block> doms;
6406 int total_freq = 0, exit_freq = 0;
6407 profile_count total_count = profile_count::uninitialized (),
6408 exit_count = profile_count::uninitialized ();
6409 edge exits[2], nexits[2], e;
6410 gimple_stmt_iterator gsi;
6411 gimple *cond_stmt;
6412 edge sorig, snew;
6413 basic_block exit_bb;
6414 gphi_iterator psi;
6415 gphi *phi;
6416 tree def;
6417 struct loop *target, *aloop, *cloop;
6419 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
6420 exits[0] = exit;
6421 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
6423 if (!can_copy_bbs_p (region, n_region))
6424 return false;
6426 initialize_original_copy_tables ();
6427 set_loop_copy (orig_loop, loop);
6429 target= loop;
6430 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
6432 if (bb_part_of_region_p (aloop->header, region, n_region))
6434 cloop = duplicate_loop (aloop, target);
6435 duplicate_subloops (aloop, cloop);
6439 if (!region_copy)
6441 region_copy = XNEWVEC (basic_block, n_region);
6442 free_region_copy = true;
6445 gcc_assert (!need_ssa_update_p (cfun));
6447 /* Record blocks outside the region that are dominated by something
6448 inside. */
6449 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6451 if (exit->src->count > 0)
6453 total_count = exit->src->count;
6454 exit_count = exit->count;
6455 /* Fix up corner cases, to avoid division by zero or creation of negative
6456 frequencies. */
6457 if (exit_count > total_count)
6458 exit_count = total_count;
6460 else
6462 total_freq = exit->src->frequency;
6463 exit_freq = EDGE_FREQUENCY (exit);
6464 /* Fix up corner cases, to avoid division by zero or creation of negative
6465 frequencies. */
6466 if (total_freq == 0)
6467 total_freq = 1;
6468 if (exit_freq > total_freq)
6469 exit_freq = total_freq;
6472 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
6473 split_edge_bb_loc (exit), true);
6474 if (total_count.initialized_p ())
6476 scale_bbs_frequencies_profile_count (region, n_region,
6477 total_count - exit_count,
6478 total_count);
6479 scale_bbs_frequencies_profile_count (region_copy, n_region, exit_count,
6480 total_count);
6482 else
6484 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
6485 total_freq);
6486 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
6489 /* Create the switch block, and put the exit condition to it. */
6490 entry_bb = entry->dest;
6491 nentry_bb = get_bb_copy (entry_bb);
6492 if (!last_stmt (entry->src)
6493 || !stmt_ends_bb_p (last_stmt (entry->src)))
6494 switch_bb = entry->src;
6495 else
6496 switch_bb = split_edge (entry);
6497 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
6499 gsi = gsi_last_bb (switch_bb);
6500 cond_stmt = last_stmt (exit->src);
6501 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
6502 cond_stmt = gimple_copy (cond_stmt);
6504 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
6506 sorig = single_succ_edge (switch_bb);
6507 sorig->flags = exits[1]->flags;
6508 sorig->probability = exits[1]->probability;
6509 sorig->count = exits[1]->count;
6510 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
6511 snew->probability = exits[0]->probability;
6512 snew->count = exits[1]->count;
6515 /* Register the new edge from SWITCH_BB in loop exit lists. */
6516 rescan_loop_exit (snew, true, false);
6518 /* Add the PHI node arguments. */
6519 add_phi_args_after_copy (region_copy, n_region, snew);
6521 /* Get rid of now superfluous conditions and associated edges (and phi node
6522 arguments). */
6523 exit_bb = exit->dest;
6525 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6526 PENDING_STMT (e) = NULL;
6528 /* The latch of ORIG_LOOP was copied, and so was the backedge
6529 to the original header. We redirect this backedge to EXIT_BB. */
6530 for (i = 0; i < n_region; i++)
6531 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6533 gcc_assert (single_succ_edge (region_copy[i]));
6534 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6535 PENDING_STMT (e) = NULL;
6536 for (psi = gsi_start_phis (exit_bb);
6537 !gsi_end_p (psi);
6538 gsi_next (&psi))
6540 phi = psi.phi ();
6541 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6542 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6545 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6546 PENDING_STMT (e) = NULL;
6548 /* Anything that is outside of the region, but was dominated by something
6549 inside needs to update dominance info. */
6550 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6551 doms.release ();
6552 /* Update the SSA web. */
6553 update_ssa (TODO_update_ssa);
6555 if (free_region_copy)
6556 free (region_copy);
6558 free_original_copy_tables ();
6559 return true;
6562 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6563 adding blocks when the dominator traversal reaches EXIT. This
6564 function silently assumes that ENTRY strictly dominates EXIT. */
6566 void
6567 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6568 vec<basic_block> *bbs_p)
6570 basic_block son;
6572 for (son = first_dom_son (CDI_DOMINATORS, entry);
6573 son;
6574 son = next_dom_son (CDI_DOMINATORS, son))
6576 bbs_p->safe_push (son);
6577 if (son != exit)
6578 gather_blocks_in_sese_region (son, exit, bbs_p);
6582 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6583 The duplicates are recorded in VARS_MAP. */
6585 static void
6586 replace_by_duplicate_decl (tree *tp, hash_map<tree, tree> *vars_map,
6587 tree to_context)
6589 tree t = *tp, new_t;
6590 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6592 if (DECL_CONTEXT (t) == to_context)
6593 return;
6595 bool existed;
6596 tree &loc = vars_map->get_or_insert (t, &existed);
6598 if (!existed)
6600 if (SSA_VAR_P (t))
6602 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6603 add_local_decl (f, new_t);
6605 else
6607 gcc_assert (TREE_CODE (t) == CONST_DECL);
6608 new_t = copy_node (t);
6610 DECL_CONTEXT (new_t) = to_context;
6612 loc = new_t;
6614 else
6615 new_t = loc;
6617 *tp = new_t;
6621 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6622 VARS_MAP maps old ssa names and var_decls to the new ones. */
6624 static tree
6625 replace_ssa_name (tree name, hash_map<tree, tree> *vars_map,
6626 tree to_context)
6628 tree new_name;
6630 gcc_assert (!virtual_operand_p (name));
6632 tree *loc = vars_map->get (name);
6634 if (!loc)
6636 tree decl = SSA_NAME_VAR (name);
6637 if (decl)
6639 gcc_assert (!SSA_NAME_IS_DEFAULT_DEF (name));
6640 replace_by_duplicate_decl (&decl, vars_map, to_context);
6641 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6642 decl, SSA_NAME_DEF_STMT (name));
6644 else
6645 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6646 name, SSA_NAME_DEF_STMT (name));
6648 /* Now that we've used the def stmt to define new_name, make sure it
6649 doesn't define name anymore. */
6650 SSA_NAME_DEF_STMT (name) = NULL;
6652 vars_map->put (name, new_name);
6654 else
6655 new_name = *loc;
6657 return new_name;
6660 struct move_stmt_d
6662 tree orig_block;
6663 tree new_block;
6664 tree from_context;
6665 tree to_context;
6666 hash_map<tree, tree> *vars_map;
6667 htab_t new_label_map;
6668 hash_map<void *, void *> *eh_map;
6669 bool remap_decls_p;
6672 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6673 contained in *TP if it has been ORIG_BLOCK previously and change the
6674 DECL_CONTEXT of every local variable referenced in *TP. */
6676 static tree
6677 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6679 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6680 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6681 tree t = *tp;
6683 if (EXPR_P (t))
6685 tree block = TREE_BLOCK (t);
6686 if (block == NULL_TREE)
6688 else if (block == p->orig_block
6689 || p->orig_block == NULL_TREE)
6690 TREE_SET_BLOCK (t, p->new_block);
6691 else if (flag_checking)
6693 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6694 block = BLOCK_SUPERCONTEXT (block);
6695 gcc_assert (block == p->orig_block);
6698 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6700 if (TREE_CODE (t) == SSA_NAME)
6701 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6702 else if (TREE_CODE (t) == PARM_DECL
6703 && gimple_in_ssa_p (cfun))
6704 *tp = *(p->vars_map->get (t));
6705 else if (TREE_CODE (t) == LABEL_DECL)
6707 if (p->new_label_map)
6709 struct tree_map in, *out;
6710 in.base.from = t;
6711 out = (struct tree_map *)
6712 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6713 if (out)
6714 *tp = t = out->to;
6717 DECL_CONTEXT (t) = p->to_context;
6719 else if (p->remap_decls_p)
6721 /* Replace T with its duplicate. T should no longer appear in the
6722 parent function, so this looks wasteful; however, it may appear
6723 in referenced_vars, and more importantly, as virtual operands of
6724 statements, and in alias lists of other variables. It would be
6725 quite difficult to expunge it from all those places. ??? It might
6726 suffice to do this for addressable variables. */
6727 if ((VAR_P (t) && !is_global_var (t))
6728 || TREE_CODE (t) == CONST_DECL)
6729 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6731 *walk_subtrees = 0;
6733 else if (TYPE_P (t))
6734 *walk_subtrees = 0;
6736 return NULL_TREE;
6739 /* Helper for move_stmt_r. Given an EH region number for the source
6740 function, map that to the duplicate EH regio number in the dest. */
6742 static int
6743 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6745 eh_region old_r, new_r;
6747 old_r = get_eh_region_from_number (old_nr);
6748 new_r = static_cast<eh_region> (*p->eh_map->get (old_r));
6750 return new_r->index;
6753 /* Similar, but operate on INTEGER_CSTs. */
6755 static tree
6756 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6758 int old_nr, new_nr;
6760 old_nr = tree_to_shwi (old_t_nr);
6761 new_nr = move_stmt_eh_region_nr (old_nr, p);
6763 return build_int_cst (integer_type_node, new_nr);
6766 /* Like move_stmt_op, but for gimple statements.
6768 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6769 contained in the current statement in *GSI_P and change the
6770 DECL_CONTEXT of every local variable referenced in the current
6771 statement. */
6773 static tree
6774 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6775 struct walk_stmt_info *wi)
6777 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6778 gimple *stmt = gsi_stmt (*gsi_p);
6779 tree block = gimple_block (stmt);
6781 if (block == p->orig_block
6782 || (p->orig_block == NULL_TREE
6783 && block != NULL_TREE))
6784 gimple_set_block (stmt, p->new_block);
6786 switch (gimple_code (stmt))
6788 case GIMPLE_CALL:
6789 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6791 tree r, fndecl = gimple_call_fndecl (stmt);
6792 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6793 switch (DECL_FUNCTION_CODE (fndecl))
6795 case BUILT_IN_EH_COPY_VALUES:
6796 r = gimple_call_arg (stmt, 1);
6797 r = move_stmt_eh_region_tree_nr (r, p);
6798 gimple_call_set_arg (stmt, 1, r);
6799 /* FALLTHRU */
6801 case BUILT_IN_EH_POINTER:
6802 case BUILT_IN_EH_FILTER:
6803 r = gimple_call_arg (stmt, 0);
6804 r = move_stmt_eh_region_tree_nr (r, p);
6805 gimple_call_set_arg (stmt, 0, r);
6806 break;
6808 default:
6809 break;
6812 break;
6814 case GIMPLE_RESX:
6816 gresx *resx_stmt = as_a <gresx *> (stmt);
6817 int r = gimple_resx_region (resx_stmt);
6818 r = move_stmt_eh_region_nr (r, p);
6819 gimple_resx_set_region (resx_stmt, r);
6821 break;
6823 case GIMPLE_EH_DISPATCH:
6825 geh_dispatch *eh_dispatch_stmt = as_a <geh_dispatch *> (stmt);
6826 int r = gimple_eh_dispatch_region (eh_dispatch_stmt);
6827 r = move_stmt_eh_region_nr (r, p);
6828 gimple_eh_dispatch_set_region (eh_dispatch_stmt, r);
6830 break;
6832 case GIMPLE_OMP_RETURN:
6833 case GIMPLE_OMP_CONTINUE:
6834 break;
6835 default:
6836 if (is_gimple_omp (stmt))
6838 /* Do not remap variables inside OMP directives. Variables
6839 referenced in clauses and directive header belong to the
6840 parent function and should not be moved into the child
6841 function. */
6842 bool save_remap_decls_p = p->remap_decls_p;
6843 p->remap_decls_p = false;
6844 *handled_ops_p = true;
6846 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
6847 move_stmt_op, wi);
6849 p->remap_decls_p = save_remap_decls_p;
6851 break;
6854 return NULL_TREE;
6857 /* Move basic block BB from function CFUN to function DEST_FN. The
6858 block is moved out of the original linked list and placed after
6859 block AFTER in the new list. Also, the block is removed from the
6860 original array of blocks and placed in DEST_FN's array of blocks.
