2009-12-22 Iain Sandoe <iain.sandoe@sandoe-acoustics.co.uk>
[official-gcc.git] / boehm-gc / os_dep.c
blob6f1e81abc16dae1147ee5e10c03521ee71010b49
1 /*
2 * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
3 * Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
4 * Copyright (c) 1996-1999 by Silicon Graphics. All rights reserved.
5 * Copyright (c) 1999 by Hewlett-Packard Company. All rights reserved.
7 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
8 * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
10 * Permission is hereby granted to use or copy this program
11 * for any purpose, provided the above notices are retained on all copies.
12 * Permission to modify the code and to distribute modified code is granted,
13 * provided the above notices are retained, and a notice that the code was
14 * modified is included with the above copyright notice.
17 # include "private/gc_priv.h"
19 # if defined(LINUX) && !defined(POWERPC)
20 # include <linux/version.h>
21 # if (LINUX_VERSION_CODE <= 0x10400)
22 /* Ugly hack to get struct sigcontext_struct definition. Required */
23 /* for some early 1.3.X releases. Will hopefully go away soon. */
24 /* in some later Linux releases, asm/sigcontext.h may have to */
25 /* be included instead. */
26 # define __KERNEL__
27 # include <asm/signal.h>
28 # undef __KERNEL__
29 # else
30 /* Kernels prior to 2.1.1 defined struct sigcontext_struct instead of */
31 /* struct sigcontext. libc6 (glibc2) uses "struct sigcontext" in */
32 /* prototypes, so we have to include the top-level sigcontext.h to */
33 /* make sure the former gets defined to be the latter if appropriate. */
34 # include <features.h>
35 # if 2 <= __GLIBC__
36 # if 2 == __GLIBC__ && 0 == __GLIBC_MINOR__
37 /* glibc 2.1 no longer has sigcontext.h. But signal.h */
38 /* has the right declaration for glibc 2.1. */
39 # include <sigcontext.h>
40 # endif /* 0 == __GLIBC_MINOR__ */
41 # else /* not 2 <= __GLIBC__ */
42 /* libc5 doesn't have <sigcontext.h>: go directly with the kernel */
43 /* one. Check LINUX_VERSION_CODE to see which we should reference. */
44 # include <asm/sigcontext.h>
45 # endif /* 2 <= __GLIBC__ */
46 # endif
47 # endif
48 # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) && !defined(MACOS) \
49 && !defined(MSWINCE)
50 # include <sys/types.h>
51 # if !defined(MSWIN32) && !defined(SUNOS4)
52 # include <unistd.h>
53 # endif
54 # endif
56 # include <stdio.h>
57 # if defined(MSWINCE)
58 # define SIGSEGV 0 /* value is irrelevant */
59 # else
60 # include <signal.h>
61 # endif
63 #if defined(LINUX) || defined(LINUX_STACKBOTTOM)
64 # include <ctype.h>
65 #endif
67 /* Blatantly OS dependent routines, except for those that are related */
68 /* to dynamic loading. */
70 # if defined(HEURISTIC2) || defined(SEARCH_FOR_DATA_START)
71 # define NEED_FIND_LIMIT
72 # endif
74 # if !defined(STACKBOTTOM) && defined(HEURISTIC2)
75 # define NEED_FIND_LIMIT
76 # endif
78 # if (defined(SUNOS4) && defined(DYNAMIC_LOADING)) && !defined(PCR)
79 # define NEED_FIND_LIMIT
80 # endif
82 # if (defined(SVR4) || defined(AUX) || defined(DGUX) \
83 || (defined(LINUX) && defined(SPARC))) && !defined(PCR)
84 # define NEED_FIND_LIMIT
85 # endif
87 #if defined(FREEBSD) && (defined(I386) || defined(X86_64) || defined(powerpc) || defined(__powerpc__))
88 # include <machine/trap.h>
89 # if !defined(PCR)
90 # define NEED_FIND_LIMIT
91 # endif
92 #endif
94 #if (defined(NETBSD) || defined(OPENBSD)) && defined(__ELF__) \
95 && !defined(NEED_FIND_LIMIT)
96 /* Used by GC_init_netbsd_elf() below. */
97 # define NEED_FIND_LIMIT
98 #endif
100 #ifdef NEED_FIND_LIMIT
101 # include <setjmp.h>
102 #endif
104 #ifdef AMIGA
105 # define GC_AMIGA_DEF
106 # include "AmigaOS.c"
107 # undef GC_AMIGA_DEF
108 #endif
110 #if defined(MSWIN32) || defined(MSWINCE)
111 # define WIN32_LEAN_AND_MEAN
112 # define NOSERVICE
113 # include <windows.h>
114 #endif
116 #ifdef MACOS
117 # include <Processes.h>
118 #endif
120 #ifdef IRIX5
121 # include <sys/uio.h>
122 # include <malloc.h> /* for locking */
123 #endif
124 #if defined(USE_MMAP) || defined(USE_MUNMAP)
125 # ifndef USE_MMAP
126 --> USE_MUNMAP requires USE_MMAP
127 # endif
128 # include <sys/types.h>
129 # include <sys/mman.h>
130 # include <sys/stat.h>
131 # include <errno.h>
132 #endif
134 #ifdef UNIX_LIKE
135 # include <fcntl.h>
136 # if defined(SUNOS5SIGS) && !defined(FREEBSD)
137 # include <sys/siginfo.h>
138 # endif
139 /* Define SETJMP and friends to be the version that restores */
140 /* the signal mask. */
141 # define SETJMP(env) sigsetjmp(env, 1)
142 # define LONGJMP(env, val) siglongjmp(env, val)
143 # define JMP_BUF sigjmp_buf
144 #else
145 # define SETJMP(env) setjmp(env)
146 # define LONGJMP(env, val) longjmp(env, val)
147 # define JMP_BUF jmp_buf
148 #endif
150 #ifdef DARWIN
151 /* for get_etext and friends */
152 #include <mach-o/getsect.h>
153 #endif
155 #ifdef DJGPP
156 /* Apparently necessary for djgpp 2.01. May cause problems with */
157 /* other versions. */
158 typedef long unsigned int caddr_t;
159 #endif
161 #ifdef PCR
162 # include "il/PCR_IL.h"
163 # include "th/PCR_ThCtl.h"
164 # include "mm/PCR_MM.h"
165 #endif
167 #if !defined(NO_EXECUTE_PERMISSION)
168 # define OPT_PROT_EXEC PROT_EXEC
169 #else
170 # define OPT_PROT_EXEC 0
171 #endif
173 #if defined(LINUX) && \
174 (defined(USE_PROC_FOR_LIBRARIES) || defined(IA64) || !defined(SMALL_CONFIG))
176 /* We need to parse /proc/self/maps, either to find dynamic libraries, */
177 /* and/or to find the register backing store base (IA64). Do it once */
178 /* here. */
180 #define READ read
182 /* Repeatedly perform a read call until the buffer is filled or */
183 /* we encounter EOF. */
184 ssize_t GC_repeat_read(int fd, char *buf, size_t count)
186 ssize_t num_read = 0;
187 ssize_t result;
189 while (num_read < count) {
190 result = READ(fd, buf + num_read, count - num_read);
191 if (result < 0) return result;
192 if (result == 0) break;
193 num_read += result;
195 return num_read;
199 * Apply fn to a buffer containing the contents of /proc/self/maps.
200 * Return the result of fn or, if we failed, 0.
201 * We currently do nothing to /proc/self/maps other than simply read
202 * it. This code could be simplified if we could determine its size
203 * ahead of time.
206 word GC_apply_to_maps(word (*fn)(char *))
208 int f;
209 int result;
210 size_t maps_size = 4000; /* Initial guess. */
211 static char init_buf[1];
212 static char *maps_buf = init_buf;
213 static size_t maps_buf_sz = 1;
215 /* Read /proc/self/maps, growing maps_buf as necessary. */
216 /* Note that we may not allocate conventionally, and */
217 /* thus can't use stdio. */
218 do {
219 if (maps_size >= maps_buf_sz) {
220 /* Grow only by powers of 2, since we leak "too small" buffers. */
221 while (maps_size >= maps_buf_sz) maps_buf_sz *= 2;
222 maps_buf = GC_scratch_alloc(maps_buf_sz);
223 if (maps_buf == 0) return 0;
225 f = open("/proc/self/maps", O_RDONLY);
226 if (-1 == f) return 0;
227 maps_size = 0;
228 do {
229 result = GC_repeat_read(f, maps_buf, maps_buf_sz-1);
230 if (result <= 0) return 0;
231 maps_size += result;
232 } while (result == maps_buf_sz-1);
233 close(f);
234 } while (maps_size >= maps_buf_sz);
235 maps_buf[maps_size] = '\0';
237 /* Apply fn to result. */
238 return fn(maps_buf);
241 #endif /* Need GC_apply_to_maps */
243 #if defined(LINUX) && (defined(USE_PROC_FOR_LIBRARIES) || defined(IA64))
245 // GC_parse_map_entry parses an entry from /proc/self/maps so we can
246 // locate all writable data segments that belong to shared libraries.
247 // The format of one of these entries and the fields we care about
248 // is as follows:
249 // XXXXXXXX-XXXXXXXX r-xp 00000000 30:05 260537 name of mapping...\n
250 // ^^^^^^^^ ^^^^^^^^ ^^^^ ^^
251 // start end prot maj_dev
253 // Note that since about auguat 2003 kernels, the columns no longer have
254 // fixed offsets on 64-bit kernels. Hence we no longer rely on fixed offsets
255 // anywhere, which is safer anyway.
259 * Assign various fields of the first line in buf_ptr to *start, *end,
260 * *prot_buf and *maj_dev. Only *prot_buf may be set for unwritable maps.
262 char *GC_parse_map_entry(char *buf_ptr, word *start, word *end,
263 char *prot_buf, unsigned int *maj_dev)
265 char *start_start, *end_start, *prot_start, *maj_dev_start;
266 char *p;
267 char *endp;
269 if (buf_ptr == NULL || *buf_ptr == '\0') {
270 return NULL;
273 p = buf_ptr;
274 while (isspace(*p)) ++p;
275 start_start = p;
276 GC_ASSERT(isxdigit(*start_start));
277 *start = strtoul(start_start, &endp, 16); p = endp;
278 GC_ASSERT(*p=='-');
280 ++p;
281 end_start = p;
282 GC_ASSERT(isxdigit(*end_start));
283 *end = strtoul(end_start, &endp, 16); p = endp;
284 GC_ASSERT(isspace(*p));
286 while (isspace(*p)) ++p;
287 prot_start = p;
288 GC_ASSERT(*prot_start == 'r' || *prot_start == '-');
289 memcpy(prot_buf, prot_start, 4);
290 prot_buf[4] = '\0';
291 if (prot_buf[1] == 'w') {/* we can skip the rest if it's not writable. */
292 /* Skip past protection field to offset field */
293 while (!isspace(*p)) ++p; while (isspace(*p)) ++p;
294 GC_ASSERT(isxdigit(*p));
295 /* Skip past offset field, which we ignore */
296 while (!isspace(*p)) ++p; while (isspace(*p)) ++p;
297 maj_dev_start = p;
298 GC_ASSERT(isxdigit(*maj_dev_start));
299 *maj_dev = strtoul(maj_dev_start, NULL, 16);
302 while (*p && *p++ != '\n');
304 return p;
307 #endif /* Need to parse /proc/self/maps. */
309 #if defined(SEARCH_FOR_DATA_START)
310 /* The I386 case can be handled without a search. The Alpha case */
311 /* used to be handled differently as well, but the rules changed */
312 /* for recent Linux versions. This seems to be the easiest way to */
313 /* cover all versions. */
315 # ifdef LINUX
316 /* Some Linux distributions arrange to define __data_start. Some */
317 /* define data_start as a weak symbol. The latter is technically */
318 /* broken, since the user program may define data_start, in which */
319 /* case we lose. Nonetheless, we try both, prefering __data_start. */
320 /* We assume gcc-compatible pragmas. */
321 # pragma weak __data_start
322 extern int __data_start[];
323 # pragma weak data_start
324 extern int data_start[];
325 # endif /* LINUX */
326 extern int _end[];
328 ptr_t GC_data_start;
330 void GC_init_linux_data_start()
332 extern ptr_t GC_find_limit();
334 # ifdef LINUX
335 /* Try the easy approaches first: */
336 if ((ptr_t)__data_start != 0) {
337 GC_data_start = (ptr_t)(__data_start);
338 return;
340 if ((ptr_t)data_start != 0) {
341 GC_data_start = (ptr_t)(data_start);
342 return;
344 # endif /* LINUX */
345 GC_data_start = GC_find_limit((ptr_t)(_end), FALSE);
347 #endif
349 # ifdef ECOS
351 # ifndef ECOS_GC_MEMORY_SIZE
352 # define ECOS_GC_MEMORY_SIZE (448 * 1024)
353 # endif /* ECOS_GC_MEMORY_SIZE */
355 // setjmp() function, as described in ANSI para 7.6.1.1
356 #undef SETJMP
357 #define SETJMP( __env__ ) hal_setjmp( __env__ )
359 // FIXME: This is a simple way of allocating memory which is
360 // compatible with ECOS early releases. Later releases use a more
361 // sophisticated means of allocating memory than this simple static
362 // allocator, but this method is at least bound to work.
363 static char memory[ECOS_GC_MEMORY_SIZE];
364 static char *brk = memory;
366 static void *tiny_sbrk(ptrdiff_t increment)
368 void *p = brk;
370 brk += increment;
372 if (brk > memory + sizeof memory)
374 brk -= increment;
375 return NULL;
378 return p;
380 #define sbrk tiny_sbrk
381 # endif /* ECOS */
383 #if (defined(NETBSD) || defined(OPENBSD)) && defined(__ELF__)
384 ptr_t GC_data_start;
386 void GC_init_netbsd_elf()
388 extern ptr_t GC_find_limit();
389 extern char **environ;
390 /* This may need to be environ, without the underscore, for */
391 /* some versions. */
392 GC_data_start = GC_find_limit((ptr_t)&environ, FALSE);
394 #endif
396 # ifdef OS2
398 # include <stddef.h>
400 # if !defined(__IBMC__) && !defined(__WATCOMC__) /* e.g. EMX */
402 struct exe_hdr {
403 unsigned short magic_number;
404 unsigned short padding[29];
405 long new_exe_offset;
408 #define E_MAGIC(x) (x).magic_number
409 #define EMAGIC 0x5A4D
410 #define E_LFANEW(x) (x).new_exe_offset
412 struct e32_exe {
413 unsigned char magic_number[2];
414 unsigned char byte_order;
415 unsigned char word_order;
416 unsigned long exe_format_level;
417 unsigned short cpu;
418 unsigned short os;
419 unsigned long padding1[13];
420 unsigned long object_table_offset;
421 unsigned long object_count;
422 unsigned long padding2[31];
425 #define E32_MAGIC1(x) (x).magic_number[0]
426 #define E32MAGIC1 'L'
427 #define E32_MAGIC2(x) (x).magic_number[1]
428 #define E32MAGIC2 'X'
429 #define E32_BORDER(x) (x).byte_order
430 #define E32LEBO 0
431 #define E32_WORDER(x) (x).word_order
432 #define E32LEWO 0
433 #define E32_CPU(x) (x).cpu
434 #define E32CPU286 1
435 #define E32_OBJTAB(x) (x).object_table_offset
436 #define E32_OBJCNT(x) (x).object_count
438 struct o32_obj {
439 unsigned long size;
440 unsigned long base;
441 unsigned long flags;
442 unsigned long pagemap;
443 unsigned long mapsize;
444 unsigned long reserved;
447 #define O32_FLAGS(x) (x).flags
448 #define OBJREAD 0x0001L
449 #define OBJWRITE 0x0002L
450 #define OBJINVALID 0x0080L
451 #define O32_SIZE(x) (x).size
452 #define O32_BASE(x) (x).base
454 # else /* IBM's compiler */
456 /* A kludge to get around what appears to be a header file bug */
457 # ifndef WORD
458 # define WORD unsigned short
459 # endif
460 # ifndef DWORD
461 # define DWORD unsigned long
462 # endif
464 # define EXE386 1
465 # include <newexe.h>
466 # include <exe386.h>
468 # endif /* __IBMC__ */
470 # define INCL_DOSEXCEPTIONS
471 # define INCL_DOSPROCESS
472 # define INCL_DOSERRORS
473 # define INCL_DOSMODULEMGR
474 # define INCL_DOSMEMMGR
475 # include <os2.h>
478 /* Disable and enable signals during nontrivial allocations */
480 void GC_disable_signals(void)
482 ULONG nest;
484 DosEnterMustComplete(&nest);
485 if (nest != 1) ABORT("nested GC_disable_signals");
488 void GC_enable_signals(void)
490 ULONG nest;
492 DosExitMustComplete(&nest);
493 if (nest != 0) ABORT("GC_enable_signals");
497 # else
499 # if !defined(PCR) && !defined(AMIGA) && !defined(MSWIN32) \
500 && !defined(MSWINCE) \
501 && !defined(MACOS) && !defined(DJGPP) && !defined(DOS4GW) \
502 && !defined(NOSYS) && !defined(ECOS)
504 # if defined(SIG_BLOCK)
505 /* Use POSIX/SYSV interface */
506 # define SIGSET_T sigset_t
507 # define SIG_DEL(set, signal) sigdelset(&(set), (signal))
508 # define SIG_FILL(set) sigfillset(&set)
509 # define SIGSETMASK(old, new) sigprocmask(SIG_SETMASK, &(new), &(old))
510 # elif defined(sigmask) && !defined(UTS4) && !defined(HURD)
511 /* Use the traditional BSD interface */
512 # define SIGSET_T int
513 # define SIG_DEL(set, signal) (set) &= ~(sigmask(signal))
514 # define SIG_FILL(set) (set) = 0x7fffffff
515 /* Setting the leading bit appears to provoke a bug in some */
516 /* longjmp implementations. Most systems appear not to have */
517 /* a signal 32. */
518 # define SIGSETMASK(old, new) (old) = sigsetmask(new)
519 # else
520 # error undetectable signal API
521 # endif
523 static GC_bool mask_initialized = FALSE;
525 static SIGSET_T new_mask;
527 static SIGSET_T old_mask;
529 static SIGSET_T dummy;
531 #if defined(PRINTSTATS) && !defined(THREADS)
532 # define CHECK_SIGNALS
533 int GC_sig_disabled = 0;
534 #endif
536 void GC_disable_signals()
538 if (!mask_initialized) {
539 SIG_FILL(new_mask);
541 SIG_DEL(new_mask, SIGSEGV);
542 SIG_DEL(new_mask, SIGILL);
543 SIG_DEL(new_mask, SIGQUIT);
544 # ifdef SIGBUS
545 SIG_DEL(new_mask, SIGBUS);
546 # endif
547 # ifdef SIGIOT
548 SIG_DEL(new_mask, SIGIOT);
549 # endif
550 # ifdef SIGEMT
551 SIG_DEL(new_mask, SIGEMT);
552 # endif
553 # ifdef SIGTRAP
554 SIG_DEL(new_mask, SIGTRAP);
555 # endif
556 mask_initialized = TRUE;
558 # ifdef CHECK_SIGNALS
559 if (GC_sig_disabled != 0) ABORT("Nested disables");
560 GC_sig_disabled++;
561 # endif
562 SIGSETMASK(old_mask,new_mask);
565 void GC_enable_signals()
567 # ifdef CHECK_SIGNALS
568 if (GC_sig_disabled != 1) ABORT("Unmatched enable");
569 GC_sig_disabled--;
570 # endif
571 SIGSETMASK(dummy,old_mask);
574 # endif /* !PCR */
576 # endif /*!OS/2 */
578 /* Ivan Demakov: simplest way (to me) */
579 #if defined (DOS4GW)
580 void GC_disable_signals() { }
581 void GC_enable_signals() { }
582 #endif
584 /* Find the page size */
585 word GC_page_size;
587 # if defined(MSWIN32) || defined(MSWINCE)
588 void GC_setpagesize()
590 GetSystemInfo(&GC_sysinfo);
591 GC_page_size = GC_sysinfo.dwPageSize;
594 # else
595 # if defined(MPROTECT_VDB) || defined(PROC_VDB) || defined(USE_MMAP) \
596 || defined(USE_MUNMAP)
597 void GC_setpagesize()
599 GC_page_size = GETPAGESIZE();
601 # else
602 /* It's acceptable to fake it. */
603 void GC_setpagesize()
605 GC_page_size = HBLKSIZE;
607 # endif
608 # endif
611 * Find the base of the stack.
