PR libstdc++/80251
[official-gcc.git] / gcc / cfgcleanup.c
blobd55b0ceb832edc87467d3db0dd8ab2ffda1282f6
1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains optimizer of the control flow. The main entry point is
21 cleanup_cfg. Following optimizations are performed:
23 - Unreachable blocks removal
24 - Edge forwarding (edge to the forwarder block is forwarded to its
25 successor. Simplification of the branch instruction is performed by
26 underlying infrastructure so branch can be converted to simplejump or
27 eliminated).
28 - Cross jumping (tail merging)
29 - Conditional jump-around-simplejump simplification
30 - Basic block merging. */
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "backend.h"
36 #include "target.h"
37 #include "rtl.h"
38 #include "tree.h"
39 #include "cfghooks.h"
40 #include "df.h"
41 #include "memmodel.h"
42 #include "tm_p.h"
43 #include "insn-config.h"
44 #include "emit-rtl.h"
45 #include "cselib.h"
46 #include "params.h"
47 #include "tree-pass.h"
48 #include "cfgloop.h"
49 #include "cfgrtl.h"
50 #include "cfganal.h"
51 #include "cfgbuild.h"
52 #include "cfgcleanup.h"
53 #include "dce.h"
54 #include "dbgcnt.h"
55 #include "rtl-iter.h"
57 #define FORWARDER_BLOCK_P(BB) ((BB)->flags & BB_FORWARDER_BLOCK)
59 /* Set to true when we are running first pass of try_optimize_cfg loop. */
60 static bool first_pass;
62 /* Set to true if crossjumps occurred in the latest run of try_optimize_cfg. */
63 static bool crossjumps_occurred;
65 /* Set to true if we couldn't run an optimization due to stale liveness
66 information; we should run df_analyze to enable more opportunities. */
67 static bool block_was_dirty;
69 static bool try_crossjump_to_edge (int, edge, edge, enum replace_direction);
70 static bool try_crossjump_bb (int, basic_block);
71 static bool outgoing_edges_match (int, basic_block, basic_block);
72 static enum replace_direction old_insns_match_p (int, rtx_insn *, rtx_insn *);
74 static void merge_blocks_move_predecessor_nojumps (basic_block, basic_block);
75 static void merge_blocks_move_successor_nojumps (basic_block, basic_block);
76 static bool try_optimize_cfg (int);
77 static bool try_simplify_condjump (basic_block);
78 static bool try_forward_edges (int, basic_block);
79 static edge thread_jump (edge, basic_block);
80 static bool mark_effect (rtx, bitmap);
81 static void notice_new_block (basic_block);
82 static void update_forwarder_flag (basic_block);
83 static void merge_memattrs (rtx, rtx);
85 /* Set flags for newly created block. */
87 static void
88 notice_new_block (basic_block bb)
90 if (!bb)
91 return;
93 if (forwarder_block_p (bb))
94 bb->flags |= BB_FORWARDER_BLOCK;
97 /* Recompute forwarder flag after block has been modified. */
99 static void
100 update_forwarder_flag (basic_block bb)
102 if (forwarder_block_p (bb))
103 bb->flags |= BB_FORWARDER_BLOCK;
104 else
105 bb->flags &= ~BB_FORWARDER_BLOCK;
108 /* Simplify a conditional jump around an unconditional jump.
109 Return true if something changed. */
111 static bool
112 try_simplify_condjump (basic_block cbranch_block)
114 basic_block jump_block, jump_dest_block, cbranch_dest_block;
115 edge cbranch_jump_edge, cbranch_fallthru_edge;
116 rtx_insn *cbranch_insn;
118 /* Verify that there are exactly two successors. */
119 if (EDGE_COUNT (cbranch_block->succs) != 2)
120 return false;
122 /* Verify that we've got a normal conditional branch at the end
123 of the block. */
124 cbranch_insn = BB_END (cbranch_block);
125 if (!any_condjump_p (cbranch_insn))
126 return false;
128 cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
129 cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
131 /* The next block must not have multiple predecessors, must not
132 be the last block in the function, and must contain just the
133 unconditional jump. */
134 jump_block = cbranch_fallthru_edge->dest;
135 if (!single_pred_p (jump_block)
136 || jump_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
137 || !FORWARDER_BLOCK_P (jump_block))
138 return false;
139 jump_dest_block = single_succ (jump_block);
141 /* If we are partitioning hot/cold basic blocks, we don't want to
142 mess up unconditional or indirect jumps that cross between hot
143 and cold sections.
145 Basic block partitioning may result in some jumps that appear to
146 be optimizable (or blocks that appear to be mergeable), but which really
147 must be left untouched (they are required to make it safely across
148 partition boundaries). See the comments at the top of
149 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
151 if (BB_PARTITION (jump_block) != BB_PARTITION (jump_dest_block)
152 || (cbranch_jump_edge->flags & EDGE_CROSSING))
153 return false;
155 /* The conditional branch must target the block after the
156 unconditional branch. */
157 cbranch_dest_block = cbranch_jump_edge->dest;
159 if (cbranch_dest_block == EXIT_BLOCK_PTR_FOR_FN (cfun)
160 || jump_dest_block == EXIT_BLOCK_PTR_FOR_FN (cfun)
161 || !can_fallthru (jump_block, cbranch_dest_block))
162 return false;
164 /* Invert the conditional branch. */
165 if (!invert_jump (as_a <rtx_jump_insn *> (cbranch_insn),
166 block_label (jump_dest_block), 0))
167 return false;
169 if (dump_file)
170 fprintf (dump_file, "Simplifying condjump %i around jump %i\n",
171 INSN_UID (cbranch_insn), INSN_UID (BB_END (jump_block)));
173 /* Success. Update the CFG to match. Note that after this point
174 the edge variable names appear backwards; the redirection is done
175 this way to preserve edge profile data. */
176 cbranch_jump_edge = redirect_edge_succ_nodup (cbranch_jump_edge,
177 cbranch_dest_block);
178 cbranch_fallthru_edge = redirect_edge_succ_nodup (cbranch_fallthru_edge,
179 jump_dest_block);
180 cbranch_jump_edge->flags |= EDGE_FALLTHRU;
181 cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
182 update_br_prob_note (cbranch_block);
184 /* Delete the block with the unconditional jump, and clean up the mess. */
185 delete_basic_block (jump_block);
186 tidy_fallthru_edge (cbranch_jump_edge);
187 update_forwarder_flag (cbranch_block);
189 return true;
192 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
193 on register. Used by jump threading. */
195 static bool
196 mark_effect (rtx exp, regset nonequal)
198 rtx dest;
199 switch (GET_CODE (exp))
201 /* In case we do clobber the register, mark it as equal, as we know the
202 value is dead so it don't have to match. */
203 case CLOBBER:
204 dest = XEXP (exp, 0);
205 if (REG_P (dest))
206 bitmap_clear_range (nonequal, REGNO (dest), REG_NREGS (dest));
207 return false;
209 case SET:
210 if (rtx_equal_for_cselib_p (SET_DEST (exp), SET_SRC (exp)))
211 return false;
212 dest = SET_DEST (exp);
213 if (dest == pc_rtx)
214 return false;
215 if (!REG_P (dest))
216 return true;
217 bitmap_set_range (nonequal, REGNO (dest), REG_NREGS (dest));
218 return false;
220 default:
221 return false;
225 /* Return true if X contains a register in NONEQUAL. */
226 static bool
227 mentions_nonequal_regs (const_rtx x, regset nonequal)
229 subrtx_iterator::array_type array;
230 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
232 const_rtx x = *iter;
233 if (REG_P (x))
235 unsigned int end_regno = END_REGNO (x);
236 for (unsigned int regno = REGNO (x); regno < end_regno; ++regno)
237 if (REGNO_REG_SET_P (nonequal, regno))
238 return true;
241 return false;
244 /* Attempt to prove that the basic block B will have no side effects and
245 always continues in the same edge if reached via E. Return the edge
246 if exist, NULL otherwise. */
248 static edge
249 thread_jump (edge e, basic_block b)
251 rtx set1, set2, cond1, cond2;
252 rtx_insn *insn;
253 enum rtx_code code1, code2, reversed_code2;
254 bool reverse1 = false;
255 unsigned i;
256 regset nonequal;
257 bool failed = false;
258 reg_set_iterator rsi;
260 if (b->flags & BB_NONTHREADABLE_BLOCK)
261 return NULL;
263 /* At the moment, we do handle only conditional jumps, but later we may
264 want to extend this code to tablejumps and others. */
265 if (EDGE_COUNT (e->src->succs) != 2)
266 return NULL;
267 if (EDGE_COUNT (b->succs) != 2)
269 b->flags |= BB_NONTHREADABLE_BLOCK;
270 return NULL;
273 /* Second branch must end with onlyjump, as we will eliminate the jump. */
274 if (!any_condjump_p (BB_END (e->src)))
275 return NULL;
277 if (!any_condjump_p (BB_END (b)) || !onlyjump_p (BB_END (b)))
279 b->flags |= BB_NONTHREADABLE_BLOCK;
280 return NULL;
283 set1 = pc_set (BB_END (e->src));
284 set2 = pc_set (BB_END (b));
285 if (((e->flags & EDGE_FALLTHRU) != 0)
286 != (XEXP (SET_SRC (set1), 1) == pc_rtx))
287 reverse1 = true;
289 cond1 = XEXP (SET_SRC (set1), 0);
290 cond2 = XEXP (SET_SRC (set2), 0);
291 if (reverse1)
292 code1 = reversed_comparison_code (cond1, BB_END (e->src));
293 else
294 code1 = GET_CODE (cond1);
296 code2 = GET_CODE (cond2);
297 reversed_code2 = reversed_comparison_code (cond2, BB_END (b));
299 if (!comparison_dominates_p (code1, code2)
300 && !comparison_dominates_p (code1, reversed_code2))
301 return NULL;
303 /* Ensure that the comparison operators are equivalent.
304 ??? This is far too pessimistic. We should allow swapped operands,
305 different CCmodes, or for example comparisons for interval, that
306 dominate even when operands are not equivalent. */
307 if (!rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
308 || !rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
309 return NULL;
311 /* Short circuit cases where block B contains some side effects, as we can't
312 safely bypass it. */
313 for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b));
314 insn = NEXT_INSN (insn))
315 if (INSN_P (insn) && side_effects_p (PATTERN (insn)))
317 b->flags |= BB_NONTHREADABLE_BLOCK;
318 return NULL;
321 cselib_init (0);
323 /* First process all values computed in the source basic block. */
324 for (insn = NEXT_INSN (BB_HEAD (e->src));
325 insn != NEXT_INSN (BB_END (e->src));
326 insn = NEXT_INSN (insn))
327 if (INSN_P (insn))
328 cselib_process_insn (insn);
330 nonequal = BITMAP_ALLOC (NULL);
331 CLEAR_REG_SET (nonequal);
333 /* Now assume that we've continued by the edge E to B and continue
334 processing as if it were same basic block.
335 Our goal is to prove that whole block is an NOOP. */
337 for (insn = NEXT_INSN (BB_HEAD (b));
338 insn != NEXT_INSN (BB_END (b)) && !failed;
339 insn = NEXT_INSN (insn))
341 if (INSN_P (insn))
343 rtx pat = PATTERN (insn);
345 if (GET_CODE (pat) == PARALLEL)
347 for (i = 0; i < (unsigned)XVECLEN (pat, 0); i++)
348 failed |= mark_effect (XVECEXP (pat, 0, i), nonequal);
350 else
351 failed |= mark_effect (pat, nonequal);
354 cselib_process_insn (insn);
357 /* Later we should clear nonequal of dead registers. So far we don't
358 have life information in cfg_cleanup. */
359 if (failed)
361 b->flags |= BB_NONTHREADABLE_BLOCK;
362 goto failed_exit;
365 /* cond2 must not mention any register that is not equal to the
366 former block. */
367 if (mentions_nonequal_regs (cond2, nonequal))
368 goto failed_exit;
370 EXECUTE_IF_SET_IN_REG_SET (nonequal, 0, i, rsi)
371 goto failed_exit;
373 BITMAP_FREE (nonequal);
374 cselib_finish ();
375 if ((comparison_dominates_p (code1, code2) != 0)
376 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
377 return BRANCH_EDGE (b);
378 else
379 return FALLTHRU_EDGE (b);
381 failed_exit:
382 BITMAP_FREE (nonequal);
383 cselib_finish ();
384 return NULL;
387 /* Attempt to forward edges leaving basic block B.
388 Return true if successful. */
390 static bool
391 try_forward_edges (int mode, basic_block b)
393 bool changed = false;
394 edge_iterator ei;
395 edge e, *threaded_edges = NULL;
397 /* If we are partitioning hot/cold basic blocks, we don't want to
398 mess up unconditional or indirect jumps that cross between hot
399 and cold sections.
401 Basic block partitioning may result in some jumps that appear to
402 be optimizable (or blocks that appear to be mergeable), but which really
403 must be left untouched (they are required to make it safely across
404 partition boundaries). See the comments at the top of
405 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
407 if (JUMP_P (BB_END (b)) && CROSSING_JUMP_P (BB_END (b)))
408 return false;
410 for (ei = ei_start (b->succs); (e = ei_safe_edge (ei)); )
412 basic_block target, first;
413 location_t goto_locus;
414 int counter;
415 bool threaded = false;
416 int nthreaded_edges = 0;
417 bool may_thread = first_pass || (b->flags & BB_MODIFIED) != 0;
419 /* Skip complex edges because we don't know how to update them.
421 Still handle fallthru edges, as we can succeed to forward fallthru
422 edge to the same place as the branch edge of conditional branch
423 and turn conditional branch to an unconditional branch. */
424 if (e->flags & EDGE_COMPLEX)
426 ei_next (&ei);
427 continue;
430 target = first = e->dest;
431 counter = NUM_FIXED_BLOCKS;
432 goto_locus = e->goto_locus;
434 /* If we are partitioning hot/cold basic_blocks, we don't want to mess
435 up jumps that cross between hot/cold sections.