6861 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6862 updated to reflect the moved edges.
6864 The local variables are remapped to new instances, VARS_MAP is used
6865 to record the mapping. */
6867 static void
6868 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6869 basic_block after, bool update_edge_count_p,
6870 struct move_stmt_d *d)
6872 struct control_flow_graph *cfg;
6873 edge_iterator ei;
6874 edge e;
6875 gimple_stmt_iterator si;
6876 unsigned old_len, new_len;
6878 /* Remove BB from dominance structures. */
6879 delete_from_dominance_info (CDI_DOMINATORS, bb);
6881 /* Move BB from its current loop to the copy in the new function. */
6882 if (current_loops)
6884 struct loop *new_loop = (struct loop *)bb->loop_father->aux;
6885 if (new_loop)
6886 bb->loop_father = new_loop;
6889 /* Link BB to the new linked list. */
6890 move_block_after (bb, after);
6892 /* Update the edge count in the corresponding flowgraphs. */
6893 if (update_edge_count_p)
6894 FOR_EACH_EDGE (e, ei, bb->succs)
6896 cfun->cfg->x_n_edges--;
6897 dest_cfun->cfg->x_n_edges++;
6900 /* Remove BB from the original basic block array. */
6901 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
6902 cfun->cfg->x_n_basic_blocks--;
6904 /* Grow DEST_CFUN's basic block array if needed. */
6905 cfg = dest_cfun->cfg;
6906 cfg->x_n_basic_blocks++;
6907 if (bb->index >= cfg->x_last_basic_block)
6908 cfg->x_last_basic_block = bb->index + 1;
6910 old_len = vec_safe_length (cfg->x_basic_block_info);
6911 if ((unsigned) cfg->x_last_basic_block >= old_len)
6913 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6914 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
6917 (*cfg->x_basic_block_info)[bb->index] = bb;
6919 /* Remap the variables in phi nodes. */
6920 for (gphi_iterator psi = gsi_start_phis (bb);
6921 !gsi_end_p (psi); )
6923 gphi *phi = psi.phi ();
6924 use_operand_p use;
6925 tree op = PHI_RESULT (phi);
6926 ssa_op_iter oi;
6927 unsigned i;
6929 if (virtual_operand_p (op))
6931 /* Remove the phi nodes for virtual operands (alias analysis will be
6932 run for the new function, anyway). */
6933 remove_phi_node (&psi, true);
6934 continue;
6937 SET_PHI_RESULT (phi,
6938 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6939 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6941 op = USE_FROM_PTR (use);
6942 if (TREE_CODE (op) == SSA_NAME)
6943 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6946 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
6948 location_t locus = gimple_phi_arg_location (phi, i);
6949 tree block = LOCATION_BLOCK (locus);
6951 if (locus == UNKNOWN_LOCATION)
6952 continue;
6953 if (d->orig_block == NULL_TREE || block == d->orig_block)
6955 locus = set_block (locus, d->new_block);
6956 gimple_phi_arg_set_location (phi, i, locus);
6960 gsi_next (&psi);
6963 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6965 gimple *stmt = gsi_stmt (si);
6966 struct walk_stmt_info wi;
6968 memset (&wi, 0, sizeof (wi));
6969 wi.info = d;
6970 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6972 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
6974 tree label = gimple_label_label (label_stmt);
6975 int uid = LABEL_DECL_UID (label);
6977 gcc_assert (uid > -1);
6979 old_len = vec_safe_length (cfg->x_label_to_block_map);
6980 if (old_len <= (unsigned) uid)
6982 new_len = 3 * uid / 2 + 1;
6983 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
6986 (*cfg->x_label_to_block_map)[uid] = bb;
6987 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
6989 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6991 if (uid >= dest_cfun->cfg->last_label_uid)
6992 dest_cfun->cfg->last_label_uid = uid + 1;
6995 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6996 remove_stmt_from_eh_lp_fn (cfun, stmt);
6998 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6999 gimple_remove_stmt_histograms (cfun, stmt);
7001 /* We cannot leave any operands allocated from the operand caches of
7002 the current function. */
7003 free_stmt_operands (cfun, stmt);
7004 push_cfun (dest_cfun);
7005 update_stmt (stmt);
7006 pop_cfun ();
7009 FOR_EACH_EDGE (e, ei, bb->succs)
7010 if (e->goto_locus != UNKNOWN_LOCATION)
7012 tree block = LOCATION_BLOCK (e->goto_locus);
7013 if (d->orig_block == NULL_TREE
7014 || block == d->orig_block)
7015 e->goto_locus = set_block (e->goto_locus, d->new_block);
7019 /* Examine the statements in BB (which is in SRC_CFUN); find and return
7020 the outermost EH region. Use REGION as the incoming base EH region. */
7022 static eh_region
7023 find_outermost_region_in_block (struct function *src_cfun,
7024 basic_block bb, eh_region region)
7026 gimple_stmt_iterator si;
7028 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
7030 gimple *stmt = gsi_stmt (si);
7031 eh_region stmt_region;
7032 int lp_nr;
7034 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
7035 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
7036 if (stmt_region)
7038 if (region == NULL)
7039 region = stmt_region;
7040 else if (stmt_region != region)
7042 region = eh_region_outermost (src_cfun, stmt_region, region);
7043 gcc_assert (region != NULL);
7048 return region;
7051 static tree
7052 new_label_mapper (tree decl, void *data)
7054 htab_t hash = (htab_t) data;
7055 struct tree_map *m;
7056 void **slot;
7058 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
7060 m = XNEW (struct tree_map);
7061 m->hash = DECL_UID (decl);
7062 m->base.from = decl;
7063 m->to = create_artificial_label (UNKNOWN_LOCATION);
7064 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
7065 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
7066 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
7068 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
7069 gcc_assert (*slot == NULL);
7071 *slot = m;
7073 return m->to;
7076 /* Tree walker to replace the decls used inside value expressions by
7077 duplicates. */
7079 static tree
7080 replace_block_vars_by_duplicates_1 (tree *tp, int *walk_subtrees, void *data)
7082 struct replace_decls_d *rd = (struct replace_decls_d *)data;
7084 switch (TREE_CODE (*tp))
7086 case VAR_DECL:
7087 case PARM_DECL:
7088 case RESULT_DECL:
7089 replace_by_duplicate_decl (tp, rd->vars_map, rd->to_context);
7090 break;
7091 default:
7092 break;
7095 if (IS_TYPE_OR_DECL_P (*tp))
7096 *walk_subtrees = false;
7098 return NULL;
7101 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
7102 subblocks. */
7104 static void
7105 replace_block_vars_by_duplicates (tree block, hash_map<tree, tree> *vars_map,
7106 tree to_context)
7108 tree *tp, t;
7110 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
7112 t = *tp;
7113 if (!VAR_P (t) && TREE_CODE (t) != CONST_DECL)
7114 continue;
7115 replace_by_duplicate_decl (&t, vars_map, to_context);
7116 if (t != *tp)
7118 if (VAR_P (*tp) && DECL_HAS_VALUE_EXPR_P (*tp))
7120 tree x = DECL_VALUE_EXPR (*tp);
7121 struct replace_decls_d rd = { vars_map, to_context };
7122 unshare_expr (x);
7123 walk_tree (&x, replace_block_vars_by_duplicates_1, &rd, NULL);
7124 SET_DECL_VALUE_EXPR (t, x);
7125 DECL_HAS_VALUE_EXPR_P (t) = 1;
7127 DECL_CHAIN (t) = DECL_CHAIN (*tp);
7128 *tp = t;
7132 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
7133 replace_block_vars_by_duplicates (block, vars_map, to_context);
7136 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
7137 from FN1 to FN2. */
7139 static void
7140 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
7141 struct loop *loop)
7143 /* Discard it from the old loop array. */
7144 (*get_loops (fn1))[loop->num] = NULL;
7146 /* Place it in the new loop array, assigning it a new number. */
7147 loop->num = number_of_loops (fn2);
7148 vec_safe_push (loops_for_fn (fn2)->larray, loop);
7150 /* Recurse to children. */
7151 for (loop = loop->inner; loop; loop = loop->next)
7152 fixup_loop_arrays_after_move (fn1, fn2, loop);
7155 /* Verify that the blocks in BBS_P are a single-entry, single-exit region
7156 delimited by ENTRY_BB and EXIT_BB, possibly containing noreturn blocks. */
7158 DEBUG_FUNCTION void
7159 verify_sese (basic_block entry, basic_block exit, vec<basic_block> *bbs_p)
7161 basic_block bb;
7162 edge_iterator ei;
7163 edge e;
7164 bitmap bbs = BITMAP_ALLOC (NULL);
7165 int i;
7167 gcc_assert (entry != NULL);
7168 gcc_assert (entry != exit);
7169 gcc_assert (bbs_p != NULL);
7171 gcc_assert (bbs_p->length () > 0);
7173 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7174 bitmap_set_bit (bbs, bb->index);
7176 gcc_assert (bitmap_bit_p (bbs, entry->index));
7177 gcc_assert (exit == NULL || bitmap_bit_p (bbs, exit->index));
7179 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7181 if (bb == entry)
7183 gcc_assert (single_pred_p (entry));
7184 gcc_assert (!bitmap_bit_p (bbs, single_pred (entry)->index));
7186 else
7187 for (ei = ei_start (bb->preds); !ei_end_p (ei); ei_next (&ei))
7189 e = ei_edge (ei);
7190 gcc_assert (bitmap_bit_p (bbs, e->src->index));
7193 if (bb == exit)
7195 gcc_assert (single_succ_p (exit));
7196 gcc_assert (!bitmap_bit_p (bbs, single_succ (exit)->index));
7198 else
7199 for (ei = ei_start (bb->succs); !ei_end_p (ei); ei_next (&ei))
7201 e = ei_edge (ei);
7202 gcc_assert (bitmap_bit_p (bbs, e->dest->index));
7206 BITMAP_FREE (bbs);
7209 /* If FROM is an SSA_NAME, mark the version in bitmap DATA. */
7211 bool
7212 gather_ssa_name_hash_map_from (tree const &from, tree const &, void *data)
7214 bitmap release_names = (bitmap)data;
7216 if (TREE_CODE (from) != SSA_NAME)
7217 return true;
7219 bitmap_set_bit (release_names, SSA_NAME_VERSION (from));
7220 return true;
7223 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
7224 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
7225 single basic block in the original CFG and the new basic block is
7226 returned. DEST_CFUN must not have a CFG yet.
7228 Note that the region need not be a pure SESE region. Blocks inside
7229 the region may contain calls to abort/exit. The only restriction
7230 is that ENTRY_BB should be the only entry point and it must
7231 dominate EXIT_BB.
7233 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
7234 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
7235 to the new function.
7237 All local variables referenced in the region are assumed to be in
7238 the corresponding BLOCK_VARS and unexpanded variable lists
7239 associated with DEST_CFUN.
7241 TODO: investigate whether we can reuse gimple_duplicate_sese_region to
7242 reimplement move_sese_region_to_fn by duplicating the region rather than
7243 moving it. */
7245 basic_block
7246 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
7247 basic_block exit_bb, tree orig_block)
7249 vec<basic_block> bbs, dom_bbs;
7250 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
7251 basic_block after, bb, *entry_pred, *exit_succ, abb;
7252 struct function *saved_cfun = cfun;
7253 int *entry_flag, *exit_flag;
7254 profile_probability *entry_prob, *exit_prob;
7255 unsigned i, num_entry_edges, num_exit_edges, num_nodes;
7256 edge e;
7257 edge_iterator ei;
7258 htab_t new_label_map;
7259 hash_map<void *, void *> *eh_map;
7260 struct loop *loop = entry_bb->loop_father;
7261 struct loop *loop0 = get_loop (saved_cfun, 0);
7262 struct move_stmt_d d;
7264 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
7265 region. */
7266 gcc_assert (entry_bb != exit_bb
7267 && (!exit_bb
7268 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
7270 /* Collect all the blocks in the region. Manually add ENTRY_BB
7271 because it won't be added by dfs_enumerate_from. */
7272 bbs.create (0);
7273 bbs.safe_push (entry_bb);
7274 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
7276 if (flag_checking)
7277 verify_sese (entry_bb, exit_bb, &bbs);
7279 /* The blocks that used to be dominated by something in BBS will now be
7280 dominated by the new block. */
7281 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
7282 bbs.address (),
7283 bbs.length ());
7285 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
7286 the predecessor edges to ENTRY_BB and the successor edges to
7287 EXIT_BB so that we can re-attach them to the new basic block that
7288 will replace the region. */
7289 num_entry_edges = EDGE_COUNT (entry_bb->preds);
7290 entry_pred = XNEWVEC (basic_block, num_entry_edges);
7291 entry_flag = XNEWVEC (int, num_entry_edges);
7292 entry_prob = XNEWVEC (profile_probability, num_entry_edges);
7293 i = 0;
7294 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
7296 entry_prob[i] = e->probability;
7297 entry_flag[i] = e->flags;
7298 entry_pred[i++] = e->src;
7299 remove_edge (e);
7302 if (exit_bb)
7304 num_exit_edges = EDGE_COUNT (exit_bb->succs);
7305 exit_succ = XNEWVEC (basic_block, num_exit_edges);
7306 exit_flag = XNEWVEC (int, num_exit_edges);
7307 exit_prob = XNEWVEC (profile_probability, num_exit_edges);
7308 i = 0;
7309 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
7311 exit_prob[i] = e->probability;
7312 exit_flag[i] = e->flags;
7313 exit_succ[i++] = e->dest;
7314 remove_edge (e);
7317 else
7319 num_exit_edges = 0;
7320 exit_succ = NULL;
7321 exit_flag = NULL;
7322 exit_prob = NULL;
7325 /* Switch context to the child function to initialize DEST_FN's CFG. */
7326 gcc_assert (dest_cfun->cfg == NULL);
7327 push_cfun (dest_cfun);
7329 init_empty_tree_cfg ();
7331 /* Initialize EH information for the new function. */
7332 eh_map = NULL;
7333 new_label_map = NULL;
7334 if (saved_cfun->eh)
7336 eh_region region = NULL;
7338 FOR_EACH_VEC_ELT (bbs, i, bb)
7339 region = find_outermost_region_in_block (saved_cfun, bb, region);
7341 init_eh_for_function ();
7342 if (region != NULL)
7344 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
7345 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
7346 new_label_mapper, new_label_map);
7350 /* Initialize an empty loop tree. */
7351 struct loops *loops = ggc_cleared_alloc<struct loops> ();
7352 init_loops_structure (dest_cfun, loops, 1);
7353 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
7354 set_loops_for_fn (dest_cfun, loops);
7356 /* Move the outlined loop tree part. */
7357 num_nodes = bbs.length ();
7358 FOR_EACH_VEC_ELT (bbs, i, bb)
7360 if (bb->loop_father->header == bb)
7362 struct loop *this_loop = bb->loop_father;
7363 struct loop *outer = loop_outer (this_loop);
7364 if (outer == loop
7365 /* If the SESE region contains some bbs ending with
7366 a noreturn call, those are considered to belong
7367 to the outermost loop in saved_cfun, rather than
7368 the entry_bb's loop_father. */
7369 || outer == loop0)
7371 if (outer != loop)
7372 num_nodes -= this_loop->num_nodes;
7373 flow_loop_tree_node_remove (bb->loop_father);
7374 flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop);
7375 fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop);
7378 else if (bb->loop_father == loop0 && loop0 != loop)
7379 num_nodes--;
7381 /* Remove loop exits from the outlined region. */
7382 if (loops_for_fn (saved_cfun)->exits)
7383 FOR_EACH_EDGE (e, ei, bb->succs)
7385 struct loops *l = loops_for_fn (saved_cfun);
7386 loop_exit **slot
7387 = l->exits->find_slot_with_hash (e, htab_hash_pointer (e),
7388 NO_INSERT);
7389 if (slot)
7390 l->exits->clear_slot (slot);
7395 /* Adjust the number of blocks in the tree root of the outlined part. */
7396 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
7398 /* Setup a mapping to be used by move_block_to_fn. */
7399 loop->aux = current_loops->tree_root;
7400 loop0->aux = current_loops->tree_root;
7402 pop_cfun ();
7404 /* Move blocks from BBS into DEST_CFUN. */
7405 gcc_assert (bbs.length () >= 2);
7406 after = dest_cfun->cfg->x_entry_block_ptr;
7407 hash_map<tree, tree> vars_map;
7409 memset (&d, 0, sizeof (d));
7410 d.orig_block = orig_block;
7411 d.new_block = DECL_INITIAL (dest_cfun->decl);
7412 d.from_context = cfun->decl;
7413 d.to_context = dest_cfun->decl;
7414 d.vars_map = &vars_map;
7415 d.new_label_map = new_label_map;
7416 d.eh_map = eh_map;
7417 d.remap_decls_p = true;
7419 if (gimple_in_ssa_p (cfun))
7420 for (tree arg = DECL_ARGUMENTS (d.to_context); arg; arg = DECL_CHAIN (arg))
7422 tree narg = make_ssa_name_fn (dest_cfun, arg, gimple_build_nop ());
7423 set_ssa_default_def (dest_cfun, arg, narg);
7424 vars_map.put (arg, narg);
7427 FOR_EACH_VEC_ELT (bbs, i, bb)
7429 /* No need to update edge counts on the last block. It has
7430 already been updated earlier when we detached the region from
7431 the original CFG. */
7432 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
7433 after = bb;
7436 loop->aux = NULL;
7437 loop0->aux = NULL;
7438 /* Loop sizes are no longer correct, fix them up. */
7439 loop->num_nodes -= num_nodes;
7440 for (struct loop *outer = loop_outer (loop);
7441 outer; outer = loop_outer (outer))
7442 outer->num_nodes -= num_nodes;
7443 loop0->num_nodes -= bbs.length () - num_nodes;
7445 if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vectorize_loops)
7447 struct loop *aloop;
7448 for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++)
7449 if (aloop != NULL)
7451 if (aloop->simduid)
7453 replace_by_duplicate_decl (&aloop->simduid, d.vars_map,
7454 d.to_context);
7455 dest_cfun->has_simduid_loops = true;
7457 if (aloop->force_vectorize)
7458 dest_cfun->has_force_vectorize_loops = true;
7462 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
7463 if (orig_block)
7465 tree block;
7466 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7467 == NULL_TREE);
7468 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7469 = BLOCK_SUBBLOCKS (orig_block);
7470 for (block = BLOCK_SUBBLOCKS (orig_block);
7471 block; block = BLOCK_CHAIN (block))
7472 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
7473 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
7476 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
7477 &vars_map, dest_cfun->decl);
7479 if (new_label_map)
7480 htab_delete (new_label_map);
7481 if (eh_map)
7482 delete eh_map;
7484 if (gimple_in_ssa_p (cfun))
7486 /* We need to release ssa-names in a defined order, so first find them,
7487 and then iterate in ascending version order. */
7488 bitmap release_names = BITMAP_ALLOC (NULL);
7489 vars_map.traverse<void *, gather_ssa_name_hash_map_from> (release_names);
7490 bitmap_iterator bi;
7491 unsigned i;
7492 EXECUTE_IF_SET_IN_BITMAP (release_names, 0, i, bi)
7493 release_ssa_name (ssa_name (i));
7494 BITMAP_FREE (release_names);
7497 /* Rewire the entry and exit blocks. The successor to the entry
7498 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7499 the child function. Similarly, the predecessor of DEST_FN's
7500 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7501 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7502 various CFG manipulation function get to the right CFG.
7504 FIXME, this is silly. The CFG ought to become a parameter to
7505 these helpers. */
7506 push_cfun (dest_cfun);
7507 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU);
7508 if (exit_bb)
7509 make_edge (exit_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
7510 pop_cfun ();
7512 /* Back in the original function, the SESE region has disappeared,
7513 create a new basic block in its place. */
7514 bb = create_empty_bb (entry_pred[0]);
7515 if (current_loops)
7516 add_bb_to_loop (bb, loop);
7517 for (i = 0; i < num_entry_edges; i++)
7519 e = make_edge (entry_pred[i], bb, entry_flag[i]);
7520 e->probability = entry_prob[i];
7523 for (i = 0; i < num_exit_edges; i++)
7525 e = make_edge (bb, exit_succ[i], exit_flag[i]);
7526 e->probability = exit_prob[i];
7529 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
7530 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
7531 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
7532 dom_bbs.release ();
7534 if (exit_bb)
7536 free (exit_prob);
7537 free (exit_flag);
7538 free (exit_succ);
7540 free (entry_prob);
7541 free (entry_flag);
7542 free (entry_pred);
7543 bbs.release ();
7545 return bb;
7548 /* Dump default def DEF to file FILE using FLAGS and indentation
7549 SPC. */
7551 static void
7552 dump_default_def (FILE *file, tree def, int spc, dump_flags_t flags)
7554 for (int i = 0; i < spc; ++i)
7555 fprintf (file, " ");
7556 dump_ssaname_info_to_file (file, def, spc);
7558 print_generic_expr (file, TREE_TYPE (def), flags);
7559 fprintf (file, " ");
7560 print_generic_expr (file, def, flags);
7561 fprintf (file, " = ");
7562 print_generic_expr (file, SSA_NAME_VAR (def), flags);
7563 fprintf (file, ";\n");
7566 /* Print no_sanitize attribute to FILE for a given attribute VALUE. */
7568 static void
7569 print_no_sanitize_attr_value (FILE *file, tree value)
7571 unsigned int flags = tree_to_uhwi (value);
7572 bool first = true;
7573 for (int i = 0; sanitizer_opts[i].name != NULL; ++i)
7575 if ((sanitizer_opts[i].flag & flags) == sanitizer_opts[i].flag)
7577 if (!first)
7578 fprintf (file, " | ");
7579 fprintf (file, "%s", sanitizer_opts[i].name);
7580 first = false;
7585 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
7588 void
7589 dump_function_to_file (tree fndecl, FILE *file, dump_flags_t flags)
7591 tree arg, var, old_current_fndecl = current_function_decl;
7592 struct function *dsf;
7593 bool ignore_topmost_bind = false, any_var = false;
7594 basic_block bb;
7595 tree chain;
7596 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
7597 && decl_is_tm_clone (fndecl));
7598 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
7600 if (DECL_ATTRIBUTES (fndecl) != NULL_TREE)
7602 fprintf (file, "__attribute__((");
7604 bool first = true;
7605 tree chain;
7606 for (chain = DECL_ATTRIBUTES (fndecl); chain;
7607 first = false, chain = TREE_CHAIN (chain))
7609 if (!first)
7610 fprintf (file, ", ");
7612 tree name = get_attribute_name (chain);
7613 print_generic_expr (file, name, dump_flags);
7614 if (TREE_VALUE (chain) != NULL_TREE)
7616 fprintf (file, " (");
7618 if (strstr (IDENTIFIER_POINTER (name), "no_sanitize"))
7619 print_no_sanitize_attr_value (file, TREE_VALUE (chain));
7620 else
7621 print_generic_expr (file, TREE_VALUE (chain), dump_flags);