612 * Used only in single-threaded environment.
613 * With threads, GC_mark_roots needs to know how to do this.
614 * Called with allocator lock held.
616 # if defined(MSWIN32) || defined(MSWINCE)
617 # define is_writable(prot) ((prot) == PAGE_READWRITE \
618 || (prot) == PAGE_WRITECOPY \
619 || (prot) == PAGE_EXECUTE_READWRITE \
620 || (prot) == PAGE_EXECUTE_WRITECOPY)
621 /* Return the number of bytes that are writable starting at p. */
622 /* The pointer p is assumed to be page aligned. */
623 /* If base is not 0, *base becomes the beginning of the */
624 /* allocation region containing p. */
625 word GC_get_writable_length(ptr_t p, ptr_t *base)
627 MEMORY_BASIC_INFORMATION buf;
628 word result;
629 word protect;
631 result = VirtualQuery(p, &buf, sizeof(buf));
632 if (result != sizeof(buf)) ABORT("Weird VirtualQuery result");
633 if (base != 0) *base = (ptr_t)(buf.AllocationBase);
634 protect = (buf.Protect & ~(PAGE_GUARD | PAGE_NOCACHE));
635 if (!is_writable(protect)) {
636 return(0);
638 if (buf.State != MEM_COMMIT) return(0);
639 return(buf.RegionSize);
642 ptr_t GC_get_stack_base()
644 int dummy;
645 ptr_t sp = (ptr_t)(&dummy);
646 ptr_t trunc_sp = (ptr_t)((word)sp & ~(GC_page_size - 1));
647 word size = GC_get_writable_length(trunc_sp, 0);
649 return(trunc_sp + size);
653 # endif /* MS Windows */
655 # ifdef BEOS
656 # include <kernel/OS.h>
657 ptr_t GC_get_stack_base(){
658 thread_info th;
659 get_thread_info(find_thread(NULL),&th);
660 return th.stack_end;
662 # endif /* BEOS */
665 # ifdef OS2
667 ptr_t GC_get_stack_base()
669 PTIB ptib;
670 PPIB ppib;
672 if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
673 GC_err_printf0("DosGetInfoBlocks failed\n");
674 ABORT("DosGetInfoBlocks failed\n");
676 return((ptr_t)(ptib -> tib_pstacklimit));
679 # endif /* OS2 */
681 # ifdef AMIGA
682 # define GC_AMIGA_SB
683 # include "AmigaOS.c"
684 # undef GC_AMIGA_SB
685 # endif /* AMIGA */
687 # if defined(NEED_FIND_LIMIT) || defined(UNIX_LIKE)
689 # ifdef __STDC__
690 typedef void (*handler)(int);
691 # else
692 typedef void (*handler)();
693 # endif
695 # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1) \
696 || defined(HURD) || defined(NETBSD)
697 static struct sigaction old_segv_act;
698 # if defined(IRIX5) || defined(HPUX) \
699 || defined(HURD) || defined(NETBSD)
700 static struct sigaction old_bus_act;
701 # endif
702 # else
703 static handler old_segv_handler, old_bus_handler;
704 # endif
706 # ifdef __STDC__
707 void GC_set_and_save_fault_handler(handler h)
708 # else
709 void GC_set_and_save_fault_handler(h)
710 handler h;
711 # endif
713 # if defined(SUNOS5SIGS) || defined(IRIX5) \
714 || defined(OSF1) || defined(HURD) || defined(NETBSD)
715 struct sigaction act;
717 act.sa_handler = h;
718 # if 0 /* Was necessary for Solaris 2.3 and very temporary */
719 /* NetBSD bugs. */
720 act.sa_flags = SA_RESTART | SA_NODEFER;
721 # else
722 act.sa_flags = SA_RESTART;
723 # endif
725 (void) sigemptyset(&act.sa_mask);
726 # ifdef GC_IRIX_THREADS
727 /* Older versions have a bug related to retrieving and */
728 /* and setting a handler at the same time. */
729 (void) sigaction(SIGSEGV, 0, &old_segv_act);
730 (void) sigaction(SIGSEGV, &act, 0);
731 (void) sigaction(SIGBUS, 0, &old_bus_act);
732 (void) sigaction(SIGBUS, &act, 0);
733 # else
734 (void) sigaction(SIGSEGV, &act, &old_segv_act);
735 # if defined(IRIX5) \
736 || defined(HPUX) || defined(HURD) || defined(NETBSD)
737 /* Under Irix 5.x or HP/UX, we may get SIGBUS. */
738 /* Pthreads doesn't exist under Irix 5.x, so we */
739 /* don't have to worry in the threads case. */
740 (void) sigaction(SIGBUS, &act, &old_bus_act);
741 # endif
742 # endif /* GC_IRIX_THREADS */
743 # else
744 old_segv_handler = signal(SIGSEGV, h);
745 # ifdef SIGBUS
746 old_bus_handler = signal(SIGBUS, h);
747 # endif
748 # endif
750 # endif /* NEED_FIND_LIMIT || UNIX_LIKE */
752 # ifdef NEED_FIND_LIMIT
753 /* Some tools to implement HEURISTIC2 */
754 # define MIN_PAGE_SIZE 256 /* Smallest conceivable page size, bytes */
755 /* static */ JMP_BUF GC_jmp_buf;
757 /*ARGSUSED*/
758 void GC_fault_handler(sig)
759 int sig;
761 LONGJMP(GC_jmp_buf, 1);
764 void GC_setup_temporary_fault_handler()
766 GC_set_and_save_fault_handler(GC_fault_handler);
769 void GC_reset_fault_handler()
771 # if defined(SUNOS5SIGS) || defined(IRIX5) \
772 || defined(OSF1) || defined(HURD) || defined(NETBSD)
773 (void) sigaction(SIGSEGV, &old_segv_act, 0);
774 # if defined(IRIX5) \
775 || defined(HPUX) || defined(HURD) || defined(NETBSD)
776 (void) sigaction(SIGBUS, &old_bus_act, 0);
777 # endif
778 # else
779 (void) signal(SIGSEGV, old_segv_handler);
780 # ifdef SIGBUS
781 (void) signal(SIGBUS, old_bus_handler);
782 # endif
783 # endif
786 /* Return the first nonaddressible location > p (up) or */
787 /* the smallest location q s.t. [q,p) is addressable (!up). */
788 /* We assume that p (up) or p-1 (!up) is addressable. */
789 ptr_t GC_find_limit(p, up)
790 ptr_t p;
791 GC_bool up;
793 static VOLATILE ptr_t result;
794 /* Needs to be static, since otherwise it may not be */
795 /* preserved across the longjmp. Can safely be */
796 /* static since it's only called once, with the */
797 /* allocation lock held. */
800 GC_setup_temporary_fault_handler();
801 if (SETJMP(GC_jmp_buf) == 0) {
802 result = (ptr_t)(((word)(p))
803 & ~(MIN_PAGE_SIZE-1));
804 for (;;) {
805 if (up) {
806 result += MIN_PAGE_SIZE;
807 } else {
808 result -= MIN_PAGE_SIZE;
810 GC_noop1((word)(*result));
813 GC_reset_fault_handler();
814 if (!up) {
815 result += MIN_PAGE_SIZE;
817 return(result);
819 # endif
821 #if defined(ECOS) || defined(NOSYS)
822 ptr_t GC_get_stack_base()
824 return STACKBOTTOM;
826 #endif
828 #ifdef HPUX_STACKBOTTOM
830 #include <sys/param.h>
831 #include <sys/pstat.h>
833 ptr_t GC_get_register_stack_base(void)
835 struct pst_vm_status vm_status;
837 int i = 0;
838 while (pstat_getprocvm(&vm_status, sizeof(vm_status), 0, i++) == 1) {
839 if (vm_status.pst_type == PS_RSESTACK) {
840 return (ptr_t) vm_status.pst_vaddr;
844 /* old way to get the register stackbottom */
845 return (ptr_t)(((word)GC_stackbottom - BACKING_STORE_DISPLACEMENT - 1)
846 & ~(BACKING_STORE_ALIGNMENT - 1));
849 #endif /* HPUX_STACK_BOTTOM */
851 #ifdef LINUX_STACKBOTTOM
853 #include <sys/types.h>
854 #include <sys/stat.h>
856 # define STAT_SKIP 27 /* Number of fields preceding startstack */
857 /* field in /proc/self/stat */
859 #ifdef USE_LIBC_PRIVATES
860 # pragma weak __libc_stack_end
861 extern ptr_t __libc_stack_end;
862 #endif
864 # ifdef IA64
865 /* Try to read the backing store base from /proc/self/maps. */
866 /* We look for the writable mapping with a 0 major device, */
867 /* which is as close to our frame as possible, but below it.*/
868 static word backing_store_base_from_maps(char *maps)
870 char prot_buf[5];
871 char *buf_ptr = maps;
872 word start, end;
873 unsigned int maj_dev;
874 word current_best = 0;
875 word dummy;
877 for (;;) {
878 buf_ptr = GC_parse_map_entry(buf_ptr, &start, &end, prot_buf, &maj_dev);
879 if (buf_ptr == NULL) return current_best;
880 if (prot_buf[1] == 'w' && maj_dev == 0) {
881 if (end < (word)(&dummy) && start > current_best) current_best = start;
884 return current_best;
887 static word backing_store_base_from_proc(void)
889 return GC_apply_to_maps(backing_store_base_from_maps);
892 # ifdef USE_LIBC_PRIVATES
893 # pragma weak __libc_ia64_register_backing_store_base
894 extern ptr_t __libc_ia64_register_backing_store_base;
895 # endif
897 ptr_t GC_get_register_stack_base(void)
899 # ifdef USE_LIBC_PRIVATES
900 if (0 != &__libc_ia64_register_backing_store_base
901 && 0 != __libc_ia64_register_backing_store_base) {
902 /* Glibc 2.2.4 has a bug such that for dynamically linked */
903 /* executables __libc_ia64_register_backing_store_base is */
904 /* defined but uninitialized during constructor calls. */
905 /* Hence we check for both nonzero address and value. */
906 return __libc_ia64_register_backing_store_base;
908 # endif
909 word result = backing_store_base_from_proc();
910 if (0 == result) {
911 /* Use dumb heuristics. Works only for default configuration. */
912 result = (word)GC_stackbottom - BACKING_STORE_DISPLACEMENT;
913 result += BACKING_STORE_ALIGNMENT - 1;
914 result &= ~(BACKING_STORE_ALIGNMENT - 1);
915 /* Verify that it's at least readable. If not, we goofed. */
916 GC_noop1(*(word *)result);
918 return (ptr_t)result;
920 # endif
922 ptr_t GC_linux_stack_base(void)
924 /* We read the stack base value from /proc/self/stat. We do this */
925 /* using direct I/O system calls in order to avoid calling malloc */
926 /* in case REDIRECT_MALLOC is defined. */
927 # define STAT_BUF_SIZE 4096
928 # define STAT_READ read
929 /* Should probably call the real read, if read is wrapped. */
930 char stat_buf[STAT_BUF_SIZE];
931 int f;
932 char c;
933 word result = 0;
934 size_t i, buf_offset = 0;
936 /* First try the easy way. This should work for glibc 2.2 */
937 /* This fails in a prelinked ("prelink" command) executable */
938 /* since the correct value of __libc_stack_end never */
939 /* becomes visible to us. The second test works around */
940 /* this. */
941 # ifdef USE_LIBC_PRIVATES
942 if (0 != &__libc_stack_end && 0 != __libc_stack_end ) {
943 # ifdef IA64
944 /* Some versions of glibc set the address 16 bytes too */
945 /* low while the initialization code is running. */
946 if (((word)__libc_stack_end & 0xfff) + 0x10 < 0x1000) {
947 return __libc_stack_end + 0x10;
948 } /* Otherwise it's not safe to add 16 bytes and we fall */
949 /* back to using /proc. */
950 # else
951 # ifdef SPARC
952 /* Older versions of glibc for 64-bit Sparc do not set
953 * this variable correctly, it gets set to either zero
954 * or one.
956 if (__libc_stack_end != (ptr_t) (unsigned long)0x1)
957 return __libc_stack_end;
958 # else
959 return __libc_stack_end;
960 # endif
961 # endif
963 # endif
964 f = open("/proc/self/stat", O_RDONLY);
965 if (f < 0 || STAT_READ(f, stat_buf, STAT_BUF_SIZE) < 2 * STAT_SKIP) {
966 ABORT("Couldn't read /proc/self/stat");
968 c = stat_buf[buf_offset++];
969 /* Skip the required number of fields. This number is hopefully */
970 /* constant across all Linux implementations. */
971 for (i = 0; i < STAT_SKIP; ++i) {
972 while (isspace(c)) c = stat_buf[buf_offset++];
973 while (!isspace(c)) c = stat_buf[buf_offset++];
975 while (isspace(c)) c = stat_buf[buf_offset++];
976 while (isdigit(c)) {
977 result *= 10;
978 result += c - '0';
979 c = stat_buf[buf_offset++];
981 close(f);
982 if (result < 0x10000000) ABORT("Absurd stack bottom value");
983 return (ptr_t)result;
986 #endif /* LINUX_STACKBOTTOM */
988 #ifdef FREEBSD_STACKBOTTOM
990 /* This uses an undocumented sysctl call, but at least one expert */
991 /* believes it will stay. */
993 #include <unistd.h>
994 #include <sys/types.h>
995 #include <sys/sysctl.h>
997 ptr_t GC_freebsd_stack_base(void)
999 int nm[2] = {CTL_KERN, KERN_USRSTACK};
1000 ptr_t base;
1001 size_t len = sizeof(ptr_t);
1002 int r = sysctl(nm, 2, &base, &len, NULL, 0);
1004 if (r) ABORT("Error getting stack base");
1006 return base;
1009 #endif /* FREEBSD_STACKBOTTOM */
1011 #if !defined(BEOS) && !defined(AMIGA) && !defined(MSWIN32) \
1012 && !defined(MSWINCE) && !defined(OS2) && !defined(NOSYS) && !defined(ECOS)
1014 ptr_t GC_get_stack_base()
1016 # if defined(HEURISTIC1) || defined(HEURISTIC2) || \
1017 defined(LINUX_STACKBOTTOM) || defined(FREEBSD_STACKBOTTOM)
1018 word dummy;
1019 ptr_t result;
1020 # endif
1022 # define STACKBOTTOM_ALIGNMENT_M1 ((word)STACK_GRAN - 1)
1024 # ifdef STACKBOTTOM
1025 return(STACKBOTTOM);
1026 # else
1027 # ifdef HEURISTIC1
1028 # ifdef STACK_GROWS_DOWN
1029 result = (ptr_t)((((word)(&dummy))
1030 + STACKBOTTOM_ALIGNMENT_M1)
1031 & ~STACKBOTTOM_ALIGNMENT_M1);
1032 # else
1033 result = (ptr_t)(((word)(&dummy))
1034 & ~STACKBOTTOM_ALIGNMENT_M1);
1035 # endif
1036 # endif /* HEURISTIC1 */
1037 # ifdef LINUX_STACKBOTTOM
1038 result = GC_linux_stack_base();
1039 # endif
1040 # ifdef FREEBSD_STACKBOTTOM
1041 result = GC_freebsd_stack_base();
1042 # endif
1043 # ifdef HEURISTIC2
1044 # ifdef STACK_GROWS_DOWN
1045 result = GC_find_limit((ptr_t)(&dummy), TRUE);
1046 # ifdef HEURISTIC2_LIMIT
1047 if (result > HEURISTIC2_LIMIT
1048 && (ptr_t)(&dummy) < HEURISTIC2_LIMIT) {
1049 result = HEURISTIC2_LIMIT;
1051 # endif
1052 # else
1053 result = GC_find_limit((ptr_t)(&dummy), FALSE);
1054 # ifdef HEURISTIC2_LIMIT
1055 if (result < HEURISTIC2_LIMIT
1056 && (ptr_t)(&dummy) > HEURISTIC2_LIMIT) {
1057 result = HEURISTIC2_LIMIT;
1059 # endif
1060 # endif
1062 # endif /* HEURISTIC2 */
1063 # ifdef STACK_GROWS_DOWN
1064 if (result == 0) result = (ptr_t)(signed_word)(-sizeof(ptr_t));
1065 # endif
1066 return(result);
1067 # endif /* STACKBOTTOM */
1070 # endif /* ! AMIGA, !OS 2, ! MS Windows, !BEOS, !NOSYS, !ECOS */
1073 * Register static data segment(s) as roots.
1074 * If more data segments are added later then they need to be registered
1075 * add that point (as we do with SunOS dynamic loading),
1076 * or GC_mark_roots needs to check for them (as we do with PCR).
1077 * Called with allocator lock held.