437 Basic block partitioning may result in some jumps that appear
438 to be optimizable (or blocks that appear to be mergeable), but which
439 really must be left untouched (they are required to make it safely
440 across partition boundaries). See the comments at the top of
441 bb-reorder.c:partition_hot_cold_basic_blocks for complete
442 details. */
444 if (first != EXIT_BLOCK_PTR_FOR_FN (cfun)
445 && JUMP_P (BB_END (first))
446 && CROSSING_JUMP_P (BB_END (first)))
447 return changed;
449 while (counter < n_basic_blocks_for_fn (cfun))
451 basic_block new_target = NULL;
452 bool new_target_threaded = false;
453 may_thread |= (target->flags & BB_MODIFIED) != 0;
455 if (FORWARDER_BLOCK_P (target)
456 && !(single_succ_edge (target)->flags & EDGE_CROSSING)
457 && single_succ (target) != EXIT_BLOCK_PTR_FOR_FN (cfun))
459 /* Bypass trivial infinite loops. */
460 new_target = single_succ (target);
461 if (target == new_target)
462 counter = n_basic_blocks_for_fn (cfun);
463 else if (!optimize)
465 /* When not optimizing, ensure that edges or forwarder
466 blocks with different locus are not optimized out. */
467 location_t new_locus = single_succ_edge (target)->goto_locus;
468 location_t locus = goto_locus;
470 if (LOCATION_LOCUS (new_locus) != UNKNOWN_LOCATION
471 && LOCATION_LOCUS (locus) != UNKNOWN_LOCATION
472 && new_locus != locus)
473 new_target = NULL;
474 else
476 if (LOCATION_LOCUS (new_locus) != UNKNOWN_LOCATION)
477 locus = new_locus;
479 rtx_insn *last = BB_END (target);
480 if (DEBUG_INSN_P (last))
481 last = prev_nondebug_insn (last);
482 if (last && INSN_P (last))
483 new_locus = INSN_LOCATION (last);
484 else
485 new_locus = UNKNOWN_LOCATION;
487 if (LOCATION_LOCUS (new_locus) != UNKNOWN_LOCATION
488 && LOCATION_LOCUS (locus) != UNKNOWN_LOCATION
489 && new_locus != locus)
490 new_target = NULL;
491 else
493 if (LOCATION_LOCUS (new_locus) != UNKNOWN_LOCATION)
494 locus = new_locus;
496 goto_locus = locus;
502 /* Allow to thread only over one edge at time to simplify updating
503 of probabilities. */
504 else if ((mode & CLEANUP_THREADING) && may_thread)
506 edge t = thread_jump (e, target);
507 if (t)
509 if (!threaded_edges)
510 threaded_edges = XNEWVEC (edge,
511 n_basic_blocks_for_fn (cfun));
512 else
514 int i;
516 /* Detect an infinite loop across blocks not
517 including the start block. */
518 for (i = 0; i < nthreaded_edges; ++i)
519 if (threaded_edges[i] == t)
520 break;
521 if (i < nthreaded_edges)
523 counter = n_basic_blocks_for_fn (cfun);
524 break;
528 /* Detect an infinite loop across the start block. */
529 if (t->dest == b)
530 break;
532 gcc_assert (nthreaded_edges
533 < (n_basic_blocks_for_fn (cfun)
534 - NUM_FIXED_BLOCKS));
535 threaded_edges[nthreaded_edges++] = t;
537 new_target = t->dest;
538 new_target_threaded = true;
542 if (!new_target)
543 break;
545 counter++;
546 target = new_target;
547 threaded |= new_target_threaded;
550 if (counter >= n_basic_blocks_for_fn (cfun))
552 if (dump_file)
553 fprintf (dump_file, "Infinite loop in BB %i.\n",
554 target->index);
556 else if (target == first)
557 ; /* We didn't do anything. */
558 else
560 /* Save the values now, as the edge may get removed. */
561 gcov_type edge_count = e->count;
562 int edge_probability = e->probability;
563 int edge_frequency;
564 int n = 0;
566 e->goto_locus = goto_locus;
568 /* Don't force if target is exit block. */
569 if (threaded && target != EXIT_BLOCK_PTR_FOR_FN (cfun))
571 notice_new_block (redirect_edge_and_branch_force (e, target));
572 if (dump_file)
573 fprintf (dump_file, "Conditionals threaded.\n");
575 else if (!redirect_edge_and_branch (e, target))
577 if (dump_file)
578 fprintf (dump_file,
579 "Forwarding edge %i->%i to %i failed.\n",
580 b->index, e->dest->index, target->index);
581 ei_next (&ei);
582 continue;
585 /* We successfully forwarded the edge. Now update profile
586 data: for each edge we traversed in the chain, remove
587 the original edge's execution count. */
588 edge_frequency = apply_probability (b->frequency, edge_probability);
592 edge t;
594 if (!single_succ_p (first))
596 gcc_assert (n < nthreaded_edges);
597 t = threaded_edges [n++];
598 gcc_assert (t->src == first);
599 update_bb_profile_for_threading (first, edge_frequency,
600 edge_count, t);
601 update_br_prob_note (first);
603 else
605 first->count -= edge_count;
606 if (first->count < 0)
607 first->count = 0;
608 first->frequency -= edge_frequency;
609 if (first->frequency < 0)
610 first->frequency = 0;
611 /* It is possible that as the result of
612 threading we've removed edge as it is
613 threaded to the fallthru edge. Avoid
614 getting out of sync. */
615 if (n < nthreaded_edges
616 && first == threaded_edges [n]->src)
617 n++;
618 t = single_succ_edge (first);
621 t->count -= edge_count;
622 if (t->count < 0)
623 t->count = 0;
624 first = t->dest;
626 while (first != target);
628 changed = true;
629 continue;
631 ei_next (&ei);
634 free (threaded_edges);
635 return changed;
639 /* Blocks A and B are to be merged into a single block. A has no incoming
640 fallthru edge, so it can be moved before B without adding or modifying
641 any jumps (aside from the jump from A to B). */
643 static void
644 merge_blocks_move_predecessor_nojumps (basic_block a, basic_block b)
646 rtx_insn *barrier;
648 /* If we are partitioning hot/cold basic blocks, we don't want to
649 mess up unconditional or indirect jumps that cross between hot
650 and cold sections.
652 Basic block partitioning may result in some jumps that appear to
653 be optimizable (or blocks that appear to be mergeable), but which really
654 must be left untouched (they are required to make it safely across
655 partition boundaries). See the comments at the top of
656 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
658 if (BB_PARTITION (a) != BB_PARTITION (b))
659 return;
661 barrier = next_nonnote_insn (BB_END (a));
662 gcc_assert (BARRIER_P (barrier));
663 delete_insn (barrier);
665 /* Scramble the insn chain. */
666 if (BB_END (a) != PREV_INSN (BB_HEAD (b)))
667 reorder_insns_nobb (BB_HEAD (a), BB_END (a), PREV_INSN (BB_HEAD (b)));
668 df_set_bb_dirty (a);
670 if (dump_file)
671 fprintf (dump_file, "Moved block %d before %d and merged.\n",
672 a->index, b->index);
674 /* Swap the records for the two blocks around. */
676 unlink_block (a);
677 link_block (a, b->prev_bb);
679 /* Now blocks A and B are contiguous. Merge them. */
680 merge_blocks (a, b);
683 /* Blocks A and B are to be merged into a single block. B has no outgoing
684 fallthru edge, so it can be moved after A without adding or modifying
685 any jumps (aside from the jump from A to B). */
687 static void
688 merge_blocks_move_successor_nojumps (basic_block a, basic_block b)
690 rtx_insn *barrier, *real_b_end;
691 rtx_insn *label;
692 rtx_jump_table_data *table;
694 /* If we are partitioning hot/cold basic blocks, we don't want to
695 mess up unconditional or indirect jumps that cross between hot
696 and cold sections.
698 Basic block partitioning may result in some jumps that appear to
699 be optimizable (or blocks that appear to be mergeable), but which really
700 must be left untouched (they are required to make it safely across
701 partition boundaries). See the comments at the top of
702 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
704 if (BB_PARTITION (a) != BB_PARTITION (b))
705 return;
707 real_b_end = BB_END (b);
709 /* If there is a jump table following block B temporarily add the jump table
710 to block B so that it will also be moved to the correct location. */
711 if (tablejump_p (BB_END (b), &label, &table)
712 && prev_active_insn (label) == BB_END (b))
714 BB_END (b) = table;
717 /* There had better have been a barrier there. Delete it. */
718 barrier = NEXT_INSN (BB_END (b));
719 if (barrier && BARRIER_P (barrier))
720 delete_insn (barrier);
723 /* Scramble the insn chain. */
724 reorder_insns_nobb (BB_HEAD (b), BB_END (b), BB_END (a));
726 /* Restore the real end of b. */
727 BB_END (b) = real_b_end;
729 if (dump_file)
730 fprintf (dump_file, "Moved block %d after %d and merged.\n",
731 b->index, a->index);
733 /* Now blocks A and B are contiguous. Merge them. */
734 merge_blocks (a, b);
737 /* Attempt to merge basic blocks that are potentially non-adjacent.
738 Return NULL iff the attempt failed, otherwise return basic block
739 where cleanup_cfg should continue. Because the merging commonly
740 moves basic block away or introduces another optimization
741 possibility, return basic block just before B so cleanup_cfg don't
742 need to iterate.
744 It may be good idea to return basic block before C in the case
745 C has been moved after B and originally appeared earlier in the
746 insn sequence, but we have no information available about the
747 relative ordering of these two. Hopefully it is not too common. */
749 static basic_block
750 merge_blocks_move (edge e, basic_block b, basic_block c, int mode)
752 basic_block next;
754 /* If we are partitioning hot/cold basic blocks, we don't want to
755 mess up unconditional or indirect jumps that cross between hot
756 and cold sections.
758 Basic block partitioning may result in some jumps that appear to
759 be optimizable (or blocks that appear to be mergeable), but which really
760 must be left untouched (they are required to make it safely across
761 partition boundaries). See the comments at the top of
762 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
764 if (BB_PARTITION (b) != BB_PARTITION (c))
765 return NULL;
767 /* If B has a fallthru edge to C, no need to move anything. */
768 if (e->flags & EDGE_FALLTHRU)
770 int b_index = b->index, c_index = c->index;
772 /* Protect the loop latches. */
773 if (current_loops && c->loop_father->latch == c)
774 return NULL;
776 merge_blocks (b, c);
777 update_forwarder_flag (b);
779 if (dump_file)
780 fprintf (dump_file, "Merged %d and %d without moving.\n",
781 b_index, c_index);
783 return b->prev_bb == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? b : b->prev_bb;
786 /* Otherwise we will need to move code around. Do that only if expensive
787 transformations are allowed. */
788 else if (mode & CLEANUP_EXPENSIVE)
790 edge tmp_edge, b_fallthru_edge;
791 bool c_has_outgoing_fallthru;
792 bool b_has_incoming_fallthru;
794 /* Avoid overactive code motion, as the forwarder blocks should be
795 eliminated by edge redirection instead. One exception might have
796 been if B is a forwarder block and C has no fallthru edge, but
797 that should be cleaned up by bb-reorder instead. */
798 if (FORWARDER_BLOCK_P (b) || FORWARDER_BLOCK_P (c))
799 return NULL;
801 /* We must make sure to not munge nesting of lexical blocks,
802 and loop notes. This is done by squeezing out all the notes
803 and leaving them there to lie. Not ideal, but functional. */
805 tmp_edge = find_fallthru_edge (c->succs);
806 c_has_outgoing_fallthru = (tmp_edge != NULL);
808 tmp_edge = find_fallthru_edge (b->preds);
809 b_has_incoming_fallthru = (tmp_edge != NULL);
810 b_fallthru_edge = tmp_edge;
811 next = b->prev_bb;
812 if (next == c)
813 next = next->prev_bb;
815 /* Otherwise, we're going to try to move C after B. If C does
816 not have an outgoing fallthru, then it can be moved
817 immediately after B without introducing or modifying jumps. */
818 if (! c_has_outgoing_fallthru)
820 merge_blocks_move_successor_nojumps (b, c);
821 return next == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? next->next_bb : next;
824 /* If B does not have an incoming fallthru, then it can be moved
825 immediately before C without introducing or modifying jumps.
826 C cannot be the first block, so we do not have to worry about
827 accessing a non-existent block. */
829 if (b_has_incoming_fallthru)
831 basic_block bb;
833 if (b_fallthru_edge->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
834 return NULL;
835 bb = force_nonfallthru (b_fallthru_edge);
836 if (bb)
837 notice_new_block (bb);
840 merge_blocks_move_predecessor_nojumps (b, c);
841 return next == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? next->next_bb : next;
844 return NULL;
848 /* Removes the memory attributes of MEM expression
849 if they are not equal. */
851 static void
852 merge_memattrs (rtx x, rtx y)
854 int i;
855 int j;
856 enum rtx_code code;
857 const char *fmt;
859 if (x == y)
860 return;
861 if (x == 0 || y == 0)
862 return;
864 code = GET_CODE (x);
866 if (code != GET_CODE (y))
867 return;
869 if (GET_MODE (x) != GET_MODE (y))
870 return;
872 if (code == MEM && !mem_attrs_eq_p (MEM_ATTRS (x), MEM_ATTRS (y)))
874 if (! MEM_ATTRS (x))
875 MEM_ATTRS (y) = 0;
876 else if (! MEM_ATTRS (y))
877 MEM_ATTRS (x) = 0;
878 else
880 HOST_WIDE_INT mem_size;
882 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
884 set_mem_alias_set (x, 0);
885 set_mem_alias_set (y, 0);
888 if (! mem_expr_equal_p (MEM_EXPR (x), MEM_EXPR (y)))
890 set_mem_expr (x, 0);
891 set_mem_expr (y, 0);
892 clear_mem_offset (x);
893 clear_mem_offset (y);
895 else if (MEM_OFFSET_KNOWN_P (x) != MEM_OFFSET_KNOWN_P (y)
896 || (MEM_OFFSET_KNOWN_P (x)
897 && MEM_OFFSET (x) != MEM_OFFSET (y)))
899 clear_mem_offset (x);
900 clear_mem_offset (y);
903 if (MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y))
905 mem_size = MAX (MEM_SIZE (x), MEM_SIZE (y));
906 set_mem_size (x, mem_size);
907 set_mem_size (y, mem_size);
909 else
911 clear_mem_size (x);
912 clear_mem_size (y);
915 set_mem_align (x, MIN (MEM_ALIGN (x), MEM_ALIGN (y)));
916 set_mem_align (y, MEM_ALIGN (x));
919 if (code == MEM)
921 if (MEM_READONLY_P (x) != MEM_READONLY_P (y))
923 MEM_READONLY_P (x) = 0;
924 MEM_READONLY_P (y) = 0;
926 if (MEM_NOTRAP_P (x) != MEM_NOTRAP_P (y))
928 MEM_NOTRAP_P (x) = 0;
929 MEM_NOTRAP_P (y) = 0;
931 if (MEM_VOLATILE_P (x) != MEM_VOLATILE_P (y))
933 MEM_VOLATILE_P (x) = 1;
934 MEM_VOLATILE_P (y) = 1;
938 fmt = GET_RTX_FORMAT (code);
939 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
941 switch (fmt[i])
943 case 'E':
944 /* Two vectors must have the same length. */
945 if (XVECLEN (x, i) != XVECLEN (y, i))
946 return;
948 for (j = 0; j < XVECLEN (x, i); j++)
949 merge_memattrs (XVECEXP (x, i, j), XVECEXP (y, i, j));
951 break;
953 case 'e':
954 merge_memattrs (XEXP (x, i), XEXP (y, i));
957 return;
961 /* Checks if patterns P1 and P2 are equivalent, apart from the possibly
962 different single sets S1 and S2. */
964 static bool
965 equal_different_set_p (rtx p1, rtx s1, rtx p2, rtx s2)
967 int i;
968 rtx e1, e2;
970 if (p1 == s1 && p2 == s2)
971 return true;
973 if (GET_CODE (p1) != PARALLEL || GET_CODE (p2) != PARALLEL)
974 return false;
976 if (XVECLEN (p1, 0) != XVECLEN (p2, 0))
977 return false;
979 for (i = 0; i < XVECLEN (p1, 0); i++)
981 e1 = XVECEXP (p1, 0, i);
982 e2 = XVECEXP (p2, 0, i);
983 if (e1 == s1 && e2 == s2)
984 continue;
985 if (reload_completed
986 ? rtx_renumbered_equal_p (e1, e2) : rtx_equal_p (e1, e2))
987 continue;
989 return false;
992 return true;
996 /* NOTE1 is the REG_EQUAL note, if any, attached to an insn
997 that is a single_set with a SET_SRC of SRC1. Similarly
998 for NOTE2/SRC2.
1000 So effectively NOTE1/NOTE2 are an alternate form of
1001 SRC1/SRC2 respectively.
1003 Return nonzero if SRC1 or NOTE1 has the same constant
1004 integer value as SRC2 or NOTE2. Else return zero. */
1005 static int
1006 values_equal_p (rtx note1, rtx note2, rtx src1, rtx src2)
1008 if (note1
1009 && note2
1010 && CONST_INT_P (XEXP (note1, 0))
1011 && rtx_equal_p (XEXP (note1, 0), XEXP (note2, 0)))
1012 return 1;
1014 if (!note1
1015 && !note2
1016 && CONST_INT_P (src1)
1017 && CONST_INT_P (src2)
1018 && rtx_equal_p (src1, src2))
1019 return 1;
1021 if (note1
1022 && CONST_INT_P (src2)
1023 && rtx_equal_p (XEXP (note1, 0), src2))
1024 return 1;
1026 if (note2
1027 && CONST_INT_P (src1)
1028 && rtx_equal_p (XEXP (note2, 0), src1))
1029 return 1;
1031 return 0;
1034 /* Examine register notes on I1 and I2 and return:
1035 - dir_forward if I1 can be replaced by I2, or
1036 - dir_backward if I2 can be replaced by I1, or
1037 - dir_both if both are the case. */
1039 static enum replace_direction
1040 can_replace_by (rtx_insn *i1, rtx_insn *i2)
1042 rtx s1, s2, d1, d2, src1, src2, note1, note2;
1043 bool c1, c2;
1045 /* Check for 2 sets. */
1046 s1 = single_set (i1);
1047 s2 = single_set (i2);
1048 if (s1 == NULL_RTX || s2 == NULL_RTX)
1049 return dir_none;
1051 /* Check that the 2 sets set the same dest. */
1052 d1 = SET_DEST (s1);
1053 d2 = SET_DEST (s2);
1054 if (!(reload_completed
1055 ? rtx_renumbered_equal_p (d1, d2) : rtx_equal_p (d1, d2)))
1056 return dir_none;
1058 /* Find identical req_equiv or reg_equal note, which implies that the 2 sets
1059 set dest to the same value. */
1060 note1 = find_reg_equal_equiv_note (i1);
1061 note2 = find_reg_equal_equiv_note (i2);
1063 src1 = SET_SRC (s1);
1064 src2 = SET_SRC (s2);
1066 if (!values_equal_p (note1, note2, src1, src2))
1067 return dir_none;
1069 if (!equal_different_set_p (PATTERN (i1), s1, PATTERN (i2), s2))
1070 return dir_none;
1072 /* Although the 2 sets set dest to the same value, we cannot replace
1073 (set (dest) (const_int))
1075 (set (dest) (reg))
1076 because we don't know if the reg is live and has the same value at the
1077 location of replacement. */
1078 c1 = CONST_INT_P (src1);
1079 c2 = CONST_INT_P (src2);
1080 if (c1 && c2)
1081 return dir_both;
1082 else if (c2)
1083 return dir_forward;
1084 else if (c1)
1085 return dir_backward;
1087 return dir_none;
1090 /* Merges directions A and B. */
1092 static enum replace_direction
1093 merge_dir (enum replace_direction a, enum replace_direction b)
1095 /* Implements the following table:
1096 |bo fw bw no
1097 ---+-----------
1098 bo |bo fw bw no
1099 fw |-- fw no no
1100 bw |-- -- bw no
1101 no |-- -- -- no. */
1103 if (a == b)
1104 return a;
1106 if (a == dir_both)
1107 return b;
1108 if (b == dir_both)
1109 return a;
1111 return dir_none;
1114 /* Array of flags indexed by reg note kind, true if the given
1115 reg note is CFA related. */
1116 static const bool reg_note_cfa_p[] = {
1117 #undef REG_CFA_NOTE
1118 #define DEF_REG_NOTE(NAME) false,
1119 #define REG_CFA_NOTE(NAME) true,
1120 #include "reg-notes.def"
1121 #undef REG_CFA_NOTE
1122 #undef DEF_REG_NOTE
1123 false
1126 /* Return true if I1 and I2 have identical CFA notes (the same order
1127 and equivalent content). */
1129 static bool
1130 insns_have_identical_cfa_notes (rtx_insn *i1, rtx_insn *i2)
1132 rtx n1, n2;
1133 for (n1 = REG_NOTES (i1), n2 = REG_NOTES (i2); ;
1134 n1 = XEXP (n1, 1), n2 = XEXP (n2, 1))
1136 /* Skip over reg notes not related to CFI information. */
1137 while (n1 && !reg_note_cfa_p[REG_NOTE_KIND (n1)])
1138 n1 = XEXP (n1, 1);
1139 while (n2 && !reg_note_cfa_p[REG_NOTE_KIND (n2)])
1140 n2 = XEXP (n2, 1);
1141 if (n1 == NULL_RTX && n2 == NULL_RTX)
1142 return true;
1143 if (n1 == NULL_RTX || n2 == NULL_RTX)
1144 return false;
1145 if (XEXP (n1, 0) == XEXP (n2, 0))
1147 else if (XEXP (n1, 0) == NULL_RTX || XEXP (n2, 0) == NULL_RTX)
1148 return false;
1149 else if (!(reload_completed
1150 ? rtx_renumbered_equal_p (XEXP (n1, 0), XEXP (n2, 0))
1151 : rtx_equal_p (XEXP (n1, 0), XEXP (n2, 0))))
1152 return false;
1156 /* Examine I1 and I2 and return:
1157 - dir_forward if I1 can be replaced by I2, or
1158 - dir_backward if I2 can be replaced by I1, or
1159 - dir_both if both are the case. */
1161 static enum replace_direction
1162 old_insns_match_p (int mode ATTRIBUTE_UNUSED, rtx_insn *i1, rtx_insn *i2)
1164 rtx p1, p2;
1166 /* Verify that I1 and I2 are equivalent. */
1167 if (GET_CODE (i1) != GET_CODE (i2))
1168 return dir_none;
1170 /* __builtin_unreachable() may lead to empty blocks (ending with
1171 NOTE_INSN_BASIC_BLOCK). They may be crossjumped. */
1172 if (NOTE_INSN_BASIC_BLOCK_P (i1) && NOTE_INSN_BASIC_BLOCK_P (i2))
1173 return dir_both;
1175 /* ??? Do not allow cross-jumping between different stack levels. */
1176 p1 = find_reg_note (i1, REG_ARGS_SIZE, NULL);
1177 p2 = find_reg_note (i2, REG_ARGS_SIZE, NULL);
1178 if (p1 && p2)
1180 p1 = XEXP (p1, 0);
1181 p2 = XEXP (p2, 0);
1182 if (!rtx_equal_p (p1, p2))
1183 return dir_none;
1185 /* ??? Worse, this adjustment had better be constant lest we
1186 have differing incoming stack levels. */
1187 if (!frame_pointer_needed
1188 && find_args_size_adjust (i1) == HOST_WIDE_INT_MIN)
1189 return dir_none;
1191 else if (p1 || p2)
1192 return dir_none;
1194 /* Do not allow cross-jumping between frame related insns and other
1195 insns. */
1196 if (RTX_FRAME_RELATED_P (i1) != RTX_FRAME_RELATED_P (i2))
1197 return dir_none;
1199 p1 = PATTERN (i1);
1200 p2 = PATTERN (i2);
1202 if (GET_CODE (p1) != GET_CODE (p2))
1203 return dir_none;
1205 /* If this is a CALL_INSN, compare register usage information.
1206 If we don't check this on stack register machines, the two
1207 CALL_INSNs might be merged leaving reg-stack.c with mismatching
1208 numbers of stack registers in the same basic block.
1209 If we don't check this on machines with delay slots, a delay slot may
1210 be filled that clobbers a parameter expected by the subroutine.
1212 ??? We take the simple route for now and assume that if they're
1213 equal, they were constructed identically.
1215 Also check for identical exception regions. */
1217 if (CALL_P (i1))
1219 /* Ensure the same EH region. */
1220 rtx n1 = find_reg_note (i1, REG_EH_REGION, 0);
1221 rtx n2 = find_reg_note (i2, REG_EH_REGION, 0);
1223 if (!n1 && n2)
1224 return dir_none;
1226 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1227 return dir_none;
1229 if (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
1230 CALL_INSN_FUNCTION_USAGE (i2))
1231 || SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2))
1232 return dir_none;
1234 /* For address sanitizer, never crossjump __asan_report_* builtins,
1235 otherwise errors might be reported on incorrect lines. */
1236 if (flag_sanitize & SANITIZE_ADDRESS)
1238 rtx call = get_call_rtx_from (i1);
1239 if (call && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
1241 rtx symbol = XEXP (XEXP (call, 0), 0);
1242 if (SYMBOL_REF_DECL (symbol)
1243 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
1245 if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
1246 == BUILT_IN_NORMAL)
1247 && DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
1248 >= BUILT_IN_ASAN_REPORT_LOAD1
1249 && DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
1250 <= BUILT_IN_ASAN_STOREN)
1251 return dir_none;
1257 /* If both i1 and i2 are frame related, verify all the CFA notes
1258 in the same order and with the same content. */
1259 if (RTX_FRAME_RELATED_P (i1) && !insns_have_identical_cfa_notes (i1, i2))
1260 return dir_none;
1262 #ifdef STACK_REGS
1263 /* If cross_jump_death_matters is not 0, the insn's mode
1264 indicates whether or not the insn contains any stack-like
1265 regs. */
1267 if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
1269 /* If register stack conversion has already been done, then
1270 death notes must also be compared before it is certain that
1271 the two instruction streams match. */
1273 rtx note;
1274 HARD_REG_SET i1_regset, i2_regset;
1276 CLEAR_HARD_REG_SET (i1_regset);
1277 CLEAR_HARD_REG_SET (i2_regset);
1279 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
1280 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1281 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
1283 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
1284 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1285 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
1287 if (!hard_reg_set_equal_p (i1_regset, i2_regset))
1288 return dir_none;
1290 #endif
1292 if (reload_completed
1293 ? rtx_renumbered_equal_p (p1, p2) : rtx_equal_p (p1, p2))
1294 return dir_both;
1296 return can_replace_by (i1, i2);
1299 /* When comparing insns I1 and I2 in flow_find_cross_jump or
1300 flow_find_head_matching_sequence, ensure the notes match. */
1302 static void
1303 merge_notes (rtx_insn *i1, rtx_insn *i2)
1305 /* If the merged insns have different REG_EQUAL notes, then
1306 remove them. */
1307 rtx equiv1 = find_reg_equal_equiv_note (i1);
1308 rtx equiv2 = find_reg_equal_equiv_note (i2);
1310 if (equiv1 && !equiv2)
1311 remove_note (i1, equiv1);
1312 else if (!equiv1 && equiv2)
1313 remove_note (i2, equiv2);
1314 else if (equiv1 && equiv2
1315 && !rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1317 remove_note (i1, equiv1);
1318 remove_note (i2, equiv2);
1322 /* Walks from I1 in BB1 backward till the next non-debug insn, and returns the
1323 resulting insn in I1, and the corresponding bb in BB1. At the head of a
1324 bb, if there is a predecessor bb that reaches this bb via fallthru, and
1325 FOLLOW_FALLTHRU, walks further in the predecessor bb and registers this in
1326 DID_FALLTHRU. Otherwise, stops at the head of the bb. */
1328 static void
1329 walk_to_nondebug_insn (rtx_insn **i1, basic_block *bb1, bool follow_fallthru,
1330 bool *did_fallthru)
1332 edge fallthru;
1334 *did_fallthru = false;
1336 /* Ignore notes. */
1337 while (!NONDEBUG_INSN_P (*i1))
1339 if (*i1 != BB_HEAD (*bb1))
1341 *i1 = PREV_INSN (*i1);
1342 continue;
1345 if (!follow_fallthru)
1346 return;
1348 fallthru = find_fallthru_edge ((*bb1)->preds);
1349 if (!fallthru || fallthru->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1350 || !single_succ_p (fallthru->src))
1351 return;
1353 *bb1 = fallthru->src;
1354 *i1 = BB_END (*bb1);
1355 *did_fallthru = true;
1359 /* Look through the insns at the end of BB1 and BB2 and find the longest
1360 sequence that are either equivalent, or allow forward or backward
1361 replacement. Store the first insns for that sequence in *F1 and *F2 and
1362 return the sequence length.
1364 DIR_P indicates the allowed replacement direction on function entry, and
1365 the actual replacement direction on function exit. If NULL, only equivalent
1366 sequences are allowed.
1368 To simplify callers of this function, if the blocks match exactly,
1369 store the head of the blocks in *F1 and *F2. */
1372 flow_find_cross_jump (basic_block bb1, basic_block bb2, rtx_insn **f1,
1373 rtx_insn **f2, enum replace_direction *dir_p)
1375 rtx_insn *i1, *i2, *last1, *last2, *afterlast1, *afterlast2;
1376 int ninsns = 0;
1377 enum replace_direction dir, last_dir, afterlast_dir;
1378 bool follow_fallthru, did_fallthru;
1380 if (dir_p)
1381 dir = *dir_p;
1382 else
1383 dir = dir_both;
1384 afterlast_dir = dir;
1385 last_dir = afterlast_dir;
1387 /* Skip simple jumps at the end of the blocks. Complex jumps still
1388 need to be compared for equivalence, which we'll do below. */
1390 i1 = BB_END (bb1);
1391 last1 = afterlast1 = last2 = afterlast2 = NULL;
1392 if (onlyjump_p (i1)
1393 || (returnjump_p (i1) && !side_effects_p (PATTERN (i1))))
1395 last1 = i1;
1396 i1 = PREV_INSN (i1);
1399 i2 = BB_END (bb2);
1400 if (onlyjump_p (i2)
1401 || (returnjump_p (i2) && !side_effects_p (PATTERN (i2))))
1403 last2 = i2;
1404 /* Count everything except for unconditional jump as insn.
1405 Don't count any jumps if dir_p is NULL. */
1406 if (!simplejump_p (i2) && !returnjump_p (i2) && last1 && dir_p)
1407 ninsns++;
1408 i2 = PREV_INSN (i2);
1411 while (true)
1413 /* In the following example, we can replace all jumps to C by jumps to A.
1415 This removes 4 duplicate insns.
1416 [bb A] insn1 [bb C] insn1
1417 insn2 insn2
1418 [bb B] insn3 insn3
1419 insn4 insn4
1420 jump_insn jump_insn
1422 We could also replace all jumps to A by jumps to C, but that leaves B
1423 alive, and removes only 2 duplicate insns. In a subsequent crossjump
1424 step, all jumps to B would be replaced with jumps to the middle of C,
1425 achieving the same result with more effort.
1426 So we allow only the first possibility, which means that we don't allow
1427 fallthru in the block that's being replaced. */
1429 follow_fallthru = dir_p && dir != dir_forward;
1430 walk_to_nondebug_insn (&i1, &bb1, follow_fallthru, &did_fallthru);
1431 if (did_fallthru)
1432 dir = dir_backward;
1434 follow_fallthru = dir_p && dir != dir_backward;
1435 walk_to_nondebug_insn (&i2, &bb2, follow_fallthru, &did_fallthru);
1436 if (did_fallthru)
1437 dir = dir_forward;
1439 if (i1 == BB_HEAD (bb1) || i2 == BB_HEAD (bb2))
1440 break;
1442 dir = merge_dir (dir, old_insns_match_p (0, i1, i2));
1443 if (dir == dir_none || (!dir_p && dir != dir_both))
1444 break;
1446 merge_memattrs (i1, i2);
1448 /* Don't begin a cross-jump with a NOTE insn. */
1449 if (INSN_P (i1))
1451 merge_notes (i1, i2);
1453 afterlast1 = last1, afterlast2 = last2;
1454 last1 = i1, last2 = i2;
1455 afterlast_dir = last_dir;
1456 last_dir = dir;
1457 if (active_insn_p (i1))
1458 ninsns++;
1461 i1 = PREV_INSN (i1);
1462 i2 = PREV_INSN (i2);
1465 /* Don't allow the insn after a compare to be shared by
1466 cross-jumping unless the compare is also shared. */
1467 if (HAVE_cc0 && ninsns && reg_mentioned_p (cc0_rtx, last1)
1468 && ! sets_cc0_p (last1))
1469 last1 = afterlast1, last2 = afterlast2, last_dir = afterlast_dir, ninsns--;
1471 /* Include preceding notes and labels in the cross-jump. One,
1472 this may bring us to the head of the blocks as requested above.
1473 Two, it keeps line number notes as matched as may be. */
1474 if (ninsns)
1476 bb1 = BLOCK_FOR_INSN (last1);
1477 while (last1 != BB_HEAD (bb1) && !NONDEBUG_INSN_P (PREV_INSN (last1)))
1478 last1 = PREV_INSN (last1);
1480 if (last1 != BB_HEAD (bb1) && LABEL_P (PREV_INSN (last1)))
1481 last1 = PREV_INSN (last1);
1483 bb2 = BLOCK_FOR_INSN (last2);
1484 while (last2 != BB_HEAD (bb2) && !NONDEBUG_INSN_P (PREV_INSN (last2)))
1485 last2 = PREV_INSN (last2);
1487 if (last2 != BB_HEAD (bb2) && LABEL_P (PREV_INSN (last2)))
1488 last2 = PREV_INSN (last2);
1490 *f1 = last1;
1491 *f2 = last2;
1494 if (dir_p)
1495 *dir_p = last_dir;
1496 return ninsns;
1499 /* Like flow_find_cross_jump, except start looking for a matching sequence from
1500 the head of the two blocks. Do not include jumps at the end.
1501 If STOP_AFTER is nonzero, stop after finding that many matching
1502 instructions. If STOP_AFTER is zero, count all INSN_P insns, if it is
1503 non-zero, only count active insns. */
1506 flow_find_head_matching_sequence (basic_block bb1, basic_block bb2, rtx_insn **f1,
1507 rtx_insn **f2, int stop_after)
1509 rtx_insn *i1, *i2, *last1, *last2, *beforelast1, *beforelast2;
1510 int ninsns = 0;
1511 edge e;
1512 edge_iterator ei;
1513 int nehedges1 = 0, nehedges2 = 0;
1515 FOR_EACH_EDGE (e, ei, bb1->succs)
1516 if (e->flags & EDGE_EH)
1517 nehedges1++;
1518 FOR_EACH_EDGE (e, ei, bb2->succs)
1519 if (e->flags & EDGE_EH)
1520 nehedges2++;
1522 i1 = BB_HEAD (bb1);
1523 i2 = BB_HEAD (bb2);
1524 last1 = beforelast1 = last2 = beforelast2 = NULL;
1526 while (true)
1528 /* Ignore notes, except NOTE_INSN_EPILOGUE_BEG. */
1529 while (!NONDEBUG_INSN_P (i1) && i1 != BB_END (bb1))
1531 if (NOTE_P (i1) && NOTE_KIND (i1) == NOTE_INSN_EPILOGUE_BEG)
1532 break;
1533 i1 = NEXT_INSN (i1);
1536 while (!NONDEBUG_INSN_P (i2) && i2 != BB_END (bb2))
1538 if (NOTE_P (i2) && NOTE_KIND (i2) == NOTE_INSN_EPILOGUE_BEG)
1539 break;
1540 i2 = NEXT_INSN (i2);
1543 if ((i1 == BB_END (bb1) && !NONDEBUG_INSN_P (i1))
1544 || (i2 == BB_END (bb2) && !NONDEBUG_INSN_P (i2)))
1545 break;
1547 if (NOTE_P (i1) || NOTE_P (i2)
1548 || JUMP_P (i1) || JUMP_P (i2))
1549 break;
1551 /* A sanity check to make sure we're not merging insns with different
1552 effects on EH. If only one of them ends a basic block, it shouldn't
1553 have an EH edge; if both end a basic block, there should be the same
1554 number of EH edges. */
1555 if ((i1 == BB_END (bb1) && i2 != BB_END (bb2)
1556 && nehedges1 > 0)
1557 || (i2 == BB_END (bb2) && i1 != BB_END (bb1)
1558 && nehedges2 > 0)
1559 || (i1 == BB_END (bb1) && i2 == BB_END (bb2)
1560 && nehedges1 != nehedges2))
1561 break;
1563 if (old_insns_match_p (0, i1, i2) != dir_both)
1564 break;
1566 merge_memattrs (i1, i2);
1568 /* Don't begin a cross-jump with a NOTE insn. */
1569 if (INSN_P (i1))
1571 merge_notes (i1, i2);
1573 beforelast1 = last1, beforelast2 = last2;
1574 last1 = i1, last2 = i2;
1575 if (!stop_after || active_insn_p (i1))
1576 ninsns++;
1579 if (i1 == BB_END (bb1) || i2 == BB_END (bb2)
1580 || (stop_after > 0 && ninsns == stop_after))
1581 break;
1583 i1 = NEXT_INSN (i1);
1584 i2 = NEXT_INSN (i2);
1587 /* Don't allow a compare to be shared by cross-jumping unless the insn
1588 after the compare is also shared. */
1589 if (HAVE_cc0 && ninsns && reg_mentioned_p (cc0_rtx, last1)
1590 && sets_cc0_p (last1))
1591 last1 = beforelast1, last2 = beforelast2, ninsns--;
1593 if (ninsns)
1595 *f1 = last1;
1596 *f2 = last2;
1599 return ninsns;
1602 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1603 the branch instruction. This means that if we commonize the control
1604 flow before end of the basic block, the semantic remains unchanged.
1606 We may assume that there exists one edge with a common destination. */
1608 static bool
1609 outgoing_edges_match (int mode, basic_block bb1, basic_block bb2)
1611 int nehedges1 = 0, nehedges2 = 0;
1612 edge fallthru1 = 0, fallthru2 = 0;
1613 edge e1, e2;
1614 edge_iterator ei;
1616 /* If we performed shrink-wrapping, edges to the exit block can
1617 only be distinguished for JUMP_INSNs. The two paths may differ in
1618 whether they went through the prologue. Sibcalls are fine, we know
1619 that we either didn't need or inserted an epilogue before them. */
1620 if (crtl->shrink_wrapped
1621 && single_succ_p (bb1)
1622 && single_succ (bb1) == EXIT_BLOCK_PTR_FOR_FN (cfun)
1623 && !JUMP_P (BB_END (bb1))
1624 && !(CALL_P (BB_END (bb1)) && SIBLING_CALL_P (BB_END (bb1))))
1625 return false;
1627 /* If BB1 has only one successor, we may be looking at either an
1628 unconditional jump, or a fake edge to exit. */
1629 if (single_succ_p (bb1)
1630 && (single_succ_edge (bb1)->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1631 && (!JUMP_P (BB_END (bb1)) || simplejump_p (BB_END (bb1))))
1632 return (single_succ_p (bb2)
1633 && (single_succ_edge (bb2)->flags
1634 & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1635 && (!JUMP_P (BB_END (bb2)) || simplejump_p (BB_END (bb2))));
1637 /* Match conditional jumps - this may get tricky when fallthru and branch
1638 edges are crossed. */
1639 if (EDGE_COUNT (bb1->succs) == 2
1640 && any_condjump_p (BB_END (bb1))
1641 && onlyjump_p (BB_END (bb1)))
1643 edge b1, f1, b2, f2;
1644 bool reverse, match;
1645 rtx set1, set2, cond1, cond2;
1646 enum rtx_code code1, code2;
1648 if (EDGE_COUNT (bb2->succs) != 2
1649 || !any_condjump_p (BB_END (bb2))
1650 || !onlyjump_p (BB_END (bb2)))
1651 return false;
1653 b1 = BRANCH_EDGE (bb1);
1654 b2 = BRANCH_EDGE (bb2);
1655 f1 = FALLTHRU_EDGE (bb1);
1656 f2 = FALLTHRU_EDGE (bb2);
1658 /* Get around possible forwarders on fallthru edges. Other cases
1659 should be optimized out already. */
1660 if (FORWARDER_BLOCK_P (f1->dest))
1661 f1 = single_succ_edge (f1->dest);
1663 if (FORWARDER_BLOCK_P (f2->dest))
1664 f2 = single_succ_edge (f2->dest);
1666 /* To simplify use of this function, return false if there are
1667 unneeded forwarder blocks. These will get eliminated later
1668 during cleanup_cfg. */
1669 if (FORWARDER_BLOCK_P (f1->dest)
1670 || FORWARDER_BLOCK_P (f2->dest)
1671 || FORWARDER_BLOCK_P (b1->dest)
1672 || FORWARDER_BLOCK_P (b2->dest))
1673 return false;
1675 if (f1->dest == f2->dest && b1->dest == b2->dest)
1676 reverse = false;
1677 else if (f1->dest == b2->dest && b1->dest == f2->dest)
1678 reverse = true;
1679 else
1680 return false;
1682 set1 = pc_set (BB_END (bb1));
1683 set2 = pc_set (BB_END (bb2));
1684 if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
1685 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
1686 reverse = !reverse;
1688 cond1 = XEXP (SET_SRC (set1), 0);
1689 cond2 = XEXP (SET_SRC (set2), 0);
1690 code1 = GET_CODE (cond1);
1691 if (reverse)
1692 code2 = reversed_comparison_code (cond2, BB_END (bb2));
1693 else
1694 code2 = GET_CODE (cond2);
1696 if (code2 == UNKNOWN)
1697 return false;
1699 /* Verify codes and operands match. */
1700 match = ((code1 == code2
1701 && rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
1702 && rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
1703 || (code1 == swap_condition (code2)
1704 && rtx_renumbered_equal_p (XEXP (cond1, 1),
1705 XEXP (cond2, 0))
1706 && rtx_renumbered_equal_p (XEXP (cond1, 0),
1707 XEXP (cond2, 1))));
1709 /* If we return true, we will join the blocks. Which means that
1710 we will only have one branch prediction bit to work with. Thus
1711 we require the existing branches to have probabilities that are
1712 roughly similar. */
1713 if (match
1714 && optimize_bb_for_speed_p (bb1)
1715 && optimize_bb_for_speed_p (bb2))
1717 int prob2;
1719 if (b1->dest == b2->dest)
1720 prob2 = b2->probability;
1721 else
1722 /* Do not use f2 probability as f2 may be forwarded. */
1723 prob2 = REG_BR_PROB_BASE - b2->probability;
1725 /* Fail if the difference in probabilities is greater than 50%.
1726 This rules out two well-predicted branches with opposite
1727 outcomes. */
1728 if (abs (b1->probability - prob2) > REG_BR_PROB_BASE / 2)
1730 if (dump_file)
1731 fprintf (dump_file,
1732 "Outcomes of branch in bb %i and %i differ too much (%i %i)\n",
1733 bb1->index, bb2->index, b1->probability, prob2);
1735 return false;
1739 if (dump_file && match)
1740 fprintf (dump_file, "Conditionals in bb %i and %i match.\n",
1741 bb1->index, bb2->index);
1743 return match;
1746 /* Generic case - we are seeing a computed jump, table jump or trapping
1747 instruction. */
1749 /* Check whether there are tablejumps in the end of BB1 and BB2.
1750 Return true if they are identical. */
1752 rtx_insn *label1, *label2;
1753 rtx_jump_table_data *table1, *table2;
1755 if (tablejump_p (BB_END (bb1), &label1, &table1)
1756 && tablejump_p (BB_END (bb2), &label2, &table2)
1757 && GET_CODE (PATTERN (table1)) == GET_CODE (PATTERN (table2)))
1759 /* The labels should never be the same rtx. If they really are same
1760 the jump tables are same too. So disable crossjumping of blocks BB1
1761 and BB2 because when deleting the common insns in the end of BB1
1762 by delete_basic_block () the jump table would be deleted too. */
1763 /* If LABEL2 is referenced in BB1->END do not do anything
1764 because we would loose information when replacing
1765 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1766 if (label1 != label2 && !rtx_referenced_p (label2, BB_END (bb1)))
1768 /* Set IDENTICAL to true when the tables are identical. */
1769 bool identical = false;
1770 rtx p1, p2;
1772 p1 = PATTERN (table1);
1773 p2 = PATTERN (table2);
1774 if (GET_CODE (p1) == ADDR_VEC && rtx_equal_p (p1, p2))
1776 identical = true;
1778 else if (GET_CODE (p1) == ADDR_DIFF_VEC
1779 && (XVECLEN (p1, 1) == XVECLEN (p2, 1))
1780 && rtx_equal_p (XEXP (p1, 2), XEXP (p2, 2))
1781 && rtx_equal_p (XEXP (p1, 3), XEXP (p2, 3)))
1783 int i;
1785 identical = true;
1786 for (i = XVECLEN (p1, 1) - 1; i >= 0 && identical; i--)
1787 if (!rtx_equal_p (XVECEXP (p1, 1, i), XVECEXP (p2, 1, i)))
1788 identical = false;
1791 if (identical)
1793 bool match;
1795 /* Temporarily replace references to LABEL1 with LABEL2
1796 in BB1->END so that we could compare the instructions. */
1797 replace_label_in_insn (BB_END (bb1), label1, label2, false);
1799 match = (old_insns_match_p (mode, BB_END (bb1), BB_END (bb2))
1800 == dir_both);
1801 if (dump_file && match)
1802 fprintf (dump_file,
1803 "Tablejumps in bb %i and %i match.\n",
1804 bb1->index, bb2->index);
1806 /* Set the original label in BB1->END because when deleting
1807 a block whose end is a tablejump, the tablejump referenced
1808 from the instruction is deleted too. */
1809 replace_label_in_insn (BB_END (bb1), label2, label1, false);
1811 return match;
1814 return false;
1818 /* Find the last non-debug non-note instruction in each bb, except
1819 stop when we see the NOTE_INSN_BASIC_BLOCK, as old_insns_match_p
1820 handles that case specially. old_insns_match_p does not handle
1821 other types of instruction notes. */
1822 rtx_insn *last1 = BB_END (bb1);
1823 rtx_insn *last2 = BB_END (bb2);
1824 while (!NOTE_INSN_BASIC_BLOCK_P (last1) &&
1825 (DEBUG_INSN_P (last1) || NOTE_P (last1)))
1826 last1 = PREV_INSN (last1);
1827 while (!NOTE_INSN_BASIC_BLOCK_P (last2) &&
1828 (DEBUG_INSN_P (last2) || NOTE_P (last2)))
1829 last2 = PREV_INSN (last2);
1830 gcc_assert (last1 && last2);
1832 /* First ensure that the instructions match. There may be many outgoing
1833 edges so this test is generally cheaper. */
1834 if (old_insns_match_p (mode, last1, last2) != dir_both)
1835 return false;
1837 /* Search the outgoing edges, ensure that the counts do match, find possible
1838 fallthru and exception handling edges since these needs more
1839 validation. */
1840 if (EDGE_COUNT (bb1->succs) != EDGE_COUNT (bb2->succs))
1841 return false;
1843 bool nonfakeedges = false;
1844 FOR_EACH_EDGE (e1, ei, bb1->succs)
1846 e2 = EDGE_SUCC (bb2, ei.index);
1848 if ((e1->flags & EDGE_FAKE) == 0)
1849 nonfakeedges = true;
1851 if (e1->flags & EDGE_EH)
1852 nehedges1++;
1854 if (e2->flags & EDGE_EH)
1855 nehedges2++;
1857 if (e1->flags & EDGE_FALLTHRU)
1858 fallthru1 = e1;
1859 if (e2->flags & EDGE_FALLTHRU)
1860 fallthru2 = e2;
1863 /* If number of edges of various types does not match, fail. */
1864 if (nehedges1 != nehedges2
1865 || (fallthru1 != 0) != (fallthru2 != 0))
1866 return false;
1868 /* If !ACCUMULATE_OUTGOING_ARGS, bb1 (and bb2) have no successors
1869 and the last real insn doesn't have REG_ARGS_SIZE note, don't
1870 attempt to optimize, as the two basic blocks might have different
1871 REG_ARGS_SIZE depths. For noreturn calls and unconditional
1872 traps there should be REG_ARG_SIZE notes, they could be missing
1873 for __builtin_unreachable () uses though. */
1874 if (!nonfakeedges
1875 && !ACCUMULATE_OUTGOING_ARGS
1876 && (!INSN_P (last1)
1877 || !find_reg_note (last1, REG_ARGS_SIZE, NULL)))
1878 return false;
1880 /* fallthru edges must be forwarded to the same destination. */
1881 if (fallthru1)
1883 basic_block d1 = (forwarder_block_p (fallthru1->dest)
1884 ? single_succ (fallthru1->dest): fallthru1->dest);
1885 basic_block d2 = (forwarder_block_p (fallthru2->dest)
1886 ? single_succ (fallthru2->dest): fallthru2->dest);
1888 if (d1 != d2)
1889 return false;
1892 /* Ensure the same EH region. */
1894 rtx n1 = find_reg_note (BB_END (bb1), REG_EH_REGION, 0);
1895 rtx n2 = find_reg_note (BB_END (bb2), REG_EH_REGION, 0);
1897 if (!n1 && n2)
1898 return false;
1900 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1901 return false;
1904 /* The same checks as in try_crossjump_to_edge. It is required for RTL
1905 version of sequence abstraction. */
1906 FOR_EACH_EDGE (e1, ei, bb2->succs)
1908 edge e2;
1909 edge_iterator ei;
1910 basic_block d1 = e1->dest;
1912 if (FORWARDER_BLOCK_P (d1))
1913 d1 = EDGE_SUCC (d1, 0)->dest;
1915 FOR_EACH_EDGE (e2, ei, bb1->succs)
1917 basic_block d2 = e2->dest;
1918 if (FORWARDER_BLOCK_P (d2))
1919 d2 = EDGE_SUCC (d2, 0)->dest;
1920 if (d1 == d2)
1921 break;
1924 if (!e2)
1925 return false;
1928 return true;
1931 /* Returns true if BB basic block has a preserve label. */
1933 static bool
1934 block_has_preserve_label (basic_block bb)
1936 return (bb
1937 && block_label (bb)
1938 && LABEL_PRESERVE_P (block_label (bb)));
1941 /* E1 and E2 are edges with the same destination block. Search their
1942 predecessors for common code. If found, redirect control flow from
1943 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC (dir_forward),
1944 or the other way around (dir_backward). DIR specifies the allowed
1945 replacement direction. */
1947 static bool
1948 try_crossjump_to_edge (int mode, edge e1, edge e2,
1949 enum replace_direction dir)
1951 int nmatch;
1952 basic_block src1 = e1->src, src2 = e2->src;
1953 basic_block redirect_to, redirect_from, to_remove;
1954 basic_block osrc1, osrc2, redirect_edges_to, tmp;
1955 rtx_insn *newpos1, *newpos2;
1956 edge s;
1957 edge_iterator ei;
1959 newpos1 = newpos2 = NULL;
1961 /* If we have partitioned hot/cold basic blocks, it is a bad idea
1962 to try this optimization.
1964 Basic block partitioning may result in some jumps that appear to
1965 be optimizable (or blocks that appear to be mergeable), but which really
1966 must be left untouched (they are required to make it safely across
1967 partition boundaries). See the comments at the top of
1968 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1970 if (crtl->has_bb_partition && reload_completed)
1971 return false;
1973 /* Search backward through forwarder blocks. We don't need to worry
1974 about multiple entry or chained forwarders, as they will be optimized
1975 away. We do this to look past the unconditional jump following a
1976 conditional jump that is required due to the current CFG shape. */
1977 if (single_pred_p (src1)
1978 && FORWARDER_BLOCK_P (src1))
1979 e1 = single_pred_edge (src1), src1 = e1->src;
1981 if (single_pred_p (src2)
1982 && FORWARDER_BLOCK_P (src2))
1983 e2 = single_pred_edge (src2), src2 = e2->src;
1985 /* Nothing to do if we reach ENTRY, or a common source block. */
1986 if (src1 == ENTRY_BLOCK_PTR_FOR_FN (cfun) || src2
1987 == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1988 return false;
1989 if (src1 == src2)
1990 return false;
1992 /* Seeing more than 1 forwarder blocks would confuse us later... */
1993 if (FORWARDER_BLOCK_P (e1->dest)
1994 && FORWARDER_BLOCK_P (single_succ (e1->dest)))
1995 return false;
1997 if (FORWARDER_BLOCK_P (e2->dest)
1998 && FORWARDER_BLOCK_P (single_succ (e2->dest)))
1999 return false;
2001 /* Likewise with dead code (possibly newly created by the other optimizations
2002 of cfg_cleanup). */
2003 if (EDGE_COUNT (src1->preds) == 0 || EDGE_COUNT (src2->preds) == 0)
2004 return false;
2006 /* Look for the common insn sequence, part the first ... */
2007 if (!outgoing_edges_match (mode, src1, src2))
2008 return false;
2010 /* ... and part the second. */
2011 nmatch = flow_find_cross_jump (src1, src2, &newpos1, &newpos2, &dir);
2013 osrc1 = src1;
2014 osrc2 = src2;
2015 if (newpos1 != NULL_RTX)
2016 src1 = BLOCK_FOR_INSN (newpos1);
2017 if (newpos2 != NULL_RTX)
2018 src2 = BLOCK_FOR_INSN (newpos2);
2020 if (dir == dir_backward)
2022 #define SWAP(T, X, Y) do { T tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
2023 SWAP (basic_block, osrc1, osrc2);
2024 SWAP (basic_block, src1, src2);
2025 SWAP (edge, e1, e2);
2026 SWAP (rtx_insn *, newpos1, newpos2);
2027 #undef SWAP
2030 /* Don't proceed with the crossjump unless we found a sufficient number
2031 of matching instructions or the 'from' block was totally matched
2032 (such that its predecessors will hopefully be redirected and the
2033 block removed). */
2034 if ((nmatch < PARAM_VALUE (PARAM_MIN_CROSSJUMP_INSNS))
2035 && (newpos1 != BB_HEAD (src1)))
2036 return false;
2038 /* Avoid deleting preserve label when redirecting ABNORMAL edges. */
2039 if (block_has_preserve_label (e1->dest)
2040 && (e1->flags & EDGE_ABNORMAL))
2041 return false;
2043 /* Here we know that the insns in the end of SRC1 which are common with SRC2
2044 will be deleted.
2045 If we have tablejumps in the end of SRC1 and SRC2
2046 they have been already compared for equivalence in outgoing_edges_match ()
2047 so replace the references to TABLE1 by references to TABLE2. */
2049 rtx_insn *label1, *label2;
2050 rtx_jump_table_data *table1, *table2;
2052 if (tablejump_p (BB_END (osrc1), &label1, &table1)
2053 && tablejump_p (BB_END (osrc2), &label2, &table2)
2054 && label1 != label2)
2056 rtx_insn *insn;
2058 /* Replace references to LABEL1 with LABEL2. */
2059 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2061 /* Do not replace the label in SRC1->END because when deleting
2062 a block whose end is a tablejump, the tablejump referenced
2063 from the instruction is deleted too. */
2064 if (insn != BB_END (osrc1))
2065 replace_label_in_insn (insn, label1, label2, true);
2070 /* Avoid splitting if possible. We must always split when SRC2 has
2071 EH predecessor edges, or we may end up with basic blocks with both
2072 normal and EH predecessor edges. */
2073 if (newpos2 == BB_HEAD (src2)
2074 && !(EDGE_PRED (src2, 0)->flags & EDGE_EH))
2075 redirect_to = src2;
2076 else
2078 if (newpos2 == BB_HEAD (src2))
2080 /* Skip possible basic block header. */
2081 if (LABEL_P (newpos2))
2082 newpos2 = NEXT_INSN (newpos2);
2083 while (DEBUG_INSN_P (newpos2))
2084 newpos2 = NEXT_INSN (newpos2);
2085 if (NOTE_P (newpos2))
2086 newpos2 = NEXT_INSN (newpos2);
2087 while (DEBUG_INSN_P (newpos2))
2088 newpos2 = NEXT_INSN (newpos2);
2091 if (dump_file)
2092 fprintf (dump_file, "Splitting bb %i before %i insns\n",
2093 src2->index, nmatch);
2094 redirect_to = split_block (src2, PREV_INSN (newpos2))->dest;
2097 if (dump_file)
2098 fprintf (dump_file,
2099 "Cross jumping from bb %i to bb %i; %i common insns\n",
2100 src1->index, src2->index, nmatch);
2102 /* We may have some registers visible through the block. */
2103 df_set_bb_dirty (redirect_to);
2105 if (osrc2 == src2)
2106 redirect_edges_to = redirect_to;
2107 else
2108 redirect_edges_to = osrc2;
2110 /* Recompute the frequencies and counts of outgoing edges. */
2111 FOR_EACH_EDGE (s, ei, redirect_edges_to->succs)
2113 edge s2;
2114 edge_iterator ei;
2115 basic_block d = s->dest;
2117 if (FORWARDER_BLOCK_P (d))
2118 d = single_succ (d);
2120 FOR_EACH_EDGE (s2, ei, src1->succs)
2122 basic_block d2 = s2->dest;
2123 if (FORWARDER_BLOCK_P (d2))
2124 d2 = single_succ (d2);
2125 if (d == d2)
2126 break;
2129 s->count += s2->count;
2131 /* Take care to update possible forwarder blocks. We verified
2132 that there is no more than one in the chain, so we can't run
2133 into infinite loop. */
2134 if (FORWARDER_BLOCK_P (s->dest))
2136 single_succ_edge (s->dest)->count += s2->count;
2137 s->dest->count += s2->count;
2138 s->dest->frequency += EDGE_FREQUENCY (s);
2141 if (FORWARDER_BLOCK_P (s2->dest))
2143 single_succ_edge (s2->dest)->count -= s2->count;
2144 if (single_succ_edge (s2->dest)->count < 0)
2145 single_succ_edge (s2->dest)->count = 0;
2146 s2->dest->count -= s2->count;
2147 s2->dest->frequency -= EDGE_FREQUENCY (s);
2148 if (s2->dest->frequency < 0)
2149 s2->dest->frequency = 0;
2150 if (s2->dest->count < 0)
2151 s2->dest->count = 0;
2154 if (!redirect_edges_to->frequency && !src1->frequency)
2155 s->probability = (s->probability + s2->probability) / 2;
2156 else
2157 s->probability
2158 = ((s->probability * redirect_edges_to->frequency +
2159 s2->probability * src1->frequency)
2160 / (redirect_edges_to->frequency + src1->frequency));
2163 /* Adjust count and frequency for the block. An earlier jump
2164 threading pass may have left the profile in an inconsistent
2165 state (see update_bb_profile_for_threading) so we must be
2166 prepared for overflows. */
2167 tmp = redirect_to;
2170 tmp->count += src1->count;
2171 tmp->frequency += src1->frequency;
2172 if (tmp->frequency > BB_FREQ_MAX)
2173 tmp->frequency = BB_FREQ_MAX;
2174 if (tmp == redirect_edges_to)
2175 break;
2176 tmp = find_fallthru_edge (tmp->succs)->dest;
2178 while (true);
2179 update_br_prob_note (redirect_edges_to);
2181 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
2183 /* Skip possible basic block header. */
2184 if (LABEL_P (newpos1))
2185 newpos1 = NEXT_INSN (newpos1);
2187 while (DEBUG_INSN_P (newpos1))
2188 newpos1 = NEXT_INSN (newpos1);
2190 if (NOTE_INSN_BASIC_BLOCK_P (newpos1))
2191 newpos1 = NEXT_INSN (newpos1);
2193 while (DEBUG_INSN_P (newpos1))
2194 newpos1 = NEXT_INSN (newpos1);
2196 redirect_from = split_block (src1, PREV_INSN (newpos1))->src;
2197 to_remove = single_succ (redirect_from);
2199 redirect_edge_and_branch_force (single_succ_edge (redirect_from), redirect_to);
2200 delete_basic_block (to_remove);
2202 update_forwarder_flag (redirect_from);
2203 if (redirect_to != src2)
2204 update_forwarder_flag (src2);
2206 return true;
2209 /* Search the predecessors of BB for common insn sequences. When found,
2210 share code between them by redirecting control flow. Return true if
2211 any changes made. */
2213 static bool
2214 try_crossjump_bb (int mode, basic_block bb)
2216 edge e, e2, fallthru;
2217 bool changed;
2218 unsigned max, ix, ix2;
2220 /* Nothing to do if there is not at least two incoming edges. */
2221 if (EDGE_COUNT (bb->preds) < 2)
2222 return false;
2224 /* Don't crossjump if this block ends in a computed jump,
2225 unless we are optimizing for size. */
2226 if (optimize_bb_for_size_p (bb)
2227 && bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
2228 && computed_jump_p (BB_END (bb)))
2229 return false;
2231 /* If we are partitioning hot/cold basic blocks, we don't want to
2232 mess up unconditional or indirect jumps that cross between hot
2233 and cold sections.
2235 Basic block partitioning may result in some jumps that appear to
2236 be optimizable (or blocks that appear to be mergeable), but which really
2237 must be left untouched (they are required to make it safely across
2238 partition boundaries). See the comments at the top of
2239 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2241 if (BB_PARTITION (EDGE_PRED (bb, 0)->src) !=
2242 BB_PARTITION (EDGE_PRED (bb, 1)->src)
2243 || (EDGE_PRED (bb, 0)->flags & EDGE_CROSSING))
2244 return false;
2246 /* It is always cheapest to redirect a block that ends in a branch to
2247 a block that falls through into BB, as that adds no branches to the
2248 program. We'll try that combination first. */
2249 fallthru = NULL;
2250 max = PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES);
2252 if (EDGE_COUNT (bb->preds) > max)
2253 return false;
2255 fallthru = find_fallthru_edge (bb->preds);
2257 changed = false;
2258 for (ix = 0; ix < EDGE_COUNT (bb->preds);)
2260 e = EDGE_PRED (bb, ix);
2261 ix++;
2263 /* As noted above, first try with the fallthru predecessor (or, a
2264 fallthru predecessor if we are in cfglayout mode). */
2265 if (fallthru)
2267 /* Don't combine the fallthru edge into anything else.
2268 If there is a match, we'll do it the other way around. */
2269 if (e == fallthru)
2270 continue;
2271 /* If nothing changed since the last attempt, there is nothing
2272 we can do. */
2273 if (!first_pass
2274 && !((e->src->flags & BB_MODIFIED)
2275 || (fallthru->src->flags & BB_MODIFIED)))
2276 continue;
2278 if (try_crossjump_to_edge (mode, e, fallthru, dir_forward))
2280 changed = true;
2281 ix = 0;
2282 continue;
2286 /* Non-obvious work limiting check: Recognize that we're going
2287 to call try_crossjump_bb on every basic block. So if we have
2288 two blocks with lots of outgoing edges (a switch) and they
2289 share lots of common destinations, then we would do the
2290 cross-jump check once for each common destination.
2292 Now, if the blocks actually are cross-jump candidates, then
2293 all of their destinations will be shared. Which means that
2294 we only need check them for cross-jump candidacy once. We
2295 can eliminate redundant checks of crossjump(A,B) by arbitrarily
2296 choosing to do the check from the block for which the edge
2297 in question is the first successor of A. */
2298 if (EDGE_SUCC (e->src, 0) != e)
2299 continue;
2301 for (ix2 = 0; ix2 < EDGE_COUNT (bb->preds); ix2++)
2303 e2 = EDGE_PRED (bb, ix2);
2305 if (e2 == e)
2306 continue;
2308 /* We've already checked the fallthru edge above. */
2309 if (e2 == fallthru)
2310 continue;
2312 /* The "first successor" check above only prevents multiple
2313 checks of crossjump(A,B). In order to prevent redundant
2314 checks of crossjump(B,A), require that A be the block
2315 with the lowest index. */
2316 if (e->src->index > e2->src->index)
2317 continue;
2319 /* If nothing changed since the last attempt, there is nothing
2320 we can do. */
2321 if (!first_pass
2322 && !((e->src->flags & BB_MODIFIED)
2323 || (e2->src->flags & BB_MODIFIED)))
2324 continue;
2326 /* Both e and e2 are not fallthru edges, so we can crossjump in either
2327 direction. */
2328 if (try_crossjump_to_edge (mode, e, e2, dir_both))
2330 changed = true;
2331 ix = 0;
2332 break;
2337 if (changed)
2338 crossjumps_occurred = true;
2340 return changed;
2343 /* Search the successors of BB for common insn sequences. When found,
2344 share code between them by moving it across the basic block
2345 boundary. Return true if any changes made. */
2347 static bool
2348 try_head_merge_bb (basic_block bb)
2350 basic_block final_dest_bb = NULL;
2351 int max_match = INT_MAX;
2352 edge e0;
2353 rtx_insn **headptr, **currptr, **nextptr;
2354 bool changed, moveall;
2355 unsigned ix;
2356 rtx_insn *e0_last_head;
2357 rtx cond;
2358 rtx_insn *move_before;
2359 unsigned nedges = EDGE_COUNT (bb->succs);
2360 rtx_insn *jump = BB_END (bb);
2361 regset live, live_union;
2363 /* Nothing to do if there is not at least two outgoing edges. */
2364 if (nedges < 2)
2365 return false;
2367 /* Don't crossjump if this block ends in a computed jump,
2368 unless we are optimizing for size. */
2369 if (optimize_bb_for_size_p (bb)
2370 && bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
2371 && computed_jump_p (BB_END (bb)))
2372 return false;
2374 cond = get_condition (jump, &move_before, true, false);
2375 if (cond == NULL_RTX)
2377 if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, jump))
2378 move_before = prev_nonnote_nondebug_insn (jump);
2379 else
2380 move_before = jump;
2383 for (ix = 0; ix < nedges; ix++)
2384 if (EDGE_SUCC (bb, ix)->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
2385 return false;
2387 for (ix = 0; ix < nedges; ix++)
2389 edge e = EDGE_SUCC (bb, ix);
2390 basic_block other_bb = e->dest;
2392 if (df_get_bb_dirty (other_bb))
2394 block_was_dirty = true;
2395 return false;
2398 if (e->flags & EDGE_ABNORMAL)
2399 return false;
2401 /* Normally, all destination blocks must only be reachable from this
2402 block, i.e. they must have one incoming edge.
2404 There is one special case we can handle, that of multiple consecutive
2405 jumps where the first jumps to one of the targets of the second jump.
2406 This happens frequently in switch statements for default labels.
2407 The structure is as follows:
2408 FINAL_DEST_BB
2409 ....
2410 if (cond) jump A;
2411 fall through
2413 jump with targets A, B, C, D...
2415 has two incoming edges, from FINAL_DEST_BB and BB
2417 In this case, we can try to move the insns through BB and into
2418 FINAL_DEST_BB. */
2419 if (EDGE_COUNT (other_bb->preds) != 1)
2421 edge incoming_edge, incoming_bb_other_edge;
2422 edge_iterator ei;
2424 if (final_dest_bb != NULL
2425 || EDGE_COUNT (other_bb->preds) != 2)
2426 return false;
2428 /* We must be able to move the insns across the whole block. */
2429 move_before = BB_HEAD (bb);
2430 while (!NONDEBUG_INSN_P (move_before))
2431 move_before = NEXT_INSN (move_before);
2433 if (EDGE_COUNT (bb->preds) != 1)
2434 return false;
2435 incoming_edge = EDGE_PRED (bb, 0);
2436 final_dest_bb = incoming_edge->src;
2437 if (EDGE_COUNT (final_dest_bb->succs) != 2)
2438 return false;
2439 FOR_EACH_EDGE (incoming_bb_other_edge, ei, final_dest_bb->succs)
2440 if (incoming_bb_other_edge != incoming_edge)
2441 break;
2442 if (incoming_bb_other_edge->dest != other_bb)
2443 return false;
2447 e0 = EDGE_SUCC (bb, 0);
2448 e0_last_head = NULL;
2449 changed = false;
2451 for (ix = 1; ix < nedges; ix++)
2453 edge e = EDGE_SUCC (bb, ix);
2454 rtx_insn *e0_last, *e_last;
2455 int nmatch;
2457 nmatch = flow_find_head_matching_sequence (e0->dest, e->dest,
2458 &e0_last, &e_last, 0);
2459 if (nmatch == 0)
2460 return false;
2462 if (nmatch < max_match)
2464 max_match = nmatch;
2465 e0_last_head = e0_last;
2469 /* If we matched an entire block, we probably have to avoid moving the
2470 last insn. */
2471 if (max_match > 0
2472 && e0_last_head == BB_END (e0->dest)
2473 && (find_reg_note (e0_last_head, REG_EH_REGION, 0)
2474 || control_flow_insn_p (e0_last_head)))
2476 max_match--;
2477 if (max_match == 0)
2478 return false;
2480 e0_last_head = prev_real_insn (e0_last_head);
2481 while (DEBUG_INSN_P (e0_last_head));
2484 if (max_match == 0)
2485 return false;
2487 /* We must find a union of the live registers at each of the end points. */
2488 live = BITMAP_ALLOC (NULL);
2489 live_union = BITMAP_ALLOC (NULL);
2491 currptr = XNEWVEC (rtx_insn *, nedges);
2492 headptr = XNEWVEC (rtx_insn *, nedges);
2493 nextptr = XNEWVEC (rtx_insn *, nedges);
2495 for (ix = 0; ix < nedges; ix++)
2497 int j;
2498 basic_block merge_bb = EDGE_SUCC (bb, ix)->dest;
2499 rtx_insn *head = BB_HEAD (merge_bb);
2501 while (!NONDEBUG_INSN_P (head))
2502 head = NEXT_INSN (head);
2503 headptr[ix] = head;
2504 currptr[ix] = head;
2506 /* Compute the end point and live information */
2507 for (j = 1; j < max_match; j++)
2509 head = NEXT_INSN (head);
2510 while (!NONDEBUG_INSN_P (head));
2511 simulate_backwards_to_point (merge_bb, live, head);
2512 IOR_REG_SET (live_union, live);
2515 /* If we're moving across two blocks, verify the validity of the
2516 first move, then adjust the target and let the loop below deal
2517 with the final move. */
2518 if (final_dest_bb != NULL)
2520 rtx_insn *move_upto;
2522 moveall = can_move_insns_across (currptr[0], e0_last_head, move_before,
2523 jump, e0->dest, live_union,
2524 NULL, &move_upto);
2525 if (!moveall)
2527 if (move_upto == NULL_RTX)
2528 goto out;
2530 while (e0_last_head != move_upto)
2532 df_simulate_one_insn_backwards (e0->dest, e0_last_head,
2533 live_union);
2534 e0_last_head = PREV_INSN (e0_last_head);
2537 if (e0_last_head == NULL_RTX)
2538 goto out;
2540 jump = BB_END (final_dest_bb);
2541 cond = get_condition (jump, &move_before, true, false);
2542 if (cond == NULL_RTX)
2544 if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, jump))
2545 move_before = prev_nonnote_nondebug_insn (jump);
2546 else
2547 move_before = jump;
2553 rtx_insn *move_upto;
2554 moveall = can_move_insns_across (currptr[0], e0_last_head,
2555 move_before, jump, e0->dest, live_union,
2556 NULL, &move_upto);
2557 if (!moveall && move_upto == NULL_RTX)
2559 if (jump == move_before)
2560 break;
2562 /* Try again, using a different insertion point. */
2563 move_before = jump;
2565 /* Don't try moving before a cc0 user, as that may invalidate
2566 the cc0. */
2567 if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, jump))
2568 break;
2570 continue;
2573 if (final_dest_bb && !moveall)
2574 /* We haven't checked whether a partial move would be OK for the first
2575 move, so we have to fail this case. */
2576 break;
2578 changed = true;
2579 for (;;)
2581 if (currptr[0] == move_upto)
2582 break;
2583 for (ix = 0; ix < nedges; ix++)
2585 rtx_insn *curr = currptr[ix];
2587 curr = NEXT_INSN (curr);
2588 while (!NONDEBUG_INSN_P (curr));
2589 currptr[ix] = curr;
2593 /* If we can't currently move all of the identical insns, remember
2594 each insn after the range that we'll merge. */
2595 if (!moveall)
2596 for (ix = 0; ix < nedges; ix++)
2598 rtx_insn *curr = currptr[ix];
2600 curr = NEXT_INSN (curr);
2601 while (!NONDEBUG_INSN_P (curr));
2602 nextptr[ix] = curr;
2605 reorder_insns (headptr[0], currptr[0], PREV_INSN (move_before));
2606 df_set_bb_dirty (EDGE_SUCC (bb, 0)->dest);
2607 if (final_dest_bb != NULL)
2608 df_set_bb_dirty (final_dest_bb);
2609 df_set_bb_dirty (bb);
2610 for (ix = 1; ix < nedges; ix++)
2612 df_set_bb_dirty (EDGE_SUCC (bb, ix)->dest);
2613 delete_insn_chain (headptr[ix], currptr[ix], false);
2615 if (!moveall)
2617 if (jump == move_before)
2618 break;
2620 /* For the unmerged insns, try a different insertion point. */
2621 move_before = jump;
2623 /* Don't try moving before a cc0 user, as that may invalidate
2624 the cc0. */
2625 if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, jump))
2626 break;
2628 for (ix = 0; ix < nedges; ix++)
2629 currptr[ix] = headptr[ix] = nextptr[ix];
2632 while (!moveall);
2634 out:
2635 free (currptr);
2636 free (headptr);
2637 free (nextptr);
2639 crossjumps_occurred |= changed;
2641 return changed;
2644 /* Return true if BB contains just bb note, or bb note followed
2645 by only DEBUG_INSNs. */
2647 static bool
2648 trivially_empty_bb_p (basic_block bb)
2650 rtx_insn *insn = BB_END (bb);
2652 while (1)
2654 if (insn == BB_HEAD (bb))
2655 return true;
2656 if (!DEBUG_INSN_P (insn))
2657 return false;
2658 insn = PREV_INSN (insn);
2662 /* Return true if BB contains just a return and possibly a USE of the
2663 return value. Fill in *RET and *USE with the return and use insns
2664 if any found, otherwise NULL. */
2666 static bool
2667 bb_is_just_return (basic_block bb, rtx_insn **ret, rtx_insn **use)
2669 *ret = *use = NULL;
2670 rtx_insn *insn;
2672 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2673 return false;
2675 FOR_BB_INSNS (bb, insn)
2676 if (NONDEBUG_INSN_P (insn))
2678 if (!*ret && ANY_RETURN_P (PATTERN (insn)))
2679 *ret = insn;
2680 else if (!*ret && !*use && GET_CODE (PATTERN (insn)) == USE
2681 && REG_P (XEXP (PATTERN (insn), 0))
2682 && REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))
2683 *use = insn;
2684 else
2685 return false;
2688 return !!*ret;
2691 /* Do simple CFG optimizations - basic block merging, simplifying of jump
2692 instructions etc. Return nonzero if changes were made. */
2694 static bool
2695 try_optimize_cfg (int mode)
2697 bool changed_overall = false;
2698 bool changed;
2699 int iterations = 0;
2700 basic_block bb, b, next;
2702 if (mode & (CLEANUP_CROSSJUMP | CLEANUP_THREADING))
2703 clear_bb_flags ();
2705 crossjumps_occurred = false;
2707 FOR_EACH_BB_FN (bb, cfun)
2708 update_forwarder_flag (bb);
2710 if (! targetm.cannot_modify_jumps_p ())
2712 first_pass = true;
2713 /* Attempt to merge blocks as made possible by edge removal. If
2714 a block has only one successor, and the successor has only
2715 one predecessor, they may be combined. */
2718 block_was_dirty = false;
2719 changed = false;
2720 iterations++;
2722 if (dump_file)
2723 fprintf (dump_file,
2724 "\n\ntry_optimize_cfg iteration %i\n\n",
2725 iterations);
2727 for (b = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; b
2728 != EXIT_BLOCK_PTR_FOR_FN (cfun);)
2730 basic_block c;
2731 edge s;
2732 bool changed_here = false;
2734 /* Delete trivially dead basic blocks. This is either
2735 blocks with no predecessors, or empty blocks with no
2736 successors. However if the empty block with no
2737 successors is the successor of the ENTRY_BLOCK, it is
2738 kept. This ensures that the ENTRY_BLOCK will have a
2739 successor which is a precondition for many RTL
2740 passes. Empty blocks may result from expanding
2741 __builtin_unreachable (). */
2742 if (EDGE_COUNT (b->preds) == 0
2743 || (EDGE_COUNT (b->succs) == 0
2744 && trivially_empty_bb_p (b)
2745 && single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->dest
2746 != b))
2748 c = b->prev_bb;
2749 if (EDGE_COUNT (b->preds) > 0)
2751 edge e;
2752 edge_iterator ei;
2754 if (current_ir_type () == IR_RTL_CFGLAYOUT)
2756 if (BB_FOOTER (b)
2757 && BARRIER_P (BB_FOOTER (b)))
2758 FOR_EACH_EDGE (e, ei, b->preds)
2759 if ((e->flags & EDGE_FALLTHRU)
2760 && BB_FOOTER (e->src) == NULL)
2762 if (BB_FOOTER (b))
2764 BB_FOOTER (e->src) = BB_FOOTER (b);
2765 BB_FOOTER (b) = NULL;
2767 else
2769 start_sequence ();
2770 BB_FOOTER (e->src) = emit_barrier ();
2771 end_sequence ();
2775 else
2777 rtx_insn *last = get_last_bb_insn (b);
2778 if (last && BARRIER_P (last))
2779 FOR_EACH_EDGE (e, ei, b->preds)
2780 if ((e->flags & EDGE_FALLTHRU))
2781 emit_barrier_after (BB_END (e->src));
2784 delete_basic_block (b);
2785 changed = true;
2786 /* Avoid trying to remove the exit block. */
2787 b = (c == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? c->next_bb : c);
2788 continue;
2791 /* Remove code labels no longer used. */
2792 if (single_pred_p (b)
2793 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
2794 && !(single_pred_edge (b)->flags & EDGE_COMPLEX)
2795 && LABEL_P (BB_HEAD (b))
2796 && !LABEL_PRESERVE_P (BB_HEAD (b))
2797 /* If the previous block ends with a branch to this
2798 block, we can't delete the label. Normally this
2799 is a condjump that is yet to be simplified, but
2800 if CASE_DROPS_THRU, this can be a tablejump with
2801 some element going to the same place as the
2802 default (fallthru). */
2803 && (single_pred (b) == ENTRY_BLOCK_PTR_FOR_FN (cfun)
2804 || !JUMP_P (BB_END (single_pred (b)))
2805 || ! label_is_jump_target_p (BB_HEAD (b),
2806 BB_END (single_pred (b)))))
2808 delete_insn (BB_HEAD (b));
2809 if (dump_file)
2810 fprintf (dump_file, "Deleted label in block %i.\n",
2811 b->index);
2814 /* If we fall through an empty block, we can remove it. */
2815 if (!(mode & (CLEANUP_CFGLAYOUT | CLEANUP_NO_INSN_DEL))
2816 && single_pred_p (b)
2817 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
2818 && !LABEL_P (BB_HEAD (b))
2819 && FORWARDER_BLOCK_P (b)
2820 /* Note that forwarder_block_p true ensures that
2821 there is a successor for this block. */
2822 && (single_succ_edge (b)->flags & EDGE_FALLTHRU)
2823 && n_basic_blocks_for_fn (cfun) > NUM_FIXED_BLOCKS + 1)
2825 if (dump_file)
2826 fprintf (dump_file,
2827 "Deleting fallthru block %i.\n",
2828 b->index);
2830 c = ((b->prev_bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2831 ? b->next_bb : b->prev_bb);
2832 redirect_edge_succ_nodup (single_pred_edge (b),
2833 single_succ (b));
2834 delete_basic_block (b);
2835 changed = true;
2836 b = c;
2837 continue;
2840 /* Merge B with its single successor, if any. */
2841 if (single_succ_p (b)
2842 && (s = single_succ_edge (b))
2843 && !(s->flags & EDGE_COMPLEX)
2844 && (c = s->dest) != EXIT_BLOCK_PTR_FOR_FN (cfun)
2845 && single_pred_p (c)
2846 && b != c)
2848 /* When not in cfg_layout mode use code aware of reordering
2849 INSN. This code possibly creates new basic blocks so it
2850 does not fit merge_blocks interface and is kept here in
2851 hope that it will become useless once more of compiler
2852 is transformed to use cfg_layout mode. */
2854 if ((mode & CLEANUP_CFGLAYOUT)
2855 && can_merge_blocks_p (b, c))
2857 merge_blocks (b, c);
2858 update_forwarder_flag (b);
2859 changed_here = true;
2861 else if (!(mode & CLEANUP_CFGLAYOUT)
2862 /* If the jump insn has side effects,
2863 we can't kill the edge. */
2864 && (!JUMP_P (BB_END (b))
2865 || (reload_completed
2866 ? simplejump_p (BB_END (b))
2867 : (onlyjump_p (BB_END (b))
2868 && !tablejump_p (BB_END (b),
2869 NULL, NULL))))
2870 && (next = merge_blocks_move (s, b, c, mode)))
2872 b = next;
2873 changed_here = true;
2877 /* Try to change a branch to a return to just that return. */
2878 rtx_insn *ret, *use;
2879 if (single_succ_p (b)
2880 && onlyjump_p (BB_END (b))
2881 && bb_is_just_return (single_succ (b), &ret, &use))
2883 if (redirect_jump (as_a <rtx_jump_insn *> (BB_END (b)),
2884 PATTERN (ret), 0))
2886 if (use)
2887 emit_insn_before (copy_insn (PATTERN (use)),
2888 BB_END (b));
2889 if (dump_file)
2890 fprintf (dump_file, "Changed jump %d->%d to return.\n",
2891 b->index, single_succ (b)->index);
2892 redirect_edge_succ (single_succ_edge (b),
2893 EXIT_BLOCK_PTR_FOR_FN (cfun));
2894 single_succ_edge (b)->flags &= ~EDGE_CROSSING;
2895 changed_here = true;
2899 /* Try to change a conditional branch to a return to the
2900 respective conditional return. */
2901 if (EDGE_COUNT (b->succs) == 2
2902 && any_condjump_p (BB_END (b))
2903 && bb_is_just_return (BRANCH_EDGE (b)->dest, &ret, &use))
2905 if (redirect_jump (as_a <rtx_jump_insn *> (BB_END (b)),
2906 PATTERN (ret), 0))
2908 if (use)
2909 emit_insn_before (copy_insn (PATTERN (use)),
2910 BB_END (b));
2911 if (dump_file)
2912 fprintf (dump_file, "Changed conditional jump %d->%d "
2913 "to conditional return.\n",
2914 b->index, BRANCH_EDGE (b)->dest->index);
2915 redirect_edge_succ (BRANCH_EDGE (b),
2916 EXIT_BLOCK_PTR_FOR_FN (cfun));
2917 BRANCH_EDGE (b)->flags &= ~EDGE_CROSSING;
2918 changed_here = true;
2922 /* Try to flip a conditional branch that falls through to
2923 a return so that it becomes a conditional return and a
2924 new jump to the original branch target. */
2925 if (EDGE_COUNT (b->succs) == 2
2926 && BRANCH_EDGE (b)->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
2927 && any_condjump_p (BB_END (b))
2928 && bb_is_just_return (FALLTHRU_EDGE (b)->dest, &ret, &use))
2930 if (invert_jump (as_a <rtx_jump_insn *> (BB_END (b)),
2931 JUMP_LABEL (BB_END (b)), 0))
2933 basic_block new_ft = BRANCH_EDGE (b)->dest;
2934 if (redirect_jump (as_a <rtx_jump_insn *> (BB_END (b)),
2935 PATTERN (ret), 0))
2937 if (use)
2938 emit_insn_before (copy_insn (PATTERN (use)),
2939 BB_END (b));
2940 if (dump_file)
2941 fprintf (dump_file, "Changed conditional jump "
2942 "%d->%d to conditional return, adding "
2943 "fall-through jump.\n",
2944 b->index, BRANCH_EDGE (b)->dest->index);
2945 redirect_edge_succ (BRANCH_EDGE (b),
2946 EXIT_BLOCK_PTR_FOR_FN (cfun));
2947 BRANCH_EDGE (b)->flags &= ~EDGE_CROSSING;
2948 std::swap (BRANCH_EDGE (b)->probability,
2949 FALLTHRU_EDGE (b)->probability);
2950 update_br_prob_note (b);
2951 basic_block jb = force_nonfallthru (FALLTHRU_EDGE (b));
2952 notice_new_block (jb);
2953 if (!redirect_jump (as_a <rtx_jump_insn *> (BB_END (jb)),
2954 block_label (new_ft), 0))
2955 gcc_unreachable ();
2956 redirect_edge_succ (single_succ_edge (jb), new_ft);
2957 changed_here = true;
2959 else
2961 /* Invert the jump back to what it was. This should
2962 never fail. */
2963 if (!invert_jump (as_a <rtx_jump_insn *> (BB_END (b)),
2964 JUMP_LABEL (BB_END (b)), 0))
2965 gcc_unreachable ();
2970 /* Simplify branch over branch. */
2971 if ((mode & CLEANUP_EXPENSIVE)
2972 && !(mode & CLEANUP_CFGLAYOUT)
2973 && try_simplify_condjump (b))
2974 changed_here = true;
2976 /* If B has a single outgoing edge, but uses a
2977 non-trivial jump instruction without side-effects, we
2978 can either delete the jump entirely, or replace it
2979 with a simple unconditional jump. */
2980 if (single_succ_p (b)
2981 && single_succ (b) != EXIT_BLOCK_PTR_FOR_FN (cfun)
2982 && onlyjump_p (BB_END (b))
2983 && !CROSSING_JUMP_P (BB_END (b))
2984 && try_redirect_by_replacing_jump (single_succ_edge (b),
2985 single_succ (b),
2986 (mode & CLEANUP_CFGLAYOUT) != 0))
2988 update_forwarder_flag (b);
2989 changed_here = true;
2992 /* Simplify branch to branch. */
2993 if (try_forward_edges (mode, b))
2995 update_forwarder_flag (b);
2996 changed_here = true;
2999 /* Look for shared code between blocks. */
3000 if ((mode & CLEANUP_CROSSJUMP)
3001 && try_crossjump_bb (mode, b))
3002 changed_here = true;
3004 if ((mode & CLEANUP_CROSSJUMP)
3005 /* This can lengthen register lifetimes. Do it only after
3006 reload. */
3007 && reload_completed
3008 && try_head_merge_bb (b))
3009 changed_here = true;
3011 /* Don't get confused by the index shift caused by
3012 deleting blocks. */
3013 if (!changed_here)
3014 b = b->next_bb;
3015 else
3016 changed = true;
3019 if ((mode & CLEANUP_CROSSJUMP)
3020 && try_crossjump_bb (mode, EXIT_BLOCK_PTR_FOR_FN (cfun)))
3021 changed = true;
3023 if (block_was_dirty)
3025 /* This should only be set by head-merging. */
3026 gcc_assert (mode & CLEANUP_CROSSJUMP);
3027 df_analyze ();
3030 if (changed)
3032 /* Edge forwarding in particular can cause hot blocks previously
3033 reached by both hot and cold blocks to become dominated only
3034 by cold blocks. This will cause the verification below to fail,
3035 and lead to now cold code in the hot section. This is not easy
3036 to detect and fix during edge forwarding, and in some cases
3037 is only visible after newly unreachable blocks are deleted,
3038 which will be done in fixup_partitions. */
3039 fixup_partitions ();
3040 checking_verify_flow_info ();
3043 changed_overall |= changed;
3044 first_pass = false;
3046 while (changed);
3049 FOR_ALL_BB_FN (b, cfun)
3050 b->flags &= ~(BB_FORWARDER_BLOCK | BB_NONTHREADABLE_BLOCK);
3052 return changed_overall;
3055 /* Delete all unreachable basic blocks. */
3057 bool
3058 delete_unreachable_blocks (void)
3060 bool changed = false;
3061 basic_block b, prev_bb;
3063 find_unreachable_blocks ();
3065 /* When we're in GIMPLE mode and there may be debug insns, we should
3066 delete blocks in reverse dominator order, so as to get a chance
3067 to substitute all released DEFs into debug stmts. If we don't
3068 have dominators information, walking blocks backward gets us a
3069 better chance of retaining most debug information than
3070 otherwise. */
3071 if (MAY_HAVE_DEBUG_INSNS && current_ir_type () == IR_GIMPLE
3072 && dom_info_available_p (CDI_DOMINATORS))
3074 for (b = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
3075 b != ENTRY_BLOCK_PTR_FOR_FN (cfun); b = prev_bb)
3077 prev_bb = b->prev_bb;
3079 if (!(b->flags & BB_REACHABLE))
3081 /* Speed up the removal of blocks that don't dominate
3082 others. Walking backwards, this should be the common
3083 case. */
3084 if (!first_dom_son (CDI_DOMINATORS, b))
3085 delete_basic_block (b);
3086 else
3088 vec<basic_block> h
3089 = get_all_dominated_blocks (CDI_DOMINATORS, b);
3091 while (h.length ())
3093 b = h.pop ();
3095 prev_bb = b->prev_bb;
3097 gcc_assert (!(b->flags & BB_REACHABLE));
3099 delete_basic_block (b);
3102 h.release ();
3105 changed = true;
3109 else
3111 for (b = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
3112 b != ENTRY_BLOCK_PTR_FOR_FN (cfun); b = prev_bb)
3114 prev_bb = b->prev_bb;
3116 if (!(b->flags & BB_REACHABLE))
3118 delete_basic_block (b);
3119 changed = true;
3124 if (changed)
3125 tidy_fallthru_edges ();
3126 return changed;
3129 /* Delete any jump tables never referenced. We can't delete them at the
3130 time of removing tablejump insn as they are referenced by the preceding
3131 insns computing the destination, so we delay deleting and garbagecollect
3132 them once life information is computed. */
3133 void
3134 delete_dead_jumptables (void)
3136 basic_block bb;
3138 /* A dead jump table does not belong to any basic block. Scan insns
3139 between two adjacent basic blocks. */
3140 FOR_EACH_BB_FN (bb, cfun)
3142 rtx_insn *insn, *next;
3144 for (insn = NEXT_INSN (BB_END (bb));
3145 insn && !NOTE_INSN_BASIC_BLOCK_P (insn);
3146 insn = next)
3148 next = NEXT_INSN (insn);
3149 if (LABEL_P (insn)
3150 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
3151 && JUMP_TABLE_DATA_P (next))
3153 rtx_insn *label = insn, *jump = next;
3155 if (dump_file)
3156 fprintf (dump_file, "Dead jumptable %i removed\n",
3157 INSN_UID (insn));
3159 next = NEXT_INSN (next);
3160 delete_insn (jump);
3161 delete_insn (label);
3168 /* Tidy the CFG by deleting unreachable code and whatnot. */
3170 bool
3171 cleanup_cfg (int mode)
3173 bool changed = false;
3175 /* Set the cfglayout mode flag here. We could update all the callers
3176 but that is just inconvenient, especially given that we eventually
3177 want to have cfglayout mode as the default. */
3178 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3179 mode |= CLEANUP_CFGLAYOUT;
3181 timevar_push (TV_CLEANUP_CFG);
3182 if (delete_unreachable_blocks ())
3184 changed = true;
3185 /* We've possibly created trivially dead code. Cleanup it right
3186 now to introduce more opportunities for try_optimize_cfg. */
3187 if (!(mode & (CLEANUP_NO_INSN_DEL))
3188 && !reload_completed)
3189 delete_trivially_dead_insns (get_insns (), max_reg_num ());
3192 compact_blocks ();
3194 /* To tail-merge blocks ending in the same noreturn function (e.g.
3195 a call to abort) we have to insert fake edges to exit. Do this
3196 here once. The fake edges do not interfere with any other CFG
3197 cleanups. */
3198 if (mode & CLEANUP_CROSSJUMP)
3199 add_noreturn_fake_exit_edges ();
3201 if (!dbg_cnt (cfg_cleanup))
3202 return changed;
3204 while (try_optimize_cfg (mode))
3206 delete_unreachable_blocks (), changed = true;
3207 if (!(mode & CLEANUP_NO_INSN_DEL))
3209 /* Try to remove some trivially dead insns when doing an expensive
3210 cleanup. But delete_trivially_dead_insns doesn't work after
3211 reload (it only handles pseudos) and run_fast_dce is too costly
3212 to run in every iteration.
3214 For effective cross jumping, we really want to run a fast DCE to
3215 clean up any dead conditions, or they get in the way of performing
3216 useful tail merges.
3218 Other transformations in cleanup_cfg are not so sensitive to dead
3219 code, so delete_trivially_dead_insns or even doing nothing at all
3220 is good enough. */
3221 if ((mode & CLEANUP_EXPENSIVE) && !reload_completed
3222 && !delete_trivially_dead_insns (get_insns (), max_reg_num ()))
3223 break;
3224 if ((mode & CLEANUP_CROSSJUMP) && crossjumps_occurred)
3225 run_fast_dce ();
3227 else
3228 break;
3231 if (mode & CLEANUP_CROSSJUMP)
3232 remove_fake_exit_edges ();
3234 /* Don't call delete_dead_jumptables in cfglayout mode, because
3235 that function assumes that jump tables are in the insns stream.
3236 But we also don't _have_ to delete dead jumptables in cfglayout
3237 mode because we shouldn't even be looking at things that are
3238 not in a basic block. Dead jumptables are cleaned up when
3239 going out of cfglayout mode. */
3240 if (!(mode & CLEANUP_CFGLAYOUT))
3241 delete_dead_jumptables ();
3243 /* ??? We probably do this way too often. */
3244 if (current_loops
3245 && (changed
3246 || (mode & CLEANUP_CFG_CHANGED)))
3248 timevar_push (TV_REPAIR_LOOPS);
3249 /* The above doesn't preserve dominance info if available. */
3250 gcc_assert (!dom_info_available_p (CDI_DOMINATORS));
3251 calculate_dominance_info (CDI_DOMINATORS);
3252 fix_loop_structure (NULL);
3253 free_dominance_info (CDI_DOMINATORS);
3254 timevar_pop (TV_REPAIR_LOOPS);
3257 timevar_pop (TV_CLEANUP_CFG);
3259 return changed;
3262 namespace {
3264 const pass_data pass_data_jump =
3266 RTL_PASS, /* type */
3267 "jump", /* name */
3268 OPTGROUP_NONE, /* optinfo_flags */
3269 TV_JUMP, /* tv_id */
3270 0, /* properties_required */
3271 0, /* properties_provided */
3272 0, /* properties_destroyed */
3273 0, /* todo_flags_start */
3274 0, /* todo_flags_finish */
3277 class pass_jump : public rtl_opt_pass
3279 public:
3280 pass_jump (gcc::context *ctxt)
3281 : rtl_opt_pass (pass_data_jump, ctxt)
3284 /* opt_pass methods: */
3285 virtual unsigned int execute (function *);
3287 }; // class pass_jump
3289 unsigned int
3290 pass_jump::execute (function *)
3292 delete_trivially_dead_insns (get_insns (), max_reg_num ());
3293 if (dump_file)
3294 dump_flow_info (dump_file, dump_flags);
3295 cleanup_cfg ((optimize ? CLEANUP_EXPENSIVE : 0)
3296 | (flag_thread_jumps ? CLEANUP_THREADING : 0));
3297 return 0;
3300 } // anon namespace
3302 rtl_opt_pass *
3303 make_pass_jump (gcc::context *ctxt)
3305 return new pass_jump (ctxt);
3308 namespace {
3310 const pass_data pass_data_jump2 =
3312 RTL_PASS, /* type */
3313 "jump2", /* name */
3314 OPTGROUP_NONE, /* optinfo_flags */
3315 TV_JUMP, /* tv_id */
3316 0, /* properties_required */
3317 0, /* properties_provided */
3318 0, /* properties_destroyed */
3319 0, /* todo_flags_start */
3320 0, /* todo_flags_finish */
3323 class pass_jump2 : public rtl_opt_pass
3325 public:
3326 pass_jump2 (gcc::context *ctxt)
3327 : rtl_opt_pass (pass_data_jump2, ctxt)
3330 /* opt_pass methods: */
3331 virtual unsigned int execute (function *)
3333 cleanup_cfg (flag_crossjumping ? CLEANUP_CROSSJUMP : 0);
3334 return 0;
3337 }; // class pass_jump2
3339 } // anon namespace
3341 rtl_opt_pass *
3342 make_pass_jump2 (gcc::context *ctxt)
3344 return new pass_jump2 (ctxt);