7622 fprintf (file, ")");
7626 fprintf (file, "))\n");
7629 current_function_decl = fndecl;
7630 if (flags & TDF_GIMPLE)
7632 print_generic_expr (file, TREE_TYPE (TREE_TYPE (fndecl)),
7633 dump_flags | TDF_SLIM);
7634 fprintf (file, " __GIMPLE ()\n%s (", function_name (fun));
7636 else
7637 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
7639 arg = DECL_ARGUMENTS (fndecl);
7640 while (arg)
7642 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
7643 fprintf (file, " ");
7644 print_generic_expr (file, arg, dump_flags);
7645 if (DECL_CHAIN (arg))
7646 fprintf (file, ", ");
7647 arg = DECL_CHAIN (arg);
7649 fprintf (file, ")\n");
7651 dsf = DECL_STRUCT_FUNCTION (fndecl);
7652 if (dsf && (flags & TDF_EH))
7653 dump_eh_tree (file, dsf);
7655 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
7657 dump_node (fndecl, TDF_SLIM | flags, file);
7658 current_function_decl = old_current_fndecl;
7659 return;
7662 /* When GIMPLE is lowered, the variables are no longer available in
7663 BIND_EXPRs, so display them separately. */
7664 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
7666 unsigned ix;
7667 ignore_topmost_bind = true;
7669 fprintf (file, "{\n");
7670 if (gimple_in_ssa_p (fun)
7671 && (flags & TDF_ALIAS))
7673 for (arg = DECL_ARGUMENTS (fndecl); arg != NULL;
7674 arg = DECL_CHAIN (arg))
7676 tree def = ssa_default_def (fun, arg);
7677 if (def)
7678 dump_default_def (file, def, 2, flags);
7681 tree res = DECL_RESULT (fun->decl);
7682 if (res != NULL_TREE
7683 && DECL_BY_REFERENCE (res))
7685 tree def = ssa_default_def (fun, res);
7686 if (def)
7687 dump_default_def (file, def, 2, flags);
7690 tree static_chain = fun->static_chain_decl;
7691 if (static_chain != NULL_TREE)
7693 tree def = ssa_default_def (fun, static_chain);
7694 if (def)
7695 dump_default_def (file, def, 2, flags);
7699 if (!vec_safe_is_empty (fun->local_decls))
7700 FOR_EACH_LOCAL_DECL (fun, ix, var)
7702 print_generic_decl (file, var, flags);
7703 fprintf (file, "\n");
7705 any_var = true;
7708 tree name;
7710 if (gimple_in_ssa_p (cfun))
7711 FOR_EACH_SSA_NAME (ix, name, cfun)
7713 if (!SSA_NAME_VAR (name))
7715 fprintf (file, " ");
7716 print_generic_expr (file, TREE_TYPE (name), flags);
7717 fprintf (file, " ");
7718 print_generic_expr (file, name, flags);
7719 fprintf (file, ";\n");
7721 any_var = true;
7726 if (fun && fun->decl == fndecl
7727 && fun->cfg
7728 && basic_block_info_for_fn (fun))
7730 /* If the CFG has been built, emit a CFG-based dump. */
7731 if (!ignore_topmost_bind)
7732 fprintf (file, "{\n");
7734 if (any_var && n_basic_blocks_for_fn (fun))
7735 fprintf (file, "\n");
7737 FOR_EACH_BB_FN (bb, fun)
7738 dump_bb (file, bb, 2, flags);
7740 fprintf (file, "}\n");
7742 else if (fun->curr_properties & PROP_gimple_any)
7744 /* The function is now in GIMPLE form but the CFG has not been
7745 built yet. Emit the single sequence of GIMPLE statements
7746 that make up its body. */
7747 gimple_seq body = gimple_body (fndecl);
7749 if (gimple_seq_first_stmt (body)
7750 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
7751 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
7752 print_gimple_seq (file, body, 0, flags);
7753 else
7755 if (!ignore_topmost_bind)
7756 fprintf (file, "{\n");
7758 if (any_var)
7759 fprintf (file, "\n");
7761 print_gimple_seq (file, body, 2, flags);
7762 fprintf (file, "}\n");
7765 else
7767 int indent;
7769 /* Make a tree based dump. */
7770 chain = DECL_SAVED_TREE (fndecl);
7771 if (chain && TREE_CODE (chain) == BIND_EXPR)
7773 if (ignore_topmost_bind)
7775 chain = BIND_EXPR_BODY (chain);
7776 indent = 2;
7778 else
7779 indent = 0;
7781 else
7783 if (!ignore_topmost_bind)
7785 fprintf (file, "{\n");
7786 /* No topmost bind, pretend it's ignored for later. */
7787 ignore_topmost_bind = true;
7789 indent = 2;
7792 if (any_var)
7793 fprintf (file, "\n");
7795 print_generic_stmt_indented (file, chain, flags, indent);
7796 if (ignore_topmost_bind)
7797 fprintf (file, "}\n");
7800 if (flags & TDF_ENUMERATE_LOCALS)
7801 dump_enumerated_decls (file, flags);
7802 fprintf (file, "\n\n");
7804 current_function_decl = old_current_fndecl;
7807 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
7809 DEBUG_FUNCTION void
7810 debug_function (tree fn, dump_flags_t flags)
7812 dump_function_to_file (fn, stderr, flags);
7816 /* Print on FILE the indexes for the predecessors of basic_block BB. */
7818 static void
7819 print_pred_bbs (FILE *file, basic_block bb)
7821 edge e;
7822 edge_iterator ei;
7824 FOR_EACH_EDGE (e, ei, bb->preds)
7825 fprintf (file, "bb_%d ", e->src->index);
7829 /* Print on FILE the indexes for the successors of basic_block BB. */
7831 static void
7832 print_succ_bbs (FILE *file, basic_block bb)
7834 edge e;
7835 edge_iterator ei;
7837 FOR_EACH_EDGE (e, ei, bb->succs)
7838 fprintf (file, "bb_%d ", e->dest->index);
7841 /* Print to FILE the basic block BB following the VERBOSITY level. */
7843 void
7844 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
7846 char *s_indent = (char *) alloca ((size_t) indent + 1);
7847 memset ((void *) s_indent, ' ', (size_t) indent);
7848 s_indent[indent] = '\0';
7850 /* Print basic_block's header. */
7851 if (verbosity >= 2)
7853 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
7854 print_pred_bbs (file, bb);
7855 fprintf (file, "}, succs = {");
7856 print_succ_bbs (file, bb);
7857 fprintf (file, "})\n");
7860 /* Print basic_block's body. */
7861 if (verbosity >= 3)
7863 fprintf (file, "%s {\n", s_indent);
7864 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
7865 fprintf (file, "%s }\n", s_indent);
7869 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
7871 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
7872 VERBOSITY level this outputs the contents of the loop, or just its
7873 structure. */
7875 static void
7876 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
7878 char *s_indent;
7879 basic_block bb;
7881 if (loop == NULL)
7882 return;
7884 s_indent = (char *) alloca ((size_t) indent + 1);
7885 memset ((void *) s_indent, ' ', (size_t) indent);
7886 s_indent[indent] = '\0';
7888 /* Print loop's header. */
7889 fprintf (file, "%sloop_%d (", s_indent, loop->num);
7890 if (loop->header)
7891 fprintf (file, "header = %d", loop->header->index);
7892 else
7894 fprintf (file, "deleted)\n");
7895 return;
7897 if (loop->latch)
7898 fprintf (file, ", latch = %d", loop->latch->index);
7899 else
7900 fprintf (file, ", multiple latches");
7901 fprintf (file, ", niter = ");
7902 print_generic_expr (file, loop->nb_iterations);
7904 if (loop->any_upper_bound)
7906 fprintf (file, ", upper_bound = ");
7907 print_decu (loop->nb_iterations_upper_bound, file);
7909 if (loop->any_likely_upper_bound)
7911 fprintf (file, ", likely_upper_bound = ");
7912 print_decu (loop->nb_iterations_likely_upper_bound, file);
7915 if (loop->any_estimate)
7917 fprintf (file, ", estimate = ");
7918 print_decu (loop->nb_iterations_estimate, file);
7920 fprintf (file, ")\n");
7922 /* Print loop's body. */
7923 if (verbosity >= 1)
7925 fprintf (file, "%s{\n", s_indent);
7926 FOR_EACH_BB_FN (bb, cfun)
7927 if (bb->loop_father == loop)
7928 print_loops_bb (file, bb, indent, verbosity);
7930 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
7931 fprintf (file, "%s}\n", s_indent);
7935 /* Print the LOOP and its sibling loops on FILE, indented INDENT
7936 spaces. Following VERBOSITY level this outputs the contents of the
7937 loop, or just its structure. */
7939 static void
7940 print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
7941 int verbosity)
7943 if (loop == NULL)
7944 return;
7946 print_loop (file, loop, indent, verbosity);
7947 print_loop_and_siblings (file, loop->next, indent, verbosity);
7950 /* Follow a CFG edge from the entry point of the program, and on entry
7951 of a loop, pretty print the loop structure on FILE. */
7953 void
7954 print_loops (FILE *file, int verbosity)
7956 basic_block bb;
7958 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
7959 fprintf (file, "\nLoops in function: %s\n", current_function_name ());
7960 if (bb && bb->loop_father)
7961 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
7964 /* Dump a loop. */
7966 DEBUG_FUNCTION void
7967 debug (struct loop &ref)
7969 print_loop (stderr, &ref, 0, /*verbosity*/0);
7972 DEBUG_FUNCTION void
7973 debug (struct loop *ptr)
7975 if (ptr)
7976 debug (*ptr);
7977 else
7978 fprintf (stderr, "<nil>\n");
7981 /* Dump a loop verbosely. */
7983 DEBUG_FUNCTION void
7984 debug_verbose (struct loop &ref)
7986 print_loop (stderr, &ref, 0, /*verbosity*/3);
7989 DEBUG_FUNCTION void
7990 debug_verbose (struct loop *ptr)
7992 if (ptr)
7993 debug (*ptr);
7994 else
7995 fprintf (stderr, "<nil>\n");
7999 /* Debugging loops structure at tree level, at some VERBOSITY level. */
8001 DEBUG_FUNCTION void
8002 debug_loops (int verbosity)
8004 print_loops (stderr, verbosity);
8007 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
8009 DEBUG_FUNCTION void
8010 debug_loop (struct loop *loop, int verbosity)
8012 print_loop (stderr, loop, 0, verbosity);
8015 /* Print on stderr the code of loop number NUM, at some VERBOSITY
8016 level. */
8018 DEBUG_FUNCTION void
8019 debug_loop_num (unsigned num, int verbosity)
8021 debug_loop (get_loop (cfun, num), verbosity);
8024 /* Return true if BB ends with a call, possibly followed by some
8025 instructions that must stay with the call. Return false,
8026 otherwise. */
8028 static bool
8029 gimple_block_ends_with_call_p (basic_block bb)
8031 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
8032 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
8036 /* Return true if BB ends with a conditional branch. Return false,
8037 otherwise. */
8039 static bool
8040 gimple_block_ends_with_condjump_p (const_basic_block bb)
8042 gimple *stmt = last_stmt (CONST_CAST_BB (bb));
8043 return (stmt && gimple_code (stmt) == GIMPLE_COND);
8047 /* Return true if statement T may terminate execution of BB in ways not
8048 explicitly represtented in the CFG. */
8050 bool
8051 stmt_can_terminate_bb_p (gimple *t)
8053 tree fndecl = NULL_TREE;
8054 int call_flags = 0;
8056 /* Eh exception not handled internally terminates execution of the whole
8057 function. */
8058 if (stmt_can_throw_external (t))
8059 return true;
8061 /* NORETURN and LONGJMP calls already have an edge to exit.
8062 CONST and PURE calls do not need one.
8063 We don't currently check for CONST and PURE here, although
8064 it would be a good idea, because those attributes are
8065 figured out from the RTL in mark_constant_function, and
8066 the counter incrementation code from -fprofile-arcs
8067 leads to different results from -fbranch-probabilities. */
8068 if (is_gimple_call (t))
8070 fndecl = gimple_call_fndecl (t);
8071 call_flags = gimple_call_flags (t);
8074 if (is_gimple_call (t)
8075 && fndecl
8076 && DECL_BUILT_IN (fndecl)
8077 && (call_flags & ECF_NOTHROW)
8078 && !(call_flags & ECF_RETURNS_TWICE)
8079 /* fork() doesn't really return twice, but the effect of
8080 wrapping it in __gcov_fork() which calls __gcov_flush()
8081 and clears the counters before forking has the same
8082 effect as returning twice. Force a fake edge. */
8083 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
8084 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
8085 return false;
8087 if (is_gimple_call (t))
8089 edge_iterator ei;
8090 edge e;
8091 basic_block bb;
8093 if (call_flags & (ECF_PURE | ECF_CONST)
8094 && !(call_flags & ECF_LOOPING_CONST_OR_PURE))
8095 return false;
8097 /* Function call may do longjmp, terminate program or do other things.
