PR libstdc++/80251
[official-gcc.git] / gcc / ada / sem_res.adb
blob3d6c39583c84886567680e0cbbb80cca51825116
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ R E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Debug_A; use Debug_A;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Disp; use Exp_Disp;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Tss; use Exp_Tss;
37 with Exp_Util; use Exp_Util;
38 with Fname; use Fname;
39 with Freeze; use Freeze;
40 with Ghost; use Ghost;
41 with Inline; use Inline;
42 with Itypes; use Itypes;
43 with Lib; use Lib;
44 with Lib.Xref; use Lib.Xref;
45 with Namet; use Namet;
46 with Nmake; use Nmake;
47 with Nlists; use Nlists;
48 with Opt; use Opt;
49 with Output; use Output;
50 with Par_SCO; use Par_SCO;
51 with Restrict; use Restrict;
52 with Rident; use Rident;
53 with Rtsfind; use Rtsfind;
54 with Sem; use Sem;
55 with Sem_Aux; use Sem_Aux;
56 with Sem_Aggr; use Sem_Aggr;
57 with Sem_Attr; use Sem_Attr;
58 with Sem_Cat; use Sem_Cat;
59 with Sem_Ch4; use Sem_Ch4;
60 with Sem_Ch3; use Sem_Ch3;
61 with Sem_Ch6; use Sem_Ch6;
62 with Sem_Ch8; use Sem_Ch8;
63 with Sem_Ch13; use Sem_Ch13;
64 with Sem_Dim; use Sem_Dim;
65 with Sem_Disp; use Sem_Disp;
66 with Sem_Dist; use Sem_Dist;
67 with Sem_Elim; use Sem_Elim;
68 with Sem_Elab; use Sem_Elab;
69 with Sem_Eval; use Sem_Eval;
70 with Sem_Intr; use Sem_Intr;
71 with Sem_Util; use Sem_Util;
72 with Targparm; use Targparm;
73 with Sem_Type; use Sem_Type;
74 with Sem_Warn; use Sem_Warn;
75 with Sinfo; use Sinfo;
76 with Sinfo.CN; use Sinfo.CN;
77 with Snames; use Snames;
78 with Stand; use Stand;
79 with Stringt; use Stringt;
80 with Style; use Style;
81 with Tbuild; use Tbuild;
82 with Uintp; use Uintp;
83 with Urealp; use Urealp;
85 package body Sem_Res is
87 -----------------------
88 -- Local Subprograms --
89 -----------------------
91 -- Second pass (top-down) type checking and overload resolution procedures
92 -- Typ is the type required by context. These procedures propagate the
93 -- type information recursively to the descendants of N. If the node is not
94 -- overloaded, its Etype is established in the first pass. If overloaded,
95 -- the Resolve routines set the correct type. For arithmetic operators, the
96 -- Etype is the base type of the context.
98 -- Note that Resolve_Attribute is separated off in Sem_Attr
100 procedure Check_Discriminant_Use (N : Node_Id);
101 -- Enforce the restrictions on the use of discriminants when constraining
102 -- a component of a discriminated type (record or concurrent type).
104 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
105 -- Given a node for an operator associated with type T, check that the
106 -- operator is visible. Operators all of whose operands are universal must
107 -- be checked for visibility during resolution because their type is not
108 -- determinable based on their operands.
110 procedure Check_Fully_Declared_Prefix
111 (Typ : Entity_Id;
112 Pref : Node_Id);
113 -- Check that the type of the prefix of a dereference is not incomplete
115 function Check_Infinite_Recursion (N : Node_Id) return Boolean;
116 -- Given a call node, N, which is known to occur immediately within the
117 -- subprogram being called, determines whether it is a detectable case of
118 -- an infinite recursion, and if so, outputs appropriate messages. Returns
119 -- True if an infinite recursion is detected, and False otherwise.
121 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id);
122 -- If the type of the object being initialized uses the secondary stack
123 -- directly or indirectly, create a transient scope for the call to the
124 -- init proc. This is because we do not create transient scopes for the
125 -- initialization of individual components within the init proc itself.
126 -- Could be optimized away perhaps?
128 procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
129 -- N is the node for a logical operator. If the operator is predefined, and
130 -- the root type of the operands is Standard.Boolean, then a check is made
131 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
132 -- the style check for Style_Check_Boolean_And_Or.
134 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean;
135 -- N is either an indexed component or a selected component. This function
136 -- returns true if the prefix refers to an object that has an address
137 -- clause (the case in which we may want to issue a warning).
139 function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
140 -- Determine whether E is an access type declared by an access declaration,
141 -- and not an (anonymous) allocator type.
143 function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
144 -- Utility to check whether the entity for an operator is a predefined
145 -- operator, in which case the expression is left as an operator in the
146 -- tree (else it is rewritten into a call). An instance of an intrinsic
147 -- conversion operation may be given an operator name, but is not treated
148 -- like an operator. Note that an operator that is an imported back-end
149 -- builtin has convention Intrinsic, but is expected to be rewritten into
150 -- a call, so such an operator is not treated as predefined by this
151 -- predicate.
153 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
154 -- If a default expression in entry call N depends on the discriminants
155 -- of the task, it must be replaced with a reference to the discriminant
156 -- of the task being called.
158 procedure Resolve_Op_Concat_Arg
159 (N : Node_Id;
160 Arg : Node_Id;
161 Typ : Entity_Id;
162 Is_Comp : Boolean);
163 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
164 -- concatenation operator. The operand is either of the array type or of
165 -- the component type. If the operand is an aggregate, and the component
166 -- type is composite, this is ambiguous if component type has aggregates.
168 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
169 -- Does the first part of the work of Resolve_Op_Concat
171 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
172 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
173 -- has been resolved. See Resolve_Op_Concat for details.
175 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id);
176 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id);
177 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id);
178 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id);
179 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id);
180 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id);
181 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id);
182 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id);
183 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id);
184 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id);
185 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id);
186 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id);
187 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id);
188 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id);
189 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id);
190 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id);
191 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id);
192 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id);
193 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id);
194 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id);
195 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id);
196 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id);
197 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id);
198 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id);
199 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id);
200 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id);
201 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id);
202 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id);
203 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id);
204 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id);
205 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id);
206 procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id);
207 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id);
208 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id);
209 procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id);
210 procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
212 function Operator_Kind
213 (Op_Name : Name_Id;
214 Is_Binary : Boolean) return Node_Kind;
215 -- Utility to map the name of an operator into the corresponding Node. Used
216 -- by other node rewriting procedures.
218 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
219 -- Resolve actuals of call, and add default expressions for missing ones.
220 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
221 -- called subprogram.
223 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
224 -- Called from Resolve_Call, when the prefix denotes an entry or element
225 -- of entry family. Actuals are resolved as for subprograms, and the node
226 -- is rebuilt as an entry call. Also called for protected operations. Typ
227 -- is the context type, which is used when the operation is a protected
228 -- function with no arguments, and the return value is indexed.
230 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
231 -- A call to a user-defined intrinsic operator is rewritten as a call to
232 -- the corresponding predefined operator, with suitable conversions. Note
233 -- that this applies only for intrinsic operators that denote predefined
234 -- operators, not ones that are intrinsic imports of back-end builtins.
236 procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
237 -- Ditto, for arithmetic unary operators
239 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
240 -- If an operator node resolves to a call to a user-defined operator,
241 -- rewrite the node as a function call.
243 procedure Make_Call_Into_Operator
244 (N : Node_Id;
245 Typ : Entity_Id;
246 Op_Id : Entity_Id);
247 -- Inverse transformation: if an operator is given in functional notation,
248 -- then after resolving the node, transform into an operator node, so that
249 -- operands are resolved properly. Recall that predefined operators do not
250 -- have a full signature and special resolution rules apply.
252 procedure Rewrite_Renamed_Operator
253 (N : Node_Id;
254 Op : Entity_Id;
255 Typ : Entity_Id);
256 -- An operator can rename another, e.g. in an instantiation. In that
257 -- case, the proper operator node must be constructed and resolved.
259 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
260 -- The String_Literal_Subtype is built for all strings that are not
261 -- operands of a static concatenation operation. If the argument is not
262 -- a N_String_Literal node, then the call has no effect.
264 procedure Set_Slice_Subtype (N : Node_Id);
265 -- Build subtype of array type, with the range specified by the slice
267 procedure Simplify_Type_Conversion (N : Node_Id);
268 -- Called after N has been resolved and evaluated, but before range checks
269 -- have been applied. Currently simplifies a combination of floating-point
270 -- to integer conversion and Rounding or Truncation attribute.
272 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
273 -- A universal_fixed expression in an universal context is unambiguous if
274 -- there is only one applicable fixed point type. Determining whether there
275 -- is only one requires a search over all visible entities, and happens
276 -- only in very pathological cases (see 6115-006).
278 -------------------------
279 -- Ambiguous_Character --
280 -------------------------
282 procedure Ambiguous_Character (C : Node_Id) is
283 E : Entity_Id;
285 begin
286 if Nkind (C) = N_Character_Literal then
287 Error_Msg_N ("ambiguous character literal", C);
289 -- First the ones in Standard
291 Error_Msg_N ("\\possible interpretation: Character!", C);
292 Error_Msg_N ("\\possible interpretation: Wide_Character!", C);
294 -- Include Wide_Wide_Character in Ada 2005 mode
296 if Ada_Version >= Ada_2005 then
297 Error_Msg_N ("\\possible interpretation: Wide_Wide_Character!", C);
298 end if;
300 -- Now any other types that match
302 E := Current_Entity (C);
303 while Present (E) loop
304 Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
305 E := Homonym (E);
306 end loop;
307 end if;
308 end Ambiguous_Character;
310 -------------------------
311 -- Analyze_And_Resolve --
312 -------------------------
314 procedure Analyze_And_Resolve (N : Node_Id) is
315 begin
316 Analyze (N);
317 Resolve (N);
318 end Analyze_And_Resolve;
320 procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
321 begin
322 Analyze (N);
323 Resolve (N, Typ);
324 end Analyze_And_Resolve;
326 -- Versions with check(s) suppressed
328 procedure Analyze_And_Resolve
329 (N : Node_Id;
330 Typ : Entity_Id;
331 Suppress : Check_Id)
333 Scop : constant Entity_Id := Current_Scope;
335 begin
336 if Suppress = All_Checks then
337 declare
338 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
339 begin
340 Scope_Suppress.Suppress := (others => True);
341 Analyze_And_Resolve (N, Typ);
342 Scope_Suppress.Suppress := Sva;
343 end;
345 else
346 declare
347 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
348 begin
349 Scope_Suppress.Suppress (Suppress) := True;
350 Analyze_And_Resolve (N, Typ);
351 Scope_Suppress.Suppress (Suppress) := Svg;
352 end;
353 end if;
355 if Current_Scope /= Scop
356 and then Scope_Is_Transient
357 then
358 -- This can only happen if a transient scope was created for an inner
359 -- expression, which will be removed upon completion of the analysis
360 -- of an enclosing construct. The transient scope must have the
361 -- suppress status of the enclosing environment, not of this Analyze
362 -- call.
364 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
365 Scope_Suppress;
366 end if;
367 end Analyze_And_Resolve;
369 procedure Analyze_And_Resolve
370 (N : Node_Id;
371 Suppress : Check_Id)
373 Scop : constant Entity_Id := Current_Scope;
375 begin
376 if Suppress = All_Checks then
377 declare
378 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
379 begin
380 Scope_Suppress.Suppress := (others => True);
381 Analyze_And_Resolve (N);
382 Scope_Suppress.Suppress := Sva;
383 end;
385 else
386 declare
387 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
388 begin
389 Scope_Suppress.Suppress (Suppress) := True;
390 Analyze_And_Resolve (N);
391 Scope_Suppress.Suppress (Suppress) := Svg;
392 end;
393 end if;
395 if Current_Scope /= Scop and then Scope_Is_Transient then
396 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
397 Scope_Suppress;
398 end if;
399 end Analyze_And_Resolve;
401 ----------------------------
402 -- Check_Discriminant_Use --
403 ----------------------------
405 procedure Check_Discriminant_Use (N : Node_Id) is
406 PN : constant Node_Id := Parent (N);
407 Disc : constant Entity_Id := Entity (N);
408 P : Node_Id;
409 D : Node_Id;
411 begin
412 -- Any use in a spec-expression is legal
414 if In_Spec_Expression then
415 null;
417 elsif Nkind (PN) = N_Range then
419 -- Discriminant cannot be used to constrain a scalar type
421 P := Parent (PN);
423 if Nkind (P) = N_Range_Constraint
424 and then Nkind (Parent (P)) = N_Subtype_Indication
425 and then Nkind (Parent (Parent (P))) = N_Component_Definition
426 then
427 Error_Msg_N ("discriminant cannot constrain scalar type", N);
429 elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
431 -- The following check catches the unusual case where a
432 -- discriminant appears within an index constraint that is part
433 -- of a larger expression within a constraint on a component,
434 -- e.g. "C : Int range 1 .. F (new A(1 .. D))". For now we only
435 -- check case of record components, and note that a similar check
436 -- should also apply in the case of discriminant constraints
437 -- below. ???
439 -- Note that the check for N_Subtype_Declaration below is to
440 -- detect the valid use of discriminants in the constraints of a
441 -- subtype declaration when this subtype declaration appears
442 -- inside the scope of a record type (which is syntactically
443 -- illegal, but which may be created as part of derived type
444 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
445 -- for more info.
447 if Ekind (Current_Scope) = E_Record_Type
448 and then Scope (Disc) = Current_Scope
449 and then not
450 (Nkind (Parent (P)) = N_Subtype_Indication
451 and then
452 Nkind_In (Parent (Parent (P)), N_Component_Definition,
453 N_Subtype_Declaration)
454 and then Paren_Count (N) = 0)
455 then
456 Error_Msg_N
457 ("discriminant must appear alone in component constraint", N);
458 return;
459 end if;
461 -- Detect a common error:
463 -- type R (D : Positive := 100) is record
464 -- Name : String (1 .. D);
465 -- end record;
467 -- The default value causes an object of type R to be allocated
468 -- with room for Positive'Last characters. The RM does not mandate
469 -- the allocation of the maximum size, but that is what GNAT does
470 -- so we should warn the programmer that there is a problem.
472 Check_Large : declare
473 SI : Node_Id;
474 T : Entity_Id;
475 TB : Node_Id;
476 CB : Entity_Id;
478 function Large_Storage_Type (T : Entity_Id) return Boolean;
479 -- Return True if type T has a large enough range that any
480 -- array whose index type covered the whole range of the type
481 -- would likely raise Storage_Error.
483 ------------------------
484 -- Large_Storage_Type --
485 ------------------------
487 function Large_Storage_Type (T : Entity_Id) return Boolean is
488 begin
489 -- The type is considered large if its bounds are known at
490 -- compile time and if it requires at least as many bits as
491 -- a Positive to store the possible values.
493 return Compile_Time_Known_Value (Type_Low_Bound (T))
494 and then Compile_Time_Known_Value (Type_High_Bound (T))
495 and then
496 Minimum_Size (T, Biased => True) >=
497 RM_Size (Standard_Positive);
498 end Large_Storage_Type;
500 -- Start of processing for Check_Large
502 begin
503 -- Check that the Disc has a large range
505 if not Large_Storage_Type (Etype (Disc)) then
506 goto No_Danger;
507 end if;
509 -- If the enclosing type is limited, we allocate only the
510 -- default value, not the maximum, and there is no need for
511 -- a warning.
513 if Is_Limited_Type (Scope (Disc)) then
514 goto No_Danger;
515 end if;
517 -- Check that it is the high bound
519 if N /= High_Bound (PN)
520 or else No (Discriminant_Default_Value (Disc))
521 then
522 goto No_Danger;
523 end if;
525 -- Check the array allows a large range at this bound. First
526 -- find the array
528 SI := Parent (P);
530 if Nkind (SI) /= N_Subtype_Indication then
531 goto No_Danger;
532 end if;
534 T := Entity (Subtype_Mark (SI));
536 if not Is_Array_Type (T) then
537 goto No_Danger;
538 end if;
540 -- Next, find the dimension
542 TB := First_Index (T);
543 CB := First (Constraints (P));
544 while True
545 and then Present (TB)
546 and then Present (CB)
547 and then CB /= PN
548 loop
549 Next_Index (TB);
550 Next (CB);
551 end loop;
553 if CB /= PN then
554 goto No_Danger;
555 end if;
557 -- Now, check the dimension has a large range
559 if not Large_Storage_Type (Etype (TB)) then
560 goto No_Danger;
561 end if;
563 -- Warn about the danger
565 Error_Msg_N
566 ("??creation of & object may raise Storage_Error!",
567 Scope (Disc));
569 <<No_Danger>>
570 null;
572 end Check_Large;
573 end if;
575 -- Legal case is in index or discriminant constraint
577 elsif Nkind_In (PN, N_Index_Or_Discriminant_Constraint,
578 N_Discriminant_Association)
579 then
580 if Paren_Count (N) > 0 then
581 Error_Msg_N
582 ("discriminant in constraint must appear alone", N);
584 elsif Nkind (N) = N_Expanded_Name
585 and then Comes_From_Source (N)
586 then
587 Error_Msg_N
588 ("discriminant must appear alone as a direct name", N);
589 end if;
591 return;
593 -- Otherwise, context is an expression. It should not be within (i.e. a
594 -- subexpression of) a constraint for a component.
596 else
597 D := PN;
598 P := Parent (PN);
599 while not Nkind_In (P, N_Component_Declaration,
600 N_Subtype_Indication,
601 N_Entry_Declaration)
602 loop
603 D := P;
604 P := Parent (P);
605 exit when No (P);
606 end loop;
608 -- If the discriminant is used in an expression that is a bound of a
609 -- scalar type, an Itype is created and the bounds are attached to
610 -- its range, not to the original subtype indication. Such use is of
611 -- course a double fault.
613 if (Nkind (P) = N_Subtype_Indication
614 and then Nkind_In (Parent (P), N_Component_Definition,
615 N_Derived_Type_Definition)
616 and then D = Constraint (P))
618 -- The constraint itself may be given by a subtype indication,
619 -- rather than by a more common discrete range.
621 or else (Nkind (P) = N_Subtype_Indication
622 and then
623 Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
624 or else Nkind (P) = N_Entry_Declaration
625 or else Nkind (D) = N_Defining_Identifier
626 then
627 Error_Msg_N
628 ("discriminant in constraint must appear alone", N);
629 end if;
630 end if;
631 end Check_Discriminant_Use;
633 --------------------------------
634 -- Check_For_Visible_Operator --
635 --------------------------------
637 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
638 begin
639 if Is_Invisible_Operator (N, T) then
640 Error_Msg_NE -- CODEFIX
641 ("operator for} is not directly visible!", N, First_Subtype (T));
642 Error_Msg_N -- CODEFIX
643 ("use clause would make operation legal!", N);
644 end if;
645 end Check_For_Visible_Operator;
647 ----------------------------------
648 -- Check_Fully_Declared_Prefix --
649 ----------------------------------
651 procedure Check_Fully_Declared_Prefix
652 (Typ : Entity_Id;
653 Pref : Node_Id)
655 begin
656 -- Check that the designated type of the prefix of a dereference is
657 -- not an incomplete type. This cannot be done unconditionally, because
658 -- dereferences of private types are legal in default expressions. This
659 -- case is taken care of in Check_Fully_Declared, called below. There
660 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
662 -- This consideration also applies to similar checks for allocators,
663 -- qualified expressions, and type conversions.
665 -- An additional exception concerns other per-object expressions that
666 -- are not directly related to component declarations, in particular
667 -- representation pragmas for tasks. These will be per-object
668 -- expressions if they depend on discriminants or some global entity.
669 -- If the task has access discriminants, the designated type may be
670 -- incomplete at the point the expression is resolved. This resolution
671 -- takes place within the body of the initialization procedure, where
672 -- the discriminant is replaced by its discriminal.
674 if Is_Entity_Name (Pref)
675 and then Ekind (Entity (Pref)) = E_In_Parameter
676 then
677 null;
679 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
680 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
681 -- Analyze_Object_Renaming, and Freeze_Entity.
683 elsif Ada_Version >= Ada_2005
684 and then Is_Entity_Name (Pref)
685 and then Is_Access_Type (Etype (Pref))
686 and then Ekind (Directly_Designated_Type (Etype (Pref))) =
687 E_Incomplete_Type
688 and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
689 then
690 null;
691 else
692 Check_Fully_Declared (Typ, Parent (Pref));
693 end if;
694 end Check_Fully_Declared_Prefix;
696 ------------------------------
697 -- Check_Infinite_Recursion --
698 ------------------------------
700 function Check_Infinite_Recursion (N : Node_Id) return Boolean is
701 P : Node_Id;
702 C : Node_Id;
704 function Same_Argument_List return Boolean;
705 -- Check whether list of actuals is identical to list of formals of
706 -- called function (which is also the enclosing scope).
708 ------------------------
709 -- Same_Argument_List --
710 ------------------------
712 function Same_Argument_List return Boolean is
713 A : Node_Id;
714 F : Entity_Id;
715 Subp : Entity_Id;
717 begin
718 if not Is_Entity_Name (Name (N)) then
719 return False;
720 else
721 Subp := Entity (Name (N));
722 end if;
724 F := First_Formal (Subp);
725 A := First_Actual (N);
726 while Present (F) and then Present (A) loop
727 if not Is_Entity_Name (A) or else Entity (A) /= F then
728 return False;
729 end if;
731 Next_Actual (A);
732 Next_Formal (F);
733 end loop;
735 return True;
736 end Same_Argument_List;
738 -- Start of processing for Check_Infinite_Recursion
740 begin
741 -- Special case, if this is a procedure call and is a call to the
742 -- current procedure with the same argument list, then this is for
743 -- sure an infinite recursion and we insert a call to raise SE.
745 if Is_List_Member (N)
746 and then List_Length (List_Containing (N)) = 1
747 and then Same_Argument_List
748 then
749 declare
750 P : constant Node_Id := Parent (N);
751 begin
752 if Nkind (P) = N_Handled_Sequence_Of_Statements
753 and then Nkind (Parent (P)) = N_Subprogram_Body
754 and then Is_Empty_List (Declarations (Parent (P)))
755 then
756 Error_Msg_Warn := SPARK_Mode /= On;
757 Error_Msg_N ("!infinite recursion<<", N);
758 Error_Msg_N ("\!Storage_Error [<<", N);
759 Insert_Action (N,
760 Make_Raise_Storage_Error (Sloc (N),
761 Reason => SE_Infinite_Recursion));
762 return True;
763 end if;
764 end;
765 end if;
767 -- If not that special case, search up tree, quitting if we reach a
768 -- construct (e.g. a conditional) that tells us that this is not a
769 -- case for an infinite recursion warning.
771 C := N;
772 loop
773 P := Parent (C);
775 -- If no parent, then we were not inside a subprogram, this can for
776 -- example happen when processing certain pragmas in a spec. Just
777 -- return False in this case.
779 if No (P) then
780 return False;
781 end if;
783 -- Done if we get to subprogram body, this is definitely an infinite
784 -- recursion case if we did not find anything to stop us.
786 exit when Nkind (P) = N_Subprogram_Body;
788 -- If appearing in conditional, result is false
790 if Nkind_In (P, N_Or_Else,
791 N_And_Then,
792 N_Case_Expression,
793 N_Case_Statement,
794 N_If_Expression,
795 N_If_Statement)
796 then
797 return False;
799 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
800 and then C /= First (Statements (P))
801 then
802 -- If the call is the expression of a return statement and the
803 -- actuals are identical to the formals, it's worth a warning.
804 -- However, we skip this if there is an immediately preceding
805 -- raise statement, since the call is never executed.
807 -- Furthermore, this corresponds to a common idiom:
809 -- function F (L : Thing) return Boolean is
810 -- begin
811 -- raise Program_Error;
812 -- return F (L);
813 -- end F;
815 -- for generating a stub function
817 if Nkind (Parent (N)) = N_Simple_Return_Statement
818 and then Same_Argument_List
819 then
820 exit when not Is_List_Member (Parent (N));
822 -- OK, return statement is in a statement list, look for raise
824 declare
825 Nod : Node_Id;
827 begin
828 -- Skip past N_Freeze_Entity nodes generated by expansion
830 Nod := Prev (Parent (N));
831 while Present (Nod)
832 and then Nkind (Nod) = N_Freeze_Entity
833 loop
834 Prev (Nod);
835 end loop;
837 -- If no raise statement, give warning. We look at the
838 -- original node, because in the case of "raise ... with
839 -- ...", the node has been transformed into a call.
841 exit when Nkind (Original_Node (Nod)) /= N_Raise_Statement
842 and then
843 (Nkind (Nod) not in N_Raise_xxx_Error
844 or else Present (Condition (Nod)));
845 end;
846 end if;
848 return False;
850 else
851 C := P;
852 end if;
853 end loop;
855 Error_Msg_Warn := SPARK_Mode /= On;
856 Error_Msg_N ("!possible infinite recursion<<", N);
857 Error_Msg_N ("\!??Storage_Error ]<<", N);
859 return True;
860 end Check_Infinite_Recursion;
862 -------------------------------
863 -- Check_Initialization_Call --
864 -------------------------------
866 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id) is
867 Typ : constant Entity_Id := Etype (First_Formal (Nam));
869 function Uses_SS (T : Entity_Id) return Boolean;
870 -- Check whether the creation of an object of the type will involve
871 -- use of the secondary stack. If T is a record type, this is true
872 -- if the expression for some component uses the secondary stack, e.g.
873 -- through a call to a function that returns an unconstrained value.
874 -- False if T is controlled, because cleanups occur elsewhere.
876 -------------
877 -- Uses_SS --
878 -------------
880 function Uses_SS (T : Entity_Id) return Boolean is
881 Comp : Entity_Id;
882 Expr : Node_Id;
883 Full_Type : Entity_Id := Underlying_Type (T);
885 begin
886 -- Normally we want to use the underlying type, but if it's not set
887 -- then continue with T.
889 if not Present (Full_Type) then
890 Full_Type := T;
891 end if;
893 if Is_Controlled (Full_Type) then
894 return False;
896 elsif Is_Array_Type (Full_Type) then
897 return Uses_SS (Component_Type (Full_Type));
899 elsif Is_Record_Type (Full_Type) then
900 Comp := First_Component (Full_Type);
901 while Present (Comp) loop
902 if Ekind (Comp) = E_Component
903 and then Nkind (Parent (Comp)) = N_Component_Declaration
904 then
905 -- The expression for a dynamic component may be rewritten
906 -- as a dereference, so retrieve original node.
908 Expr := Original_Node (Expression (Parent (Comp)));
910 -- Return True if the expression is a call to a function
911 -- (including an attribute function such as Image, or a
912 -- user-defined operator) with a result that requires a
913 -- transient scope.
915 if (Nkind (Expr) = N_Function_Call
916 or else Nkind (Expr) in N_Op
917 or else (Nkind (Expr) = N_Attribute_Reference
918 and then Present (Expressions (Expr))))
919 and then Requires_Transient_Scope (Etype (Expr))
920 then
921 return True;
923 elsif Uses_SS (Etype (Comp)) then
924 return True;
925 end if;
926 end if;
928 Next_Component (Comp);
929 end loop;
931 return False;
933 else
934 return False;
935 end if;
936 end Uses_SS;
938 -- Start of processing for Check_Initialization_Call
940 begin
941 -- Establish a transient scope if the type needs it
943 if Uses_SS (Typ) then
944 Establish_Transient_Scope (First_Actual (N), Sec_Stack => True);
945 end if;
946 end Check_Initialization_Call;
948 ---------------------------------------
949 -- Check_No_Direct_Boolean_Operators --
950 ---------------------------------------
952 procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
953 begin
954 if Scope (Entity (N)) = Standard_Standard
955 and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
956 then
957 -- Restriction only applies to original source code
959 if Comes_From_Source (N) then
960 Check_Restriction (No_Direct_Boolean_Operators, N);
961 end if;
962 end if;
964 -- Do style check (but skip if in instance, error is on template)
966 if Style_Check then
967 if not In_Instance then
968 Check_Boolean_Operator (N);
969 end if;
970 end if;
971 end Check_No_Direct_Boolean_Operators;
973 ------------------------------
974 -- Check_Parameterless_Call --
975 ------------------------------
977 procedure Check_Parameterless_Call (N : Node_Id) is
978 Nam : Node_Id;
980 function Prefix_Is_Access_Subp return Boolean;
981 -- If the prefix is of an access_to_subprogram type, the node must be
982 -- rewritten as a call. Ditto if the prefix is overloaded and all its
983 -- interpretations are access to subprograms.
985 ---------------------------
986 -- Prefix_Is_Access_Subp --
987 ---------------------------
989 function Prefix_Is_Access_Subp return Boolean is
990 I : Interp_Index;
991 It : Interp;
993 begin
994 -- If the context is an attribute reference that can apply to
995 -- functions, this is never a parameterless call (RM 4.1.4(6)).
997 if Nkind (Parent (N)) = N_Attribute_Reference
998 and then Nam_In (Attribute_Name (Parent (N)), Name_Address,
999 Name_Code_Address,
1000 Name_Access)
1001 then
1002 return False;
1003 end if;
1005 if not Is_Overloaded (N) then
1006 return
1007 Ekind (Etype (N)) = E_Subprogram_Type
1008 and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
1009 else
1010 Get_First_Interp (N, I, It);
1011 while Present (It.Typ) loop
1012 if Ekind (It.Typ) /= E_Subprogram_Type
1013 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
1014 then
1015 return False;
1016 end if;
1018 Get_Next_Interp (I, It);
1019 end loop;
1021 return True;
1022 end if;
1023 end Prefix_Is_Access_Subp;
1025 -- Start of processing for Check_Parameterless_Call
1027 begin
1028 -- Defend against junk stuff if errors already detected
1030 if Total_Errors_Detected /= 0 then
1031 if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
1032 return;
1033 elsif Nkind (N) in N_Has_Chars
1034 and then Chars (N) in Error_Name_Or_No_Name
1035 then
1036 return;
1037 end if;
1039 Require_Entity (N);
1040 end if;
1042 -- If the context expects a value, and the name is a procedure, this is
1043 -- most likely a missing 'Access. Don't try to resolve the parameterless
1044 -- call, error will be caught when the outer call is analyzed.
1046 if Is_Entity_Name (N)
1047 and then Ekind (Entity (N)) = E_Procedure
1048 and then not Is_Overloaded (N)
1049 and then
1050 Nkind_In (Parent (N), N_Parameter_Association,
1051 N_Function_Call,
1052 N_Procedure_Call_Statement)
1053 then
1054 return;
1055 end if;
1057 -- Rewrite as call if overloadable entity that is (or could be, in the
1058 -- overloaded case) a function call. If we know for sure that the entity
1059 -- is an enumeration literal, we do not rewrite it.
1061 -- If the entity is the name of an operator, it cannot be a call because
1062 -- operators cannot have default parameters. In this case, this must be
1063 -- a string whose contents coincide with an operator name. Set the kind
1064 -- of the node appropriately.
1066 if (Is_Entity_Name (N)
1067 and then Nkind (N) /= N_Operator_Symbol
1068 and then Is_Overloadable (Entity (N))
1069 and then (Ekind (Entity (N)) /= E_Enumeration_Literal
1070 or else Is_Overloaded (N)))
1072 -- Rewrite as call if it is an explicit dereference of an expression of
1073 -- a subprogram access type, and the subprogram type is not that of a
1074 -- procedure or entry.
1076 or else
1077 (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
1079 -- Rewrite as call if it is a selected component which is a function,
1080 -- this is the case of a call to a protected function (which may be
1081 -- overloaded with other protected operations).
1083 or else
1084 (Nkind (N) = N_Selected_Component
1085 and then (Ekind (Entity (Selector_Name (N))) = E_Function
1086 or else
1087 (Ekind_In (Entity (Selector_Name (N)), E_Entry,
1088 E_Procedure)
1089 and then Is_Overloaded (Selector_Name (N)))))
1091 -- If one of the above three conditions is met, rewrite as call. Apply
1092 -- the rewriting only once.
1094 then
1095 if Nkind (Parent (N)) /= N_Function_Call
1096 or else N /= Name (Parent (N))
1097 then
1099 -- This may be a prefixed call that was not fully analyzed, e.g.
1100 -- an actual in an instance.
1102 if Ada_Version >= Ada_2005
1103 and then Nkind (N) = N_Selected_Component
1104 and then Is_Dispatching_Operation (Entity (Selector_Name (N)))
1105 then
1106 Analyze_Selected_Component (N);
1108 if Nkind (N) /= N_Selected_Component then
1109 return;
1110 end if;
1111 end if;
1113 -- The node is the name of the parameterless call. Preserve its
1114 -- descendants, which may be complex expressions.
1116 Nam := Relocate_Node (N);
1118 -- If overloaded, overload set belongs to new copy
1120 Save_Interps (N, Nam);
1122 -- Change node to parameterless function call (note that the
1123 -- Parameter_Associations associations field is left set to Empty,
1124 -- its normal default value since there are no parameters)
1126 Change_Node (N, N_Function_Call);
1127 Set_Name (N, Nam);
1128 Set_Sloc (N, Sloc (Nam));
1129 Analyze_Call (N);
1130 end if;
1132 elsif Nkind (N) = N_Parameter_Association then
1133 Check_Parameterless_Call (Explicit_Actual_Parameter (N));
1135 elsif Nkind (N) = N_Operator_Symbol then
1136 Change_Operator_Symbol_To_String_Literal (N);
1137 Set_Is_Overloaded (N, False);
1138 Set_Etype (N, Any_String);
1139 end if;
1140 end Check_Parameterless_Call;
1142 --------------------------------
1143 -- Is_Atomic_Ref_With_Address --
1144 --------------------------------
1146 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean is
1147 Pref : constant Node_Id := Prefix (N);
1149 begin
1150 if not Is_Entity_Name (Pref) then
1151 return False;
1153 else
1154 declare
1155 Pent : constant Entity_Id := Entity (Pref);
1156 Ptyp : constant Entity_Id := Etype (Pent);
1157 begin
1158 return not Is_Access_Type (Ptyp)
1159 and then (Is_Atomic (Ptyp) or else Is_Atomic (Pent))
1160 and then Present (Address_Clause (Pent));
1161 end;
1162 end if;
1163 end Is_Atomic_Ref_With_Address;
1165 -----------------------------
1166 -- Is_Definite_Access_Type --
1167 -----------------------------
1169 function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1170 Btyp : constant Entity_Id := Base_Type (E);
1171 begin
1172 return Ekind (Btyp) = E_Access_Type
1173 or else (Ekind (Btyp) = E_Access_Subprogram_Type
1174 and then Comes_From_Source (Btyp));
1175 end Is_Definite_Access_Type;
1177 ----------------------
1178 -- Is_Predefined_Op --
1179 ----------------------
1181 function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
1182 begin
1183 -- Predefined operators are intrinsic subprograms
1185 if not Is_Intrinsic_Subprogram (Nam) then
1186 return False;
1187 end if;
1189 -- A call to a back-end builtin is never a predefined operator
1191 if Is_Imported (Nam) and then Present (Interface_Name (Nam)) then
1192 return False;
1193 end if;
1195 return not Is_Generic_Instance (Nam)
1196 and then Chars (Nam) in Any_Operator_Name
1197 and then (No (Alias (Nam)) or else Is_Predefined_Op (Alias (Nam)));
1198 end Is_Predefined_Op;
1200 -----------------------------
1201 -- Make_Call_Into_Operator --
1202 -----------------------------
1204 procedure Make_Call_Into_Operator
1205 (N : Node_Id;
1206 Typ : Entity_Id;
1207 Op_Id : Entity_Id)
1209 Op_Name : constant Name_Id := Chars (Op_Id);
1210 Act1 : Node_Id := First_Actual (N);
1211 Act2 : Node_Id := Next_Actual (Act1);
1212 Error : Boolean := False;
1213 Func : constant Entity_Id := Entity (Name (N));
1214 Is_Binary : constant Boolean := Present (Act2);
1215 Op_Node : Node_Id;
1216 Opnd_Type : Entity_Id;
1217 Orig_Type : Entity_Id := Empty;
1218 Pack : Entity_Id;
1220 type Kind_Test is access function (E : Entity_Id) return Boolean;
1222 function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
1223 -- If the operand is not universal, and the operator is given by an
1224 -- expanded name, verify that the operand has an interpretation with a
1225 -- type defined in the given scope of the operator.
1227 function Type_In_P (Test : Kind_Test) return Entity_Id;
1228 -- Find a type of the given class in package Pack that contains the
1229 -- operator.
1231 ---------------------------
1232 -- Operand_Type_In_Scope --
1233 ---------------------------
1235 function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1236 Nod : constant Node_Id := Right_Opnd (Op_Node);
1237 I : Interp_Index;
1238 It : Interp;
1240 begin
1241 if not Is_Overloaded (Nod) then
1242 return Scope (Base_Type (Etype (Nod))) = S;
1244 else
1245 Get_First_Interp (Nod, I, It);
1246 while Present (It.Typ) loop
1247 if Scope (Base_Type (It.Typ)) = S then
1248 return True;
1249 end if;
1251 Get_Next_Interp (I, It);
1252 end loop;
1254 return False;
1255 end if;
1256 end Operand_Type_In_Scope;
1258 ---------------
1259 -- Type_In_P --
1260 ---------------
1262 function Type_In_P (Test : Kind_Test) return Entity_Id is
1263 E : Entity_Id;
1265 function In_Decl return Boolean;
1266 -- Verify that node is not part of the type declaration for the
1267 -- candidate type, which would otherwise be invisible.
1269 -------------
1270 -- In_Decl --
1271 -------------
1273 function In_Decl return Boolean is
1274 Decl_Node : constant Node_Id := Parent (E);
1275 N2 : Node_Id;
1277 begin
1278 N2 := N;
1280 if Etype (E) = Any_Type then
1281 return True;
1283 elsif No (Decl_Node) then
1284 return False;
1286 else
1287 while Present (N2)
1288 and then Nkind (N2) /= N_Compilation_Unit
1289 loop
1290 if N2 = Decl_Node then
1291 return True;
1292 else
1293 N2 := Parent (N2);
1294 end if;
1295 end loop;
1297 return False;
1298 end if;
1299 end In_Decl;
1301 -- Start of processing for Type_In_P
1303 begin
1304 -- If the context type is declared in the prefix package, this is the
1305 -- desired base type.
1307 if Scope (Base_Type (Typ)) = Pack and then Test (Typ) then
1308 return Base_Type (Typ);
1310 else
1311 E := First_Entity (Pack);
1312 while Present (E) loop
1313 if Test (E) and then not In_Decl then
1314 return E;
1315 end if;
1317 Next_Entity (E);
1318 end loop;
1320 return Empty;
1321 end if;
1322 end Type_In_P;
1324 -- Start of processing for Make_Call_Into_Operator
1326 begin
1327 Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1329 -- Binary operator
1331 if Is_Binary then
1332 Set_Left_Opnd (Op_Node, Relocate_Node (Act1));
1333 Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1334 Save_Interps (Act1, Left_Opnd (Op_Node));
1335 Save_Interps (Act2, Right_Opnd (Op_Node));
1336 Act1 := Left_Opnd (Op_Node);
1337 Act2 := Right_Opnd (Op_Node);
1339 -- Unary operator
1341 else
1342 Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1343 Save_Interps (Act1, Right_Opnd (Op_Node));
1344 Act1 := Right_Opnd (Op_Node);
1345 end if;
1347 -- If the operator is denoted by an expanded name, and the prefix is
1348 -- not Standard, but the operator is a predefined one whose scope is
1349 -- Standard, then this is an implicit_operator, inserted as an
1350 -- interpretation by the procedure of the same name. This procedure
1351 -- overestimates the presence of implicit operators, because it does
1352 -- not examine the type of the operands. Verify now that the operand
1353 -- type appears in the given scope. If right operand is universal,
1354 -- check the other operand. In the case of concatenation, either
1355 -- argument can be the component type, so check the type of the result.
1356 -- If both arguments are literals, look for a type of the right kind
1357 -- defined in the given scope. This elaborate nonsense is brought to
1358 -- you courtesy of b33302a. The type itself must be frozen, so we must
1359 -- find the type of the proper class in the given scope.
1361 -- A final wrinkle is the multiplication operator for fixed point types,
1362 -- which is defined in Standard only, and not in the scope of the
1363 -- fixed point type itself.
1365 if Nkind (Name (N)) = N_Expanded_Name then
1366 Pack := Entity (Prefix (Name (N)));
1368 -- If this is a package renaming, get renamed entity, which will be
1369 -- the scope of the operands if operaton is type-correct.
1371 if Present (Renamed_Entity (Pack)) then
1372 Pack := Renamed_Entity (Pack);
1373 end if;
1375 -- If the entity being called is defined in the given package, it is
1376 -- a renaming of a predefined operator, and known to be legal.
1378 if Scope (Entity (Name (N))) = Pack
1379 and then Pack /= Standard_Standard
1380 then
1381 null;
1383 -- Visibility does not need to be checked in an instance: if the
1384 -- operator was not visible in the generic it has been diagnosed
1385 -- already, else there is an implicit copy of it in the instance.
1387 elsif In_Instance then
1388 null;
1390 elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1391 and then Is_Fixed_Point_Type (Etype (Left_Opnd (Op_Node)))
1392 and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
1393 then
1394 if Pack /= Standard_Standard then
1395 Error := True;
1396 end if;
1398 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1399 -- available.
1401 elsif Ada_Version >= Ada_2005
1402 and then Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1403 and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
1404 then
1405 null;
1407 else
1408 Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1410 if Op_Name = Name_Op_Concat then
1411 Opnd_Type := Base_Type (Typ);
1413 elsif (Scope (Opnd_Type) = Standard_Standard
1414 and then Is_Binary)
1415 or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1416 and then Is_Binary
1417 and then not Comes_From_Source (Opnd_Type))
1418 then
1419 Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1420 end if;
1422 if Scope (Opnd_Type) = Standard_Standard then
1424 -- Verify that the scope contains a type that corresponds to
1425 -- the given literal. Optimize the case where Pack is Standard.
1427 if Pack /= Standard_Standard then
1428 if Opnd_Type = Universal_Integer then
1429 Orig_Type := Type_In_P (Is_Integer_Type'Access);
1431 elsif Opnd_Type = Universal_Real then
1432 Orig_Type := Type_In_P (Is_Real_Type'Access);
1434 elsif Opnd_Type = Any_String then
1435 Orig_Type := Type_In_P (Is_String_Type'Access);
1437 elsif Opnd_Type = Any_Access then
1438 Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
1440 elsif Opnd_Type = Any_Composite then
1441 Orig_Type := Type_In_P (Is_Composite_Type'Access);
1443 if Present (Orig_Type) then
1444 if Has_Private_Component (Orig_Type) then
1445 Orig_Type := Empty;
1446 else
1447 Set_Etype (Act1, Orig_Type);
1449 if Is_Binary then
1450 Set_Etype (Act2, Orig_Type);
1451 end if;
1452 end if;
1453 end if;
1455 else
1456 Orig_Type := Empty;
1457 end if;
1459 Error := No (Orig_Type);
1460 end if;
1462 elsif Ekind (Opnd_Type) = E_Allocator_Type
1463 and then No (Type_In_P (Is_Definite_Access_Type'Access))
1464 then
1465 Error := True;
1467 -- If the type is defined elsewhere, and the operator is not
1468 -- defined in the given scope (by a renaming declaration, e.g.)
1469 -- then this is an error as well. If an extension of System is
1470 -- present, and the type may be defined there, Pack must be
1471 -- System itself.
1473 elsif Scope (Opnd_Type) /= Pack
1474 and then Scope (Op_Id) /= Pack
1475 and then (No (System_Aux_Id)
1476 or else Scope (Opnd_Type) /= System_Aux_Id
1477 or else Pack /= Scope (System_Aux_Id))
1478 then
1479 if not Is_Overloaded (Right_Opnd (Op_Node)) then
1480 Error := True;
1481 else
1482 Error := not Operand_Type_In_Scope (Pack);
1483 end if;
1485 elsif Pack = Standard_Standard
1486 and then not Operand_Type_In_Scope (Standard_Standard)
1487 then
1488 Error := True;
1489 end if;
1490 end if;
1492 if Error then
1493 Error_Msg_Node_2 := Pack;
1494 Error_Msg_NE
1495 ("& not declared in&", N, Selector_Name (Name (N)));
1496 Set_Etype (N, Any_Type);
1497 return;
1499 -- Detect a mismatch between the context type and the result type
1500 -- in the named package, which is otherwise not detected if the
1501 -- operands are universal. Check is only needed if source entity is
1502 -- an operator, not a function that renames an operator.
1504 elsif Nkind (Parent (N)) /= N_Type_Conversion
1505 and then Ekind (Entity (Name (N))) = E_Operator
1506 and then Is_Numeric_Type (Typ)
1507 and then not Is_Universal_Numeric_Type (Typ)
1508 and then Scope (Base_Type (Typ)) /= Pack
1509 and then not In_Instance
1510 then
1511 if Is_Fixed_Point_Type (Typ)
1512 and then Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1513 then
1514 -- Already checked above
1516 null;
1518 -- Operator may be defined in an extension of System
1520 elsif Present (System_Aux_Id)
1521 and then Scope (Opnd_Type) = System_Aux_Id
1522 then
1523 null;
1525 else
1526 -- Could we use Wrong_Type here??? (this would require setting
1527 -- Etype (N) to the actual type found where Typ was expected).
1529 Error_Msg_NE ("expect }", N, Typ);
1530 end if;
1531 end if;
1532 end if;
1534 Set_Chars (Op_Node, Op_Name);
1536 if not Is_Private_Type (Etype (N)) then
1537 Set_Etype (Op_Node, Base_Type (Etype (N)));
1538 else
1539 Set_Etype (Op_Node, Etype (N));
1540 end if;
1542 -- If this is a call to a function that renames a predefined equality,
1543 -- the renaming declaration provides a type that must be used to
1544 -- resolve the operands. This must be done now because resolution of
1545 -- the equality node will not resolve any remaining ambiguity, and it
1546 -- assumes that the first operand is not overloaded.
1548 if Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1549 and then Ekind (Func) = E_Function
1550 and then Is_Overloaded (Act1)
1551 then
1552 Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1553 Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1554 end if;
1556 Set_Entity (Op_Node, Op_Id);
1557 Generate_Reference (Op_Id, N, ' ');
1559 -- Do rewrite setting Comes_From_Source on the result if the original
1560 -- call came from source. Although it is not strictly the case that the
1561 -- operator as such comes from the source, logically it corresponds
1562 -- exactly to the function call in the source, so it should be marked
1563 -- this way (e.g. to make sure that validity checks work fine).
1565 declare
1566 CS : constant Boolean := Comes_From_Source (N);
1567 begin
1568 Rewrite (N, Op_Node);
1569 Set_Comes_From_Source (N, CS);
1570 end;
1572 -- If this is an arithmetic operator and the result type is private,
1573 -- the operands and the result must be wrapped in conversion to
1574 -- expose the underlying numeric type and expand the proper checks,
1575 -- e.g. on division.
1577 if Is_Private_Type (Typ) then
1578 case Nkind (N) is
1579 when N_Op_Add
1580 | N_Op_Divide
1581 | N_Op_Expon
1582 | N_Op_Mod
1583 | N_Op_Multiply
1584 | N_Op_Rem
1585 | N_Op_Subtract
1587 Resolve_Intrinsic_Operator (N, Typ);
1589 when N_Op_Abs
1590 | N_Op_Minus
1591 | N_Op_Plus
1593 Resolve_Intrinsic_Unary_Operator (N, Typ);
1595 when others =>
1596 Resolve (N, Typ);
1597 end case;
1598 else
1599 Resolve (N, Typ);
1600 end if;
1602 -- If in ASIS_Mode, propagate operand types to original actuals of
1603 -- function call, which would otherwise not be fully resolved. If
1604 -- the call has already been constant-folded, nothing to do. We
1605 -- relocate the operand nodes rather than copy them, to preserve
1606 -- original_node pointers, given that the operands themselves may
1607 -- have been rewritten. If the call was itself a rewriting of an
1608 -- operator node, nothing to do.
1610 if ASIS_Mode
1611 and then Nkind (N) in N_Op
1612 and then Nkind (Original_Node (N)) = N_Function_Call
1613 then
1614 declare
1615 L : Node_Id;
1616 R : constant Node_Id := Right_Opnd (N);
1618 Old_First : constant Node_Id :=
1619 First (Parameter_Associations (Original_Node (N)));
1620 Old_Sec : Node_Id;
1622 begin
1623 if Is_Binary then
1624 L := Left_Opnd (N);
1625 Old_Sec := Next (Old_First);
1627 -- If the original call has named associations, replace the
1628 -- explicit actual parameter in the association with the proper
1629 -- resolved operand.
1631 if Nkind (Old_First) = N_Parameter_Association then
1632 if Chars (Selector_Name (Old_First)) =
1633 Chars (First_Entity (Op_Id))
1634 then
1635 Rewrite (Explicit_Actual_Parameter (Old_First),
1636 Relocate_Node (L));
1637 else
1638 Rewrite (Explicit_Actual_Parameter (Old_First),
1639 Relocate_Node (R));
1640 end if;
1642 else
1643 Rewrite (Old_First, Relocate_Node (L));
1644 end if;
1646 if Nkind (Old_Sec) = N_Parameter_Association then
1647 if Chars (Selector_Name (Old_Sec)) =
1648 Chars (First_Entity (Op_Id))
1649 then
1650 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1651 Relocate_Node (L));
1652 else
1653 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1654 Relocate_Node (R));
1655 end if;
1657 else
1658 Rewrite (Old_Sec, Relocate_Node (R));
1659 end if;
1661 else
1662 if Nkind (Old_First) = N_Parameter_Association then
1663 Rewrite (Explicit_Actual_Parameter (Old_First),
1664 Relocate_Node (R));
1665 else
1666 Rewrite (Old_First, Relocate_Node (R));
1667 end if;
1668 end if;
1669 end;
1671 Set_Parent (Original_Node (N), Parent (N));
1672 end if;
1673 end Make_Call_Into_Operator;
1675 -------------------
1676 -- Operator_Kind --
1677 -------------------
1679 function Operator_Kind
1680 (Op_Name : Name_Id;
1681 Is_Binary : Boolean) return Node_Kind
1683 Kind : Node_Kind;
1685 begin
1686 -- Use CASE statement or array???
1688 if Is_Binary then
1689 if Op_Name = Name_Op_And then
1690 Kind := N_Op_And;
1691 elsif Op_Name = Name_Op_Or then
1692 Kind := N_Op_Or;
1693 elsif Op_Name = Name_Op_Xor then
1694 Kind := N_Op_Xor;
1695 elsif Op_Name = Name_Op_Eq then
1696 Kind := N_Op_Eq;
1697 elsif Op_Name = Name_Op_Ne then
1698 Kind := N_Op_Ne;
1699 elsif Op_Name = Name_Op_Lt then
1700 Kind := N_Op_Lt;
1701 elsif Op_Name = Name_Op_Le then
1702 Kind := N_Op_Le;
1703 elsif Op_Name = Name_Op_Gt then
1704 Kind := N_Op_Gt;
1705 elsif Op_Name = Name_Op_Ge then
1706 Kind := N_Op_Ge;
1707 elsif Op_Name = Name_Op_Add then
1708 Kind := N_Op_Add;
1709 elsif Op_Name = Name_Op_Subtract then
1710 Kind := N_Op_Subtract;
1711 elsif Op_Name = Name_Op_Concat then
1712 Kind := N_Op_Concat;
1713 elsif Op_Name = Name_Op_Multiply then
1714 Kind := N_Op_Multiply;
1715 elsif Op_Name = Name_Op_Divide then
1716 Kind := N_Op_Divide;
1717 elsif Op_Name = Name_Op_Mod then
1718 Kind := N_Op_Mod;
1719 elsif Op_Name = Name_Op_Rem then
1720 Kind := N_Op_Rem;
1721 elsif Op_Name = Name_Op_Expon then
1722 Kind := N_Op_Expon;
1723 else
1724 raise Program_Error;
1725 end if;
1727 -- Unary operators
1729 else
1730 if Op_Name = Name_Op_Add then
1731 Kind := N_Op_Plus;
1732 elsif Op_Name = Name_Op_Subtract then
1733 Kind := N_Op_Minus;
1734 elsif Op_Name = Name_Op_Abs then
1735 Kind := N_Op_Abs;
1736 elsif Op_Name = Name_Op_Not then
1737 Kind := N_Op_Not;
1738 else
1739 raise Program_Error;
1740 end if;
1741 end if;
1743 return Kind;
1744 end Operator_Kind;
1746 ----------------------------
1747 -- Preanalyze_And_Resolve --
1748 ----------------------------
1750 procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
1751 Save_Full_Analysis : constant Boolean := Full_Analysis;
1753 begin
1754 Full_Analysis := False;
1755 Expander_Mode_Save_And_Set (False);
1757 -- Normally, we suppress all checks for this preanalysis. There is no
1758 -- point in processing them now, since they will be applied properly
1759 -- and in the proper location when the default expressions reanalyzed
1760 -- and reexpanded later on. We will also have more information at that
1761 -- point for possible suppression of individual checks.
1763 -- However, in SPARK mode, most expansion is suppressed, and this
1764 -- later reanalysis and reexpansion may not occur. SPARK mode does
1765 -- require the setting of checking flags for proof purposes, so we
1766 -- do the SPARK preanalysis without suppressing checks.
1768 -- This special handling for SPARK mode is required for example in the
1769 -- case of Ada 2012 constructs such as quantified expressions, which are
1770 -- expanded in two separate steps.
1772 if GNATprove_Mode then
1773 Analyze_And_Resolve (N, T);
1774 else
1775 Analyze_And_Resolve (N, T, Suppress => All_Checks);
1776 end if;
1778 Expander_Mode_Restore;
1779 Full_Analysis := Save_Full_Analysis;
1780 end Preanalyze_And_Resolve;
1782 -- Version without context type
1784 procedure Preanalyze_And_Resolve (N : Node_Id) is
1785 Save_Full_Analysis : constant Boolean := Full_Analysis;
1787 begin
1788 Full_Analysis := False;
1789 Expander_Mode_Save_And_Set (False);
1791 Analyze (N);
1792 Resolve (N, Etype (N), Suppress => All_Checks);
1794 Expander_Mode_Restore;
1795 Full_Analysis := Save_Full_Analysis;
1796 end Preanalyze_And_Resolve;
1798 ----------------------------------
1799 -- Replace_Actual_Discriminants --
1800 ----------------------------------
1802 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
1803 Loc : constant Source_Ptr := Sloc (N);
1804 Tsk : Node_Id := Empty;
1806 function Process_Discr (Nod : Node_Id) return Traverse_Result;
1807 -- Comment needed???
1809 -------------------
1810 -- Process_Discr --
1811 -------------------
1813 function Process_Discr (Nod : Node_Id) return Traverse_Result is
1814 Ent : Entity_Id;
1816 begin
1817 if Nkind (Nod) = N_Identifier then
1818 Ent := Entity (Nod);
1820 if Present (Ent)
1821 and then Ekind (Ent) = E_Discriminant
1822 then
1823 Rewrite (Nod,
1824 Make_Selected_Component (Loc,
1825 Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc),
1826 Selector_Name => Make_Identifier (Loc, Chars (Ent))));
1828 Set_Etype (Nod, Etype (Ent));
1829 end if;
1831 end if;
1833 return OK;
1834 end Process_Discr;
1836 procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
1838 -- Start of processing for Replace_Actual_Discriminants
1840 begin
1841 if not Expander_Active then
1842 return;
1843 end if;
1845 if Nkind (Name (N)) = N_Selected_Component then
1846 Tsk := Prefix (Name (N));
1848 elsif Nkind (Name (N)) = N_Indexed_Component then
1849 Tsk := Prefix (Prefix (Name (N)));
1850 end if;
1852 if No (Tsk) then
1853 return;
1854 else
1855 Replace_Discrs (Default);
1856 end if;
1857 end Replace_Actual_Discriminants;
1859 -------------
1860 -- Resolve --
1861 -------------
1863 procedure Resolve (N : Node_Id; Typ : Entity_Id) is
1864 Ambiguous : Boolean := False;
1865 Ctx_Type : Entity_Id := Typ;
1866 Expr_Type : Entity_Id := Empty; -- prevent junk warning
1867 Err_Type : Entity_Id := Empty;
1868 Found : Boolean := False;
1869 From_Lib : Boolean;
1870 I : Interp_Index;
1871 I1 : Interp_Index := 0; -- prevent junk warning
1872 It : Interp;
1873 It1 : Interp;
1874 Seen : Entity_Id := Empty; -- prevent junk warning
1876 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
1877 -- Determine whether a node comes from a predefined library unit or
1878 -- Standard.
1880 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
1881 -- Try and fix up a literal so that it matches its expected type. New
1882 -- literals are manufactured if necessary to avoid cascaded errors.
1884 procedure Report_Ambiguous_Argument;
1885 -- Additional diagnostics when an ambiguous call has an ambiguous
1886 -- argument (typically a controlling actual).
1888 procedure Resolution_Failed;
1889 -- Called when attempt at resolving current expression fails
1891 ------------------------------------
1892 -- Comes_From_Predefined_Lib_Unit --
1893 -------------------------------------
1895 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
1896 begin
1897 return
1898 Sloc (Nod) = Standard_Location
1899 or else Is_Predefined_File_Name
1900 (Unit_File_Name (Get_Source_Unit (Sloc (Nod))));
1901 end Comes_From_Predefined_Lib_Unit;
1903 --------------------
1904 -- Patch_Up_Value --
1905 --------------------
1907 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
1908 begin
1909 if Nkind (N) = N_Integer_Literal and then Is_Real_Type (Typ) then
1910 Rewrite (N,
1911 Make_Real_Literal (Sloc (N),
1912 Realval => UR_From_Uint (Intval (N))));
1913 Set_Etype (N, Universal_Real);
1914 Set_Is_Static_Expression (N);
1916 elsif Nkind (N) = N_Real_Literal and then Is_Integer_Type (Typ) then
1917 Rewrite (N,
1918 Make_Integer_Literal (Sloc (N),
1919 Intval => UR_To_Uint (Realval (N))));
1920 Set_Etype (N, Universal_Integer);
1921 Set_Is_Static_Expression (N);
1923 elsif Nkind (N) = N_String_Literal
1924 and then Is_Character_Type (Typ)
1925 then
1926 Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
1927 Rewrite (N,
1928 Make_Character_Literal (Sloc (N),
1929 Chars => Name_Find,
1930 Char_Literal_Value =>
1931 UI_From_Int (Character'Pos ('A'))));
1932 Set_Etype (N, Any_Character);
1933 Set_Is_Static_Expression (N);
1935 elsif Nkind (N) /= N_String_Literal and then Is_String_Type (Typ) then
1936 Rewrite (N,
1937 Make_String_Literal (Sloc (N),
1938 Strval => End_String));
1940 elsif Nkind (N) = N_Range then
1941 Patch_Up_Value (Low_Bound (N), Typ);
1942 Patch_Up_Value (High_Bound (N), Typ);
1943 end if;
1944 end Patch_Up_Value;
1946 -------------------------------
1947 -- Report_Ambiguous_Argument --
1948 -------------------------------
1950 procedure Report_Ambiguous_Argument is
1951 Arg : constant Node_Id := First (Parameter_Associations (N));
1952 I : Interp_Index;
1953 It : Interp;
1955 begin
1956 if Nkind (Arg) = N_Function_Call
1957 and then Is_Entity_Name (Name (Arg))
1958 and then Is_Overloaded (Name (Arg))
1959 then
1960 Error_Msg_NE ("ambiguous call to&", Arg, Name (Arg));
1962 -- Could use comments on what is going on here???
1964 Get_First_Interp (Name (Arg), I, It);
1965 while Present (It.Nam) loop
1966 Error_Msg_Sloc := Sloc (It.Nam);
1968 if Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then
1969 Error_Msg_N ("interpretation (inherited) #!", Arg);
1970 else
1971 Error_Msg_N ("interpretation #!", Arg);
1972 end if;
1974 Get_Next_Interp (I, It);
1975 end loop;
1976 end if;
1977 end Report_Ambiguous_Argument;
1979 -----------------------
1980 -- Resolution_Failed --
1981 -----------------------
1983 procedure Resolution_Failed is
1984 begin
1985 Patch_Up_Value (N, Typ);
1987 -- Set the type to the desired one to minimize cascaded errors. Note
1988 -- that this is an approximation and does not work in all cases.
1990 Set_Etype (N, Typ);
1992 Debug_A_Exit ("resolving ", N, " (done, resolution failed)");
1993 Set_Is_Overloaded (N, False);
1995 -- The caller will return without calling the expander, so we need
1996 -- to set the analyzed flag. Note that it is fine to set Analyzed
1997 -- to True even if we are in the middle of a shallow analysis,
1998 -- (see the spec of sem for more details) since this is an error
1999 -- situation anyway, and there is no point in repeating the
2000 -- analysis later (indeed it won't work to repeat it later, since
2001 -- we haven't got a clear resolution of which entity is being
2002 -- referenced.)
2004 Set_Analyzed (N, True);
2005 return;
2006 end Resolution_Failed;
2008 -- Start of processing for Resolve
2010 begin
2011 if N = Error then
2012 return;
2013 end if;
2015 -- Access attribute on remote subprogram cannot be used for a non-remote
2016 -- access-to-subprogram type.
2018 if Nkind (N) = N_Attribute_Reference
2019 and then Nam_In (Attribute_Name (N), Name_Access,
2020 Name_Unrestricted_Access,
2021 Name_Unchecked_Access)
2022 and then Comes_From_Source (N)
2023 and then Is_Entity_Name (Prefix (N))
2024 and then Is_Subprogram (Entity (Prefix (N)))
2025 and then Is_Remote_Call_Interface (Entity (Prefix (N)))
2026 and then not Is_Remote_Access_To_Subprogram_Type (Typ)
2027 then
2028 Error_Msg_N
2029 ("prefix must statically denote a non-remote subprogram", N);
2030 end if;
2032 From_Lib := Comes_From_Predefined_Lib_Unit (N);
2034 -- If the context is a Remote_Access_To_Subprogram, access attributes
2035 -- must be resolved with the corresponding fat pointer. There is no need
2036 -- to check for the attribute name since the return type of an
2037 -- attribute is never a remote type.
2039 if Nkind (N) = N_Attribute_Reference
2040 and then Comes_From_Source (N)
2041 and then (Is_Remote_Call_Interface (Typ) or else Is_Remote_Types (Typ))
2042 then
2043 declare
2044 Attr : constant Attribute_Id :=
2045 Get_Attribute_Id (Attribute_Name (N));
2046 Pref : constant Node_Id := Prefix (N);
2047 Decl : Node_Id;
2048 Spec : Node_Id;
2049 Is_Remote : Boolean := True;
2051 begin
2052 -- Check that Typ is a remote access-to-subprogram type
2054 if Is_Remote_Access_To_Subprogram_Type (Typ) then
2056 -- Prefix (N) must statically denote a remote subprogram
2057 -- declared in a package specification.
2059 if Attr = Attribute_Access or else
2060 Attr = Attribute_Unchecked_Access or else
2061 Attr = Attribute_Unrestricted_Access
2062 then
2063 Decl := Unit_Declaration_Node (Entity (Pref));
2065 if Nkind (Decl) = N_Subprogram_Body then
2066 Spec := Corresponding_Spec (Decl);
2068 if Present (Spec) then
2069 Decl := Unit_Declaration_Node (Spec);
2070 end if;
2071 end if;
2073 Spec := Parent (Decl);
2075 if not Is_Entity_Name (Prefix (N))
2076 or else Nkind (Spec) /= N_Package_Specification
2077 or else
2078 not Is_Remote_Call_Interface (Defining_Entity (Spec))
2079 then
2080 Is_Remote := False;
2081 Error_Msg_N
2082 ("prefix must statically denote a remote subprogram ",
2084 end if;
2086 -- If we are generating code in distributed mode, perform
2087 -- semantic checks against corresponding remote entities.
2089 if Expander_Active
2090 and then Get_PCS_Name /= Name_No_DSA
2091 then
2092 Check_Subtype_Conformant
2093 (New_Id => Entity (Prefix (N)),
2094 Old_Id => Designated_Type
2095 (Corresponding_Remote_Type (Typ)),
2096 Err_Loc => N);
2098 if Is_Remote then
2099 Process_Remote_AST_Attribute (N, Typ);
2100 end if;
2101 end if;
2102 end if;
2103 end if;
2104 end;
2105 end if;
2107 Debug_A_Entry ("resolving ", N);
2109 if Debug_Flag_V then
2110 Write_Overloads (N);
2111 end if;
2113 if Comes_From_Source (N) then
2114 if Is_Fixed_Point_Type (Typ) then
2115 Check_Restriction (No_Fixed_Point, N);
2117 elsif Is_Floating_Point_Type (Typ)
2118 and then Typ /= Universal_Real
2119 and then Typ /= Any_Real
2120 then
2121 Check_Restriction (No_Floating_Point, N);
2122 end if;
2123 end if;
2125 -- Return if already analyzed
2127 if Analyzed (N) then
2128 Debug_A_Exit ("resolving ", N, " (done, already analyzed)");
2129 Analyze_Dimension (N);
2130 return;
2132 -- Any case of Any_Type as the Etype value means that we had a
2133 -- previous error.
2135 elsif Etype (N) = Any_Type then
2136 Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)");
2137 return;
2138 end if;
2140 Check_Parameterless_Call (N);
2142 -- The resolution of an Expression_With_Actions is determined by
2143 -- its Expression.
2145 if Nkind (N) = N_Expression_With_Actions then
2146 Resolve (Expression (N), Typ);
2148 Found := True;
2149 Expr_Type := Etype (Expression (N));
2151 -- If not overloaded, then we know the type, and all that needs doing
2152 -- is to check that this type is compatible with the context.
2154 elsif not Is_Overloaded (N) then
2155 Found := Covers (Typ, Etype (N));
2156 Expr_Type := Etype (N);
2158 -- In the overloaded case, we must select the interpretation that
2159 -- is compatible with the context (i.e. the type passed to Resolve)
2161 else
2162 -- Loop through possible interpretations
2164 Get_First_Interp (N, I, It);
2165 Interp_Loop : while Present (It.Typ) loop
2166 if Debug_Flag_V then
2167 Write_Str ("Interp: ");
2168 Write_Interp (It);
2169 end if;
2171 -- We are only interested in interpretations that are compatible
2172 -- with the expected type, any other interpretations are ignored.
2174 if not Covers (Typ, It.Typ) then
2175 if Debug_Flag_V then
2176 Write_Str (" interpretation incompatible with context");
2177 Write_Eol;
2178 end if;
2180 else
2181 -- Skip the current interpretation if it is disabled by an
2182 -- abstract operator. This action is performed only when the
2183 -- type against which we are resolving is the same as the
2184 -- type of the interpretation.
2186 if Ada_Version >= Ada_2005
2187 and then It.Typ = Typ
2188 and then Typ /= Universal_Integer
2189 and then Typ /= Universal_Real
2190 and then Present (It.Abstract_Op)
2191 then
2192 if Debug_Flag_V then
2193 Write_Line ("Skip.");
2194 end if;
2196 goto Continue;
2197 end if;
2199 -- First matching interpretation
2201 if not Found then
2202 Found := True;
2203 I1 := I;
2204 Seen := It.Nam;
2205 Expr_Type := It.Typ;
2207 -- Matching interpretation that is not the first, maybe an
2208 -- error, but there are some cases where preference rules are
2209 -- used to choose between the two possibilities. These and
2210 -- some more obscure cases are handled in Disambiguate.
2212 else
2213 -- If the current statement is part of a predefined library
2214 -- unit, then all interpretations which come from user level
2215 -- packages should not be considered. Check previous and
2216 -- current one.
2218 if From_Lib then
2219 if not Comes_From_Predefined_Lib_Unit (It.Nam) then
2220 goto Continue;
2222 elsif not Comes_From_Predefined_Lib_Unit (Seen) then
2224 -- Previous interpretation must be discarded
2226 I1 := I;
2227 Seen := It.Nam;
2228 Expr_Type := It.Typ;
2229 Set_Entity (N, Seen);
2230 goto Continue;
2231 end if;
2232 end if;
2234 -- Otherwise apply further disambiguation steps
2236 Error_Msg_Sloc := Sloc (Seen);
2237 It1 := Disambiguate (N, I1, I, Typ);
2239 -- Disambiguation has succeeded. Skip the remaining
2240 -- interpretations.
2242 if It1 /= No_Interp then
2243 Seen := It1.Nam;
2244 Expr_Type := It1.Typ;
2246 while Present (It.Typ) loop
2247 Get_Next_Interp (I, It);
2248 end loop;
2250 else
2251 -- Before we issue an ambiguity complaint, check for the
2252 -- case of a subprogram call where at least one of the
2253 -- arguments is Any_Type, and if so suppress the message,
2254 -- since it is a cascaded error. This can also happen for
2255 -- a generalized indexing operation.
2257 if Nkind (N) in N_Subprogram_Call
2258 or else (Nkind (N) = N_Indexed_Component
2259 and then Present (Generalized_Indexing (N)))
2260 then
2261 declare
2262 A : Node_Id;
2263 E : Node_Id;
2265 begin
2266 if Nkind (N) = N_Indexed_Component then
2267 Rewrite (N, Generalized_Indexing (N));
2268 end if;
2270 A := First_Actual (N);
2271 while Present (A) loop
2272 E := A;
2274 if Nkind (E) = N_Parameter_Association then
2275 E := Explicit_Actual_Parameter (E);
2276 end if;
2278 if Etype (E) = Any_Type then
2279 if Debug_Flag_V then
2280 Write_Str ("Any_Type in call");
2281 Write_Eol;
2282 end if;
2284 exit Interp_Loop;
2285 end if;
2287 Next_Actual (A);
2288 end loop;
2289 end;
2291 elsif Nkind (N) in N_Binary_Op
2292 and then (Etype (Left_Opnd (N)) = Any_Type
2293 or else Etype (Right_Opnd (N)) = Any_Type)
2294 then
2295 exit Interp_Loop;
2297 elsif Nkind (N) in N_Unary_Op
2298 and then Etype (Right_Opnd (N)) = Any_Type
2299 then
2300 exit Interp_Loop;
2301 end if;
2303 -- Not that special case, so issue message using the flag
2304 -- Ambiguous to control printing of the header message
2305 -- only at the start of an ambiguous set.
2307 if not Ambiguous then
2308 if Nkind (N) = N_Function_Call
2309 and then Nkind (Name (N)) = N_Explicit_Dereference
2310 then
2311 Error_Msg_N
2312 ("ambiguous expression (cannot resolve indirect "
2313 & "call)!", N);
2314 else
2315 Error_Msg_NE -- CODEFIX
2316 ("ambiguous expression (cannot resolve&)!",
2317 N, It.Nam);
2318 end if;
2320 Ambiguous := True;
2322 if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
2323 Error_Msg_N
2324 ("\\possible interpretation (inherited)#!", N);
2325 else
2326 Error_Msg_N -- CODEFIX
2327 ("\\possible interpretation#!", N);
2328 end if;
2330 if Nkind (N) in N_Subprogram_Call
2331 and then Present (Parameter_Associations (N))
2332 then
2333 Report_Ambiguous_Argument;
2334 end if;
2335 end if;
2337 Error_Msg_Sloc := Sloc (It.Nam);
2339 -- By default, the error message refers to the candidate
2340 -- interpretation. But if it is a predefined operator, it
2341 -- is implicitly declared at the declaration of the type
2342 -- of the operand. Recover the sloc of that declaration
2343 -- for the error message.
2345 if Nkind (N) in N_Op
2346 and then Scope (It.Nam) = Standard_Standard
2347 and then not Is_Overloaded (Right_Opnd (N))
2348 and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
2349 Standard_Standard
2350 then
2351 Err_Type := First_Subtype (Etype (Right_Opnd (N)));
2353 if Comes_From_Source (Err_Type)
2354 and then Present (Parent (Err_Type))
2355 then
2356 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2357 end if;
2359 elsif Nkind (N) in N_Binary_Op
2360 and then Scope (It.Nam) = Standard_Standard
2361 and then not Is_Overloaded (Left_Opnd (N))
2362 and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
2363 Standard_Standard
2364 then
2365 Err_Type := First_Subtype (Etype (Left_Opnd (N)));
2367 if Comes_From_Source (Err_Type)
2368 and then Present (Parent (Err_Type))
2369 then
2370 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2371 end if;
2373 -- If this is an indirect call, use the subprogram_type
2374 -- in the message, to have a meaningful location. Also
2375 -- indicate if this is an inherited operation, created
2376 -- by a type declaration.
2378 elsif Nkind (N) = N_Function_Call
2379 and then Nkind (Name (N)) = N_Explicit_Dereference
2380 and then Is_Type (It.Nam)
2381 then
2382 Err_Type := It.Nam;
2383 Error_Msg_Sloc :=
2384 Sloc (Associated_Node_For_Itype (Err_Type));
2385 else
2386 Err_Type := Empty;
2387 end if;
2389 if Nkind (N) in N_Op
2390 and then Scope (It.Nam) = Standard_Standard
2391 and then Present (Err_Type)
2392 then
2393 -- Special-case the message for universal_fixed
2394 -- operators, which are not declared with the type
2395 -- of the operand, but appear forever in Standard.
2397 if It.Typ = Universal_Fixed
2398 and then Scope (It.Nam) = Standard_Standard
2399 then
2400 Error_Msg_N
2401 ("\\possible interpretation as universal_fixed "
2402 & "operation (RM 4.5.5 (19))", N);
2403 else
2404 Error_Msg_N
2405 ("\\possible interpretation (predefined)#!", N);
2406 end if;
2408 elsif
2409 Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2410 then
2411 Error_Msg_N
2412 ("\\possible interpretation (inherited)#!", N);
2413 else
2414 Error_Msg_N -- CODEFIX
2415 ("\\possible interpretation#!", N);
2416 end if;
2418 end if;
2419 end if;
2421 -- We have a matching interpretation, Expr_Type is the type
2422 -- from this interpretation, and Seen is the entity.
2424 -- For an operator, just set the entity name. The type will be
2425 -- set by the specific operator resolution routine.
2427 if Nkind (N) in N_Op then
2428 Set_Entity (N, Seen);
2429 Generate_Reference (Seen, N);
2431 elsif Nkind (N) = N_Case_Expression then
2432 Set_Etype (N, Expr_Type);
2434 elsif Nkind (N) = N_Character_Literal then
2435 Set_Etype (N, Expr_Type);
2437 elsif Nkind (N) = N_If_Expression then
2438 Set_Etype (N, Expr_Type);
2440 -- AI05-0139-2: Expression is overloaded because type has
2441 -- implicit dereference. If type matches context, no implicit
2442 -- dereference is involved.
2444 elsif Has_Implicit_Dereference (Expr_Type) then
2445 Set_Etype (N, Expr_Type);
2446 Set_Is_Overloaded (N, False);
2447 exit Interp_Loop;
2449 elsif Is_Overloaded (N)
2450 and then Present (It.Nam)
2451 and then Ekind (It.Nam) = E_Discriminant
2452 and then Has_Implicit_Dereference (It.Nam)
2453 then
2454 -- If the node is a general indexing, the dereference is
2455 -- is inserted when resolving the rewritten form, else
2456 -- insert it now.
2458 if Nkind (N) /= N_Indexed_Component
2459 or else No (Generalized_Indexing (N))
2460 then
2461 Build_Explicit_Dereference (N, It.Nam);
2462 end if;
2464 -- For an explicit dereference, attribute reference, range,
2465 -- short-circuit form (which is not an operator node), or call
2466 -- with a name that is an explicit dereference, there is
2467 -- nothing to be done at this point.
2469 elsif Nkind_In (N, N_Attribute_Reference,
2470 N_And_Then,
2471 N_Explicit_Dereference,
2472 N_Identifier,
2473 N_Indexed_Component,
2474 N_Or_Else,
2475 N_Range,
2476 N_Selected_Component,
2477 N_Slice)
2478 or else Nkind (Name (N)) = N_Explicit_Dereference
2479 then
2480 null;
2482 -- For procedure or function calls, set the type of the name,
2483 -- and also the entity pointer for the prefix.
2485 elsif Nkind (N) in N_Subprogram_Call
2486 and then Is_Entity_Name (Name (N))
2487 then
2488 Set_Etype (Name (N), Expr_Type);
2489 Set_Entity (Name (N), Seen);
2490 Generate_Reference (Seen, Name (N));
2492 elsif Nkind (N) = N_Function_Call
2493 and then Nkind (Name (N)) = N_Selected_Component
2494 then
2495 Set_Etype (Name (N), Expr_Type);
2496 Set_Entity (Selector_Name (Name (N)), Seen);
2497 Generate_Reference (Seen, Selector_Name (Name (N)));
2499 -- For all other cases, just set the type of the Name
2501 else
2502 Set_Etype (Name (N), Expr_Type);
2503 end if;
2505 end if;
2507 <<Continue>>
2509 -- Move to next interpretation
2511 exit Interp_Loop when No (It.Typ);
2513 Get_Next_Interp (I, It);
2514 end loop Interp_Loop;
2515 end if;
2517 -- At this stage Found indicates whether or not an acceptable
2518 -- interpretation exists. If not, then we have an error, except that if
2519 -- the context is Any_Type as a result of some other error, then we
2520 -- suppress the error report.
2522 if not Found then
2523 if Typ /= Any_Type then
2525 -- If type we are looking for is Void, then this is the procedure
2526 -- call case, and the error is simply that what we gave is not a
2527 -- procedure name (we think of procedure calls as expressions with
2528 -- types internally, but the user doesn't think of them this way).
2530 if Typ = Standard_Void_Type then
2532 -- Special case message if function used as a procedure
2534 if Nkind (N) = N_Procedure_Call_Statement
2535 and then Is_Entity_Name (Name (N))
2536 and then Ekind (Entity (Name (N))) = E_Function
2537 then
2538 Error_Msg_NE
2539 ("cannot use function & in a procedure call",
2540 Name (N), Entity (Name (N)));
2542 -- Otherwise give general message (not clear what cases this
2543 -- covers, but no harm in providing for them).
2545 else
2546 Error_Msg_N ("expect procedure name in procedure call", N);
2547 end if;
2549 Found := True;
2551 -- Otherwise we do have a subexpression with the wrong type
2553 -- Check for the case of an allocator which uses an access type
2554 -- instead of the designated type. This is a common error and we
2555 -- specialize the message, posting an error on the operand of the
2556 -- allocator, complaining that we expected the designated type of
2557 -- the allocator.
2559 elsif Nkind (N) = N_Allocator
2560 and then Is_Access_Type (Typ)
2561 and then Is_Access_Type (Etype (N))
2562 and then Designated_Type (Etype (N)) = Typ
2563 then
2564 Wrong_Type (Expression (N), Designated_Type (Typ));
2565 Found := True;
2567 -- Check for view mismatch on Null in instances, for which the
2568 -- view-swapping mechanism has no identifier.
2570 elsif (In_Instance or else In_Inlined_Body)
2571 and then (Nkind (N) = N_Null)
2572 and then Is_Private_Type (Typ)
2573 and then Is_Access_Type (Full_View (Typ))
2574 then
2575 Resolve (N, Full_View (Typ));
2576 Set_Etype (N, Typ);
2577 return;
2579 -- Check for an aggregate. Sometimes we can get bogus aggregates
2580 -- from misuse of parentheses, and we are about to complain about
2581 -- the aggregate without even looking inside it.
2583 -- Instead, if we have an aggregate of type Any_Composite, then
2584 -- analyze and resolve the component fields, and then only issue
2585 -- another message if we get no errors doing this (otherwise
2586 -- assume that the errors in the aggregate caused the problem).
2588 elsif Nkind (N) = N_Aggregate
2589 and then Etype (N) = Any_Composite
2590 then
2591 -- Disable expansion in any case. If there is a type mismatch
2592 -- it may be fatal to try to expand the aggregate. The flag
2593 -- would otherwise be set to false when the error is posted.
2595 Expander_Active := False;
2597 declare
2598 procedure Check_Aggr (Aggr : Node_Id);
2599 -- Check one aggregate, and set Found to True if we have a
2600 -- definite error in any of its elements
2602 procedure Check_Elmt (Aelmt : Node_Id);
2603 -- Check one element of aggregate and set Found to True if
2604 -- we definitely have an error in the element.
2606 ----------------
2607 -- Check_Aggr --
2608 ----------------
2610 procedure Check_Aggr (Aggr : Node_Id) is
2611 Elmt : Node_Id;
2613 begin
2614 if Present (Expressions (Aggr)) then
2615 Elmt := First (Expressions (Aggr));
2616 while Present (Elmt) loop
2617 Check_Elmt (Elmt);
2618 Next (Elmt);
2619 end loop;
2620 end if;
2622 if Present (Component_Associations (Aggr)) then
2623 Elmt := First (Component_Associations (Aggr));
2624 while Present (Elmt) loop
2626 -- If this is a default-initialized component, then
2627 -- there is nothing to check. The box will be
2628 -- replaced by the appropriate call during late
2629 -- expansion.
2631 if Nkind (Elmt) /= N_Iterated_Component_Association
2632 and then not Box_Present (Elmt)
2633 then
2634 Check_Elmt (Expression (Elmt));
2635 end if;
2637 Next (Elmt);
2638 end loop;
2639 end if;
2640 end Check_Aggr;
2642 ----------------
2643 -- Check_Elmt --
2644 ----------------
2646 procedure Check_Elmt (Aelmt : Node_Id) is
2647 begin
2648 -- If we have a nested aggregate, go inside it (to
2649 -- attempt a naked analyze-resolve of the aggregate can
2650 -- cause undesirable cascaded errors). Do not resolve
2651 -- expression if it needs a type from context, as for
2652 -- integer * fixed expression.
2654 if Nkind (Aelmt) = N_Aggregate then
2655 Check_Aggr (Aelmt);
2657 else
2658 Analyze (Aelmt);
2660 if not Is_Overloaded (Aelmt)
2661 and then Etype (Aelmt) /= Any_Fixed
2662 then
2663 Resolve (Aelmt);
2664 end if;
2666 if Etype (Aelmt) = Any_Type then
2667 Found := True;
2668 end if;
2669 end if;
2670 end Check_Elmt;
2672 begin
2673 Check_Aggr (N);
2674 end;
2675 end if;
2677 -- Looks like we have a type error, but check for special case
2678 -- of Address wanted, integer found, with the configuration pragma
2679 -- Allow_Integer_Address active. If we have this case, introduce
2680 -- an unchecked conversion to allow the integer expression to be
2681 -- treated as an Address. The reverse case of integer wanted,
2682 -- Address found, is treated in an analogous manner.
2684 if Address_Integer_Convert_OK (Typ, Etype (N)) then
2685 Rewrite (N, Unchecked_Convert_To (Typ, Relocate_Node (N)));
2686 Analyze_And_Resolve (N, Typ);
2687 return;
2689 -- Under relaxed RM semantics silently replace occurrences of null
2690 -- by System.Address_Null.
2692 elsif Null_To_Null_Address_Convert_OK (N, Typ) then
2693 Replace_Null_By_Null_Address (N);
2694 Analyze_And_Resolve (N, Typ);
2695 return;
2696 end if;
2698 -- That special Allow_Integer_Address check did not apply, so we
2699 -- have a real type error. If an error message was issued already,
2700 -- Found got reset to True, so if it's still False, issue standard
2701 -- Wrong_Type message.
2703 if not Found then
2704 if Is_Overloaded (N) and then Nkind (N) = N_Function_Call then
2705 declare
2706 Subp_Name : Node_Id;
2708 begin
2709 if Is_Entity_Name (Name (N)) then
2710 Subp_Name := Name (N);
2712 elsif Nkind (Name (N)) = N_Selected_Component then
2714 -- Protected operation: retrieve operation name
2716 Subp_Name := Selector_Name (Name (N));
2718 else
2719 raise Program_Error;
2720 end if;
2722 Error_Msg_Node_2 := Typ;
2723 Error_Msg_NE
2724 ("no visible interpretation of& matches expected type&",
2725 N, Subp_Name);
2726 end;
2728 if All_Errors_Mode then
2729 declare
2730 Index : Interp_Index;
2731 It : Interp;
2733 begin
2734 Error_Msg_N ("\\possible interpretations:", N);
2736 Get_First_Interp (Name (N), Index, It);
2737 while Present (It.Nam) loop
2738 Error_Msg_Sloc := Sloc (It.Nam);
2739 Error_Msg_Node_2 := It.Nam;
2740 Error_Msg_NE
2741 ("\\ type& for & declared#", N, It.Typ);
2742 Get_Next_Interp (Index, It);
2743 end loop;
2744 end;
2746 else
2747 Error_Msg_N ("\use -gnatf for details", N);
2748 end if;
2750 else
2751 Wrong_Type (N, Typ);
2752 end if;
2753 end if;
2754 end if;
2756 Resolution_Failed;
2757 return;
2759 -- Test if we have more than one interpretation for the context
2761 elsif Ambiguous then
2762 Resolution_Failed;
2763 return;
2765 -- Only one intepretation
2767 else
2768 -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
2769 -- the "+" on T is abstract, and the operands are of universal type,
2770 -- the above code will have (incorrectly) resolved the "+" to the
2771 -- universal one in Standard. Therefore check for this case and give
2772 -- an error. We can't do this earlier, because it would cause legal
2773 -- cases to get errors (when some other type has an abstract "+").
2775 if Ada_Version >= Ada_2005
2776 and then Nkind (N) in N_Op
2777 and then Is_Overloaded (N)
2778 and then Is_Universal_Numeric_Type (Etype (Entity (N)))
2779 then
2780 Get_First_Interp (N, I, It);
2781 while Present (It.Typ) loop
2782 if Present (It.Abstract_Op) and then
2783 Etype (It.Abstract_Op) = Typ
2784 then
2785 Error_Msg_NE
2786 ("cannot call abstract subprogram &!", N, It.Abstract_Op);
2787 return;
2788 end if;
2790 Get_Next_Interp (I, It);
2791 end loop;
2792 end if;
2794 -- Here we have an acceptable interpretation for the context
2796 -- Propagate type information and normalize tree for various
2797 -- predefined operations. If the context only imposes a class of
2798 -- types, rather than a specific type, propagate the actual type
2799 -- downward.
2801 if Typ = Any_Integer or else
2802 Typ = Any_Boolean or else
2803 Typ = Any_Modular or else
2804 Typ = Any_Real or else
2805 Typ = Any_Discrete
2806 then
2807 Ctx_Type := Expr_Type;
2809 -- Any_Fixed is legal in a real context only if a specific fixed-
2810 -- point type is imposed. If Norman Cohen can be confused by this,
2811 -- it deserves a separate message.
2813 if Typ = Any_Real
2814 and then Expr_Type = Any_Fixed
2815 then
2816 Error_Msg_N ("illegal context for mixed mode operation", N);
2817 Set_Etype (N, Universal_Real);
2818 Ctx_Type := Universal_Real;
2819 end if;
2820 end if;
2822 -- A user-defined operator is transformed into a function call at
2823 -- this point, so that further processing knows that operators are
2824 -- really operators (i.e. are predefined operators). User-defined
2825 -- operators that are intrinsic are just renamings of the predefined
2826 -- ones, and need not be turned into calls either, but if they rename
2827 -- a different operator, we must transform the node accordingly.
2828 -- Instantiations of Unchecked_Conversion are intrinsic but are
2829 -- treated as functions, even if given an operator designator.
2831 if Nkind (N) in N_Op
2832 and then Present (Entity (N))
2833 and then Ekind (Entity (N)) /= E_Operator
2834 then
2835 if not Is_Predefined_Op (Entity (N)) then
2836 Rewrite_Operator_As_Call (N, Entity (N));
2838 elsif Present (Alias (Entity (N)))
2839 and then
2840 Nkind (Parent (Parent (Entity (N)))) =
2841 N_Subprogram_Renaming_Declaration
2842 then
2843 Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
2845 -- If the node is rewritten, it will be fully resolved in
2846 -- Rewrite_Renamed_Operator.
2848 if Analyzed (N) then
2849 return;
2850 end if;
2851 end if;
2852 end if;
2854 case N_Subexpr'(Nkind (N)) is
2855 when N_Aggregate =>
2856 Resolve_Aggregate (N, Ctx_Type);
2858 when N_Allocator =>
2859 Resolve_Allocator (N, Ctx_Type);
2861 when N_Short_Circuit =>
2862 Resolve_Short_Circuit (N, Ctx_Type);
2864 when N_Attribute_Reference =>
2865 Resolve_Attribute (N, Ctx_Type);
2867 when N_Case_Expression =>
2868 Resolve_Case_Expression (N, Ctx_Type);
2870 when N_Character_Literal =>
2871 Resolve_Character_Literal (N, Ctx_Type);
2873 when N_Delta_Aggregate =>
2874 Resolve_Delta_Aggregate (N, Ctx_Type);
2876 when N_Expanded_Name =>
2877 Resolve_Entity_Name (N, Ctx_Type);
2879 when N_Explicit_Dereference =>
2880 Resolve_Explicit_Dereference (N, Ctx_Type);
2882 when N_Expression_With_Actions =>
2883 Resolve_Expression_With_Actions (N, Ctx_Type);
2885 when N_Extension_Aggregate =>
2886 Resolve_Extension_Aggregate (N, Ctx_Type);
2888 when N_Function_Call =>
2889 Resolve_Call (N, Ctx_Type);
2891 when N_Identifier =>
2892 Resolve_Entity_Name (N, Ctx_Type);
2894 when N_If_Expression =>
2895 Resolve_If_Expression (N, Ctx_Type);
2897 when N_Indexed_Component =>
2898 Resolve_Indexed_Component (N, Ctx_Type);
2900 when N_Integer_Literal =>
2901 Resolve_Integer_Literal (N, Ctx_Type);
2903 when N_Membership_Test =>
2904 Resolve_Membership_Op (N, Ctx_Type);
2906 when N_Null =>
2907 Resolve_Null (N, Ctx_Type);
2909 when N_Op_And
2910 | N_Op_Or
2911 | N_Op_Xor
2913 Resolve_Logical_Op (N, Ctx_Type);
2915 when N_Op_Eq
2916 | N_Op_Ne
2918 Resolve_Equality_Op (N, Ctx_Type);
2920 when N_Op_Ge
2921 | N_Op_Gt
2922 | N_Op_Le
2923 | N_Op_Lt
2925 Resolve_Comparison_Op (N, Ctx_Type);
2927 when N_Op_Not =>
2928 Resolve_Op_Not (N, Ctx_Type);
2930 when N_Op_Add
2931 | N_Op_Divide
2932 | N_Op_Mod
2933 | N_Op_Multiply
2934 | N_Op_Rem
2935 | N_Op_Subtract
2937 Resolve_Arithmetic_Op (N, Ctx_Type);
2939 when N_Op_Concat =>
2940 Resolve_Op_Concat (N, Ctx_Type);
2942 when N_Op_Expon =>
2943 Resolve_Op_Expon (N, Ctx_Type);
2945 when N_Op_Abs
2946 | N_Op_Minus
2947 | N_Op_Plus
2949 Resolve_Unary_Op (N, Ctx_Type);
2951 when N_Op_Shift =>
2952 Resolve_Shift (N, Ctx_Type);
2954 when N_Procedure_Call_Statement =>
2955 Resolve_Call (N, Ctx_Type);
2957 when N_Operator_Symbol =>
2958 Resolve_Operator_Symbol (N, Ctx_Type);
2960 when N_Qualified_Expression =>
2961 Resolve_Qualified_Expression (N, Ctx_Type);
2963 -- Why is the following null, needs a comment ???
2965 when N_Quantified_Expression =>
2966 null;
2968 when N_Raise_Expression =>
2969 Resolve_Raise_Expression (N, Ctx_Type);
2971 when N_Raise_xxx_Error =>
2972 Set_Etype (N, Ctx_Type);
2974 when N_Range =>
2975 Resolve_Range (N, Ctx_Type);
2977 when N_Real_Literal =>
2978 Resolve_Real_Literal (N, Ctx_Type);
2980 when N_Reference =>
2981 Resolve_Reference (N, Ctx_Type);
2983 when N_Selected_Component =>
2984 Resolve_Selected_Component (N, Ctx_Type);
2986 when N_Slice =>
2987 Resolve_Slice (N, Ctx_Type);
2989 when N_String_Literal =>
2990 Resolve_String_Literal (N, Ctx_Type);
2992 when N_Target_Name =>
2993 Resolve_Target_Name (N, Ctx_Type);
2995 when N_Type_Conversion =>
2996 Resolve_Type_Conversion (N, Ctx_Type);
2998 when N_Unchecked_Expression =>
2999 Resolve_Unchecked_Expression (N, Ctx_Type);
3001 when N_Unchecked_Type_Conversion =>
3002 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
3003 end case;
3005 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
3006 -- expression of an anonymous access type that occurs in the context
3007 -- of a named general access type, except when the expression is that
3008 -- of a membership test. This ensures proper legality checking in
3009 -- terms of allowed conversions (expressions that would be illegal to
3010 -- convert implicitly are allowed in membership tests).
3012 if Ada_Version >= Ada_2012
3013 and then Ekind (Ctx_Type) = E_General_Access_Type
3014 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
3015 and then Nkind (Parent (N)) not in N_Membership_Test
3016 then
3017 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
3018 Analyze_And_Resolve (N, Ctx_Type);
3019 end if;
3021 -- If the subexpression was replaced by a non-subexpression, then
3022 -- all we do is to expand it. The only legitimate case we know of
3023 -- is converting procedure call statement to entry call statements,
3024 -- but there may be others, so we are making this test general.
3026 if Nkind (N) not in N_Subexpr then
3027 Debug_A_Exit ("resolving ", N, " (done)");
3028 Expand (N);
3029 return;
3030 end if;
3032 -- The expression is definitely NOT overloaded at this point, so
3033 -- we reset the Is_Overloaded flag to avoid any confusion when
3034 -- reanalyzing the node.
3036 Set_Is_Overloaded (N, False);
3038 -- Freeze expression type, entity if it is a name, and designated
3039 -- type if it is an allocator (RM 13.14(10,11,13)).
3041 -- Now that the resolution of the type of the node is complete, and
3042 -- we did not detect an error, we can expand this node. We skip the
3043 -- expand call if we are in a default expression, see section
3044 -- "Handling of Default Expressions" in Sem spec.
3046 Debug_A_Exit ("resolving ", N, " (done)");
3048 -- We unconditionally freeze the expression, even if we are in
3049 -- default expression mode (the Freeze_Expression routine tests this
3050 -- flag and only freezes static types if it is set).
3052 -- Ada 2012 (AI05-177): The declaration of an expression function
3053 -- does not cause freezing, but we never reach here in that case.
3054 -- Here we are resolving the corresponding expanded body, so we do
3055 -- need to perform normal freezing.
3057 Freeze_Expression (N);
3059 -- Now we can do the expansion
3061 Expand (N);
3062 end if;
3063 end Resolve;
3065 -------------
3066 -- Resolve --
3067 -------------
3069 -- Version with check(s) suppressed
3071 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
3072 begin
3073 if Suppress = All_Checks then
3074 declare
3075 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
3076 begin
3077 Scope_Suppress.Suppress := (others => True);
3078 Resolve (N, Typ);
3079 Scope_Suppress.Suppress := Sva;
3080 end;
3082 else
3083 declare
3084 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
3085 begin
3086 Scope_Suppress.Suppress (Suppress) := True;
3087 Resolve (N, Typ);
3088 Scope_Suppress.Suppress (Suppress) := Svg;
3089 end;
3090 end if;
3091 end Resolve;
3093 -------------
3094 -- Resolve --
3095 -------------
3097 -- Version with implicit type
3099 procedure Resolve (N : Node_Id) is
3100 begin
3101 Resolve (N, Etype (N));
3102 end Resolve;
3104 ---------------------
3105 -- Resolve_Actuals --
3106 ---------------------
3108 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
3109 Loc : constant Source_Ptr := Sloc (N);
3110 A : Node_Id;
3111 A_Id : Entity_Id;
3112 A_Typ : Entity_Id;
3113 F : Entity_Id;
3114 F_Typ : Entity_Id;
3115 Prev : Node_Id := Empty;
3116 Orig_A : Node_Id;
3117 Real_F : Entity_Id;
3119 Real_Subp : Entity_Id;
3120 -- If the subprogram being called is an inherited operation for
3121 -- a formal derived type in an instance, Real_Subp is the subprogram
3122 -- that will be called. It may have different formal names than the
3123 -- operation of the formal in the generic, so after actual is resolved
3124 -- the name of the actual in a named association must carry the name
3125 -- of the actual of the subprogram being called.
3127 procedure Check_Aliased_Parameter;
3128 -- Check rules on aliased parameters and related accessibility rules
3129 -- in (RM 3.10.2 (10.2-10.4)).
3131 procedure Check_Argument_Order;
3132 -- Performs a check for the case where the actuals are all simple
3133 -- identifiers that correspond to the formal names, but in the wrong
3134 -- order, which is considered suspicious and cause for a warning.
3136 procedure Check_Prefixed_Call;
3137 -- If the original node is an overloaded call in prefix notation,
3138 -- insert an 'Access or a dereference as needed over the first actual.
3139 -- Try_Object_Operation has already verified that there is a valid
3140 -- interpretation, but the form of the actual can only be determined
3141 -- once the primitive operation is identified.
3143 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id);
3144 -- Emit an error concerning the illegal usage of an effectively volatile
3145 -- object in interfering context (SPARK RM 7.13(12)).
3147 procedure Insert_Default;
3148 -- If the actual is missing in a call, insert in the actuals list
3149 -- an instance of the default expression. The insertion is always
3150 -- a named association.
3152 procedure Property_Error
3153 (Var : Node_Id;
3154 Var_Id : Entity_Id;
3155 Prop_Nam : Name_Id);
3156 -- Emit an error concerning variable Var with entity Var_Id that has
3157 -- enabled property Prop_Nam when it acts as an actual parameter in a
3158 -- call and the corresponding formal parameter is of mode IN.
3160 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
3161 -- Check whether T1 and T2, or their full views, are derived from a
3162 -- common type. Used to enforce the restrictions on array conversions
3163 -- of AI95-00246.
3165 function Static_Concatenation (N : Node_Id) return Boolean;
3166 -- Predicate to determine whether an actual that is a concatenation
3167 -- will be evaluated statically and does not need a transient scope.
3168 -- This must be determined before the actual is resolved and expanded
3169 -- because if needed the transient scope must be introduced earlier.
3171 -----------------------------
3172 -- Check_Aliased_Parameter --
3173 -----------------------------
3175 procedure Check_Aliased_Parameter is
3176 Nominal_Subt : Entity_Id;
3178 begin
3179 if Is_Aliased (F) then
3180 if Is_Tagged_Type (A_Typ) then
3181 null;
3183 elsif Is_Aliased_View (A) then
3184 if Is_Constr_Subt_For_U_Nominal (A_Typ) then
3185 Nominal_Subt := Base_Type (A_Typ);
3186 else
3187 Nominal_Subt := A_Typ;
3188 end if;
3190 if Subtypes_Statically_Match (F_Typ, Nominal_Subt) then
3191 null;
3193 -- In a generic body assume the worst for generic formals:
3194 -- they can have a constrained partial view (AI05-041).
3196 elsif Has_Discriminants (F_Typ)
3197 and then not Is_Constrained (F_Typ)
3198 and then not Has_Constrained_Partial_View (F_Typ)
3199 and then not Is_Generic_Type (F_Typ)
3200 then
3201 null;
3203 else
3204 Error_Msg_NE ("untagged actual does not match "
3205 & "aliased formal&", A, F);
3206 end if;
3208 else
3209 Error_Msg_NE ("actual for aliased formal& must be "
3210 & "aliased object", A, F);
3211 end if;
3213 if Ekind (Nam) = E_Procedure then
3214 null;
3216 elsif Ekind (Etype (Nam)) = E_Anonymous_Access_Type then
3217 if Nkind (Parent (N)) = N_Type_Conversion
3218 and then Type_Access_Level (Etype (Parent (N))) <
3219 Object_Access_Level (A)
3220 then
3221 Error_Msg_N ("aliased actual has wrong accessibility", A);
3222 end if;
3224 elsif Nkind (Parent (N)) = N_Qualified_Expression
3225 and then Nkind (Parent (Parent (N))) = N_Allocator
3226 and then Type_Access_Level (Etype (Parent (Parent (N)))) <
3227 Object_Access_Level (A)
3228 then
3229 Error_Msg_N
3230 ("aliased actual in allocator has wrong accessibility", A);
3231 end if;
3232 end if;
3233 end Check_Aliased_Parameter;
3235 --------------------------
3236 -- Check_Argument_Order --
3237 --------------------------
3239 procedure Check_Argument_Order is
3240 begin
3241 -- Nothing to do if no parameters, or original node is neither a
3242 -- function call nor a procedure call statement (happens in the
3243 -- operator-transformed-to-function call case), or the call does
3244 -- not come from source, or this warning is off.
3246 if not Warn_On_Parameter_Order
3247 or else No (Parameter_Associations (N))
3248 or else Nkind (Original_Node (N)) not in N_Subprogram_Call
3249 or else not Comes_From_Source (N)
3250 then
3251 return;
3252 end if;
3254 declare
3255 Nargs : constant Nat := List_Length (Parameter_Associations (N));
3257 begin
3258 -- Nothing to do if only one parameter
3260 if Nargs < 2 then
3261 return;
3262 end if;
3264 -- Here if at least two arguments
3266 declare
3267 Actuals : array (1 .. Nargs) of Node_Id;
3268 Actual : Node_Id;
3269 Formal : Node_Id;
3271 Wrong_Order : Boolean := False;
3272 -- Set True if an out of order case is found
3274 begin
3275 -- Collect identifier names of actuals, fail if any actual is
3276 -- not a simple identifier, and record max length of name.
3278 Actual := First (Parameter_Associations (N));
3279 for J in Actuals'Range loop
3280 if Nkind (Actual) /= N_Identifier then
3281 return;
3282 else
3283 Actuals (J) := Actual;
3284 Next (Actual);
3285 end if;
3286 end loop;
3288 -- If we got this far, all actuals are identifiers and the list
3289 -- of their names is stored in the Actuals array.
3291 Formal := First_Formal (Nam);
3292 for J in Actuals'Range loop
3294 -- If we ran out of formals, that's odd, probably an error
3295 -- which will be detected elsewhere, but abandon the search.
3297 if No (Formal) then
3298 return;
3299 end if;
3301 -- If name matches and is in order OK
3303 if Chars (Formal) = Chars (Actuals (J)) then
3304 null;
3306 else
3307 -- If no match, see if it is elsewhere in list and if so
3308 -- flag potential wrong order if type is compatible.
3310 for K in Actuals'Range loop
3311 if Chars (Formal) = Chars (Actuals (K))
3312 and then
3313 Has_Compatible_Type (Actuals (K), Etype (Formal))
3314 then
3315 Wrong_Order := True;
3316 goto Continue;
3317 end if;
3318 end loop;
3320 -- No match
3322 return;
3323 end if;
3325 <<Continue>> Next_Formal (Formal);
3326 end loop;
3328 -- If Formals left over, also probably an error, skip warning
3330 if Present (Formal) then
3331 return;
3332 end if;
3334 -- Here we give the warning if something was out of order
3336 if Wrong_Order then
3337 Error_Msg_N
3338 ("?P?actuals for this call may be in wrong order", N);
3339 end if;
3340 end;
3341 end;
3342 end Check_Argument_Order;
3344 -------------------------
3345 -- Check_Prefixed_Call --
3346 -------------------------
3348 procedure Check_Prefixed_Call is
3349 Act : constant Node_Id := First_Actual (N);
3350 A_Type : constant Entity_Id := Etype (Act);
3351 F_Type : constant Entity_Id := Etype (First_Formal (Nam));
3352 Orig : constant Node_Id := Original_Node (N);
3353 New_A : Node_Id;
3355 begin
3356 -- Check whether the call is a prefixed call, with or without
3357 -- additional actuals.
3359 if Nkind (Orig) = N_Selected_Component
3360 or else
3361 (Nkind (Orig) = N_Indexed_Component
3362 and then Nkind (Prefix (Orig)) = N_Selected_Component
3363 and then Is_Entity_Name (Prefix (Prefix (Orig)))
3364 and then Is_Entity_Name (Act)
3365 and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
3366 then
3367 if Is_Access_Type (A_Type)
3368 and then not Is_Access_Type (F_Type)
3369 then
3370 -- Introduce dereference on object in prefix
3372 New_A :=
3373 Make_Explicit_Dereference (Sloc (Act),
3374 Prefix => Relocate_Node (Act));
3375 Rewrite (Act, New_A);
3376 Analyze (Act);
3378 elsif Is_Access_Type (F_Type)
3379 and then not Is_Access_Type (A_Type)
3380 then
3381 -- Introduce an implicit 'Access in prefix
3383 if not Is_Aliased_View (Act) then
3384 Error_Msg_NE
3385 ("object in prefixed call to& must be aliased "
3386 & "(RM 4.1.3 (13 1/2))",
3387 Prefix (Act), Nam);
3388 end if;
3390 Rewrite (Act,
3391 Make_Attribute_Reference (Loc,
3392 Attribute_Name => Name_Access,
3393 Prefix => Relocate_Node (Act)));
3394 end if;
3396 Analyze (Act);
3397 end if;
3398 end Check_Prefixed_Call;
3400 ---------------------------------------
3401 -- Flag_Effectively_Volatile_Objects --
3402 ---------------------------------------
3404 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id) is
3405 function Flag_Object (N : Node_Id) return Traverse_Result;
3406 -- Determine whether arbitrary node N denotes an effectively volatile
3407 -- object and if it does, emit an error.
3409 -----------------
3410 -- Flag_Object --
3411 -----------------
3413 function Flag_Object (N : Node_Id) return Traverse_Result is
3414 Id : Entity_Id;
3416 begin
3417 -- Do not consider nested function calls because they have already
3418 -- been processed during their own resolution.
3420 if Nkind (N) = N_Function_Call then
3421 return Skip;
3423 elsif Is_Entity_Name (N) and then Present (Entity (N)) then
3424 Id := Entity (N);
3426 if Is_Object (Id)
3427 and then Is_Effectively_Volatile (Id)
3428 and then (Async_Writers_Enabled (Id)
3429 or else Effective_Reads_Enabled (Id))
3430 then
3431 Error_Msg_N
3432 ("volatile object cannot appear in this context (SPARK "
3433 & "RM 7.1.3(11))", N);
3434 return Skip;
3435 end if;
3436 end if;
3438 return OK;
3439 end Flag_Object;
3441 procedure Flag_Objects is new Traverse_Proc (Flag_Object);
3443 -- Start of processing for Flag_Effectively_Volatile_Objects
3445 begin
3446 Flag_Objects (Expr);
3447 end Flag_Effectively_Volatile_Objects;
3449 --------------------
3450 -- Insert_Default --
3451 --------------------
3453 procedure Insert_Default is
3454 Actval : Node_Id;
3455 Assoc : Node_Id;
3457 begin
3458 -- Missing argument in call, nothing to insert
3460 if No (Default_Value (F)) then
3461 return;
3463 else
3464 -- Note that we do a full New_Copy_Tree, so that any associated
3465 -- Itypes are properly copied. This may not be needed any more,
3466 -- but it does no harm as a safety measure. Defaults of a generic
3467 -- formal may be out of bounds of the corresponding actual (see
3468 -- cc1311b) and an additional check may be required.
3470 Actval :=
3471 New_Copy_Tree
3472 (Default_Value (F),
3473 New_Scope => Current_Scope,
3474 New_Sloc => Loc);
3476 -- Propagate dimension information, if any.
3478 Copy_Dimensions (Default_Value (F), Actval);
3480 if Is_Concurrent_Type (Scope (Nam))
3481 and then Has_Discriminants (Scope (Nam))
3482 then
3483 Replace_Actual_Discriminants (N, Actval);
3484 end if;
3486 if Is_Overloadable (Nam)
3487 and then Present (Alias (Nam))
3488 then
3489 if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
3490 and then not Is_Tagged_Type (Etype (F))
3491 then
3492 -- If default is a real literal, do not introduce a
3493 -- conversion whose effect may depend on the run-time
3494 -- size of universal real.
3496 if Nkind (Actval) = N_Real_Literal then
3497 Set_Etype (Actval, Base_Type (Etype (F)));
3498 else
3499 Actval := Unchecked_Convert_To (Etype (F), Actval);
3500 end if;
3501 end if;
3503 if Is_Scalar_Type (Etype (F)) then
3504 Enable_Range_Check (Actval);
3505 end if;
3507 Set_Parent (Actval, N);
3509 -- Resolve aggregates with their base type, to avoid scope
3510 -- anomalies: the subtype was first built in the subprogram
3511 -- declaration, and the current call may be nested.
3513 if Nkind (Actval) = N_Aggregate then
3514 Analyze_And_Resolve (Actval, Etype (F));
3515 else
3516 Analyze_And_Resolve (Actval, Etype (Actval));
3517 end if;
3519 else
3520 Set_Parent (Actval, N);
3522 -- See note above concerning aggregates
3524 if Nkind (Actval) = N_Aggregate
3525 and then Has_Discriminants (Etype (Actval))
3526 then
3527 Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
3529 -- Resolve entities with their own type, which may differ from
3530 -- the type of a reference in a generic context (the view
3531 -- swapping mechanism did not anticipate the re-analysis of
3532 -- default values in calls).
3534 elsif Is_Entity_Name (Actval) then
3535 Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
3537 else
3538 Analyze_And_Resolve (Actval, Etype (Actval));
3539 end if;
3540 end if;
3542 -- If default is a tag indeterminate function call, propagate tag
3543 -- to obtain proper dispatching.
3545 if Is_Controlling_Formal (F)
3546 and then Nkind (Default_Value (F)) = N_Function_Call
3547 then
3548 Set_Is_Controlling_Actual (Actval);
3549 end if;
3550 end if;
3552 -- If the default expression raises constraint error, then just
3553 -- silently replace it with an N_Raise_Constraint_Error node, since
3554 -- we already gave the warning on the subprogram spec. If node is
3555 -- already a Raise_Constraint_Error leave as is, to prevent loops in
3556 -- the warnings removal machinery.
3558 if Raises_Constraint_Error (Actval)
3559 and then Nkind (Actval) /= N_Raise_Constraint_Error
3560 then
3561 Rewrite (Actval,
3562 Make_Raise_Constraint_Error (Loc,
3563 Reason => CE_Range_Check_Failed));
3564 Set_Raises_Constraint_Error (Actval);
3565 Set_Etype (Actval, Etype (F));
3566 end if;
3568 Assoc :=
3569 Make_Parameter_Association (Loc,
3570 Explicit_Actual_Parameter => Actval,
3571 Selector_Name => Make_Identifier (Loc, Chars (F)));
3573 -- Case of insertion is first named actual
3575 if No (Prev) or else
3576 Nkind (Parent (Prev)) /= N_Parameter_Association
3577 then
3578 Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
3579 Set_First_Named_Actual (N, Actval);
3581 if No (Prev) then
3582 if No (Parameter_Associations (N)) then
3583 Set_Parameter_Associations (N, New_List (Assoc));
3584 else
3585 Append (Assoc, Parameter_Associations (N));
3586 end if;
3588 else
3589 Insert_After (Prev, Assoc);
3590 end if;
3592 -- Case of insertion is not first named actual
3594 else
3595 Set_Next_Named_Actual
3596 (Assoc, Next_Named_Actual (Parent (Prev)));
3597 Set_Next_Named_Actual (Parent (Prev), Actval);
3598 Append (Assoc, Parameter_Associations (N));
3599 end if;
3601 Mark_Rewrite_Insertion (Assoc);
3602 Mark_Rewrite_Insertion (Actval);
3604 Prev := Actval;
3605 end Insert_Default;
3607 --------------------
3608 -- Property_Error --
3609 --------------------
3611 procedure Property_Error
3612 (Var : Node_Id;
3613 Var_Id : Entity_Id;
3614 Prop_Nam : Name_Id)
3616 begin
3617 Error_Msg_Name_1 := Prop_Nam;
3618 Error_Msg_NE
3619 ("external variable & with enabled property % cannot appear as "
3620 & "actual in procedure call (SPARK RM 7.1.3(10))", Var, Var_Id);
3621 Error_Msg_N ("\\corresponding formal parameter has mode In", Var);
3622 end Property_Error;
3624 -------------------
3625 -- Same_Ancestor --
3626 -------------------
3628 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
3629 FT1 : Entity_Id := T1;
3630 FT2 : Entity_Id := T2;
3632 begin
3633 if Is_Private_Type (T1)
3634 and then Present (Full_View (T1))
3635 then
3636 FT1 := Full_View (T1);
3637 end if;
3639 if Is_Private_Type (T2)
3640 and then Present (Full_View (T2))
3641 then
3642 FT2 := Full_View (T2);
3643 end if;
3645 return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
3646 end Same_Ancestor;
3648 --------------------------
3649 -- Static_Concatenation --
3650 --------------------------
3652 function Static_Concatenation (N : Node_Id) return Boolean is
3653 begin
3654 case Nkind (N) is
3655 when N_String_Literal =>
3656 return True;
3658 when N_Op_Concat =>
3660 -- Concatenation is static when both operands are static and
3661 -- the concatenation operator is a predefined one.
3663 return Scope (Entity (N)) = Standard_Standard
3664 and then
3665 Static_Concatenation (Left_Opnd (N))
3666 and then
3667 Static_Concatenation (Right_Opnd (N));
3669 when others =>
3670 if Is_Entity_Name (N) then
3671 declare
3672 Ent : constant Entity_Id := Entity (N);
3673 begin
3674 return Ekind (Ent) = E_Constant
3675 and then Present (Constant_Value (Ent))
3676 and then
3677 Is_OK_Static_Expression (Constant_Value (Ent));
3678 end;
3680 else
3681 return False;
3682 end if;
3683 end case;
3684 end Static_Concatenation;
3686 -- Start of processing for Resolve_Actuals
3688 begin
3689 Check_Argument_Order;
3691 if Is_Overloadable (Nam)
3692 and then Is_Inherited_Operation (Nam)
3693 and then In_Instance
3694 and then Present (Alias (Nam))
3695 and then Present (Overridden_Operation (Alias (Nam)))
3696 then
3697 Real_Subp := Alias (Nam);
3698 else
3699 Real_Subp := Empty;
3700 end if;
3702 if Present (First_Actual (N)) then
3703 Check_Prefixed_Call;
3704 end if;
3706 A := First_Actual (N);
3707 F := First_Formal (Nam);
3709 if Present (Real_Subp) then
3710 Real_F := First_Formal (Real_Subp);
3711 end if;
3713 while Present (F) loop
3714 if No (A) and then Needs_No_Actuals (Nam) then
3715 null;
3717 -- If we have an error in any actual or formal, indicated by a type
3718 -- of Any_Type, then abandon resolution attempt, and set result type
3719 -- to Any_Type. Skip this if the actual is a Raise_Expression, whose
3720 -- type is imposed from context.
3722 elsif (Present (A) and then Etype (A) = Any_Type)
3723 or else Etype (F) = Any_Type
3724 then
3725 if Nkind (A) /= N_Raise_Expression then
3726 Set_Etype (N, Any_Type);
3727 return;
3728 end if;
3729 end if;
3731 -- Case where actual is present
3733 -- If the actual is an entity, generate a reference to it now. We
3734 -- do this before the actual is resolved, because a formal of some
3735 -- protected subprogram, or a task discriminant, will be rewritten
3736 -- during expansion, and the source entity reference may be lost.
3738 if Present (A)
3739 and then Is_Entity_Name (A)
3740 and then Comes_From_Source (A)
3741 then
3742 Orig_A := Entity (A);
3744 if Present (Orig_A) then
3745 if Is_Formal (Orig_A)
3746 and then Ekind (F) /= E_In_Parameter
3747 then
3748 Generate_Reference (Orig_A, A, 'm');
3750 elsif not Is_Overloaded (A) then
3751 if Ekind (F) /= E_Out_Parameter then
3752 Generate_Reference (Orig_A, A);
3754 -- RM 6.4.1(12): For an out parameter that is passed by
3755 -- copy, the formal parameter object is created, and:
3757 -- * For an access type, the formal parameter is initialized
3758 -- from the value of the actual, without checking that the
3759 -- value satisfies any constraint, any predicate, or any
3760 -- exclusion of the null value.
3762 -- * For a scalar type that has the Default_Value aspect
3763 -- specified, the formal parameter is initialized from the
3764 -- value of the actual, without checking that the value
3765 -- satisfies any constraint or any predicate.
3766 -- I do not understand why this case is included??? this is
3767 -- not a case where an OUT parameter is treated as IN OUT.
3769 -- * For a composite type with discriminants or that has
3770 -- implicit initial values for any subcomponents, the
3771 -- behavior is as for an in out parameter passed by copy.
3773 -- Hence for these cases we generate the read reference now
3774 -- (the write reference will be generated later by
3775 -- Note_Possible_Modification).
3777 elsif Is_By_Copy_Type (Etype (F))
3778 and then
3779 (Is_Access_Type (Etype (F))
3780 or else
3781 (Is_Scalar_Type (Etype (F))
3782 and then
3783 Present (Default_Aspect_Value (Etype (F))))
3784 or else
3785 (Is_Composite_Type (Etype (F))
3786 and then (Has_Discriminants (Etype (F))
3787 or else Is_Partially_Initialized_Type
3788 (Etype (F)))))
3789 then
3790 Generate_Reference (Orig_A, A);
3791 end if;
3792 end if;
3793 end if;
3794 end if;
3796 if Present (A)
3797 and then (Nkind (Parent (A)) /= N_Parameter_Association
3798 or else Chars (Selector_Name (Parent (A))) = Chars (F))
3799 then
3800 -- If style checking mode on, check match of formal name
3802 if Style_Check then
3803 if Nkind (Parent (A)) = N_Parameter_Association then
3804 Check_Identifier (Selector_Name (Parent (A)), F);
3805 end if;
3806 end if;
3808 -- If the formal is Out or In_Out, do not resolve and expand the
3809 -- conversion, because it is subsequently expanded into explicit
3810 -- temporaries and assignments. However, the object of the
3811 -- conversion can be resolved. An exception is the case of tagged
3812 -- type conversion with a class-wide actual. In that case we want
3813 -- the tag check to occur and no temporary will be needed (no
3814 -- representation change can occur) and the parameter is passed by
3815 -- reference, so we go ahead and resolve the type conversion.
3816 -- Another exception is the case of reference to component or
3817 -- subcomponent of a bit-packed array, in which case we want to
3818 -- defer expansion to the point the in and out assignments are
3819 -- performed.
3821 if Ekind (F) /= E_In_Parameter
3822 and then Nkind (A) = N_Type_Conversion
3823 and then not Is_Class_Wide_Type (Etype (Expression (A)))
3824 then
3825 if Ekind (F) = E_In_Out_Parameter
3826 and then Is_Array_Type (Etype (F))
3827 then
3828 -- In a view conversion, the conversion must be legal in
3829 -- both directions, and thus both component types must be
3830 -- aliased, or neither (4.6 (8)).
3832 -- The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3833 -- the privacy requirement should not apply to generic
3834 -- types, and should be checked in an instance. ARG query
3835 -- is in order ???
3837 if Has_Aliased_Components (Etype (Expression (A))) /=
3838 Has_Aliased_Components (Etype (F))
3839 then
3840 Error_Msg_N
3841 ("both component types in a view conversion must be"
3842 & " aliased, or neither", A);
3844 -- Comment here??? what set of cases???
3846 elsif
3847 not Same_Ancestor (Etype (F), Etype (Expression (A)))
3848 then
3849 -- Check view conv between unrelated by ref array types
3851 if Is_By_Reference_Type (Etype (F))
3852 or else Is_By_Reference_Type (Etype (Expression (A)))
3853 then
3854 Error_Msg_N
3855 ("view conversion between unrelated by reference "
3856 & "array types not allowed (\'A'I-00246)", A);
3858 -- In Ada 2005 mode, check view conversion component
3859 -- type cannot be private, tagged, or volatile. Note
3860 -- that we only apply this to source conversions. The
3861 -- generated code can contain conversions which are
3862 -- not subject to this test, and we cannot extract the
3863 -- component type in such cases since it is not present.
3865 elsif Comes_From_Source (A)
3866 and then Ada_Version >= Ada_2005
3867 then
3868 declare
3869 Comp_Type : constant Entity_Id :=
3870 Component_Type
3871 (Etype (Expression (A)));
3872 begin
3873 if (Is_Private_Type (Comp_Type)
3874 and then not Is_Generic_Type (Comp_Type))
3875 or else Is_Tagged_Type (Comp_Type)
3876 or else Is_Volatile (Comp_Type)
3877 then
3878 Error_Msg_N
3879 ("component type of a view conversion cannot"
3880 & " be private, tagged, or volatile"
3881 & " (RM 4.6 (24))",
3882 Expression (A));
3883 end if;
3884 end;
3885 end if;
3886 end if;
3887 end if;
3889 -- Resolve expression if conversion is all OK
3891 if (Conversion_OK (A)
3892 or else Valid_Conversion (A, Etype (A), Expression (A)))
3893 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
3894 then
3895 Resolve (Expression (A));
3896 end if;
3898 -- If the actual is a function call that returns a limited
3899 -- unconstrained object that needs finalization, create a
3900 -- transient scope for it, so that it can receive the proper
3901 -- finalization list.
3903 elsif Nkind (A) = N_Function_Call
3904 and then Is_Limited_Record (Etype (F))
3905 and then not Is_Constrained (Etype (F))
3906 and then Expander_Active
3907 and then (Is_Controlled (Etype (F)) or else Has_Task (Etype (F)))
3908 then
3909 Establish_Transient_Scope (A, Sec_Stack => False);
3910 Resolve (A, Etype (F));
3912 -- A small optimization: if one of the actuals is a concatenation
3913 -- create a block around a procedure call to recover stack space.
3914 -- This alleviates stack usage when several procedure calls in
3915 -- the same statement list use concatenation. We do not perform
3916 -- this wrapping for code statements, where the argument is a
3917 -- static string, and we want to preserve warnings involving
3918 -- sequences of such statements.
3920 elsif Nkind (A) = N_Op_Concat
3921 and then Nkind (N) = N_Procedure_Call_Statement
3922 and then Expander_Active
3923 and then
3924 not (Is_Intrinsic_Subprogram (Nam)
3925 and then Chars (Nam) = Name_Asm)
3926 and then not Static_Concatenation (A)
3927 then
3928 Establish_Transient_Scope (A, Sec_Stack => False);
3929 Resolve (A, Etype (F));
3931 else
3932 if Nkind (A) = N_Type_Conversion
3933 and then Is_Array_Type (Etype (F))
3934 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
3935 and then
3936 (Is_Limited_Type (Etype (F))
3937 or else Is_Limited_Type (Etype (Expression (A))))
3938 then
3939 Error_Msg_N
3940 ("conversion between unrelated limited array types "
3941 & "not allowed ('A'I-00246)", A);
3943 if Is_Limited_Type (Etype (F)) then
3944 Explain_Limited_Type (Etype (F), A);
3945 end if;
3947 if Is_Limited_Type (Etype (Expression (A))) then
3948 Explain_Limited_Type (Etype (Expression (A)), A);
3949 end if;
3950 end if;
3952 -- (Ada 2005: AI-251): If the actual is an allocator whose
3953 -- directly designated type is a class-wide interface, we build
3954 -- an anonymous access type to use it as the type of the
3955 -- allocator. Later, when the subprogram call is expanded, if
3956 -- the interface has a secondary dispatch table the expander
3957 -- will add a type conversion to force the correct displacement
3958 -- of the pointer.
3960 if Nkind (A) = N_Allocator then
3961 declare
3962 DDT : constant Entity_Id :=
3963 Directly_Designated_Type (Base_Type (Etype (F)));
3965 New_Itype : Entity_Id;
3967 begin
3968 if Is_Class_Wide_Type (DDT)
3969 and then Is_Interface (DDT)
3970 then
3971 New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
3972 Set_Etype (New_Itype, Etype (A));
3973 Set_Directly_Designated_Type
3974 (New_Itype, Directly_Designated_Type (Etype (A)));
3975 Set_Etype (A, New_Itype);
3976 end if;
3978 -- Ada 2005, AI-162:If the actual is an allocator, the
3979 -- innermost enclosing statement is the master of the
3980 -- created object. This needs to be done with expansion
3981 -- enabled only, otherwise the transient scope will not
3982 -- be removed in the expansion of the wrapped construct.
3984 if (Is_Controlled (DDT) or else Has_Task (DDT))
3985 and then Expander_Active
3986 then
3987 Establish_Transient_Scope (A, Sec_Stack => False);
3988 end if;
3989 end;
3991 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
3992 Check_Restriction (No_Access_Parameter_Allocators, A);
3993 end if;
3994 end if;
3996 -- (Ada 2005): The call may be to a primitive operation of a
3997 -- tagged synchronized type, declared outside of the type. In
3998 -- this case the controlling actual must be converted to its
3999 -- corresponding record type, which is the formal type. The
4000 -- actual may be a subtype, either because of a constraint or
4001 -- because it is a generic actual, so use base type to locate
4002 -- concurrent type.
4004 F_Typ := Base_Type (Etype (F));
4006 if Is_Tagged_Type (F_Typ)
4007 and then (Is_Concurrent_Type (F_Typ)
4008 or else Is_Concurrent_Record_Type (F_Typ))
4009 then
4010 -- If the actual is overloaded, look for an interpretation
4011 -- that has a synchronized type.
4013 if not Is_Overloaded (A) then
4014 A_Typ := Base_Type (Etype (A));
4016 else
4017 declare
4018 Index : Interp_Index;
4019 It : Interp;
4021 begin
4022 Get_First_Interp (A, Index, It);
4023 while Present (It.Typ) loop
4024 if Is_Concurrent_Type (It.Typ)
4025 or else Is_Concurrent_Record_Type (It.Typ)
4026 then
4027 A_Typ := Base_Type (It.Typ);
4028 exit;
4029 end if;
4031 Get_Next_Interp (Index, It);
4032 end loop;
4033 end;
4034 end if;
4036 declare
4037 Full_A_Typ : Entity_Id;
4039 begin
4040 if Present (Full_View (A_Typ)) then
4041 Full_A_Typ := Base_Type (Full_View (A_Typ));
4042 else
4043 Full_A_Typ := A_Typ;
4044 end if;
4046 -- Tagged synchronized type (case 1): the actual is a
4047 -- concurrent type.
4049 if Is_Concurrent_Type (A_Typ)
4050 and then Corresponding_Record_Type (A_Typ) = F_Typ
4051 then
4052 Rewrite (A,
4053 Unchecked_Convert_To
4054 (Corresponding_Record_Type (A_Typ), A));
4055 Resolve (A, Etype (F));
4057 -- Tagged synchronized type (case 2): the formal is a
4058 -- concurrent type.
4060 elsif Ekind (Full_A_Typ) = E_Record_Type
4061 and then Present
4062 (Corresponding_Concurrent_Type (Full_A_Typ))
4063 and then Is_Concurrent_Type (F_Typ)
4064 and then Present (Corresponding_Record_Type (F_Typ))
4065 and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
4066 then
4067 Resolve (A, Corresponding_Record_Type (F_Typ));
4069 -- Common case
4071 else
4072 Resolve (A, Etype (F));
4073 end if;
4074 end;
4076 -- Not a synchronized operation
4078 else
4079 Resolve (A, Etype (F));
4080 end if;
4081 end if;
4083 A_Typ := Etype (A);
4084 F_Typ := Etype (F);
4086 -- An actual cannot be an untagged formal incomplete type
4088 if Ekind (A_Typ) = E_Incomplete_Type
4089 and then not Is_Tagged_Type (A_Typ)
4090 and then Is_Generic_Type (A_Typ)
4091 then
4092 Error_Msg_N
4093 ("invalid use of untagged formal incomplete type", A);
4094 end if;
4096 if Comes_From_Source (Original_Node (N))
4097 and then Nkind_In (Original_Node (N), N_Function_Call,
4098 N_Procedure_Call_Statement)
4099 then
4100 -- In formal mode, check that actual parameters matching
4101 -- formals of tagged types are objects (or ancestor type
4102 -- conversions of objects), not general expressions.
4104 if Is_Actual_Tagged_Parameter (A) then
4105 if Is_SPARK_05_Object_Reference (A) then
4106 null;
4108 elsif Nkind (A) = N_Type_Conversion then
4109 declare
4110 Operand : constant Node_Id := Expression (A);
4111 Operand_Typ : constant Entity_Id := Etype (Operand);
4112 Target_Typ : constant Entity_Id := A_Typ;
4114 begin
4115 if not Is_SPARK_05_Object_Reference (Operand) then
4116 Check_SPARK_05_Restriction
4117 ("object required", Operand);
4119 -- In formal mode, the only view conversions are those
4120 -- involving ancestor conversion of an extended type.
4122 elsif not
4123 (Is_Tagged_Type (Target_Typ)
4124 and then not Is_Class_Wide_Type (Target_Typ)
4125 and then Is_Tagged_Type (Operand_Typ)
4126 and then not Is_Class_Wide_Type (Operand_Typ)
4127 and then Is_Ancestor (Target_Typ, Operand_Typ))
4128 then
4129 if Ekind_In
4130 (F, E_Out_Parameter, E_In_Out_Parameter)
4131 then
4132 Check_SPARK_05_Restriction
4133 ("ancestor conversion is the only permitted "
4134 & "view conversion", A);
4135 else
4136 Check_SPARK_05_Restriction
4137 ("ancestor conversion required", A);
4138 end if;
4140 else
4141 null;
4142 end if;
4143 end;
4145 else
4146 Check_SPARK_05_Restriction ("object required", A);
4147 end if;
4149 -- In formal mode, the only view conversions are those
4150 -- involving ancestor conversion of an extended type.
4152 elsif Nkind (A) = N_Type_Conversion
4153 and then Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
4154 then
4155 Check_SPARK_05_Restriction
4156 ("ancestor conversion is the only permitted view "
4157 & "conversion", A);
4158 end if;
4159 end if;
4161 -- has warnings suppressed, then we reset Never_Set_In_Source for
4162 -- the calling entity. The reason for this is to catch cases like
4163 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
4164 -- uses trickery to modify an IN parameter.
4166 if Ekind (F) = E_In_Parameter
4167 and then Is_Entity_Name (A)
4168 and then Present (Entity (A))
4169 and then Ekind (Entity (A)) = E_Variable
4170 and then Has_Warnings_Off (F_Typ)
4171 then
4172 Set_Never_Set_In_Source (Entity (A), False);
4173 end if;
4175 -- Perform error checks for IN and IN OUT parameters
4177 if Ekind (F) /= E_Out_Parameter then
4179 -- Check unset reference. For scalar parameters, it is clearly
4180 -- wrong to pass an uninitialized value as either an IN or
4181 -- IN-OUT parameter. For composites, it is also clearly an
4182 -- error to pass a completely uninitialized value as an IN
4183 -- parameter, but the case of IN OUT is trickier. We prefer
4184 -- not to give a warning here. For example, suppose there is
4185 -- a routine that sets some component of a record to False.
4186 -- It is perfectly reasonable to make this IN-OUT and allow
4187 -- either initialized or uninitialized records to be passed
4188 -- in this case.
4190 -- For partially initialized composite values, we also avoid
4191 -- warnings, since it is quite likely that we are passing a
4192 -- partially initialized value and only the initialized fields
4193 -- will in fact be read in the subprogram.
4195 if Is_Scalar_Type (A_Typ)
4196 or else (Ekind (F) = E_In_Parameter
4197 and then not Is_Partially_Initialized_Type (A_Typ))
4198 then
4199 Check_Unset_Reference (A);
4200 end if;
4202 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
4203 -- actual to a nested call, since this constitutes a reading of
4204 -- the parameter, which is not allowed.
4206 if Ada_Version = Ada_83
4207 and then Is_Entity_Name (A)
4208 and then Ekind (Entity (A)) = E_Out_Parameter
4209 then
4210 Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
4211 end if;
4212 end if;
4214 -- Case of OUT or IN OUT parameter
4216 if Ekind (F) /= E_In_Parameter then
4218 -- For an Out parameter, check for useless assignment. Note
4219 -- that we can't set Last_Assignment this early, because we may
4220 -- kill current values in Resolve_Call, and that call would
4221 -- clobber the Last_Assignment field.
4223 -- Note: call Warn_On_Useless_Assignment before doing the check
4224 -- below for Is_OK_Variable_For_Out_Formal so that the setting
4225 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
4226 -- reflects the last assignment, not this one.
4228 if Ekind (F) = E_Out_Parameter then
4229 if Warn_On_Modified_As_Out_Parameter (F)
4230 and then Is_Entity_Name (A)
4231 and then Present (Entity (A))
4232 and then Comes_From_Source (N)
4233 then
4234 Warn_On_Useless_Assignment (Entity (A), A);
4235 end if;
4236 end if;
4238 -- Validate the form of the actual. Note that the call to
4239 -- Is_OK_Variable_For_Out_Formal generates the required
4240 -- reference in this case.
4242 -- A call to an initialization procedure for an aggregate
4243 -- component may initialize a nested component of a constant
4244 -- designated object. In this context the object is variable.
4246 if not Is_OK_Variable_For_Out_Formal (A)
4247 and then not Is_Init_Proc (Nam)
4248 then
4249 Error_Msg_NE ("actual for& must be a variable", A, F);
4251 if Is_Subprogram (Current_Scope) then
4252 if Is_Invariant_Procedure (Current_Scope)
4253 or else Is_Partial_Invariant_Procedure (Current_Scope)
4254 then
4255 Error_Msg_N
4256 ("function used in invariant cannot modify its "
4257 & "argument", F);
4259 elsif Is_Predicate_Function (Current_Scope) then
4260 Error_Msg_N
4261 ("function used in predicate cannot modify its "
4262 & "argument", F);
4263 end if;
4264 end if;
4265 end if;
4267 -- What's the following about???
4269 if Is_Entity_Name (A) then
4270 Kill_Checks (Entity (A));
4271 else
4272 Kill_All_Checks;
4273 end if;
4274 end if;
4276 if Etype (A) = Any_Type then
4277 Set_Etype (N, Any_Type);
4278 return;
4279 end if;
4281 -- Apply appropriate constraint/predicate checks for IN [OUT] case
4283 if Ekind_In (F, E_In_Parameter, E_In_Out_Parameter) then
4285 -- Apply predicate tests except in certain special cases. Note
4286 -- that it might be more consistent to apply these only when
4287 -- expansion is active (in Exp_Ch6.Expand_Actuals), as we do
4288 -- for the outbound predicate tests ??? In any case indicate
4289 -- the function being called, for better warnings if the call
4290 -- leads to an infinite recursion.
4292 if Predicate_Tests_On_Arguments (Nam) then
4293 Apply_Predicate_Check (A, F_Typ, Nam);
4294 end if;
4296 -- Apply required constraint checks
4298 -- Gigi looks at the check flag and uses the appropriate types.
4299 -- For now since one flag is used there is an optimization
4300 -- which might not be done in the IN OUT case since Gigi does
4301 -- not do any analysis. More thought required about this ???
4303 -- In fact is this comment obsolete??? doesn't the expander now
4304 -- generate all these tests anyway???
4306 if Is_Scalar_Type (Etype (A)) then
4307 Apply_Scalar_Range_Check (A, F_Typ);
4309 elsif Is_Array_Type (Etype (A)) then
4310 Apply_Length_Check (A, F_Typ);
4312 elsif Is_Record_Type (F_Typ)
4313 and then Has_Discriminants (F_Typ)
4314 and then Is_Constrained (F_Typ)
4315 and then (not Is_Derived_Type (F_Typ)
4316 or else Comes_From_Source (Nam))
4317 then
4318 Apply_Discriminant_Check (A, F_Typ);
4320 -- For view conversions of a discriminated object, apply
4321 -- check to object itself, the conversion alreay has the
4322 -- proper type.
4324 if Nkind (A) = N_Type_Conversion
4325 and then Is_Constrained (Etype (Expression (A)))
4326 then
4327 Apply_Discriminant_Check (Expression (A), F_Typ);
4328 end if;
4330 elsif Is_Access_Type (F_Typ)
4331 and then Is_Array_Type (Designated_Type (F_Typ))
4332 and then Is_Constrained (Designated_Type (F_Typ))
4333 then
4334 Apply_Length_Check (A, F_Typ);
4336 elsif Is_Access_Type (F_Typ)
4337 and then Has_Discriminants (Designated_Type (F_Typ))
4338 and then Is_Constrained (Designated_Type (F_Typ))
4339 then
4340 Apply_Discriminant_Check (A, F_Typ);
4342 else
4343 Apply_Range_Check (A, F_Typ);
4344 end if;
4346 -- Ada 2005 (AI-231): Note that the controlling parameter case
4347 -- already existed in Ada 95, which is partially checked
4348 -- elsewhere (see Checks), and we don't want the warning
4349 -- message to differ.
4351 if Is_Access_Type (F_Typ)
4352 and then Can_Never_Be_Null (F_Typ)
4353 and then Known_Null (A)
4354 then
4355 if Is_Controlling_Formal (F) then
4356 Apply_Compile_Time_Constraint_Error
4357 (N => A,
4358 Msg => "null value not allowed here??",
4359 Reason => CE_Access_Check_Failed);
4361 elsif Ada_Version >= Ada_2005 then
4362 Apply_Compile_Time_Constraint_Error
4363 (N => A,
4364 Msg => "(Ada 2005) null not allowed in "
4365 & "null-excluding formal??",
4366 Reason => CE_Null_Not_Allowed);
4367 end if;
4368 end if;
4369 end if;
4371 -- Checks for OUT parameters and IN OUT parameters
4373 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter) then
4375 -- If there is a type conversion, make sure the return value
4376 -- meets the constraints of the variable before the conversion.
4378 if Nkind (A) = N_Type_Conversion then
4379 if Is_Scalar_Type (A_Typ) then
4380 Apply_Scalar_Range_Check
4381 (Expression (A), Etype (Expression (A)), A_Typ);
4383 -- In addition, the returned value of the parameter must
4384 -- satisfy the bounds of the object type (see comment
4385 -- below).
4387 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4389 else
4390 Apply_Range_Check
4391 (Expression (A), Etype (Expression (A)), A_Typ);
4392 end if;
4394 -- If no conversion, apply scalar range checks and length check
4395 -- based on the subtype of the actual (NOT that of the formal).
4396 -- This indicates that the check takes place on return from the
4397 -- call. During expansion the required constraint checks are
4398 -- inserted. In GNATprove mode, in the absence of expansion,
4399 -- the flag indicates that the returned value is valid.
4401 else
4402 if Is_Scalar_Type (F_Typ) then
4403 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4405 elsif Is_Array_Type (F_Typ)
4406 and then Ekind (F) = E_Out_Parameter
4407 then
4408 Apply_Length_Check (A, F_Typ);
4409 else
4410 Apply_Range_Check (A, A_Typ, F_Typ);
4411 end if;
4412 end if;
4414 -- Note: we do not apply the predicate checks for the case of
4415 -- OUT and IN OUT parameters. They are instead applied in the
4416 -- Expand_Actuals routine in Exp_Ch6.
4417 end if;
4419 -- An actual associated with an access parameter is implicitly
4420 -- converted to the anonymous access type of the formal and must
4421 -- satisfy the legality checks for access conversions.
4423 if Ekind (F_Typ) = E_Anonymous_Access_Type then
4424 if not Valid_Conversion (A, F_Typ, A) then
4425 Error_Msg_N
4426 ("invalid implicit conversion for access parameter", A);
4427 end if;
4429 -- If the actual is an access selected component of a variable,
4430 -- the call may modify its designated object. It is reasonable
4431 -- to treat this as a potential modification of the enclosing
4432 -- record, to prevent spurious warnings that it should be
4433 -- declared as a constant, because intuitively programmers
4434 -- regard the designated subcomponent as part of the record.
4436 if Nkind (A) = N_Selected_Component
4437 and then Is_Entity_Name (Prefix (A))
4438 and then not Is_Constant_Object (Entity (Prefix (A)))
4439 then
4440 Note_Possible_Modification (A, Sure => False);
4441 end if;
4442 end if;
4444 -- Check bad case of atomic/volatile argument (RM C.6(12))
4446 if Is_By_Reference_Type (Etype (F))
4447 and then Comes_From_Source (N)
4448 then
4449 if Is_Atomic_Object (A)
4450 and then not Is_Atomic (Etype (F))
4451 then
4452 Error_Msg_NE
4453 ("cannot pass atomic argument to non-atomic formal&",
4454 A, F);
4456 elsif Is_Volatile_Object (A)
4457 and then not Is_Volatile (Etype (F))
4458 then
4459 Error_Msg_NE
4460 ("cannot pass volatile argument to non-volatile formal&",
4461 A, F);
4462 end if;
4463 end if;
4465 -- Check that subprograms don't have improper controlling
4466 -- arguments (RM 3.9.2 (9)).
4468 -- A primitive operation may have an access parameter of an
4469 -- incomplete tagged type, but a dispatching call is illegal
4470 -- if the type is still incomplete.
4472 if Is_Controlling_Formal (F) then
4473 Set_Is_Controlling_Actual (A);
4475 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
4476 declare
4477 Desig : constant Entity_Id := Designated_Type (Etype (F));
4478 begin
4479 if Ekind (Desig) = E_Incomplete_Type
4480 and then No (Full_View (Desig))
4481 and then No (Non_Limited_View (Desig))
4482 then
4483 Error_Msg_NE
4484 ("premature use of incomplete type& "
4485 & "in dispatching call", A, Desig);
4486 end if;
4487 end;
4488 end if;
4490 elsif Nkind (A) = N_Explicit_Dereference then
4491 Validate_Remote_Access_To_Class_Wide_Type (A);
4492 end if;
4494 -- Apply legality rule 3.9.2 (9/1)
4496 if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
4497 and then not Is_Class_Wide_Type (F_Typ)
4498 and then not Is_Controlling_Formal (F)
4499 and then not In_Instance
4500 then
4501 Error_Msg_N ("class-wide argument not allowed here!", A);
4503 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4504 Error_Msg_Node_2 := F_Typ;
4505 Error_Msg_NE
4506 ("& is not a dispatching operation of &!", A, Nam);
4507 end if;
4509 -- Apply the checks described in 3.10.2(27): if the context is a
4510 -- specific access-to-object, the actual cannot be class-wide.
4511 -- Use base type to exclude access_to_subprogram cases.
4513 elsif Is_Access_Type (A_Typ)
4514 and then Is_Access_Type (F_Typ)
4515 and then not Is_Access_Subprogram_Type (Base_Type (F_Typ))
4516 and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
4517 or else (Nkind (A) = N_Attribute_Reference
4518 and then
4519 Is_Class_Wide_Type (Etype (Prefix (A)))))
4520 and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
4521 and then not Is_Controlling_Formal (F)
4523 -- Disable these checks for call to imported C++ subprograms
4525 and then not
4526 (Is_Entity_Name (Name (N))
4527 and then Is_Imported (Entity (Name (N)))
4528 and then Convention (Entity (Name (N))) = Convention_CPP)
4529 then
4530 Error_Msg_N
4531 ("access to class-wide argument not allowed here!", A);
4533 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4534 Error_Msg_Node_2 := Designated_Type (F_Typ);
4535 Error_Msg_NE
4536 ("& is not a dispatching operation of &!", A, Nam);
4537 end if;
4538 end if;
4540 Check_Aliased_Parameter;
4542 Eval_Actual (A);
4544 -- If it is a named association, treat the selector_name as a
4545 -- proper identifier, and mark the corresponding entity.
4547 if Nkind (Parent (A)) = N_Parameter_Association
4549 -- Ignore reference in SPARK mode, as it refers to an entity not
4550 -- in scope at the point of reference, so the reference should
4551 -- be ignored for computing effects of subprograms.
4553 and then not GNATprove_Mode
4554 then
4555 -- If subprogram is overridden, use name of formal that
4556 -- is being called.
4558 if Present (Real_Subp) then
4559 Set_Entity (Selector_Name (Parent (A)), Real_F);
4560 Set_Etype (Selector_Name (Parent (A)), Etype (Real_F));
4562 else
4563 Set_Entity (Selector_Name (Parent (A)), F);
4564 Generate_Reference (F, Selector_Name (Parent (A)));
4565 Set_Etype (Selector_Name (Parent (A)), F_Typ);
4566 Generate_Reference (F_Typ, N, ' ');
4567 end if;
4568 end if;
4570 Prev := A;
4572 if Ekind (F) /= E_Out_Parameter then
4573 Check_Unset_Reference (A);
4574 end if;
4576 -- The following checks are only relevant when SPARK_Mode is on as
4577 -- they are not standard Ada legality rule. Internally generated
4578 -- temporaries are ignored.
4580 if SPARK_Mode = On and then Comes_From_Source (A) then
4582 -- An effectively volatile object may act as an actual when the
4583 -- corresponding formal is of a non-scalar effectively volatile
4584 -- type (SPARK RM 7.1.3(11)).
4586 if not Is_Scalar_Type (Etype (F))
4587 and then Is_Effectively_Volatile (Etype (F))
4588 then
4589 null;
4591 -- An effectively volatile object may act as an actual in a
4592 -- call to an instance of Unchecked_Conversion.
4593 -- (SPARK RM 7.1.3(11)).
4595 elsif Is_Unchecked_Conversion_Instance (Nam) then
4596 null;
4598 -- The actual denotes an object
4600 elsif Is_Effectively_Volatile_Object (A) then
4601 Error_Msg_N
4602 ("volatile object cannot act as actual in a call (SPARK "
4603 & "RM 7.1.3(11))", A);
4605 -- Otherwise the actual denotes an expression. Inspect the
4606 -- expression and flag each effectively volatile object with
4607 -- enabled property Async_Writers or Effective_Reads as illegal
4608 -- because it apprears within an interfering context. Note that
4609 -- this is usually done in Resolve_Entity_Name, but when the
4610 -- effectively volatile object appears as an actual in a call,
4611 -- the call must be resolved first.
4613 else
4614 Flag_Effectively_Volatile_Objects (A);
4615 end if;
4617 -- Detect an external variable with an enabled property that
4618 -- does not match the mode of the corresponding formal in a
4619 -- procedure call. Functions are not considered because they
4620 -- cannot have effectively volatile formal parameters in the
4621 -- first place.
4623 if Ekind (Nam) = E_Procedure
4624 and then Ekind (F) = E_In_Parameter
4625 and then Is_Entity_Name (A)
4626 and then Present (Entity (A))
4627 and then Ekind (Entity (A)) = E_Variable
4628 then
4629 A_Id := Entity (A);
4631 if Async_Readers_Enabled (A_Id) then
4632 Property_Error (A, A_Id, Name_Async_Readers);
4633 elsif Effective_Reads_Enabled (A_Id) then
4634 Property_Error (A, A_Id, Name_Effective_Reads);
4635 elsif Effective_Writes_Enabled (A_Id) then
4636 Property_Error (A, A_Id, Name_Effective_Writes);
4637 end if;
4638 end if;
4639 end if;
4641 -- A formal parameter of a specific tagged type whose related
4642 -- subprogram is subject to pragma Extensions_Visible with value
4643 -- "False" cannot act as an actual in a subprogram with value
4644 -- "True" (SPARK RM 6.1.7(3)).
4646 if Is_EVF_Expression (A)
4647 and then Extensions_Visible_Status (Nam) =
4648 Extensions_Visible_True
4649 then
4650 Error_Msg_N
4651 ("formal parameter cannot act as actual parameter when "
4652 & "Extensions_Visible is False", A);
4653 Error_Msg_NE
4654 ("\subprogram & has Extensions_Visible True", A, Nam);
4655 end if;
4657 -- The actual parameter of a Ghost subprogram whose formal is of
4658 -- mode IN OUT or OUT must be a Ghost variable (SPARK RM 6.9(12)).
4660 if Comes_From_Source (Nam)
4661 and then Is_Ghost_Entity (Nam)
4662 and then Ekind_In (F, E_In_Out_Parameter, E_Out_Parameter)
4663 and then Is_Entity_Name (A)
4664 and then Present (Entity (A))
4665 and then not Is_Ghost_Entity (Entity (A))
4666 then
4667 Error_Msg_NE
4668 ("non-ghost variable & cannot appear as actual in call to "
4669 & "ghost procedure", A, Entity (A));
4671 if Ekind (F) = E_In_Out_Parameter then
4672 Error_Msg_N ("\corresponding formal has mode `IN OUT`", A);
4673 else
4674 Error_Msg_N ("\corresponding formal has mode OUT", A);
4675 end if;
4676 end if;
4678 Next_Actual (A);
4680 -- Case where actual is not present
4682 else
4683 Insert_Default;
4684 end if;
4686 Next_Formal (F);
4688 if Present (Real_Subp) then
4689 Next_Formal (Real_F);
4690 end if;
4691 end loop;
4692 end Resolve_Actuals;
4694 -----------------------
4695 -- Resolve_Allocator --
4696 -----------------------
4698 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
4699 Desig_T : constant Entity_Id := Designated_Type (Typ);
4700 E : constant Node_Id := Expression (N);
4701 Subtyp : Entity_Id;
4702 Discrim : Entity_Id;
4703 Constr : Node_Id;
4704 Aggr : Node_Id;
4705 Assoc : Node_Id := Empty;
4706 Disc_Exp : Node_Id;
4708 procedure Check_Allocator_Discrim_Accessibility
4709 (Disc_Exp : Node_Id;
4710 Alloc_Typ : Entity_Id);
4711 -- Check that accessibility level associated with an access discriminant
4712 -- initialized in an allocator by the expression Disc_Exp is not deeper
4713 -- than the level of the allocator type Alloc_Typ. An error message is
4714 -- issued if this condition is violated. Specialized checks are done for
4715 -- the cases of a constraint expression which is an access attribute or
4716 -- an access discriminant.
4718 function In_Dispatching_Context return Boolean;
4719 -- If the allocator is an actual in a call, it is allowed to be class-
4720 -- wide when the context is not because it is a controlling actual.
4722 -------------------------------------------
4723 -- Check_Allocator_Discrim_Accessibility --
4724 -------------------------------------------
4726 procedure Check_Allocator_Discrim_Accessibility
4727 (Disc_Exp : Node_Id;
4728 Alloc_Typ : Entity_Id)
4730 begin
4731 if Type_Access_Level (Etype (Disc_Exp)) >
4732 Deepest_Type_Access_Level (Alloc_Typ)
4733 then
4734 Error_Msg_N
4735 ("operand type has deeper level than allocator type", Disc_Exp);
4737 -- When the expression is an Access attribute the level of the prefix
4738 -- object must not be deeper than that of the allocator's type.
4740 elsif Nkind (Disc_Exp) = N_Attribute_Reference
4741 and then Get_Attribute_Id (Attribute_Name (Disc_Exp)) =
4742 Attribute_Access
4743 and then Object_Access_Level (Prefix (Disc_Exp)) >
4744 Deepest_Type_Access_Level (Alloc_Typ)
4745 then
4746 Error_Msg_N
4747 ("prefix of attribute has deeper level than allocator type",
4748 Disc_Exp);
4750 -- When the expression is an access discriminant the check is against
4751 -- the level of the prefix object.
4753 elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
4754 and then Nkind (Disc_Exp) = N_Selected_Component
4755 and then Object_Access_Level (Prefix (Disc_Exp)) >
4756 Deepest_Type_Access_Level (Alloc_Typ)
4757 then
4758 Error_Msg_N
4759 ("access discriminant has deeper level than allocator type",
4760 Disc_Exp);
4762 -- All other cases are legal
4764 else
4765 null;
4766 end if;
4767 end Check_Allocator_Discrim_Accessibility;
4769 ----------------------------
4770 -- In_Dispatching_Context --
4771 ----------------------------
4773 function In_Dispatching_Context return Boolean is
4774 Par : constant Node_Id := Parent (N);
4776 begin
4777 return Nkind (Par) in N_Subprogram_Call
4778 and then Is_Entity_Name (Name (Par))
4779 and then Is_Dispatching_Operation (Entity (Name (Par)));
4780 end In_Dispatching_Context;
4782 -- Start of processing for Resolve_Allocator
4784 begin
4785 -- Replace general access with specific type
4787 if Ekind (Etype (N)) = E_Allocator_Type then
4788 Set_Etype (N, Base_Type (Typ));
4789 end if;
4791 if Is_Abstract_Type (Typ) then
4792 Error_Msg_N ("type of allocator cannot be abstract", N);
4793 end if;
4795 -- For qualified expression, resolve the expression using the given
4796 -- subtype (nothing to do for type mark, subtype indication)
4798 if Nkind (E) = N_Qualified_Expression then
4799 if Is_Class_Wide_Type (Etype (E))
4800 and then not Is_Class_Wide_Type (Desig_T)
4801 and then not In_Dispatching_Context
4802 then
4803 Error_Msg_N
4804 ("class-wide allocator not allowed for this access type", N);
4805 end if;
4807 Resolve (Expression (E), Etype (E));
4808 Check_Non_Static_Context (Expression (E));
4809 Check_Unset_Reference (Expression (E));
4811 -- Allocators generated by the build-in-place expansion mechanism
4812 -- are explicitly marked as coming from source but do not need to be
4813 -- checked for limited initialization. To exclude this case, ensure
4814 -- that the parent of the allocator is a source node.
4816 if Is_Limited_Type (Etype (E))
4817 and then Comes_From_Source (N)
4818 and then Comes_From_Source (Parent (N))
4819 and then not In_Instance_Body
4820 then
4821 if not OK_For_Limited_Init (Etype (E), Expression (E)) then
4822 if Nkind (Parent (N)) = N_Assignment_Statement then
4823 Error_Msg_N
4824 ("illegal expression for initialized allocator of a "
4825 & "limited type (RM 7.5 (2.7/2))", N);
4826 else
4827 Error_Msg_N
4828 ("initialization not allowed for limited types", N);
4829 end if;
4831 Explain_Limited_Type (Etype (E), N);
4832 end if;
4833 end if;
4835 -- A qualified expression requires an exact match of the type. Class-
4836 -- wide matching is not allowed.
4838 if (Is_Class_Wide_Type (Etype (Expression (E)))
4839 or else Is_Class_Wide_Type (Etype (E)))
4840 and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
4841 then
4842 Wrong_Type (Expression (E), Etype (E));
4843 end if;
4845 -- Calls to build-in-place functions are not currently supported in
4846 -- allocators for access types associated with a simple storage pool.
4847 -- Supporting such allocators may require passing additional implicit
4848 -- parameters to build-in-place functions (or a significant revision
4849 -- of the current b-i-p implementation to unify the handling for
4850 -- multiple kinds of storage pools). ???
4852 if Is_Limited_View (Desig_T)
4853 and then Nkind (Expression (E)) = N_Function_Call
4854 then
4855 declare
4856 Pool : constant Entity_Id :=
4857 Associated_Storage_Pool (Root_Type (Typ));
4858 begin
4859 if Present (Pool)
4860 and then
4861 Present (Get_Rep_Pragma
4862 (Etype (Pool), Name_Simple_Storage_Pool_Type))
4863 then
4864 Error_Msg_N
4865 ("limited function calls not yet supported in simple "
4866 & "storage pool allocators", Expression (E));
4867 end if;
4868 end;
4869 end if;
4871 -- A special accessibility check is needed for allocators that
4872 -- constrain access discriminants. The level of the type of the
4873 -- expression used to constrain an access discriminant cannot be
4874 -- deeper than the type of the allocator (in contrast to access
4875 -- parameters, where the level of the actual can be arbitrary).
4877 -- We can't use Valid_Conversion to perform this check because in
4878 -- general the type of the allocator is unrelated to the type of
4879 -- the access discriminant.
4881 if Ekind (Typ) /= E_Anonymous_Access_Type
4882 or else Is_Local_Anonymous_Access (Typ)
4883 then
4884 Subtyp := Entity (Subtype_Mark (E));
4886 Aggr := Original_Node (Expression (E));
4888 if Has_Discriminants (Subtyp)
4889 and then Nkind_In (Aggr, N_Aggregate, N_Extension_Aggregate)
4890 then
4891 Discrim := First_Discriminant (Base_Type (Subtyp));
4893 -- Get the first component expression of the aggregate
4895 if Present (Expressions (Aggr)) then
4896 Disc_Exp := First (Expressions (Aggr));
4898 elsif Present (Component_Associations (Aggr)) then
4899 Assoc := First (Component_Associations (Aggr));
4901 if Present (Assoc) then
4902 Disc_Exp := Expression (Assoc);
4903 else
4904 Disc_Exp := Empty;
4905 end if;
4907 else
4908 Disc_Exp := Empty;
4909 end if;
4911 while Present (Discrim) and then Present (Disc_Exp) loop
4912 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4913 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4914 end if;
4916 Next_Discriminant (Discrim);
4918 if Present (Discrim) then
4919 if Present (Assoc) then
4920 Next (Assoc);
4921 Disc_Exp := Expression (Assoc);
4923 elsif Present (Next (Disc_Exp)) then
4924 Next (Disc_Exp);
4926 else
4927 Assoc := First (Component_Associations (Aggr));
4929 if Present (Assoc) then
4930 Disc_Exp := Expression (Assoc);
4931 else
4932 Disc_Exp := Empty;
4933 end if;
4934 end if;
4935 end if;
4936 end loop;
4937 end if;
4938 end if;
4940 -- For a subtype mark or subtype indication, freeze the subtype
4942 else
4943 Freeze_Expression (E);
4945 if Is_Access_Constant (Typ) and then not No_Initialization (N) then
4946 Error_Msg_N
4947 ("initialization required for access-to-constant allocator", N);
4948 end if;
4950 -- A special accessibility check is needed for allocators that
4951 -- constrain access discriminants. The level of the type of the
4952 -- expression used to constrain an access discriminant cannot be
4953 -- deeper than the type of the allocator (in contrast to access
4954 -- parameters, where the level of the actual can be arbitrary).
4955 -- We can't use Valid_Conversion to perform this check because
4956 -- in general the type of the allocator is unrelated to the type
4957 -- of the access discriminant.
4959 if Nkind (Original_Node (E)) = N_Subtype_Indication
4960 and then (Ekind (Typ) /= E_Anonymous_Access_Type
4961 or else Is_Local_Anonymous_Access (Typ))
4962 then
4963 Subtyp := Entity (Subtype_Mark (Original_Node (E)));
4965 if Has_Discriminants (Subtyp) then
4966 Discrim := First_Discriminant (Base_Type (Subtyp));
4967 Constr := First (Constraints (Constraint (Original_Node (E))));
4968 while Present (Discrim) and then Present (Constr) loop
4969 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4970 if Nkind (Constr) = N_Discriminant_Association then
4971 Disc_Exp := Original_Node (Expression (Constr));
4972 else
4973 Disc_Exp := Original_Node (Constr);
4974 end if;
4976 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4977 end if;
4979 Next_Discriminant (Discrim);
4980 Next (Constr);
4981 end loop;
4982 end if;
4983 end if;
4984 end if;
4986 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
4987 -- check that the level of the type of the created object is not deeper
4988 -- than the level of the allocator's access type, since extensions can
4989 -- now occur at deeper levels than their ancestor types. This is a
4990 -- static accessibility level check; a run-time check is also needed in
4991 -- the case of an initialized allocator with a class-wide argument (see
4992 -- Expand_Allocator_Expression).
4994 if Ada_Version >= Ada_2005
4995 and then Is_Class_Wide_Type (Desig_T)
4996 then
4997 declare
4998 Exp_Typ : Entity_Id;
5000 begin
5001 if Nkind (E) = N_Qualified_Expression then
5002 Exp_Typ := Etype (E);
5003 elsif Nkind (E) = N_Subtype_Indication then
5004 Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
5005 else
5006 Exp_Typ := Entity (E);
5007 end if;
5009 if Type_Access_Level (Exp_Typ) >
5010 Deepest_Type_Access_Level (Typ)
5011 then
5012 if In_Instance_Body then
5013 Error_Msg_Warn := SPARK_Mode /= On;
5014 Error_Msg_N
5015 ("type in allocator has deeper level than "
5016 & "designated class-wide type<<", E);
5017 Error_Msg_N ("\Program_Error [<<", E);
5018 Rewrite (N,
5019 Make_Raise_Program_Error (Sloc (N),
5020 Reason => PE_Accessibility_Check_Failed));
5021 Set_Etype (N, Typ);
5023 -- Do not apply Ada 2005 accessibility checks on a class-wide
5024 -- allocator if the type given in the allocator is a formal
5025 -- type. A run-time check will be performed in the instance.
5027 elsif not Is_Generic_Type (Exp_Typ) then
5028 Error_Msg_N ("type in allocator has deeper level than "
5029 & "designated class-wide type", E);
5030 end if;
5031 end if;
5032 end;
5033 end if;
5035 -- Check for allocation from an empty storage pool
5037 if No_Pool_Assigned (Typ) then
5038 Error_Msg_N ("allocation from empty storage pool!", N);
5040 -- If the context is an unchecked conversion, as may happen within an
5041 -- inlined subprogram, the allocator is being resolved with its own
5042 -- anonymous type. In that case, if the target type has a specific
5043 -- storage pool, it must be inherited explicitly by the allocator type.
5045 elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
5046 and then No (Associated_Storage_Pool (Typ))
5047 then
5048 Set_Associated_Storage_Pool
5049 (Typ, Associated_Storage_Pool (Etype (Parent (N))));
5050 end if;
5052 if Ekind (Etype (N)) = E_Anonymous_Access_Type then
5053 Check_Restriction (No_Anonymous_Allocators, N);
5054 end if;
5056 -- Check that an allocator with task parts isn't for a nested access
5057 -- type when restriction No_Task_Hierarchy applies.
5059 if not Is_Library_Level_Entity (Base_Type (Typ))
5060 and then Has_Task (Base_Type (Desig_T))
5061 then
5062 Check_Restriction (No_Task_Hierarchy, N);
5063 end if;
5065 -- An illegal allocator may be rewritten as a raise Program_Error
5066 -- statement.
5068 if Nkind (N) = N_Allocator then
5070 -- An anonymous access discriminant is the definition of a
5071 -- coextension.
5073 if Ekind (Typ) = E_Anonymous_Access_Type
5074 and then Nkind (Associated_Node_For_Itype (Typ)) =
5075 N_Discriminant_Specification
5076 then
5077 declare
5078 Discr : constant Entity_Id :=
5079 Defining_Identifier (Associated_Node_For_Itype (Typ));
5081 begin
5082 Check_Restriction (No_Coextensions, N);
5084 -- Ada 2012 AI05-0052: If the designated type of the allocator
5085 -- is limited, then the allocator shall not be used to define
5086 -- the value of an access discriminant unless the discriminated
5087 -- type is immutably limited.
5089 if Ada_Version >= Ada_2012
5090 and then Is_Limited_Type (Desig_T)
5091 and then not Is_Limited_View (Scope (Discr))
5092 then
5093 Error_Msg_N
5094 ("only immutably limited types can have anonymous "
5095 & "access discriminants designating a limited type", N);
5096 end if;
5097 end;
5099 -- Avoid marking an allocator as a dynamic coextension if it is
5100 -- within a static construct.
5102 if not Is_Static_Coextension (N) then
5103 Set_Is_Dynamic_Coextension (N);
5104 end if;
5106 -- Cleanup for potential static coextensions
5108 else
5109 Set_Is_Dynamic_Coextension (N, False);
5110 Set_Is_Static_Coextension (N, False);
5111 end if;
5112 end if;
5114 -- Report a simple error: if the designated object is a local task,
5115 -- its body has not been seen yet, and its activation will fail an
5116 -- elaboration check.
5118 if Is_Task_Type (Desig_T)
5119 and then Scope (Base_Type (Desig_T)) = Current_Scope
5120 and then Is_Compilation_Unit (Current_Scope)
5121 and then Ekind (Current_Scope) = E_Package
5122 and then not In_Package_Body (Current_Scope)
5123 then
5124 Error_Msg_Warn := SPARK_Mode /= On;
5125 Error_Msg_N ("cannot activate task before body seen<<", N);
5126 Error_Msg_N ("\Program_Error [<<", N);
5127 end if;
5129 -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
5130 -- type with a task component on a subpool. This action must raise
5131 -- Program_Error at runtime.
5133 if Ada_Version >= Ada_2012
5134 and then Nkind (N) = N_Allocator
5135 and then Present (Subpool_Handle_Name (N))
5136 and then Has_Task (Desig_T)
5137 then
5138 Error_Msg_Warn := SPARK_Mode /= On;
5139 Error_Msg_N ("cannot allocate task on subpool<<", N);
5140 Error_Msg_N ("\Program_Error [<<", N);
5142 Rewrite (N,
5143 Make_Raise_Program_Error (Sloc (N),
5144 Reason => PE_Explicit_Raise));
5145 Set_Etype (N, Typ);
5146 end if;
5147 end Resolve_Allocator;
5149 ---------------------------
5150 -- Resolve_Arithmetic_Op --
5151 ---------------------------
5153 -- Used for resolving all arithmetic operators except exponentiation
5155 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
5156 L : constant Node_Id := Left_Opnd (N);
5157 R : constant Node_Id := Right_Opnd (N);
5158 TL : constant Entity_Id := Base_Type (Etype (L));
5159 TR : constant Entity_Id := Base_Type (Etype (R));
5160 T : Entity_Id;
5161 Rop : Node_Id;
5163 B_Typ : constant Entity_Id := Base_Type (Typ);
5164 -- We do the resolution using the base type, because intermediate values
5165 -- in expressions always are of the base type, not a subtype of it.
5167 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
5168 -- Returns True if N is in a context that expects "any real type"
5170 function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
5171 -- Return True iff given type is Integer or universal real/integer
5173 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
5174 -- Choose type of integer literal in fixed-point operation to conform
5175 -- to available fixed-point type. T is the type of the other operand,
5176 -- which is needed to determine the expected type of N.
5178 procedure Set_Operand_Type (N : Node_Id);
5179 -- Set operand type to T if universal
5181 -------------------------------
5182 -- Expected_Type_Is_Any_Real --
5183 -------------------------------
5185 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
5186 begin
5187 -- N is the expression after "delta" in a fixed_point_definition;
5188 -- see RM-3.5.9(6):
5190 return Nkind_In (Parent (N), N_Ordinary_Fixed_Point_Definition,
5191 N_Decimal_Fixed_Point_Definition,
5193 -- N is one of the bounds in a real_range_specification;
5194 -- see RM-3.5.7(5):
5196 N_Real_Range_Specification,
5198 -- N is the expression of a delta_constraint;
5199 -- see RM-J.3(3):
5201 N_Delta_Constraint);
5202 end Expected_Type_Is_Any_Real;
5204 -----------------------------
5205 -- Is_Integer_Or_Universal --
5206 -----------------------------
5208 function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
5209 T : Entity_Id;
5210 Index : Interp_Index;
5211 It : Interp;
5213 begin
5214 if not Is_Overloaded (N) then
5215 T := Etype (N);
5216 return Base_Type (T) = Base_Type (Standard_Integer)
5217 or else T = Universal_Integer
5218 or else T = Universal_Real;
5219 else
5220 Get_First_Interp (N, Index, It);
5221 while Present (It.Typ) loop
5222 if Base_Type (It.Typ) = Base_Type (Standard_Integer)
5223 or else It.Typ = Universal_Integer
5224 or else It.Typ = Universal_Real
5225 then
5226 return True;
5227 end if;
5229 Get_Next_Interp (Index, It);
5230 end loop;
5231 end if;
5233 return False;
5234 end Is_Integer_Or_Universal;
5236 ----------------------------
5237 -- Set_Mixed_Mode_Operand --
5238 ----------------------------
5240 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
5241 Index : Interp_Index;
5242 It : Interp;
5244 begin
5245 if Universal_Interpretation (N) = Universal_Integer then
5247 -- A universal integer literal is resolved as standard integer
5248 -- except in the case of a fixed-point result, where we leave it
5249 -- as universal (to be handled by Exp_Fixd later on)
5251 if Is_Fixed_Point_Type (T) then
5252 Resolve (N, Universal_Integer);
5253 else
5254 Resolve (N, Standard_Integer);
5255 end if;
5257 elsif Universal_Interpretation (N) = Universal_Real
5258 and then (T = Base_Type (Standard_Integer)
5259 or else T = Universal_Integer
5260 or else T = Universal_Real)
5261 then
5262 -- A universal real can appear in a fixed-type context. We resolve
5263 -- the literal with that context, even though this might raise an
5264 -- exception prematurely (the other operand may be zero).
5266 Resolve (N, B_Typ);
5268 elsif Etype (N) = Base_Type (Standard_Integer)
5269 and then T = Universal_Real
5270 and then Is_Overloaded (N)
5271 then
5272 -- Integer arg in mixed-mode operation. Resolve with universal
5273 -- type, in case preference rule must be applied.
5275 Resolve (N, Universal_Integer);
5277 elsif Etype (N) = T
5278 and then B_Typ /= Universal_Fixed
5279 then
5280 -- Not a mixed-mode operation, resolve with context
5282 Resolve (N, B_Typ);
5284 elsif Etype (N) = Any_Fixed then
5286 -- N may itself be a mixed-mode operation, so use context type
5288 Resolve (N, B_Typ);
5290 elsif Is_Fixed_Point_Type (T)
5291 and then B_Typ = Universal_Fixed
5292 and then Is_Overloaded (N)
5293 then
5294 -- Must be (fixed * fixed) operation, operand must have one
5295 -- compatible interpretation.
5297 Resolve (N, Any_Fixed);
5299 elsif Is_Fixed_Point_Type (B_Typ)
5300 and then (T = Universal_Real or else Is_Fixed_Point_Type (T))
5301 and then Is_Overloaded (N)
5302 then
5303 -- C * F(X) in a fixed context, where C is a real literal or a
5304 -- fixed-point expression. F must have either a fixed type
5305 -- interpretation or an integer interpretation, but not both.
5307 Get_First_Interp (N, Index, It);
5308 while Present (It.Typ) loop
5309 if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
5310 if Analyzed (N) then
5311 Error_Msg_N ("ambiguous operand in fixed operation", N);
5312 else
5313 Resolve (N, Standard_Integer);
5314 end if;
5316 elsif Is_Fixed_Point_Type (It.Typ) then
5317 if Analyzed (N) then
5318 Error_Msg_N ("ambiguous operand in fixed operation", N);
5319 else
5320 Resolve (N, It.Typ);
5321 end if;
5322 end if;
5324 Get_Next_Interp (Index, It);
5325 end loop;
5327 -- Reanalyze the literal with the fixed type of the context. If
5328 -- context is Universal_Fixed, we are within a conversion, leave
5329 -- the literal as a universal real because there is no usable
5330 -- fixed type, and the target of the conversion plays no role in
5331 -- the resolution.
5333 declare
5334 Op2 : Node_Id;
5335 T2 : Entity_Id;
5337 begin
5338 if N = L then
5339 Op2 := R;
5340 else
5341 Op2 := L;
5342 end if;
5344 if B_Typ = Universal_Fixed
5345 and then Nkind (Op2) = N_Real_Literal
5346 then
5347 T2 := Universal_Real;
5348 else
5349 T2 := B_Typ;
5350 end if;
5352 Set_Analyzed (Op2, False);
5353 Resolve (Op2, T2);
5354 end;
5356 else
5357 Resolve (N);
5358 end if;
5359 end Set_Mixed_Mode_Operand;
5361 ----------------------
5362 -- Set_Operand_Type --
5363 ----------------------
5365 procedure Set_Operand_Type (N : Node_Id) is
5366 begin
5367 if Etype (N) = Universal_Integer
5368 or else Etype (N) = Universal_Real
5369 then
5370 Set_Etype (N, T);
5371 end if;
5372 end Set_Operand_Type;
5374 -- Start of processing for Resolve_Arithmetic_Op
5376 begin
5377 if Comes_From_Source (N)
5378 and then Ekind (Entity (N)) = E_Function
5379 and then Is_Imported (Entity (N))
5380 and then Is_Intrinsic_Subprogram (Entity (N))
5381 then
5382 Resolve_Intrinsic_Operator (N, Typ);
5383 return;
5385 -- Special-case for mixed-mode universal expressions or fixed point type
5386 -- operation: each argument is resolved separately. The same treatment
5387 -- is required if one of the operands of a fixed point operation is
5388 -- universal real, since in this case we don't do a conversion to a
5389 -- specific fixed-point type (instead the expander handles the case).
5391 -- Set the type of the node to its universal interpretation because
5392 -- legality checks on an exponentiation operand need the context.
5394 elsif (B_Typ = Universal_Integer or else B_Typ = Universal_Real)
5395 and then Present (Universal_Interpretation (L))
5396 and then Present (Universal_Interpretation (R))
5397 then
5398 Set_Etype (N, B_Typ);
5399 Resolve (L, Universal_Interpretation (L));
5400 Resolve (R, Universal_Interpretation (R));
5402 elsif (B_Typ = Universal_Real
5403 or else Etype (N) = Universal_Fixed
5404 or else (Etype (N) = Any_Fixed
5405 and then Is_Fixed_Point_Type (B_Typ))
5406 or else (Is_Fixed_Point_Type (B_Typ)
5407 and then (Is_Integer_Or_Universal (L)
5408 or else
5409 Is_Integer_Or_Universal (R))))
5410 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5411 then
5412 if TL = Universal_Integer or else TR = Universal_Integer then
5413 Check_For_Visible_Operator (N, B_Typ);
5414 end if;
5416 -- If context is a fixed type and one operand is integer, the other
5417 -- is resolved with the type of the context.
5419 if Is_Fixed_Point_Type (B_Typ)
5420 and then (Base_Type (TL) = Base_Type (Standard_Integer)
5421 or else TL = Universal_Integer)
5422 then
5423 Resolve (R, B_Typ);
5424 Resolve (L, TL);
5426 elsif Is_Fixed_Point_Type (B_Typ)
5427 and then (Base_Type (TR) = Base_Type (Standard_Integer)
5428 or else TR = Universal_Integer)
5429 then
5430 Resolve (L, B_Typ);
5431 Resolve (R, TR);
5433 else
5434 Set_Mixed_Mode_Operand (L, TR);
5435 Set_Mixed_Mode_Operand (R, TL);
5436 end if;
5438 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
5439 -- multiplying operators from being used when the expected type is
5440 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
5441 -- some cases where the expected type is actually Any_Real;
5442 -- Expected_Type_Is_Any_Real takes care of that case.
5444 if Etype (N) = Universal_Fixed
5445 or else Etype (N) = Any_Fixed
5446 then
5447 if B_Typ = Universal_Fixed
5448 and then not Expected_Type_Is_Any_Real (N)
5449 and then not Nkind_In (Parent (N), N_Type_Conversion,
5450 N_Unchecked_Type_Conversion)
5451 then
5452 Error_Msg_N ("type cannot be determined from context!", N);
5453 Error_Msg_N ("\explicit conversion to result type required", N);
5455 Set_Etype (L, Any_Type);
5456 Set_Etype (R, Any_Type);
5458 else
5459 if Ada_Version = Ada_83
5460 and then Etype (N) = Universal_Fixed
5461 and then not
5462 Nkind_In (Parent (N), N_Type_Conversion,
5463 N_Unchecked_Type_Conversion)
5464 then
5465 Error_Msg_N
5466 ("(Ada 83) fixed-point operation needs explicit "
5467 & "conversion", N);
5468 end if;
5470 -- The expected type is "any real type" in contexts like
5472 -- type T is delta <universal_fixed-expression> ...
5474 -- in which case we need to set the type to Universal_Real
5475 -- so that static expression evaluation will work properly.
5477 if Expected_Type_Is_Any_Real (N) then
5478 Set_Etype (N, Universal_Real);
5479 else
5480 Set_Etype (N, B_Typ);
5481 end if;
5482 end if;
5484 elsif Is_Fixed_Point_Type (B_Typ)
5485 and then (Is_Integer_Or_Universal (L)
5486 or else Nkind (L) = N_Real_Literal
5487 or else Nkind (R) = N_Real_Literal
5488 or else Is_Integer_Or_Universal (R))
5489 then
5490 Set_Etype (N, B_Typ);
5492 elsif Etype (N) = Any_Fixed then
5494 -- If no previous errors, this is only possible if one operand is
5495 -- overloaded and the context is universal. Resolve as such.
5497 Set_Etype (N, B_Typ);
5498 end if;
5500 else
5501 if (TL = Universal_Integer or else TL = Universal_Real)
5502 and then
5503 (TR = Universal_Integer or else TR = Universal_Real)
5504 then
5505 Check_For_Visible_Operator (N, B_Typ);
5506 end if;
5508 -- If the context is Universal_Fixed and the operands are also
5509 -- universal fixed, this is an error, unless there is only one
5510 -- applicable fixed_point type (usually Duration).
5512 if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
5513 T := Unique_Fixed_Point_Type (N);
5515 if T = Any_Type then
5516 Set_Etype (N, T);
5517 return;
5518 else
5519 Resolve (L, T);
5520 Resolve (R, T);
5521 end if;
5523 else
5524 Resolve (L, B_Typ);
5525 Resolve (R, B_Typ);
5526 end if;
5528 -- If one of the arguments was resolved to a non-universal type.
5529 -- label the result of the operation itself with the same type.
5530 -- Do the same for the universal argument, if any.
5532 T := Intersect_Types (L, R);
5533 Set_Etype (N, Base_Type (T));
5534 Set_Operand_Type (L);
5535 Set_Operand_Type (R);
5536 end if;
5538 Generate_Operator_Reference (N, Typ);
5539 Analyze_Dimension (N);
5540 Eval_Arithmetic_Op (N);
5542 -- In SPARK, a multiplication or division with operands of fixed point
5543 -- types must be qualified or explicitly converted to identify the
5544 -- result type.
5546 if (Is_Fixed_Point_Type (Etype (L))
5547 or else Is_Fixed_Point_Type (Etype (R)))
5548 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5549 and then
5550 not Nkind_In (Parent (N), N_Qualified_Expression, N_Type_Conversion)
5551 then
5552 Check_SPARK_05_Restriction
5553 ("operation should be qualified or explicitly converted", N);
5554 end if;
5556 -- Set overflow and division checking bit
5558 if Nkind (N) in N_Op then
5559 if not Overflow_Checks_Suppressed (Etype (N)) then
5560 Enable_Overflow_Check (N);
5561 end if;
5563 -- Give warning if explicit division by zero
5565 if Nkind_In (N, N_Op_Divide, N_Op_Rem, N_Op_Mod)
5566 and then not Division_Checks_Suppressed (Etype (N))
5567 then
5568 Rop := Right_Opnd (N);
5570 if Compile_Time_Known_Value (Rop)
5571 and then ((Is_Integer_Type (Etype (Rop))
5572 and then Expr_Value (Rop) = Uint_0)
5573 or else
5574 (Is_Real_Type (Etype (Rop))
5575 and then Expr_Value_R (Rop) = Ureal_0))
5576 then
5577 -- Specialize the warning message according to the operation.
5578 -- When SPARK_Mode is On, force a warning instead of an error
5579 -- in that case, as this likely corresponds to deactivated
5580 -- code. The following warnings are for the case
5582 case Nkind (N) is
5583 when N_Op_Divide =>
5585 -- For division, we have two cases, for float division
5586 -- of an unconstrained float type, on a machine where
5587 -- Machine_Overflows is false, we don't get an exception
5588 -- at run-time, but rather an infinity or Nan. The Nan
5589 -- case is pretty obscure, so just warn about infinities.
5591 if Is_Floating_Point_Type (Typ)
5592 and then not Is_Constrained (Typ)
5593 and then not Machine_Overflows_On_Target
5594 then
5595 Error_Msg_N
5596 ("float division by zero, may generate "
5597 & "'+'/'- infinity??", Right_Opnd (N));
5599 -- For all other cases, we get a Constraint_Error
5601 else
5602 Apply_Compile_Time_Constraint_Error
5603 (N, "division by zero??", CE_Divide_By_Zero,
5604 Loc => Sloc (Right_Opnd (N)),
5605 Warn => SPARK_Mode = On);
5606 end if;
5608 when N_Op_Rem =>
5609 Apply_Compile_Time_Constraint_Error
5610 (N, "rem with zero divisor??", CE_Divide_By_Zero,
5611 Loc => Sloc (Right_Opnd (N)),
5612 Warn => SPARK_Mode = On);
5614 when N_Op_Mod =>
5615 Apply_Compile_Time_Constraint_Error
5616 (N, "mod with zero divisor??", CE_Divide_By_Zero,
5617 Loc => Sloc (Right_Opnd (N)),
5618 Warn => SPARK_Mode = On);
5620 -- Division by zero can only happen with division, rem,
5621 -- and mod operations.
5623 when others =>
5624 raise Program_Error;
5625 end case;
5627 -- In GNATprove mode, we enable the division check so that
5628 -- GNATprove will issue a message if it cannot be proved.
5630 if GNATprove_Mode then
5631 Activate_Division_Check (N);
5632 end if;
5634 -- Otherwise just set the flag to check at run time
5636 else
5637 Activate_Division_Check (N);
5638 end if;
5639 end if;
5641 -- If Restriction No_Implicit_Conditionals is active, then it is
5642 -- violated if either operand can be negative for mod, or for rem
5643 -- if both operands can be negative.
5645 if Restriction_Check_Required (No_Implicit_Conditionals)
5646 and then Nkind_In (N, N_Op_Rem, N_Op_Mod)
5647 then
5648 declare
5649 Lo : Uint;
5650 Hi : Uint;
5651 OK : Boolean;
5653 LNeg : Boolean;
5654 RNeg : Boolean;
5655 -- Set if corresponding operand might be negative
5657 begin
5658 Determine_Range
5659 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5660 LNeg := (not OK) or else Lo < 0;
5662 Determine_Range
5663 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5664 RNeg := (not OK) or else Lo < 0;
5666 -- Check if we will be generating conditionals. There are two
5667 -- cases where that can happen, first for REM, the only case
5668 -- is largest negative integer mod -1, where the division can
5669 -- overflow, but we still have to give the right result. The
5670 -- front end generates a test for this annoying case. Here we
5671 -- just test if both operands can be negative (that's what the
5672 -- expander does, so we match its logic here).
5674 -- The second case is mod where either operand can be negative.
5675 -- In this case, the back end has to generate additional tests.
5677 if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
5678 or else
5679 (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
5680 then
5681 Check_Restriction (No_Implicit_Conditionals, N);
5682 end if;
5683 end;
5684 end if;
5685 end if;
5687 Check_Unset_Reference (L);
5688 Check_Unset_Reference (R);
5689 end Resolve_Arithmetic_Op;
5691 ------------------
5692 -- Resolve_Call --
5693 ------------------
5695 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
5696 function Same_Or_Aliased_Subprograms
5697 (S : Entity_Id;
5698 E : Entity_Id) return Boolean;
5699 -- Returns True if the subprogram entity S is the same as E or else
5700 -- S is an alias of E.
5702 ---------------------------------
5703 -- Same_Or_Aliased_Subprograms --
5704 ---------------------------------
5706 function Same_Or_Aliased_Subprograms
5707 (S : Entity_Id;
5708 E : Entity_Id) return Boolean
5710 Subp_Alias : constant Entity_Id := Alias (S);
5711 begin
5712 return S = E or else (Present (Subp_Alias) and then Subp_Alias = E);
5713 end Same_Or_Aliased_Subprograms;
5715 -- Local variables
5717 Loc : constant Source_Ptr := Sloc (N);
5718 Subp : constant Node_Id := Name (N);
5719 Body_Id : Entity_Id;
5720 I : Interp_Index;
5721 It : Interp;
5722 Nam : Entity_Id;
5723 Nam_Decl : Node_Id;
5724 Nam_UA : Entity_Id;
5725 Norm_OK : Boolean;
5726 Rtype : Entity_Id;
5727 Scop : Entity_Id;
5729 -- Start of processing for Resolve_Call
5731 begin
5732 -- The context imposes a unique interpretation with type Typ on a
5733 -- procedure or function call. Find the entity of the subprogram that
5734 -- yields the expected type, and propagate the corresponding formal
5735 -- constraints on the actuals. The caller has established that an
5736 -- interpretation exists, and emitted an error if not unique.
5738 -- First deal with the case of a call to an access-to-subprogram,
5739 -- dereference made explicit in Analyze_Call.
5741 if Ekind (Etype (Subp)) = E_Subprogram_Type then
5742 if not Is_Overloaded (Subp) then
5743 Nam := Etype (Subp);
5745 else
5746 -- Find the interpretation whose type (a subprogram type) has a
5747 -- return type that is compatible with the context. Analysis of
5748 -- the node has established that one exists.
5750 Nam := Empty;
5752 Get_First_Interp (Subp, I, It);
5753 while Present (It.Typ) loop
5754 if Covers (Typ, Etype (It.Typ)) then
5755 Nam := It.Typ;
5756 exit;
5757 end if;
5759 Get_Next_Interp (I, It);
5760 end loop;
5762 if No (Nam) then
5763 raise Program_Error;
5764 end if;
5765 end if;
5767 -- If the prefix is not an entity, then resolve it
5769 if not Is_Entity_Name (Subp) then
5770 Resolve (Subp, Nam);
5771 end if;
5773 -- For an indirect call, we always invalidate checks, since we do not
5774 -- know whether the subprogram is local or global. Yes we could do
5775 -- better here, e.g. by knowing that there are no local subprograms,
5776 -- but it does not seem worth the effort. Similarly, we kill all
5777 -- knowledge of current constant values.
5779 Kill_Current_Values;
5781 -- If this is a procedure call which is really an entry call, do
5782 -- the conversion of the procedure call to an entry call. Protected
5783 -- operations use the same circuitry because the name in the call
5784 -- can be an arbitrary expression with special resolution rules.
5786 elsif Nkind_In (Subp, N_Selected_Component, N_Indexed_Component)
5787 or else (Is_Entity_Name (Subp)
5788 and then Ekind (Entity (Subp)) = E_Entry)
5789 then
5790 Resolve_Entry_Call (N, Typ);
5791 Check_Elab_Call (N);
5793 -- Kill checks and constant values, as above for indirect case
5794 -- Who knows what happens when another task is activated?
5796 Kill_Current_Values;
5797 return;
5799 -- Normal subprogram call with name established in Resolve
5801 elsif not (Is_Type (Entity (Subp))) then
5802 Nam := Entity (Subp);
5803 Set_Entity_With_Checks (Subp, Nam);
5805 -- Otherwise we must have the case of an overloaded call
5807 else
5808 pragma Assert (Is_Overloaded (Subp));
5810 -- Initialize Nam to prevent warning (we know it will be assigned
5811 -- in the loop below, but the compiler does not know that).
5813 Nam := Empty;
5815 Get_First_Interp (Subp, I, It);
5816 while Present (It.Typ) loop
5817 if Covers (Typ, It.Typ) then
5818 Nam := It.Nam;
5819 Set_Entity_With_Checks (Subp, Nam);
5820 exit;
5821 end if;
5823 Get_Next_Interp (I, It);
5824 end loop;
5825 end if;
5827 if Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
5828 and then not Is_Access_Subprogram_Type (Base_Type (Typ))
5829 and then Nkind (Subp) /= N_Explicit_Dereference
5830 and then Present (Parameter_Associations (N))
5831 then
5832 -- The prefix is a parameterless function call that returns an access
5833 -- to subprogram. If parameters are present in the current call, add
5834 -- add an explicit dereference. We use the base type here because
5835 -- within an instance these may be subtypes.
5837 -- The dereference is added either in Analyze_Call or here. Should
5838 -- be consolidated ???
5840 Set_Is_Overloaded (Subp, False);
5841 Set_Etype (Subp, Etype (Nam));
5842 Insert_Explicit_Dereference (Subp);
5843 Nam := Designated_Type (Etype (Nam));
5844 Resolve (Subp, Nam);
5845 end if;
5847 -- Check that a call to Current_Task does not occur in an entry body
5849 if Is_RTE (Nam, RE_Current_Task) then
5850 declare
5851 P : Node_Id;
5853 begin
5854 P := N;
5855 loop
5856 P := Parent (P);
5858 -- Exclude calls that occur within the default of a formal
5859 -- parameter of the entry, since those are evaluated outside
5860 -- of the body.
5862 exit when No (P) or else Nkind (P) = N_Parameter_Specification;
5864 if Nkind (P) = N_Entry_Body
5865 or else (Nkind (P) = N_Subprogram_Body
5866 and then Is_Entry_Barrier_Function (P))
5867 then
5868 Rtype := Etype (N);
5869 Error_Msg_Warn := SPARK_Mode /= On;
5870 Error_Msg_NE
5871 ("& should not be used in entry body (RM C.7(17))<<",
5872 N, Nam);
5873 Error_Msg_NE ("\Program_Error [<<", N, Nam);
5874 Rewrite (N,
5875 Make_Raise_Program_Error (Loc,
5876 Reason => PE_Current_Task_In_Entry_Body));
5877 Set_Etype (N, Rtype);
5878 return;
5879 end if;
5880 end loop;
5881 end;
5882 end if;
5884 -- Check that a procedure call does not occur in the context of the
5885 -- entry call statement of a conditional or timed entry call. Note that
5886 -- the case of a call to a subprogram renaming of an entry will also be
5887 -- rejected. The test for N not being an N_Entry_Call_Statement is
5888 -- defensive, covering the possibility that the processing of entry
5889 -- calls might reach this point due to later modifications of the code
5890 -- above.
5892 if Nkind (Parent (N)) = N_Entry_Call_Alternative
5893 and then Nkind (N) /= N_Entry_Call_Statement
5894 and then Entry_Call_Statement (Parent (N)) = N
5895 then
5896 if Ada_Version < Ada_2005 then
5897 Error_Msg_N ("entry call required in select statement", N);
5899 -- Ada 2005 (AI-345): If a procedure_call_statement is used
5900 -- for a procedure_or_entry_call, the procedure_name or
5901 -- procedure_prefix of the procedure_call_statement shall denote
5902 -- an entry renamed by a procedure, or (a view of) a primitive
5903 -- subprogram of a limited interface whose first parameter is
5904 -- a controlling parameter.
5906 elsif Nkind (N) = N_Procedure_Call_Statement
5907 and then not Is_Renamed_Entry (Nam)
5908 and then not Is_Controlling_Limited_Procedure (Nam)
5909 then
5910 Error_Msg_N
5911 ("entry call or dispatching primitive of interface required", N);
5912 end if;
5913 end if;
5915 -- If the SPARK_05 restriction is active, we are not allowed
5916 -- to have a call to a subprogram before we see its completion.
5918 if not Has_Completion (Nam)
5919 and then Restriction_Check_Required (SPARK_05)
5921 -- Don't flag strange internal calls
5923 and then Comes_From_Source (N)
5924 and then Comes_From_Source (Nam)
5926 -- Only flag calls in extended main source
5928 and then In_Extended_Main_Source_Unit (Nam)
5929 and then In_Extended_Main_Source_Unit (N)
5931 -- Exclude enumeration literals from this processing
5933 and then Ekind (Nam) /= E_Enumeration_Literal
5934 then
5935 Check_SPARK_05_Restriction
5936 ("call to subprogram cannot appear before its body", N);
5937 end if;
5939 -- Check that this is not a call to a protected procedure or entry from
5940 -- within a protected function.
5942 Check_Internal_Protected_Use (N, Nam);
5944 -- Freeze the subprogram name if not in a spec-expression. Note that
5945 -- we freeze procedure calls as well as function calls. Procedure calls
5946 -- are not frozen according to the rules (RM 13.14(14)) because it is
5947 -- impossible to have a procedure call to a non-frozen procedure in
5948 -- pure Ada, but in the code that we generate in the expander, this
5949 -- rule needs extending because we can generate procedure calls that
5950 -- need freezing.
5952 -- In Ada 2012, expression functions may be called within pre/post
5953 -- conditions of subsequent functions or expression functions. Such
5954 -- calls do not freeze when they appear within generated bodies,
5955 -- (including the body of another expression function) which would
5956 -- place the freeze node in the wrong scope. An expression function
5957 -- is frozen in the usual fashion, by the appearance of a real body,
5958 -- or at the end of a declarative part.
5960 if Is_Entity_Name (Subp)
5961 and then not In_Spec_Expression
5962 and then not Is_Expression_Function_Or_Completion (Current_Scope)
5963 and then
5964 (not Is_Expression_Function_Or_Completion (Entity (Subp))
5965 or else Scope (Entity (Subp)) = Current_Scope)
5966 then
5967 Freeze_Expression (Subp);
5968 end if;
5970 -- For a predefined operator, the type of the result is the type imposed
5971 -- by context, except for a predefined operation on universal fixed.
5972 -- Otherwise The type of the call is the type returned by the subprogram
5973 -- being called.
5975 if Is_Predefined_Op (Nam) then
5976 if Etype (N) /= Universal_Fixed then
5977 Set_Etype (N, Typ);
5978 end if;
5980 -- If the subprogram returns an array type, and the context requires the
5981 -- component type of that array type, the node is really an indexing of
5982 -- the parameterless call. Resolve as such. A pathological case occurs
5983 -- when the type of the component is an access to the array type. In
5984 -- this case the call is truly ambiguous. If the call is to an intrinsic
5985 -- subprogram, it can't be an indexed component. This check is necessary
5986 -- because if it's Unchecked_Conversion, and we have "type T_Ptr is
5987 -- access T;" and "type T is array (...) of T_Ptr;" (i.e. an array of
5988 -- pointers to the same array), the compiler gets confused and does an
5989 -- infinite recursion.
5991 elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
5992 and then
5993 ((Is_Array_Type (Etype (Nam))
5994 and then Covers (Typ, Component_Type (Etype (Nam))))
5995 or else
5996 (Is_Access_Type (Etype (Nam))
5997 and then Is_Array_Type (Designated_Type (Etype (Nam)))
5998 and then
5999 Covers (Typ, Component_Type (Designated_Type (Etype (Nam))))
6000 and then not Is_Intrinsic_Subprogram (Entity (Subp))))
6001 then
6002 declare
6003 Index_Node : Node_Id;
6004 New_Subp : Node_Id;
6005 Ret_Type : constant Entity_Id := Etype (Nam);
6007 begin
6008 if Is_Access_Type (Ret_Type)
6009 and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
6010 then
6011 Error_Msg_N
6012 ("cannot disambiguate function call and indexing", N);
6013 else
6014 New_Subp := Relocate_Node (Subp);
6016 -- The called entity may be an explicit dereference, in which
6017 -- case there is no entity to set.
6019 if Nkind (New_Subp) /= N_Explicit_Dereference then
6020 Set_Entity (Subp, Nam);
6021 end if;
6023 if (Is_Array_Type (Ret_Type)
6024 and then Component_Type (Ret_Type) /= Any_Type)
6025 or else
6026 (Is_Access_Type (Ret_Type)
6027 and then
6028 Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
6029 then
6030 if Needs_No_Actuals (Nam) then
6032 -- Indexed call to a parameterless function
6034 Index_Node :=
6035 Make_Indexed_Component (Loc,
6036 Prefix =>
6037 Make_Function_Call (Loc, Name => New_Subp),
6038 Expressions => Parameter_Associations (N));
6039 else
6040 -- An Ada 2005 prefixed call to a primitive operation
6041 -- whose first parameter is the prefix. This prefix was
6042 -- prepended to the parameter list, which is actually a
6043 -- list of indexes. Remove the prefix in order to build
6044 -- the proper indexed component.
6046 Index_Node :=
6047 Make_Indexed_Component (Loc,
6048 Prefix =>
6049 Make_Function_Call (Loc,
6050 Name => New_Subp,
6051 Parameter_Associations =>
6052 New_List
6053 (Remove_Head (Parameter_Associations (N)))),
6054 Expressions => Parameter_Associations (N));
6055 end if;
6057 -- Preserve the parenthesis count of the node
6059 Set_Paren_Count (Index_Node, Paren_Count (N));
6061 -- Since we are correcting a node classification error made
6062 -- by the parser, we call Replace rather than Rewrite.
6064 Replace (N, Index_Node);
6066 Set_Etype (Prefix (N), Ret_Type);
6067 Set_Etype (N, Typ);
6068 Resolve_Indexed_Component (N, Typ);
6069 Check_Elab_Call (Prefix (N));
6070 end if;
6071 end if;
6073 return;
6074 end;
6076 else
6077 -- If the called function is not declared in the main unit and it
6078 -- returns the limited view of type then use the available view (as
6079 -- is done in Try_Object_Operation) to prevent back-end confusion;
6080 -- the call must appear in a context where the nonlimited view is
6081 -- available. If the called function is in the extended main unit
6082 -- then no action is needed, because the back end handles this case.
6084 if not In_Extended_Main_Code_Unit (Nam)
6085 and then From_Limited_With (Etype (Nam))
6086 then
6087 Set_Etype (Nam, Available_View (Etype (Nam)));
6088 end if;
6090 Set_Etype (N, Etype (Nam));
6091 end if;
6093 -- In the case where the call is to an overloaded subprogram, Analyze
6094 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
6095 -- such a case Normalize_Actuals needs to be called once more to order
6096 -- the actuals correctly. Otherwise the call will have the ordering
6097 -- given by the last overloaded subprogram whether this is the correct
6098 -- one being called or not.
6100 if Is_Overloaded (Subp) then
6101 Normalize_Actuals (N, Nam, False, Norm_OK);
6102 pragma Assert (Norm_OK);
6103 end if;
6105 -- In any case, call is fully resolved now. Reset Overload flag, to
6106 -- prevent subsequent overload resolution if node is analyzed again
6108 Set_Is_Overloaded (Subp, False);
6109 Set_Is_Overloaded (N, False);
6111 -- A Ghost entity must appear in a specific context
6113 if Is_Ghost_Entity (Nam) and then Comes_From_Source (N) then
6114 Check_Ghost_Context (Nam, N);
6115 end if;
6117 -- If we are calling the current subprogram from immediately within its
6118 -- body, then that is the case where we can sometimes detect cases of
6119 -- infinite recursion statically. Do not try this in case restriction
6120 -- No_Recursion is in effect anyway, and do it only for source calls.
6122 if Comes_From_Source (N) then
6123 Scop := Current_Scope;
6125 -- Check violation of SPARK_05 restriction which does not permit
6126 -- a subprogram body to contain a call to the subprogram directly.
6128 if Restriction_Check_Required (SPARK_05)
6129 and then Same_Or_Aliased_Subprograms (Nam, Scop)
6130 then
6131 Check_SPARK_05_Restriction
6132 ("subprogram may not contain direct call to itself", N);
6133 end if;
6135 -- Issue warning for possible infinite recursion in the absence
6136 -- of the No_Recursion restriction.
6138 if Same_Or_Aliased_Subprograms (Nam, Scop)
6139 and then not Restriction_Active (No_Recursion)
6140 and then Check_Infinite_Recursion (N)
6141 then
6142 -- Here we detected and flagged an infinite recursion, so we do
6143 -- not need to test the case below for further warnings. Also we
6144 -- are all done if we now have a raise SE node.
6146 if Nkind (N) = N_Raise_Storage_Error then
6147 return;
6148 end if;
6150 -- If call is to immediately containing subprogram, then check for
6151 -- the case of a possible run-time detectable infinite recursion.
6153 else
6154 Scope_Loop : while Scop /= Standard_Standard loop
6155 if Same_Or_Aliased_Subprograms (Nam, Scop) then
6157 -- Although in general case, recursion is not statically
6158 -- checkable, the case of calling an immediately containing
6159 -- subprogram is easy to catch.
6161 Check_Restriction (No_Recursion, N);
6163 -- If the recursive call is to a parameterless subprogram,
6164 -- then even if we can't statically detect infinite
6165 -- recursion, this is pretty suspicious, and we output a
6166 -- warning. Furthermore, we will try later to detect some
6167 -- cases here at run time by expanding checking code (see
6168 -- Detect_Infinite_Recursion in package Exp_Ch6).
6170 -- If the recursive call is within a handler, do not emit a
6171 -- warning, because this is a common idiom: loop until input
6172 -- is correct, catch illegal input in handler and restart.
6174 if No (First_Formal (Nam))
6175 and then Etype (Nam) = Standard_Void_Type
6176 and then not Error_Posted (N)
6177 and then Nkind (Parent (N)) /= N_Exception_Handler
6178 then
6179 -- For the case of a procedure call. We give the message
6180 -- only if the call is the first statement in a sequence
6181 -- of statements, or if all previous statements are
6182 -- simple assignments. This is simply a heuristic to
6183 -- decrease false positives, without losing too many good
6184 -- warnings. The idea is that these previous statements
6185 -- may affect global variables the procedure depends on.
6186 -- We also exclude raise statements, that may arise from
6187 -- constraint checks and are probably unrelated to the
6188 -- intended control flow.
6190 if Nkind (N) = N_Procedure_Call_Statement
6191 and then Is_List_Member (N)
6192 then
6193 declare
6194 P : Node_Id;
6195 begin
6196 P := Prev (N);
6197 while Present (P) loop
6198 if not Nkind_In (P, N_Assignment_Statement,
6199 N_Raise_Constraint_Error)
6200 then
6201 exit Scope_Loop;
6202 end if;
6204 Prev (P);
6205 end loop;
6206 end;
6207 end if;
6209 -- Do not give warning if we are in a conditional context
6211 declare
6212 K : constant Node_Kind := Nkind (Parent (N));
6213 begin
6214 if (K = N_Loop_Statement
6215 and then Present (Iteration_Scheme (Parent (N))))
6216 or else K = N_If_Statement
6217 or else K = N_Elsif_Part
6218 or else K = N_Case_Statement_Alternative
6219 then
6220 exit Scope_Loop;
6221 end if;
6222 end;
6224 -- Here warning is to be issued
6226 Set_Has_Recursive_Call (Nam);
6227 Error_Msg_Warn := SPARK_Mode /= On;
6228 Error_Msg_N ("possible infinite recursion<<!", N);
6229 Error_Msg_N ("\Storage_Error ]<<!", N);
6230 end if;
6232 exit Scope_Loop;
6233 end if;
6235 Scop := Scope (Scop);
6236 end loop Scope_Loop;
6237 end if;
6238 end if;
6240 -- Check obsolescent reference to Ada.Characters.Handling subprogram
6242 Check_Obsolescent_2005_Entity (Nam, Subp);
6244 -- If subprogram name is a predefined operator, it was given in
6245 -- functional notation. Replace call node with operator node, so
6246 -- that actuals can be resolved appropriately.
6248 if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
6249 Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
6250 return;
6252 elsif Present (Alias (Nam))
6253 and then Is_Predefined_Op (Alias (Nam))
6254 then
6255 Resolve_Actuals (N, Nam);
6256 Make_Call_Into_Operator (N, Typ, Alias (Nam));
6257 return;
6258 end if;
6260 -- Create a transient scope if the resulting type requires it
6262 -- There are several notable exceptions:
6264 -- a) In init procs, the transient scope overhead is not needed, and is
6265 -- even incorrect when the call is a nested initialization call for a
6266 -- component whose expansion may generate adjust calls. However, if the
6267 -- call is some other procedure call within an initialization procedure
6268 -- (for example a call to Create_Task in the init_proc of the task
6269 -- run-time record) a transient scope must be created around this call.
6271 -- b) Enumeration literal pseudo-calls need no transient scope
6273 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
6274 -- functions) do not use the secondary stack even though the return
6275 -- type may be unconstrained.
6277 -- d) Calls to a build-in-place function, since such functions may
6278 -- allocate their result directly in a target object, and cases where
6279 -- the result does get allocated in the secondary stack are checked for
6280 -- within the specialized Exp_Ch6 procedures for expanding those
6281 -- build-in-place calls.
6283 -- e) Calls to inlinable expression functions do not use the secondary
6284 -- stack (since the call will be replaced by its returned object).
6286 -- f) If the subprogram is marked Inline_Always, then even if it returns
6287 -- an unconstrained type the call does not require use of the secondary
6288 -- stack. However, inlining will only take place if the body to inline
6289 -- is already present. It may not be available if e.g. the subprogram is
6290 -- declared in a child instance.
6292 -- If this is an initialization call for a type whose construction
6293 -- uses the secondary stack, and it is not a nested call to initialize
6294 -- a component, we do need to create a transient scope for it. We
6295 -- check for this by traversing the type in Check_Initialization_Call.
6297 if Is_Inlined (Nam)
6298 and then Has_Pragma_Inline (Nam)
6299 and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
6300 and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
6301 then
6302 null;
6304 elsif Ekind (Nam) = E_Enumeration_Literal
6305 or else Is_Build_In_Place_Function (Nam)
6306 or else Is_Intrinsic_Subprogram (Nam)
6307 or else Is_Inlinable_Expression_Function (Nam)
6308 then
6309 null;
6311 elsif Expander_Active
6312 and then Is_Type (Etype (Nam))
6313 and then Requires_Transient_Scope (Etype (Nam))
6314 and then
6315 (not Within_Init_Proc
6316 or else
6317 (not Is_Init_Proc (Nam) and then Ekind (Nam) /= E_Function))
6318 then
6319 Establish_Transient_Scope (N, Sec_Stack => True);
6321 -- If the call appears within the bounds of a loop, it will
6322 -- be rewritten and reanalyzed, nothing left to do here.
6324 if Nkind (N) /= N_Function_Call then
6325 return;
6326 end if;
6328 elsif Is_Init_Proc (Nam)
6329 and then not Within_Init_Proc
6330 then
6331 Check_Initialization_Call (N, Nam);
6332 end if;
6334 -- A protected function cannot be called within the definition of the
6335 -- enclosing protected type, unless it is part of a pre/postcondition
6336 -- on another protected operation. This may appear in the entry wrapper
6337 -- created for an entry with preconditions.
6339 if Is_Protected_Type (Scope (Nam))
6340 and then In_Open_Scopes (Scope (Nam))
6341 and then not Has_Completion (Scope (Nam))
6342 and then not In_Spec_Expression
6343 and then not Is_Entry_Wrapper (Current_Scope)
6344 then
6345 Error_Msg_NE
6346 ("& cannot be called before end of protected definition", N, Nam);
6347 end if;
6349 -- Propagate interpretation to actuals, and add default expressions
6350 -- where needed.
6352 if Present (First_Formal (Nam)) then
6353 Resolve_Actuals (N, Nam);
6355 -- Overloaded literals are rewritten as function calls, for purpose of
6356 -- resolution. After resolution, we can replace the call with the
6357 -- literal itself.
6359 elsif Ekind (Nam) = E_Enumeration_Literal then
6360 Copy_Node (Subp, N);
6361 Resolve_Entity_Name (N, Typ);
6363 -- Avoid validation, since it is a static function call
6365 Generate_Reference (Nam, Subp);
6366 return;
6367 end if;
6369 -- If the subprogram is not global, then kill all saved values and
6370 -- checks. This is a bit conservative, since in many cases we could do
6371 -- better, but it is not worth the effort. Similarly, we kill constant
6372 -- values. However we do not need to do this for internal entities
6373 -- (unless they are inherited user-defined subprograms), since they
6374 -- are not in the business of molesting local values.
6376 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
6377 -- kill all checks and values for calls to global subprograms. This
6378 -- takes care of the case where an access to a local subprogram is
6379 -- taken, and could be passed directly or indirectly and then called
6380 -- from almost any context.
6382 -- Note: we do not do this step till after resolving the actuals. That
6383 -- way we still take advantage of the current value information while
6384 -- scanning the actuals.
6386 -- We suppress killing values if we are processing the nodes associated
6387 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
6388 -- type kills all the values as part of analyzing the code that
6389 -- initializes the dispatch tables.
6391 if Inside_Freezing_Actions = 0
6392 and then (not Is_Library_Level_Entity (Nam)
6393 or else Suppress_Value_Tracking_On_Call
6394 (Nearest_Dynamic_Scope (Current_Scope)))
6395 and then (Comes_From_Source (Nam)
6396 or else (Present (Alias (Nam))
6397 and then Comes_From_Source (Alias (Nam))))
6398 then
6399 Kill_Current_Values;
6400 end if;
6402 -- If we are warning about unread OUT parameters, this is the place to
6403 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
6404 -- after the above call to Kill_Current_Values (since that call clears
6405 -- the Last_Assignment field of all local variables).
6407 if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
6408 and then Comes_From_Source (N)
6409 and then In_Extended_Main_Source_Unit (N)
6410 then
6411 declare
6412 F : Entity_Id;
6413 A : Node_Id;
6415 begin
6416 F := First_Formal (Nam);
6417 A := First_Actual (N);
6418 while Present (F) and then Present (A) loop
6419 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
6420 and then Warn_On_Modified_As_Out_Parameter (F)
6421 and then Is_Entity_Name (A)
6422 and then Present (Entity (A))
6423 and then Comes_From_Source (N)
6424 and then Safe_To_Capture_Value (N, Entity (A))
6425 then
6426 Set_Last_Assignment (Entity (A), A);
6427 end if;
6429 Next_Formal (F);
6430 Next_Actual (A);
6431 end loop;
6432 end;
6433 end if;
6435 -- If the subprogram is a primitive operation, check whether or not
6436 -- it is a correct dispatching call.
6438 if Is_Overloadable (Nam)
6439 and then Is_Dispatching_Operation (Nam)
6440 then
6441 Check_Dispatching_Call (N);
6443 elsif Ekind (Nam) /= E_Subprogram_Type
6444 and then Is_Abstract_Subprogram (Nam)
6445 and then not In_Instance
6446 then
6447 Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
6448 end if;
6450 -- If this is a dispatching call, generate the appropriate reference,
6451 -- for better source navigation in GPS.
6453 if Is_Overloadable (Nam)
6454 and then Present (Controlling_Argument (N))
6455 then
6456 Generate_Reference (Nam, Subp, 'R');
6458 -- Normal case, not a dispatching call: generate a call reference
6460 else
6461 Generate_Reference (Nam, Subp, 's');
6462 end if;
6464 if Is_Intrinsic_Subprogram (Nam) then
6465 Check_Intrinsic_Call (N);
6466 end if;
6468 -- Check for violation of restriction No_Specific_Termination_Handlers
6469 -- and warn on a potentially blocking call to Abort_Task.
6471 if Restriction_Check_Required (No_Specific_Termination_Handlers)
6472 and then (Is_RTE (Nam, RE_Set_Specific_Handler)
6473 or else
6474 Is_RTE (Nam, RE_Specific_Handler))
6475 then
6476 Check_Restriction (No_Specific_Termination_Handlers, N);
6478 elsif Is_RTE (Nam, RE_Abort_Task) then
6479 Check_Potentially_Blocking_Operation (N);
6480 end if;
6482 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
6483 -- timing event violates restriction No_Relative_Delay (AI-0211). We
6484 -- need to check the second argument to determine whether it is an
6485 -- absolute or relative timing event.
6487 if Restriction_Check_Required (No_Relative_Delay)
6488 and then Is_RTE (Nam, RE_Set_Handler)
6489 and then Is_RTE (Etype (Next_Actual (First_Actual (N))), RE_Time_Span)
6490 then
6491 Check_Restriction (No_Relative_Delay, N);
6492 end if;
6494 -- Issue an error for a call to an eliminated subprogram. This routine
6495 -- will not perform the check if the call appears within a default
6496 -- expression.
6498 Check_For_Eliminated_Subprogram (Subp, Nam);
6500 -- In formal mode, the primitive operations of a tagged type or type
6501 -- extension do not include functions that return the tagged type.
6503 if Nkind (N) = N_Function_Call
6504 and then Is_Tagged_Type (Etype (N))
6505 and then Is_Entity_Name (Name (N))
6506 and then Is_Inherited_Operation_For_Type (Entity (Name (N)), Etype (N))
6507 then
6508 Check_SPARK_05_Restriction ("function not inherited", N);
6509 end if;
6511 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
6512 -- class-wide and the call dispatches on result in a context that does
6513 -- not provide a tag, the call raises Program_Error.
6515 if Nkind (N) = N_Function_Call
6516 and then In_Instance
6517 and then Is_Generic_Actual_Type (Typ)
6518 and then Is_Class_Wide_Type (Typ)
6519 and then Has_Controlling_Result (Nam)
6520 and then Nkind (Parent (N)) = N_Object_Declaration
6521 then
6522 -- Verify that none of the formals are controlling
6524 declare
6525 Call_OK : Boolean := False;
6526 F : Entity_Id;
6528 begin
6529 F := First_Formal (Nam);
6530 while Present (F) loop
6531 if Is_Controlling_Formal (F) then
6532 Call_OK := True;
6533 exit;
6534 end if;
6536 Next_Formal (F);
6537 end loop;
6539 if not Call_OK then
6540 Error_Msg_Warn := SPARK_Mode /= On;
6541 Error_Msg_N ("!cannot determine tag of result<<", N);
6542 Error_Msg_N ("\Program_Error [<<!", N);
6543 Insert_Action (N,
6544 Make_Raise_Program_Error (Sloc (N),
6545 Reason => PE_Explicit_Raise));
6546 end if;
6547 end;
6548 end if;
6550 -- Check for calling a function with OUT or IN OUT parameter when the
6551 -- calling context (us right now) is not Ada 2012, so does not allow
6552 -- OUT or IN OUT parameters in function calls. Functions declared in
6553 -- a predefined unit are OK, as they may be called indirectly from a
6554 -- user-declared instantiation.
6556 if Ada_Version < Ada_2012
6557 and then Ekind (Nam) = E_Function
6558 and then Has_Out_Or_In_Out_Parameter (Nam)
6559 and then not In_Predefined_Unit (Nam)
6560 then
6561 Error_Msg_NE ("& has at least one OUT or `IN OUT` parameter", N, Nam);
6562 Error_Msg_N ("\call to this function only allowed in Ada 2012", N);
6563 end if;
6565 -- Check the dimensions of the actuals in the call. For function calls,
6566 -- propagate the dimensions from the returned type to N.
6568 Analyze_Dimension_Call (N, Nam);
6570 -- All done, evaluate call and deal with elaboration issues
6572 Eval_Call (N);
6573 Check_Elab_Call (N);
6575 -- In GNATprove mode, expansion is disabled, but we want to inline some
6576 -- subprograms to facilitate formal verification. Indirect calls through
6577 -- a subprogram type or within a generic cannot be inlined. Inlining is
6578 -- performed only for calls subject to SPARK_Mode on.
6580 if GNATprove_Mode
6581 and then SPARK_Mode = On
6582 and then Is_Overloadable (Nam)
6583 and then not Inside_A_Generic
6584 then
6585 Nam_UA := Ultimate_Alias (Nam);
6586 Nam_Decl := Unit_Declaration_Node (Nam_UA);
6588 if Nkind (Nam_Decl) = N_Subprogram_Declaration then
6589 Body_Id := Corresponding_Body (Nam_Decl);
6591 -- Nothing to do if the subprogram is not eligible for inlining in
6592 -- GNATprove mode.
6594 if not Is_Inlined_Always (Nam_UA)
6595 or else not Can_Be_Inlined_In_GNATprove_Mode (Nam_UA, Body_Id)
6596 then
6597 null;
6599 -- Calls cannot be inlined inside assertions, as GNATprove treats
6600 -- assertions as logic expressions.
6602 elsif In_Assertion_Expr /= 0 then
6603 Cannot_Inline
6604 ("cannot inline & (in assertion expression)?", N, Nam_UA);
6606 -- Calls cannot be inlined inside default expressions
6608 elsif In_Default_Expr then
6609 Cannot_Inline
6610 ("cannot inline & (in default expression)?", N, Nam_UA);
6612 -- Inlining should not be performed during pre-analysis
6614 elsif Full_Analysis then
6616 -- With the one-pass inlining technique, a call cannot be
6617 -- inlined if the corresponding body has not been seen yet.
6619 if No (Body_Id) then
6620 Cannot_Inline
6621 ("cannot inline & (body not seen yet)?", N, Nam_UA);
6623 -- Nothing to do if there is no body to inline, indicating that
6624 -- the subprogram is not suitable for inlining in GNATprove
6625 -- mode.
6627 elsif No (Body_To_Inline (Nam_Decl)) then
6628 null;
6630 -- Do not inline calls inside expression functions, as this
6631 -- would prevent interpreting them as logical formulas in
6632 -- GNATprove.
6634 elsif Present (Current_Subprogram)
6635 and then
6636 Is_Expression_Function_Or_Completion (Current_Subprogram)
6637 then
6638 Cannot_Inline
6639 ("cannot inline & (inside expression function)?",
6640 N, Nam_UA);
6642 -- Calls cannot be inlined inside potentially unevaluated
6643 -- expressions, as this would create complex actions inside
6644 -- expressions, that are not handled by GNATprove.
6646 elsif Is_Potentially_Unevaluated (N) then
6647 Cannot_Inline
6648 ("cannot inline & (in potentially unevaluated context)?",
6649 N, Nam_UA);
6651 -- Do not inline calls which would possibly lead to missing a
6652 -- type conversion check on an input parameter.
6654 elsif not Call_Can_Be_Inlined_In_GNATprove_Mode (N, Nam) then
6655 Cannot_Inline
6656 ("cannot inline & (possible check on input parameters)?",
6657 N, Nam_UA);
6659 -- Otherwise, inline the call
6661 else
6662 Expand_Inlined_Call (N, Nam_UA, Nam);
6663 end if;
6664 end if;
6665 end if;
6666 end if;
6668 Warn_On_Overlapping_Actuals (Nam, N);
6669 end Resolve_Call;
6671 -----------------------------
6672 -- Resolve_Case_Expression --
6673 -----------------------------
6675 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id) is
6676 Alt : Node_Id;
6677 Alt_Expr : Node_Id;
6678 Alt_Typ : Entity_Id;
6679 Is_Dyn : Boolean;
6681 begin
6682 Alt := First (Alternatives (N));
6683 while Present (Alt) loop
6684 Alt_Expr := Expression (Alt);
6685 Resolve (Alt_Expr, Typ);
6686 Alt_Typ := Etype (Alt_Expr);
6688 -- When the expression is of a scalar subtype different from the
6689 -- result subtype, then insert a conversion to ensure the generation
6690 -- of a constraint check.
6692 if Is_Scalar_Type (Alt_Typ) and then Alt_Typ /= Typ then
6693 Rewrite (Alt_Expr, Convert_To (Typ, Alt_Expr));
6694 Analyze_And_Resolve (Alt_Expr, Typ);
6695 end if;
6697 Next (Alt);
6698 end loop;
6700 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
6701 -- dynamically tagged must be known statically.
6703 if Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
6704 Alt := First (Alternatives (N));
6705 Is_Dyn := Is_Dynamically_Tagged (Expression (Alt));
6707 while Present (Alt) loop
6708 if Is_Dynamically_Tagged (Expression (Alt)) /= Is_Dyn then
6709 Error_Msg_N
6710 ("all or none of the dependent expressions can be "
6711 & "dynamically tagged", N);
6712 end if;
6714 Next (Alt);
6715 end loop;
6716 end if;
6718 Set_Etype (N, Typ);
6719 Eval_Case_Expression (N);
6720 end Resolve_Case_Expression;
6722 -------------------------------
6723 -- Resolve_Character_Literal --
6724 -------------------------------
6726 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
6727 B_Typ : constant Entity_Id := Base_Type (Typ);
6728 C : Entity_Id;
6730 begin
6731 -- Verify that the character does belong to the type of the context
6733 Set_Etype (N, B_Typ);
6734 Eval_Character_Literal (N);
6736 -- Wide_Wide_Character literals must always be defined, since the set
6737 -- of wide wide character literals is complete, i.e. if a character
6738 -- literal is accepted by the parser, then it is OK for wide wide
6739 -- character (out of range character literals are rejected).
6741 if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6742 return;
6744 -- Always accept character literal for type Any_Character, which
6745 -- occurs in error situations and in comparisons of literals, both
6746 -- of which should accept all literals.
6748 elsif B_Typ = Any_Character then
6749 return;
6751 -- For Standard.Character or a type derived from it, check that the
6752 -- literal is in range.
6754 elsif Root_Type (B_Typ) = Standard_Character then
6755 if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6756 return;
6757 end if;
6759 -- For Standard.Wide_Character or a type derived from it, check that the
6760 -- literal is in range.
6762 elsif Root_Type (B_Typ) = Standard_Wide_Character then
6763 if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6764 return;
6765 end if;
6767 -- For Standard.Wide_Wide_Character or a type derived from it, we
6768 -- know the literal is in range, since the parser checked.
6770 elsif Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6771 return;
6773 -- If the entity is already set, this has already been resolved in a
6774 -- generic context, or comes from expansion. Nothing else to do.
6776 elsif Present (Entity (N)) then
6777 return;
6779 -- Otherwise we have a user defined character type, and we can use the
6780 -- standard visibility mechanisms to locate the referenced entity.
6782 else
6783 C := Current_Entity (N);
6784 while Present (C) loop
6785 if Etype (C) = B_Typ then
6786 Set_Entity_With_Checks (N, C);
6787 Generate_Reference (C, N);
6788 return;
6789 end if;
6791 C := Homonym (C);
6792 end loop;
6793 end if;
6795 -- If we fall through, then the literal does not match any of the
6796 -- entries of the enumeration type. This isn't just a constraint error
6797 -- situation, it is an illegality (see RM 4.2).
6799 Error_Msg_NE
6800 ("character not defined for }", N, First_Subtype (B_Typ));
6801 end Resolve_Character_Literal;
6803 ---------------------------
6804 -- Resolve_Comparison_Op --
6805 ---------------------------
6807 -- Context requires a boolean type, and plays no role in resolution.
6808 -- Processing identical to that for equality operators. The result type is
6809 -- the base type, which matters when pathological subtypes of booleans with
6810 -- limited ranges are used.
6812 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
6813 L : constant Node_Id := Left_Opnd (N);
6814 R : constant Node_Id := Right_Opnd (N);
6815 T : Entity_Id;
6817 begin
6818 -- If this is an intrinsic operation which is not predefined, use the
6819 -- types of its declared arguments to resolve the possibly overloaded
6820 -- operands. Otherwise the operands are unambiguous and specify the
6821 -- expected type.
6823 if Scope (Entity (N)) /= Standard_Standard then
6824 T := Etype (First_Entity (Entity (N)));
6826 else
6827 T := Find_Unique_Type (L, R);
6829 if T = Any_Fixed then
6830 T := Unique_Fixed_Point_Type (L);
6831 end if;
6832 end if;
6834 Set_Etype (N, Base_Type (Typ));
6835 Generate_Reference (T, N, ' ');
6837 -- Skip remaining processing if already set to Any_Type
6839 if T = Any_Type then
6840 return;
6841 end if;
6843 -- Deal with other error cases
6845 if T = Any_String or else
6846 T = Any_Composite or else
6847 T = Any_Character
6848 then
6849 if T = Any_Character then
6850 Ambiguous_Character (L);
6851 else
6852 Error_Msg_N ("ambiguous operands for comparison", N);
6853 end if;
6855 Set_Etype (N, Any_Type);
6856 return;
6857 end if;
6859 -- Resolve the operands if types OK
6861 Resolve (L, T);
6862 Resolve (R, T);
6863 Check_Unset_Reference (L);
6864 Check_Unset_Reference (R);
6865 Generate_Operator_Reference (N, T);
6866 Check_Low_Bound_Tested (N);
6868 -- In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
6869 -- types or array types except String.
6871 if Is_Boolean_Type (T) then
6872 Check_SPARK_05_Restriction
6873 ("comparison is not defined on Boolean type", N);
6875 elsif Is_Array_Type (T)
6876 and then Base_Type (T) /= Standard_String
6877 then
6878 Check_SPARK_05_Restriction
6879 ("comparison is not defined on array types other than String", N);
6880 end if;
6882 -- Check comparison on unordered enumeration
6884 if Bad_Unordered_Enumeration_Reference (N, Etype (L)) then
6885 Error_Msg_Sloc := Sloc (Etype (L));
6886 Error_Msg_NE
6887 ("comparison on unordered enumeration type& declared#?U?",
6888 N, Etype (L));
6889 end if;
6891 -- Evaluate the relation (note we do this after the above check since
6892 -- this Eval call may change N to True/False.
6894 Analyze_Dimension (N);
6895 Eval_Relational_Op (N);
6896 end Resolve_Comparison_Op;
6898 -----------------------------------------
6899 -- Resolve_Discrete_Subtype_Indication --
6900 -----------------------------------------
6902 procedure Resolve_Discrete_Subtype_Indication
6903 (N : Node_Id;
6904 Typ : Entity_Id)
6906 R : Node_Id;
6907 S : Entity_Id;
6909 begin
6910 Analyze (Subtype_Mark (N));
6911 S := Entity (Subtype_Mark (N));
6913 if Nkind (Constraint (N)) /= N_Range_Constraint then
6914 Error_Msg_N ("expect range constraint for discrete type", N);
6915 Set_Etype (N, Any_Type);
6917 else
6918 R := Range_Expression (Constraint (N));
6920 if R = Error then
6921 return;
6922 end if;
6924 Analyze (R);
6926 if Base_Type (S) /= Base_Type (Typ) then
6927 Error_Msg_NE
6928 ("expect subtype of }", N, First_Subtype (Typ));
6930 -- Rewrite the constraint as a range of Typ
6931 -- to allow compilation to proceed further.
6933 Set_Etype (N, Typ);
6934 Rewrite (Low_Bound (R),
6935 Make_Attribute_Reference (Sloc (Low_Bound (R)),
6936 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
6937 Attribute_Name => Name_First));
6938 Rewrite (High_Bound (R),
6939 Make_Attribute_Reference (Sloc (High_Bound (R)),
6940 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
6941 Attribute_Name => Name_First));
6943 else
6944 Resolve (R, Typ);
6945 Set_Etype (N, Etype (R));
6947 -- Additionally, we must check that the bounds are compatible
6948 -- with the given subtype, which might be different from the
6949 -- type of the context.
6951 Apply_Range_Check (R, S);
6953 -- ??? If the above check statically detects a Constraint_Error
6954 -- it replaces the offending bound(s) of the range R with a
6955 -- Constraint_Error node. When the itype which uses these bounds
6956 -- is frozen the resulting call to Duplicate_Subexpr generates
6957 -- a new temporary for the bounds.
6959 -- Unfortunately there are other itypes that are also made depend
6960 -- on these bounds, so when Duplicate_Subexpr is called they get
6961 -- a forward reference to the newly created temporaries and Gigi
6962 -- aborts on such forward references. This is probably sign of a
6963 -- more fundamental problem somewhere else in either the order of
6964 -- itype freezing or the way certain itypes are constructed.
6966 -- To get around this problem we call Remove_Side_Effects right
6967 -- away if either bounds of R are a Constraint_Error.
6969 declare
6970 L : constant Node_Id := Low_Bound (R);
6971 H : constant Node_Id := High_Bound (R);
6973 begin
6974 if Nkind (L) = N_Raise_Constraint_Error then
6975 Remove_Side_Effects (L);
6976 end if;
6978 if Nkind (H) = N_Raise_Constraint_Error then
6979 Remove_Side_Effects (H);
6980 end if;
6981 end;
6983 Check_Unset_Reference (Low_Bound (R));
6984 Check_Unset_Reference (High_Bound (R));
6985 end if;
6986 end if;
6987 end Resolve_Discrete_Subtype_Indication;
6989 -------------------------
6990 -- Resolve_Entity_Name --
6991 -------------------------
6993 -- Used to resolve identifiers and expanded names
6995 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
6996 function Is_Assignment_Or_Object_Expression
6997 (Context : Node_Id;
6998 Expr : Node_Id) return Boolean;
6999 -- Determine whether node Context denotes an assignment statement or an
7000 -- object declaration whose expression is node Expr.
7002 ----------------------------------------
7003 -- Is_Assignment_Or_Object_Expression --
7004 ----------------------------------------
7006 function Is_Assignment_Or_Object_Expression
7007 (Context : Node_Id;
7008 Expr : Node_Id) return Boolean
7010 begin
7011 if Nkind_In (Context, N_Assignment_Statement,
7012 N_Object_Declaration)
7013 and then Expression (Context) = Expr
7014 then
7015 return True;
7017 -- Check whether a construct that yields a name is the expression of
7018 -- an assignment statement or an object declaration.
7020 elsif (Nkind_In (Context, N_Attribute_Reference,
7021 N_Explicit_Dereference,
7022 N_Indexed_Component,
7023 N_Selected_Component,
7024 N_Slice)
7025 and then Prefix (Context) = Expr)
7026 or else
7027 (Nkind_In (Context, N_Type_Conversion,
7028 N_Unchecked_Type_Conversion)
7029 and then Expression (Context) = Expr)
7030 then
7031 return
7032 Is_Assignment_Or_Object_Expression
7033 (Context => Parent (Context),
7034 Expr => Context);
7036 -- Otherwise the context is not an assignment statement or an object
7037 -- declaration.
7039 else
7040 return False;
7041 end if;
7042 end Is_Assignment_Or_Object_Expression;
7044 -- Local variables
7046 E : constant Entity_Id := Entity (N);
7047 Par : Node_Id;
7049 -- Start of processing for Resolve_Entity_Name
7051 begin
7052 -- If garbage from errors, set to Any_Type and return
7054 if No (E) and then Total_Errors_Detected /= 0 then
7055 Set_Etype (N, Any_Type);
7056 return;
7057 end if;
7059 -- Replace named numbers by corresponding literals. Note that this is
7060 -- the one case where Resolve_Entity_Name must reset the Etype, since
7061 -- it is currently marked as universal.
7063 if Ekind (E) = E_Named_Integer then
7064 Set_Etype (N, Typ);
7065 Eval_Named_Integer (N);
7067 elsif Ekind (E) = E_Named_Real then
7068 Set_Etype (N, Typ);
7069 Eval_Named_Real (N);
7071 -- For enumeration literals, we need to make sure that a proper style
7072 -- check is done, since such literals are overloaded, and thus we did
7073 -- not do a style check during the first phase of analysis.
7075 elsif Ekind (E) = E_Enumeration_Literal then
7076 Set_Entity_With_Checks (N, E);
7077 Eval_Entity_Name (N);
7079 -- Case of (sub)type name appearing in a context where an expression
7080 -- is expected. This is legal if occurrence is a current instance.
7081 -- See RM 8.6 (17/3).
7083 elsif Is_Type (E) then
7084 if Is_Current_Instance (N) then
7085 null;
7087 -- Any other use is an error
7089 else
7090 Error_Msg_N
7091 ("invalid use of subtype mark in expression or call", N);
7092 end if;
7094 -- Check discriminant use if entity is discriminant in current scope,
7095 -- i.e. discriminant of record or concurrent type currently being
7096 -- analyzed. Uses in corresponding body are unrestricted.
7098 elsif Ekind (E) = E_Discriminant
7099 and then Scope (E) = Current_Scope
7100 and then not Has_Completion (Current_Scope)
7101 then
7102 Check_Discriminant_Use (N);
7104 -- A parameterless generic function cannot appear in a context that
7105 -- requires resolution.
7107 elsif Ekind (E) = E_Generic_Function then
7108 Error_Msg_N ("illegal use of generic function", N);
7110 -- In Ada 83 an OUT parameter cannot be read
7112 elsif Ekind (E) = E_Out_Parameter
7113 and then (Nkind (Parent (N)) in N_Op
7114 or else Nkind (Parent (N)) = N_Explicit_Dereference
7115 or else Is_Assignment_Or_Object_Expression
7116 (Context => Parent (N),
7117 Expr => N))
7118 then
7119 if Ada_Version = Ada_83 then
7120 Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
7121 end if;
7123 -- In all other cases, just do the possible static evaluation
7125 else
7126 -- A deferred constant that appears in an expression must have a
7127 -- completion, unless it has been removed by in-place expansion of
7128 -- an aggregate. A constant that is a renaming does not need
7129 -- initialization.
7131 if Ekind (E) = E_Constant
7132 and then Comes_From_Source (E)
7133 and then No (Constant_Value (E))
7134 and then Is_Frozen (Etype (E))
7135 and then not In_Spec_Expression
7136 and then not Is_Imported (E)
7137 and then Nkind (Parent (E)) /= N_Object_Renaming_Declaration
7138 then
7139 if No_Initialization (Parent (E))
7140 or else (Present (Full_View (E))
7141 and then No_Initialization (Parent (Full_View (E))))
7142 then
7143 null;
7144 else
7145 Error_Msg_N
7146 ("deferred constant is frozen before completion", N);
7147 end if;
7148 end if;
7150 Eval_Entity_Name (N);
7151 end if;
7153 Par := Parent (N);
7155 -- When the entity appears in a parameter association, retrieve the
7156 -- related subprogram call.
7158 if Nkind (Par) = N_Parameter_Association then
7159 Par := Parent (Par);
7160 end if;
7162 if Comes_From_Source (N) then
7164 -- The following checks are only relevant when SPARK_Mode is on as
7165 -- they are not standard Ada legality rules.
7167 if SPARK_Mode = On then
7169 -- An effectively volatile object subject to enabled properties
7170 -- Async_Writers or Effective_Reads must appear in non-interfering
7171 -- context (SPARK RM 7.1.3(12)).
7173 if Is_Object (E)
7174 and then Is_Effectively_Volatile (E)
7175 and then (Async_Writers_Enabled (E)
7176 or else Effective_Reads_Enabled (E))
7177 and then not Is_OK_Volatile_Context (Par, N)
7178 then
7179 SPARK_Msg_N
7180 ("volatile object cannot appear in this context "
7181 & "(SPARK RM 7.1.3(12))", N);
7182 end if;
7184 -- Check for possible elaboration issues with respect to reads of
7185 -- variables. The act of renaming the variable is not considered a
7186 -- read as it simply establishes an alias.
7188 if Ekind (E) = E_Variable
7189 and then Dynamic_Elaboration_Checks
7190 and then Nkind (Par) /= N_Object_Renaming_Declaration
7191 then
7192 Check_Elab_Call (N);
7193 end if;
7195 -- The variable may eventually become a constituent of a single
7196 -- protected/task type. Record the reference now and verify its
7197 -- legality when analyzing the contract of the variable
7198 -- (SPARK RM 9.3).
7200 if Ekind (E) = E_Variable then
7201 Record_Possible_Part_Of_Reference (E, N);
7202 end if;
7203 end if;
7205 -- A Ghost entity must appear in a specific context
7207 if Is_Ghost_Entity (E) then
7208 Check_Ghost_Context (E, N);
7209 end if;
7210 end if;
7211 end Resolve_Entity_Name;
7213 -------------------
7214 -- Resolve_Entry --
7215 -------------------
7217 procedure Resolve_Entry (Entry_Name : Node_Id) is
7218 Loc : constant Source_Ptr := Sloc (Entry_Name);
7219 Nam : Entity_Id;
7220 New_N : Node_Id;
7221 S : Entity_Id;
7222 Tsk : Entity_Id;
7223 E_Name : Node_Id;
7224 Index : Node_Id;
7226 function Actual_Index_Type (E : Entity_Id) return Entity_Id;
7227 -- If the bounds of the entry family being called depend on task
7228 -- discriminants, build a new index subtype where a discriminant is
7229 -- replaced with the value of the discriminant of the target task.
7230 -- The target task is the prefix of the entry name in the call.
7232 -----------------------
7233 -- Actual_Index_Type --
7234 -----------------------
7236 function Actual_Index_Type (E : Entity_Id) return Entity_Id is
7237 Typ : constant Entity_Id := Entry_Index_Type (E);
7238 Tsk : constant Entity_Id := Scope (E);
7239 Lo : constant Node_Id := Type_Low_Bound (Typ);
7240 Hi : constant Node_Id := Type_High_Bound (Typ);
7241 New_T : Entity_Id;
7243 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
7244 -- If the bound is given by a discriminant, replace with a reference
7245 -- to the discriminant of the same name in the target task. If the
7246 -- entry name is the target of a requeue statement and the entry is
7247 -- in the current protected object, the bound to be used is the
7248 -- discriminal of the object (see Apply_Range_Checks for details of
7249 -- the transformation).
7251 -----------------------------
7252 -- Actual_Discriminant_Ref --
7253 -----------------------------
7255 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
7256 Typ : constant Entity_Id := Etype (Bound);
7257 Ref : Node_Id;
7259 begin
7260 Remove_Side_Effects (Bound);
7262 if not Is_Entity_Name (Bound)
7263 or else Ekind (Entity (Bound)) /= E_Discriminant
7264 then
7265 return Bound;
7267 elsif Is_Protected_Type (Tsk)
7268 and then In_Open_Scopes (Tsk)
7269 and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
7270 then
7271 -- Note: here Bound denotes a discriminant of the corresponding
7272 -- record type tskV, whose discriminal is a formal of the
7273 -- init-proc tskVIP. What we want is the body discriminal,
7274 -- which is associated to the discriminant of the original
7275 -- concurrent type tsk.
7277 return New_Occurrence_Of
7278 (Find_Body_Discriminal (Entity (Bound)), Loc);
7280 else
7281 Ref :=
7282 Make_Selected_Component (Loc,
7283 Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
7284 Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
7285 Analyze (Ref);
7286 Resolve (Ref, Typ);
7287 return Ref;
7288 end if;
7289 end Actual_Discriminant_Ref;
7291 -- Start of processing for Actual_Index_Type
7293 begin
7294 if not Has_Discriminants (Tsk)
7295 or else (not Is_Entity_Name (Lo) and then not Is_Entity_Name (Hi))
7296 then
7297 return Entry_Index_Type (E);
7299 else
7300 New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
7301 Set_Etype (New_T, Base_Type (Typ));
7302 Set_Size_Info (New_T, Typ);
7303 Set_RM_Size (New_T, RM_Size (Typ));
7304 Set_Scalar_Range (New_T,
7305 Make_Range (Sloc (Entry_Name),
7306 Low_Bound => Actual_Discriminant_Ref (Lo),
7307 High_Bound => Actual_Discriminant_Ref (Hi)));
7309 return New_T;
7310 end if;
7311 end Actual_Index_Type;
7313 -- Start of processing for Resolve_Entry
7315 begin
7316 -- Find name of entry being called, and resolve prefix of name with its
7317 -- own type. The prefix can be overloaded, and the name and signature of
7318 -- the entry must be taken into account.
7320 if Nkind (Entry_Name) = N_Indexed_Component then
7322 -- Case of dealing with entry family within the current tasks
7324 E_Name := Prefix (Entry_Name);
7326 else
7327 E_Name := Entry_Name;
7328 end if;
7330 if Is_Entity_Name (E_Name) then
7332 -- Entry call to an entry (or entry family) in the current task. This
7333 -- is legal even though the task will deadlock. Rewrite as call to
7334 -- current task.
7336 -- This can also be a call to an entry in an enclosing task. If this
7337 -- is a single task, we have to retrieve its name, because the scope
7338 -- of the entry is the task type, not the object. If the enclosing
7339 -- task is a task type, the identity of the task is given by its own
7340 -- self variable.
7342 -- Finally this can be a requeue on an entry of the same task or
7343 -- protected object.
7345 S := Scope (Entity (E_Name));
7347 for J in reverse 0 .. Scope_Stack.Last loop
7348 if Is_Task_Type (Scope_Stack.Table (J).Entity)
7349 and then not Comes_From_Source (S)
7350 then
7351 -- S is an enclosing task or protected object. The concurrent
7352 -- declaration has been converted into a type declaration, and
7353 -- the object itself has an object declaration that follows
7354 -- the type in the same declarative part.
7356 Tsk := Next_Entity (S);
7357 while Etype (Tsk) /= S loop
7358 Next_Entity (Tsk);
7359 end loop;
7361 S := Tsk;
7362 exit;
7364 elsif S = Scope_Stack.Table (J).Entity then
7366 -- Call to current task. Will be transformed into call to Self
7368 exit;
7370 end if;
7371 end loop;
7373 New_N :=
7374 Make_Selected_Component (Loc,
7375 Prefix => New_Occurrence_Of (S, Loc),
7376 Selector_Name =>
7377 New_Occurrence_Of (Entity (E_Name), Loc));
7378 Rewrite (E_Name, New_N);
7379 Analyze (E_Name);
7381 elsif Nkind (Entry_Name) = N_Selected_Component
7382 and then Is_Overloaded (Prefix (Entry_Name))
7383 then
7384 -- Use the entry name (which must be unique at this point) to find
7385 -- the prefix that returns the corresponding task/protected type.
7387 declare
7388 Pref : constant Node_Id := Prefix (Entry_Name);
7389 Ent : constant Entity_Id := Entity (Selector_Name (Entry_Name));
7390 I : Interp_Index;
7391 It : Interp;
7393 begin
7394 Get_First_Interp (Pref, I, It);
7395 while Present (It.Typ) loop
7396 if Scope (Ent) = It.Typ then
7397 Set_Etype (Pref, It.Typ);
7398 exit;
7399 end if;
7401 Get_Next_Interp (I, It);
7402 end loop;
7403 end;
7404 end if;
7406 if Nkind (Entry_Name) = N_Selected_Component then
7407 Resolve (Prefix (Entry_Name));
7409 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7410 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7411 Resolve (Prefix (Prefix (Entry_Name)));
7412 Index := First (Expressions (Entry_Name));
7413 Resolve (Index, Entry_Index_Type (Nam));
7415 -- Up to this point the expression could have been the actual in a
7416 -- simple entry call, and be given by a named association.
7418 if Nkind (Index) = N_Parameter_Association then
7419 Error_Msg_N ("expect expression for entry index", Index);
7420 else
7421 Apply_Range_Check (Index, Actual_Index_Type (Nam));
7422 end if;
7423 end if;
7424 end Resolve_Entry;
7426 ------------------------
7427 -- Resolve_Entry_Call --
7428 ------------------------
7430 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
7431 Entry_Name : constant Node_Id := Name (N);
7432 Loc : constant Source_Ptr := Sloc (Entry_Name);
7433 Actuals : List_Id;
7434 First_Named : Node_Id;
7435 Nam : Entity_Id;
7436 Norm_OK : Boolean;
7437 Obj : Node_Id;
7438 Was_Over : Boolean;
7440 begin
7441 -- We kill all checks here, because it does not seem worth the effort to
7442 -- do anything better, an entry call is a big operation.
7444 Kill_All_Checks;
7446 -- Processing of the name is similar for entry calls and protected
7447 -- operation calls. Once the entity is determined, we can complete
7448 -- the resolution of the actuals.
7450 -- The selector may be overloaded, in the case of a protected object
7451 -- with overloaded functions. The type of the context is used for
7452 -- resolution.
7454 if Nkind (Entry_Name) = N_Selected_Component
7455 and then Is_Overloaded (Selector_Name (Entry_Name))
7456 and then Typ /= Standard_Void_Type
7457 then
7458 declare
7459 I : Interp_Index;
7460 It : Interp;
7462 begin
7463 Get_First_Interp (Selector_Name (Entry_Name), I, It);
7464 while Present (It.Typ) loop
7465 if Covers (Typ, It.Typ) then
7466 Set_Entity (Selector_Name (Entry_Name), It.Nam);
7467 Set_Etype (Entry_Name, It.Typ);
7469 Generate_Reference (It.Typ, N, ' ');
7470 end if;
7472 Get_Next_Interp (I, It);
7473 end loop;
7474 end;
7475 end if;
7477 Resolve_Entry (Entry_Name);
7479 if Nkind (Entry_Name) = N_Selected_Component then
7481 -- Simple entry call
7483 Nam := Entity (Selector_Name (Entry_Name));
7484 Obj := Prefix (Entry_Name);
7485 Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
7487 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7489 -- Call to member of entry family
7491 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7492 Obj := Prefix (Prefix (Entry_Name));
7493 Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
7494 end if;
7496 -- We cannot in general check the maximum depth of protected entry calls
7497 -- at compile time. But we can tell that any protected entry call at all
7498 -- violates a specified nesting depth of zero.
7500 if Is_Protected_Type (Scope (Nam)) then
7501 Check_Restriction (Max_Entry_Queue_Length, N);
7502 end if;
7504 -- Use context type to disambiguate a protected function that can be
7505 -- called without actuals and that returns an array type, and where the
7506 -- argument list may be an indexing of the returned value.
7508 if Ekind (Nam) = E_Function
7509 and then Needs_No_Actuals (Nam)
7510 and then Present (Parameter_Associations (N))
7511 and then
7512 ((Is_Array_Type (Etype (Nam))
7513 and then Covers (Typ, Component_Type (Etype (Nam))))
7515 or else (Is_Access_Type (Etype (Nam))
7516 and then Is_Array_Type (Designated_Type (Etype (Nam)))
7517 and then
7518 Covers
7519 (Typ,
7520 Component_Type (Designated_Type (Etype (Nam))))))
7521 then
7522 declare
7523 Index_Node : Node_Id;
7525 begin
7526 Index_Node :=
7527 Make_Indexed_Component (Loc,
7528 Prefix =>
7529 Make_Function_Call (Loc, Name => Relocate_Node (Entry_Name)),
7530 Expressions => Parameter_Associations (N));
7532 -- Since we are correcting a node classification error made by the
7533 -- parser, we call Replace rather than Rewrite.
7535 Replace (N, Index_Node);
7536 Set_Etype (Prefix (N), Etype (Nam));
7537 Set_Etype (N, Typ);
7538 Resolve_Indexed_Component (N, Typ);
7539 return;
7540 end;
7541 end if;
7543 if Ekind_In (Nam, E_Entry, E_Entry_Family)
7544 and then Present (Contract_Wrapper (Nam))
7545 and then Current_Scope /= Contract_Wrapper (Nam)
7546 then
7548 -- Note the entity being called before rewriting the call, so that
7549 -- it appears used at this point.
7551 Generate_Reference (Nam, Entry_Name, 'r');
7553 -- Rewrite as call to the precondition wrapper, adding the task
7554 -- object to the list of actuals. If the call is to a member of an
7555 -- entry family, include the index as well.
7557 declare
7558 New_Call : Node_Id;
7559 New_Actuals : List_Id;
7561 begin
7562 New_Actuals := New_List (Obj);
7564 if Nkind (Entry_Name) = N_Indexed_Component then
7565 Append_To (New_Actuals,
7566 New_Copy_Tree (First (Expressions (Entry_Name))));
7567 end if;
7569 Append_List (Parameter_Associations (N), New_Actuals);
7570 New_Call :=
7571 Make_Procedure_Call_Statement (Loc,
7572 Name =>
7573 New_Occurrence_Of (Contract_Wrapper (Nam), Loc),
7574 Parameter_Associations => New_Actuals);
7575 Rewrite (N, New_Call);
7577 -- Preanalyze and resolve new call. Current procedure is called
7578 -- from Resolve_Call, after which expansion will take place.
7580 Preanalyze_And_Resolve (N);
7581 return;
7582 end;
7583 end if;
7585 -- The operation name may have been overloaded. Order the actuals
7586 -- according to the formals of the resolved entity, and set the return
7587 -- type to that of the operation.
7589 if Was_Over then
7590 Normalize_Actuals (N, Nam, False, Norm_OK);
7591 pragma Assert (Norm_OK);
7592 Set_Etype (N, Etype (Nam));
7594 -- Reset the Is_Overloaded flag, since resolution is now completed
7596 -- Simple entry call
7598 if Nkind (Entry_Name) = N_Selected_Component then
7599 Set_Is_Overloaded (Selector_Name (Entry_Name), False);
7601 -- Call to a member of an entry family
7603 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7604 Set_Is_Overloaded (Selector_Name (Prefix (Entry_Name)), False);
7605 end if;
7606 end if;
7608 Resolve_Actuals (N, Nam);
7609 Check_Internal_Protected_Use (N, Nam);
7611 -- Create a call reference to the entry
7613 Generate_Reference (Nam, Entry_Name, 's');
7615 if Ekind_In (Nam, E_Entry, E_Entry_Family) then
7616 Check_Potentially_Blocking_Operation (N);
7617 end if;
7619 -- Verify that a procedure call cannot masquerade as an entry
7620 -- call where an entry call is expected.
7622 if Ekind (Nam) = E_Procedure then
7623 if Nkind (Parent (N)) = N_Entry_Call_Alternative
7624 and then N = Entry_Call_Statement (Parent (N))
7625 then
7626 Error_Msg_N ("entry call required in select statement", N);
7628 elsif Nkind (Parent (N)) = N_Triggering_Alternative
7629 and then N = Triggering_Statement (Parent (N))
7630 then
7631 Error_Msg_N ("triggering statement cannot be procedure call", N);
7633 elsif Ekind (Scope (Nam)) = E_Task_Type
7634 and then not In_Open_Scopes (Scope (Nam))
7635 then
7636 Error_Msg_N ("task has no entry with this name", Entry_Name);
7637 end if;
7638 end if;
7640 -- After resolution, entry calls and protected procedure calls are
7641 -- changed into entry calls, for expansion. The structure of the node
7642 -- does not change, so it can safely be done in place. Protected
7643 -- function calls must keep their structure because they are
7644 -- subexpressions.
7646 if Ekind (Nam) /= E_Function then
7648 -- A protected operation that is not a function may modify the
7649 -- corresponding object, and cannot apply to a constant. If this
7650 -- is an internal call, the prefix is the type itself.
7652 if Is_Protected_Type (Scope (Nam))
7653 and then not Is_Variable (Obj)
7654 and then (not Is_Entity_Name (Obj)
7655 or else not Is_Type (Entity (Obj)))
7656 then
7657 Error_Msg_N
7658 ("prefix of protected procedure or entry call must be variable",
7659 Entry_Name);
7660 end if;
7662 Actuals := Parameter_Associations (N);
7663 First_Named := First_Named_Actual (N);
7665 Rewrite (N,
7666 Make_Entry_Call_Statement (Loc,
7667 Name => Entry_Name,
7668 Parameter_Associations => Actuals));
7670 Set_First_Named_Actual (N, First_Named);
7671 Set_Analyzed (N, True);
7673 -- Protected functions can return on the secondary stack, in which
7674 -- case we must trigger the transient scope mechanism.
7676 elsif Expander_Active
7677 and then Requires_Transient_Scope (Etype (Nam))
7678 then
7679 Establish_Transient_Scope (N, Sec_Stack => True);
7680 end if;
7681 end Resolve_Entry_Call;
7683 -------------------------
7684 -- Resolve_Equality_Op --
7685 -------------------------
7687 -- Both arguments must have the same type, and the boolean context does
7688 -- not participate in the resolution. The first pass verifies that the
7689 -- interpretation is not ambiguous, and the type of the left argument is
7690 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
7691 -- are strings or aggregates, allocators, or Null, they are ambiguous even
7692 -- though they carry a single (universal) type. Diagnose this case here.
7694 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
7695 L : constant Node_Id := Left_Opnd (N);
7696 R : constant Node_Id := Right_Opnd (N);
7697 T : Entity_Id := Find_Unique_Type (L, R);
7699 procedure Check_If_Expression (Cond : Node_Id);
7700 -- The resolution rule for if expressions requires that each such must
7701 -- have a unique type. This means that if several dependent expressions
7702 -- are of a non-null anonymous access type, and the context does not
7703 -- impose an expected type (as can be the case in an equality operation)
7704 -- the expression must be rejected.
7706 procedure Explain_Redundancy (N : Node_Id);
7707 -- Attempt to explain the nature of a redundant comparison with True. If
7708 -- the expression N is too complex, this routine issues a general error
7709 -- message.
7711 function Find_Unique_Access_Type return Entity_Id;
7712 -- In the case of allocators and access attributes, the context must
7713 -- provide an indication of the specific access type to be used. If
7714 -- one operand is of such a "generic" access type, check whether there
7715 -- is a specific visible access type that has the same designated type.
7716 -- This is semantically dubious, and of no interest to any real code,
7717 -- but c48008a makes it all worthwhile.
7719 -------------------------
7720 -- Check_If_Expression --
7721 -------------------------
7723 procedure Check_If_Expression (Cond : Node_Id) is
7724 Then_Expr : Node_Id;
7725 Else_Expr : Node_Id;
7727 begin
7728 if Nkind (Cond) = N_If_Expression then
7729 Then_Expr := Next (First (Expressions (Cond)));
7730 Else_Expr := Next (Then_Expr);
7732 if Nkind (Then_Expr) /= N_Null
7733 and then Nkind (Else_Expr) /= N_Null
7734 then
7735 Error_Msg_N ("cannot determine type of if expression", Cond);
7736 end if;
7737 end if;
7738 end Check_If_Expression;
7740 ------------------------
7741 -- Explain_Redundancy --
7742 ------------------------
7744 procedure Explain_Redundancy (N : Node_Id) is
7745 Error : Name_Id;
7746 Val : Node_Id;
7747 Val_Id : Entity_Id;
7749 begin
7750 Val := N;
7752 -- Strip the operand down to an entity
7754 loop
7755 if Nkind (Val) = N_Selected_Component then
7756 Val := Selector_Name (Val);
7757 else
7758 exit;
7759 end if;
7760 end loop;
7762 -- The construct denotes an entity
7764 if Is_Entity_Name (Val) and then Present (Entity (Val)) then
7765 Val_Id := Entity (Val);
7767 -- Do not generate an error message when the comparison is done
7768 -- against the enumeration literal Standard.True.
7770 if Ekind (Val_Id) /= E_Enumeration_Literal then
7772 -- Build a customized error message
7774 Name_Len := 0;
7775 Add_Str_To_Name_Buffer ("?r?");
7777 if Ekind (Val_Id) = E_Component then
7778 Add_Str_To_Name_Buffer ("component ");
7780 elsif Ekind (Val_Id) = E_Constant then
7781 Add_Str_To_Name_Buffer ("constant ");
7783 elsif Ekind (Val_Id) = E_Discriminant then
7784 Add_Str_To_Name_Buffer ("discriminant ");
7786 elsif Is_Formal (Val_Id) then
7787 Add_Str_To_Name_Buffer ("parameter ");
7789 elsif Ekind (Val_Id) = E_Variable then
7790 Add_Str_To_Name_Buffer ("variable ");
7791 end if;
7793 Add_Str_To_Name_Buffer ("& is always True!");
7794 Error := Name_Find;
7796 Error_Msg_NE (Get_Name_String (Error), Val, Val_Id);
7797 end if;
7799 -- The construct is too complex to disect, issue a general message
7801 else
7802 Error_Msg_N ("?r?expression is always True!", Val);
7803 end if;
7804 end Explain_Redundancy;
7806 -----------------------------
7807 -- Find_Unique_Access_Type --
7808 -----------------------------
7810 function Find_Unique_Access_Type return Entity_Id is
7811 Acc : Entity_Id;
7812 E : Entity_Id;
7813 S : Entity_Id;
7815 begin
7816 if Ekind_In (Etype (R), E_Allocator_Type,
7817 E_Access_Attribute_Type)
7818 then
7819 Acc := Designated_Type (Etype (R));
7821 elsif Ekind_In (Etype (L), E_Allocator_Type,
7822 E_Access_Attribute_Type)
7823 then
7824 Acc := Designated_Type (Etype (L));
7825 else
7826 return Empty;
7827 end if;
7829 S := Current_Scope;
7830 while S /= Standard_Standard loop
7831 E := First_Entity (S);
7832 while Present (E) loop
7833 if Is_Type (E)
7834 and then Is_Access_Type (E)
7835 and then Ekind (E) /= E_Allocator_Type
7836 and then Designated_Type (E) = Base_Type (Acc)
7837 then
7838 return E;
7839 end if;
7841 Next_Entity (E);
7842 end loop;
7844 S := Scope (S);
7845 end loop;
7847 return Empty;
7848 end Find_Unique_Access_Type;
7850 -- Start of processing for Resolve_Equality_Op
7852 begin
7853 Set_Etype (N, Base_Type (Typ));
7854 Generate_Reference (T, N, ' ');
7856 if T = Any_Fixed then
7857 T := Unique_Fixed_Point_Type (L);
7858 end if;
7860 if T /= Any_Type then
7861 if T = Any_String or else
7862 T = Any_Composite or else
7863 T = Any_Character
7864 then
7865 if T = Any_Character then
7866 Ambiguous_Character (L);
7867 else
7868 Error_Msg_N ("ambiguous operands for equality", N);
7869 end if;
7871 Set_Etype (N, Any_Type);
7872 return;
7874 elsif T = Any_Access
7875 or else Ekind_In (T, E_Allocator_Type, E_Access_Attribute_Type)
7876 then
7877 T := Find_Unique_Access_Type;
7879 if No (T) then
7880 Error_Msg_N ("ambiguous operands for equality", N);
7881 Set_Etype (N, Any_Type);
7882 return;
7883 end if;
7885 -- If expressions must have a single type, and if the context does
7886 -- not impose one the dependent expressions cannot be anonymous
7887 -- access types.
7889 -- Why no similar processing for case expressions???
7891 elsif Ada_Version >= Ada_2012
7892 and then Ekind_In (Etype (L), E_Anonymous_Access_Type,
7893 E_Anonymous_Access_Subprogram_Type)
7894 and then Ekind_In (Etype (R), E_Anonymous_Access_Type,
7895 E_Anonymous_Access_Subprogram_Type)
7896 then
7897 Check_If_Expression (L);
7898 Check_If_Expression (R);
7899 end if;
7901 Resolve (L, T);
7902 Resolve (R, T);
7904 -- In SPARK, equality operators = and /= for array types other than
7905 -- String are only defined when, for each index position, the
7906 -- operands have equal static bounds.
7908 if Is_Array_Type (T) then
7910 -- Protect call to Matching_Static_Array_Bounds to avoid costly
7911 -- operation if not needed.
7913 if Restriction_Check_Required (SPARK_05)
7914 and then Base_Type (T) /= Standard_String
7915 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
7916 and then Etype (L) /= Any_Composite -- or else L in error
7917 and then Etype (R) /= Any_Composite -- or else R in error
7918 and then not Matching_Static_Array_Bounds (Etype (L), Etype (R))
7919 then
7920 Check_SPARK_05_Restriction
7921 ("array types should have matching static bounds", N);
7922 end if;
7923 end if;
7925 -- If the unique type is a class-wide type then it will be expanded
7926 -- into a dispatching call to the predefined primitive. Therefore we
7927 -- check here for potential violation of such restriction.
7929 if Is_Class_Wide_Type (T) then
7930 Check_Restriction (No_Dispatching_Calls, N);
7931 end if;
7933 if Warn_On_Redundant_Constructs
7934 and then Comes_From_Source (N)
7935 and then Comes_From_Source (R)
7936 and then Is_Entity_Name (R)
7937 and then Entity (R) = Standard_True
7938 then
7939 Error_Msg_N -- CODEFIX
7940 ("?r?comparison with True is redundant!", N);
7941 Explain_Redundancy (Original_Node (R));
7942 end if;
7944 Check_Unset_Reference (L);
7945 Check_Unset_Reference (R);
7946 Generate_Operator_Reference (N, T);
7947 Check_Low_Bound_Tested (N);
7949 -- If this is an inequality, it may be the implicit inequality
7950 -- created for a user-defined operation, in which case the corres-
7951 -- ponding equality operation is not intrinsic, and the operation
7952 -- cannot be constant-folded. Else fold.
7954 if Nkind (N) = N_Op_Eq
7955 or else Comes_From_Source (Entity (N))
7956 or else Ekind (Entity (N)) = E_Operator
7957 or else Is_Intrinsic_Subprogram
7958 (Corresponding_Equality (Entity (N)))
7959 then
7960 Analyze_Dimension (N);
7961 Eval_Relational_Op (N);
7963 elsif Nkind (N) = N_Op_Ne
7964 and then Is_Abstract_Subprogram (Entity (N))
7965 then
7966 Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
7967 end if;
7969 -- Ada 2005: If one operand is an anonymous access type, convert the
7970 -- other operand to it, to ensure that the underlying types match in
7971 -- the back-end. Same for access_to_subprogram, and the conversion
7972 -- verifies that the types are subtype conformant.
7974 -- We apply the same conversion in the case one of the operands is a
7975 -- private subtype of the type of the other.
7977 -- Why the Expander_Active test here ???
7979 if Expander_Active
7980 and then
7981 (Ekind_In (T, E_Anonymous_Access_Type,
7982 E_Anonymous_Access_Subprogram_Type)
7983 or else Is_Private_Type (T))
7984 then
7985 if Etype (L) /= T then
7986 Rewrite (L,
7987 Make_Unchecked_Type_Conversion (Sloc (L),
7988 Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
7989 Expression => Relocate_Node (L)));
7990 Analyze_And_Resolve (L, T);
7991 end if;
7993 if (Etype (R)) /= T then
7994 Rewrite (R,
7995 Make_Unchecked_Type_Conversion (Sloc (R),
7996 Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
7997 Expression => Relocate_Node (R)));
7998 Analyze_And_Resolve (R, T);
7999 end if;
8000 end if;
8001 end if;
8002 end Resolve_Equality_Op;
8004 ----------------------------------
8005 -- Resolve_Explicit_Dereference --
8006 ----------------------------------
8008 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
8009 Loc : constant Source_Ptr := Sloc (N);
8010 New_N : Node_Id;
8011 P : constant Node_Id := Prefix (N);
8013 P_Typ : Entity_Id;
8014 -- The candidate prefix type, if overloaded
8016 I : Interp_Index;
8017 It : Interp;
8019 begin
8020 Check_Fully_Declared_Prefix (Typ, P);
8021 P_Typ := Empty;
8023 -- A useful optimization: check whether the dereference denotes an
8024 -- element of a container, and if so rewrite it as a call to the
8025 -- corresponding Element function.
8027 -- Disabled for now, on advice of ARG. A more restricted form of the
8028 -- predicate might be acceptable ???
8030 -- if Is_Container_Element (N) then
8031 -- return;
8032 -- end if;
8034 if Is_Overloaded (P) then
8036 -- Use the context type to select the prefix that has the correct
8037 -- designated type. Keep the first match, which will be the inner-
8038 -- most.
8040 Get_First_Interp (P, I, It);
8042 while Present (It.Typ) loop
8043 if Is_Access_Type (It.Typ)
8044 and then Covers (Typ, Designated_Type (It.Typ))
8045 then
8046 if No (P_Typ) then
8047 P_Typ := It.Typ;
8048 end if;
8050 -- Remove access types that do not match, but preserve access
8051 -- to subprogram interpretations, in case a further dereference
8052 -- is needed (see below).
8054 elsif Ekind (It.Typ) /= E_Access_Subprogram_Type then
8055 Remove_Interp (I);
8056 end if;
8058 Get_Next_Interp (I, It);
8059 end loop;
8061 if Present (P_Typ) then
8062 Resolve (P, P_Typ);
8063 Set_Etype (N, Designated_Type (P_Typ));
8065 else
8066 -- If no interpretation covers the designated type of the prefix,
8067 -- this is the pathological case where not all implementations of
8068 -- the prefix allow the interpretation of the node as a call. Now
8069 -- that the expected type is known, Remove other interpretations
8070 -- from prefix, rewrite it as a call, and resolve again, so that
8071 -- the proper call node is generated.
8073 Get_First_Interp (P, I, It);
8074 while Present (It.Typ) loop
8075 if Ekind (It.Typ) /= E_Access_Subprogram_Type then
8076 Remove_Interp (I);
8077 end if;
8079 Get_Next_Interp (I, It);
8080 end loop;
8082 New_N :=
8083 Make_Function_Call (Loc,
8084 Name =>
8085 Make_Explicit_Dereference (Loc,
8086 Prefix => P),
8087 Parameter_Associations => New_List);
8089 Save_Interps (N, New_N);
8090 Rewrite (N, New_N);
8091 Analyze_And_Resolve (N, Typ);
8092 return;
8093 end if;
8095 -- If not overloaded, resolve P with its own type
8097 else
8098 Resolve (P);
8099 end if;
8101 -- If the prefix might be null, add an access check
8103 if Is_Access_Type (Etype (P))
8104 and then not Can_Never_Be_Null (Etype (P))
8105 then
8106 Apply_Access_Check (N);
8107 end if;
8109 -- If the designated type is a packed unconstrained array type, and the
8110 -- explicit dereference is not in the context of an attribute reference,
8111 -- then we must compute and set the actual subtype, since it is needed
8112 -- by Gigi. The reason we exclude the attribute case is that this is
8113 -- handled fine by Gigi, and in fact we use such attributes to build the
8114 -- actual subtype. We also exclude generated code (which builds actual
8115 -- subtypes directly if they are needed).
8117 if Is_Array_Type (Etype (N))
8118 and then Is_Packed (Etype (N))
8119 and then not Is_Constrained (Etype (N))
8120 and then Nkind (Parent (N)) /= N_Attribute_Reference
8121 and then Comes_From_Source (N)
8122 then
8123 Set_Etype (N, Get_Actual_Subtype (N));
8124 end if;
8126 Analyze_Dimension (N);
8128 -- Note: No Eval processing is required for an explicit dereference,
8129 -- because such a name can never be static.
8131 end Resolve_Explicit_Dereference;
8133 -------------------------------------
8134 -- Resolve_Expression_With_Actions --
8135 -------------------------------------
8137 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id) is
8138 begin
8139 Set_Etype (N, Typ);
8141 -- If N has no actions, and its expression has been constant folded,
8142 -- then rewrite N as just its expression. Note, we can't do this in
8143 -- the general case of Is_Empty_List (Actions (N)) as this would cause
8144 -- Expression (N) to be expanded again.
8146 if Is_Empty_List (Actions (N))
8147 and then Compile_Time_Known_Value (Expression (N))
8148 then
8149 Rewrite (N, Expression (N));
8150 end if;
8151 end Resolve_Expression_With_Actions;
8153 ----------------------------------
8154 -- Resolve_Generalized_Indexing --
8155 ----------------------------------
8157 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id) is
8158 Indexing : constant Node_Id := Generalized_Indexing (N);
8159 Call : Node_Id;
8160 Indexes : List_Id;
8161 Pref : Node_Id;
8163 begin
8164 -- In ASIS mode, propagate the information about the indexes back to
8165 -- to the original indexing node. The generalized indexing is either
8166 -- a function call, or a dereference of one. The actuals include the
8167 -- prefix of the original node, which is the container expression.
8169 if ASIS_Mode then
8170 Resolve (Indexing, Typ);
8171 Set_Etype (N, Etype (Indexing));
8172 Set_Is_Overloaded (N, False);
8174 Call := Indexing;
8175 while Nkind_In (Call, N_Explicit_Dereference, N_Selected_Component)
8176 loop
8177 Call := Prefix (Call);
8178 end loop;
8180 if Nkind (Call) = N_Function_Call then
8181 Indexes := New_Copy_List (Parameter_Associations (Call));
8182 Pref := Remove_Head (Indexes);
8183 Set_Expressions (N, Indexes);
8185 -- If expression is to be reanalyzed, reset Generalized_Indexing
8186 -- to recreate call node, as is the case when the expression is
8187 -- part of an expression function.
8189 if In_Spec_Expression then
8190 Set_Generalized_Indexing (N, Empty);
8191 end if;
8193 Set_Prefix (N, Pref);
8194 end if;
8196 else
8197 Rewrite (N, Indexing);
8198 Resolve (N, Typ);
8199 end if;
8200 end Resolve_Generalized_Indexing;
8202 ---------------------------
8203 -- Resolve_If_Expression --
8204 ---------------------------
8206 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id) is
8207 Condition : constant Node_Id := First (Expressions (N));
8208 Then_Expr : constant Node_Id := Next (Condition);
8209 Else_Expr : Node_Id := Next (Then_Expr);
8210 Else_Typ : Entity_Id;
8211 Then_Typ : Entity_Id;
8213 begin
8214 Resolve (Condition, Any_Boolean);
8215 Resolve (Then_Expr, Typ);
8216 Then_Typ := Etype (Then_Expr);
8218 -- When the "then" expression is of a scalar subtype different from the
8219 -- result subtype, then insert a conversion to ensure the generation of
8220 -- a constraint check. The same is done for the else part below, again
8221 -- comparing subtypes rather than base types.
8223 if Is_Scalar_Type (Then_Typ)
8224 and then Then_Typ /= Typ
8225 then
8226 Rewrite (Then_Expr, Convert_To (Typ, Then_Expr));
8227 Analyze_And_Resolve (Then_Expr, Typ);
8228 end if;
8230 -- If ELSE expression present, just resolve using the determined type
8231 -- If type is universal, resolve to any member of the class.
8233 if Present (Else_Expr) then
8234 if Typ = Universal_Integer then
8235 Resolve (Else_Expr, Any_Integer);
8237 elsif Typ = Universal_Real then
8238 Resolve (Else_Expr, Any_Real);
8240 else
8241 Resolve (Else_Expr, Typ);
8242 end if;
8244 Else_Typ := Etype (Else_Expr);
8246 if Is_Scalar_Type (Else_Typ) and then Else_Typ /= Typ then
8247 Rewrite (Else_Expr, Convert_To (Typ, Else_Expr));
8248 Analyze_And_Resolve (Else_Expr, Typ);
8250 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
8251 -- dynamically tagged must be known statically.
8253 elsif Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
8254 if Is_Dynamically_Tagged (Then_Expr) /=
8255 Is_Dynamically_Tagged (Else_Expr)
8256 then
8257 Error_Msg_N ("all or none of the dependent expressions "
8258 & "can be dynamically tagged", N);
8259 end if;
8260 end if;
8262 -- If no ELSE expression is present, root type must be Standard.Boolean
8263 -- and we provide a Standard.True result converted to the appropriate
8264 -- Boolean type (in case it is a derived boolean type).
8266 elsif Root_Type (Typ) = Standard_Boolean then
8267 Else_Expr :=
8268 Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
8269 Analyze_And_Resolve (Else_Expr, Typ);
8270 Append_To (Expressions (N), Else_Expr);
8272 else
8273 Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
8274 Append_To (Expressions (N), Error);
8275 end if;
8277 Set_Etype (N, Typ);
8278 Eval_If_Expression (N);
8279 end Resolve_If_Expression;
8281 -------------------------------
8282 -- Resolve_Indexed_Component --
8283 -------------------------------
8285 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
8286 Name : constant Node_Id := Prefix (N);
8287 Expr : Node_Id;
8288 Array_Type : Entity_Id := Empty; -- to prevent junk warning
8289 Index : Node_Id;
8291 begin
8292 if Present (Generalized_Indexing (N)) then
8293 Resolve_Generalized_Indexing (N, Typ);
8294 return;
8295 end if;
8297 if Is_Overloaded (Name) then
8299 -- Use the context type to select the prefix that yields the correct
8300 -- component type.
8302 declare
8303 I : Interp_Index;
8304 It : Interp;
8305 I1 : Interp_Index := 0;
8306 P : constant Node_Id := Prefix (N);
8307 Found : Boolean := False;
8309 begin
8310 Get_First_Interp (P, I, It);
8311 while Present (It.Typ) loop
8312 if (Is_Array_Type (It.Typ)
8313 and then Covers (Typ, Component_Type (It.Typ)))
8314 or else (Is_Access_Type (It.Typ)
8315 and then Is_Array_Type (Designated_Type (It.Typ))
8316 and then
8317 Covers
8318 (Typ,
8319 Component_Type (Designated_Type (It.Typ))))
8320 then
8321 if Found then
8322 It := Disambiguate (P, I1, I, Any_Type);
8324 if It = No_Interp then
8325 Error_Msg_N ("ambiguous prefix for indexing", N);
8326 Set_Etype (N, Typ);
8327 return;
8329 else
8330 Found := True;
8331 Array_Type := It.Typ;
8332 I1 := I;
8333 end if;
8335 else
8336 Found := True;
8337 Array_Type := It.Typ;
8338 I1 := I;
8339 end if;
8340 end if;
8342 Get_Next_Interp (I, It);
8343 end loop;
8344 end;
8346 else
8347 Array_Type := Etype (Name);
8348 end if;
8350 Resolve (Name, Array_Type);
8351 Array_Type := Get_Actual_Subtype_If_Available (Name);
8353 -- If prefix is access type, dereference to get real array type.
8354 -- Note: we do not apply an access check because the expander always
8355 -- introduces an explicit dereference, and the check will happen there.
8357 if Is_Access_Type (Array_Type) then
8358 Array_Type := Designated_Type (Array_Type);
8359 end if;
8361 -- If name was overloaded, set component type correctly now
8362 -- If a misplaced call to an entry family (which has no index types)
8363 -- return. Error will be diagnosed from calling context.
8365 if Is_Array_Type (Array_Type) then
8366 Set_Etype (N, Component_Type (Array_Type));
8367 else
8368 return;
8369 end if;
8371 Index := First_Index (Array_Type);
8372 Expr := First (Expressions (N));
8374 -- The prefix may have resolved to a string literal, in which case its
8375 -- etype has a special representation. This is only possible currently
8376 -- if the prefix is a static concatenation, written in functional
8377 -- notation.
8379 if Ekind (Array_Type) = E_String_Literal_Subtype then
8380 Resolve (Expr, Standard_Positive);
8382 else
8383 while Present (Index) and Present (Expr) loop
8384 Resolve (Expr, Etype (Index));
8385 Check_Unset_Reference (Expr);
8387 if Is_Scalar_Type (Etype (Expr)) then
8388 Apply_Scalar_Range_Check (Expr, Etype (Index));
8389 else
8390 Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
8391 end if;
8393 Next_Index (Index);
8394 Next (Expr);
8395 end loop;
8396 end if;
8398 Analyze_Dimension (N);
8400 -- Do not generate the warning on suspicious index if we are analyzing
8401 -- package Ada.Tags; otherwise we will report the warning with the
8402 -- Prims_Ptr field of the dispatch table.
8404 if Scope (Etype (Prefix (N))) = Standard_Standard
8405 or else not
8406 Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
8407 Ada_Tags)
8408 then
8409 Warn_On_Suspicious_Index (Name, First (Expressions (N)));
8410 Eval_Indexed_Component (N);
8411 end if;
8413 -- If the array type is atomic, and the component is not atomic, then
8414 -- this is worth a warning, since we have a situation where the access
8415 -- to the component may cause extra read/writes of the atomic array
8416 -- object, or partial word accesses, which could be unexpected.
8418 if Nkind (N) = N_Indexed_Component
8419 and then Is_Atomic_Ref_With_Address (N)
8420 and then not (Has_Atomic_Components (Array_Type)
8421 or else (Is_Entity_Name (Prefix (N))
8422 and then Has_Atomic_Components
8423 (Entity (Prefix (N)))))
8424 and then not Is_Atomic (Component_Type (Array_Type))
8425 then
8426 Error_Msg_N
8427 ("??access to non-atomic component of atomic array", Prefix (N));
8428 Error_Msg_N
8429 ("??\may cause unexpected accesses to atomic object", Prefix (N));
8430 end if;
8431 end Resolve_Indexed_Component;
8433 -----------------------------
8434 -- Resolve_Integer_Literal --
8435 -----------------------------
8437 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
8438 begin
8439 Set_Etype (N, Typ);
8440 Eval_Integer_Literal (N);
8441 end Resolve_Integer_Literal;
8443 --------------------------------
8444 -- Resolve_Intrinsic_Operator --
8445 --------------------------------
8447 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is
8448 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8449 Op : Entity_Id;
8450 Arg1 : Node_Id;
8451 Arg2 : Node_Id;
8453 function Convert_Operand (Opnd : Node_Id) return Node_Id;
8454 -- If the operand is a literal, it cannot be the expression in a
8455 -- conversion. Use a qualified expression instead.
8457 ---------------------
8458 -- Convert_Operand --
8459 ---------------------
8461 function Convert_Operand (Opnd : Node_Id) return Node_Id is
8462 Loc : constant Source_Ptr := Sloc (Opnd);
8463 Res : Node_Id;
8465 begin
8466 if Nkind_In (Opnd, N_Integer_Literal, N_Real_Literal) then
8467 Res :=
8468 Make_Qualified_Expression (Loc,
8469 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
8470 Expression => Relocate_Node (Opnd));
8471 Analyze (Res);
8473 else
8474 Res := Unchecked_Convert_To (Btyp, Opnd);
8475 end if;
8477 return Res;
8478 end Convert_Operand;
8480 -- Start of processing for Resolve_Intrinsic_Operator
8482 begin
8483 -- We must preserve the original entity in a generic setting, so that
8484 -- the legality of the operation can be verified in an instance.
8486 if not Expander_Active then
8487 return;
8488 end if;
8490 Op := Entity (N);
8491 while Scope (Op) /= Standard_Standard loop
8492 Op := Homonym (Op);
8493 pragma Assert (Present (Op));
8494 end loop;
8496 Set_Entity (N, Op);
8497 Set_Is_Overloaded (N, False);
8499 -- If the result or operand types are private, rewrite with unchecked
8500 -- conversions on the operands and the result, to expose the proper
8501 -- underlying numeric type.
8503 if Is_Private_Type (Typ)
8504 or else Is_Private_Type (Etype (Left_Opnd (N)))
8505 or else Is_Private_Type (Etype (Right_Opnd (N)))
8506 then
8507 Arg1 := Convert_Operand (Left_Opnd (N));
8509 if Nkind (N) = N_Op_Expon then
8510 Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
8511 else
8512 Arg2 := Convert_Operand (Right_Opnd (N));
8513 end if;
8515 if Nkind (Arg1) = N_Type_Conversion then
8516 Save_Interps (Left_Opnd (N), Expression (Arg1));
8517 end if;
8519 if Nkind (Arg2) = N_Type_Conversion then
8520 Save_Interps (Right_Opnd (N), Expression (Arg2));
8521 end if;
8523 Set_Left_Opnd (N, Arg1);
8524 Set_Right_Opnd (N, Arg2);
8526 Set_Etype (N, Btyp);
8527 Rewrite (N, Unchecked_Convert_To (Typ, N));
8528 Resolve (N, Typ);
8530 elsif Typ /= Etype (Left_Opnd (N))
8531 or else Typ /= Etype (Right_Opnd (N))
8532 then
8533 -- Add explicit conversion where needed, and save interpretations in
8534 -- case operands are overloaded.
8536 Arg1 := Convert_To (Typ, Left_Opnd (N));
8537 Arg2 := Convert_To (Typ, Right_Opnd (N));
8539 if Nkind (Arg1) = N_Type_Conversion then
8540 Save_Interps (Left_Opnd (N), Expression (Arg1));
8541 else
8542 Save_Interps (Left_Opnd (N), Arg1);
8543 end if;
8545 if Nkind (Arg2) = N_Type_Conversion then
8546 Save_Interps (Right_Opnd (N), Expression (Arg2));
8547 else
8548 Save_Interps (Right_Opnd (N), Arg2);
8549 end if;
8551 Rewrite (Left_Opnd (N), Arg1);
8552 Rewrite (Right_Opnd (N), Arg2);
8553 Analyze (Arg1);
8554 Analyze (Arg2);
8555 Resolve_Arithmetic_Op (N, Typ);
8557 else
8558 Resolve_Arithmetic_Op (N, Typ);
8559 end if;
8560 end Resolve_Intrinsic_Operator;
8562 --------------------------------------
8563 -- Resolve_Intrinsic_Unary_Operator --
8564 --------------------------------------
8566 procedure Resolve_Intrinsic_Unary_Operator
8567 (N : Node_Id;
8568 Typ : Entity_Id)
8570 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8571 Op : Entity_Id;
8572 Arg2 : Node_Id;
8574 begin
8575 Op := Entity (N);
8576 while Scope (Op) /= Standard_Standard loop
8577 Op := Homonym (Op);
8578 pragma Assert (Present (Op));
8579 end loop;
8581 Set_Entity (N, Op);
8583 if Is_Private_Type (Typ) then
8584 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
8585 Save_Interps (Right_Opnd (N), Expression (Arg2));
8587 Set_Right_Opnd (N, Arg2);
8589 Set_Etype (N, Btyp);
8590 Rewrite (N, Unchecked_Convert_To (Typ, N));
8591 Resolve (N, Typ);
8593 else
8594 Resolve_Unary_Op (N, Typ);
8595 end if;
8596 end Resolve_Intrinsic_Unary_Operator;
8598 ------------------------
8599 -- Resolve_Logical_Op --
8600 ------------------------
8602 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
8603 B_Typ : Entity_Id;
8605 begin
8606 Check_No_Direct_Boolean_Operators (N);
8608 -- Predefined operations on scalar types yield the base type. On the
8609 -- other hand, logical operations on arrays yield the type of the
8610 -- arguments (and the context).
8612 if Is_Array_Type (Typ) then
8613 B_Typ := Typ;
8614 else
8615 B_Typ := Base_Type (Typ);
8616 end if;
8618 -- The following test is required because the operands of the operation
8619 -- may be literals, in which case the resulting type appears to be
8620 -- compatible with a signed integer type, when in fact it is compatible
8621 -- only with modular types. If the context itself is universal, the
8622 -- operation is illegal.
8624 if not Valid_Boolean_Arg (Typ) then
8625 Error_Msg_N ("invalid context for logical operation", N);
8626 Set_Etype (N, Any_Type);
8627 return;
8629 elsif Typ = Any_Modular then
8630 Error_Msg_N
8631 ("no modular type available in this context", N);
8632 Set_Etype (N, Any_Type);
8633 return;
8635 elsif Is_Modular_Integer_Type (Typ)
8636 and then Etype (Left_Opnd (N)) = Universal_Integer
8637 and then Etype (Right_Opnd (N)) = Universal_Integer
8638 then
8639 Check_For_Visible_Operator (N, B_Typ);
8640 end if;
8642 -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
8643 -- is active and the result type is standard Boolean (do not mess with
8644 -- ops that return a nonstandard Boolean type, because something strange
8645 -- is going on).
8647 -- Note: you might expect this replacement to be done during expansion,
8648 -- but that doesn't work, because when the pragma Short_Circuit_And_Or
8649 -- is used, no part of the right operand of an "and" or "or" operator
8650 -- should be executed if the left operand would short-circuit the
8651 -- evaluation of the corresponding "and then" or "or else". If we left
8652 -- the replacement to expansion time, then run-time checks associated
8653 -- with such operands would be evaluated unconditionally, due to being
8654 -- before the condition prior to the rewriting as short-circuit forms
8655 -- during expansion.
8657 if Short_Circuit_And_Or
8658 and then B_Typ = Standard_Boolean
8659 and then Nkind_In (N, N_Op_And, N_Op_Or)
8660 then
8661 -- Mark the corresponding putative SCO operator as truly a logical
8662 -- (and short-circuit) operator.
8664 if Generate_SCO and then Comes_From_Source (N) then
8665 Set_SCO_Logical_Operator (N);
8666 end if;
8668 if Nkind (N) = N_Op_And then
8669 Rewrite (N,
8670 Make_And_Then (Sloc (N),
8671 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8672 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8673 Analyze_And_Resolve (N, B_Typ);
8675 -- Case of OR changed to OR ELSE
8677 else
8678 Rewrite (N,
8679 Make_Or_Else (Sloc (N),
8680 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8681 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8682 Analyze_And_Resolve (N, B_Typ);
8683 end if;
8685 -- Return now, since analysis of the rewritten ops will take care of
8686 -- other reference bookkeeping and expression folding.
8688 return;
8689 end if;
8691 Resolve (Left_Opnd (N), B_Typ);
8692 Resolve (Right_Opnd (N), B_Typ);
8694 Check_Unset_Reference (Left_Opnd (N));
8695 Check_Unset_Reference (Right_Opnd (N));
8697 Set_Etype (N, B_Typ);
8698 Generate_Operator_Reference (N, B_Typ);
8699 Eval_Logical_Op (N);
8701 -- In SPARK, logical operations AND, OR and XOR for arrays are defined
8702 -- only when both operands have same static lower and higher bounds. Of
8703 -- course the types have to match, so only check if operands are
8704 -- compatible and the node itself has no errors.
8706 if Is_Array_Type (B_Typ)
8707 and then Nkind (N) in N_Binary_Op
8708 then
8709 declare
8710 Left_Typ : constant Node_Id := Etype (Left_Opnd (N));
8711 Right_Typ : constant Node_Id := Etype (Right_Opnd (N));
8713 begin
8714 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8715 -- operation if not needed.
8717 if Restriction_Check_Required (SPARK_05)
8718 and then Base_Type (Left_Typ) = Base_Type (Right_Typ)
8719 and then Left_Typ /= Any_Composite -- or Left_Opnd in error
8720 and then Right_Typ /= Any_Composite -- or Right_Opnd in error
8721 and then not Matching_Static_Array_Bounds (Left_Typ, Right_Typ)
8722 then
8723 Check_SPARK_05_Restriction
8724 ("array types should have matching static bounds", N);
8725 end if;
8726 end;
8727 end if;
8728 end Resolve_Logical_Op;
8730 ---------------------------
8731 -- Resolve_Membership_Op --
8732 ---------------------------
8734 -- The context can only be a boolean type, and does not determine the
8735 -- arguments. Arguments should be unambiguous, but the preference rule for
8736 -- universal types applies.
8738 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
8739 pragma Warnings (Off, Typ);
8741 L : constant Node_Id := Left_Opnd (N);
8742 R : constant Node_Id := Right_Opnd (N);
8743 T : Entity_Id;
8745 procedure Resolve_Set_Membership;
8746 -- Analysis has determined a unique type for the left operand. Use it to
8747 -- resolve the disjuncts.
8749 ----------------------------
8750 -- Resolve_Set_Membership --
8751 ----------------------------
8753 procedure Resolve_Set_Membership is
8754 Alt : Node_Id;
8755 Ltyp : Entity_Id;
8757 begin
8758 -- If the left operand is overloaded, find type compatible with not
8759 -- overloaded alternative of the right operand.
8761 if Is_Overloaded (L) then
8762 Ltyp := Empty;
8763 Alt := First (Alternatives (N));
8764 while Present (Alt) loop
8765 if not Is_Overloaded (Alt) then
8766 Ltyp := Intersect_Types (L, Alt);
8767 exit;
8768 else
8769 Next (Alt);
8770 end if;
8771 end loop;
8773 -- Unclear how to resolve expression if all alternatives are also
8774 -- overloaded.
8776 if No (Ltyp) then
8777 Error_Msg_N ("ambiguous expression", N);
8778 end if;
8780 else
8781 Ltyp := Etype (L);
8782 end if;
8784 Resolve (L, Ltyp);
8786 Alt := First (Alternatives (N));
8787 while Present (Alt) loop
8789 -- Alternative is an expression, a range
8790 -- or a subtype mark.
8792 if not Is_Entity_Name (Alt)
8793 or else not Is_Type (Entity (Alt))
8794 then
8795 Resolve (Alt, Ltyp);
8796 end if;
8798 Next (Alt);
8799 end loop;
8801 -- Check for duplicates for discrete case
8803 if Is_Discrete_Type (Ltyp) then
8804 declare
8805 type Ent is record
8806 Alt : Node_Id;
8807 Val : Uint;
8808 end record;
8810 Alts : array (0 .. List_Length (Alternatives (N))) of Ent;
8811 Nalts : Nat;
8813 begin
8814 -- Loop checking duplicates. This is quadratic, but giant sets
8815 -- are unlikely in this context so it's a reasonable choice.
8817 Nalts := 0;
8818 Alt := First (Alternatives (N));
8819 while Present (Alt) loop
8820 if Is_OK_Static_Expression (Alt)
8821 and then (Nkind_In (Alt, N_Integer_Literal,
8822 N_Character_Literal)
8823 or else Nkind (Alt) in N_Has_Entity)
8824 then
8825 Nalts := Nalts + 1;
8826 Alts (Nalts) := (Alt, Expr_Value (Alt));
8828 for J in 1 .. Nalts - 1 loop
8829 if Alts (J).Val = Alts (Nalts).Val then
8830 Error_Msg_Sloc := Sloc (Alts (J).Alt);
8831 Error_Msg_N ("duplicate of value given#??", Alt);
8832 end if;
8833 end loop;
8834 end if;
8836 Alt := Next (Alt);
8837 end loop;
8838 end;
8839 end if;
8840 end Resolve_Set_Membership;
8842 -- Start of processing for Resolve_Membership_Op
8844 begin
8845 if L = Error or else R = Error then
8846 return;
8847 end if;
8849 if Present (Alternatives (N)) then
8850 Resolve_Set_Membership;
8851 goto SM_Exit;
8853 elsif not Is_Overloaded (R)
8854 and then
8855 (Etype (R) = Universal_Integer
8856 or else
8857 Etype (R) = Universal_Real)
8858 and then Is_Overloaded (L)
8859 then
8860 T := Etype (R);
8862 -- Ada 2005 (AI-251): Support the following case:
8864 -- type I is interface;
8865 -- type T is tagged ...
8867 -- function Test (O : I'Class) is
8868 -- begin
8869 -- return O in T'Class.
8870 -- end Test;
8872 -- In this case we have nothing else to do. The membership test will be
8873 -- done at run time.
8875 elsif Ada_Version >= Ada_2005
8876 and then Is_Class_Wide_Type (Etype (L))
8877 and then Is_Interface (Etype (L))
8878 and then Is_Class_Wide_Type (Etype (R))
8879 and then not Is_Interface (Etype (R))
8880 then
8881 return;
8882 else
8883 T := Intersect_Types (L, R);
8884 end if;
8886 -- If mixed-mode operations are present and operands are all literal,
8887 -- the only interpretation involves Duration, which is probably not
8888 -- the intention of the programmer.
8890 if T = Any_Fixed then
8891 T := Unique_Fixed_Point_Type (N);
8893 if T = Any_Type then
8894 return;
8895 end if;
8896 end if;
8898 Resolve (L, T);
8899 Check_Unset_Reference (L);
8901 if Nkind (R) = N_Range
8902 and then not Is_Scalar_Type (T)
8903 then
8904 Error_Msg_N ("scalar type required for range", R);
8905 end if;
8907 if Is_Entity_Name (R) then
8908 Freeze_Expression (R);
8909 else
8910 Resolve (R, T);
8911 Check_Unset_Reference (R);
8912 end if;
8914 -- Here after resolving membership operation
8916 <<SM_Exit>>
8918 Eval_Membership_Op (N);
8919 end Resolve_Membership_Op;
8921 ------------------
8922 -- Resolve_Null --
8923 ------------------
8925 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
8926 Loc : constant Source_Ptr := Sloc (N);
8928 begin
8929 -- Handle restriction against anonymous null access values This
8930 -- restriction can be turned off using -gnatdj.
8932 -- Ada 2005 (AI-231): Remove restriction
8934 if Ada_Version < Ada_2005
8935 and then not Debug_Flag_J
8936 and then Ekind (Typ) = E_Anonymous_Access_Type
8937 and then Comes_From_Source (N)
8938 then
8939 -- In the common case of a call which uses an explicitly null value
8940 -- for an access parameter, give specialized error message.
8942 if Nkind (Parent (N)) in N_Subprogram_Call then
8943 Error_Msg_N
8944 ("null is not allowed as argument for an access parameter", N);
8946 -- Standard message for all other cases (are there any?)
8948 else
8949 Error_Msg_N
8950 ("null cannot be of an anonymous access type", N);
8951 end if;
8952 end if;
8954 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
8955 -- assignment to a null-excluding object
8957 if Ada_Version >= Ada_2005
8958 and then Can_Never_Be_Null (Typ)
8959 and then Nkind (Parent (N)) = N_Assignment_Statement
8960 then
8961 if not Inside_Init_Proc then
8962 Insert_Action
8963 (Compile_Time_Constraint_Error (N,
8964 "(Ada 2005) null not allowed in null-excluding objects??"),
8965 Make_Raise_Constraint_Error (Loc,
8966 Reason => CE_Access_Check_Failed));
8967 else
8968 Insert_Action (N,
8969 Make_Raise_Constraint_Error (Loc,
8970 Reason => CE_Access_Check_Failed));
8971 end if;
8972 end if;
8974 -- In a distributed context, null for a remote access to subprogram may
8975 -- need to be replaced with a special record aggregate. In this case,
8976 -- return after having done the transformation.
8978 if (Ekind (Typ) = E_Record_Type
8979 or else Is_Remote_Access_To_Subprogram_Type (Typ))
8980 and then Remote_AST_Null_Value (N, Typ)
8981 then
8982 return;
8983 end if;
8985 -- The null literal takes its type from the context
8987 Set_Etype (N, Typ);
8988 end Resolve_Null;
8990 -----------------------
8991 -- Resolve_Op_Concat --
8992 -----------------------
8994 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
8996 -- We wish to avoid deep recursion, because concatenations are often
8997 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
8998 -- operands nonrecursively until we find something that is not a simple
8999 -- concatenation (A in this case). We resolve that, and then walk back
9000 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
9001 -- to do the rest of the work at each level. The Parent pointers allow
9002 -- us to avoid recursion, and thus avoid running out of memory. See also
9003 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
9005 NN : Node_Id := N;
9006 Op1 : Node_Id;
9008 begin
9009 -- The following code is equivalent to:
9011 -- Resolve_Op_Concat_First (NN, Typ);
9012 -- Resolve_Op_Concat_Arg (N, ...);
9013 -- Resolve_Op_Concat_Rest (N, Typ);
9015 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
9016 -- operand is a concatenation.
9018 -- Walk down left operands
9020 loop
9021 Resolve_Op_Concat_First (NN, Typ);
9022 Op1 := Left_Opnd (NN);
9023 exit when not (Nkind (Op1) = N_Op_Concat
9024 and then not Is_Array_Type (Component_Type (Typ))
9025 and then Entity (Op1) = Entity (NN));
9026 NN := Op1;
9027 end loop;
9029 -- Now (given the above example) NN is A&B and Op1 is A
9031 -- First resolve Op1 ...
9033 Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd (NN));
9035 -- ... then walk NN back up until we reach N (where we started), calling
9036 -- Resolve_Op_Concat_Rest along the way.
9038 loop
9039 Resolve_Op_Concat_Rest (NN, Typ);
9040 exit when NN = N;
9041 NN := Parent (NN);
9042 end loop;
9044 if Base_Type (Etype (N)) /= Standard_String then
9045 Check_SPARK_05_Restriction
9046 ("result of concatenation should have type String", N);
9047 end if;
9048 end Resolve_Op_Concat;
9050 ---------------------------
9051 -- Resolve_Op_Concat_Arg --
9052 ---------------------------
9054 procedure Resolve_Op_Concat_Arg
9055 (N : Node_Id;
9056 Arg : Node_Id;
9057 Typ : Entity_Id;
9058 Is_Comp : Boolean)
9060 Btyp : constant Entity_Id := Base_Type (Typ);
9061 Ctyp : constant Entity_Id := Component_Type (Typ);
9063 begin
9064 if In_Instance then
9065 if Is_Comp
9066 or else (not Is_Overloaded (Arg)
9067 and then Etype (Arg) /= Any_Composite
9068 and then Covers (Ctyp, Etype (Arg)))
9069 then
9070 Resolve (Arg, Ctyp);
9071 else
9072 Resolve (Arg, Btyp);
9073 end if;
9075 -- If both Array & Array and Array & Component are visible, there is a
9076 -- potential ambiguity that must be reported.
9078 elsif Has_Compatible_Type (Arg, Ctyp) then
9079 if Nkind (Arg) = N_Aggregate
9080 and then Is_Composite_Type (Ctyp)
9081 then
9082 if Is_Private_Type (Ctyp) then
9083 Resolve (Arg, Btyp);
9085 -- If the operation is user-defined and not overloaded use its
9086 -- profile. The operation may be a renaming, in which case it has
9087 -- been rewritten, and we want the original profile.
9089 elsif not Is_Overloaded (N)
9090 and then Comes_From_Source (Entity (Original_Node (N)))
9091 and then Ekind (Entity (Original_Node (N))) = E_Function
9092 then
9093 Resolve (Arg,
9094 Etype
9095 (Next_Formal (First_Formal (Entity (Original_Node (N))))));
9096 return;
9098 -- Otherwise an aggregate may match both the array type and the
9099 -- component type.
9101 else
9102 Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
9103 Set_Etype (Arg, Any_Type);
9104 end if;
9106 else
9107 if Is_Overloaded (Arg)
9108 and then Has_Compatible_Type (Arg, Typ)
9109 and then Etype (Arg) /= Any_Type
9110 then
9111 declare
9112 I : Interp_Index;
9113 It : Interp;
9114 Func : Entity_Id;
9116 begin
9117 Get_First_Interp (Arg, I, It);
9118 Func := It.Nam;
9119 Get_Next_Interp (I, It);
9121 -- Special-case the error message when the overloading is
9122 -- caused by a function that yields an array and can be
9123 -- called without parameters.
9125 if It.Nam = Func then
9126 Error_Msg_Sloc := Sloc (Func);
9127 Error_Msg_N ("ambiguous call to function#", Arg);
9128 Error_Msg_NE
9129 ("\\interpretation as call yields&", Arg, Typ);
9130 Error_Msg_NE
9131 ("\\interpretation as indexing of call yields&",
9132 Arg, Component_Type (Typ));
9134 else
9135 Error_Msg_N ("ambiguous operand for concatenation!", Arg);
9137 Get_First_Interp (Arg, I, It);
9138 while Present (It.Nam) loop
9139 Error_Msg_Sloc := Sloc (It.Nam);
9141 if Base_Type (It.Typ) = Btyp
9142 or else
9143 Base_Type (It.Typ) = Base_Type (Ctyp)
9144 then
9145 Error_Msg_N -- CODEFIX
9146 ("\\possible interpretation#", Arg);
9147 end if;
9149 Get_Next_Interp (I, It);
9150 end loop;
9151 end if;
9152 end;
9153 end if;
9155 Resolve (Arg, Component_Type (Typ));
9157 if Nkind (Arg) = N_String_Literal then
9158 Set_Etype (Arg, Component_Type (Typ));
9159 end if;
9161 if Arg = Left_Opnd (N) then
9162 Set_Is_Component_Left_Opnd (N);
9163 else
9164 Set_Is_Component_Right_Opnd (N);
9165 end if;
9166 end if;
9168 else
9169 Resolve (Arg, Btyp);
9170 end if;
9172 -- Concatenation is restricted in SPARK: each operand must be either a
9173 -- string literal, the name of a string constant, a static character or
9174 -- string expression, or another concatenation. Arg cannot be a
9175 -- concatenation here as callers of Resolve_Op_Concat_Arg call it
9176 -- separately on each final operand, past concatenation operations.
9178 if Is_Character_Type (Etype (Arg)) then
9179 if not Is_OK_Static_Expression (Arg) then
9180 Check_SPARK_05_Restriction
9181 ("character operand for concatenation should be static", Arg);
9182 end if;
9184 elsif Is_String_Type (Etype (Arg)) then
9185 if not (Nkind_In (Arg, N_Identifier, N_Expanded_Name)
9186 and then Is_Constant_Object (Entity (Arg)))
9187 and then not Is_OK_Static_Expression (Arg)
9188 then
9189 Check_SPARK_05_Restriction
9190 ("string operand for concatenation should be static", Arg);
9191 end if;
9193 -- Do not issue error on an operand that is neither a character nor a
9194 -- string, as the error is issued in Resolve_Op_Concat.
9196 else
9197 null;
9198 end if;
9200 Check_Unset_Reference (Arg);
9201 end Resolve_Op_Concat_Arg;
9203 -----------------------------
9204 -- Resolve_Op_Concat_First --
9205 -----------------------------
9207 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
9208 Btyp : constant Entity_Id := Base_Type (Typ);
9209 Op1 : constant Node_Id := Left_Opnd (N);
9210 Op2 : constant Node_Id := Right_Opnd (N);
9212 begin
9213 -- The parser folds an enormous sequence of concatenations of string
9214 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
9215 -- in the right operand. If the expression resolves to a predefined "&"
9216 -- operator, all is well. Otherwise, the parser's folding is wrong, so
9217 -- we give an error. See P_Simple_Expression in Par.Ch4.
9219 if Nkind (Op2) = N_String_Literal
9220 and then Is_Folded_In_Parser (Op2)
9221 and then Ekind (Entity (N)) = E_Function
9222 then
9223 pragma Assert (Nkind (Op1) = N_String_Literal -- should be ""
9224 and then String_Length (Strval (Op1)) = 0);
9225 Error_Msg_N ("too many user-defined concatenations", N);
9226 return;
9227 end if;
9229 Set_Etype (N, Btyp);
9231 if Is_Limited_Composite (Btyp) then
9232 Error_Msg_N ("concatenation not available for limited array", N);
9233 Explain_Limited_Type (Btyp, N);
9234 end if;
9235 end Resolve_Op_Concat_First;
9237 ----------------------------
9238 -- Resolve_Op_Concat_Rest --
9239 ----------------------------
9241 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
9242 Op1 : constant Node_Id := Left_Opnd (N);
9243 Op2 : constant Node_Id := Right_Opnd (N);
9245 begin
9246 Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd (N));
9248 Generate_Operator_Reference (N, Typ);
9250 if Is_String_Type (Typ) then
9251 Eval_Concatenation (N);
9252 end if;
9254 -- If this is not a static concatenation, but the result is a string
9255 -- type (and not an array of strings) ensure that static string operands
9256 -- have their subtypes properly constructed.
9258 if Nkind (N) /= N_String_Literal
9259 and then Is_Character_Type (Component_Type (Typ))
9260 then
9261 Set_String_Literal_Subtype (Op1, Typ);
9262 Set_String_Literal_Subtype (Op2, Typ);
9263 end if;
9264 end Resolve_Op_Concat_Rest;
9266 ----------------------
9267 -- Resolve_Op_Expon --
9268 ----------------------
9270 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
9271 B_Typ : constant Entity_Id := Base_Type (Typ);
9273 begin
9274 -- Catch attempts to do fixed-point exponentiation with universal
9275 -- operands, which is a case where the illegality is not caught during
9276 -- normal operator analysis. This is not done in preanalysis mode
9277 -- since the tree is not fully decorated during preanalysis.
9279 if Full_Analysis then
9280 if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
9281 Error_Msg_N ("exponentiation not available for fixed point", N);
9282 return;
9284 elsif Nkind (Parent (N)) in N_Op
9285 and then Is_Fixed_Point_Type (Etype (Parent (N)))
9286 and then Etype (N) = Universal_Real
9287 and then Comes_From_Source (N)
9288 then
9289 Error_Msg_N ("exponentiation not available for fixed point", N);
9290 return;
9291 end if;
9292 end if;
9294 if Comes_From_Source (N)
9295 and then Ekind (Entity (N)) = E_Function
9296 and then Is_Imported (Entity (N))
9297 and then Is_Intrinsic_Subprogram (Entity (N))
9298 then
9299 Resolve_Intrinsic_Operator (N, Typ);
9300 return;
9301 end if;
9303 if Etype (Left_Opnd (N)) = Universal_Integer
9304 or else Etype (Left_Opnd (N)) = Universal_Real
9305 then
9306 Check_For_Visible_Operator (N, B_Typ);
9307 end if;
9309 -- We do the resolution using the base type, because intermediate values
9310 -- in expressions are always of the base type, not a subtype of it.
9312 Resolve (Left_Opnd (N), B_Typ);
9313 Resolve (Right_Opnd (N), Standard_Integer);
9315 -- For integer types, right argument must be in Natural range
9317 if Is_Integer_Type (Typ) then
9318 Apply_Scalar_Range_Check (Right_Opnd (N), Standard_Natural);
9319 end if;
9321 Check_Unset_Reference (Left_Opnd (N));
9322 Check_Unset_Reference (Right_Opnd (N));
9324 Set_Etype (N, B_Typ);
9325 Generate_Operator_Reference (N, B_Typ);
9327 Analyze_Dimension (N);
9329 if Ada_Version >= Ada_2012 and then Has_Dimension_System (B_Typ) then
9330 -- Evaluate the exponentiation operator for dimensioned type
9332 Eval_Op_Expon_For_Dimensioned_Type (N, B_Typ);
9333 else
9334 Eval_Op_Expon (N);
9335 end if;
9337 -- Set overflow checking bit. Much cleverer code needed here eventually
9338 -- and perhaps the Resolve routines should be separated for the various
9339 -- arithmetic operations, since they will need different processing. ???
9341 if Nkind (N) in N_Op then
9342 if not Overflow_Checks_Suppressed (Etype (N)) then
9343 Enable_Overflow_Check (N);
9344 end if;
9345 end if;
9346 end Resolve_Op_Expon;
9348 --------------------
9349 -- Resolve_Op_Not --
9350 --------------------
9352 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
9353 B_Typ : Entity_Id;
9355 function Parent_Is_Boolean return Boolean;
9356 -- This function determines if the parent node is a boolean operator or
9357 -- operation (comparison op, membership test, or short circuit form) and
9358 -- the not in question is the left operand of this operation. Note that
9359 -- if the not is in parens, then false is returned.
9361 -----------------------
9362 -- Parent_Is_Boolean --
9363 -----------------------
9365 function Parent_Is_Boolean return Boolean is
9366 begin
9367 if Paren_Count (N) /= 0 then
9368 return False;
9370 else
9371 case Nkind (Parent (N)) is
9372 when N_And_Then
9373 | N_In
9374 | N_Not_In
9375 | N_Op_And
9376 | N_Op_Eq
9377 | N_Op_Ge
9378 | N_Op_Gt
9379 | N_Op_Le
9380 | N_Op_Lt
9381 | N_Op_Ne
9382 | N_Op_Or
9383 | N_Op_Xor
9384 | N_Or_Else
9386 return Left_Opnd (Parent (N)) = N;
9388 when others =>
9389 return False;
9390 end case;
9391 end if;
9392 end Parent_Is_Boolean;
9394 -- Start of processing for Resolve_Op_Not
9396 begin
9397 -- Predefined operations on scalar types yield the base type. On the
9398 -- other hand, logical operations on arrays yield the type of the
9399 -- arguments (and the context).
9401 if Is_Array_Type (Typ) then
9402 B_Typ := Typ;
9403 else
9404 B_Typ := Base_Type (Typ);
9405 end if;
9407 -- Straightforward case of incorrect arguments
9409 if not Valid_Boolean_Arg (Typ) then
9410 Error_Msg_N ("invalid operand type for operator&", N);
9411 Set_Etype (N, Any_Type);
9412 return;
9414 -- Special case of probable missing parens
9416 elsif Typ = Universal_Integer or else Typ = Any_Modular then
9417 if Parent_Is_Boolean then
9418 Error_Msg_N
9419 ("operand of not must be enclosed in parentheses",
9420 Right_Opnd (N));
9421 else
9422 Error_Msg_N
9423 ("no modular type available in this context", N);
9424 end if;
9426 Set_Etype (N, Any_Type);
9427 return;
9429 -- OK resolution of NOT
9431 else
9432 -- Warn if non-boolean types involved. This is a case like not a < b
9433 -- where a and b are modular, where we will get (not a) < b and most
9434 -- likely not (a < b) was intended.
9436 if Warn_On_Questionable_Missing_Parens
9437 and then not Is_Boolean_Type (Typ)
9438 and then Parent_Is_Boolean
9439 then
9440 Error_Msg_N ("?q?not expression should be parenthesized here!", N);
9441 end if;
9443 -- Warn on double negation if checking redundant constructs
9445 if Warn_On_Redundant_Constructs
9446 and then Comes_From_Source (N)
9447 and then Comes_From_Source (Right_Opnd (N))
9448 and then Root_Type (Typ) = Standard_Boolean
9449 and then Nkind (Right_Opnd (N)) = N_Op_Not
9450 then
9451 Error_Msg_N ("redundant double negation?r?", N);
9452 end if;
9454 -- Complete resolution and evaluation of NOT
9456 Resolve (Right_Opnd (N), B_Typ);
9457 Check_Unset_Reference (Right_Opnd (N));
9458 Set_Etype (N, B_Typ);
9459 Generate_Operator_Reference (N, B_Typ);
9460 Eval_Op_Not (N);
9461 end if;
9462 end Resolve_Op_Not;
9464 -----------------------------
9465 -- Resolve_Operator_Symbol --
9466 -----------------------------
9468 -- Nothing to be done, all resolved already
9470 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
9471 pragma Warnings (Off, N);
9472 pragma Warnings (Off, Typ);
9474 begin
9475 null;
9476 end Resolve_Operator_Symbol;
9478 ----------------------------------
9479 -- Resolve_Qualified_Expression --
9480 ----------------------------------
9482 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
9483 pragma Warnings (Off, Typ);
9485 Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
9486 Expr : constant Node_Id := Expression (N);
9488 begin
9489 Resolve (Expr, Target_Typ);
9491 -- Protect call to Matching_Static_Array_Bounds to avoid costly
9492 -- operation if not needed.
9494 if Restriction_Check_Required (SPARK_05)
9495 and then Is_Array_Type (Target_Typ)
9496 and then Is_Array_Type (Etype (Expr))
9497 and then Etype (Expr) /= Any_Composite -- or else Expr in error
9498 and then not Matching_Static_Array_Bounds (Target_Typ, Etype (Expr))
9499 then
9500 Check_SPARK_05_Restriction
9501 ("array types should have matching static bounds", N);
9502 end if;
9504 -- A qualified expression requires an exact match of the type, class-
9505 -- wide matching is not allowed. However, if the qualifying type is
9506 -- specific and the expression has a class-wide type, it may still be
9507 -- okay, since it can be the result of the expansion of a call to a
9508 -- dispatching function, so we also have to check class-wideness of the
9509 -- type of the expression's original node.
9511 if (Is_Class_Wide_Type (Target_Typ)
9512 or else
9513 (Is_Class_Wide_Type (Etype (Expr))
9514 and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
9515 and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
9516 then
9517 Wrong_Type (Expr, Target_Typ);
9518 end if;
9520 -- If the target type is unconstrained, then we reset the type of the
9521 -- result from the type of the expression. For other cases, the actual
9522 -- subtype of the expression is the target type.
9524 if Is_Composite_Type (Target_Typ)
9525 and then not Is_Constrained (Target_Typ)
9526 then
9527 Set_Etype (N, Etype (Expr));
9528 end if;
9530 Analyze_Dimension (N);
9531 Eval_Qualified_Expression (N);
9533 -- If we still have a qualified expression after the static evaluation,
9534 -- then apply a scalar range check if needed. The reason that we do this
9535 -- after the Eval call is that otherwise, the application of the range
9536 -- check may convert an illegal static expression and result in warning
9537 -- rather than giving an error (e.g Integer'(Integer'Last + 1)).
9539 if Nkind (N) = N_Qualified_Expression and then Is_Scalar_Type (Typ) then
9540 Apply_Scalar_Range_Check (Expr, Typ);
9541 end if;
9543 -- Finally, check whether a predicate applies to the target type. This
9544 -- comes from AI12-0100. As for type conversions, check the enclosing
9545 -- context to prevent an infinite expansion.
9547 if Has_Predicates (Target_Typ) then
9548 if Nkind (Parent (N)) = N_Function_Call
9549 and then Present (Name (Parent (N)))
9550 and then (Is_Predicate_Function (Entity (Name (Parent (N))))
9551 or else
9552 Is_Predicate_Function_M (Entity (Name (Parent (N)))))
9553 then
9554 null;
9556 -- In the case of a qualified expression in an allocator, the check
9557 -- is applied when expanding the allocator, so avoid redundant check.
9559 elsif Nkind (N) = N_Qualified_Expression
9560 and then Nkind (Parent (N)) /= N_Allocator
9561 then
9562 Apply_Predicate_Check (N, Target_Typ);
9563 end if;
9564 end if;
9565 end Resolve_Qualified_Expression;
9567 ------------------------------
9568 -- Resolve_Raise_Expression --
9569 ------------------------------
9571 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id) is
9572 begin
9573 if Typ = Raise_Type then
9574 Error_Msg_N ("cannot find unique type for raise expression", N);
9575 Set_Etype (N, Any_Type);
9576 else
9577 Set_Etype (N, Typ);
9578 end if;
9579 end Resolve_Raise_Expression;
9581 -------------------
9582 -- Resolve_Range --
9583 -------------------
9585 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
9586 L : constant Node_Id := Low_Bound (N);
9587 H : constant Node_Id := High_Bound (N);
9589 function First_Last_Ref return Boolean;
9590 -- Returns True if N is of the form X'First .. X'Last where X is the
9591 -- same entity for both attributes.
9593 --------------------
9594 -- First_Last_Ref --
9595 --------------------
9597 function First_Last_Ref return Boolean is
9598 Lorig : constant Node_Id := Original_Node (L);
9599 Horig : constant Node_Id := Original_Node (H);
9601 begin
9602 if Nkind (Lorig) = N_Attribute_Reference
9603 and then Nkind (Horig) = N_Attribute_Reference
9604 and then Attribute_Name (Lorig) = Name_First
9605 and then Attribute_Name (Horig) = Name_Last
9606 then
9607 declare
9608 PL : constant Node_Id := Prefix (Lorig);
9609 PH : constant Node_Id := Prefix (Horig);
9610 begin
9611 if Is_Entity_Name (PL)
9612 and then Is_Entity_Name (PH)
9613 and then Entity (PL) = Entity (PH)
9614 then
9615 return True;
9616 end if;
9617 end;
9618 end if;
9620 return False;
9621 end First_Last_Ref;
9623 -- Start of processing for Resolve_Range
9625 begin
9626 Set_Etype (N, Typ);
9628 -- The lower bound should be in Typ. The higher bound can be in Typ's
9629 -- base type if the range is null. It may still be invalid if it is
9630 -- higher than the lower bound. This is checked later in the context in
9631 -- which the range appears.
9633 Resolve (L, Typ);
9634 Resolve (H, Base_Type (Typ));
9636 -- Check for inappropriate range on unordered enumeration type
9638 if Bad_Unordered_Enumeration_Reference (N, Typ)
9640 -- Exclude X'First .. X'Last if X is the same entity for both
9642 and then not First_Last_Ref
9643 then
9644 Error_Msg_Sloc := Sloc (Typ);
9645 Error_Msg_NE
9646 ("subrange of unordered enumeration type& declared#?U?", N, Typ);
9647 end if;
9649 Check_Unset_Reference (L);
9650 Check_Unset_Reference (H);
9652 -- We have to check the bounds for being within the base range as
9653 -- required for a non-static context. Normally this is automatic and
9654 -- done as part of evaluating expressions, but the N_Range node is an
9655 -- exception, since in GNAT we consider this node to be a subexpression,
9656 -- even though in Ada it is not. The circuit in Sem_Eval could check for
9657 -- this, but that would put the test on the main evaluation path for
9658 -- expressions.
9660 Check_Non_Static_Context (L);
9661 Check_Non_Static_Context (H);
9663 -- Check for an ambiguous range over character literals. This will
9664 -- happen with a membership test involving only literals.
9666 if Typ = Any_Character then
9667 Ambiguous_Character (L);
9668 Set_Etype (N, Any_Type);
9669 return;
9670 end if;
9672 -- If bounds are static, constant-fold them, so size computations are
9673 -- identical between front-end and back-end. Do not perform this
9674 -- transformation while analyzing generic units, as type information
9675 -- would be lost when reanalyzing the constant node in the instance.
9677 if Is_Discrete_Type (Typ) and then Expander_Active then
9678 if Is_OK_Static_Expression (L) then
9679 Fold_Uint (L, Expr_Value (L), Is_OK_Static_Expression (L));
9680 end if;
9682 if Is_OK_Static_Expression (H) then
9683 Fold_Uint (H, Expr_Value (H), Is_OK_Static_Expression (H));
9684 end if;
9685 end if;
9686 end Resolve_Range;
9688 --------------------------
9689 -- Resolve_Real_Literal --
9690 --------------------------
9692 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
9693 Actual_Typ : constant Entity_Id := Etype (N);
9695 begin
9696 -- Special processing for fixed-point literals to make sure that the
9697 -- value is an exact multiple of small where this is required. We skip
9698 -- this for the universal real case, and also for generic types.
9700 if Is_Fixed_Point_Type (Typ)
9701 and then Typ /= Universal_Fixed
9702 and then Typ /= Any_Fixed
9703 and then not Is_Generic_Type (Typ)
9704 then
9705 declare
9706 Val : constant Ureal := Realval (N);
9707 Cintr : constant Ureal := Val / Small_Value (Typ);
9708 Cint : constant Uint := UR_Trunc (Cintr);
9709 Den : constant Uint := Norm_Den (Cintr);
9710 Stat : Boolean;
9712 begin
9713 -- Case of literal is not an exact multiple of the Small
9715 if Den /= 1 then
9717 -- For a source program literal for a decimal fixed-point type,
9718 -- this is statically illegal (RM 4.9(36)).
9720 if Is_Decimal_Fixed_Point_Type (Typ)
9721 and then Actual_Typ = Universal_Real
9722 and then Comes_From_Source (N)
9723 then
9724 Error_Msg_N ("value has extraneous low order digits", N);
9725 end if;
9727 -- Generate a warning if literal from source
9729 if Is_OK_Static_Expression (N)
9730 and then Warn_On_Bad_Fixed_Value
9731 then
9732 Error_Msg_N
9733 ("?b?static fixed-point value is not a multiple of Small!",
9735 end if;
9737 -- Replace literal by a value that is the exact representation
9738 -- of a value of the type, i.e. a multiple of the small value,
9739 -- by truncation, since Machine_Rounds is false for all GNAT
9740 -- fixed-point types (RM 4.9(38)).
9742 Stat := Is_OK_Static_Expression (N);
9743 Rewrite (N,
9744 Make_Real_Literal (Sloc (N),
9745 Realval => Small_Value (Typ) * Cint));
9747 Set_Is_Static_Expression (N, Stat);
9748 end if;
9750 -- In all cases, set the corresponding integer field
9752 Set_Corresponding_Integer_Value (N, Cint);
9753 end;
9754 end if;
9756 -- Now replace the actual type by the expected type as usual
9758 Set_Etype (N, Typ);
9759 Eval_Real_Literal (N);
9760 end Resolve_Real_Literal;
9762 -----------------------
9763 -- Resolve_Reference --
9764 -----------------------
9766 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
9767 P : constant Node_Id := Prefix (N);
9769 begin
9770 -- Replace general access with specific type
9772 if Ekind (Etype (N)) = E_Allocator_Type then
9773 Set_Etype (N, Base_Type (Typ));
9774 end if;
9776 Resolve (P, Designated_Type (Etype (N)));
9778 -- If we are taking the reference of a volatile entity, then treat it as
9779 -- a potential modification of this entity. This is too conservative,
9780 -- but necessary because remove side effects can cause transformations
9781 -- of normal assignments into reference sequences that otherwise fail to
9782 -- notice the modification.
9784 if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
9785 Note_Possible_Modification (P, Sure => False);
9786 end if;
9787 end Resolve_Reference;
9789 --------------------------------
9790 -- Resolve_Selected_Component --
9791 --------------------------------
9793 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
9794 Comp : Entity_Id;
9795 Comp1 : Entity_Id := Empty; -- prevent junk warning
9796 P : constant Node_Id := Prefix (N);
9797 S : constant Node_Id := Selector_Name (N);
9798 T : Entity_Id := Etype (P);
9799 I : Interp_Index;
9800 I1 : Interp_Index := 0; -- prevent junk warning
9801 It : Interp;
9802 It1 : Interp;
9803 Found : Boolean;
9805 function Init_Component return Boolean;
9806 -- Check whether this is the initialization of a component within an
9807 -- init proc (by assignment or call to another init proc). If true,
9808 -- there is no need for a discriminant check.
9810 --------------------
9811 -- Init_Component --
9812 --------------------
9814 function Init_Component return Boolean is
9815 begin
9816 return Inside_Init_Proc
9817 and then Nkind (Prefix (N)) = N_Identifier
9818 and then Chars (Prefix (N)) = Name_uInit
9819 and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
9820 end Init_Component;
9822 -- Start of processing for Resolve_Selected_Component
9824 begin
9825 if Is_Overloaded (P) then
9827 -- Use the context type to select the prefix that has a selector
9828 -- of the correct name and type.
9830 Found := False;
9831 Get_First_Interp (P, I, It);
9833 Search : while Present (It.Typ) loop
9834 if Is_Access_Type (It.Typ) then
9835 T := Designated_Type (It.Typ);
9836 else
9837 T := It.Typ;
9838 end if;
9840 -- Locate selected component. For a private prefix the selector
9841 -- can denote a discriminant.
9843 if Is_Record_Type (T) or else Is_Private_Type (T) then
9845 -- The visible components of a class-wide type are those of
9846 -- the root type.
9848 if Is_Class_Wide_Type (T) then
9849 T := Etype (T);
9850 end if;
9852 Comp := First_Entity (T);
9853 while Present (Comp) loop
9854 if Chars (Comp) = Chars (S)
9855 and then Covers (Typ, Etype (Comp))
9856 then
9857 if not Found then
9858 Found := True;
9859 I1 := I;
9860 It1 := It;
9861 Comp1 := Comp;
9863 else
9864 It := Disambiguate (P, I1, I, Any_Type);
9866 if It = No_Interp then
9867 Error_Msg_N
9868 ("ambiguous prefix for selected component", N);
9869 Set_Etype (N, Typ);
9870 return;
9872 else
9873 It1 := It;
9875 -- There may be an implicit dereference. Retrieve
9876 -- designated record type.
9878 if Is_Access_Type (It1.Typ) then
9879 T := Designated_Type (It1.Typ);
9880 else
9881 T := It1.Typ;
9882 end if;
9884 if Scope (Comp1) /= T then
9886 -- Resolution chooses the new interpretation.
9887 -- Find the component with the right name.
9889 Comp1 := First_Entity (T);
9890 while Present (Comp1)
9891 and then Chars (Comp1) /= Chars (S)
9892 loop
9893 Comp1 := Next_Entity (Comp1);
9894 end loop;
9895 end if;
9897 exit Search;
9898 end if;
9899 end if;
9900 end if;
9902 Comp := Next_Entity (Comp);
9903 end loop;
9904 end if;
9906 Get_Next_Interp (I, It);
9907 end loop Search;
9909 -- There must be a legal interpretation at this point
9911 pragma Assert (Found);
9912 Resolve (P, It1.Typ);
9913 Set_Etype (N, Typ);
9914 Set_Entity_With_Checks (S, Comp1);
9916 else
9917 -- Resolve prefix with its type
9919 Resolve (P, T);
9920 end if;
9922 -- Generate cross-reference. We needed to wait until full overloading
9923 -- resolution was complete to do this, since otherwise we can't tell if
9924 -- we are an lvalue or not.
9926 if May_Be_Lvalue (N) then
9927 Generate_Reference (Entity (S), S, 'm');
9928 else
9929 Generate_Reference (Entity (S), S, 'r');
9930 end if;
9932 -- If prefix is an access type, the node will be transformed into an
9933 -- explicit dereference during expansion. The type of the node is the
9934 -- designated type of that of the prefix.
9936 if Is_Access_Type (Etype (P)) then
9937 T := Designated_Type (Etype (P));
9938 Check_Fully_Declared_Prefix (T, P);
9939 else
9940 T := Etype (P);
9941 end if;
9943 -- Set flag for expander if discriminant check required on a component
9944 -- appearing within a variant.
9946 if Has_Discriminants (T)
9947 and then Ekind (Entity (S)) = E_Component
9948 and then Present (Original_Record_Component (Entity (S)))
9949 and then Ekind (Original_Record_Component (Entity (S))) = E_Component
9950 and then
9951 Is_Declared_Within_Variant (Original_Record_Component (Entity (S)))
9952 and then not Discriminant_Checks_Suppressed (T)
9953 and then not Init_Component
9954 then
9955 Set_Do_Discriminant_Check (N);
9956 end if;
9958 if Ekind (Entity (S)) = E_Void then
9959 Error_Msg_N ("premature use of component", S);
9960 end if;
9962 -- If the prefix is a record conversion, this may be a renamed
9963 -- discriminant whose bounds differ from those of the original
9964 -- one, so we must ensure that a range check is performed.
9966 if Nkind (P) = N_Type_Conversion
9967 and then Ekind (Entity (S)) = E_Discriminant
9968 and then Is_Discrete_Type (Typ)
9969 then
9970 Set_Etype (N, Base_Type (Typ));
9971 end if;
9973 -- Note: No Eval processing is required, because the prefix is of a
9974 -- record type, or protected type, and neither can possibly be static.
9976 -- If the record type is atomic, and the component is non-atomic, then
9977 -- this is worth a warning, since we have a situation where the access
9978 -- to the component may cause extra read/writes of the atomic array
9979 -- object, or partial word accesses, both of which may be unexpected.
9981 if Nkind (N) = N_Selected_Component
9982 and then Is_Atomic_Ref_With_Address (N)
9983 and then not Is_Atomic (Entity (S))
9984 and then not Is_Atomic (Etype (Entity (S)))
9985 then
9986 Error_Msg_N
9987 ("??access to non-atomic component of atomic record",
9988 Prefix (N));
9989 Error_Msg_N
9990 ("\??may cause unexpected accesses to atomic object",
9991 Prefix (N));
9992 end if;
9994 Analyze_Dimension (N);
9995 end Resolve_Selected_Component;
9997 -------------------
9998 -- Resolve_Shift --
9999 -------------------
10001 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
10002 B_Typ : constant Entity_Id := Base_Type (Typ);
10003 L : constant Node_Id := Left_Opnd (N);
10004 R : constant Node_Id := Right_Opnd (N);
10006 begin
10007 -- We do the resolution using the base type, because intermediate values
10008 -- in expressions always are of the base type, not a subtype of it.
10010 Resolve (L, B_Typ);
10011 Resolve (R, Standard_Natural);
10013 Check_Unset_Reference (L);
10014 Check_Unset_Reference (R);
10016 Set_Etype (N, B_Typ);
10017 Generate_Operator_Reference (N, B_Typ);
10018 Eval_Shift (N);
10019 end Resolve_Shift;
10021 ---------------------------
10022 -- Resolve_Short_Circuit --
10023 ---------------------------
10025 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
10026 B_Typ : constant Entity_Id := Base_Type (Typ);
10027 L : constant Node_Id := Left_Opnd (N);
10028 R : constant Node_Id := Right_Opnd (N);
10030 begin
10031 -- Ensure all actions associated with the left operand (e.g.
10032 -- finalization of transient objects) are fully evaluated locally within
10033 -- an expression with actions. This is particularly helpful for coverage
10034 -- analysis. However this should not happen in generics or if option
10035 -- Minimize_Expression_With_Actions is set.
10037 if Expander_Active and not Minimize_Expression_With_Actions then
10038 declare
10039 Reloc_L : constant Node_Id := Relocate_Node (L);
10040 begin
10041 Save_Interps (Old_N => L, New_N => Reloc_L);
10043 Rewrite (L,
10044 Make_Expression_With_Actions (Sloc (L),
10045 Actions => New_List,
10046 Expression => Reloc_L));
10048 -- Set Comes_From_Source on L to preserve warnings for unset
10049 -- reference.
10051 Set_Comes_From_Source (L, Comes_From_Source (Reloc_L));
10052 end;
10053 end if;
10055 Resolve (L, B_Typ);
10056 Resolve (R, B_Typ);
10058 -- Check for issuing warning for always False assert/check, this happens
10059 -- when assertions are turned off, in which case the pragma Assert/Check
10060 -- was transformed into:
10062 -- if False and then <condition> then ...
10064 -- and we detect this pattern
10066 if Warn_On_Assertion_Failure
10067 and then Is_Entity_Name (R)
10068 and then Entity (R) = Standard_False
10069 and then Nkind (Parent (N)) = N_If_Statement
10070 and then Nkind (N) = N_And_Then
10071 and then Is_Entity_Name (L)
10072 and then Entity (L) = Standard_False
10073 then
10074 declare
10075 Orig : constant Node_Id := Original_Node (Parent (N));
10077 begin
10078 -- Special handling of Asssert pragma
10080 if Nkind (Orig) = N_Pragma
10081 and then Pragma_Name (Orig) = Name_Assert
10082 then
10083 declare
10084 Expr : constant Node_Id :=
10085 Original_Node
10086 (Expression
10087 (First (Pragma_Argument_Associations (Orig))));
10089 begin
10090 -- Don't warn if original condition is explicit False,
10091 -- since obviously the failure is expected in this case.
10093 if Is_Entity_Name (Expr)
10094 and then Entity (Expr) = Standard_False
10095 then
10096 null;
10098 -- Issue warning. We do not want the deletion of the
10099 -- IF/AND-THEN to take this message with it. We achieve this
10100 -- by making sure that the expanded code points to the Sloc
10101 -- of the expression, not the original pragma.
10103 else
10104 -- Note: Use Error_Msg_F here rather than Error_Msg_N.
10105 -- The source location of the expression is not usually
10106 -- the best choice here. For example, it gets located on
10107 -- the last AND keyword in a chain of boolean expressiond
10108 -- AND'ed together. It is best to put the message on the
10109 -- first character of the assertion, which is the effect
10110 -- of the First_Node call here.
10112 Error_Msg_F
10113 ("?A?assertion would fail at run time!",
10114 Expression
10115 (First (Pragma_Argument_Associations (Orig))));
10116 end if;
10117 end;
10119 -- Similar processing for Check pragma
10121 elsif Nkind (Orig) = N_Pragma
10122 and then Pragma_Name (Orig) = Name_Check
10123 then
10124 -- Don't want to warn if original condition is explicit False
10126 declare
10127 Expr : constant Node_Id :=
10128 Original_Node
10129 (Expression
10130 (Next (First (Pragma_Argument_Associations (Orig)))));
10131 begin
10132 if Is_Entity_Name (Expr)
10133 and then Entity (Expr) = Standard_False
10134 then
10135 null;
10137 -- Post warning
10139 else
10140 -- Again use Error_Msg_F rather than Error_Msg_N, see
10141 -- comment above for an explanation of why we do this.
10143 Error_Msg_F
10144 ("?A?check would fail at run time!",
10145 Expression
10146 (Last (Pragma_Argument_Associations (Orig))));
10147 end if;
10148 end;
10149 end if;
10150 end;
10151 end if;
10153 -- Continue with processing of short circuit
10155 Check_Unset_Reference (L);
10156 Check_Unset_Reference (R);
10158 Set_Etype (N, B_Typ);
10159 Eval_Short_Circuit (N);
10160 end Resolve_Short_Circuit;
10162 -------------------
10163 -- Resolve_Slice --
10164 -------------------
10166 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
10167 Drange : constant Node_Id := Discrete_Range (N);
10168 Name : constant Node_Id := Prefix (N);
10169 Array_Type : Entity_Id := Empty;
10170 Dexpr : Node_Id := Empty;
10171 Index_Type : Entity_Id;
10173 begin
10174 if Is_Overloaded (Name) then
10176 -- Use the context type to select the prefix that yields the correct
10177 -- array type.
10179 declare
10180 I : Interp_Index;
10181 I1 : Interp_Index := 0;
10182 It : Interp;
10183 P : constant Node_Id := Prefix (N);
10184 Found : Boolean := False;
10186 begin
10187 Get_First_Interp (P, I, It);
10188 while Present (It.Typ) loop
10189 if (Is_Array_Type (It.Typ)
10190 and then Covers (Typ, It.Typ))
10191 or else (Is_Access_Type (It.Typ)
10192 and then Is_Array_Type (Designated_Type (It.Typ))
10193 and then Covers (Typ, Designated_Type (It.Typ)))
10194 then
10195 if Found then
10196 It := Disambiguate (P, I1, I, Any_Type);
10198 if It = No_Interp then
10199 Error_Msg_N ("ambiguous prefix for slicing", N);
10200 Set_Etype (N, Typ);
10201 return;
10202 else
10203 Found := True;
10204 Array_Type := It.Typ;
10205 I1 := I;
10206 end if;
10207 else
10208 Found := True;
10209 Array_Type := It.Typ;
10210 I1 := I;
10211 end if;
10212 end if;
10214 Get_Next_Interp (I, It);
10215 end loop;
10216 end;
10218 else
10219 Array_Type := Etype (Name);
10220 end if;
10222 Resolve (Name, Array_Type);
10224 if Is_Access_Type (Array_Type) then
10225 Apply_Access_Check (N);
10226 Array_Type := Designated_Type (Array_Type);
10228 -- If the prefix is an access to an unconstrained array, we must use
10229 -- the actual subtype of the object to perform the index checks. The
10230 -- object denoted by the prefix is implicit in the node, so we build
10231 -- an explicit representation for it in order to compute the actual
10232 -- subtype.
10234 if not Is_Constrained (Array_Type) then
10235 Remove_Side_Effects (Prefix (N));
10237 declare
10238 Obj : constant Node_Id :=
10239 Make_Explicit_Dereference (Sloc (N),
10240 Prefix => New_Copy_Tree (Prefix (N)));
10241 begin
10242 Set_Etype (Obj, Array_Type);
10243 Set_Parent (Obj, Parent (N));
10244 Array_Type := Get_Actual_Subtype (Obj);
10245 end;
10246 end if;
10248 elsif Is_Entity_Name (Name)
10249 or else Nkind (Name) = N_Explicit_Dereference
10250 or else (Nkind (Name) = N_Function_Call
10251 and then not Is_Constrained (Etype (Name)))
10252 then
10253 Array_Type := Get_Actual_Subtype (Name);
10255 -- If the name is a selected component that depends on discriminants,
10256 -- build an actual subtype for it. This can happen only when the name
10257 -- itself is overloaded; otherwise the actual subtype is created when
10258 -- the selected component is analyzed.
10260 elsif Nkind (Name) = N_Selected_Component
10261 and then Full_Analysis
10262 and then Depends_On_Discriminant (First_Index (Array_Type))
10263 then
10264 declare
10265 Act_Decl : constant Node_Id :=
10266 Build_Actual_Subtype_Of_Component (Array_Type, Name);
10267 begin
10268 Insert_Action (N, Act_Decl);
10269 Array_Type := Defining_Identifier (Act_Decl);
10270 end;
10272 -- Maybe this should just be "else", instead of checking for the
10273 -- specific case of slice??? This is needed for the case where the
10274 -- prefix is an Image attribute, which gets expanded to a slice, and so
10275 -- has a constrained subtype which we want to use for the slice range
10276 -- check applied below (the range check won't get done if the
10277 -- unconstrained subtype of the 'Image is used).
10279 elsif Nkind (Name) = N_Slice then
10280 Array_Type := Etype (Name);
10281 end if;
10283 -- Obtain the type of the array index
10285 if Ekind (Array_Type) = E_String_Literal_Subtype then
10286 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
10287 else
10288 Index_Type := Etype (First_Index (Array_Type));
10289 end if;
10291 -- If name was overloaded, set slice type correctly now
10293 Set_Etype (N, Array_Type);
10295 -- Handle the generation of a range check that compares the array index
10296 -- against the discrete_range. The check is not applied to internally
10297 -- built nodes associated with the expansion of dispatch tables. Check
10298 -- that Ada.Tags has already been loaded to avoid extra dependencies on
10299 -- the unit.
10301 if Tagged_Type_Expansion
10302 and then RTU_Loaded (Ada_Tags)
10303 and then Nkind (Prefix (N)) = N_Selected_Component
10304 and then Present (Entity (Selector_Name (Prefix (N))))
10305 and then Entity (Selector_Name (Prefix (N))) =
10306 RTE_Record_Component (RE_Prims_Ptr)
10307 then
10308 null;
10310 -- The discrete_range is specified by a subtype indication. Create a
10311 -- shallow copy and inherit the type, parent and source location from
10312 -- the discrete_range. This ensures that the range check is inserted
10313 -- relative to the slice and that the runtime exception points to the
10314 -- proper construct.
10316 elsif Is_Entity_Name (Drange) then
10317 Dexpr := New_Copy (Scalar_Range (Entity (Drange)));
10319 Set_Etype (Dexpr, Etype (Drange));
10320 Set_Parent (Dexpr, Parent (Drange));
10321 Set_Sloc (Dexpr, Sloc (Drange));
10323 -- The discrete_range is a regular range. Resolve the bounds and remove
10324 -- their side effects.
10326 else
10327 Resolve (Drange, Base_Type (Index_Type));
10329 if Nkind (Drange) = N_Range then
10330 Force_Evaluation (Low_Bound (Drange));
10331 Force_Evaluation (High_Bound (Drange));
10333 Dexpr := Drange;
10334 end if;
10335 end if;
10337 if Present (Dexpr) then
10338 Apply_Range_Check (Dexpr, Index_Type);
10339 end if;
10341 Set_Slice_Subtype (N);
10343 -- Check bad use of type with predicates
10345 declare
10346 Subt : Entity_Id;
10348 begin
10349 if Nkind (Drange) = N_Subtype_Indication
10350 and then Has_Predicates (Entity (Subtype_Mark (Drange)))
10351 then
10352 Subt := Entity (Subtype_Mark (Drange));
10353 else
10354 Subt := Etype (Drange);
10355 end if;
10357 if Has_Predicates (Subt) then
10358 Bad_Predicated_Subtype_Use
10359 ("subtype& has predicate, not allowed in slice", Drange, Subt);
10360 end if;
10361 end;
10363 -- Otherwise here is where we check suspicious indexes
10365 if Nkind (Drange) = N_Range then
10366 Warn_On_Suspicious_Index (Name, Low_Bound (Drange));
10367 Warn_On_Suspicious_Index (Name, High_Bound (Drange));
10368 end if;
10370 Analyze_Dimension (N);
10371 Eval_Slice (N);
10372 end Resolve_Slice;
10374 ----------------------------
10375 -- Resolve_String_Literal --
10376 ----------------------------
10378 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
10379 C_Typ : constant Entity_Id := Component_Type (Typ);
10380 R_Typ : constant Entity_Id := Root_Type (C_Typ);
10381 Loc : constant Source_Ptr := Sloc (N);
10382 Str : constant String_Id := Strval (N);
10383 Strlen : constant Nat := String_Length (Str);
10384 Subtype_Id : Entity_Id;
10385 Need_Check : Boolean;
10387 begin
10388 -- For a string appearing in a concatenation, defer creation of the
10389 -- string_literal_subtype until the end of the resolution of the
10390 -- concatenation, because the literal may be constant-folded away. This
10391 -- is a useful optimization for long concatenation expressions.
10393 -- If the string is an aggregate built for a single character (which
10394 -- happens in a non-static context) or a is null string to which special
10395 -- checks may apply, we build the subtype. Wide strings must also get a
10396 -- string subtype if they come from a one character aggregate. Strings
10397 -- generated by attributes might be static, but it is often hard to
10398 -- determine whether the enclosing context is static, so we generate
10399 -- subtypes for them as well, thus losing some rarer optimizations ???
10400 -- Same for strings that come from a static conversion.
10402 Need_Check :=
10403 (Strlen = 0 and then Typ /= Standard_String)
10404 or else Nkind (Parent (N)) /= N_Op_Concat
10405 or else (N /= Left_Opnd (Parent (N))
10406 and then N /= Right_Opnd (Parent (N)))
10407 or else ((Typ = Standard_Wide_String
10408 or else Typ = Standard_Wide_Wide_String)
10409 and then Nkind (Original_Node (N)) /= N_String_Literal);
10411 -- If the resolving type is itself a string literal subtype, we can just
10412 -- reuse it, since there is no point in creating another.
10414 if Ekind (Typ) = E_String_Literal_Subtype then
10415 Subtype_Id := Typ;
10417 elsif Nkind (Parent (N)) = N_Op_Concat
10418 and then not Need_Check
10419 and then not Nkind_In (Original_Node (N), N_Character_Literal,
10420 N_Attribute_Reference,
10421 N_Qualified_Expression,
10422 N_Type_Conversion)
10423 then
10424 Subtype_Id := Typ;
10426 -- Do not generate a string literal subtype for the default expression
10427 -- of a formal parameter in GNATprove mode. This is because the string
10428 -- subtype is associated with the freezing actions of the subprogram,
10429 -- however freezing is disabled in GNATprove mode and as a result the
10430 -- subtype is unavailable.
10432 elsif GNATprove_Mode
10433 and then Nkind (Parent (N)) = N_Parameter_Specification
10434 then
10435 Subtype_Id := Typ;
10437 -- Otherwise we must create a string literal subtype. Note that the
10438 -- whole idea of string literal subtypes is simply to avoid the need
10439 -- for building a full fledged array subtype for each literal.
10441 else
10442 Set_String_Literal_Subtype (N, Typ);
10443 Subtype_Id := Etype (N);
10444 end if;
10446 if Nkind (Parent (N)) /= N_Op_Concat
10447 or else Need_Check
10448 then
10449 Set_Etype (N, Subtype_Id);
10450 Eval_String_Literal (N);
10451 end if;
10453 if Is_Limited_Composite (Typ)
10454 or else Is_Private_Composite (Typ)
10455 then
10456 Error_Msg_N ("string literal not available for private array", N);
10457 Set_Etype (N, Any_Type);
10458 return;
10459 end if;
10461 -- The validity of a null string has been checked in the call to
10462 -- Eval_String_Literal.
10464 if Strlen = 0 then
10465 return;
10467 -- Always accept string literal with component type Any_Character, which
10468 -- occurs in error situations and in comparisons of literals, both of
10469 -- which should accept all literals.
10471 elsif R_Typ = Any_Character then
10472 return;
10474 -- If the type is bit-packed, then we always transform the string
10475 -- literal into a full fledged aggregate.
10477 elsif Is_Bit_Packed_Array (Typ) then
10478 null;
10480 -- Deal with cases of Wide_Wide_String, Wide_String, and String
10482 else
10483 -- For Standard.Wide_Wide_String, or any other type whose component
10484 -- type is Standard.Wide_Wide_Character, we know that all the
10485 -- characters in the string must be acceptable, since the parser
10486 -- accepted the characters as valid character literals.
10488 if R_Typ = Standard_Wide_Wide_Character then
10489 null;
10491 -- For the case of Standard.String, or any other type whose component
10492 -- type is Standard.Character, we must make sure that there are no
10493 -- wide characters in the string, i.e. that it is entirely composed
10494 -- of characters in range of type Character.
10496 -- If the string literal is the result of a static concatenation, the
10497 -- test has already been performed on the components, and need not be
10498 -- repeated.
10500 elsif R_Typ = Standard_Character
10501 and then Nkind (Original_Node (N)) /= N_Op_Concat
10502 then
10503 for J in 1 .. Strlen loop
10504 if not In_Character_Range (Get_String_Char (Str, J)) then
10506 -- If we are out of range, post error. This is one of the
10507 -- very few places that we place the flag in the middle of
10508 -- a token, right under the offending wide character. Not
10509 -- quite clear if this is right wrt wide character encoding
10510 -- sequences, but it's only an error message.
10512 Error_Msg
10513 ("literal out of range of type Standard.Character",
10514 Source_Ptr (Int (Loc) + J));
10515 return;
10516 end if;
10517 end loop;
10519 -- For the case of Standard.Wide_String, or any other type whose
10520 -- component type is Standard.Wide_Character, we must make sure that
10521 -- there are no wide characters in the string, i.e. that it is
10522 -- entirely composed of characters in range of type Wide_Character.
10524 -- If the string literal is the result of a static concatenation,
10525 -- the test has already been performed on the components, and need
10526 -- not be repeated.
10528 elsif R_Typ = Standard_Wide_Character
10529 and then Nkind (Original_Node (N)) /= N_Op_Concat
10530 then
10531 for J in 1 .. Strlen loop
10532 if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
10534 -- If we are out of range, post error. This is one of the
10535 -- very few places that we place the flag in the middle of
10536 -- a token, right under the offending wide character.
10538 -- This is not quite right, because characters in general
10539 -- will take more than one character position ???
10541 Error_Msg
10542 ("literal out of range of type Standard.Wide_Character",
10543 Source_Ptr (Int (Loc) + J));
10544 return;
10545 end if;
10546 end loop;
10548 -- If the root type is not a standard character, then we will convert
10549 -- the string into an aggregate and will let the aggregate code do
10550 -- the checking. Standard Wide_Wide_Character is also OK here.
10552 else
10553 null;
10554 end if;
10556 -- See if the component type of the array corresponding to the string
10557 -- has compile time known bounds. If yes we can directly check
10558 -- whether the evaluation of the string will raise constraint error.
10559 -- Otherwise we need to transform the string literal into the
10560 -- corresponding character aggregate and let the aggregate code do
10561 -- the checking.
10563 if Is_Standard_Character_Type (R_Typ) then
10565 -- Check for the case of full range, where we are definitely OK
10567 if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
10568 return;
10569 end if;
10571 -- Here the range is not the complete base type range, so check
10573 declare
10574 Comp_Typ_Lo : constant Node_Id :=
10575 Type_Low_Bound (Component_Type (Typ));
10576 Comp_Typ_Hi : constant Node_Id :=
10577 Type_High_Bound (Component_Type (Typ));
10579 Char_Val : Uint;
10581 begin
10582 if Compile_Time_Known_Value (Comp_Typ_Lo)
10583 and then Compile_Time_Known_Value (Comp_Typ_Hi)
10584 then
10585 for J in 1 .. Strlen loop
10586 Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
10588 if Char_Val < Expr_Value (Comp_Typ_Lo)
10589 or else Char_Val > Expr_Value (Comp_Typ_Hi)
10590 then
10591 Apply_Compile_Time_Constraint_Error
10592 (N, "character out of range??",
10593 CE_Range_Check_Failed,
10594 Loc => Source_Ptr (Int (Loc) + J));
10595 end if;
10596 end loop;
10598 return;
10599 end if;
10600 end;
10601 end if;
10602 end if;
10604 -- If we got here we meed to transform the string literal into the
10605 -- equivalent qualified positional array aggregate. This is rather
10606 -- heavy artillery for this situation, but it is hard work to avoid.
10608 declare
10609 Lits : constant List_Id := New_List;
10610 P : Source_Ptr := Loc + 1;
10611 C : Char_Code;
10613 begin
10614 -- Build the character literals, we give them source locations that
10615 -- correspond to the string positions, which is a bit tricky given
10616 -- the possible presence of wide character escape sequences.
10618 for J in 1 .. Strlen loop
10619 C := Get_String_Char (Str, J);
10620 Set_Character_Literal_Name (C);
10622 Append_To (Lits,
10623 Make_Character_Literal (P,
10624 Chars => Name_Find,
10625 Char_Literal_Value => UI_From_CC (C)));
10627 if In_Character_Range (C) then
10628 P := P + 1;
10630 -- Should we have a call to Skip_Wide here ???
10632 -- ??? else
10633 -- Skip_Wide (P);
10635 end if;
10636 end loop;
10638 Rewrite (N,
10639 Make_Qualified_Expression (Loc,
10640 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
10641 Expression =>
10642 Make_Aggregate (Loc, Expressions => Lits)));
10644 Analyze_And_Resolve (N, Typ);
10645 end;
10646 end Resolve_String_Literal;
10648 -------------------------
10649 -- Resolve_Target_Name --
10650 -------------------------
10652 procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id) is
10653 begin
10654 Set_Etype (N, Typ);
10655 end Resolve_Target_Name;
10657 -----------------------------
10658 -- Resolve_Type_Conversion --
10659 -----------------------------
10661 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
10662 Conv_OK : constant Boolean := Conversion_OK (N);
10663 Operand : constant Node_Id := Expression (N);
10664 Operand_Typ : constant Entity_Id := Etype (Operand);
10665 Target_Typ : constant Entity_Id := Etype (N);
10666 Rop : Node_Id;
10667 Orig_N : Node_Id;
10668 Orig_T : Node_Id;
10670 Test_Redundant : Boolean := Warn_On_Redundant_Constructs;
10671 -- Set to False to suppress cases where we want to suppress the test
10672 -- for redundancy to avoid possible false positives on this warning.
10674 begin
10675 if not Conv_OK
10676 and then not Valid_Conversion (N, Target_Typ, Operand)
10677 then
10678 return;
10679 end if;
10681 -- If the Operand Etype is Universal_Fixed, then the conversion is
10682 -- never redundant. We need this check because by the time we have
10683 -- finished the rather complex transformation, the conversion looks
10684 -- redundant when it is not.
10686 if Operand_Typ = Universal_Fixed then
10687 Test_Redundant := False;
10689 -- If the operand is marked as Any_Fixed, then special processing is
10690 -- required. This is also a case where we suppress the test for a
10691 -- redundant conversion, since most certainly it is not redundant.
10693 elsif Operand_Typ = Any_Fixed then
10694 Test_Redundant := False;
10696 -- Mixed-mode operation involving a literal. Context must be a fixed
10697 -- type which is applied to the literal subsequently.
10699 if Is_Fixed_Point_Type (Typ) then
10700 Set_Etype (Operand, Universal_Real);
10702 elsif Is_Numeric_Type (Typ)
10703 and then Nkind_In (Operand, N_Op_Multiply, N_Op_Divide)
10704 and then (Etype (Right_Opnd (Operand)) = Universal_Real
10705 or else
10706 Etype (Left_Opnd (Operand)) = Universal_Real)
10707 then
10708 -- Return if expression is ambiguous
10710 if Unique_Fixed_Point_Type (N) = Any_Type then
10711 return;
10713 -- If nothing else, the available fixed type is Duration
10715 else
10716 Set_Etype (Operand, Standard_Duration);
10717 end if;
10719 -- Resolve the real operand with largest available precision
10721 if Etype (Right_Opnd (Operand)) = Universal_Real then
10722 Rop := New_Copy_Tree (Right_Opnd (Operand));
10723 else
10724 Rop := New_Copy_Tree (Left_Opnd (Operand));
10725 end if;
10727 Resolve (Rop, Universal_Real);
10729 -- If the operand is a literal (it could be a non-static and
10730 -- illegal exponentiation) check whether the use of Duration
10731 -- is potentially inaccurate.
10733 if Nkind (Rop) = N_Real_Literal
10734 and then Realval (Rop) /= Ureal_0
10735 and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
10736 then
10737 Error_Msg_N
10738 ("??universal real operand can only "
10739 & "be interpreted as Duration!", Rop);
10740 Error_Msg_N
10741 ("\??precision will be lost in the conversion!", Rop);
10742 end if;
10744 elsif Is_Numeric_Type (Typ)
10745 and then Nkind (Operand) in N_Op
10746 and then Unique_Fixed_Point_Type (N) /= Any_Type
10747 then
10748 Set_Etype (Operand, Standard_Duration);
10750 else
10751 Error_Msg_N ("invalid context for mixed mode operation", N);
10752 Set_Etype (Operand, Any_Type);
10753 return;
10754 end if;
10755 end if;
10757 Resolve (Operand);
10759 -- In SPARK, a type conversion between array types should be restricted
10760 -- to types which have matching static bounds.
10762 -- Protect call to Matching_Static_Array_Bounds to avoid costly
10763 -- operation if not needed.
10765 if Restriction_Check_Required (SPARK_05)
10766 and then Is_Array_Type (Target_Typ)
10767 and then Is_Array_Type (Operand_Typ)
10768 and then Operand_Typ /= Any_Composite -- or else Operand in error
10769 and then not Matching_Static_Array_Bounds (Target_Typ, Operand_Typ)
10770 then
10771 Check_SPARK_05_Restriction
10772 ("array types should have matching static bounds", N);
10773 end if;
10775 -- In formal mode, the operand of an ancestor type conversion must be an
10776 -- object (not an expression).
10778 if Is_Tagged_Type (Target_Typ)
10779 and then not Is_Class_Wide_Type (Target_Typ)
10780 and then Is_Tagged_Type (Operand_Typ)
10781 and then not Is_Class_Wide_Type (Operand_Typ)
10782 and then Is_Ancestor (Target_Typ, Operand_Typ)
10783 and then not Is_SPARK_05_Object_Reference (Operand)
10784 then
10785 Check_SPARK_05_Restriction ("object required", Operand);
10786 end if;
10788 Analyze_Dimension (N);
10790 -- Note: we do the Eval_Type_Conversion call before applying the
10791 -- required checks for a subtype conversion. This is important, since
10792 -- both are prepared under certain circumstances to change the type
10793 -- conversion to a constraint error node, but in the case of
10794 -- Eval_Type_Conversion this may reflect an illegality in the static
10795 -- case, and we would miss the illegality (getting only a warning
10796 -- message), if we applied the type conversion checks first.
10798 Eval_Type_Conversion (N);
10800 -- Even when evaluation is not possible, we may be able to simplify the
10801 -- conversion or its expression. This needs to be done before applying
10802 -- checks, since otherwise the checks may use the original expression
10803 -- and defeat the simplifications. This is specifically the case for
10804 -- elimination of the floating-point Truncation attribute in
10805 -- float-to-int conversions.
10807 Simplify_Type_Conversion (N);
10809 -- If after evaluation we still have a type conversion, then we may need
10810 -- to apply checks required for a subtype conversion.
10812 -- Skip these type conversion checks if universal fixed operands
10813 -- operands involved, since range checks are handled separately for
10814 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
10816 if Nkind (N) = N_Type_Conversion
10817 and then not Is_Generic_Type (Root_Type (Target_Typ))
10818 and then Target_Typ /= Universal_Fixed
10819 and then Operand_Typ /= Universal_Fixed
10820 then
10821 Apply_Type_Conversion_Checks (N);
10822 end if;
10824 -- Issue warning for conversion of simple object to its own type. We
10825 -- have to test the original nodes, since they may have been rewritten
10826 -- by various optimizations.
10828 Orig_N := Original_Node (N);
10830 -- Here we test for a redundant conversion if the warning mode is
10831 -- active (and was not locally reset), and we have a type conversion
10832 -- from source not appearing in a generic instance.
10834 if Test_Redundant
10835 and then Nkind (Orig_N) = N_Type_Conversion
10836 and then Comes_From_Source (Orig_N)
10837 and then not In_Instance
10838 then
10839 Orig_N := Original_Node (Expression (Orig_N));
10840 Orig_T := Target_Typ;
10842 -- If the node is part of a larger expression, the Target_Type
10843 -- may not be the original type of the node if the context is a
10844 -- condition. Recover original type to see if conversion is needed.
10846 if Is_Boolean_Type (Orig_T)
10847 and then Nkind (Parent (N)) in N_Op
10848 then
10849 Orig_T := Etype (Parent (N));
10850 end if;
10852 -- If we have an entity name, then give the warning if the entity
10853 -- is the right type, or if it is a loop parameter covered by the
10854 -- original type (that's needed because loop parameters have an
10855 -- odd subtype coming from the bounds).
10857 if (Is_Entity_Name (Orig_N)
10858 and then
10859 (Etype (Entity (Orig_N)) = Orig_T
10860 or else
10861 (Ekind (Entity (Orig_N)) = E_Loop_Parameter
10862 and then Covers (Orig_T, Etype (Entity (Orig_N))))))
10864 -- If not an entity, then type of expression must match
10866 or else Etype (Orig_N) = Orig_T
10867 then
10868 -- One more check, do not give warning if the analyzed conversion
10869 -- has an expression with non-static bounds, and the bounds of the
10870 -- target are static. This avoids junk warnings in cases where the
10871 -- conversion is necessary to establish staticness, for example in
10872 -- a case statement.
10874 if not Is_OK_Static_Subtype (Operand_Typ)
10875 and then Is_OK_Static_Subtype (Target_Typ)
10876 then
10877 null;
10879 -- Finally, if this type conversion occurs in a context requiring
10880 -- a prefix, and the expression is a qualified expression then the
10881 -- type conversion is not redundant, since a qualified expression
10882 -- is not a prefix, whereas a type conversion is. For example, "X
10883 -- := T'(Funx(...)).Y;" is illegal because a selected component
10884 -- requires a prefix, but a type conversion makes it legal: "X :=
10885 -- T(T'(Funx(...))).Y;"
10887 -- In Ada 2012, a qualified expression is a name, so this idiom is
10888 -- no longer needed, but we still suppress the warning because it
10889 -- seems unfriendly for warnings to pop up when you switch to the
10890 -- newer language version.
10892 elsif Nkind (Orig_N) = N_Qualified_Expression
10893 and then Nkind_In (Parent (N), N_Attribute_Reference,
10894 N_Indexed_Component,
10895 N_Selected_Component,
10896 N_Slice,
10897 N_Explicit_Dereference)
10898 then
10899 null;
10901 -- Never warn on conversion to Long_Long_Integer'Base since
10902 -- that is most likely an artifact of the extended overflow
10903 -- checking and comes from complex expanded code.
10905 elsif Orig_T = Base_Type (Standard_Long_Long_Integer) then
10906 null;
10908 -- Here we give the redundant conversion warning. If it is an
10909 -- entity, give the name of the entity in the message. If not,
10910 -- just mention the expression.
10912 -- Shoudn't we test Warn_On_Redundant_Constructs here ???
10914 else
10915 if Is_Entity_Name (Orig_N) then
10916 Error_Msg_Node_2 := Orig_T;
10917 Error_Msg_NE -- CODEFIX
10918 ("??redundant conversion, & is of type &!",
10919 N, Entity (Orig_N));
10920 else
10921 Error_Msg_NE
10922 ("??redundant conversion, expression is of type&!",
10923 N, Orig_T);
10924 end if;
10925 end if;
10926 end if;
10927 end if;
10929 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
10930 -- No need to perform any interface conversion if the type of the
10931 -- expression coincides with the target type.
10933 if Ada_Version >= Ada_2005
10934 and then Expander_Active
10935 and then Operand_Typ /= Target_Typ
10936 then
10937 declare
10938 Opnd : Entity_Id := Operand_Typ;
10939 Target : Entity_Id := Target_Typ;
10941 begin
10942 -- If the type of the operand is a limited view, use nonlimited
10943 -- view when available. If it is a class-wide type, recover the
10944 -- class-wide type of the nonlimited view.
10946 if From_Limited_With (Opnd)
10947 and then Has_Non_Limited_View (Opnd)
10948 then
10949 Opnd := Non_Limited_View (Opnd);
10950 Set_Etype (Expression (N), Opnd);
10951 end if;
10953 if Is_Access_Type (Opnd) then
10954 Opnd := Designated_Type (Opnd);
10955 end if;
10957 if Is_Access_Type (Target_Typ) then
10958 Target := Designated_Type (Target);
10959 end if;
10961 if Opnd = Target then
10962 null;
10964 -- Conversion from interface type
10966 elsif Is_Interface (Opnd) then
10968 -- Ada 2005 (AI-217): Handle entities from limited views
10970 if From_Limited_With (Opnd) then
10971 Error_Msg_Qual_Level := 99;
10972 Error_Msg_NE -- CODEFIX
10973 ("missing WITH clause on package &", N,
10974 Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
10975 Error_Msg_N
10976 ("type conversions require visibility of the full view",
10979 elsif From_Limited_With (Target)
10980 and then not
10981 (Is_Access_Type (Target_Typ)
10982 and then Present (Non_Limited_View (Etype (Target))))
10983 then
10984 Error_Msg_Qual_Level := 99;
10985 Error_Msg_NE -- CODEFIX
10986 ("missing WITH clause on package &", N,
10987 Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
10988 Error_Msg_N
10989 ("type conversions require visibility of the full view",
10992 else
10993 Expand_Interface_Conversion (N);
10994 end if;
10996 -- Conversion to interface type
10998 elsif Is_Interface (Target) then
11000 -- