1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 /* This program is used to produce insn-recog.c, which contains a
24 function called `recog' plus its subroutines. These functions
25 contain a decision tree that recognizes whether an rtx, the
26 argument given to recog, is a valid instruction.
28 recog returns -1 if the rtx is not valid. If the rtx is valid,
29 recog returns a nonnegative number which is the insn code number
30 for the pattern that matched. This is the same as the order in the
31 machine description of the entry that matched. This number can be
32 used as an index into various insn_* tables, such as insn_template,
33 insn_outfun, and insn_n_operands (found in insn-output.c).
35 The third argument to recog is an optional pointer to an int. If
36 present, recog will accept a pattern if it matches except for
37 missing CLOBBER expressions at the end. In that case, the value
38 pointed to by the optional pointer will be set to the number of
39 CLOBBERs that need to be added (it should be initialized to zero by
40 the caller). If it is set nonzero, the caller should allocate a
41 PARALLEL of the appropriate size, copy the initial entries, and
42 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
44 This program also generates the function `split_insns', which
45 returns 0 if the rtl could not be split, or it returns the split
48 This program also generates the function `peephole2_insns', which
49 returns 0 if the rtl could not be matched. If there was a match,
50 the new rtl is returned in an INSN list, and LAST_INSN will point
51 to the last recognized insn in the old sequence. */
55 #include "coretypes.h"
59 #include "gensupport.h"
62 #define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
63 printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
65 /* Holds an array of names indexed by insn_code_number. */
66 static char **insn_name_ptr
= 0;
67 static int insn_name_ptr_size
= 0;
69 /* A listhead of decision trees. The alternatives to a node are kept
70 in a doubly-linked list so we can easily add nodes to the proper
71 place when merging. */
75 struct decision
*first
;
76 struct decision
*last
;
79 /* A single test. The two accept types aren't tests per-se, but
80 their equality (or lack thereof) does affect tree merging so
81 it is convenient to keep them here. */
85 /* A linked list through the tests attached to a node. */
86 struct decision_test
*next
;
88 /* These types are roughly in the order in which we'd like to test them. */
91 DT_mode
, DT_code
, DT_veclen
,
92 DT_elt_zero_int
, DT_elt_one_int
, DT_elt_zero_wide
, DT_elt_zero_wide_safe
,
93 DT_veclen_ge
, DT_dup
, DT_pred
, DT_c_test
,
94 DT_accept_op
, DT_accept_insn
99 enum machine_mode mode
; /* Machine mode of node. */
100 RTX_CODE code
; /* Code to test. */
104 const char *name
; /* Predicate to call. */
105 int index
; /* Index into `preds' or -1. */
106 enum machine_mode mode
; /* Machine mode for node. */
109 const char *c_test
; /* Additional test to perform. */
110 int veclen
; /* Length of vector. */
111 int dup
; /* Number of operand to compare against. */
112 HOST_WIDE_INT intval
; /* Value for XINT for XWINT. */
113 int opno
; /* Operand number matched. */
116 int code_number
; /* Insn number matched. */
117 int lineno
; /* Line number of the insn. */
118 int num_clobbers_to_add
; /* Number of CLOBBERs to be added. */
123 /* Data structure for decision tree for recognizing legitimate insns. */
127 struct decision_head success
; /* Nodes to test on success. */
128 struct decision
*next
; /* Node to test on failure. */
129 struct decision
*prev
; /* Node whose failure tests us. */
130 struct decision
*afterward
; /* Node to test on success,
131 but failure of successor nodes. */
133 const char *position
; /* String denoting position in pattern. */
135 struct decision_test
*tests
; /* The tests for this node. */
137 int number
; /* Node number, used for labels */
138 int subroutine_number
; /* Number of subroutine this node starts */
139 int need_label
; /* Label needs to be output. */
142 #define SUBROUTINE_THRESHOLD 100
144 static int next_subroutine_number
;
146 /* We can write three types of subroutines: One for insn recognition,
147 one to split insns, and one for peephole-type optimizations. This
148 defines which type is being written. */
151 RECOG
, SPLIT
, PEEPHOLE2
154 #define IS_SPLIT(X) ((X) != RECOG)
156 /* Next available node number for tree nodes. */
158 static int next_number
;
160 /* Next number to use as an insn_code. */
162 static int next_insn_code
;
164 /* Similar, but counts all expressions in the MD file; used for
167 static int next_index
;
169 /* Record the highest depth we ever have so we know how many variables to
170 allocate in each subroutine we make. */
172 static int max_depth
;
174 /* The line number of the start of the pattern currently being processed. */
175 static int pattern_lineno
;
177 /* Count of errors. */
178 static int error_count
;
180 /* This table contains a list of the rtl codes that can possibly match a
181 predicate defined in recog.c. The function `maybe_both_true' uses it to
182 deduce that there are no expressions that can be matches by certain pairs
183 of tree nodes. Also, if a predicate can match only one code, we can
184 hardwire that code into the node testing the predicate. */
186 static const struct pred_table
188 const char *const name
;
189 const RTX_CODE codes
[NUM_RTX_CODE
];
191 {"general_operand", {CONST_INT
, CONST_DOUBLE
, CONST
, SYMBOL_REF
,
192 LABEL_REF
, SUBREG
, REG
, MEM
, ADDRESSOF
}},
193 #ifdef PREDICATE_CODES
196 {"address_operand", {CONST_INT
, CONST_DOUBLE
, CONST
, SYMBOL_REF
,
197 LABEL_REF
, SUBREG
, REG
, MEM
, ADDRESSOF
,
199 {"register_operand", {SUBREG
, REG
, ADDRESSOF
}},
200 {"pmode_register_operand", {SUBREG
, REG
, ADDRESSOF
}},
201 {"scratch_operand", {SCRATCH
, REG
}},
202 {"immediate_operand", {CONST_INT
, CONST_DOUBLE
, CONST
, SYMBOL_REF
,
204 {"const_int_operand", {CONST_INT
}},
205 {"const_double_operand", {CONST_INT
, CONST_DOUBLE
}},
206 {"nonimmediate_operand", {SUBREG
, REG
, MEM
, ADDRESSOF
}},
207 {"nonmemory_operand", {CONST_INT
, CONST_DOUBLE
, CONST
, SYMBOL_REF
,
208 LABEL_REF
, SUBREG
, REG
, ADDRESSOF
}},
209 {"push_operand", {MEM
}},
210 {"pop_operand", {MEM
}},
211 {"memory_operand", {SUBREG
, MEM
}},
212 {"indirect_operand", {SUBREG
, MEM
}},
213 {"comparison_operator", {EQ
, NE
, LE
, LT
, GE
, GT
, LEU
, LTU
, GEU
, GTU
,
214 UNORDERED
, ORDERED
, UNEQ
, UNGE
, UNGT
, UNLE
,
216 {"mode_independent_operand", {CONST_INT
, CONST_DOUBLE
, CONST
, SYMBOL_REF
,
217 LABEL_REF
, SUBREG
, REG
, MEM
, ADDRESSOF
}}
220 #define NUM_KNOWN_PREDS ARRAY_SIZE (preds)
222 static const char *const special_mode_pred_table
[] = {
223 #ifdef SPECIAL_MODE_PREDICATES
224 SPECIAL_MODE_PREDICATES
226 "pmode_register_operand"
229 #define NUM_SPECIAL_MODE_PREDS ARRAY_SIZE (special_mode_pred_table)
231 static struct decision
*new_decision
232 (const char *, struct decision_head
*);
233 static struct decision_test
*new_decision_test
234 (enum decision_type
, struct decision_test
***);
235 static rtx find_operand
237 static rtx find_matching_operand
239 static void validate_pattern
240 (rtx
, rtx
, rtx
, int);
241 static struct decision
*add_to_sequence
242 (rtx
, struct decision_head
*, const char *, enum routine_type
, int);
244 static int maybe_both_true_2
245 (struct decision_test
*, struct decision_test
*);
246 static int maybe_both_true_1
247 (struct decision_test
*, struct decision_test
*);
248 static int maybe_both_true
249 (struct decision
*, struct decision
*, int);
251 static int nodes_identical_1
252 (struct decision_test
*, struct decision_test
*);
253 static int nodes_identical
254 (struct decision
*, struct decision
*);
255 static void merge_accept_insn
256 (struct decision
*, struct decision
*);
257 static void merge_trees
258 (struct decision_head
*, struct decision_head
*);
260 static void factor_tests
261 (struct decision_head
*);
262 static void simplify_tests
263 (struct decision_head
*);
264 static int break_out_subroutines
265 (struct decision_head
*, int);
266 static void find_afterward
267 (struct decision_head
*, struct decision
*);
269 static void change_state
270 (const char *, const char *, struct decision
*, const char *);
271 static void print_code
273 static void write_afterward
274 (struct decision
*, struct decision
*, const char *);
275 static struct decision
*write_switch
276 (struct decision
*, int);
277 static void write_cond
278 (struct decision_test
*, int, enum routine_type
);
279 static void write_action
280 (struct decision
*, struct decision_test
*, int, int,
281 struct decision
*, enum routine_type
);
282 static int is_unconditional
283 (struct decision_test
*, enum routine_type
);
284 static int write_node
285 (struct decision
*, int, enum routine_type
);
286 static void write_tree_1
287 (struct decision_head
*, int, enum routine_type
);
288 static void write_tree
289 (struct decision_head
*, const char *, enum routine_type
, int);
290 static void write_subroutine
291 (struct decision_head
*, enum routine_type
);
292 static void write_subroutines
293 (struct decision_head
*, enum routine_type
);
294 static void write_header
297 static struct decision_head make_insn_sequence
298 (rtx
, enum routine_type
);
299 static void process_tree
300 (struct decision_head
*, enum routine_type
);
302 static void record_insn_name
305 static void debug_decision_0
306 (struct decision
*, int, int);
307 static void debug_decision_1
308 (struct decision
*, int);
309 static void debug_decision_2
310 (struct decision_test
*);
311 extern void debug_decision
313 extern void debug_decision_list
316 /* Create a new node in sequence after LAST. */
318 static struct decision
*
319 new_decision (const char *position
, struct decision_head
*last
)
322 = (struct decision
*) xmalloc (sizeof (struct decision
));
324 memset (new, 0, sizeof (*new));
325 new->success
= *last
;
326 new->position
= xstrdup (position
);
327 new->number
= next_number
++;
329 last
->first
= last
->last
= new;
333 /* Create a new test and link it in at PLACE. */
335 static struct decision_test
*
336 new_decision_test (enum decision_type type
, struct decision_test
***pplace
)
338 struct decision_test
**place
= *pplace
;
339 struct decision_test
*test
;
341 test
= (struct decision_test
*) xmalloc (sizeof (*test
));
352 /* Search for and return operand N. */
355 find_operand (rtx pattern
, int n
)
362 code
= GET_CODE (pattern
);
363 if ((code
== MATCH_SCRATCH
364 || code
== MATCH_INSN
365 || code
== MATCH_OPERAND
366 || code
== MATCH_OPERATOR
367 || code
== MATCH_PARALLEL
)
368 && XINT (pattern
, 0) == n
)
371 fmt
= GET_RTX_FORMAT (code
);
372 len
= GET_RTX_LENGTH (code
);
373 for (i
= 0; i
< len
; i
++)
378 if ((r
= find_operand (XEXP (pattern
, i
), n
)) != NULL_RTX
)
383 if (! XVEC (pattern
, i
))
388 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
389 if ((r
= find_operand (XVECEXP (pattern
, i
, j
), n
)) != NULL_RTX
)
393 case 'i': case 'w': case '0': case 's':
404 /* Search for and return operand M, such that it has a matching
405 constraint for operand N. */
408 find_matching_operand (rtx pattern
, int n
)
415 code
= GET_CODE (pattern
);
416 if (code
== MATCH_OPERAND
417 && (XSTR (pattern
, 2)[0] == '0' + n
418 || (XSTR (pattern
, 2)[0] == '%'
419 && XSTR (pattern
, 2)[1] == '0' + n
)))
422 fmt
= GET_RTX_FORMAT (code
);
423 len
= GET_RTX_LENGTH (code
);
424 for (i
= 0; i
< len
; i
++)
429 if ((r
= find_matching_operand (XEXP (pattern
, i
), n
)))
434 if (! XVEC (pattern
, i
))
439 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
440 if ((r
= find_matching_operand (XVECEXP (pattern
, i
, j
), n
)))
444 case 'i': case 'w': case '0': case 's':
456 /* Check for various errors in patterns. SET is nonnull for a destination,
457 and is the complete set pattern. SET_CODE is '=' for normal sets, and
458 '+' within a context that requires in-out constraints. */
461 validate_pattern (rtx pattern
, rtx insn
, rtx set
, int set_code
)
468 code
= GET_CODE (pattern
);
478 const char *pred_name
= XSTR (pattern
, 1);
479 int allows_non_lvalue
= 1, allows_non_const
= 1;
480 int special_mode_pred
= 0;
483 if (GET_CODE (insn
) == DEFINE_INSN
)
484 c_test
= XSTR (insn
, 2);
486 c_test
= XSTR (insn
, 1);
488 if (pred_name
[0] != 0)
490 for (i
= 0; i
< NUM_KNOWN_PREDS
; i
++)
491 if (! strcmp (preds
[i
].name
, pred_name
))
494 if (i
< NUM_KNOWN_PREDS
)
498 allows_non_lvalue
= allows_non_const
= 0;
499 for (j
= 0; preds
[i
].codes
[j
] != 0; j
++)
501 RTX_CODE c
= preds
[i
].codes
[j
];
508 && c
!= CONSTANT_P_RTX
)
509 allows_non_const
= 1;
517 && c
!= STRICT_LOW_PART
)
518 allows_non_lvalue
= 1;
523 #ifdef PREDICATE_CODES
524 /* If the port has a list of the predicates it uses but
526 message_with_line (pattern_lineno
,
527 "warning: `%s' not in PREDICATE_CODES",
532 for (i
= 0; i
< NUM_SPECIAL_MODE_PREDS
; ++i
)
533 if (strcmp (pred_name
, special_mode_pred_table
[i
]) == 0)
535 special_mode_pred
= 1;
540 if (code
== MATCH_OPERAND
)
542 const char constraints0
= XSTR (pattern
, 2)[0];
544 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
545 don't use the MATCH_OPERAND constraint, only the predicate.
546 This is confusing to folks doing new ports, so help them
547 not make the mistake. */
548 if (GET_CODE (insn
) == DEFINE_EXPAND
549 || GET_CODE (insn
) == DEFINE_SPLIT
550 || GET_CODE (insn
) == DEFINE_PEEPHOLE2
)
553 message_with_line (pattern_lineno
,
554 "warning: constraints not supported in %s",
555 rtx_name
[GET_CODE (insn
)]);
558 /* A MATCH_OPERAND that is a SET should have an output reload. */
559 else if (set
&& constraints0
)
563 if (constraints0
== '+')
565 /* If we've only got an output reload for this operand,
566 we'd better have a matching input operand. */
567 else if (constraints0
== '='
568 && find_matching_operand (insn
, XINT (pattern
, 0)))
572 message_with_line (pattern_lineno
,
573 "operand %d missing in-out reload",
578 else if (constraints0
!= '=' && constraints0
!= '+')
580 message_with_line (pattern_lineno
,
581 "operand %d missing output reload",
588 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
589 while not likely to occur at runtime, results in less efficient
590 code from insn-recog.c. */
592 && pred_name
[0] != '\0'
593 && allows_non_lvalue
)
595 message_with_line (pattern_lineno
,
596 "warning: destination operand %d allows non-lvalue",
600 /* A modeless MATCH_OPERAND can be handy when we can
601 check for multiple modes in the c_test. In most other cases,
602 it is a mistake. Only DEFINE_INSN is eligible, since SPLIT
603 and PEEP2 can FAIL within the output pattern. Exclude
604 address_operand, since its mode is related to the mode of
605 the memory not the operand. Exclude the SET_DEST of a call
606 instruction, as that is a common idiom. */
608 if (GET_MODE (pattern
) == VOIDmode
609 && code
== MATCH_OPERAND
610 && GET_CODE (insn
) == DEFINE_INSN
612 && ! special_mode_pred
613 && pred_name
[0] != '\0'
614 && strcmp (pred_name
, "address_operand") != 0
615 && strstr (c_test
, "operands") == NULL
617 && GET_CODE (set
) == SET
618 && GET_CODE (SET_SRC (set
)) == CALL
))
620 message_with_line (pattern_lineno
,
621 "warning: operand %d missing mode?",
629 enum machine_mode dmode
, smode
;
632 dest
= SET_DEST (pattern
);
633 src
= SET_SRC (pattern
);
635 /* STRICT_LOW_PART is a wrapper. Its argument is the real
636 destination, and it's mode should match the source. */
637 if (GET_CODE (dest
) == STRICT_LOW_PART
)
638 dest
= XEXP (dest
, 0);
640 /* Find the referant for a DUP. */
642 if (GET_CODE (dest
) == MATCH_DUP
643 || GET_CODE (dest
) == MATCH_OP_DUP
644 || GET_CODE (dest
) == MATCH_PAR_DUP
)
645 dest
= find_operand (insn
, XINT (dest
, 0));
647 if (GET_CODE (src
) == MATCH_DUP
648 || GET_CODE (src
) == MATCH_OP_DUP
649 || GET_CODE (src
) == MATCH_PAR_DUP
)
650 src
= find_operand (insn
, XINT (src
, 0));
652 dmode
= GET_MODE (dest
);
653 smode
= GET_MODE (src
);
655 /* The mode of an ADDRESS_OPERAND is the mode of the memory
656 reference, not the mode of the address. */
657 if (GET_CODE (src
) == MATCH_OPERAND
658 && ! strcmp (XSTR (src
, 1), "address_operand"))
661 /* The operands of a SET must have the same mode unless one
663 else if (dmode
!= VOIDmode
&& smode
!= VOIDmode
&& dmode
!= smode
)
665 message_with_line (pattern_lineno
,
666 "mode mismatch in set: %smode vs %smode",
667 GET_MODE_NAME (dmode
), GET_MODE_NAME (smode
));
671 /* If only one of the operands is VOIDmode, and PC or CC0 is
672 not involved, it's probably a mistake. */
673 else if (dmode
!= smode
674 && GET_CODE (dest
) != PC
675 && GET_CODE (dest
) != CC0
676 && GET_CODE (src
) != PC
677 && GET_CODE (src
) != CC0
678 && GET_CODE (src
) != CONST_INT
)
681 which
= (dmode
== VOIDmode
? "destination" : "source");
682 message_with_line (pattern_lineno
,
683 "warning: %s missing a mode?", which
);
686 if (dest
!= SET_DEST (pattern
))
687 validate_pattern (dest
, insn
, pattern
, '=');
688 validate_pattern (SET_DEST (pattern
), insn
, pattern
, '=');
689 validate_pattern (SET_SRC (pattern
), insn
, NULL_RTX
, 0);
694 validate_pattern (SET_DEST (pattern
), insn
, pattern
, '=');
698 validate_pattern (XEXP (pattern
, 0), insn
, set
, set
? '+' : 0);
699 validate_pattern (XEXP (pattern
, 1), insn
, NULL_RTX
, 0);
700 validate_pattern (XEXP (pattern
, 2), insn
, NULL_RTX
, 0);
703 case STRICT_LOW_PART
:
704 validate_pattern (XEXP (pattern
, 0), insn
, set
, set
? '+' : 0);
708 if (GET_MODE (XEXP (pattern
, 0)) != VOIDmode
)
710 message_with_line (pattern_lineno
,
711 "operand to label_ref %smode not VOIDmode",
712 GET_MODE_NAME (GET_MODE (XEXP (pattern
, 0))));
721 fmt
= GET_RTX_FORMAT (code
);
722 len
= GET_RTX_LENGTH (code
);
723 for (i
= 0; i
< len
; i
++)
728 validate_pattern (XEXP (pattern
, i
), insn
, NULL_RTX
, 0);
732 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
733 validate_pattern (XVECEXP (pattern
, i
, j
), insn
, NULL_RTX
, 0);
736 case 'i': case 'w': case '0': case 's':
745 /* Create a chain of nodes to verify that an rtl expression matches
748 LAST is a pointer to the listhead in the previous node in the chain (or
749 in the calling function, for the first node).