8098 Special case noreturn that have non-abnormal edges out as in this case
8099 the fact is sufficiently represented by lack of edges out of T. */
8100 if (!(call_flags & ECF_NORETURN))
8101 return true;
8103 bb = gimple_bb (t);
8104 FOR_EACH_EDGE (e, ei, bb->succs)
8105 if ((e->flags & EDGE_FAKE) == 0)
8106 return true;
8109 if (gasm *asm_stmt = dyn_cast <gasm *> (t))
8110 if (gimple_asm_volatile_p (asm_stmt) || gimple_asm_input_p (asm_stmt))
8111 return true;
8113 return false;
8117 /* Add fake edges to the function exit for any non constant and non
8118 noreturn calls (or noreturn calls with EH/abnormal edges),
8119 volatile inline assembly in the bitmap of blocks specified by BLOCKS
8120 or to the whole CFG if BLOCKS is zero. Return the number of blocks
8121 that were split.
8123 The goal is to expose cases in which entering a basic block does
8124 not imply that all subsequent instructions must be executed. */
8126 static int
8127 gimple_flow_call_edges_add (sbitmap blocks)
8129 int i;
8130 int blocks_split = 0;
8131 int last_bb = last_basic_block_for_fn (cfun);
8132 bool check_last_block = false;
8134 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
8135 return 0;
8137 if (! blocks)
8138 check_last_block = true;
8139 else
8140 check_last_block = bitmap_bit_p (blocks,
8141 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
8143 /* In the last basic block, before epilogue generation, there will be
8144 a fallthru edge to EXIT. Special care is required if the last insn
8145 of the last basic block is a call because make_edge folds duplicate
8146 edges, which would result in the fallthru edge also being marked
8147 fake, which would result in the fallthru edge being removed by
8148 remove_fake_edges, which would result in an invalid CFG.
8150 Moreover, we can't elide the outgoing fake edge, since the block
8151 profiler needs to take this into account in order to solve the minimal
8152 spanning tree in the case that the call doesn't return.
8154 Handle this by adding a dummy instruction in a new last basic block. */
8155 if (check_last_block)
8157 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8158 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
8159 gimple *t = NULL;
8161 if (!gsi_end_p (gsi))
8162 t = gsi_stmt (gsi);
8164 if (t && stmt_can_terminate_bb_p (t))
8166 edge e;
8168 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
8169 if (e)
8171 gsi_insert_on_edge (e, gimple_build_nop ());
8172 gsi_commit_edge_inserts ();
8177 /* Now add fake edges to the function exit for any non constant
8178 calls since there is no way that we can determine if they will
8179 return or not... */
8180 for (i = 0; i < last_bb; i++)
8182 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8183 gimple_stmt_iterator gsi;
8184 gimple *stmt, *last_stmt;
8186 if (!bb)
8187 continue;
8189 if (blocks && !bitmap_bit_p (blocks, i))
8190 continue;
8192 gsi = gsi_last_nondebug_bb (bb);
8193 if (!gsi_end_p (gsi))
8195 last_stmt = gsi_stmt (gsi);
8198 stmt = gsi_stmt (gsi);
8199 if (stmt_can_terminate_bb_p (stmt))
8201 edge e;
8203 /* The handling above of the final block before the
8204 epilogue should be enough to verify that there is
8205 no edge to the exit block in CFG already.
8206 Calling make_edge in such case would cause us to
8207 mark that edge as fake and remove it later. */
8208 if (flag_checking && stmt == last_stmt)
8210 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
8211 gcc_assert (e == NULL);
8214 /* Note that the following may create a new basic block
8215 and renumber the existing basic blocks. */
8216 if (stmt != last_stmt)
8218 e = split_block (bb, stmt);
8219 if (e)
8220 blocks_split++;
8222 e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
8223 e->probability = profile_probability::guessed_never ();
8224 e->count = profile_count::guessed_zero ();
8226 gsi_prev (&gsi);
8228 while (!gsi_end_p (gsi));
8232 if (blocks_split)
8233 checking_verify_flow_info ();
8235 return blocks_split;
8238 /* Removes edge E and all the blocks dominated by it, and updates dominance
8239 information. The IL in E->src needs to be updated separately.
8240 If dominance info is not available, only the edge E is removed.*/
8242 void
8243 remove_edge_and_dominated_blocks (edge e)
8245 vec<basic_block> bbs_to_remove = vNULL;
8246 vec<basic_block> bbs_to_fix_dom = vNULL;
8247 edge f;
8248 edge_iterator ei;
8249 bool none_removed = false;
8250 unsigned i;
8251 basic_block bb, dbb;
8252 bitmap_iterator bi;
8254 /* If we are removing a path inside a non-root loop that may change
8255 loop ownership of blocks or remove loops. Mark loops for fixup. */
8256 if (current_loops
8257 && loop_outer (e->src->loop_father) != NULL
8258 && e->src->loop_father == e->dest->loop_father)
8259 loops_state_set (LOOPS_NEED_FIXUP);
8261 if (!dom_info_available_p (CDI_DOMINATORS))
8263 remove_edge (e);
8264 return;
8267 /* No updating is needed for edges to exit. */
8268 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8270 if (cfgcleanup_altered_bbs)
8271 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8272 remove_edge (e);
8273 return;
8276 /* First, we find the basic blocks to remove. If E->dest has a predecessor
8277 that is not dominated by E->dest, then this set is empty. Otherwise,
8278 all the basic blocks dominated by E->dest are removed.
8280 Also, to DF_IDOM we store the immediate dominators of the blocks in
8281 the dominance frontier of E (i.e., of the successors of the
8282 removed blocks, if there are any, and of E->dest otherwise). */
8283 FOR_EACH_EDGE (f, ei, e->dest->preds)
8285 if (f == e)
8286 continue;
8288 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
8290 none_removed = true;
8291 break;
8295 auto_bitmap df, df_idom;
8296 if (none_removed)
8297 bitmap_set_bit (df_idom,
8298 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
8299 else
8301 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
8302 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8304 FOR_EACH_EDGE (f, ei, bb->succs)
8306 if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
8307 bitmap_set_bit (df, f->dest->index);
8310 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8311 bitmap_clear_bit (df, bb->index);
8313 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
8315 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8316 bitmap_set_bit (df_idom,
8317 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
8321 if (cfgcleanup_altered_bbs)
8323 /* Record the set of the altered basic blocks. */
8324 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8325 bitmap_ior_into (cfgcleanup_altered_bbs, df);
8328 /* Remove E and the cancelled blocks. */
8329 if (none_removed)
8330 remove_edge (e);
8331 else
8333 /* Walk backwards so as to get a chance to substitute all
8334 released DEFs into debug stmts. See
8335 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
8336 details. */
8337 for (i = bbs_to_remove.length (); i-- > 0; )
8338 delete_basic_block (bbs_to_remove[i]);
8341 /* Update the dominance information. The immediate dominator may change only
8342 for blocks whose immediate dominator belongs to DF_IDOM:
8344 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
8345 removal. Let Z the arbitrary block such that idom(Z) = Y and
8346 Z dominates X after the removal. Before removal, there exists a path P
8347 from Y to X that avoids Z. Let F be the last edge on P that is
8348 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
8349 dominates W, and because of P, Z does not dominate W), and W belongs to
8350 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
8351 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
8353 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8354 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
8355 dbb;
8356 dbb = next_dom_son (CDI_DOMINATORS, dbb))
8357 bbs_to_fix_dom.safe_push (dbb);
8360 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
8362 bbs_to_remove.release ();
8363 bbs_to_fix_dom.release ();
8366 /* Purge dead EH edges from basic block BB. */
8368 bool
8369 gimple_purge_dead_eh_edges (basic_block bb)
8371 bool changed = false;
8372 edge e;
8373 edge_iterator ei;
8374 gimple *stmt = last_stmt (bb);
8376 if (stmt && stmt_can_throw_internal (stmt))
8377 return false;
8379 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8381 if (e->flags & EDGE_EH)
8383 remove_edge_and_dominated_blocks (e);
8384 changed = true;
8386 else
8387 ei_next (&ei);
8390 return changed;
8393 /* Purge dead EH edges from basic block listed in BLOCKS. */
8395 bool
8396 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
8398 bool changed = false;
8399 unsigned i;
8400 bitmap_iterator bi;
8402 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8404 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8406 /* Earlier gimple_purge_dead_eh_edges could have removed
8407 this basic block already. */
8408 gcc_assert (bb || changed);
8409 if (bb != NULL)
8410 changed |= gimple_purge_dead_eh_edges (bb);
8413 return changed;
8416 /* Purge dead abnormal call edges from basic block BB. */
8418 bool
8419 gimple_purge_dead_abnormal_call_edges (basic_block bb)
8421 bool changed = false;
8422 edge e;
8423 edge_iterator ei;
8424 gimple *stmt = last_stmt (bb);
8426 if (!cfun->has_nonlocal_label
8427 && !cfun->calls_setjmp)
8428 return false;
8430 if (stmt && stmt_can_make_abnormal_goto (stmt))
8431 return false;
8433 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8435 if (e->flags & EDGE_ABNORMAL)
8437 if (e->flags & EDGE_FALLTHRU)
8438 e->flags &= ~EDGE_ABNORMAL;
8439 else
8440 remove_edge_and_dominated_blocks (e);
8441 changed = true;
8443 else
8444 ei_next (&ei);
8447 return changed;
8450 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
8452 bool
8453 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
8455 bool changed = false;
8456 unsigned i;
8457 bitmap_iterator bi;
8459 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8461 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8463 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
8464 this basic block already. */
8465 gcc_assert (bb || changed);
8466 if (bb != NULL)
8467 changed |= gimple_purge_dead_abnormal_call_edges (bb);
8470 return changed;
8473 /* This function is called whenever a new edge is created or
8474 redirected. */
8476 static void
8477 gimple_execute_on_growing_pred (edge e)
8479 basic_block bb = e->dest;
8481 if (!gimple_seq_empty_p (phi_nodes (bb)))
8482 reserve_phi_args_for_new_edge (bb);
8485 /* This function is called immediately before edge E is removed from
8486 the edge vector E->dest->preds. */
8488 static void
8489 gimple_execute_on_shrinking_pred (edge e)
8491 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
8492 remove_phi_args (e);
8495 /*---------------------------------------------------------------------------
8496 Helper functions for Loop versioning
8497 ---------------------------------------------------------------------------*/
8499 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
8500 of 'first'. Both of them are dominated by 'new_head' basic block. When
8501 'new_head' was created by 'second's incoming edge it received phi arguments
8502 on the edge by split_edge(). Later, additional edge 'e' was created to
8503 connect 'new_head' and 'first'. Now this routine adds phi args on this
8504 additional edge 'e' that new_head to second edge received as part of edge
8505 splitting. */
8507 static void
8508 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
8509 basic_block new_head, edge e)
8511 gphi *phi1, *phi2;
8512 gphi_iterator psi1, psi2;
8513 tree def;
8514 edge e2 = find_edge (new_head, second);
8516 /* Because NEW_HEAD has been created by splitting SECOND's incoming
8517 edge, we should always have an edge from NEW_HEAD to SECOND. */
8518 gcc_assert (e2 != NULL);
8520 /* Browse all 'second' basic block phi nodes and add phi args to
8521 edge 'e' for 'first' head. PHI args are always in correct order. */
8523 for (psi2 = gsi_start_phis (second),
8524 psi1 = gsi_start_phis (first);
8525 !gsi_end_p (psi2) && !gsi_end_p (psi1);
8526 gsi_next (&psi2), gsi_next (&psi1))
8528 phi1 = psi1.phi ();
8529 phi2 = psi2.phi ();
8530 def = PHI_ARG_DEF (phi2, e2->dest_idx);
8531 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
8536 /* Adds a if else statement to COND_BB with condition COND_EXPR.