1080 # ifdef OS2
1082 void GC_register_data_segments()
1084 PTIB ptib;
1085 PPIB ppib;
1086 HMODULE module_handle;
1087 # define PBUFSIZ 512
1088 UCHAR path[PBUFSIZ];
1089 FILE * myexefile;
1090 struct exe_hdr hdrdos; /* MSDOS header. */
1091 struct e32_exe hdr386; /* Real header for my executable */
1092 struct o32_obj seg; /* Currrent segment */
1093 int nsegs;
1096 if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
1097 GC_err_printf0("DosGetInfoBlocks failed\n");
1098 ABORT("DosGetInfoBlocks failed\n");
1100 module_handle = ppib -> pib_hmte;
1101 if (DosQueryModuleName(module_handle, PBUFSIZ, path) != NO_ERROR) {
1102 GC_err_printf0("DosQueryModuleName failed\n");
1103 ABORT("DosGetInfoBlocks failed\n");
1105 myexefile = fopen(path, "rb");
1106 if (myexefile == 0) {
1107 GC_err_puts("Couldn't open executable ");
1108 GC_err_puts(path); GC_err_puts("\n");
1109 ABORT("Failed to open executable\n");
1111 if (fread((char *)(&hdrdos), 1, sizeof hdrdos, myexefile) < sizeof hdrdos) {
1112 GC_err_puts("Couldn't read MSDOS header from ");
1113 GC_err_puts(path); GC_err_puts("\n");
1114 ABORT("Couldn't read MSDOS header");
1116 if (E_MAGIC(hdrdos) != EMAGIC) {
1117 GC_err_puts("Executable has wrong DOS magic number: ");
1118 GC_err_puts(path); GC_err_puts("\n");
1119 ABORT("Bad DOS magic number");
1121 if (fseek(myexefile, E_LFANEW(hdrdos), SEEK_SET) != 0) {
1122 GC_err_puts("Seek to new header failed in ");
1123 GC_err_puts(path); GC_err_puts("\n");
1124 ABORT("Bad DOS magic number");
1126 if (fread((char *)(&hdr386), 1, sizeof hdr386, myexefile) < sizeof hdr386) {
1127 GC_err_puts("Couldn't read MSDOS header from ");
1128 GC_err_puts(path); GC_err_puts("\n");
1129 ABORT("Couldn't read OS/2 header");
1131 if (E32_MAGIC1(hdr386) != E32MAGIC1 || E32_MAGIC2(hdr386) != E32MAGIC2) {
1132 GC_err_puts("Executable has wrong OS/2 magic number:");
1133 GC_err_puts(path); GC_err_puts("\n");
1134 ABORT("Bad OS/2 magic number");
1136 if ( E32_BORDER(hdr386) != E32LEBO || E32_WORDER(hdr386) != E32LEWO) {
1137 GC_err_puts("Executable %s has wrong byte order: ");
1138 GC_err_puts(path); GC_err_puts("\n");
1139 ABORT("Bad byte order");
1141 if ( E32_CPU(hdr386) == E32CPU286) {
1142 GC_err_puts("GC can't handle 80286 executables: ");
1143 GC_err_puts(path); GC_err_puts("\n");
1144 EXIT();
1146 if (fseek(myexefile, E_LFANEW(hdrdos) + E32_OBJTAB(hdr386),
1147 SEEK_SET) != 0) {
1148 GC_err_puts("Seek to object table failed: ");
1149 GC_err_puts(path); GC_err_puts("\n");
1150 ABORT("Seek to object table failed");
1152 for (nsegs = E32_OBJCNT(hdr386); nsegs > 0; nsegs--) {
1153 int flags;
1154 if (fread((char *)(&seg), 1, sizeof seg, myexefile) < sizeof seg) {
1155 GC_err_puts("Couldn't read obj table entry from ");
1156 GC_err_puts(path); GC_err_puts("\n");
1157 ABORT("Couldn't read obj table entry");
1159 flags = O32_FLAGS(seg);
1160 if (!(flags & OBJWRITE)) continue;
1161 if (!(flags & OBJREAD)) continue;
1162 if (flags & OBJINVALID) {
1163 GC_err_printf0("Object with invalid pages?\n");
1164 continue;
1166 GC_add_roots_inner(O32_BASE(seg), O32_BASE(seg)+O32_SIZE(seg), FALSE);
1170 # else /* !OS2 */
1172 # if defined(MSWIN32) || defined(MSWINCE)
1174 # ifdef MSWIN32
1175 /* Unfortunately, we have to handle win32s very differently from NT, */
1176 /* Since VirtualQuery has very different semantics. In particular, */
1177 /* under win32s a VirtualQuery call on an unmapped page returns an */
1178 /* invalid result. Under NT, GC_register_data_segments is a noop and */
1179 /* all real work is done by GC_register_dynamic_libraries. Under */
1180 /* win32s, we cannot find the data segments associated with dll's. */
1181 /* We register the main data segment here. */
1182 GC_bool GC_no_win32_dlls = FALSE;
1183 /* This used to be set for gcc, to avoid dealing with */
1184 /* the structured exception handling issues. But we now have */
1185 /* assembly code to do that right. */
1186 GC_bool GC_wnt = FALSE;
1187 /* This is a Windows NT derivative, i.e. NT, W2K, XP or later. */
1189 void GC_init_win32()
1191 /* if we're running under win32s, assume that no DLLs will be loaded */
1192 DWORD v = GetVersion();
1193 GC_wnt = !(v & 0x80000000);
1194 GC_no_win32_dlls |= ((!GC_wnt) && (v & 0xff) <= 3);
1197 /* Return the smallest address a such that VirtualQuery */
1198 /* returns correct results for all addresses between a and start. */
1199 /* Assumes VirtualQuery returns correct information for start. */
1200 ptr_t GC_least_described_address(ptr_t start)
1202 MEMORY_BASIC_INFORMATION buf;
1203 DWORD result;
1204 LPVOID limit;
1205 ptr_t p;
1206 LPVOID q;
1208 limit = GC_sysinfo.lpMinimumApplicationAddress;
1209 p = (ptr_t)((word)start & ~(GC_page_size - 1));
1210 for (;;) {
1211 q = (LPVOID)(p - GC_page_size);
1212 if ((ptr_t)q > (ptr_t)p /* underflow */ || q < limit) break;
1213 result = VirtualQuery(q, &buf, sizeof(buf));
1214 if (result != sizeof(buf) || buf.AllocationBase == 0) break;
1215 p = (ptr_t)(buf.AllocationBase);
1217 return(p);
1219 # endif
1221 # ifndef REDIRECT_MALLOC
1222 /* We maintain a linked list of AllocationBase values that we know */
1223 /* correspond to malloc heap sections. Currently this is only called */
1224 /* during a GC. But there is some hope that for long running */
1225 /* programs we will eventually see most heap sections. */
1227 /* In the long run, it would be more reliable to occasionally walk */
1228 /* the malloc heap with HeapWalk on the default heap. But that */
1229 /* apparently works only for NT-based Windows. */
1231 /* In the long run, a better data structure would also be nice ... */
1232 struct GC_malloc_heap_list {
1233 void * allocation_base;
1234 struct GC_malloc_heap_list *next;
1235 } *GC_malloc_heap_l = 0;
1237 /* Is p the base of one of the malloc heap sections we already know */
1238 /* about? */
1239 GC_bool GC_is_malloc_heap_base(ptr_t p)
1241 struct GC_malloc_heap_list *q = GC_malloc_heap_l;
1243 while (0 != q) {
1244 if (q -> allocation_base == p) return TRUE;
1245 q = q -> next;
1247 return FALSE;
1250 void *GC_get_allocation_base(void *p)
1252 MEMORY_BASIC_INFORMATION buf;
1253 DWORD result = VirtualQuery(p, &buf, sizeof(buf));
1254 if (result != sizeof(buf)) {
1255 ABORT("Weird VirtualQuery result");
1257 return buf.AllocationBase;
1260 size_t GC_max_root_size = 100000; /* Appr. largest root size. */
1262 void GC_add_current_malloc_heap()
1264 struct GC_malloc_heap_list *new_l =
1265 malloc(sizeof(struct GC_malloc_heap_list));
1266 void * candidate = GC_get_allocation_base(new_l);
1268 if (new_l == 0) return;
1269 if (GC_is_malloc_heap_base(candidate)) {
1270 /* Try a little harder to find malloc heap. */
1271 size_t req_size = 10000;
1272 do {
1273 void *p = malloc(req_size);
1274 if (0 == p) { free(new_l); return; }
1275 candidate = GC_get_allocation_base(p);
1276 free(p);
1277 req_size *= 2;
1278 } while (GC_is_malloc_heap_base(candidate)
1279 && req_size < GC_max_root_size/10 && req_size < 500000);
1280 if (GC_is_malloc_heap_base(candidate)) {
1281 free(new_l); return;
1284 # ifdef CONDPRINT
1285 if (GC_print_stats)
1286 GC_printf1("Found new system malloc AllocationBase at 0x%lx\n",
1287 candidate);
1288 # endif
1289 new_l -> allocation_base = candidate;
1290 new_l -> next = GC_malloc_heap_l;
1291 GC_malloc_heap_l = new_l;
1293 # endif /* REDIRECT_MALLOC */
1295 /* Is p the start of either the malloc heap, or of one of our */
1296 /* heap sections? */
1297 GC_bool GC_is_heap_base (ptr_t p)
1300 unsigned i;
1302 # ifndef REDIRECT_MALLOC
1303 static word last_gc_no = -1;
1305 if (last_gc_no != GC_gc_no) {
1306 GC_add_current_malloc_heap();
1307 last_gc_no = GC_gc_no;
1309 if (GC_root_size > GC_max_root_size) GC_max_root_size = GC_root_size;
1310 if (GC_is_malloc_heap_base(p)) return TRUE;
1311 # endif
1312 for (i = 0; i < GC_n_heap_bases; i++) {
1313 if (GC_heap_bases[i] == p) return TRUE;
1315 return FALSE ;
1318 # ifdef MSWIN32
1319 void GC_register_root_section(ptr_t static_root)
1321 MEMORY_BASIC_INFORMATION buf;
1322 DWORD result;
1323 DWORD protect;
1324 LPVOID p;
1325 char * base;
1326 char * limit, * new_limit;
1328 if (!GC_no_win32_dlls) return;
1329 p = base = limit = GC_least_described_address(static_root);
1330 while (p < GC_sysinfo.lpMaximumApplicationAddress) {
1331 result = VirtualQuery(p, &buf, sizeof(buf));
1332 if (result != sizeof(buf) || buf.AllocationBase == 0
1333 || GC_is_heap_base(buf.AllocationBase)) break;
1334 new_limit = (char *)p + buf.RegionSize;
1335 protect = buf.Protect;
1336 if (buf.State == MEM_COMMIT
1337 && is_writable(protect)) {
1338 if ((char *)p == limit) {
1339 limit = new_limit;
1340 } else {
1341 if (base != limit) GC_add_roots_inner(base, limit, FALSE);
1342 base = p;
1343 limit = new_limit;
1346 if (p > (LPVOID)new_limit /* overflow */) break;
1347 p = (LPVOID)new_limit;
1349 if (base != limit) GC_add_roots_inner(base, limit, FALSE);
1351 #endif
1353 void GC_register_data_segments()
1355 # ifdef MSWIN32
1356 static char dummy;
1357 GC_register_root_section((ptr_t)(&dummy));
1358 # endif
1361 # else /* !OS2 && !Windows */
1363 # if (defined(SVR4) || defined(AUX) || defined(DGUX) \
1364 || (defined(LINUX) && defined(SPARC))) && !defined(PCR)
1365 ptr_t GC_SysVGetDataStart(max_page_size, etext_addr)
1366 int max_page_size;
1367 int * etext_addr;
1369 word text_end = ((word)(etext_addr) + sizeof(word) - 1)
1370 & ~(sizeof(word) - 1);
1371 /* etext rounded to word boundary */
1372 word next_page = ((text_end + (word)max_page_size - 1)
1373 & ~((word)max_page_size - 1));
1374 word page_offset = (text_end & ((word)max_page_size - 1));
1375 VOLATILE char * result = (char *)(next_page + page_offset);
1376 /* Note that this isnt equivalent to just adding */
1377 /* max_page_size to &etext if &etext is at a page boundary */
1379 GC_setup_temporary_fault_handler();
1380 if (SETJMP(GC_jmp_buf) == 0) {
1381 /* Try writing to the address. */
1382 *result = *result;
1383 GC_reset_fault_handler();
1384 } else {
1385 GC_reset_fault_handler();
1386 /* We got here via a longjmp. The address is not readable. */
1387 /* This is known to happen under Solaris 2.4 + gcc, which place */
1388 /* string constants in the text segment, but after etext. */
1389 /* Use plan B. Note that we now know there is a gap between */
1390 /* text and data segments, so plan A bought us something. */
1391 result = (char *)GC_find_limit((ptr_t)(DATAEND), FALSE);
1393 return((ptr_t)result);
1395 # endif
1397 # if defined(FREEBSD) && (defined(I386) || defined(X86_64) || defined(powerpc) || defined(__powerpc__)) && !defined(PCR)
1398 /* Its unclear whether this should be identical to the above, or */
1399 /* whether it should apply to non-X86 architectures. */
1400 /* For now we don't assume that there is always an empty page after */
1401 /* etext. But in some cases there actually seems to be slightly more. */
1402 /* This also deals with holes between read-only data and writable data. */
1403 ptr_t GC_FreeBSDGetDataStart(max_page_size, etext_addr)
1404 int max_page_size;
1405 int * etext_addr;
1407 word text_end = ((word)(etext_addr) + sizeof(word) - 1)
1408 & ~(sizeof(word) - 1);
1409 /* etext rounded to word boundary */
1410 VOLATILE word next_page = (text_end + (word)max_page_size - 1)
1411 & ~((word)max_page_size - 1);
1412 VOLATILE ptr_t result = (ptr_t)text_end;
1413 GC_setup_temporary_fault_handler();
1414 if (SETJMP(GC_jmp_buf) == 0) {
1415 /* Try reading at the address. */
1416 /* This should happen before there is another thread. */
1417 for (; next_page < (word)(DATAEND); next_page += (word)max_page_size)
1418 *(VOLATILE char *)next_page;
1419 GC_reset_fault_handler();
1420 } else {
1421 GC_reset_fault_handler();
1422 /* As above, we go to plan B */
1423 result = GC_find_limit((ptr_t)(DATAEND), FALSE);
1425 return(result);
1428 # endif
1431 #ifdef AMIGA
1433 # define GC_AMIGA_DS
1434 # include "AmigaOS.c"
1435 # undef GC_AMIGA_DS
1437 #else /* !OS2 && !Windows && !AMIGA */
1439 void GC_register_data_segments()
1441 # if !defined(PCR) && !defined(SRC_M3) && !defined(MACOS)
1442 # if defined(REDIRECT_MALLOC) && defined(GC_SOLARIS_THREADS)
1443 /* As of Solaris 2.3, the Solaris threads implementation */
1444 /* allocates the data structure for the initial thread with */
1445 /* sbrk at process startup. It needs to be scanned, so that */
1446 /* we don't lose some malloc allocated data structures */
1447 /* hanging from it. We're on thin ice here ... */
1448 extern caddr_t sbrk();
1450 GC_add_roots_inner(DATASTART, (char *)sbrk(0), FALSE);
1451 # else
1452 GC_add_roots_inner(DATASTART, (char *)(DATAEND), FALSE);
1453 # if defined(DATASTART2)
1454 GC_add_roots_inner(DATASTART2, (char *)(DATAEND2), FALSE);
1455 # endif
1456 # endif
1457 # endif
1458 # if defined(MACOS)
1460 # if defined(THINK_C)
1461 extern void* GC_MacGetDataStart(void);
1462 /* globals begin above stack and end at a5. */
1463 GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1464 (ptr_t)LMGetCurrentA5(), FALSE);
1465 # else
1466 # if defined(__MWERKS__)
1467 # if !__POWERPC__
1468 extern void* GC_MacGetDataStart(void);
1469 /* MATTHEW: Function to handle Far Globals (CW Pro 3) */
1470 # if __option(far_data)
1471 extern void* GC_MacGetDataEnd(void);
1472 # endif
1473 /* globals begin above stack and end at a5. */
1474 GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1475 (ptr_t)LMGetCurrentA5(), FALSE);
1476 /* MATTHEW: Handle Far Globals */
1477 # if __option(far_data)
1478 /* Far globals follow he QD globals: */
1479 GC_add_roots_inner((ptr_t)LMGetCurrentA5(),
1480 (ptr_t)GC_MacGetDataEnd(), FALSE);
1481 # endif
1482 # else
1483 extern char __data_start__[], __data_end__[];
1484 GC_add_roots_inner((ptr_t)&__data_start__,
1485 (ptr_t)&__data_end__, FALSE);
1486 # endif /* __POWERPC__ */
1487 # endif /* __MWERKS__ */
1488 # endif /* !THINK_C */
1490 # endif /* MACOS */
1492 /* Dynamic libraries are added at every collection, since they may */
1493 /* change. */
1496 # endif /* ! AMIGA */
1497 # endif /* ! MSWIN32 && ! MSWINCE*/
1498 # endif /* ! OS2 */
1501 * Auxiliary routines for obtaining memory from OS.
1504 # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) \
1505 && !defined(MSWIN32) && !defined(MSWINCE) \
1506 && !defined(MACOS) && !defined(DOS4GW)
1508 # ifdef SUNOS4
1509 extern caddr_t sbrk();
1510 # endif
1511 # ifdef __STDC__
1512 # define SBRK_ARG_T ptrdiff_t
1513 # else
1514 # define SBRK_ARG_T int
1515 # endif
1518 # if 0 && defined(RS6000) /* We now use mmap */
1519 /* The compiler seems to generate speculative reads one past the end of */
1520 /* an allocated object. Hence we need to make sure that the page */
1521 /* following the last heap page is also mapped. */
1522 ptr_t GC_unix_get_mem(bytes)
1523 word bytes;
1525 caddr_t cur_brk = (caddr_t)sbrk(0);
1526 caddr_t result;
1527 SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1528 static caddr_t my_brk_val = 0;
1530 if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1531 if (lsbs != 0) {
1532 if((caddr_t)(sbrk(GC_page_size - lsbs)) == (caddr_t)(-1)) return(0);
1534 if (cur_brk == my_brk_val) {
1535 /* Use the extra block we allocated last time. */
1536 result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1537 if (result == (caddr_t)(-1)) return(0);
1538 result -= GC_page_size;
1539 } else {
1540 result = (ptr_t)sbrk(GC_page_size + (SBRK_ARG_T)bytes);
1541 if (result == (caddr_t)(-1)) return(0);
1543 my_brk_val = result + bytes + GC_page_size; /* Always page aligned */
1544 return((ptr_t)result);
1547 #else /* Not RS6000 */
1549 #if defined(USE_MMAP) || defined(USE_MUNMAP)
1551 #ifdef USE_MMAP_FIXED
1552 # define GC_MMAP_FLAGS MAP_FIXED | MAP_PRIVATE
1553 /* Seems to yield better performance on Solaris 2, but can */
1554 /* be unreliable if something is already mapped at the address. */
1555 #else
1556 # define GC_MMAP_FLAGS MAP_PRIVATE
1557 #endif
1559 #ifdef USE_MMAP_ANON
1560 # define zero_fd -1
1561 # if defined(MAP_ANONYMOUS)
1562 # define OPT_MAP_ANON MAP_ANONYMOUS
1563 # else
1564 # define OPT_MAP_ANON MAP_ANON
1565 # endif
1566 #else
1567 static int zero_fd;
1568 # define OPT_MAP_ANON 0
1569 #endif
1571 #endif /* defined(USE_MMAP) || defined(USE_MUNMAP) */
1573 #if defined(USE_MMAP)
1574 /* Tested only under Linux, IRIX5 and Solaris 2 */
1576 #ifndef HEAP_START
1577 # define HEAP_START 0
1578 #endif
1580 ptr_t GC_unix_get_mem(bytes)
1581 word bytes;
1583 void *result;
1584 static ptr_t last_addr = HEAP_START;
1586 # ifndef USE_MMAP_ANON
1587 static GC_bool initialized = FALSE;
1589 if (!initialized) {
1590 zero_fd = open("/dev/zero", O_RDONLY);
1591 fcntl(zero_fd, F_SETFD, FD_CLOEXEC);
1592 initialized = TRUE;
1594 # endif
1596 if (bytes & (GC_page_size -1)) ABORT("Bad GET_MEM arg");
1597 result = mmap(last_addr, bytes, PROT_READ | PROT_WRITE | OPT_PROT_EXEC,
1598 GC_MMAP_FLAGS | OPT_MAP_ANON, zero_fd, 0/* offset */);
1599 if (result == MAP_FAILED) return(0);
1600 last_addr = (ptr_t)result + bytes + GC_page_size - 1;
1601 last_addr = (ptr_t)((word)last_addr & ~(GC_page_size - 1));
1602 # if !defined(LINUX)
1603 if (last_addr == 0) {
1604 /* Oops. We got the end of the address space. This isn't */
1605 /* usable by arbitrary C code, since one-past-end pointers */
1606 /* don't work, so we discard it and try again. */
1607 munmap(result, (size_t)(-GC_page_size) - (size_t)result);
1608 /* Leave last page mapped, so we can't repeat. */
1609 return GC_unix_get_mem(bytes);
1611 # else
1612 GC_ASSERT(last_addr != 0);
1613 # endif
1614 return((ptr_t)result);
1617 #else /* Not RS6000, not USE_MMAP */
1618 ptr_t GC_unix_get_mem(bytes)
1619 word bytes;
1621 ptr_t result;
1622 # ifdef IRIX5
1623 /* Bare sbrk isn't thread safe. Play by malloc rules. */
1624 /* The equivalent may be needed on other systems as well. */
1625 __LOCK_MALLOC();
1626 # endif
1628 ptr_t cur_brk = (ptr_t)sbrk(0);
1629 SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1631 if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1632 if (lsbs != 0) {
1633 if((ptr_t)sbrk(GC_page_size - lsbs) == (ptr_t)(-1)) return(0);
1635 result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1636 if (result == (ptr_t)(-1)) result = 0;
1638 # ifdef IRIX5
1639 __UNLOCK_MALLOC();
1640 # endif
1641 return(result);
1644 #endif /* Not USE_MMAP */
1645 #endif /* Not RS6000 */
1647 # endif /* UN*X */
1649 # ifdef OS2
1651 void * os2_alloc(size_t bytes)
1653 void * result;
1655 if (DosAllocMem(&result, bytes, PAG_EXECUTE | PAG_READ |
1656 PAG_WRITE | PAG_COMMIT)
1657 != NO_ERROR) {
1658 return(0);
1660 if (result == 0) return(os2_alloc(bytes));
1661 return(result);
1664 # endif /* OS2 */
1667 # if defined(MSWIN32) || defined(MSWINCE)
1668 SYSTEM_INFO GC_sysinfo;
1669 # endif
1671 # ifdef MSWIN32
1673 # ifdef USE_GLOBAL_ALLOC
1674 # define GLOBAL_ALLOC_TEST 1
1675 # else
1676 # define GLOBAL_ALLOC_TEST GC_no_win32_dlls
1677 # endif
1679 word GC_n_heap_bases = 0;
1681 ptr_t GC_win32_get_mem(bytes)
1682 word bytes;
1684 ptr_t result;
1686 if (GLOBAL_ALLOC_TEST) {
1687 /* VirtualAlloc doesn't like PAGE_EXECUTE_READWRITE. */
1688 /* There are also unconfirmed rumors of other */
1689 /* problems, so we dodge the issue. */
1690 result = (ptr_t) GlobalAlloc(0, bytes + HBLKSIZE);
1691 result = (ptr_t)(((word)result + HBLKSIZE) & ~(HBLKSIZE-1));
1692 } else {
1693 /* VirtualProtect only works on regions returned by a */
1694 /* single VirtualAlloc call. Thus we allocate one */
1695 /* extra page, which will prevent merging of blocks */
1696 /* in separate regions, and eliminate any temptation */
1697 /* to call VirtualProtect on a range spanning regions. */
1698 /* This wastes a small amount of memory, and risks */
1699 /* increased fragmentation. But better alternatives */
1700 /* would require effort. */
1701 result = (ptr_t) VirtualAlloc(NULL, bytes + 1,
1702 MEM_COMMIT | MEM_RESERVE,
1703 PAGE_EXECUTE_READWRITE);
1705 if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1706 /* If I read the documentation correctly, this can */
1707 /* only happen if HBLKSIZE > 64k or not a power of 2. */
1708 if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
1709 GC_heap_bases[GC_n_heap_bases++] = result;
1710 return(result);
1713 void GC_win32_free_heap ()
1715 if (GC_no_win32_dlls) {
1716 while (GC_n_heap_bases > 0) {
1717 GlobalFree (GC_heap_bases[--GC_n_heap_bases]);
1718 GC_heap_bases[GC_n_heap_bases] = 0;
1722 # endif
1724 #ifdef AMIGA
1725 # define GC_AMIGA_AM
1726 # include "AmigaOS.c"
1727 # undef GC_AMIGA_AM
1728 #endif
1731 # ifdef MSWINCE
1732 word GC_n_heap_bases = 0;
1734 ptr_t GC_wince_get_mem(bytes)
1735 word bytes;
1737 ptr_t result;
1738 word i;
1740 /* Round up allocation size to multiple of page size */
1741 bytes = (bytes + GC_page_size-1) & ~(GC_page_size-1);
1743 /* Try to find reserved, uncommitted pages */
1744 for (i = 0; i < GC_n_heap_bases; i++) {
1745 if (((word)(-(signed_word)GC_heap_lengths[i])
1746 & (GC_sysinfo.dwAllocationGranularity-1))
1747 >= bytes) {
1748 result = GC_heap_bases[i] + GC_heap_lengths[i];
1749 break;
1753 if (i == GC_n_heap_bases) {
1754 /* Reserve more pages */
1755 word res_bytes = (bytes + GC_sysinfo.dwAllocationGranularity-1)
1756 & ~(GC_sysinfo.dwAllocationGranularity-1);
1757 /* If we ever support MPROTECT_VDB here, we will probably need to */
1758 /* ensure that res_bytes is strictly > bytes, so that VirtualProtect */
1759 /* never spans regions. It seems to be OK for a VirtualFree argument */
1760 /* to span regions, so we should be OK for now. */
1761 result = (ptr_t) VirtualAlloc(NULL, res_bytes,
1762 MEM_RESERVE | MEM_TOP_DOWN,
1763 PAGE_EXECUTE_READWRITE);
1764 if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1765 /* If I read the documentation correctly, this can */
1766 /* only happen if HBLKSIZE > 64k or not a power of 2. */
1767 if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
1768 GC_heap_bases[GC_n_heap_bases] = result;
1769 GC_heap_lengths[GC_n_heap_bases] = 0;
1770 GC_n_heap_bases++;
1773 /* Commit pages */
1774 result = (ptr_t) VirtualAlloc(result, bytes,
1775 MEM_COMMIT,
1776 PAGE_EXECUTE_READWRITE);
1777 if (result != NULL) {
1778 if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1779 GC_heap_lengths[i] += bytes;
1782 return(result);
1784 # endif
1786 #ifdef USE_MUNMAP
1788 /* For now, this only works on Win32/WinCE and some Unix-like */
1789 /* systems. If you have something else, don't define */
1790 /* USE_MUNMAP. */
1791 /* We assume ANSI C to support this feature. */
1793 #if !defined(MSWIN32) && !defined(MSWINCE)
1795 #include <unistd.h>
1796 #include <sys/mman.h>
1797 #include <sys/stat.h>
1798 #include <sys/types.h>
1800 #endif
1802 /* Compute a page aligned starting address for the unmap */
1803 /* operation on a block of size bytes starting at start. */
1804 /* Return 0 if the block is too small to make this feasible. */
1805 ptr_t GC_unmap_start(ptr_t start, word bytes)
1807 ptr_t result = start;
1808 /* Round start to next page boundary. */
1809 result += GC_page_size - 1;
1810 result = (ptr_t)((word)result & ~(GC_page_size - 1));
1811 if (result + GC_page_size > start + bytes) return 0;
1812 return result;
1815 /* Compute end address for an unmap operation on the indicated */
1816 /* block. */
1817 ptr_t GC_unmap_end(ptr_t start, word bytes)
1819 ptr_t end_addr = start + bytes;
1820 end_addr = (ptr_t)((word)end_addr & ~(GC_page_size - 1));
1821 return end_addr;
1824 /* Under Win32/WinCE we commit (map) and decommit (unmap) */
1825 /* memory using VirtualAlloc and VirtualFree. These functions */
1826 /* work on individual allocations of virtual memory, made */
1827 /* previously using VirtualAlloc with the MEM_RESERVE flag. */
1828 /* The ranges we need to (de)commit may span several of these */
1829 /* allocations; therefore we use VirtualQuery to check */
1830 /* allocation lengths, and split up the range as necessary. */
1832 /* We assume that GC_remap is called on exactly the same range */
1833 /* as a previous call to GC_unmap. It is safe to consistently */
1834 /* round the endpoints in both places. */
1835 void GC_unmap(ptr_t start, word bytes)
1837 ptr_t start_addr = GC_unmap_start(start, bytes);
1838 ptr_t end_addr = GC_unmap_end(start, bytes);
1839 word len = end_addr - start_addr;
1840 if (0 == start_addr) return;
1841 # if defined(MSWIN32) || defined(MSWINCE)
1842 while (len != 0) {
1843 MEMORY_BASIC_INFORMATION mem_info;
1844 GC_word free_len;
1845 if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
1846 != sizeof(mem_info))
1847 ABORT("Weird VirtualQuery result");
1848 free_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
1849 if (!VirtualFree(start_addr, free_len, MEM_DECOMMIT))
1850 ABORT("VirtualFree failed");
1851 GC_unmapped_bytes += free_len;
1852 start_addr += free_len;
1853 len -= free_len;
1855 # else
1856 /* We immediately remap it to prevent an intervening mmap from */
1857 /* accidentally grabbing the same address space. */
1859 void * result;
1860 result = mmap(start_addr, len, PROT_NONE,
1861 MAP_PRIVATE | MAP_FIXED | OPT_MAP_ANON,
1862 zero_fd, 0/* offset */);
1863 if (result != (void *)start_addr) ABORT("mmap(...PROT_NONE...) failed");
1865 GC_unmapped_bytes += len;
1866 # endif
1870 void GC_remap(ptr_t start, word bytes)
1872 ptr_t start_addr = GC_unmap_start(start, bytes);
1873 ptr_t end_addr = GC_unmap_end(start, bytes);
1874 word len = end_addr - start_addr;
1876 # if defined(MSWIN32) || defined(MSWINCE)
1877 ptr_t result;
1879 if (0 == start_addr) return;
1880 while (len != 0) {
1881 MEMORY_BASIC_INFORMATION mem_info;
1882 GC_word alloc_len;
1883 if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
1884 != sizeof(mem_info))
1885 ABORT("Weird VirtualQuery result");
1886 alloc_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
1887 result = VirtualAlloc(start_addr, alloc_len,
1888 MEM_COMMIT,
1889 PAGE_EXECUTE_READWRITE);
1890 if (result != start_addr) {
1891 ABORT("VirtualAlloc remapping failed");
1893 GC_unmapped_bytes -= alloc_len;
1894 start_addr += alloc_len;
1895 len -= alloc_len;
1897 # else
1898 /* It was already remapped with PROT_NONE. */
1899 int result;
1901 if (0 == start_addr) return;
1902 result = mprotect(start_addr, len,
1903 PROT_READ | PROT_WRITE | OPT_PROT_EXEC);
1904 if (result != 0) {
1905 GC_err_printf3(
1906 "Mprotect failed at 0x%lx (length %ld) with errno %ld\n",
1907 start_addr, len, errno);
1908 ABORT("Mprotect remapping failed");
1910 GC_unmapped_bytes -= len;
1911 # endif
1914 /* Two adjacent blocks have already been unmapped and are about to */
1915 /* be merged. Unmap the whole block. This typically requires */
1916 /* that we unmap a small section in the middle that was not previously */
1917 /* unmapped due to alignment constraints. */
1918 void GC_unmap_gap(ptr_t start1, word bytes1, ptr_t start2, word bytes2)
1920 ptr_t start1_addr = GC_unmap_start(start1, bytes1);
1921 ptr_t end1_addr = GC_unmap_end(start1, bytes1);
1922 ptr_t start2_addr = GC_unmap_start(start2, bytes2);
1923 ptr_t end2_addr = GC_unmap_end(start2, bytes2);
1924 ptr_t start_addr = end1_addr;
1925 ptr_t end_addr = start2_addr;
1926 word len;
1927 GC_ASSERT(start1 + bytes1 == start2);
1928 if (0 == start1_addr) start_addr = GC_unmap_start(start1, bytes1 + bytes2);
1929 if (0 == start2_addr) end_addr = GC_unmap_end(start1, bytes1 + bytes2);
1930 if (0 == start_addr) return;
1931 len = end_addr - start_addr;
1932 # if defined(MSWIN32) || defined(MSWINCE)
1933 while (len != 0) {
1934 MEMORY_BASIC_INFORMATION mem_info;
1935 GC_word free_len;
1936 if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
1937 != sizeof(mem_info))
1938 ABORT("Weird VirtualQuery result");
1939 free_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
1940 if (!VirtualFree(start_addr, free_len, MEM_DECOMMIT))
1941 ABORT("VirtualFree failed");
1942 GC_unmapped_bytes += free_len;
1943 start_addr += free_len;
1944 len -= free_len;
1946 # else
1947 if (len != 0 && munmap(start_addr, len) != 0) ABORT("munmap failed");
1948 GC_unmapped_bytes += len;
1949 # endif
1952 #endif /* USE_MUNMAP */
1954 /* Routine for pushing any additional roots. In THREADS */
1955 /* environment, this is also responsible for marking from */
1956 /* thread stacks. */
1957 #ifndef THREADS
1958 void (*GC_push_other_roots)() = 0;
1959 #else /* THREADS */
1961 # ifdef PCR
1962 PCR_ERes GC_push_thread_stack(PCR_Th_T *t, PCR_Any dummy)
1964 struct PCR_ThCtl_TInfoRep info;
1965 PCR_ERes result;
1967 info.ti_stkLow = info.ti_stkHi = 0;
1968 result = PCR_ThCtl_GetInfo(t, &info);
1969 GC_push_all_stack((ptr_t)(info.ti_stkLow), (ptr_t)(info.ti_stkHi));
1970 return(result);
1973 /* Push the contents of an old object. We treat this as stack */
1974 /* data only becasue that makes it robust against mark stack */
1975 /* overflow. */
1976 PCR_ERes GC_push_old_obj(void *p, size_t size, PCR_Any data)
1978 GC_push_all_stack((ptr_t)p, (ptr_t)p + size);
1979 return(PCR_ERes_okay);
1983 void GC_default_push_other_roots GC_PROTO((void))
1985 /* Traverse data allocated by previous memory managers. */
1987 extern struct PCR_MM_ProcsRep * GC_old_allocator;
1989 if ((*(GC_old_allocator->mmp_enumerate))(PCR_Bool_false,
1990 GC_push_old_obj, 0)
1991 != PCR_ERes_okay) {
1992 ABORT("Old object enumeration failed");
1995 /* Traverse all thread stacks. */
1996 if (PCR_ERes_IsErr(
1997 PCR_ThCtl_ApplyToAllOtherThreads(GC_push_thread_stack,0))
1998 || PCR_ERes_IsErr(GC_push_thread_stack(PCR_Th_CurrThread(), 0))) {
1999 ABORT("Thread stack marking failed\n");
2003 # endif /* PCR */
2005 # ifdef SRC_M3
2007 # ifdef ALL_INTERIOR_POINTERS
2008 --> misconfigured
2009 # endif
2011 void GC_push_thread_structures GC_PROTO((void))
2013 /* Not our responsibibility. */
2016 extern void ThreadF__ProcessStacks();
2018 void GC_push_thread_stack(start, stop)
2019 word start, stop;
2021 GC_push_all_stack((ptr_t)start, (ptr_t)stop + sizeof(word));
2024 /* Push routine with M3 specific calling convention. */
2025 GC_m3_push_root(dummy1, p, dummy2, dummy3)
2026 word *p;
2027 ptr_t dummy1, dummy2;
2028 int dummy3;
2030 word q = *p;
2032 GC_PUSH_ONE_STACK(q, p);
2035 /* M3 set equivalent to RTHeap.TracedRefTypes */
2036 typedef struct { int elts[1]; } RefTypeSet;
2037 RefTypeSet GC_TracedRefTypes = {{0x1}};
2039 void GC_default_push_other_roots GC_PROTO((void))
2041 /* Use the M3 provided routine for finding static roots. */
2042 /* This is a bit dubious, since it presumes no C roots. */
2043 /* We handle the collector roots explicitly in GC_push_roots */
2044 RTMain__GlobalMapProc(GC_m3_push_root, 0, GC_TracedRefTypes);
2045 if (GC_words_allocd > 0) {
2046 ThreadF__ProcessStacks(GC_push_thread_stack);
2048 /* Otherwise this isn't absolutely necessary, and we have */
2049 /* startup ordering problems. */
2052 # endif /* SRC_M3 */
2054 # if defined(GC_SOLARIS_THREADS) || defined(GC_PTHREADS) || \
2055 defined(GC_WIN32_THREADS)
2057 extern void GC_push_all_stacks();
2059 void GC_default_push_other_roots GC_PROTO((void))
2061 GC_push_all_stacks();
2064 # endif /* GC_SOLARIS_THREADS || GC_PTHREADS */
2066 void (*GC_push_other_roots) GC_PROTO((void)) = GC_default_push_other_roots;
2068 #endif /* THREADS */
2071 * Routines for accessing dirty bits on virtual pages.
2072 * We plan to eventually implement four strategies for doing so:
2073 * DEFAULT_VDB: A simple dummy implementation that treats every page
2074 * as possibly dirty. This makes incremental collection
2075 * useless, but the implementation is still correct.
2076 * PCR_VDB: Use PPCRs virtual dirty bit facility.
2077 * PROC_VDB: Use the /proc facility for reading dirty bits. Only
2078 * works under some SVR4 variants. Even then, it may be
2079 * too slow to be entirely satisfactory. Requires reading
2080 * dirty bits for entire address space. Implementations tend
2081 * to assume that the client is a (slow) debugger.
2082 * MPROTECT_VDB:Protect pages and then catch the faults to keep track of
2083 * dirtied pages. The implementation (and implementability)
2084 * is highly system dependent. This usually fails when system
2085 * calls write to a protected page. We prevent the read system
2086 * call from doing so. It is the clients responsibility to
2087 * make sure that other system calls are similarly protected
2088 * or write only to the stack.
2090 GC_bool GC_dirty_maintained = FALSE;
2092 # ifdef DEFAULT_VDB
2094 /* All of the following assume the allocation lock is held, and */
2095 /* signals are disabled. */
2097 /* The client asserts that unallocated pages in the heap are never */
2098 /* written. */
2100 /* Initialize virtual dirty bit implementation. */
2101 void GC_dirty_init()
2103 # ifdef PRINTSTATS
2104 GC_printf0("Initializing DEFAULT_VDB...\n");
2105 # endif
2106 GC_dirty_maintained = TRUE;
2109 /* Retrieve system dirty bits for heap to a local buffer. */
2110 /* Restore the systems notion of which pages are dirty. */
2111 void GC_read_dirty()
2114 /* Is the HBLKSIZE sized page at h marked dirty in the local buffer? */
2115 /* If the actual page size is different, this returns TRUE if any */
2116 /* of the pages overlapping h are dirty. This routine may err on the */
2117 /* side of labelling pages as dirty (and this implementation does). */
2118 /*ARGSUSED*/
2119 GC_bool GC_page_was_dirty(h)
2120 struct hblk *h;
2122 return(TRUE);
2126 * The following two routines are typically less crucial. They matter
2127 * most with large dynamic libraries, or if we can't accurately identify
2128 * stacks, e.g. under Solaris 2.X. Otherwise the following default
2129 * versions are adequate.
2132 /* Could any valid GC heap pointer ever have been written to this page? */
2133 /*ARGSUSED*/
2134 GC_bool GC_page_was_ever_dirty(h)
2135 struct hblk *h;
2137 return(TRUE);
2140 /* Reset the n pages starting at h to "was never dirty" status. */
2141 void GC_is_fresh(h, n)
2142 struct hblk *h;
2143 word n;
2147 /* A call that: */
2148 /* I) hints that [h, h+nblocks) is about to be written. */
2149 /* II) guarantees that protection is removed. */
2150 /* (I) may speed up some dirty bit implementations. */
2151 /* (II) may be essential if we need to ensure that */
2152 /* pointer-free system call buffers in the heap are */
2153 /* not protected. */
2154 /*ARGSUSED*/
2155 void GC_remove_protection(h, nblocks, is_ptrfree)
2156 struct hblk *h;
2157 word nblocks;
2158 GC_bool is_ptrfree;
2162 # endif /* DEFAULT_VDB */
2165 # ifdef MPROTECT_VDB
2168 * See DEFAULT_VDB for interface descriptions.
2172 * This implementation maintains dirty bits itself by catching write
2173 * faults and keeping track of them. We assume nobody else catches
2174 * SIGBUS or SIGSEGV. We assume no write faults occur in system calls.
2175 * This means that clients must ensure that system calls don't write
2176 * to the write-protected heap. Probably the best way to do this is to
2177 * ensure that system calls write at most to POINTERFREE objects in the
2178 * heap, and do even that only if we are on a platform on which those
2179 * are not protected. Another alternative is to wrap system calls
2180 * (see example for read below), but the current implementation holds
2181 * a lock across blocking calls, making it problematic for multithreaded
2182 * applications.
2183 * We assume the page size is a multiple of HBLKSIZE.
2184 * We prefer them to be the same. We avoid protecting POINTERFREE
2185 * objects only if they are the same.
2188 # if !defined(MSWIN32) && !defined(MSWINCE) && !defined(DARWIN)
2190 # include <sys/mman.h>
2191 # include <signal.h>
2192 # include <sys/syscall.h>
2194 # define PROTECT(addr, len) \
2195 if (mprotect((caddr_t)(addr), (size_t)(len), \
2196 PROT_READ | OPT_PROT_EXEC) < 0) { \
2197 ABORT("mprotect failed"); \
2199 # define UNPROTECT(addr, len) \
2200 if (mprotect((caddr_t)(addr), (size_t)(len), \
2201 PROT_WRITE | PROT_READ | OPT_PROT_EXEC ) < 0) { \
2202 ABORT("un-mprotect failed"); \
2205 # else
2207 # ifdef DARWIN
2208 /* Using vm_protect (mach syscall) over mprotect (BSD syscall) seems to
2209 decrease the likelihood of some of the problems described below. */
2210 #include <mach/vm_map.h>
2211 static mach_port_t GC_task_self;
2212 #define PROTECT(addr,len) \
2213 if(vm_protect(GC_task_self,(vm_address_t)(addr),(vm_size_t)(len), \
2214 FALSE,VM_PROT_READ) != KERN_SUCCESS) { \
2215 ABORT("vm_portect failed"); \
2217 #define UNPROTECT(addr,len) \
2218 if(vm_protect(GC_task_self,(vm_address_t)(addr),(vm_size_t)(len), \
2219 FALSE,VM_PROT_READ|VM_PROT_WRITE) != KERN_SUCCESS) { \
2220 ABORT("vm_portect failed"); \
2222 # else
2224 # ifndef MSWINCE
2225 # include <signal.h>
2226 # endif
2228 static DWORD protect_junk;
2229 # define PROTECT(addr, len) \
2230 if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READ, \
2231 &protect_junk)) { \
2232 DWORD last_error = GetLastError(); \
2233 GC_printf1("Last error code: %lx\n", last_error); \
2234 ABORT("VirtualProtect failed"); \
2236 # define UNPROTECT(addr, len) \
2237 if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READWRITE, \
2238 &protect_junk)) { \
2239 ABORT("un-VirtualProtect failed"); \
2241 # endif /* !DARWIN */
2242 # endif /* MSWIN32 || MSWINCE || DARWIN */
2244 #if defined(SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2245 typedef void (* SIG_PF)();
2246 #endif /* SUNOS4 || (FREEBSD && !SUNOS5SIGS) */
2248 #if defined(SUNOS5SIGS) || defined(OSF1) || defined(LINUX) \
2249 || defined(HURD)
2250 # ifdef __STDC__
2251 typedef void (* SIG_PF)(int);
2252 # else
2253 typedef void (* SIG_PF)();
2254 # endif
2255 #endif /* SUNOS5SIGS || OSF1 || LINUX || HURD */
2257 #if defined(MSWIN32)
2258 typedef LPTOP_LEVEL_EXCEPTION_FILTER SIG_PF;
2259 # undef SIG_DFL
2260 # define SIG_DFL (LPTOP_LEVEL_EXCEPTION_FILTER) (-1)
2261 #endif
2262 #if defined(MSWINCE)
2263 typedef LONG (WINAPI *SIG_PF)(struct _EXCEPTION_POINTERS *);
2264 # undef SIG_DFL
2265 # define SIG_DFL (SIG_PF) (-1)
2266 #endif
2268 #if defined(IRIX5) || defined(OSF1) || defined(HURD)
2269 typedef void (* REAL_SIG_PF)(int, int, struct sigcontext *);
2270 #endif /* IRIX5 || OSF1 || HURD */
2272 #if defined(SUNOS5SIGS)
2273 # if defined(HPUX) || defined(FREEBSD)
2274 # define SIGINFO_T siginfo_t
2275 # else
2276 # define SIGINFO_T struct siginfo
2277 # endif
2278 # ifdef __STDC__
2279 typedef void (* REAL_SIG_PF)(int, SIGINFO_T *, void *);
2280 # else
2281 typedef void (* REAL_SIG_PF)();
2282 # endif
2283 #endif /* SUNOS5SIGS */
2285 #if defined(LINUX)
2286 # if __GLIBC__ > 2 || __GLIBC__ == 2 && __GLIBC_MINOR__ >= 2
2287 typedef struct sigcontext s_c;
2288 # else /* glibc < 2.2 */
2289 # include <linux/version.h>
2290 # if (LINUX_VERSION_CODE >= 0x20100) && !defined(M68K) || defined(ALPHA) || defined(ARM32)
2291 typedef struct sigcontext s_c;
2292 # else
2293 typedef struct sigcontext_struct s_c;
2294 # endif
2295 # endif /* glibc < 2.2 */
2296 # if defined(ALPHA) || defined(M68K)
2297 typedef void (* REAL_SIG_PF)(int, int, s_c *);
2298 # else
2299 # if defined(IA64) || defined(HP_PA) || defined(X86_64)
2300 typedef void (* REAL_SIG_PF)(int, siginfo_t *, s_c *);
2301 /* FIXME: */
2302 /* According to SUSV3, the last argument should have type */
2303 /* void * or ucontext_t * */
2304 # else
2305 typedef void (* REAL_SIG_PF)(int, s_c);
2306 # endif
2307 # endif
2308 # ifdef ALPHA
2309 /* Retrieve fault address from sigcontext structure by decoding */
2310 /* instruction. */
2311 char * get_fault_addr(s_c *sc) {
2312 unsigned instr;
2313 word faultaddr;
2315 instr = *((unsigned *)(sc->sc_pc));
2316 faultaddr = sc->sc_regs[(instr >> 16) & 0x1f];
2317 faultaddr += (word) (((int)instr << 16) >> 16);
2318 return (char *)faultaddr;
2320 # endif /* !ALPHA */
2321 # endif /* LINUX */
2323 #ifndef DARWIN
2324 SIG_PF GC_old_bus_handler;
2325 SIG_PF GC_old_segv_handler; /* Also old MSWIN32 ACCESS_VIOLATION filter */
2326 #endif /* !DARWIN */
2328 #if defined(THREADS)
2329 /* We need to lock around the bitmap update in the write fault handler */
2330 /* in order to avoid the risk of losing a bit. We do this with a */
2331 /* test-and-set spin lock if we know how to do that. Otherwise we */
2332 /* check whether we are already in the handler and use the dumb but */
2333 /* safe fallback algorithm of setting all bits in the word. */
2334 /* Contention should be very rare, so we do the minimum to handle it */
2335 /* correctly. */
2336 #ifdef GC_TEST_AND_SET_DEFINED
2337 static VOLATILE unsigned int fault_handler_lock = 0;
2338 void async_set_pht_entry_from_index(VOLATILE page_hash_table db, int index) {
2339 while (GC_test_and_set(&fault_handler_lock)) {}
2340 /* Could also revert to set_pht_entry_from_index_safe if initial */
2341 /* GC_test_and_set fails. */
2342 set_pht_entry_from_index(db, index);
2343 GC_clear(&fault_handler_lock);
2345 #else /* !GC_TEST_AND_SET_DEFINED */
2346 /* THIS IS INCORRECT! The dirty bit vector may be temporarily wrong, */
2347 /* just before we notice the conflict and correct it. We may end up */
2348 /* looking at it while it's wrong. But this requires contention */
2349 /* exactly when a GC is triggered, which seems far less likely to */
2350 /* fail than the old code, which had no reported failures. Thus we */
2351 /* leave it this way while we think of something better, or support */
2352 /* GC_test_and_set on the remaining platforms. */
2353 static VOLATILE word currently_updating = 0;
2354 void async_set_pht_entry_from_index(VOLATILE page_hash_table db, int index) {
2355 unsigned int update_dummy;
2356 currently_updating = (word)(&update_dummy);
2357 set_pht_entry_from_index(db, index);
2358 /* If we get contention in the 10 or so instruction window here, */
2359 /* and we get stopped by a GC between the two updates, we lose! */
2360 if (currently_updating != (word)(&update_dummy)) {
2361 set_pht_entry_from_index_safe(db, index);
2362 /* We claim that if two threads concurrently try to update the */
2363 /* dirty bit vector, the first one to execute UPDATE_START */
2364 /* will see it changed when UPDATE_END is executed. (Note that */
2365 /* &update_dummy must differ in two distinct threads.) It */
2366 /* will then execute set_pht_entry_from_index_safe, thus */
2367 /* returning us to a safe state, though not soon enough. */
2370 #endif /* !GC_TEST_AND_SET_DEFINED */
2371 #else /* !THREADS */
2372 # define async_set_pht_entry_from_index(db, index) \
2373 set_pht_entry_from_index(db, index)
2374 #endif /* !THREADS */
2376 /*ARGSUSED*/
2377 #if !defined(DARWIN)
2378 # if defined (SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2379 void GC_write_fault_handler(sig, code, scp, addr)
2380 int sig, code;
2381 struct sigcontext *scp;
2382 char * addr;
2383 # ifdef SUNOS4
2384 # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
2385 # define CODE_OK (FC_CODE(code) == FC_PROT \
2386 || (FC_CODE(code) == FC_OBJERR \
2387 && FC_ERRNO(code) == FC_PROT))
2388 # endif
2389 # ifdef FREEBSD
2390 # define SIG_OK (sig == SIGBUS)
2391 # define CODE_OK TRUE
2392 # endif
2393 # endif /* SUNOS4 || (FREEBSD && !SUNOS5SIGS) */
2395 # if defined(IRIX5) || defined(OSF1) || defined(HURD)
2396 # include <errno.h>
2397 void GC_write_fault_handler(int sig, int code, struct sigcontext *scp)
2398 # ifdef OSF1
2399 # define SIG_OK (sig == SIGSEGV)
2400 # define CODE_OK (code == 2 /* experimentally determined */)
2401 # endif
2402 # ifdef IRIX5
2403 # define SIG_OK (sig == SIGSEGV)
2404 # define CODE_OK (code == EACCES)
2405 # endif
2406 # ifdef HURD
2407 # define SIG_OK (sig == SIGBUS || sig == SIGSEGV)
2408 # define CODE_OK TRUE
2409 # endif
2410 # endif /* IRIX5 || OSF1 || HURD */
2412 # if defined(LINUX)
2413 # if defined(ALPHA) || defined(M68K)
2414 void GC_write_fault_handler(int sig, int code, s_c * sc)
2415 # else
2416 # if defined(IA64) || defined(HP_PA) || defined(X86_64)
2417 void GC_write_fault_handler(int sig, siginfo_t * si, s_c * scp)
2418 # else
2419 # if defined(ARM32)
2420 void GC_write_fault_handler(int sig, int a2, int a3, int a4, s_c sc)
2421 # else
2422 void GC_write_fault_handler(int sig, s_c sc)
2423 # endif
2424 # endif
2425 # endif
2426 # define SIG_OK (sig == SIGSEGV)
2427 # define CODE_OK TRUE
2428 /* Empirically c.trapno == 14, on IA32, but is that useful? */
2429 /* Should probably consider alignment issues on other */
2430 /* architectures. */
2431 # endif /* LINUX */
2433 # if defined(SUNOS5SIGS)
2434 # ifdef __STDC__
2435 void GC_write_fault_handler(int sig, SIGINFO_T *scp, void * context)
2436 # else
2437 void GC_write_fault_handler(sig, scp, context)
2438 int sig;
2439 SIGINFO_T *scp;
2440 void * context;
2441 # endif
2442 # ifdef HPUX
2443 # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
2444 # define CODE_OK (scp -> si_code == SEGV_ACCERR) \
2445 || (scp -> si_code == BUS_ADRERR) \
2446 || (scp -> si_code == BUS_UNKNOWN) \
2447 || (scp -> si_code == SEGV_UNKNOWN) \
2448 || (scp -> si_code == BUS_OBJERR)
2449 # else
2450 # ifdef FREEBSD
2451 # define SIG_OK (sig == SIGBUS)
2452 # define CODE_OK (scp -> si_code == BUS_PAGE_FAULT)
2453 # else
2454 # define SIG_OK (sig == SIGSEGV)
2455 # define CODE_OK (scp -> si_code == SEGV_ACCERR)
2456 # endif
2457 # endif
2458 # endif /* SUNOS5SIGS */
2460 # if defined(MSWIN32) || defined(MSWINCE)
2461 LONG WINAPI GC_write_fault_handler(struct _EXCEPTION_POINTERS *exc_info)
2462 # define SIG_OK (exc_info -> ExceptionRecord -> ExceptionCode == \
2463 STATUS_ACCESS_VIOLATION)
2464 # define CODE_OK (exc_info -> ExceptionRecord -> ExceptionInformation[0] == 1)
2465 /* Write fault */
2466 # endif /* MSWIN32 || MSWINCE */
2468 register unsigned i;
2469 # if defined(HURD)
2470 char *addr = (char *) code;
2471 # endif
2472 # ifdef IRIX5
2473 char * addr = (char *) (size_t) (scp -> sc_badvaddr);
2474 # endif
2475 # if defined(OSF1) && defined(ALPHA)
2476 char * addr = (char *) (scp -> sc_traparg_a0);
2477 # endif
2478 # ifdef SUNOS5SIGS
2479 char * addr = (char *) (scp -> si_addr);
2480 # endif
2481 # ifdef LINUX
2482 # if defined(I386)
2483 char * addr = (char *) (sc.cr2);
2484 # else
2485 # if defined(M68K)
2486 char * addr = NULL;
2488 struct sigcontext *scp = (struct sigcontext *)(sc);
2490 int format = (scp->sc_formatvec >> 12) & 0xf;
2491 unsigned long *framedata = (unsigned long *)(scp + 1);
2492 unsigned long ea;
2494 if (format == 0xa || format == 0xb) {
2495 /* 68020/030 */
2496 ea = framedata[2];
2497 } else if (format == 7) {
2498 /* 68040 */
2499 ea = framedata[3];
2500 if (framedata[1] & 0x08000000) {
2501 /* correct addr on misaligned access */
2502 ea = (ea+4095)&(~4095);
2504 } else if (format == 4) {
2505 /* 68060 */
2506 ea = framedata[0];
2507 if (framedata[1] & 0x08000000) {
2508 /* correct addr on misaligned access */
2509 ea = (ea+4095)&(~4095);
2512 addr = (char *)ea;
2513 # else
2514 # ifdef ALPHA
2515 char * addr = get_fault_addr(sc);
2516 # else
2517 # if defined(IA64) || defined(HP_PA) || defined(X86_64)
2518 char * addr = si -> si_addr;
2519 /* I believe this is claimed to work on all platforms for */
2520 /* Linux 2.3.47 and later. Hopefully we don't have to */
2521 /* worry about earlier kernels on IA64. */
2522 # else
2523 # if defined(POWERPC)
2524 char * addr = (char *) (sc.regs->dar);
2525 # else
2526 # if defined(ARM32)
2527 char * addr = (char *)sc.fault_address;
2528 # else
2529 # if defined(CRIS)
2530 char * addr = (char *)sc.regs.csraddr;
2531 # else
2532 --> architecture not supported
2533 # endif
2534 # endif
2535 # endif
2536 # endif
2537 # endif
2538 # endif
2539 # endif
2540 # endif
2541 # if defined(MSWIN32) || defined(MSWINCE)
2542 char * addr = (char *) (exc_info -> ExceptionRecord
2543 -> ExceptionInformation[1]);
2544 # define sig SIGSEGV
2545 # endif
2547 if (SIG_OK && CODE_OK) {
2548 register struct hblk * h =
2549 (struct hblk *)((word)addr & ~(GC_page_size-1));
2550 GC_bool in_allocd_block;
2552 # ifdef SUNOS5SIGS
2553 /* Address is only within the correct physical page. */
2554 in_allocd_block = FALSE;
2555 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
2556 if (HDR(h+i) != 0) {
2557 in_allocd_block = TRUE;
2560 # else
2561 in_allocd_block = (HDR(addr) != 0);
2562 # endif
2563 if (!in_allocd_block) {
2564 /* FIXME - We should make sure that we invoke the */
2565 /* old handler with the appropriate calling */
2566 /* sequence, which often depends on SA_SIGINFO. */
2568 /* Heap blocks now begin and end on page boundaries */
2569 SIG_PF old_handler;
2571 if (sig == SIGSEGV) {
2572 old_handler = GC_old_segv_handler;
2573 } else {
2574 old_handler = GC_old_bus_handler;
2576 if (old_handler == SIG_DFL) {
2577 # if !defined(MSWIN32) && !defined(MSWINCE)
2578 GC_err_printf1("Segfault at 0x%lx\n", addr);
2579 ABORT("Unexpected bus error or segmentation fault");
2580 # else
2581 return(EXCEPTION_CONTINUE_SEARCH);
2582 # endif
2583 } else {
2584 # if defined (SUNOS4) \
2585 || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2586 (*old_handler) (sig, code, scp, addr);
2587 return;
2588 # endif
2589 # if defined (SUNOS5SIGS)
2591 * FIXME: For FreeBSD, this code should check if the
2592 * old signal handler used the traditional BSD style and
2593 * if so call it using that style.
2595 (*(REAL_SIG_PF)old_handler) (sig, scp, context);
2596 return;
2597 # endif
2598 # if defined (LINUX)
2599 # if defined(ALPHA) || defined(M68K)
2600 (*(REAL_SIG_PF)old_handler) (sig, code, sc);
2601 # else
2602 # if defined(IA64) || defined(HP_PA) || defined(X86_64)
2603 (*(REAL_SIG_PF)old_handler) (sig, si, scp);
2604 # else
2605 (*(REAL_SIG_PF)old_handler) (sig, sc);
2606 # endif
2607 # endif
2608 return;
2609 # endif
2610 # if defined (IRIX5) || defined(OSF1) || defined(HURD)
2611 (*(REAL_SIG_PF)old_handler) (sig, code, scp);
2612 return;
2613 # endif
2614 # ifdef MSWIN32
2615 return((*old_handler)(exc_info));
2616 # endif
2619 UNPROTECT(h, GC_page_size);
2620 /* We need to make sure that no collection occurs between */
2621 /* the UNPROTECT and the setting of the dirty bit. Otherwise */
2622 /* a write by a third thread might go unnoticed. Reversing */
2623 /* the order is just as bad, since we would end up unprotecting */
2624 /* a page in a GC cycle during which it's not marked. */
2625 /* Currently we do this by disabling the thread stopping */
2626 /* signals while this handler is running. An alternative might */
2627 /* be to record the fact that we're about to unprotect, or */
2628 /* have just unprotected a page in the GC's thread structure, */
2629 /* and then to have the thread stopping code set the dirty */
2630 /* flag, if necessary. */
2631 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
2632 register int index = PHT_HASH(h+i);
2634 async_set_pht_entry_from_index(GC_dirty_pages, index);
2636 # if defined(OSF1)
2637 /* These reset the signal handler each time by default. */
2638 signal(SIGSEGV, (SIG_PF) GC_write_fault_handler);
2639 # endif
2640 /* The write may not take place before dirty bits are read. */
2641 /* But then we'll fault again ... */
2642 # if defined(MSWIN32) || defined(MSWINCE)
2643 return(EXCEPTION_CONTINUE_EXECUTION);
2644 # else
2645 return;
2646 # endif
2648 #if defined(MSWIN32) || defined(MSWINCE)
2649 return EXCEPTION_CONTINUE_SEARCH;
2650 #else
2651 GC_err_printf1("Segfault at 0x%lx\n", addr);
2652 ABORT("Unexpected bus error or segmentation fault");
2653 #endif
2655 #endif /* !DARWIN */
2658 * We hold the allocation lock. We expect block h to be written
2659 * shortly. Ensure that all pages containing any part of the n hblks
2660 * starting at h are no longer protected. If is_ptrfree is false,
2661 * also ensure that they will subsequently appear to be dirty.
2663 void GC_remove_protection(h, nblocks, is_ptrfree)
2664 struct hblk *h;
2665 word nblocks;
2666 GC_bool is_ptrfree;
2668 struct hblk * h_trunc; /* Truncated to page boundary */
2669 struct hblk * h_end; /* Page boundary following block end */
2670 struct hblk * current;
2671 GC_bool found_clean;
2673 if (!GC_dirty_maintained) return;
2674 h_trunc = (struct hblk *)((word)h & ~(GC_page_size-1));
2675 h_end = (struct hblk *)(((word)(h + nblocks) + GC_page_size-1)
2676 & ~(GC_page_size-1));
2677 found_clean = FALSE;
2678 for (current = h_trunc; current < h_end; ++current) {
2679 int index = PHT_HASH(current);
2681 if (!is_ptrfree || current < h || current >= h + nblocks) {
2682 async_set_pht_entry_from_index(GC_dirty_pages, index);
2685 UNPROTECT(h_trunc, (ptr_t)h_end - (ptr_t)h_trunc);
2688 #if !defined(DARWIN)
2689 void GC_dirty_init()
2691 # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(LINUX) || \
2692 defined(OSF1) || defined(HURD)
2693 struct sigaction act, oldact;
2694 /* We should probably specify SA_SIGINFO for Linux, and handle */
2695 /* the different architectures more uniformly. */
2696 # if defined(IRIX5) || defined(LINUX) && !defined(X86_64) \
2697 || defined(OSF1) || defined(HURD)
2698 act.sa_flags = SA_RESTART;
2699 act.sa_handler = (SIG_PF)GC_write_fault_handler;
2700 # else
2701 act.sa_flags = SA_RESTART | SA_SIGINFO;
2702 act.sa_sigaction = GC_write_fault_handler;
2703 # endif
2704 (void)sigemptyset(&act.sa_mask);
2705 # ifdef SIG_SUSPEND
2706 /* Arrange to postpone SIG_SUSPEND while we're in a write fault */
2707 /* handler. This effectively makes the handler atomic w.r.t. */
2708 /* stopping the world for GC. */
2709 (void)sigaddset(&act.sa_mask, SIG_SUSPEND);
2710 # endif /* SIG_SUSPEND */
2711 # endif
2712 # ifdef PRINTSTATS
2713 GC_printf0("Inititalizing mprotect virtual dirty bit implementation\n");
2714 # endif
2715 GC_dirty_maintained = TRUE;
2716 if (GC_page_size % HBLKSIZE != 0) {
2717 GC_err_printf0("Page size not multiple of HBLKSIZE\n");
2718 ABORT("Page size not multiple of HBLKSIZE");
2720 # if defined(SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2721 GC_old_bus_handler = signal(SIGBUS, GC_write_fault_handler);
2722 if (GC_old_bus_handler == SIG_IGN) {
2723 GC_err_printf0("Previously ignored bus error!?");
2724 GC_old_bus_handler = SIG_DFL;
2726 if (GC_old_bus_handler != SIG_DFL) {
2727 # ifdef PRINTSTATS
2728 GC_err_printf0("Replaced other SIGBUS handler\n");
2729 # endif
2731 # endif
2732 # if defined(SUNOS4)
2733 GC_old_segv_handler = signal(SIGSEGV, (SIG_PF)GC_write_fault_handler);
2734 if (GC_old_segv_handler == SIG_IGN) {
2735 GC_err_printf0("Previously ignored segmentation violation!?");
2736 GC_old_segv_handler = SIG_DFL;
2738 if (GC_old_segv_handler != SIG_DFL) {
2739 # ifdef PRINTSTATS
2740 GC_err_printf0("Replaced other SIGSEGV handler\n");
2741 # endif
2743 # endif
2744 # if (defined(SUNOS5SIGS) && !defined(FREEBSD)) || defined(IRIX5) \
2745 || defined(LINUX) || defined(OSF1) || defined(HURD)
2746 /* SUNOS5SIGS includes HPUX */
2747 # if defined(GC_IRIX_THREADS)
2748 sigaction(SIGSEGV, 0, &oldact);
2749 sigaction(SIGSEGV, &act, 0);
2750 # else
2752 int res = sigaction(SIGSEGV, &act, &oldact);
2753 if (res != 0) ABORT("Sigaction failed");
2755 # endif
2756 # if defined(_sigargs) || defined(HURD) || !defined(SA_SIGINFO)
2757 /* This is Irix 5.x, not 6.x. Irix 5.x does not have */
2758 /* sa_sigaction. */
2759 GC_old_segv_handler = oldact.sa_handler;
2760 # else /* Irix 6.x or SUNOS5SIGS or LINUX */
2761 if (oldact.sa_flags & SA_SIGINFO) {
2762 GC_old_segv_handler = (SIG_PF)(oldact.sa_sigaction);
2763 } else {
2764 GC_old_segv_handler = oldact.sa_handler;
2766 # endif
2767 if (GC_old_segv_handler == SIG_IGN) {
2768 GC_err_printf0("Previously ignored segmentation violation!?");
2769 GC_old_segv_handler = SIG_DFL;
2771 if (GC_old_segv_handler != SIG_DFL) {
2772 # ifdef PRINTSTATS
2773 GC_err_printf0("Replaced other SIGSEGV handler\n");
2774 # endif
2776 # endif /* (SUNOS5SIGS && !FREEBSD) || IRIX5 || LINUX || OSF1 || HURD */
2777 # if defined(HPUX) || defined(LINUX) || defined(HURD) \
2778 || (defined(FREEBSD) && defined(SUNOS5SIGS))
2779 sigaction(SIGBUS, &act, &oldact);
2780 GC_old_bus_handler = oldact.sa_handler;
2781 if (GC_old_bus_handler == SIG_IGN) {
2782 GC_err_printf0("Previously ignored bus error!?");
2783 GC_old_bus_handler = SIG_DFL;
2785 if (GC_old_bus_handler != SIG_DFL) {
2786 # ifdef PRINTSTATS
2787 GC_err_printf0("Replaced other SIGBUS handler\n");
2788 # endif
2790 # endif /* HPUX || LINUX || HURD || (FREEBSD && SUNOS5SIGS) */
2791 # if defined(MSWIN32)
2792 GC_old_segv_handler = SetUnhandledExceptionFilter(GC_write_fault_handler);
2793 if (GC_old_segv_handler != NULL) {
2794 # ifdef PRINTSTATS
2795 GC_err_printf0("Replaced other UnhandledExceptionFilter\n");
2796 # endif
2797 } else {
2798 GC_old_segv_handler = SIG_DFL;
2800 # endif
2802 #endif /* !DARWIN */
2804 int GC_incremental_protection_needs()
2806 if (GC_page_size == HBLKSIZE) {
2807 return GC_PROTECTS_POINTER_HEAP;
2808 } else {
2809 return GC_PROTECTS_POINTER_HEAP | GC_PROTECTS_PTRFREE_HEAP;
2813 #define HAVE_INCREMENTAL_PROTECTION_NEEDS
2815 #define IS_PTRFREE(hhdr) ((hhdr)->hb_descr == 0)
2817 #define PAGE_ALIGNED(x) !((word)(x) & (GC_page_size - 1))
2818 void GC_protect_heap()
2820 ptr_t start;
2821 word len;
2822 struct hblk * current;
2823 struct hblk * current_start; /* Start of block to be protected. */
2824 struct hblk * limit;
2825 unsigned i;
2826 GC_bool protect_all =
2827 (0 != (GC_incremental_protection_needs() & GC_PROTECTS_PTRFREE_HEAP));
2828 for (i = 0; i < GC_n_heap_sects; i++) {
2829 start = GC_heap_sects[i].hs_start;
2830 len = GC_heap_sects[i].hs_bytes;
2831 if (protect_all) {
2832 PROTECT(start, len);
2833 } else {
2834 GC_ASSERT(PAGE_ALIGNED(len))
2835 GC_ASSERT(PAGE_ALIGNED(start))
2836 current_start = current = (struct hblk *)start;
2837 limit = (struct hblk *)(start + len);
2838 while (current < limit) {
2839 hdr * hhdr;
2840 word nhblks;
2841 GC_bool is_ptrfree;
2843 GC_ASSERT(PAGE_ALIGNED(current));
2844 GET_HDR(current, hhdr);
2845 if (IS_FORWARDING_ADDR_OR_NIL(hhdr)) {
2846 /* This can happen only if we're at the beginning of a */
2847 /* heap segment, and a block spans heap segments. */
2848 /* We will handle that block as part of the preceding */
2849 /* segment. */
2850 GC_ASSERT(current_start == current);
2851 current_start = ++current;
2852 continue;
2854 if (HBLK_IS_FREE(hhdr)) {
2855 GC_ASSERT(PAGE_ALIGNED(hhdr -> hb_sz));
2856 nhblks = divHBLKSZ(hhdr -> hb_sz);
2857 is_ptrfree = TRUE; /* dirty on alloc */
2858 } else {
2859 nhblks = OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz);
2860 is_ptrfree = IS_PTRFREE(hhdr);
2862 if (is_ptrfree) {
2863 if (current_start < current) {
2864 PROTECT(current_start, (ptr_t)current - (ptr_t)current_start);
2866 current_start = (current += nhblks);
2867 } else {
2868 current += nhblks;
2871 if (current_start < current) {
2872 PROTECT(current_start, (ptr_t)current - (ptr_t)current_start);
2878 /* We assume that either the world is stopped or its OK to lose dirty */
2879 /* bits while this is happenning (as in GC_enable_incremental). */
2880 void GC_read_dirty()
2882 BCOPY((word *)GC_dirty_pages, GC_grungy_pages,
2883 (sizeof GC_dirty_pages));
2884 BZERO((word *)GC_dirty_pages, (sizeof GC_dirty_pages));
2885 GC_protect_heap();
2888 GC_bool GC_page_was_dirty(h)
2889 struct hblk * h;
2891 register word index = PHT_HASH(h);
2893 return(HDR(h) == 0 || get_pht_entry_from_index(GC_grungy_pages, index));
2897 * Acquiring the allocation lock here is dangerous, since this
2898 * can be called from within GC_call_with_alloc_lock, and the cord
2899 * package does so. On systems that allow nested lock acquisition, this
2900 * happens to work.
2901 * On other systems, SET_LOCK_HOLDER and friends must be suitably defined.
2904 static GC_bool syscall_acquired_lock = FALSE; /* Protected by GC lock. */
2906 void GC_begin_syscall()
2908 if (!I_HOLD_LOCK()) {
2909 LOCK();
2910 syscall_acquired_lock = TRUE;
2914 void GC_end_syscall()
2916 if (syscall_acquired_lock) {
2917 syscall_acquired_lock = FALSE;
2918 UNLOCK();
2922 void GC_unprotect_range(addr, len)
2923 ptr_t addr;
2924 word len;
2926 struct hblk * start_block;
2927 struct hblk * end_block;
2928 register struct hblk *h;
2929 ptr_t obj_start;
2931 if (!GC_dirty_maintained) return;
2932 obj_start = GC_base(addr);
2933 if (obj_start == 0) return;
2934 if (GC_base(addr + len - 1) != obj_start) {
2935 ABORT("GC_unprotect_range(range bigger than object)");
2937 start_block = (struct hblk *)((word)addr & ~(GC_page_size - 1));
2938 end_block = (struct hblk *)((word)(addr + len - 1) & ~(GC_page_size - 1));
2939 end_block += GC_page_size/HBLKSIZE - 1;
2940 for (h = start_block; h <= end_block; h++) {
2941 register word index = PHT_HASH(h);
2943 async_set_pht_entry_from_index(GC_dirty_pages, index);
2945 UNPROTECT(start_block,
2946 ((ptr_t)end_block - (ptr_t)start_block) + HBLKSIZE);
2949 #if 0
2951 /* We no longer wrap read by default, since that was causing too many */
2952 /* problems. It is preferred that the client instead avoids writing */
2953 /* to the write-protected heap with a system call. */
2954 /* This still serves as sample code if you do want to wrap system calls.*/
2956 #if !defined(MSWIN32) && !defined(MSWINCE) && !defined(GC_USE_LD_WRAP)
2957 /* Replacement for UNIX system call. */
2958 /* Other calls that write to the heap should be handled similarly. */
2959 /* Note that this doesn't work well for blocking reads: It will hold */
2960 /* the allocation lock for the entire duration of the call. Multithreaded */
2961 /* clients should really ensure that it won't block, either by setting */
2962 /* the descriptor nonblocking, or by calling select or poll first, to */
2963 /* make sure that input is available. */
2964 /* Another, preferred alternative is to ensure that system calls never */
2965 /* write to the protected heap (see above). */
2966 # if defined(__STDC__) && !defined(SUNOS4)
2967 # include <unistd.h>
2968 # include <sys/uio.h>
2969 ssize_t read(int fd, void *buf, size_t nbyte)
2970 # else
2971 # ifndef LINT
2972 int read(fd, buf, nbyte)
2973 # else
2974 int GC_read(fd, buf, nbyte)
2975 # endif
2976 int fd;
2977 char *buf;
2978 int nbyte;
2979 # endif
2981 int result;
2983 GC_begin_syscall();
2984 GC_unprotect_range(buf, (word)nbyte);
2985 # if defined(IRIX5) || defined(GC_LINUX_THREADS)
2986 /* Indirect system call may not always be easily available. */
2987 /* We could call _read, but that would interfere with the */
2988 /* libpthread interception of read. */
2989 /* On Linux, we have to be careful with the linuxthreads */
2990 /* read interception. */
2992 struct iovec iov;
2994 iov.iov_base = buf;
2995 iov.iov_len = nbyte;
2996 result = readv(fd, &iov, 1);
2998 # else
2999 # if defined(HURD)
3000 result = __read(fd, buf, nbyte);
3001 # else
3002 /* The two zero args at the end of this list are because one
3003 IA-64 syscall() implementation actually requires six args
3004 to be passed, even though they aren't always used. */
3005 result = syscall(SYS_read, fd, buf, nbyte, 0, 0);
3006 # endif /* !HURD */
3007 # endif
3008 GC_end_syscall();
3009 return(result);
3011 #endif /* !MSWIN32 && !MSWINCE && !GC_LINUX_THREADS */
3013 #if defined(GC_USE_LD_WRAP) && !defined(THREADS)
3014 /* We use the GNU ld call wrapping facility. */
3015 /* This requires that the linker be invoked with "--wrap read". */
3016 /* This can be done by passing -Wl,"--wrap read" to gcc. */
3017 /* I'm not sure that this actually wraps whatever version of read */
3018 /* is called by stdio. That code also mentions __read. */
3019 # include <unistd.h>
3020 ssize_t __wrap_read(int fd, void *buf, size_t nbyte)
3022 int result;
3024 GC_begin_syscall();
3025 GC_unprotect_range(buf, (word)nbyte);
3026 result = __real_read(fd, buf, nbyte);
3027 GC_end_syscall();
3028 return(result);
3031 /* We should probably also do this for __read, or whatever stdio */
3032 /* actually calls. */
3033 #endif
3035 #endif /* 0 */
3037 /*ARGSUSED*/
3038 GC_bool GC_page_was_ever_dirty(h)
3039 struct hblk *h;
3041 return(TRUE);
3044 /* Reset the n pages starting at h to "was never dirty" status. */
3045 /*ARGSUSED*/
3046 void GC_is_fresh(h, n)
3047 struct hblk *h;
3048 word n;
3052 # endif /* MPROTECT_VDB */
3054 # ifdef PROC_VDB
3057 * See DEFAULT_VDB for interface descriptions.
3061 * This implementaion assumes a Solaris 2.X like /proc pseudo-file-system
3062 * from which we can read page modified bits. This facility is far from
3063 * optimal (e.g. we would like to get the info for only some of the
3064 * address space), but it avoids intercepting system calls.
3067 #include <errno.h>
3068 #include <sys/types.h>
3069 #include <sys/signal.h>
3070 #include <sys/fault.h>
3071 #include <sys/syscall.h>
3072 #include <sys/procfs.h>
3073 #include <sys/stat.h>
3075 #define INITIAL_BUF_SZ 16384
3076 word GC_proc_buf_size = INITIAL_BUF_SZ;
3077 char *GC_proc_buf;
3079 #ifdef GC_SOLARIS_THREADS
3080 /* We don't have exact sp values for threads. So we count on */
3081 /* occasionally declaring stack pages to be fresh. Thus we */
3082 /* need a real implementation of GC_is_fresh. We can't clear */
3083 /* entries in GC_written_pages, since that would declare all */
3084 /* pages with the given hash address to be fresh. */
3085 # define MAX_FRESH_PAGES 8*1024 /* Must be power of 2 */
3086 struct hblk ** GC_fresh_pages; /* A direct mapped cache. */
3087 /* Collisions are dropped. */
3089 # define FRESH_PAGE_SLOT(h) (divHBLKSZ((word)(h)) & (MAX_FRESH_PAGES-1))
3090 # define ADD_FRESH_PAGE(h) \
3091 GC_fresh_pages[FRESH_PAGE_SLOT(h)] = (h)
3092 # define PAGE_IS_FRESH(h) \
3093 (GC_fresh_pages[FRESH_PAGE_SLOT(h)] == (h) && (h) != 0)
3094 #endif
3096 /* Add all pages in pht2 to pht1 */
3097 void GC_or_pages(pht1, pht2)
3098 page_hash_table pht1, pht2;
3100 register int i;
3102 for (i = 0; i < PHT_SIZE; i++) pht1[i] |= pht2[i];
3105 int GC_proc_fd;
3107 void GC_dirty_init()
3109 int fd;
3110 char buf[30];
3112 GC_dirty_maintained = TRUE;
3113 if (GC_words_allocd != 0 || GC_words_allocd_before_gc != 0) {
3114 register int i;
3116 for (i = 0; i < PHT_SIZE; i++) GC_written_pages[i] = (word)(-1);
3117 # ifdef PRINTSTATS
3118 GC_printf1("Allocated words:%lu:all pages may have been written\n",
3119 (unsigned long)
3120 (GC_words_allocd + GC_words_allocd_before_gc));
3121 # endif
3123 sprintf(buf, "/proc/%d", getpid());
3124 fd = open(buf, O_RDONLY);
3125 if (fd < 0) {
3126 ABORT("/proc open failed");
3128 GC_proc_fd = syscall(SYS_ioctl, fd, PIOCOPENPD, 0);
3129 close(fd);
3130 syscall(SYS_fcntl, GC_proc_fd, F_SETFD, FD_CLOEXEC);
3131 if (GC_proc_fd < 0) {
3132 ABORT("/proc ioctl failed");
3134 GC_proc_buf = GC_scratch_alloc(GC_proc_buf_size);
3135 # ifdef GC_SOLARIS_THREADS
3136 GC_fresh_pages = (struct hblk **)
3137 GC_scratch_alloc(MAX_FRESH_PAGES * sizeof (struct hblk *));
3138 if (GC_fresh_pages == 0) {
3139 GC_err_printf0("No space for fresh pages\n");
3140 EXIT();
3142 BZERO(GC_fresh_pages, MAX_FRESH_PAGES * sizeof (struct hblk *));
3143 # endif
3146 /* Ignore write hints. They don't help us here. */
3147 /*ARGSUSED*/
3148 void GC_remove_protection(h, nblocks, is_ptrfree)
3149 struct hblk *h;
3150 word nblocks;
3151 GC_bool is_ptrfree;
3155 #ifdef GC_SOLARIS_THREADS
3156 # define READ(fd,buf,nbytes) syscall(SYS_read, fd, buf, nbytes)
3157 #else
3158 # define READ(fd,buf,nbytes) read(fd, buf, nbytes)
3159 #endif
3161 void GC_read_dirty()
3163 unsigned long ps, np;
3164 int nmaps;
3165 ptr_t vaddr;
3166 struct prasmap * map;
3167 char * bufp;
3168 ptr_t current_addr, limit;
3169 int i;
3170 int dummy;
3172 BZERO(GC_grungy_pages, (sizeof GC_grungy_pages));
3174 bufp = GC_proc_buf;
3175 if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
3176 # ifdef PRINTSTATS
3177 GC_printf1("/proc read failed: GC_proc_buf_size = %lu\n",
3178 GC_proc_buf_size);
3179 # endif
3181 /* Retry with larger buffer. */
3182 word new_size = 2 * GC_proc_buf_size;
3183 char * new_buf = GC_scratch_alloc(new_size);
3185 if (new_buf != 0) {
3186 GC_proc_buf = bufp = new_buf;
3187 GC_proc_buf_size = new_size;
3189 if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
3190 WARN("Insufficient space for /proc read\n", 0);
3191 /* Punt: */
3192 memset(GC_grungy_pages, 0xff, sizeof (page_hash_table));
3193 memset(GC_written_pages, 0xff, sizeof(page_hash_table));
3194 # ifdef GC_SOLARIS_THREADS
3195 BZERO(GC_fresh_pages,
3196 MAX_FRESH_PAGES * sizeof (struct hblk *));
3197 # endif
3198 return;
3202 /* Copy dirty bits into GC_grungy_pages */
3203 nmaps = ((struct prpageheader *)bufp) -> pr_nmap;
3204 /* printf( "nmaps = %d, PG_REFERENCED = %d, PG_MODIFIED = %d\n",
3205 nmaps, PG_REFERENCED, PG_MODIFIED); */
3206 bufp = bufp + sizeof(struct prpageheader);
3207 for (i = 0; i < nmaps; i++) {
3208 map = (struct prasmap *)bufp;
3209 vaddr = (ptr_t)(map -> pr_vaddr);
3210 ps = map -> pr_pagesize;
3211 np = map -> pr_npage;
3212 /* printf("vaddr = 0x%X, ps = 0x%X, np = 0x%X\n", vaddr, ps, np); */
3213 limit = vaddr + ps * np;
3214 bufp += sizeof (struct prasmap);
3215 for (current_addr = vaddr;
3216 current_addr < limit; current_addr += ps){
3217 if ((*bufp++) & PG_MODIFIED) {
3218 register struct hblk * h = (struct hblk *) current_addr;
3220 while ((ptr_t)h < current_addr + ps) {
3221 register word index = PHT_HASH(h);
3223 set_pht_entry_from_index(GC_grungy_pages, index);
3224 # ifdef GC_SOLARIS_THREADS
3226 register int slot = FRESH_PAGE_SLOT(h);
3228 if (GC_fresh_pages[slot] == h) {
3229 GC_fresh_pages[slot] = 0;
3232 # endif
3233 h++;
3237 bufp += sizeof(long) - 1;
3238 bufp = (char *)((unsigned long)bufp & ~(sizeof(long)-1));
3240 /* Update GC_written_pages. */
3241 GC_or_pages(GC_written_pages, GC_grungy_pages);
3242 # ifdef GC_SOLARIS_THREADS
3243 /* Make sure that old stacks are considered completely clean */
3244 /* unless written again. */
3245 GC_old_stacks_are_fresh();
3246 # endif
3249 #undef READ
3251 GC_bool GC_page_was_dirty(h)
3252 struct hblk *h;
3254 register word index = PHT_HASH(h);
3255 register GC_bool result;
3257 result = get_pht_entry_from_index(GC_grungy_pages, index);
3258 # ifdef GC_SOLARIS_THREADS
3259 if (result && PAGE_IS_FRESH(h)) result = FALSE;
3260 /* This happens only if page was declared fresh since */
3261 /* the read_dirty call, e.g. because it's in an unused */
3262 /* thread stack. It's OK to treat it as clean, in */
3263 /* that case. And it's consistent with */
3264 /* GC_page_was_ever_dirty. */
3265 # endif
3266 return(result);
3269 GC_bool GC_page_was_ever_dirty(h)
3270 struct hblk *h;
3272 register word index = PHT_HASH(h);
3273 register GC_bool result;
3275 result = get_pht_entry_from_index(GC_written_pages, index);
3276 # ifdef GC_SOLARIS_THREADS
3277 if (result && PAGE_IS_FRESH(h)) result = FALSE;
3278 # endif
3279 return(result);
3282 /* Caller holds allocation lock. */
3283 void GC_is_fresh(h, n)
3284 struct hblk *h;
3285 word n;
3288 register word index;
3290 # ifdef GC_SOLARIS_THREADS
3291 register word i;
3293 if (GC_fresh_pages != 0) {
3294 for (i = 0; i < n; i++) {
3295 ADD_FRESH_PAGE(h + i);
3298 # endif
3301 # endif /* PROC_VDB */
3304 # ifdef PCR_VDB
3306 # include "vd/PCR_VD.h"
3308 # define NPAGES (32*1024) /* 128 MB */
3310 PCR_VD_DB GC_grungy_bits[NPAGES];
3312 ptr_t GC_vd_base; /* Address corresponding to GC_grungy_bits[0] */
3313 /* HBLKSIZE aligned. */
3315 void GC_dirty_init()
3317 GC_dirty_maintained = TRUE;
3318 /* For the time being, we assume the heap generally grows up */
3319 GC_vd_base = GC_heap_sects[0].hs_start;
3320 if (GC_vd_base == 0) {
3321 ABORT("Bad initial heap segment");
3323 if (PCR_VD_Start(HBLKSIZE, GC_vd_base, NPAGES*HBLKSIZE)
3324 != PCR_ERes_okay) {
3325 ABORT("dirty bit initialization failed");
3329 void GC_read_dirty()
3331 /* lazily enable dirty bits on newly added heap sects */
3333 static int onhs = 0;
3334 int nhs = GC_n_heap_sects;
3335 for( ; onhs < nhs; onhs++ ) {
3336 PCR_VD_WriteProtectEnable(
3337 GC_heap_sects[onhs].hs_start,
3338 GC_heap_sects[onhs].hs_bytes );
3343 if (PCR_VD_Clear(GC_vd_base, NPAGES*HBLKSIZE, GC_grungy_bits)
3344 != PCR_ERes_okay) {
3345 ABORT("dirty bit read failed");
3349 GC_bool GC_page_was_dirty(h)
3350 struct hblk *h;
3352 if((ptr_t)h < GC_vd_base || (ptr_t)h >= GC_vd_base + NPAGES*HBLKSIZE) {
3353 return(TRUE);
3355 return(GC_grungy_bits[h - (struct hblk *)GC_vd_base] & PCR_VD_DB_dirtyBit);
3358 /*ARGSUSED*/
3359 void GC_remove_protection(h, nblocks, is_ptrfree)
3360 struct hblk *h;
3361 word nblocks;
3362 GC_bool is_ptrfree;
3364 PCR_VD_WriteProtectDisable(h, nblocks*HBLKSIZE);
3365 PCR_VD_WriteProtectEnable(h, nblocks*HBLKSIZE);
3368 # endif /* PCR_VDB */
3370 #if defined(MPROTECT_VDB) && defined(DARWIN)
3371 /* The following sources were used as a *reference* for this exception handling
3372 code:
3373 1. Apple's mach/xnu documentation
3374 2. Timothy J. Wood's "Mach Exception Handlers 101" post to the
3375 omnigroup's macosx-dev list.