751 POSITION is the string representing the current position in the insn.
753 INSN_TYPE is the type of insn for which we are emitting code.
755 A pointer to the final node in the chain is returned. */
757 static struct decision
*
758 add_to_sequence (rtx pattern
, struct decision_head
*last
, const char *position
,
759 enum routine_type insn_type
, int top
)
762 struct decision
*this, *sub
;
763 struct decision_test
*test
;
764 struct decision_test
**place
;
768 int depth
= strlen (position
);
770 enum machine_mode mode
;
772 if (depth
> max_depth
)
775 subpos
= (char *) xmalloc (depth
+ 2);
776 strcpy (subpos
, position
);
777 subpos
[depth
+ 1] = 0;
779 sub
= this = new_decision (position
, last
);
780 place
= &this->tests
;
783 mode
= GET_MODE (pattern
);
784 code
= GET_CODE (pattern
);
789 /* Toplevel peephole pattern. */
790 if (insn_type
== PEEPHOLE2
&& top
)
792 /* We don't need the node we just created -- unlink it. */
793 last
->first
= last
->last
= NULL
;
795 for (i
= 0; i
< (size_t) XVECLEN (pattern
, 0); i
++)
797 /* Which insn we're looking at is represented by A-Z. We don't
798 ever use 'A', however; it is always implied. */
800 subpos
[depth
] = (i
> 0 ? 'A' + i
: 0);
801 sub
= add_to_sequence (XVECEXP (pattern
, 0, i
),
802 last
, subpos
, insn_type
, 0);
803 last
= &sub
->success
;
808 /* Else nothing special. */
812 /* The explicit patterns within a match_parallel enforce a minimum
813 length on the vector. The match_parallel predicate may allow
814 for more elements. We do need to check for this minimum here
815 or the code generated to match the internals may reference data
816 beyond the end of the vector. */
817 test
= new_decision_test (DT_veclen_ge
, &place
);
818 test
->u
.veclen
= XVECLEN (pattern
, 2);
826 const char *pred_name
;
827 RTX_CODE was_code
= code
;
828 int allows_const_int
= 1;
830 if (code
== MATCH_SCRATCH
)
832 pred_name
= "scratch_operand";
837 pred_name
= XSTR (pattern
, 1);
838 if (code
== MATCH_PARALLEL
)
844 if (pred_name
[0] != 0)
846 test
= new_decision_test (DT_pred
, &place
);
847 test
->u
.pred
.name
= pred_name
;
848 test
->u
.pred
.mode
= mode
;
850 /* See if we know about this predicate and save its number.
851 If we do, and it only accepts one code, note that fact.
853 If we know that the predicate does not allow CONST_INT,
854 we know that the only way the predicate can match is if
855 the modes match (here we use the kludge of relying on the
856 fact that "address_operand" accepts CONST_INT; otherwise,
857 it would have to be a special case), so we can test the
858 mode (but we need not). This fact should considerably
859 simplify the generated code. */
861 for (i
= 0; i
< NUM_KNOWN_PREDS
; i
++)
862 if (! strcmp (preds
[i
].name
, pred_name
))
865 if (i
< NUM_KNOWN_PREDS
)
869 test
->u
.pred
.index
= i
;
871 if (preds
[i
].codes
[1] == 0 && code
== UNKNOWN
)
872 code
= preds
[i
].codes
[0];
874 allows_const_int
= 0;
875 for (j
= 0; preds
[i
].codes
[j
] != 0; j
++)
876 if (preds
[i
].codes
[j
] == CONST_INT
)
878 allows_const_int
= 1;
883 test
->u
.pred
.index
= -1;
886 /* Can't enforce a mode if we allow const_int. */
887 if (allows_const_int
)
890 /* Accept the operand, ie. record it in `operands'. */
891 test
= new_decision_test (DT_accept_op
, &place
);
892 test
->u
.opno
= XINT (pattern
, 0);
894 if (was_code
== MATCH_OPERATOR
|| was_code
== MATCH_PARALLEL
)
896 char base
= (was_code
== MATCH_OPERATOR
? '0' : 'a');
897 for (i
= 0; i
< (size_t) XVECLEN (pattern
, 2); i
++)
899 subpos
[depth
] = i
+ base
;
900 sub
= add_to_sequence (XVECEXP (pattern
, 2, i
),
901 &sub
->success
, subpos
, insn_type
, 0);
910 test
= new_decision_test (DT_dup
, &place
);
911 test
->u
.dup
= XINT (pattern
, 0);
913 test
= new_decision_test (DT_accept_op
, &place
);
914 test
->u
.opno
= XINT (pattern
, 0);
916 for (i
= 0; i
< (size_t) XVECLEN (pattern
, 1); i
++)
918 subpos
[depth
] = i
+ '0';
919 sub
= add_to_sequence (XVECEXP (pattern
, 1, i
),
920 &sub
->success
, subpos
, insn_type
, 0);
928 test
= new_decision_test (DT_dup
, &place
);
929 test
->u
.dup
= XINT (pattern
, 0);
933 pattern
= XEXP (pattern
, 0);
940 fmt
= GET_RTX_FORMAT (code
);
941 len
= GET_RTX_LENGTH (code
);
943 /* Do tests against the current node first. */
944 for (i
= 0; i
< (size_t) len
; i
++)
950 test
= new_decision_test (DT_elt_zero_int
, &place
);
951 test
->u
.intval
= XINT (pattern
, i
);
955 test
= new_decision_test (DT_elt_one_int
, &place
);
956 test
->u
.intval
= XINT (pattern
, i
);
961 else if (fmt
[i
] == 'w')
963 /* If this value actually fits in an int, we can use a switch
964 statement here, so indicate that. */
965 enum decision_type type
966 = ((int) XWINT (pattern
, i
) == XWINT (pattern
, i
))
967 ? DT_elt_zero_wide_safe
: DT_elt_zero_wide
;
972 test
= new_decision_test (type
, &place
);
973 test
->u
.intval
= XWINT (pattern
, i
);
975 else if (fmt
[i
] == 'E')
980 test
= new_decision_test (DT_veclen
, &place
);
981 test
->u
.veclen
= XVECLEN (pattern
, i
);
985 /* Now test our sub-patterns. */
986 for (i
= 0; i
< (size_t) len
; i
++)
991 subpos
[depth
] = '0' + i
;
992 sub
= add_to_sequence (XEXP (pattern
, i
), &sub
->success
,
993 subpos
, insn_type
, 0);
999 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
1001 subpos
[depth
] = 'a' + j
;
1002 sub
= add_to_sequence (XVECEXP (pattern
, i
, j
),
1003 &sub
->success
, subpos
, insn_type
, 0);
1009 /* Handled above. */
1020 /* Insert nodes testing mode and code, if they're still relevant,
1021 before any of the nodes we may have added above. */
1022 if (code
!= UNKNOWN
)
1024 place
= &this->tests
;
1025 test
= new_decision_test (DT_code
, &place
);
1026 test
->u
.code
= code
;
1029 if (mode
!= VOIDmode
)
1031 place
= &this->tests
;
1032 test
= new_decision_test (DT_mode
, &place
);
1033 test
->u
.mode
= mode
;
1036 /* If we didn't insert any tests or accept nodes, hork. */
1037 if (this->tests
== NULL
)
1045 /* A subroutine of maybe_both_true; examines only one test.