8537 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
8538 the destination of the ELSE part. */
8540 static void
8541 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
8542 basic_block second_head ATTRIBUTE_UNUSED,
8543 basic_block cond_bb, void *cond_e)
8545 gimple_stmt_iterator gsi;
8546 gimple *new_cond_expr;
8547 tree cond_expr = (tree) cond_e;
8548 edge e0;
8550 /* Build new conditional expr */
8551 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
8552 NULL_TREE, NULL_TREE);
8554 /* Add new cond in cond_bb. */
8555 gsi = gsi_last_bb (cond_bb);
8556 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
8558 /* Adjust edges appropriately to connect new head with first head
8559 as well as second head. */
8560 e0 = single_succ_edge (cond_bb);
8561 e0->flags &= ~EDGE_FALLTHRU;
8562 e0->flags |= EDGE_FALSE_VALUE;
8566 /* Do book-keeping of basic block BB for the profile consistency checker.
8567 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
8568 then do post-pass accounting. Store the counting in RECORD. */
8569 static void
8570 gimple_account_profile_record (basic_block bb, int after_pass,
8571 struct profile_record *record)
8573 gimple_stmt_iterator i;
8574 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
8576 record->size[after_pass]
8577 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
8578 if (bb->count.initialized_p ())
8579 record->time[after_pass]
8580 += estimate_num_insns (gsi_stmt (i),
8581 &eni_time_weights) * bb->count.to_gcov_type ();
8582 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
8583 record->time[after_pass]
8584 += estimate_num_insns (gsi_stmt (i),
8585 &eni_time_weights) * bb->frequency;
8589 struct cfg_hooks gimple_cfg_hooks = {
8590 "gimple",
8591 gimple_verify_flow_info,
8592 gimple_dump_bb, /* dump_bb */
8593 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
8594 create_bb, /* create_basic_block */
8595 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
8596 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
8597 gimple_can_remove_branch_p, /* can_remove_branch_p */
8598 remove_bb, /* delete_basic_block */
8599 gimple_split_block, /* split_block */
8600 gimple_move_block_after, /* move_block_after */
8601 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
8602 gimple_merge_blocks, /* merge_blocks */
8603 gimple_predict_edge, /* predict_edge */
8604 gimple_predicted_by_p, /* predicted_by_p */
8605 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
8606 gimple_duplicate_bb, /* duplicate_block */
8607 gimple_split_edge, /* split_edge */
8608 gimple_make_forwarder_block, /* make_forward_block */
8609 NULL, /* tidy_fallthru_edge */
8610 NULL, /* force_nonfallthru */
8611 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
8612 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
8613 gimple_flow_call_edges_add, /* flow_call_edges_add */
8614 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
8615 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
8616 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
8617 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
8618 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
8619 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
8620 flush_pending_stmts, /* flush_pending_stmts */
8621 gimple_empty_block_p, /* block_empty_p */
8622 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
8623 gimple_account_profile_record,
8627 /* Split all critical edges. */
8629 unsigned int
8630 split_critical_edges (void)
8632 basic_block bb;
8633 edge e;
8634 edge_iterator ei;
8636 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
8637 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
8638 mappings around the calls to split_edge. */
8639 start_recording_case_labels ();
8640 FOR_ALL_BB_FN (bb, cfun)
8642 FOR_EACH_EDGE (e, ei, bb->succs)
8644 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
8645 split_edge (e);
8646 /* PRE inserts statements to edges and expects that
8647 since split_critical_edges was done beforehand, committing edge
8648 insertions will not split more edges. In addition to critical
8649 edges we must split edges that have multiple successors and
8650 end by control flow statements, such as RESX.
8651 Go ahead and split them too. This matches the logic in
8652 gimple_find_edge_insert_loc. */
8653 else if ((!single_pred_p (e->dest)
8654 || !gimple_seq_empty_p (phi_nodes (e->dest))
8655 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8656 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
8657 && !(e->flags & EDGE_ABNORMAL))
8659 gimple_stmt_iterator gsi;
8661 gsi = gsi_last_bb (e->src);
8662 if (!gsi_end_p (gsi)
8663 && stmt_ends_bb_p (gsi_stmt (gsi))
8664 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
8665 && !gimple_call_builtin_p (gsi_stmt (gsi),
8666 BUILT_IN_RETURN)))
8667 split_edge (e);
8671 end_recording_case_labels ();
8672 return 0;
8675 namespace {
8677 const pass_data pass_data_split_crit_edges =
8679 GIMPLE_PASS, /* type */
8680 "crited", /* name */
8681 OPTGROUP_NONE, /* optinfo_flags */
8682 TV_TREE_SPLIT_EDGES, /* tv_id */
8683 PROP_cfg, /* properties_required */
8684 PROP_no_crit_edges, /* properties_provided */
8685 0, /* properties_destroyed */
8686 0, /* todo_flags_start */
8687 0, /* todo_flags_finish */
8690 class pass_split_crit_edges : public gimple_opt_pass
8692 public:
8693 pass_split_crit_edges (gcc::context *ctxt)
8694 : gimple_opt_pass (pass_data_split_crit_edges, ctxt)
8697 /* opt_pass methods: */
8698 virtual unsigned int execute (function *) { return split_critical_edges (); }
8700 opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); }
8701 }; // class pass_split_crit_edges
8703 } // anon namespace
8705 gimple_opt_pass *
8706 make_pass_split_crit_edges (gcc::context *ctxt)
8708 return new pass_split_crit_edges (ctxt);
8712 /* Insert COND expression which is GIMPLE_COND after STMT
8713 in basic block BB with appropriate basic block split
8714 and creation of a new conditionally executed basic block.
8715 Update profile so the new bb is visited with probability PROB.
8716 Return created basic block. */
8717 basic_block
8718 insert_cond_bb (basic_block bb, gimple *stmt, gimple *cond,
8719 profile_probability prob)
8721 edge fall = split_block (bb, stmt);
8722 gimple_stmt_iterator iter = gsi_last_bb (bb);
8723 basic_block new_bb;
8725 /* Insert cond statement. */
8726 gcc_assert (gimple_code (cond) == GIMPLE_COND);
8727 if (gsi_end_p (iter))
8728 gsi_insert_before (&iter, cond, GSI_CONTINUE_LINKING);
8729 else
8730 gsi_insert_after (&iter, cond, GSI_CONTINUE_LINKING);
8732 /* Create conditionally executed block. */
8733 new_bb = create_empty_bb (bb);
8734 edge e = make_edge (bb, new_bb, EDGE_TRUE_VALUE);
8735 e->probability = prob;
8736 e->count = bb->count.apply_probability (prob);
8737 new_bb->count = e->count;
8738 new_bb->frequency = prob.apply (bb->frequency);
8739 make_single_succ_edge (new_bb, fall->dest, EDGE_FALLTHRU);
8741 /* Fix edge for split bb. */
8742 fall->flags = EDGE_FALSE_VALUE;
8743 fall->count -= e->count;
8744 fall->probability -= e->probability;
8746 /* Update dominance info. */
8747 if (dom_info_available_p (CDI_DOMINATORS))
8749 set_immediate_dominator (CDI_DOMINATORS, new_bb, bb);
8750 set_immediate_dominator (CDI_DOMINATORS, fall->dest, bb);
8753 /* Update loop info. */
8754 if (current_loops)
8755 add_bb_to_loop (new_bb, bb->loop_father);
8757 return new_bb;
8760 /* Build a ternary operation and gimplify it. Emit code before GSI.
8761 Return the gimple_val holding the result. */
8763 tree
8764 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
8765 tree type, tree a, tree b, tree c)
8767 tree ret;
8768 location_t loc = gimple_location (gsi_stmt (*gsi));
8770 ret = fold_build3_loc (loc, code, type, a, b, c);
8771 STRIP_NOPS (ret);
8773 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8774 GSI_SAME_STMT);
8777 /* Build a binary operation and gimplify it. Emit code before GSI.
8778 Return the gimple_val holding the result. */
8780 tree
8781 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
8782 tree type, tree a, tree b)
8784 tree ret;
8786 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
8787 STRIP_NOPS (ret);
8789 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8790 GSI_SAME_STMT);
8793 /* Build a unary operation and gimplify it. Emit code before GSI.
8794 Return the gimple_val holding the result. */
8796 tree
8797 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
8798 tree a)
8800 tree ret;
8802 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
8803 STRIP_NOPS (ret);
8805 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8806 GSI_SAME_STMT);
8811 /* Given a basic block B which ends with a conditional and has
8812 precisely two successors, determine which of the edges is taken if
8813 the conditional is true and which is taken if the conditional is
8814 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
8816 void
8817 extract_true_false_edges_from_block (basic_block b,
8818 edge *true_edge,
8819 edge *false_edge)
8821 edge e = EDGE_SUCC (b, 0);
8823 if (e->flags & EDGE_TRUE_VALUE)
8825 *true_edge = e;
8826 *false_edge = EDGE_SUCC (b, 1);
8828 else
8830 *false_edge = e;
8831 *true_edge = EDGE_SUCC (b, 1);
8836 /* From a controlling predicate in the immediate dominator DOM of
8837 PHIBLOCK determine the edges into PHIBLOCK that are chosen if the
8838 predicate evaluates to true and false and store them to
8839 *TRUE_CONTROLLED_EDGE and *FALSE_CONTROLLED_EDGE if
8840 they are non-NULL. Returns true if the edges can be determined,
8841 else return false. */
8843 bool
8844 extract_true_false_controlled_edges (basic_block dom, basic_block phiblock,
8845 edge *true_controlled_edge,
8846 edge *false_controlled_edge)
8848 basic_block bb = phiblock;
8849 edge true_edge, false_edge, tem;
8850 edge e0 = NULL, e1 = NULL;
8852 /* We have to verify that one edge into the PHI node is dominated
8853 by the true edge of the predicate block and the other edge
8854 dominated by the false edge. This ensures that the PHI argument
8855 we are going to take is completely determined by the path we
8856 take from the predicate block.