3376 www.omnigroup.com/mailman/archive/macosx-dev/2000-June/014178.html
3377 3. macosx-nat.c from Apple's GDB source code.
3380 /* The bug that caused all this trouble should now be fixed. This should
3381 eventually be removed if all goes well. */
3382 /* define BROKEN_EXCEPTION_HANDLING */
3384 #include <mach/mach.h>
3385 #include <mach/mach_error.h>
3386 #include <mach/thread_status.h>
3387 #include <mach/exception.h>
3388 #include <mach/task.h>
3389 #include <pthread.h>
3391 /* These are not defined in any header, although they are documented */
3392 extern boolean_t exc_server(mach_msg_header_t *,mach_msg_header_t *);
3393 extern kern_return_t exception_raise(
3394 mach_port_t,mach_port_t,mach_port_t,
3395 exception_type_t,exception_data_t,mach_msg_type_number_t);
3396 extern kern_return_t exception_raise_state(
3397 mach_port_t,mach_port_t,mach_port_t,
3398 exception_type_t,exception_data_t,mach_msg_type_number_t,
3399 thread_state_flavor_t*,thread_state_t,mach_msg_type_number_t,
3400 thread_state_t,mach_msg_type_number_t*);
3401 extern kern_return_t exception_raise_state_identity(
3402 mach_port_t,mach_port_t,mach_port_t,
3403 exception_type_t,exception_data_t,mach_msg_type_number_t,
3404 thread_state_flavor_t*,thread_state_t,mach_msg_type_number_t,
3405 thread_state_t,mach_msg_type_number_t*);
3408 #define MAX_EXCEPTION_PORTS 16
3410 static struct {
3411 mach_msg_type_number_t count;
3412 exception_mask_t masks[MAX_EXCEPTION_PORTS];
3413 exception_handler_t ports[MAX_EXCEPTION_PORTS];
3414 exception_behavior_t behaviors[MAX_EXCEPTION_PORTS];
3415 thread_state_flavor_t flavors[MAX_EXCEPTION_PORTS];
3416 } GC_old_exc_ports;
3418 static struct {
3419 mach_port_t exception;
3420 #if defined(THREADS)
3421 mach_port_t reply;
3422 #endif
3423 } GC_ports;
3425 typedef struct {
3426 mach_msg_header_t head;
3427 } GC_msg_t;
3429 typedef enum {
3430 GC_MP_NORMAL, GC_MP_DISCARDING, GC_MP_STOPPED
3431 } GC_mprotect_state_t;
3433 /* FIXME: 1 and 2 seem to be safe to use in the msgh_id field,
3434 but it isn't documented. Use the source and see if they
3435 should be ok. */
3436 #define ID_STOP 1
3437 #define ID_RESUME 2
3439 /* These values are only used on the reply port */
3440 #define ID_ACK 3
3442 #if defined(THREADS)
3444 GC_mprotect_state_t GC_mprotect_state;
3446 /* The following should ONLY be called when the world is stopped */
3447 static void GC_mprotect_thread_notify(mach_msg_id_t id) {
3448 struct {
3449 GC_msg_t msg;
3450 mach_msg_trailer_t trailer;
3451 } buf;
3452 mach_msg_return_t r;
3453 /* remote, local */
3454 buf.msg.head.msgh_bits =
3455 MACH_MSGH_BITS(MACH_MSG_TYPE_MAKE_SEND,0);
3456 buf.msg.head.msgh_size = sizeof(buf.msg);
3457 buf.msg.head.msgh_remote_port = GC_ports.exception;
3458 buf.msg.head.msgh_local_port = MACH_PORT_NULL;
3459 buf.msg.head.msgh_id = id;
3461 r = mach_msg(
3462 &buf.msg.head,
3463 MACH_SEND_MSG|MACH_RCV_MSG|MACH_RCV_LARGE,
3464 sizeof(buf.msg),
3465 sizeof(buf),
3466 GC_ports.reply,
3467 MACH_MSG_TIMEOUT_NONE,
3468 MACH_PORT_NULL);
3469 if(r != MACH_MSG_SUCCESS)
3470 ABORT("mach_msg failed in GC_mprotect_thread_notify");
3471 if(buf.msg.head.msgh_id != ID_ACK)
3472 ABORT("invalid ack in GC_mprotect_thread_notify");
3475 /* Should only be called by the mprotect thread */
3476 static void GC_mprotect_thread_reply() {
3477 GC_msg_t msg;
3478 mach_msg_return_t r;
3479 /* remote, local */
3480 msg.head.msgh_bits =
3481 MACH_MSGH_BITS(MACH_MSG_TYPE_MAKE_SEND,0);
3482 msg.head.msgh_size = sizeof(msg);
3483 msg.head.msgh_remote_port = GC_ports.reply;
3484 msg.head.msgh_local_port = MACH_PORT_NULL;
3485 msg.head.msgh_id = ID_ACK;
3487 r = mach_msg(
3488 &msg.head,
3489 MACH_SEND_MSG,
3490 sizeof(msg),
3492 MACH_PORT_NULL,
3493 MACH_MSG_TIMEOUT_NONE,
3494 MACH_PORT_NULL);
3495 if(r != MACH_MSG_SUCCESS)
3496 ABORT("mach_msg failed in GC_mprotect_thread_reply");
3499 void GC_mprotect_stop() {
3500 GC_mprotect_thread_notify(ID_STOP);
3502 void GC_mprotect_resume() {
3503 GC_mprotect_thread_notify(ID_RESUME);
3506 #else /* !THREADS */
3507 /* The compiler should optimize away any GC_mprotect_state computations */
3508 #define GC_mprotect_state GC_MP_NORMAL
3509 #endif
3511 static void *GC_mprotect_thread(void *arg) {
3512 mach_msg_return_t r;
3513 /* These two structures contain some private kernel data. We don't need to
3514 access any of it so we don't bother defining a proper struct. The
3515 correct definitions are in the xnu source code. */
3516 struct {
3517 mach_msg_header_t head;
3518 char data[256];
3519 } reply;
3520 struct {
3521 mach_msg_header_t head;
3522 mach_msg_body_t msgh_body;
3523 char data[1024];
3524 } msg;
3526 mach_msg_id_t id;
3528 GC_darwin_register_mach_handler_thread(mach_thread_self());
3530 for(;;) {
3531 r = mach_msg(
3532 &msg.head,
3533 MACH_RCV_MSG|MACH_RCV_LARGE|
3534 (GC_mprotect_state == GC_MP_DISCARDING ? MACH_RCV_TIMEOUT : 0),
3536 sizeof(msg),
3537 GC_ports.exception,
3538 GC_mprotect_state == GC_MP_DISCARDING ? 0 : MACH_MSG_TIMEOUT_NONE,
3539 MACH_PORT_NULL);
3541 id = r == MACH_MSG_SUCCESS ? msg.head.msgh_id : -1;
3543 #if defined(THREADS)
3544 if(GC_mprotect_state == GC_MP_DISCARDING) {
3545 if(r == MACH_RCV_TIMED_OUT) {
3546 GC_mprotect_state = GC_MP_STOPPED;
3547 GC_mprotect_thread_reply();
3548 continue;
3550 if(r == MACH_MSG_SUCCESS && (id == ID_STOP || id == ID_RESUME))
3551 ABORT("out of order mprotect thread request");
3553 #endif
3555 if(r != MACH_MSG_SUCCESS) {
3556 GC_err_printf2("mach_msg failed with %d %s\n",
3557 (int)r,mach_error_string(r));
3558 ABORT("mach_msg failed");
3561 switch(id) {
3562 #if defined(THREADS)
3563 case ID_STOP:
3564 if(GC_mprotect_state != GC_MP_NORMAL)
3565 ABORT("Called mprotect_stop when state wasn't normal");
3566 GC_mprotect_state = GC_MP_DISCARDING;
3567 break;
3568 case ID_RESUME:
3569 if(GC_mprotect_state != GC_MP_STOPPED)
3570 ABORT("Called mprotect_resume when state wasn't stopped");
3571 GC_mprotect_state = GC_MP_NORMAL;
3572 GC_mprotect_thread_reply();
3573 break;
3574 #endif /* THREADS */
3575 default:
3576 /* Handle the message (calls catch_exception_raise) */
3577 if(!exc_server(&msg.head,&reply.head))
3578 ABORT("exc_server failed");
3579 /* Send the reply */
3580 r = mach_msg(
3581 &reply.head,
3582 MACH_SEND_MSG,
3583 reply.head.msgh_size,
3585 MACH_PORT_NULL,
3586 MACH_MSG_TIMEOUT_NONE,
3587 MACH_PORT_NULL);
3588 if(r != MACH_MSG_SUCCESS) {
3589 /* This will fail if the thread dies, but the thread shouldn't
3590 die... */
3591 #ifdef BROKEN_EXCEPTION_HANDLING
3592 GC_err_printf2(
3593 "mach_msg failed with %d %s while sending exc reply\n",
3594 (int)r,mach_error_string(r));
3595 #else
3596 ABORT("mach_msg failed while sending exception reply");
3597 #endif
3599 } /* switch */
3600 } /* for(;;) */
3601 /* NOT REACHED */
3602 return NULL;
3605 /* All this SIGBUS code shouldn't be necessary. All protection faults should
3606 be going throught the mach exception handler. However, it seems a SIGBUS is
3607 occasionally sent for some unknown reason. Even more odd, it seems to be
3608 meaningless and safe to ignore. */
3609 #ifdef BROKEN_EXCEPTION_HANDLING
3611 typedef void (* SIG_PF)();
3612 static SIG_PF GC_old_bus_handler;
3614 /* Updates to this aren't atomic, but the SIGBUSs seem pretty rare.
3615 Even if this doesn't get updated property, it isn't really a problem */
3616 static int GC_sigbus_count;
3618 static void GC_darwin_sigbus(int num,siginfo_t *sip,void *context) {
3619 if(num != SIGBUS) ABORT("Got a non-sigbus signal in the sigbus handler");
3621 /* Ugh... some seem safe to ignore, but too many in a row probably means
3622 trouble. GC_sigbus_count is reset for each mach exception that is
3623 handled */
3624 if(GC_sigbus_count >= 8) {
3625 ABORT("Got more than 8 SIGBUSs in a row!");
3626 } else {
3627 GC_sigbus_count++;
3628 GC_err_printf0("GC: WARNING: Ignoring SIGBUS.\n");
3631 #endif /* BROKEN_EXCEPTION_HANDLING */
3633 void GC_dirty_init() {
3634 kern_return_t r;
3635 mach_port_t me;
3636 pthread_t thread;
3637 pthread_attr_t attr;
3638 exception_mask_t mask;
3640 # ifdef PRINTSTATS
3641 GC_printf0("Inititalizing mach/darwin mprotect virtual dirty bit "
3642 "implementation\n");
3643 # endif
3644 # ifdef BROKEN_EXCEPTION_HANDLING
3645 GC_err_printf0("GC: WARNING: Enabling workarounds for various darwin "
3646 "exception handling bugs.\n");
3647 # endif
3648 GC_dirty_maintained = TRUE;
3649 if (GC_page_size % HBLKSIZE != 0) {
3650 GC_err_printf0("Page size not multiple of HBLKSIZE\n");
3651 ABORT("Page size not multiple of HBLKSIZE");
3654 GC_task_self = me = mach_task_self();
3656 r = mach_port_allocate(me,MACH_PORT_RIGHT_RECEIVE,&GC_ports.exception);
3657 if(r != KERN_SUCCESS) ABORT("mach_port_allocate failed (exception port)");
3659 r = mach_port_insert_right(me,GC_ports.exception,GC_ports.exception,
3660 MACH_MSG_TYPE_MAKE_SEND);
3661 if(r != KERN_SUCCESS)
3662 ABORT("mach_port_insert_right failed (exception port)");
3664 #if defined(THREADS)
3665 r = mach_port_allocate(me,MACH_PORT_RIGHT_RECEIVE,&GC_ports.reply);
3666 if(r != KERN_SUCCESS) ABORT("mach_port_allocate failed (reply port)");
3667 #endif
3669 /* The exceptions we want to catch */
3670 mask = EXC_MASK_BAD_ACCESS;
3672 r = task_get_exception_ports(
3674 mask,
3675 GC_old_exc_ports.masks,
3676 &GC_old_exc_ports.count,
3677 GC_old_exc_ports.ports,
3678 GC_old_exc_ports.behaviors,
3679 GC_old_exc_ports.flavors
3681 if(r != KERN_SUCCESS) ABORT("task_get_exception_ports failed");
3683 r = task_set_exception_ports(
3685 mask,
3686 GC_ports.exception,
3687 EXCEPTION_DEFAULT,
3688 GC_MACH_THREAD_STATE
3690 if(r != KERN_SUCCESS) ABORT("task_set_exception_ports failed");
3692 if(pthread_attr_init(&attr) != 0) ABORT("pthread_attr_init failed");
3693 if(pthread_attr_setdetachstate(&attr,PTHREAD_CREATE_DETACHED) != 0)
3694 ABORT("pthread_attr_setdetachedstate failed");
3696 # undef pthread_create
3697 /* This will call the real pthread function, not our wrapper */
3698 if(pthread_create(&thread,&attr,GC_mprotect_thread,NULL) != 0)
3699 ABORT("pthread_create failed");
3700 pthread_attr_destroy(&attr);
3702 /* Setup the sigbus handler for ignoring the meaningless SIGBUSs */
3703 #ifdef BROKEN_EXCEPTION_HANDLING
3705 struct sigaction sa, oldsa;
3706 sa.sa_handler = (SIG_PF)GC_darwin_sigbus;
3707 sigemptyset(&sa.sa_mask);
3708 sa.sa_flags = SA_RESTART|SA_SIGINFO;
3709 if(sigaction(SIGBUS,&sa,&oldsa) < 0) ABORT("sigaction");
3710 GC_old_bus_handler = (SIG_PF)oldsa.sa_handler;
3711 if (GC_old_bus_handler != SIG_DFL) {
3712 # ifdef PRINTSTATS
3713 GC_err_printf0("Replaced other SIGBUS handler\n");
3714 # endif
3717 #endif /* BROKEN_EXCEPTION_HANDLING */
3720 /* The source code for Apple's GDB was used as a reference for the exception
3721 forwarding code. This code is similar to be GDB code only because there is
3722 only one way to do it. */
3723 static kern_return_t GC_forward_exception(
3724 mach_port_t thread,
3725 mach_port_t task,
3726 exception_type_t exception,
3727 exception_data_t data,
3728 mach_msg_type_number_t data_count
3730 int i;
3731 kern_return_t r;
3732 mach_port_t port;
3733 exception_behavior_t behavior;
3734 thread_state_flavor_t flavor;
3736 thread_state_t thread_state;
3737 mach_msg_type_number_t thread_state_count = THREAD_STATE_MAX;
3739 for(i=0;i<GC_old_exc_ports.count;i++)
3740 if(GC_old_exc_ports.masks[i] & (1 << exception))
3741 break;
3742 if(i==GC_old_exc_ports.count) ABORT("No handler for exception!");
3744 port = GC_old_exc_ports.ports[i];
3745 behavior = GC_old_exc_ports.behaviors[i];
3746 flavor = GC_old_exc_ports.flavors[i];
3748 if(behavior != EXCEPTION_DEFAULT) {
3749 r = thread_get_state(thread,flavor,thread_state,&thread_state_count);
3750 if(r != KERN_SUCCESS)
3751 ABORT("thread_get_state failed in forward_exception");
3754 switch(behavior) {
3755 case EXCEPTION_DEFAULT:
3756 r = exception_raise(port,thread,task,exception,data,data_count);
3757 break;
3758 case EXCEPTION_STATE:
3759 r = exception_raise_state(port,thread,task,exception,data,
3760 data_count,&flavor,thread_state,thread_state_count,
3761 thread_state,&thread_state_count);
3762 break;
3763 case EXCEPTION_STATE_IDENTITY:
3764 r = exception_raise_state_identity(port,thread,task,exception,data,
3765 data_count,&flavor,thread_state,thread_state_count,
3766 thread_state,&thread_state_count);
3767 break;
3768 default:
3769 r = KERN_FAILURE; /* make gcc happy */
3770 ABORT("forward_exception: unknown behavior");
3771 break;
3774 if(behavior != EXCEPTION_DEFAULT) {
3775 r = thread_set_state(thread,flavor,thread_state,thread_state_count);
3776 if(r != KERN_SUCCESS)
3777 ABORT("thread_set_state failed in forward_exception");
3780 return r;
3783 #define FWD() GC_forward_exception(thread,task,exception,code,code_count)
3785 /* This violates the namespace rules but there isn't anything that can be done
3786 about it. The exception handling stuff is hard coded to call this */
3787 kern_return_t
3788 catch_exception_raise(
3789 mach_port_t exception_port,mach_port_t thread,mach_port_t task,
3790 exception_type_t exception,exception_data_t code,
3791 mach_msg_type_number_t code_count
3793 kern_return_t r;
3794 char *addr;
3795 struct hblk *h;
3796 int i;
3797 # if defined(POWERPC)
3798 # if CPP_WORDSZ == 32
3799 thread_state_flavor_t flavor = PPC_EXCEPTION_STATE;
3800 mach_msg_type_number_t exc_state_count = PPC_EXCEPTION_STATE_COUNT;
3801 ppc_exception_state_t exc_state;
3802 # else
3803 thread_state_flavor_t flavor = PPC_EXCEPTION_STATE64;
3804 mach_msg_type_number_t exc_state_count = PPC_EXCEPTION_STATE64_COUNT;
3805 ppc_exception_state64_t exc_state;
3806 # endif
3807 # elif defined(I386) || defined(X86_64)
3808 # if CPP_WORDSZ == 32
3809 thread_state_flavor_t flavor = x86_EXCEPTION_STATE32;
3810 mach_msg_type_number_t exc_state_count = x86_EXCEPTION_STATE32_COUNT;
3811 x86_exception_state32_t exc_state;
3812 # else
3813 thread_state_flavor_t flavor = x86_EXCEPTION_STATE64;
3814 mach_msg_type_number_t exc_state_count = x86_EXCEPTION_STATE64_COUNT;
3815 x86_exception_state64_t exc_state;
3816 # endif
3817 # else
3818 # error FIXME for non-ppc darwin
3819 # endif
3822 if(exception != EXC_BAD_ACCESS || code[0] != KERN_PROTECTION_FAILURE) {
3823 #ifdef DEBUG_EXCEPTION_HANDLING
3824 /* We aren't interested, pass it on to the old handler */
3825 GC_printf3("Exception: 0x%x Code: 0x%x 0x%x in catch....\n",
3826 exception,
3827 code_count > 0 ? code[0] : -1,
3828 code_count > 1 ? code[1] : -1);
3829 #endif
3830 return FWD();
3833 r = thread_get_state(thread,flavor,
3834 (natural_t*)&exc_state,&exc_state_count);
3835 if(r != KERN_SUCCESS) {
3836 /* The thread is supposed to be suspended while the exception handler
3837 is called. This shouldn't fail. */
3838 #ifdef BROKEN_EXCEPTION_HANDLING
3839 GC_err_printf0("thread_get_state failed in "
3840 "catch_exception_raise\n");
3841 return KERN_SUCCESS;
3842 #else
3843 ABORT("thread_get_state failed in catch_exception_raise");
3844 #endif
3847 /* This is the address that caused the fault */
3848 #if defined(POWERPC)
3849 addr = (char*) exc_state. THREAD_FLD(dar);
3850 #elif defined (I386) || defined (X86_64)
3851 addr = (char*) exc_state. THREAD_FLD(faultvaddr);
3852 #else
3853 # error FIXME for non POWERPC/I386
3854 #endif
3856 if((HDR(addr)) == 0) {
3857 /* Ugh... just like the SIGBUS problem above, it seems we get a bogus
3858 KERN_PROTECTION_FAILURE every once and a while. We wait till we get
3859 a bunch in a row before doing anything about it. If a "real" fault
3860 ever occurres it'll just keep faulting over and over and we'll hit
3861 the limit pretty quickly. */
3862 #ifdef BROKEN_EXCEPTION_HANDLING
3863 static char *last_fault;
3864 static int last_fault_count;
3866 if(addr != last_fault) {
3867 last_fault = addr;
3868 last_fault_count = 0;
3870 if(++last_fault_count < 32) {
3871 if(last_fault_count == 1)
3872 GC_err_printf1(
3873 "GC: WARNING: Ignoring KERN_PROTECTION_FAILURE at %p\n",
3874 addr);
3875 return KERN_SUCCESS;
3878 GC_err_printf1("Unexpected KERN_PROTECTION_FAILURE at %p\n",addr);
3879 /* Can't pass it along to the signal handler because that is
3880 ignoring SIGBUS signals. We also shouldn't call ABORT here as
3881 signals don't always work too well from the exception handler. */
3882 GC_err_printf0("Aborting\n");
3883 exit(EXIT_FAILURE);
3884 #else /* BROKEN_EXCEPTION_HANDLING */
3885 /* Pass it along to the next exception handler
3886 (which should call SIGBUS/SIGSEGV) */
3887 return FWD();
3888 #endif /* !BROKEN_EXCEPTION_HANDLING */
3891 #ifdef BROKEN_EXCEPTION_HANDLING
3892 /* Reset the number of consecutive SIGBUSs */
3893 GC_sigbus_count = 0;
3894 #endif
3896 if(GC_mprotect_state == GC_MP_NORMAL) { /* common case */
3897 h = (struct hblk*)((word)addr & ~(GC_page_size-1));
3898 UNPROTECT(h, GC_page_size);
3899 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
3900 register int index = PHT_HASH(h+i);
3901 async_set_pht_entry_from_index(GC_dirty_pages, index);
3903 } else if(GC_mprotect_state == GC_MP_DISCARDING) {
3904 /* Lie to the thread for now. No sense UNPROTECT()ing the memory
3905 when we're just going to PROTECT() it again later. The thread
3906 will just fault again once it resumes */
3907 } else {
3908 /* Shouldn't happen, i don't think */
3909 GC_printf0("KERN_PROTECTION_FAILURE while world is stopped\n");
3910 return FWD();
3912 return KERN_SUCCESS;
3914 #undef FWD
3916 /* These should never be called, but just in case... */
3917 kern_return_t catch_exception_raise_state(mach_port_name_t exception_port,
3918 int exception, exception_data_t code, mach_msg_type_number_t codeCnt,
3919 int flavor, thread_state_t old_state, int old_stateCnt,
3920 thread_state_t new_state, int new_stateCnt)
3922 ABORT("catch_exception_raise_state");
3923 return(KERN_INVALID_ARGUMENT);
3925 kern_return_t catch_exception_raise_state_identity(
3926 mach_port_name_t exception_port, mach_port_t thread, mach_port_t task,
3927 int exception, exception_data_t code, mach_msg_type_number_t codeCnt,
3928 int flavor, thread_state_t old_state, int old_stateCnt,
3929 thread_state_t new_state, int new_stateCnt)
3931 ABORT("catch_exception_raise_state_identity");
3932 return(KERN_INVALID_ARGUMENT);
3936 #endif /* DARWIN && MPROTECT_VDB */
3938 # ifndef HAVE_INCREMENTAL_PROTECTION_NEEDS
3939 int GC_incremental_protection_needs()
3941 return GC_PROTECTS_NONE;
3943 # endif /* !HAVE_INCREMENTAL_PROTECTION_NEEDS */
3946 * Call stack save code for debugging.
3947 * Should probably be in mach_dep.c, but that requires reorganization.
3950 /* I suspect the following works for most X86 *nix variants, so */
3951 /* long as the frame pointer is explicitly stored. In the case of gcc, */
3952 /* compiler flags (e.g. -fomit-frame-pointer) determine whether it is. */
3953 #if defined(I386) && defined(LINUX) && defined(SAVE_CALL_CHAIN)
3954 # include <features.h>
3956 struct frame {
3957 struct frame *fr_savfp;
3958 long fr_savpc;
3959 long fr_arg[NARGS]; /* All the arguments go here. */
3961 #endif
3963 #if defined(SPARC)
3964 # if defined(LINUX)
3965 # include <features.h>
3967 struct frame {
3968 long fr_local[8];
3969 long fr_arg[6];
3970 struct frame *fr_savfp;
3971 long fr_savpc;
3972 # ifndef __arch64__
3973 char *fr_stret;
3974 # endif
3975 long fr_argd[6];
3976 long fr_argx[0];
3978 # else
3979 # if defined(SUNOS4)
3980 # include <machine/frame.h>
3981 # else
3982 # if defined (DRSNX)
3983 # include <sys/sparc/frame.h>
3984 # else
3985 # if defined(OPENBSD)
3986 # include <frame.h>
3987 # else
3988 # if defined(FREEBSD) || defined(NETBSD)
3989 # include <machine/frame.h>
3990 # else
3991 # include <sys/frame.h>
3992 # endif
3993 # endif
3994 # endif
3995 # endif
3996 # endif
3997 # if NARGS > 6
3998 --> We only know how to to get the first 6 arguments
3999 # endif
4000 #endif /* SPARC */
4002 #ifdef NEED_CALLINFO
4003 /* Fill in the pc and argument information for up to NFRAMES of my */
4004 /* callers. Ignore my frame and my callers frame. */
4006 #ifdef LINUX
4007 # include <unistd.h>
4008 #endif
4010 #endif /* NEED_CALLINFO */
4012 #if defined(GC_HAVE_BUILTIN_BACKTRACE)
4013 # include <execinfo.h>
4014 #endif
4016 #ifdef SAVE_CALL_CHAIN
4018 #if NARGS == 0 && NFRAMES % 2 == 0 /* No padding */ \
4019 && defined(GC_HAVE_BUILTIN_BACKTRACE)
4021 #ifdef REDIRECT_MALLOC
4022 /* Deal with possible malloc calls in backtrace by omitting */
4023 /* the infinitely recursing backtrace. */
4024 # ifdef THREADS
4025 __thread /* If your compiler doesn't understand this */
4026 /* you could use something like pthread_getspecific. */
4027 # endif
4028 GC_in_save_callers = FALSE;
4029 #endif
4031 void GC_save_callers (info)
4032 struct callinfo info[NFRAMES];
4034 void * tmp_info[NFRAMES + 1];
4035 int npcs, i;
4036 # define IGNORE_FRAMES 1
4038 /* We retrieve NFRAMES+1 pc values, but discard the first, since it */
4039 /* points to our own frame. */
4040 # ifdef REDIRECT_MALLOC
4041 if (GC_in_save_callers) {
4042 info[0].ci_pc = (word)(&GC_save_callers);
4043 for (i = 1; i < NFRAMES; ++i) info[i].ci_pc = 0;
4044 return;
4046 GC_in_save_callers = TRUE;
4047 # endif
4048 GC_ASSERT(sizeof(struct callinfo) == sizeof(void *));
4049 npcs = backtrace((void **)tmp_info, NFRAMES + IGNORE_FRAMES);
4050 BCOPY(tmp_info+IGNORE_FRAMES, info, (npcs - IGNORE_FRAMES) * sizeof(void *));
4051 for (i = npcs - IGNORE_FRAMES; i < NFRAMES; ++i) info[i].ci_pc = 0;
4052 # ifdef REDIRECT_MALLOC
4053 GC_in_save_callers = FALSE;
4054 # endif
4057 #else /* No builtin backtrace; do it ourselves */
4059 #if (defined(OPENBSD) || defined(NETBSD) || defined(FREEBSD)) && defined(SPARC)
4060 # define FR_SAVFP fr_fp
4061 # define FR_SAVPC fr_pc
4062 #else
4063 # define FR_SAVFP fr_savfp
4064 # define FR_SAVPC fr_savpc
4065 #endif
4067 #if defined(SPARC) && (defined(__arch64__) || defined(__sparcv9))
4068 # define BIAS 2047
4069 #else
4070 # define BIAS 0
4071 #endif
4073 void GC_save_callers (info)
4074 struct callinfo info[NFRAMES];
4076 struct frame *frame;
4077 struct frame *fp;
4078 int nframes = 0;
4079 # ifdef I386
4080 /* We assume this is turned on only with gcc as the compiler. */
4081 asm("movl %%ebp,%0" : "=r"(frame));
4082 fp = frame;
4083 # else
4084 frame = (struct frame *) GC_save_regs_in_stack ();
4085 fp = (struct frame *)((long) frame -> FR_SAVFP + BIAS);
4086 #endif
4088 for (; (!(fp HOTTER_THAN frame) && !(GC_stackbottom HOTTER_THAN (ptr_t)fp)
4089 && (nframes < NFRAMES));
4090 fp = (struct frame *)((long) fp -> FR_SAVFP + BIAS), nframes++) {
4091 register int i;
4093 info[nframes].ci_pc = fp->FR_SAVPC;
4094 # if NARGS > 0
4095 for (i = 0; i < NARGS; i++) {
4096 info[nframes].ci_arg[i] = ~(fp->fr_arg[i]);
4098 # endif /* NARGS > 0 */
4100 if (nframes < NFRAMES) info[nframes].ci_pc = 0;
4103 #endif /* No builtin backtrace */
4105 #endif /* SAVE_CALL_CHAIN */
4107 #ifdef NEED_CALLINFO
4109 /* Print info to stderr. We do NOT hold the allocation lock */
4110 void GC_print_callers (info)
4111 struct callinfo info[NFRAMES];
4113 register int i;
4114 static int reentry_count = 0;
4115 GC_bool stop = FALSE;
4117 /* FIXME: This should probably use a different lock, so that we */
4118 /* become callable with or without the allocation lock. */
4119 LOCK();
4120 ++reentry_count;
4121 UNLOCK();
4123 # if NFRAMES == 1
4124 GC_err_printf0("\tCaller at allocation:\n");
4125 # else
4126 GC_err_printf0("\tCall chain at allocation:\n");
4127 # endif
4128 for (i = 0; i < NFRAMES && !stop ; i++) {
4129 if (info[i].ci_pc == 0) break;
4130 # if NARGS > 0
4132 int j;
4134 GC_err_printf0("\t\targs: ");
4135 for (j = 0; j < NARGS; j++) {
4136 if (j != 0) GC_err_printf0(", ");
4137 GC_err_printf2("%d (0x%X)", ~(info[i].ci_arg[j]),
4138 ~(info[i].ci_arg[j]));
4140 GC_err_printf0("\n");
4142 # endif
4143 if (reentry_count > 1) {
4144 /* We were called during an allocation during */
4145 /* a previous GC_print_callers call; punt. */
4146 GC_err_printf1("\t\t##PC##= 0x%lx\n", info[i].ci_pc);
4147 continue;
4150 # ifdef LINUX
4151 FILE *pipe;
4152 # endif
4153 # if defined(GC_HAVE_BUILTIN_BACKTRACE) \
4154 && !defined(GC_BACKTRACE_SYMBOLS_BROKEN)
4155 char **sym_name =
4156 backtrace_symbols((void **)(&(info[i].ci_pc)), 1);
4157 char *name = sym_name[0];
4158 # else
4159 char buf[40];
4160 char *name = buf;
4161 sprintf(buf, "##PC##= 0x%lx", info[i].ci_pc);
4162 # endif
4163 # if defined(LINUX) && !defined(SMALL_CONFIG)
4164 /* Try for a line number. */
4166 # define EXE_SZ 100
4167 static char exe_name[EXE_SZ];
4168 # define CMD_SZ 200
4169 char cmd_buf[CMD_SZ];
4170 # define RESULT_SZ 200
4171 static char result_buf[RESULT_SZ];
4172 size_t result_len;
4173 char *old_preload;
4174 # define PRELOAD_SZ 200
4175 char preload_buf[PRELOAD_SZ];
4176 static GC_bool found_exe_name = FALSE;
4177 static GC_bool will_fail = FALSE;
4178 int ret_code;
4179 /* Try to get it via a hairy and expensive scheme. */
4180 /* First we get the name of the executable: */
4181 if (will_fail) goto out;
4182 if (!found_exe_name) {
4183 ret_code = readlink("/proc/self/exe", exe_name, EXE_SZ);
4184 if (ret_code < 0 || ret_code >= EXE_SZ
4185 || exe_name[0] != '/') {
4186 will_fail = TRUE; /* Dont try again. */
4187 goto out;
4189 exe_name[ret_code] = '\0';
4190 found_exe_name = TRUE;
4192 /* Then we use popen to start addr2line -e <exe> <addr> */
4193 /* There are faster ways to do this, but hopefully this */
4194 /* isn't time critical. */
4195 sprintf(cmd_buf, "/usr/bin/addr2line -f -e %s 0x%lx", exe_name,
4196 (unsigned long)info[i].ci_pc);
4197 old_preload = getenv ("LD_PRELOAD");
4198 if (0 != old_preload) {
4199 if (strlen (old_preload) >= PRELOAD_SZ) {
4200 will_fail = TRUE;
4201 goto out;
4203 strcpy (preload_buf, old_preload);
4204 unsetenv ("LD_PRELOAD");
4206 pipe = popen(cmd_buf, "r");
4207 if (0 != old_preload
4208 && 0 != setenv ("LD_PRELOAD", preload_buf, 0)) {
4209 WARN("Failed to reset LD_PRELOAD\n", 0);
4211 if (pipe == NULL
4212 || (result_len = fread(result_buf, 1, RESULT_SZ - 1, pipe))
4213 == 0) {
4214 if (pipe != NULL) pclose(pipe);
4215 will_fail = TRUE;
4216 goto out;
4218 if (result_buf[result_len - 1] == '\n') --result_len;
4219 result_buf[result_len] = 0;
4220 if (result_buf[0] == '?'
4221 || result_buf[result_len-2] == ':'
4222 && result_buf[result_len-1] == '0') {
4223 pclose(pipe);
4224 goto out;
4226 /* Get rid of embedded newline, if any. Test for "main" */
4228 char * nl = strchr(result_buf, '\n');
4229 if (nl != NULL && nl < result_buf + result_len) {
4230 *nl = ':';
4232 if (strncmp(result_buf, "main", nl - result_buf) == 0) {
4233 stop = TRUE;
4236 if (result_len < RESULT_SZ - 25) {
4237 /* Add in hex address */
4238 sprintf(result_buf + result_len, " [0x%lx]",
4239 (unsigned long)info[i].ci_pc);
4241 name = result_buf;
4242 pclose(pipe);
4243 out:;
4245 # endif /* LINUX */
4246 GC_err_printf1("\t\t%s\n", name);
4247 # if defined(GC_HAVE_BUILTIN_BACKTRACE) \
4248 && !defined(GC_BACKTRACE_SYMBOLS_BROKEN)
4249 free(sym_name); /* May call GC_free; that's OK */
4250 # endif
4253 LOCK();
4254 --reentry_count;
4255 UNLOCK();
4258 #endif /* NEED_CALLINFO */
4262 #if defined(LINUX) && defined(__ELF__) && !defined(SMALL_CONFIG)
4264 /* Dump /proc/self/maps to GC_stderr, to enable looking up names for
4265 addresses in FIND_LEAK output. */
4267 static word dump_maps(char *maps)
4269 GC_err_write(maps, strlen(maps));
4270 return 1;
4273 void GC_print_address_map()
4275 GC_err_printf0("---------- Begin address map ----------\n");
4276 GC_apply_to_maps(dump_maps);
4277 GC_err_printf0("---------- End address map ----------\n");
4280 #endif