1046 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1049 maybe_both_true_2 (struct decision_test
*d1
, struct decision_test
*d2
)
1051 if (d1
->type
== d2
->type
)
1056 return d1
->u
.mode
== d2
->u
.mode
;
1059 return d1
->u
.code
== d2
->u
.code
;
1062 return d1
->u
.veclen
== d2
->u
.veclen
;
1064 case DT_elt_zero_int
:
1065 case DT_elt_one_int
:
1066 case DT_elt_zero_wide
:
1067 case DT_elt_zero_wide_safe
:
1068 return d1
->u
.intval
== d2
->u
.intval
;
1075 /* If either has a predicate that we know something about, set
1076 things up so that D1 is the one that always has a known
1077 predicate. Then see if they have any codes in common. */
1079 if (d1
->type
== DT_pred
|| d2
->type
== DT_pred
)
1081 if (d2
->type
== DT_pred
)
1083 struct decision_test
*tmp
;
1084 tmp
= d1
, d1
= d2
, d2
= tmp
;
1087 /* If D2 tests a mode, see if it matches D1. */
1088 if (d1
->u
.pred
.mode
!= VOIDmode
)
1090 if (d2
->type
== DT_mode
)
1092 if (d1
->u
.pred
.mode
!= d2
->u
.mode
1093 /* The mode of an address_operand predicate is the
1094 mode of the memory, not the operand. It can only
1095 be used for testing the predicate, so we must
1097 && strcmp (d1
->u
.pred
.name
, "address_operand") != 0)
1100 /* Don't check two predicate modes here, because if both predicates
1101 accept CONST_INT, then both can still be true even if the modes
1102 are different. If they don't accept CONST_INT, there will be a
1103 separate DT_mode that will make maybe_both_true_1 return 0. */
1106 if (d1
->u
.pred
.index
>= 0)
1108 /* If D2 tests a code, see if it is in the list of valid
1109 codes for D1's predicate. */
1110 if (d2
->type
== DT_code
)
1112 const RTX_CODE
*c
= &preds
[d1
->u
.pred
.index
].codes
[0];
1115 if (*c
== d2
->u
.code
)
1123 /* Otherwise see if the predicates have any codes in common. */
1124 else if (d2
->type
== DT_pred
&& d2
->u
.pred
.index
>= 0)
1126 const RTX_CODE
*c1
= &preds
[d1
->u
.pred
.index
].codes
[0];
1129 while (*c1
!= 0 && !common
)
1131 const RTX_CODE
*c2
= &preds
[d2
->u
.pred
.index
].codes
[0];
1132 while (*c2
!= 0 && !common
)
1134 common
= (*c1
== *c2
);
1146 /* Tests vs veclen may be known when strict equality is involved. */
1147 if (d1
->type
== DT_veclen
&& d2
->type
== DT_veclen_ge
)
1148 return d1
->u
.veclen
>= d2
->u
.veclen
;
1149 if (d1
->type
== DT_veclen_ge
&& d2
->type
== DT_veclen
)
1150 return d2
->u
.veclen
>= d1
->u
.veclen
;
1155 /* A subroutine of maybe_both_true; examines all the tests for a given node.
1156 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1159 maybe_both_true_1 (struct decision_test
*d1
, struct decision_test
*d2
)
1161 struct decision_test
*t1
, *t2
;
1163 /* A match_operand with no predicate can match anything. Recognize
1164 this by the existence of a lone DT_accept_op test. */
1165 if (d1
->type
== DT_accept_op
|| d2
->type
== DT_accept_op
)
1168 /* Eliminate pairs of tests while they can exactly match. */
1169 while (d1
&& d2
&& d1
->type
== d2
->type
)
1171 if (maybe_both_true_2 (d1
, d2
) == 0)
1173 d1
= d1
->next
, d2
= d2
->next
;
1176 /* After that, consider all pairs. */
1177 for (t1
= d1
; t1
; t1
= t1
->next
)
1178 for (t2
= d2
; t2
; t2
= t2
->next
)
1179 if (maybe_both_true_2 (t1
, t2
) == 0)
1185 /* Return 0 if we can prove that there is no RTL that can match both
1186 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
1187 can match both or just that we couldn't prove there wasn't such an RTL).
1189 TOPLEVEL is nonzero if we are to only look at the top level and not
1190 recursively descend. */
1193 maybe_both_true (struct decision
*d1
, struct decision
*d2
,
1196 struct decision
*p1
, *p2
;
1199 /* Don't compare strings on the different positions in insn. Doing so
1200 is incorrect and results in false matches from constructs like
1202 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1203 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1205 [(set (match_operand:HI "register_operand" "r")
1206 (match_operand:HI "register_operand" "r"))]
1208 If we are presented with such, we are recursing through the remainder
1209 of a node's success nodes (from the loop at the end of this function).
1210 Skip forward until we come to a position that matches.
1212 Due to the way position strings are constructed, we know that iterating
1213 forward from the lexically lower position (e.g. "00") will run into
1214 the lexically higher position (e.g. "1") and not the other way around.
1215 This saves a bit of effort. */
1217 cmp
= strcmp (d1
->position
, d2
->position
);
1223 /* If the d2->position was lexically lower, swap. */
1225 p1
= d1
, d1
= d2
, d2
= p1
;
1227 if (d1
->success
.first
== 0)
1229 for (p1
= d1
->success
.first
; p1
; p1
= p1
->next
)
1230 if (maybe_both_true (p1
, d2
, 0))
1236 /* Test the current level. */
1237 cmp
= maybe_both_true_1 (d1
->tests
, d2
->tests
);
1241 /* We can't prove that D1 and D2 cannot both be true. If we are only
1242 to check the top level, return 1. Otherwise, see if we can prove
1243 that all choices in both successors are mutually exclusive. If
1244 either does not have any successors, we can't prove they can't both
1247 if (toplevel
|| d1
->success
.first
== 0 || d2
->success
.first
== 0)
1250 for (p1
= d1
->success
.first
; p1
; p1
= p1
->next
)
1251 for (p2
= d2
->success
.first
; p2
; p2
= p2
->next
)
1252 if (maybe_both_true (p1
, p2
, 0))
1258 /* A subroutine of nodes_identical. Examine two tests for equivalence. */
1261 nodes_identical_1 (struct decision_test
*d1
, struct decision_test
*d2
)
1266 return d1
->u
.mode
== d2
->u
.mode
;
1269 return d1
->u
.code
== d2
->u
.code
;
1272 return (d1
->u
.pred
.mode
== d2
->u
.pred
.mode
1273 && strcmp (d1
->u
.pred
.name
, d2
->u
.pred
.name
) == 0);
1276 return strcmp (d1
->u
.c_test
, d2
->u
.c_test
) == 0;
1280 return d1
->u
.veclen
== d2
->u
.veclen
;
1283 return d1
->u
.dup
== d2
->u
.dup
;
1285 case DT_elt_zero_int
:
1286 case DT_elt_one_int
:
1287 case DT_elt_zero_wide
:
1288 case DT_elt_zero_wide_safe
:
1289 return d1
->u
.intval
== d2
->u
.intval
;
1292 return d1
->u
.opno
== d2
->u
.opno
;
1294 case DT_accept_insn
:
1295 /* Differences will be handled in merge_accept_insn. */
1303 /* True iff the two nodes are identical (on one level only). Due
1304 to the way these lists are constructed, we shouldn't have to
1305 consider different orderings on the tests. */
1308 nodes_identical (struct decision
*d1
, struct decision
*d2
)
1310 struct decision_test
*t1
, *t2
;
1312 for (t1
= d1
->tests
, t2
= d2
->tests
; t1
&& t2
; t1
= t1
->next
, t2
= t2
->next
)
1314 if (t1
->type
!= t2
->type
)
1316 if (! nodes_identical_1 (t1
, t2
))
1320 /* For success, they should now both be null. */
1324 /* Check that their subnodes are at the same position, as any one set
1325 of sibling decisions must be at the same position. Allowing this
1326 requires complications to find_afterward and when change_state is
1328 if (d1
->success
.first
1329 && d2
->success
.first
1330 && strcmp (d1
->success
.first
->position
, d2
->success
.first
->position
))
1336 /* A subroutine of merge_trees; given two nodes that have been declared
1337 identical, cope with two insn accept states. If they differ in the
1338 number of clobbers, then the conflict was created by make_insn_sequence
1339 and we can drop the with-clobbers version on the floor. If both
1340 nodes have no additional clobbers, we have found an ambiguity in the
1341 source machine description. */
1344 merge_accept_insn (struct decision
*oldd
, struct decision
*addd
)
1346 struct decision_test
*old
, *add
;
1348 for (old
= oldd
->tests
; old
; old
= old
->next
)
1349 if (old
->type
== DT_accept_insn
)
1354 for (add
= addd
->tests
; add
; add
= add
->next
)
1355 if (add
->type
== DT_accept_insn
)
1360 /* If one node is for a normal insn and the second is for the base
1361 insn with clobbers stripped off, the second node should be ignored. */
1363 if (old
->u
.insn
.num_clobbers_to_add
== 0
1364 && add
->u
.insn
.num_clobbers_to_add
> 0)
1366 /* Nothing to do here. */
1368 else if (old
->u
.insn
.num_clobbers_to_add
> 0
1369 && add
->u
.insn
.num_clobbers_to_add
== 0)
1371 /* In this case, replace OLD with ADD. */
1372 old
->u
.insn
= add
->u
.insn
;
1376 message_with_line (add
->u
.insn
.lineno
, "`%s' matches `%s'",
1377 get_insn_name (add
->u
.insn
.code_number
),
1378 get_insn_name (old
->u
.insn
.code_number
));
1379 message_with_line (old
->u
.insn
.lineno
, "previous definition of `%s'",
1380 get_insn_name (old
->u
.insn
.code_number
));
1385 /* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1388 merge_trees (struct decision_head
*oldh
, struct decision_head
*addh
)
1390 struct decision
*next
, *add
;
1392 if (addh
->first
== 0)
1394 if (oldh
->first
== 0)
1400 /* Trying to merge bits at different positions isn't possible. */
1401 if (strcmp (oldh
->first
->position
, addh
->first
->position
))
1404 for (add
= addh
->first
; add
; add
= next
)
1406 struct decision
*old
, *insert_before
= NULL
;
1410 /* The semantics of pattern matching state that the tests are
1411 done in the order given in the MD file so that if an insn
1412 matches two patterns, the first one will be used. However,
1413 in practice, most, if not all, patterns are unambiguous so
1414 that their order is independent. In that case, we can merge
1415 identical tests and group all similar modes and codes together.
1417 Scan starting from the end of OLDH until we reach a point
1418 where we reach the head of the list or where we pass a
1419 pattern that could also be true if NEW is true. If we find
1420 an identical pattern, we can merge them. Also, record the
1421 last node that tests the same code and mode and the last one
1422 that tests just the same mode.
1424 If we have no match, place NEW after the closest match we found. */
1426 for (old
= oldh
->last
; old
; old
= old
->prev
)
1428 if (nodes_identical (old
, add
))
1430 merge_accept_insn (old
, add
);
1431 merge_trees (&old
->success
, &add
->success
);
1435 if (maybe_both_true (old
, add
, 0))
1438 /* Insert the nodes in DT test type order, which is roughly
1439 how expensive/important the test is. Given that the tests
1440 are also ordered within the list, examining the first is
1442 if ((int) add
->tests
->type
< (int) old
->tests
->type
)
1443 insert_before
= old
;
1446 if (insert_before
== NULL
)
1449 add
->prev
= oldh
->last
;
1450 oldh
->last
->next
= add
;
1455 if ((add
->prev
= insert_before
->prev
) != NULL
)
1456 add
->prev
->next
= add
;
1459 add
->next
= insert_before
;
1460 insert_before
->prev
= add
;
1467 /* Walk the tree looking for sub-nodes that perform common tests.
1468 Factor out the common test into a new node. This enables us
1469 (depending on the test type) to emit switch statements later. */
1472 factor_tests (struct decision_head
*head
)
1474 struct decision
*first
, *next
;
1476 for (first
= head
->first
; first
&& first
->next
; first
= next
)
1478 enum decision_type type
;
1479 struct decision
*new, *old_last
;
1481 type
= first
->tests
->type
;
1484 /* Want at least two compatible sequential nodes. */
1485 if (next
->tests
->type
!= type
)
1488 /* Don't want all node types, just those we can turn into
1489 switch statements. */
1492 && type
!= DT_veclen
1493 && type
!= DT_elt_zero_int
1494 && type
!= DT_elt_one_int
1495 && type
!= DT_elt_zero_wide_safe
)
1498 /* If we'd been performing more than one test, create a new node
1499 below our first test. */
1500 if (first
->tests
->next
!= NULL
)
1502 new = new_decision (first
->position
, &first
->success
);
1503 new->tests
= first
->tests
->next
;
1504 first
->tests
->next
= NULL
;
1507 /* Crop the node tree off after our first test. */
1509 old_last
= head
->last
;
1512 /* For each compatible test, adjust to perform only one test in
1513 the top level node, then merge the node back into the tree. */
1516 struct decision_head h
;
1518 if (next
->tests
->next
!= NULL
)
1520 new = new_decision (next
->position
, &next
->success
);
1521 new->tests
= next
->tests
->next
;
1522 next
->tests
->next
= NULL
;
1527 h
.first
= h
.last
= new;
1529 merge_trees (head
, &h
);
1531 while (next
&& next
->tests
->type
== type
);
1533 /* After we run out of compatible tests, graft the remaining nodes
1534 back onto the tree. */
1537 next
->prev
= head
->last
;
1538 head
->last
->next
= next
;
1539 head
->last
= old_last
;
1544 for (first
= head
->first
; first
; first
= first
->next
)
1545 factor_tests (&first
->success
);
1548 /* After factoring, try to simplify the tests on any one node.
1549 Tests that are useful for switch statements are recognizable
1550 by having only a single test on a node -- we'll be manipulating
1551 nodes with multiple tests:
1553 If we have mode tests or code tests that are redundant with
1554 predicates, remove them. */
1557 simplify_tests (struct decision_head
*head
)
1559 struct decision
*tree
;
1561 for (tree
= head
->first
; tree
; tree
= tree
->next
)
1563 struct decision_test
*a
, *b
;
1570 /* Find a predicate node. */
1571 while (b
&& b
->type
!= DT_pred
)
1575 /* Due to how these tests are constructed, we don't even need
1576 to check that the mode and code are compatible -- they were
1577 generated from the predicate in the first place. */
1578 while (a
->type
== DT_mode
|| a
->type
== DT_code
)
1585 for (tree
= head
->first
; tree
; tree
= tree
->next
)
1586 simplify_tests (&tree
->success
);
1589 /* Count the number of subnodes of HEAD. If the number is high enough,
1590 make the first node in HEAD start a separate subroutine in the C code
1591 that is generated. */
1594 break_out_subroutines (struct decision_head
*head
, int initial
)
1597 struct decision
*sub
;
1599 for (sub
= head
->first
; sub
; sub
= sub
->next
)
1600 size
+= 1 + break_out_subroutines (&sub
->success
, 0);
1602 if (size
> SUBROUTINE_THRESHOLD
&& ! initial
)
1604 head
->first
->subroutine_number
= ++next_subroutine_number
;
1610 /* For each node p, find the next alternative that might be true
1614 find_afterward (struct decision_head
*head
, struct decision
*real_afterward
)
1616 struct decision
*p
, *q
, *afterward
;
1618 /* We can't propagate alternatives across subroutine boundaries.
1619 This is not incorrect, merely a minor optimization loss. */
1622 afterward
= (p
->subroutine_number
> 0 ? NULL
: real_afterward
);
1624 for ( ; p
; p
= p
->next
)
1626 /* Find the next node that might be true if this one fails. */
1627 for (q
= p
->next
; q
; q
= q
->next
)
1628 if (maybe_both_true (p
, q
, 1))
1631 /* If we reached the end of the list without finding one,
1632 use the incoming afterward position. */
1641 for (p
= head
->first
; p
; p
= p
->next
)
1642 if (p
->success
.first
)
1643 find_afterward (&p
->success
, p
->afterward
);
1645 /* When we are generating a subroutine, record the real afterward
1646 position in the first node where write_tree can find it, and we
1647 can do the right thing at the subroutine call site. */
1649 if (p
->subroutine_number
> 0)
1650 p
->afterward
= real_afterward
;
1653 /* Assuming that the state of argument is denoted by OLDPOS, take whatever
1654 actions are necessary to move to NEWPOS. If we fail to move to the
1655 new state, branch to node AFTERWARD if nonzero, otherwise return.
1657 Failure to move to the new state can only occur if we are trying to
1658 match multiple insns and we try to step past the end of the stream. */
1661 change_state (const char *oldpos
, const char *newpos
,
1662 struct decision
*afterward
, const char *indent
)
1664 int odepth
= strlen (oldpos
);
1665 int ndepth
= strlen (newpos
);
1667 int old_has_insn
, new_has_insn
;
1669 /* Pop up as many levels as necessary. */
1670 for (depth
= odepth
; strncmp (oldpos
, newpos
, depth
) != 0; --depth
)
1673 /* Hunt for the last [A-Z] in both strings. */
1674 for (old_has_insn
= odepth
- 1; old_has_insn
>= 0; --old_has_insn
)
1675 if (ISUPPER (oldpos
[old_has_insn
]))
1677 for (new_has_insn
= ndepth
- 1; new_has_insn
>= 0; --new_has_insn
)
1678 if (ISUPPER (newpos
[new_has_insn
]))
1681 /* Go down to desired level. */
1682 while (depth
< ndepth
)
1684 /* It's a different insn from the first one. */
1685 if (ISUPPER (newpos
[depth
]))
1687 /* We can only fail if we're moving down the tree. */
1688 if (old_has_insn
>= 0 && oldpos
[old_has_insn
] >= newpos
[depth
])
1690 printf ("%stem = peep2_next_insn (%d);\n",
1691 indent
, newpos
[depth
] - 'A');
1695 printf ("%stem = peep2_next_insn (%d);\n",
1696 indent
, newpos
[depth
] - 'A');
1697 printf ("%sif (tem == NULL_RTX)\n", indent
);
1699 printf ("%s goto L%d;\n", indent
, afterward
->number
);
1701 printf ("%s goto ret0;\n", indent
);
1703 printf ("%sx%d = PATTERN (tem);\n", indent
, depth
+ 1);
1705 else if (ISLOWER (newpos
[depth
]))
1706 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1707 indent
, depth
+ 1, depth
, newpos
[depth
] - 'a');
1709 printf ("%sx%d = XEXP (x%d, %c);\n",
1710 indent
, depth
+ 1, depth
, newpos
[depth
]);
1715 /* Print the enumerator constant for CODE -- the upcase version of
1719 print_code (enum rtx_code code
)
1722 for (p
= GET_RTX_NAME (code
); *p
; p
++)
1723 putchar (TOUPPER (*p
));
1726 /* Emit code to cross an afterward link -- change state and branch. */
1729 write_afterward (struct decision
*start
, struct decision
*afterward
,
1732 if (!afterward
|| start
->subroutine_number
> 0)
1733 printf("%sgoto ret0;\n", indent
);
1736 change_state (start
->position
, afterward
->position
, NULL
, indent
);
1737 printf ("%sgoto L%d;\n", indent
, afterward
->number
);
1741 /* Emit a switch statement, if possible, for an initial sequence of
1742 nodes at START. Return the first node yet untested. */
1744 static struct decision
*
1745 write_switch (struct decision
*start
, int depth
)
1747 struct decision
*p
= start
;
1748 enum decision_type type
= p
->tests
->type
;
1749 struct decision
*needs_label
= NULL
;
1751 /* If we have two or more nodes in sequence that test the same one
1752 thing, we may be able to use a switch statement. */
1756 || p
->next
->tests
->type
!= type
1757 || p
->next
->tests
->next
1758 || nodes_identical_1 (p
->tests
, p
->next
->tests
))
1761 /* DT_code is special in that we can do interesting things with
1762 known predicates at the same time. */
1763 if (type
== DT_code
)
1765 char codemap
[NUM_RTX_CODE
];
1766 struct decision
*ret
;
1769 memset (codemap
, 0, sizeof(codemap
));
1771 printf (" switch (GET_CODE (x%d))\n {\n", depth
);
1772 code
= p
->tests
->u
.code
;
1775 if (p
!= start
&& p
->need_label
&& needs_label
== NULL
)
1780 printf (":\n goto L%d;\n", p
->success
.first
->number
);
1781 p
->success
.first
->need_label
= 1;
1788 && p
->tests
->type
== DT_code
1789 && ! codemap
[code
= p
->tests
->u
.code
]);
1791 /* If P is testing a predicate that we know about and we haven't
1792 seen any of the codes that are valid for the predicate, we can
1793 write a series of "case" statement, one for each possible code.