8857 We can only use BB dominance checks below if the destination of
8858 the true/false edges are dominated by their edge, thus only
8859 have a single predecessor. */
8860 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
8861 tem = EDGE_PRED (bb, 0);
8862 if (tem == true_edge
8863 || (single_pred_p (true_edge->dest)
8864 && (tem->src == true_edge->dest
8865 || dominated_by_p (CDI_DOMINATORS,
8866 tem->src, true_edge->dest))))
8867 e0 = tem;
8868 else if (tem == false_edge
8869 || (single_pred_p (false_edge->dest)
8870 && (tem->src == false_edge->dest
8871 || dominated_by_p (CDI_DOMINATORS,
8872 tem->src, false_edge->dest))))
8873 e1 = tem;
8874 else
8875 return false;
8876 tem = EDGE_PRED (bb, 1);
8877 if (tem == true_edge
8878 || (single_pred_p (true_edge->dest)
8879 && (tem->src == true_edge->dest
8880 || dominated_by_p (CDI_DOMINATORS,
8881 tem->src, true_edge->dest))))
8882 e0 = tem;
8883 else if (tem == false_edge
8884 || (single_pred_p (false_edge->dest)
8885 && (tem->src == false_edge->dest
8886 || dominated_by_p (CDI_DOMINATORS,
8887 tem->src, false_edge->dest))))
8888 e1 = tem;
8889 else
8890 return false;
8891 if (!e0 || !e1)
8892 return false;
8894 if (true_controlled_edge)
8895 *true_controlled_edge = e0;
8896 if (false_controlled_edge)
8897 *false_controlled_edge = e1;
8899 return true;
8904 /* Emit return warnings. */
8906 namespace {
8908 const pass_data pass_data_warn_function_return =
8910 GIMPLE_PASS, /* type */
8911 "*warn_function_return", /* name */
8912 OPTGROUP_NONE, /* optinfo_flags */
8913 TV_NONE, /* tv_id */
8914 PROP_cfg, /* properties_required */
8915 0, /* properties_provided */
8916 0, /* properties_destroyed */
8917 0, /* todo_flags_start */
8918 0, /* todo_flags_finish */
8921 class pass_warn_function_return : public gimple_opt_pass
8923 public:
8924 pass_warn_function_return (gcc::context *ctxt)
8925 : gimple_opt_pass (pass_data_warn_function_return, ctxt)
8928 /* opt_pass methods: */
8929 virtual unsigned int execute (function *);
8931 }; // class pass_warn_function_return
8933 unsigned int
8934 pass_warn_function_return::execute (function *fun)
8936 source_location location;
8937 gimple *last;
8938 edge e;
8939 edge_iterator ei;
8941 if (!targetm.warn_func_return (fun->decl))
8942 return 0;
8944 /* If we have a path to EXIT, then we do return. */
8945 if (TREE_THIS_VOLATILE (fun->decl)
8946 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0)
8948 location = UNKNOWN_LOCATION;
8949 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds)
8951 last = last_stmt (e->src);
8952 if ((gimple_code (last) == GIMPLE_RETURN
8953 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
8954 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
8955 break;
8957 if (location == UNKNOWN_LOCATION)
8958 location = cfun->function_end_locus;
8959 warning_at (location, 0, "%<noreturn%> function does return");
8962 /* If we see "return;" in some basic block, then we do reach the end
8963 without returning a value. */
8964 else if (warn_return_type
8965 && !TREE_NO_WARNING (fun->decl)
8966 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0
8967 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun->decl))))
8969 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds)
8971 gimple *last = last_stmt (e->src);
8972 greturn *return_stmt = dyn_cast <greturn *> (last);
8973 if (return_stmt
8974 && gimple_return_retval (return_stmt) == NULL
8975 && !gimple_no_warning_p (last))
8977 location = gimple_location (last);
8978 if (location == UNKNOWN_LOCATION)
8979 location = fun->function_end_locus;
8980 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
8981 TREE_NO_WARNING (fun->decl) = 1;
8982 break;
8986 return 0;
8989 } // anon namespace
8991 gimple_opt_pass *
8992 make_pass_warn_function_return (gcc::context *ctxt)
8994 return new pass_warn_function_return (ctxt);
8997 /* Walk a gimplified function and warn for functions whose return value is
8998 ignored and attribute((warn_unused_result)) is set. This is done before
8999 inlining, so we don't have to worry about that. */
9001 static void
9002 do_warn_unused_result (gimple_seq seq)
9004 tree fdecl, ftype;
9005 gimple_stmt_iterator i;
9007 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
9009 gimple *g = gsi_stmt (i);
9011 switch (gimple_code (g))
9013 case GIMPLE_BIND:
9014 do_warn_unused_result (gimple_bind_body (as_a <gbind *>(g)));
9015 break;
9016 case GIMPLE_TRY:
9017 do_warn_unused_result (gimple_try_eval (g));
9018 do_warn_unused_result (gimple_try_cleanup (g));
9019 break;
9020 case GIMPLE_CATCH:
9021 do_warn_unused_result (gimple_catch_handler (
9022 as_a <gcatch *> (g)));
9023 break;
9024 case GIMPLE_EH_FILTER:
9025 do_warn_unused_result (gimple_eh_filter_failure (g));
9026 break;
9028 case GIMPLE_CALL:
9029 if (gimple_call_lhs (g))
9030 break;
9031 if (gimple_call_internal_p (g))
9032 break;
9034 /* This is a naked call, as opposed to a GIMPLE_CALL with an
9035 LHS. All calls whose value is ignored should be
9036 represented like this. Look for the attribute. */
9037 fdecl = gimple_call_fndecl (g);
9038 ftype = gimple_call_fntype (g);
9040 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
9042 location_t loc = gimple_location (g);
9044 if (fdecl)
9045 warning_at (loc, OPT_Wunused_result,
9046 "ignoring return value of %qD, "
9047 "declared with attribute warn_unused_result",
9048 fdecl);
9049 else
9050 warning_at (loc, OPT_Wunused_result,
9051 "ignoring return value of function "
9052 "declared with attribute warn_unused_result");
9054 break;
9056 default:
9057 /* Not a container, not a call, or a call whose value is used. */
9058 break;
9063 namespace {
9065 const pass_data pass_data_warn_unused_result =
9067 GIMPLE_PASS, /* type */
9068 "*warn_unused_result", /* name */
9069 OPTGROUP_NONE, /* optinfo_flags */
9070 TV_NONE, /* tv_id */
9071 PROP_gimple_any, /* properties_required */
9072 0, /* properties_provided */
9073 0, /* properties_destroyed */
9074 0, /* todo_flags_start */
9075 0, /* todo_flags_finish */
9078 class pass_warn_unused_result : public gimple_opt_pass
9080 public:
9081 pass_warn_unused_result (gcc::context *ctxt)
9082 : gimple_opt_pass (pass_data_warn_unused_result, ctxt)
9085 /* opt_pass methods: */
9086 virtual bool gate (function *) { return flag_warn_unused_result; }
9087 virtual unsigned int execute (function *)
9089 do_warn_unused_result (gimple_body (current_function_decl));
9090 return 0;
9093 }; // class pass_warn_unused_result
9095 } // anon namespace
9097 gimple_opt_pass *
9098 make_pass_warn_unused_result (gcc::context *ctxt)
9100 return new pass_warn_unused_result (ctxt);
9103 /* IPA passes, compilation of earlier functions or inlining
9104 might have changed some properties, such as marked functions nothrow,
9105 pure, const or noreturn.
9106 Remove redundant edges and basic blocks, and create new ones if necessary.
9108 This pass can't be executed as stand alone pass from pass manager, because
9109 in between inlining and this fixup the verify_flow_info would fail. */
9111 unsigned int
9112 execute_fixup_cfg (void)
9114 basic_block bb;
9115 gimple_stmt_iterator gsi;
9116 int todo = 0;
9117 edge e;
9118 edge_iterator ei;
9119 cgraph_node *node = cgraph_node::get (current_function_decl);
9120 profile_count num = node->count;
9121 profile_count den = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;
9122 bool scale = num.initialized_p ()
9123 && (den > 0 || num == profile_count::zero ())
9124 && !(num == den);
9126 if (scale)
9128 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = node->count;
9129 EXIT_BLOCK_PTR_FOR_FN (cfun)->count
9130 = EXIT_BLOCK_PTR_FOR_FN (cfun)->count.apply_scale (num, den);
9132 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
9133 e->count = e->count.apply_scale (num, den);
9136 FOR_EACH_BB_FN (bb, cfun)
9138 if (scale)
9139 bb->count = bb->count.apply_scale (num, den);
9140 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
9142 gimple *stmt = gsi_stmt (gsi);
9143 tree decl = is_gimple_call (stmt)
9144 ? gimple_call_fndecl (stmt)
9145 : NULL;
9146 if (decl)
9148 int flags = gimple_call_flags (stmt);
9149 if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE))
9151 if (gimple_purge_dead_abnormal_call_edges (bb))
9152 todo |= TODO_cleanup_cfg;
9154 if (gimple_in_ssa_p (cfun))
9156 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9157 update_stmt (stmt);
9161 if (flags & ECF_NORETURN
9162 && fixup_noreturn_call (stmt))
9163 todo |= TODO_cleanup_cfg;
9166 /* Remove stores to variables we marked write-only.
9167 Keep access when store has side effect, i.e. in case when source
9168 is volatile. */
9169 if (gimple_store_p (stmt)
9170 && !gimple_has_side_effects (stmt))
9172 tree lhs = get_base_address (gimple_get_lhs (stmt));
9174 if (VAR_P (lhs)
9175 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
9176 && varpool_node::get (lhs)->writeonly)
9178 unlink_stmt_vdef (stmt);
9179 gsi_remove (&gsi, true);
9180 release_defs (stmt);
9181 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9182 continue;
9185 /* For calls we can simply remove LHS when it is known
9186 to be write-only. */
9187 if (is_gimple_call (stmt)
9188 && gimple_get_lhs (stmt))
9190 tree lhs = get_base_address (gimple_get_lhs (stmt));
9192 if (VAR_P (lhs)
9193 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
9194 && varpool_node::get (lhs)->writeonly)
9196 gimple_call_set_lhs (stmt, NULL);
9197 update_stmt (stmt);
9198 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9202 if (maybe_clean_eh_stmt (stmt)
9203 && gimple_purge_dead_eh_edges (bb))
9204 todo |= TODO_cleanup_cfg;
9205 gsi_next (&gsi);
9208 if (scale)
9209 FOR_EACH_EDGE (e, ei, bb->succs)
9210 e->count = e->count.apply_scale (num, den);
9212 /* If we have a basic block with no successors that does not
9213 end with a control statement or a noreturn call end it with
9214 a call to __builtin_unreachable. This situation can occur
9215 when inlining a noreturn call that does in fact return. */
9216 if (EDGE_COUNT (bb->succs) == 0)
9218 gimple *stmt = last_stmt (bb);
9219 if (!stmt
9220 || (!is_ctrl_stmt (stmt)
9221 && (!is_gimple_call (stmt)
9222 || !gimple_call_noreturn_p (stmt))))
9224 if (stmt && is_gimple_call (stmt))
9225 gimple_call_set_ctrl_altering (stmt, false);
9226 tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
9227 stmt = gimple_build_call (fndecl, 0);
9228 gimple_stmt_iterator gsi = gsi_last_bb (bb);
9229 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
9230 if (!cfun->after_inlining)
9232 gcall *call_stmt = dyn_cast <gcall *> (stmt);
9233 int freq
9234 = compute_call_stmt_bb_frequency (current_function_decl,
9235 bb);
9236 node->create_edge (cgraph_node::get_create (fndecl),
9237 call_stmt, bb->count, freq);
9242 if (scale)
9243 compute_function_frequency ();
9245 if (current_loops
9246 && (todo & TODO_cleanup_cfg))
9247 loops_state_set (LOOPS_NEED_FIXUP);
9249 return todo;
9252 namespace {
9254 const pass_data pass_data_fixup_cfg =
9256 GIMPLE_PASS, /* type */
9257 "fixup_cfg", /* name */
9258 OPTGROUP_NONE, /* optinfo_flags */
9259 TV_NONE, /* tv_id */
9260 PROP_cfg, /* properties_required */
9261 0, /* properties_provided */
9262 0, /* properties_destroyed */
9263 0, /* todo_flags_start */
9264 0, /* todo_flags_finish */
9267 class pass_fixup_cfg : public gimple_opt_pass
9269 public:
9270 pass_fixup_cfg (gcc::context *ctxt)
9271 : gimple_opt_pass (pass_data_fixup_cfg, ctxt)
9274 /* opt_pass methods: */
9275 opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); }
9276 virtual unsigned int execute (function *) { return execute_fixup_cfg (); }
9278 }; // class pass_fixup_cfg
9280 } // anon namespace
9282 gimple_opt_pass *
9283 make_pass_fixup_cfg (gcc::context *ctxt)
9285 return new pass_fixup_cfg (ctxt);
9288 /* Garbage collection support for edge_def. */
9290 extern void gt_ggc_mx (tree&);
9291 extern void gt_ggc_mx (gimple *&);
9292 extern void gt_ggc_mx (rtx&);
9293 extern void gt_ggc_mx (basic_block&);
9295 static void
9296 gt_ggc_mx (rtx_insn *& x)
9298 if (x)
9299 gt_ggc_mx_rtx_def ((void *) x);
9302 void
9303 gt_ggc_mx (edge_def *e)
9305 tree block = LOCATION_BLOCK (e->goto_locus);
9306 gt_ggc_mx (e->src);
9307 gt_ggc_mx (e->dest);
9308 if (current_ir_type () == IR_GIMPLE)
9309 gt_ggc_mx (e->insns.g);
9310 else
9311 gt_ggc_mx (e->insns.r);
9312 gt_ggc_mx (block);
9315 /* PCH support for edge_def. */
9317 extern void gt_pch_nx (tree&);
9318 extern void gt_pch_nx (gimple *&);
9319 extern void gt_pch_nx (rtx&);
9320 extern void gt_pch_nx (basic_block&);
9322 static void
9323 gt_pch_nx (rtx_insn *& x)
9325 if (x)
9326 gt_pch_nx_rtx_def ((void *) x);
9329 void
9330 gt_pch_nx (edge_def *e)
9332 tree block = LOCATION_BLOCK (e->goto_locus);
9333 gt_pch_nx (e->src);
9334 gt_pch_nx (e->dest);
9335 if (current_ir_type () == IR_GIMPLE)
9336 gt_pch_nx (e->insns.g);
9337 else
9338 gt_pch_nx (e->insns.r);
9339 gt_pch_nx (block);
9342 void
9343 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
9345 tree block = LOCATION_BLOCK (e->goto_locus);
9346 op (&(e->src), cookie);
9347 op (&(e->dest), cookie);
9348 if (current_ir_type () == IR_GIMPLE)
9349 op (&(e->insns.g), cookie);
9350 else
9351 op (&(e->insns.r), cookie);
9352 op (&(block), cookie);
9355 #if CHECKING_P
9357 namespace selftest {
9359 /* Helper function for CFG selftests: create a dummy function decl
9360 and push it as cfun. */
9362 static tree
9363 push_fndecl (const char *name)
9365 tree fn_type = build_function_type_array (integer_type_node, 0, NULL);
9366 /* FIXME: this uses input_location: */
9367 tree fndecl = build_fn_decl (name, fn_type);
9368 tree retval = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
9369 NULL_TREE, integer_type_node);
9370 DECL_RESULT (fndecl) = retval;
9371 push_struct_function (fndecl);
9372 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9373 ASSERT_TRUE (fun != NULL);
9374 init_empty_tree_cfg_for_function (fun);
9375 ASSERT_EQ (2, n_basic_blocks_for_fn (fun));
9376 ASSERT_EQ (0, n_edges_for_fn (fun));
9377 return fndecl;
9380 /* These tests directly create CFGs.
9381 Compare with the static fns within tree-cfg.c:
9382 - build_gimple_cfg
9383 - make_blocks: calls create_basic_block (seq, bb);
9384 - make_edges. */
9386 /* Verify a simple cfg of the form:
9387 ENTRY -> A -> B -> C -> EXIT. */
9389 static void
9390 test_linear_chain ()
9392 gimple_register_cfg_hooks ();
9394 tree fndecl = push_fndecl ("cfg_test_linear_chain");
9395 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9397 /* Create some empty blocks. */
9398 basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun));
9399 basic_block bb_b = create_empty_bb (bb_a);
9400 basic_block bb_c = create_empty_bb (bb_b);
9402 ASSERT_EQ (5, n_basic_blocks_for_fn (fun));
9403 ASSERT_EQ (0, n_edges_for_fn (fun));
9405 /* Create some edges: a simple linear chain of BBs. */
9406 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU);
9407 make_edge (bb_a, bb_b, 0);
9408 make_edge (bb_b, bb_c, 0);
9409 make_edge (bb_c, EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9411 /* Verify the edges. */
9412 ASSERT_EQ (4, n_edges_for_fn (fun));
9413 ASSERT_EQ (NULL, ENTRY_BLOCK_PTR_FOR_FN (fun)->preds);
9414 ASSERT_EQ (1, ENTRY_BLOCK_PTR_FOR_FN (fun)->succs->length ());
9415 ASSERT_EQ (1, bb_a->preds->length ());
9416 ASSERT_EQ (1, bb_a->succs->length ());
9417 ASSERT_EQ (1, bb_b->preds->length ());
9418 ASSERT_EQ (1, bb_b->succs->length ());
9419 ASSERT_EQ (1, bb_c->preds->length ());
9420 ASSERT_EQ (1, bb_c->succs->length ());
9421 ASSERT_EQ (1, EXIT_BLOCK_PTR_FOR_FN (fun)->preds->length ());
9422 ASSERT_EQ (NULL, EXIT_BLOCK_PTR_FOR_FN (fun)->succs);
9424 /* Verify the dominance information
9425 Each BB in our simple chain should be dominated by the one before
9426 it. */
9427 calculate_dominance_info (CDI_DOMINATORS);
9428 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b));
9429 ASSERT_EQ (bb_b, get_immediate_dominator (CDI_DOMINATORS, bb_c));
9430 vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b);
9431 ASSERT_EQ (1, dom_by_b.length ());
9432 ASSERT_EQ (bb_c, dom_by_b[0]);
9433 free_dominance_info (CDI_DOMINATORS);
9434 dom_by_b.release ();
9436 /* Similarly for post-dominance: each BB in our chain is post-dominated
9437 by the one after it. */
9438 calculate_dominance_info (CDI_POST_DOMINATORS);
9439 ASSERT_EQ (bb_b, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a));
9440 ASSERT_EQ (bb_c, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b));
9441 vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b);
9442 ASSERT_EQ (1, postdom_by_b.length ());
9443 ASSERT_EQ (bb_a, postdom_by_b[0]);
9444 free_dominance_info (CDI_POST_DOMINATORS);
9445 postdom_by_b.release ();
9447 pop_cfun ();
9450 /* Verify a simple CFG of the form:
9451 ENTRY
9455 /t \f
9461 EXIT. */
9463 static void
9464 test_diamond ()
9466 gimple_register_cfg_hooks ();
9468 tree fndecl = push_fndecl ("cfg_test_diamond");
9469 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9471 /* Create some empty blocks. */
9472 basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun));
9473 basic_block bb_b = create_empty_bb (bb_a);
9474 basic_block bb_c = create_empty_bb (bb_a);
9475 basic_block bb_d = create_empty_bb (bb_b);
9477 ASSERT_EQ (6, n_basic_blocks_for_fn (fun));
9478 ASSERT_EQ (0, n_edges_for_fn (fun));
9480 /* Create the edges. */
9481 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU);
9482 make_edge (bb_a, bb_b, EDGE_TRUE_VALUE);
9483 make_edge (bb_a, bb_c, EDGE_FALSE_VALUE);
9484 make_edge (bb_b, bb_d, 0);
9485 make_edge (bb_c, bb_d, 0);
9486 make_edge (bb_d, EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9488 /* Verify the edges. */
9489 ASSERT_EQ (6, n_edges_for_fn (fun));
9490 ASSERT_EQ (1, bb_a->preds->length ());
9491 ASSERT_EQ (2, bb_a->succs->length ());
9492 ASSERT_EQ (1, bb_b->preds->length ());
9493 ASSERT_EQ (1, bb_b->succs->length ());
9494 ASSERT_EQ (1, bb_c->preds->length ());
9495 ASSERT_EQ (1, bb_c->succs->length ());
9496 ASSERT_EQ (2, bb_d->preds->length ());
9497 ASSERT_EQ (1, bb_d->succs->length ());
9499 /* Verify the dominance information. */
9500 calculate_dominance_info (CDI_DOMINATORS);
9501 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b));
9502 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_c));
9503 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_d));
9504 vec<basic_block> dom_by_a = get_dominated_by (CDI_DOMINATORS, bb_a);
9505 ASSERT_EQ (3, dom_by_a.length ()); /* B, C, D, in some order. */
9506 dom_by_a.release ();
9507 vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b);
9508 ASSERT_EQ (0, dom_by_b.length ());
9509 dom_by_b.release ();
9510 free_dominance_info (CDI_DOMINATORS);
9512 /* Similarly for post-dominance. */
9513 calculate_dominance_info (CDI_POST_DOMINATORS);
9514 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a));
9515 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b));
9516 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_c));
9517 vec<basic_block> postdom_by_d = get_dominated_by (CDI_POST_DOMINATORS, bb_d);
9518 ASSERT_EQ (3, postdom_by_d.length ()); /* A, B, C in some order. */
9519 postdom_by_d.release ();
9520 vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b);
9521 ASSERT_EQ (0, postdom_by_b.length ());
9522 postdom_by_b.release ();
9523 free_dominance_info (CDI_POST_DOMINATORS);
9525 pop_cfun ();
9528 /* Verify that we can handle a CFG containing a "complete" aka
9529 fully-connected subgraph (where A B C D below all have edges
9530 pointing to each other node, also to themselves).
9531 e.g.:
9532 ENTRY EXIT
9538 A<--->B
9539 ^^ ^^
9540 | \ / |
9541 | X |
9542 | / \ |
9543 VV VV
9544 C<--->D
9547 static void
9548 test_fully_connected ()
9550 gimple_register_cfg_hooks ();
9552 tree fndecl = push_fndecl ("cfg_fully_connected");
9553 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9555 const int n = 4;
9557 /* Create some empty blocks. */
9558 auto_vec <basic_block> subgraph_nodes;
9559 for (int i = 0; i < n; i++)
9560 subgraph_nodes.safe_push (create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun)));
9562 ASSERT_EQ (n + 2, n_basic_blocks_for_fn (fun));
9563 ASSERT_EQ (0, n_edges_for_fn (fun));
9565 /* Create the edges. */
9566 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), subgraph_nodes[0], EDGE_FALLTHRU);
9567 make_edge (subgraph_nodes[0], EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9568 for (int i = 0; i < n; i++)
9569 for (int j = 0; j < n; j++)
9570 make_edge (subgraph_nodes[i], subgraph_nodes[j], 0);
9572 /* Verify the edges. */
9573 ASSERT_EQ (2 + (n * n), n_edges_for_fn (fun));
9574 /* The first one is linked to ENTRY/EXIT as well as itself and
9575 everything else. */
9576 ASSERT_EQ (n + 1, subgraph_nodes[0]->preds->length ());
9577 ASSERT_EQ (n + 1, subgraph_nodes[0]->succs->length ());
9578 /* The other ones in the subgraph are linked to everything in
9579 the subgraph (including themselves). */
9580 for (int i = 1; i < n; i++)
9582 ASSERT_EQ (n, subgraph_nodes[i]->preds->length ());
9583 ASSERT_EQ (n, subgraph_nodes[i]->succs->length ());
9586 /* Verify the dominance information. */
9587 calculate_dominance_info (CDI_DOMINATORS);
9588 /* The initial block in the subgraph should be dominated by ENTRY. */
9589 ASSERT_EQ (ENTRY_BLOCK_PTR_FOR_FN (fun),
9590 get_immediate_dominator (CDI_DOMINATORS,
9591 subgraph_nodes[0]));
9592 /* Every other block in the subgraph should be dominated by the
9593 initial block. */
9594 for (int i = 1; i < n; i++)
9595 ASSERT_EQ (subgraph_nodes[0],
9596 get_immediate_dominator (CDI_DOMINATORS,
9597 subgraph_nodes[i]));
9598 free_dominance_info (CDI_DOMINATORS);
9600 /* Similarly for post-dominance. */
9601 calculate_dominance_info (CDI_POST_DOMINATORS);
9602 /* The initial block in the subgraph should be postdominated by EXIT. */
9603 ASSERT_EQ (EXIT_BLOCK_PTR_FOR_FN (fun),
9604 get_immediate_dominator (CDI_POST_DOMINATORS,
9605 subgraph_nodes[0]));
9606 /* Every other block in the subgraph should be postdominated by the
9607 initial block, since that leads to EXIT. */
9608 for (int i = 1; i < n; i++)
9609 ASSERT_EQ (subgraph_nodes[0],
9610 get_immediate_dominator (CDI_POST_DOMINATORS,
9611 subgraph_nodes[i]));
9612 free_dominance_info (CDI_POST_DOMINATORS);
9614 pop_cfun ();
9617 /* Run all of the selftests within this file. */
9619 void
9620 tree_cfg_c_tests ()
9622 test_linear_chain ();
9623 test_diamond ();
9624 test_fully_connected ();
9627 } // namespace selftest
9629 /* TODO: test the dominator/postdominator logic with various graphs/nodes:
9630 - loop
9631 - nested loops
9632 - switch statement (a block with many out-edges)
9633 - something that jumps to itself
9634 - etc */
9636 #endif /* CHECKING_P */