1794 Since we are already in a switch, these redundant tests are very
1795 cheap and will reduce the number of predicates called. */
1797 /* Note that while we write out cases for these predicates here,
1798 we don't actually write the test here, as it gets kinda messy.
1799 It is trivial to leave this to later by telling our caller that
1800 we only processed the CODE tests. */
1801 if (needs_label
!= NULL
)
1806 while (p
&& p
->tests
->type
== DT_pred
1807 && p
->tests
->u
.pred
.index
>= 0)
1811 for (c
= &preds
[p
->tests
->u
.pred
.index
].codes
[0]; *c
; ++c
)
1812 if (codemap
[(int) *c
] != 0)
1815 for (c
= &preds
[p
->tests
->u
.pred
.index
].codes
[0]; *c
; ++c
)
1820 codemap
[(int) *c
] = 1;
1823 printf (" goto L%d;\n", p
->number
);
1829 /* Make the default case skip the predicates we managed to match. */
1831 printf (" default:\n");
1836 printf (" goto L%d;\n", p
->number
);
1840 write_afterward (start
, start
->afterward
, " ");
1843 printf (" break;\n");
1848 else if (type
== DT_mode
1849 || type
== DT_veclen
1850 || type
== DT_elt_zero_int
1851 || type
== DT_elt_one_int
1852 || type
== DT_elt_zero_wide_safe
)
1854 const char *indent
= "";
1856 /* We cast switch parameter to integer, so we must ensure that the value
1858 if (type
== DT_elt_zero_wide_safe
)
1861 printf(" if ((int) XWINT (x%d, 0) == XWINT (x%d, 0))\n", depth
, depth
);
1863 printf ("%s switch (", indent
);
1867 printf ("GET_MODE (x%d)", depth
);
1870 printf ("XVECLEN (x%d, 0)", depth
);
1872 case DT_elt_zero_int
:
1873 printf ("XINT (x%d, 0)", depth
);
1875 case DT_elt_one_int
:
1876 printf ("XINT (x%d, 1)", depth
);
1878 case DT_elt_zero_wide_safe
:
1879 /* Convert result of XWINT to int for portability since some C
1880 compilers won't do it and some will. */
1881 printf ("(int) XWINT (x%d, 0)", depth
);
1886 printf (")\n%s {\n", indent
);
1890 /* Merge trees will not unify identical nodes if their
1891 sub-nodes are at different levels. Thus we must check
1892 for duplicate cases. */
1894 for (q
= start
; q
!= p
; q
= q
->next
)
1895 if (nodes_identical_1 (p
->tests
, q
->tests
))
1898 if (p
!= start
&& p
->need_label
&& needs_label
== NULL
)
1901 printf ("%s case ", indent
);
1905 printf ("%smode", GET_MODE_NAME (p
->tests
->u
.mode
));
1908 printf ("%d", p
->tests
->u
.veclen
);
1910 case DT_elt_zero_int
:
1911 case DT_elt_one_int
:
1912 case DT_elt_zero_wide
:
1913 case DT_elt_zero_wide_safe
:
1914 printf (HOST_WIDE_INT_PRINT_DEC_C
, p
->tests
->u
.intval
);
1919 printf (":\n%s goto L%d;\n", indent
, p
->success
.first
->number
);
1920 p
->success
.first
->need_label
= 1;
1924 while (p
&& p
->tests
->type
== type
&& !p
->tests
->next
);
1927 printf ("%s default:\n%s break;\n%s }\n",
1928 indent
, indent
, indent
);
1930 return needs_label
!= NULL
? needs_label
: p
;
1934 /* None of the other tests are amenable. */
1939 /* Emit code for one test. */
1942 write_cond (struct decision_test
*p
, int depth
,
1943 enum routine_type subroutine_type
)
1948 printf ("GET_MODE (x%d) == %smode", depth
, GET_MODE_NAME (p
->u
.mode
));
1952 printf ("GET_CODE (x%d) == ", depth
);
1953 print_code (p
->u
.code
);
1957 printf ("XVECLEN (x%d, 0) == %d", depth
, p
->u
.veclen
);
1960 case DT_elt_zero_int
:
1961 printf ("XINT (x%d, 0) == %d", depth
, (int) p
->u
.intval
);
1964 case DT_elt_one_int
:
1965 printf ("XINT (x%d, 1) == %d", depth
, (int) p
->u
.intval
);
1968 case DT_elt_zero_wide
:
1969 case DT_elt_zero_wide_safe
:
1970 printf ("XWINT (x%d, 0) == ", depth
);
1971 printf (HOST_WIDE_INT_PRINT_DEC_C
, p
->u
.intval
);
1975 printf ("XVECLEN (x%d, 0) >= %d", depth
, p
->u
.veclen
);
1979 printf ("rtx_equal_p (x%d, operands[%d])", depth
, p
->u
.dup
);
1983 printf ("%s (x%d, %smode)", p
->u
.pred
.name
, depth
,
1984 GET_MODE_NAME (p
->u
.pred
.mode
));
1988 printf ("(%s)", p
->u
.c_test
);
1991 case DT_accept_insn
:
1992 switch (subroutine_type
)
1995 if (p
->u
.insn
.num_clobbers_to_add
== 0)
1997 printf ("pnum_clobbers != NULL");
2010 /* Emit code for one action. The previous tests have succeeded;
2011 TEST is the last of the chain. In the normal case we simply
2012 perform a state change. For the `accept' tests we must do more work. */
2015 write_action (struct decision
*p
, struct decision_test
*test
,
2016 int depth
, int uncond
, struct decision
*success
,
2017 enum routine_type subroutine_type
)
2024 else if (test
->type
== DT_accept_op
|| test
->type
== DT_accept_insn
)
2026 fputs (" {\n", stdout
);
2033 if (test
->type
== DT_accept_op
)
2035 printf("%soperands[%d] = x%d;\n", indent
, test
->u
.opno
, depth
);
2037 /* Only allow DT_accept_insn to follow. */
2041 if (test
->type
!= DT_accept_insn
)
2046 /* Sanity check that we're now at the end of the list of tests. */
2050 if (test
->type
== DT_accept_insn
)
2052 switch (subroutine_type
)
2055 if (test
->u
.insn
.num_clobbers_to_add
!= 0)
2056 printf ("%s*pnum_clobbers = %d;\n",
2057 indent
, test
->u
.insn
.num_clobbers_to_add
);
2058 printf ("%sreturn %d;\n", indent
, test
->u
.insn
.code_number
);
2062 printf ("%sreturn gen_split_%d (operands);\n",
2063 indent
, test
->u
.insn
.code_number
);
2068 int match_len
= 0, i
;
2070 for (i
= strlen (p
->position
) - 1; i
>= 0; --i
)
2071 if (ISUPPER (p
->position
[i
]))
2073 match_len
= p
->position
[i
] - 'A';
2076 printf ("%s*_pmatch_len = %d;\n", indent
, match_len
);
2077 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
2078 indent
, test
->u
.insn
.code_number
);
2079 printf ("%sif (tem != 0)\n%s return tem;\n", indent
, indent
);
2089 printf("%sgoto L%d;\n", indent
, success
->number
);
2090 success
->need_label
= 1;
2094 fputs (" }\n", stdout
);
2097 /* Return 1 if the test is always true and has no fallthru path. Return -1
2098 if the test does have a fallthru path, but requires that the condition be
2099 terminated. Otherwise return 0 for a normal test. */
2100 /* ??? is_unconditional is a stupid name for a tri-state function. */
2103 is_unconditional (struct decision_test
*t
, enum routine_type subroutine_type
)
2105 if (t
->type
== DT_accept_op
)
2108 if (t
->type
== DT_accept_insn
)
2110 switch (subroutine_type
)
2113 return (t
->u
.insn
.num_clobbers_to_add
== 0);
2126 /* Emit code for one node -- the conditional and the accompanying action.
2127 Return true if there is no fallthru path. */
2130 write_node (struct decision
*p
, int depth
,
2131 enum routine_type subroutine_type
)
2133 struct decision_test
*test
, *last_test
;
2136 last_test
= test
= p
->tests
;
2137 uncond
= is_unconditional (test
, subroutine_type
);
2141 write_cond (test
, depth
, subroutine_type
);
2143 while ((test
= test
->next
) != NULL
)
2148 uncond2
= is_unconditional (test
, subroutine_type
);
2153 write_cond (test
, depth
, subroutine_type
);
2159 write_action (p
, last_test
, depth
, uncond
, p
->success
.first
, subroutine_type
);
2164 /* Emit code for all of the sibling nodes of HEAD. */
2167 write_tree_1 (struct decision_head
*head
, int depth
,
2168 enum routine_type subroutine_type
)
2170 struct decision
*p
, *next
;
2173 for (p
= head
->first
; p
; p
= next
)
2175 /* The label for the first element was printed in write_tree. */
2176 if (p
!= head
->first
&& p
->need_label
)
2177 OUTPUT_LABEL (" ", p
->number
);
2179 /* Attempt to write a switch statement for a whole sequence. */
2180 next
= write_switch (p
, depth
);
2185 /* Failed -- fall back and write one node. */
2186 uncond
= write_node (p
, depth
, subroutine_type
);
2191 /* Finished with this chain. Close a fallthru path by branching
2192 to the afterward node. */
2194 write_afterward (head
->last
, head
->last
->afterward
, " ");
2197 /* Write out the decision tree starting at HEAD. PREVPOS is the
2198 position at the node that branched to this node. */
2201 write_tree (struct decision_head
*head
, const char *prevpos
,
2202 enum routine_type type
, int initial
)
2204 struct decision
*p
= head
->first
;
2208 OUTPUT_LABEL (" ", p
->number
);
2210 if (! initial
&& p
->subroutine_number
> 0)
2212 static const char * const name_prefix
[] = {
2213 "recog", "split", "peephole2"
2216 static const char * const call_suffix
[] = {
2217 ", pnum_clobbers", "", ", _pmatch_len"
2220 /* This node has been broken out into a separate subroutine.
2221 Call it, test the result, and branch accordingly. */
2225 printf (" tem = %s_%d (x0, insn%s);\n",
2226 name_prefix
[type
], p
->subroutine_number
, call_suffix
[type
]);
2227 if (IS_SPLIT (type
))
2228 printf (" if (tem != 0)\n return tem;\n");
2230 printf (" if (tem >= 0)\n return tem;\n");
2232 change_state (p
->position
, p
->afterward
->position
, NULL
, " ");
2233 printf (" goto L%d;\n", p
->afterward
->number
);
2237 printf (" return %s_%d (x0, insn%s);\n",
2238 name_prefix
[type
], p
->subroutine_number
, call_suffix
[type
]);
2243 int depth
= strlen (p
->position
);
2245 change_state (prevpos
, p
->position
, head
->last
->afterward
, " ");
2246 write_tree_1 (head
, depth
, type
);
2248 for (p
= head
->first
; p
; p
= p
->next
)
2249 if (p
->success
.first
)
2250 write_tree (&p
->success
, p
->position
, type
, 0);
2254 /* Write out a subroutine of type TYPE to do comparisons starting at
2258 write_subroutine (struct decision_head
*head
, enum routine_type type
)
2260 int subfunction
= head
->first
? head
->first
->subroutine_number
: 0;
2265 s_or_e
= subfunction
? "static " : "";
2268 sprintf (extension
, "_%d", subfunction
);
2269 else if (type
== RECOG
)
2270 extension
[0] = '\0';
2272 strcpy (extension
, "_insns");
2277 printf ("%sint recog%s (rtx, rtx, int *);\n", s_or_e
, extension
);
2279 recog%s (x0, insn, pnum_clobbers)\n\
2280 rtx x0 ATTRIBUTE_UNUSED;\n\
2281 rtx insn ATTRIBUTE_UNUSED;\n\
2282 int *pnum_clobbers ATTRIBUTE_UNUSED;\n", s_or_e
, extension
);
2285 printf ("%srtx split%s (rtx, rtx);\n", s_or_e
, extension
);
2287 split%s (x0, insn)\n\
2288 rtx x0 ATTRIBUTE_UNUSED;\n\
2289 rtx insn ATTRIBUTE_UNUSED;\n", s_or_e
, extension
);
2292 printf ("%srtx peephole2%s (rtx, rtx, int *);\n",
2295 peephole2%s (x0, insn, _pmatch_len)\n\
2296 rtx x0 ATTRIBUTE_UNUSED;\n\
2297 rtx insn ATTRIBUTE_UNUSED;\n\
2298 int *_pmatch_len ATTRIBUTE_UNUSED;\n", s_or_e
, extension
);
2302 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
2303 for (i
= 1; i
<= max_depth
; i
++)
2304 printf (" rtx x%d ATTRIBUTE_UNUSED;\n", i
);
2306 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type
) ? "rtx" : "int");
2309 printf (" recog_data.insn = NULL_RTX;\n");
2312 write_tree (head
, "", type
, 1);
2314 printf (" goto ret0;\n");
2316 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type
) ? 0 : -1);
2319 /* In break_out_subroutines, we discovered the boundaries for the
2320 subroutines, but did not write them out. Do so now. */
2323 write_subroutines (struct decision_head
*head
, enum routine_type type
)
2327 for (p
= head
->first
; p
; p
= p
->next
)
2328 if (p
->success
.first
)
2329 write_subroutines (&p
->success
, type
);
2331 if (head
->first
->subroutine_number
> 0)
2332 write_subroutine (head
, type
);
2335 /* Begin the output file. */
2341 /* Generated automatically by the program `genrecog' from the target\n\
2342 machine description file. */\n\
2344 #include \"config.h\"\n\
2345 #include \"system.h\"\n\
2346 #include \"coretypes.h\"\n\
2347 #include \"tm.h\"\n\
2348 #include \"rtl.h\"\n\
2349 #include \"tm_p.h\"\n\
2350 #include \"function.h\"\n\
2351 #include \"insn-config.h\"\n\
2352 #include \"recog.h\"\n\
2353 #include \"real.h\"\n\
2354 #include \"output.h\"\n\
2355 #include \"flags.h\"\n\
2356 #include \"hard-reg-set.h\"\n\
2357 #include \"resource.h\"\n\
2358 #include \"toplev.h\"\n\
2359 #include \"reload.h\"\n\
2363 /* `recog' contains a decision tree that recognizes whether the rtx\n\
2364 X0 is a valid instruction.\n\
2366 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2367 returns a nonnegative number which is the insn code number for the\n\
2368 pattern that matched. This is the same as the order in the machine\n\
2369 description of the entry that matched. This number can be used as an\n\
2370 index into `insn_data' and other tables.\n");
2372 The third argument to recog is an optional pointer to an int. If\n\
2373 present, recog will accept a pattern if it matches except for missing\n\
2374 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2375 the optional pointer will be set to the number of CLOBBERs that need\n\
2376 to be added (it should be initialized to zero by the caller). If it");
2378 is set nonzero, the caller should allocate a PARALLEL of the\n\
2379 appropriate size, copy the initial entries, and call add_clobbers\n\
2380 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2384 The function split_insns returns 0 if the rtl could not\n\
2385 be split or the split rtl as an INSN list if it can be.\n\
2387 The function peephole2_insns returns 0 if the rtl could not\n\
2388 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
2389 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2394 /* Construct and return a sequence of decisions
2395 that will recognize INSN.
2397 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2399 static struct decision_head
2400 make_insn_sequence (rtx insn
, enum routine_type type
)
2403 const char *c_test
= XSTR (insn
, type
== RECOG
? 2 : 1);
2404 int truth
= maybe_eval_c_test (c_test
);
2405 struct decision
*last
;
2406 struct decision_test
*test
, **place
;
2407 struct decision_head head
;
2410 /* We should never see an insn whose C test is false at compile time. */
2414 record_insn_name (next_insn_code
, (type
== RECOG
? XSTR (insn
, 0) : NULL
));
2416 c_test_pos
[0] = '\0';
2417 if (type
== PEEPHOLE2
)
2421 /* peephole2 gets special treatment:
2422 - X always gets an outer parallel even if it's only one entry
2423 - we remove all traces of outer-level match_scratch and match_dup
2424 expressions here. */
2425 x
= rtx_alloc (PARALLEL
);
2426 PUT_MODE (x
, VOIDmode
);
2427 XVEC (x
, 0) = rtvec_alloc (XVECLEN (insn
, 0));
2428 for (i
= j
= 0; i
< XVECLEN (insn
, 0); i
++)
2430 rtx tmp
= XVECEXP (insn
, 0, i
);
2431 if (GET_CODE (tmp
) != MATCH_SCRATCH
&& GET_CODE (tmp
) != MATCH_DUP
)
2433 XVECEXP (x
, 0, j
) = tmp
;
2439 c_test_pos
[0] = 'A' + j
- 1;
2440 c_test_pos
[1] = '\0';
2442 else if (XVECLEN (insn
, type
== RECOG
) == 1)
2443 x
= XVECEXP (insn
, type
== RECOG
, 0);
2446 x
= rtx_alloc (PARALLEL
);
2447 XVEC (x
, 0) = XVEC (insn
, type
== RECOG
);
2448 PUT_MODE (x
, VOIDmode
);
2451 validate_pattern (x
, insn
, NULL_RTX
, 0);
2453 memset(&head
, 0, sizeof(head
));
2454 last
= add_to_sequence (x
, &head
, "", type
, 1);
2456 /* Find the end of the test chain on the last node. */
2457 for (test
= last
->tests
; test
->next
; test
= test
->next
)
2459 place
= &test
->next
;
2461 /* Skip the C test if it's known to be true at compile time. */
2464 /* Need a new node if we have another test to add. */
2465 if (test
->type
== DT_accept_op
)
2467 last
= new_decision (c_test_pos
, &last
->success
);
2468 place
= &last
->tests
;
2470 test
= new_decision_test (DT_c_test
, &place
);
2471 test
->u
.c_test
= c_test
;
2474 test
= new_decision_test (DT_accept_insn
, &place
);
2475 test
->u
.insn
.code_number
= next_insn_code
;
2476 test
->u
.insn
.lineno
= pattern_lineno
;
2477 test
->u
.insn
.num_clobbers_to_add
= 0;
2482 /* If this is an DEFINE_INSN and X is a PARALLEL, see if it ends
2483 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2484 If so, set up to recognize the pattern without these CLOBBERs. */
2486 if (GET_CODE (x
) == PARALLEL
)
2490 /* Find the last non-clobber in the parallel. */
2491 for (i
= XVECLEN (x
, 0); i
> 0; i
--)
2493 rtx y
= XVECEXP (x
, 0, i
- 1);
2494 if (GET_CODE (y
) != CLOBBER
2495 || (GET_CODE (XEXP (y
, 0)) != REG
2496 && GET_CODE (XEXP (y
, 0)) != MATCH_SCRATCH
))
2500 if (i
!= XVECLEN (x
, 0))
2503 struct decision_head clobber_head
;
2505 /* Build a similar insn without the clobbers. */
2507 new = XVECEXP (x
, 0, 0);
2512 new = rtx_alloc (PARALLEL
);
2513 XVEC (new, 0) = rtvec_alloc (i
);
2514 for (j
= i
- 1; j
>= 0; j
--)
2515 XVECEXP (new, 0, j
) = XVECEXP (x
, 0, j
);
2519 memset (&clobber_head
, 0, sizeof(clobber_head
));
2520 last
= add_to_sequence (new, &clobber_head
, "", type
, 1);
2522 /* Find the end of the test chain on the last node. */
2523 for (test
= last
->tests
; test
->next
; test
= test
->next
)
2526 /* We definitely have a new test to add -- create a new
2528 place
= &test
->next
;
2529 if (test
->type
== DT_accept_op
)
2531 last
= new_decision ("", &last
->success
);
2532 place
= &last
->tests
;
2535 /* Skip the C test if it's known to be true at compile
2539 test
= new_decision_test (DT_c_test
, &place
);
2540 test
->u
.c_test
= c_test
;
2543 test
= new_decision_test (DT_accept_insn
, &place
);
2544 test
->u
.insn
.code_number
= next_insn_code
;
2545 test
->u
.insn
.lineno
= pattern_lineno
;
2546 test
->u
.insn
.num_clobbers_to_add
= XVECLEN (x
, 0) - i
;
2548 merge_trees (&head
, &clobber_head
);
2554 /* Define the subroutine we will call below and emit in genemit. */
2555 printf ("extern rtx gen_split_%d (rtx *);\n", next_insn_code
);
2559 /* Define the subroutine we will call below and emit in genemit. */
2560 printf ("extern rtx gen_peephole2_%d (rtx, rtx *);\n",
2569 process_tree (struct decision_head
*head
, enum routine_type subroutine_type
)
2571 if (head
->first
== NULL
)
2573 /* We can elide peephole2_insns, but not recog or split_insns. */
2574 if (subroutine_type
== PEEPHOLE2
)
2579 factor_tests (head
);
2581 next_subroutine_number
= 0;
2582 break_out_subroutines (head
, 1);
2583 find_afterward (head
, NULL
);
2585 /* We run this after find_afterward, because find_afterward needs
2586 the redundant DT_mode tests on predicates to determine whether
2587 two tests can both be true or not. */
2588 simplify_tests(head
);
2590 write_subroutines (head
, subroutine_type
);
2593 write_subroutine (head
, subroutine_type
);
2596 extern int main (int, char **);
2599 main (int argc
, char **argv
)
2602 struct decision_head recog_tree
, split_tree
, peephole2_tree
, h
;
2604 progname
= "genrecog";
2606 memset (&recog_tree
, 0, sizeof recog_tree
);
2607 memset (&split_tree
, 0, sizeof split_tree
);
2608 memset (&peephole2_tree
, 0, sizeof peephole2_tree
);
2611 fatal ("no input file name");
2613 if (init_md_reader_args (argc
, argv
) != SUCCESS_EXIT_CODE
)
2614 return (FATAL_EXIT_CODE
);
2621 /* Read the machine description. */
2625 desc
= read_md_rtx (&pattern_lineno
, &next_insn_code
);
2629 if (GET_CODE (desc
) == DEFINE_INSN
)
2631 h
= make_insn_sequence (desc
, RECOG
);
2632 merge_trees (&recog_tree
, &h
);
2634 else if (GET_CODE (desc
) == DEFINE_SPLIT
)
2636 h
= make_insn_sequence (desc
, SPLIT
);
2637 merge_trees (&split_tree
, &h
);
2639 else if (GET_CODE (desc
) == DEFINE_PEEPHOLE2
)
2641 h
= make_insn_sequence (desc
, PEEPHOLE2
);
2642 merge_trees (&peephole2_tree
, &h
);
2649 return FATAL_EXIT_CODE
;
2653 process_tree (&recog_tree
, RECOG
);
2654 process_tree (&split_tree
, SPLIT
);
2655 process_tree (&peephole2_tree
, PEEPHOLE2
);
2658 return (ferror (stdout
) != 0 ? FATAL_EXIT_CODE
: SUCCESS_EXIT_CODE
);
2661 /* Define this so we can link with print-rtl.o to get debug_rtx function. */
2663 get_insn_name (int code
)
2665 if (code
< insn_name_ptr_size
)
2666 return insn_name_ptr
[code
];
2672 record_insn_name (int code
, const char *name
)
2674 static const char *last_real_name
= "insn";
2675 static int last_real_code
= 0;
2678 if (insn_name_ptr_size
<= code
)
2681 new_size
= (insn_name_ptr_size
? insn_name_ptr_size
* 2 : 512);
2683 (char **) xrealloc (insn_name_ptr
, sizeof(char *) * new_size
);
2684 memset (insn_name_ptr
+ insn_name_ptr_size
, 0,
2685 sizeof(char *) * (new_size
- insn_name_ptr_size
));
2686 insn_name_ptr_size
= new_size
;
2689 if (!name
|| name
[0] == '\0')
2691 new = xmalloc (strlen (last_real_name
) + 10);
2692 sprintf (new, "%s+%d", last_real_name
, code
- last_real_code
);
2696 last_real_name
= new = xstrdup (name
);
2697 last_real_code
= code
;
2700 insn_name_ptr
[code
] = new;
2704 debug_decision_2 (struct decision_test
*test
)
2709 fprintf (stderr
, "mode=%s", GET_MODE_NAME (test
->u
.mode
));
2712 fprintf (stderr
, "code=%s", GET_RTX_NAME (test
->u
.code
));
2715 fprintf (stderr
, "veclen=%d", test
->u
.veclen
);
2717 case DT_elt_zero_int
:
2718 fprintf (stderr
, "elt0_i=%d", (int) test
->u
.intval
);
2720 case DT_elt_one_int
:
2721 fprintf (stderr
, "elt1_i=%d", (int) test
->u
.intval
);
2723 case DT_elt_zero_wide
:
2724 fprintf (stderr
, "elt0_w=" HOST_WIDE_INT_PRINT_DEC
, test
->u
.intval
);
2726 case DT_elt_zero_wide_safe
:
2727 fprintf (stderr
, "elt0_ws=" HOST_WIDE_INT_PRINT_DEC
, test
->u
.intval
);
2730 fprintf (stderr
, "veclen>=%d", test
->u
.veclen
);
2733 fprintf (stderr
, "dup=%d", test
->u
.dup
);
2736 fprintf (stderr
, "pred=(%s,%s)",
2737 test
->u
.pred
.name
, GET_MODE_NAME(test
->u
.pred
.mode
));
2742 strncpy (sub
, test
->u
.c_test
, sizeof(sub
));
2743 memcpy (sub
+16, "...", 4);
2744 fprintf (stderr
, "c_test=\"%s\"", sub
);
2748 fprintf (stderr
, "A_op=%d", test
->u
.opno
);
2750 case DT_accept_insn
:
2751 fprintf (stderr
, "A_insn=(%d,%d)",
2752 test
->u
.insn
.code_number
, test
->u
.insn
.num_clobbers_to_add
);
2761 debug_decision_1 (struct decision
*d
, int indent
)
2764 struct decision_test
*test
;
2768 for (i
= 0; i
< indent
; ++i
)
2770 fputs ("(nil)\n", stderr
);
2774 for (i
= 0; i
< indent
; ++i
)
2781 debug_decision_2 (test
);
2782 while ((test
= test
->next
) != NULL
)
2784 fputs (" + ", stderr
);
2785 debug_decision_2 (test
);
2788 fprintf (stderr
, "} %d n %d a %d\n", d
->number
,
2789 (d
->next
? d
->next
->number
: -1),
2790 (d
->afterward
? d
->afterward
->number
: -1));
2794 debug_decision_0 (struct decision
*d
, int indent
, int maxdepth
)
2803 for (i
= 0; i
< indent
; ++i
)
2805 fputs ("(nil)\n", stderr
);
2809 debug_decision_1 (d
, indent
);
2810 for (n
= d
->success
.first
; n
; n
= n
->next
)
2811 debug_decision_0 (n
, indent
+ 2, maxdepth
- 1);
2815 debug_decision (struct decision
*d
)
2817 debug_decision_0 (d
, 0, 1000000);
2821 debug_decision_list (struct decision
*d
)
2825 debug_decision_0 (d
, 0, 0);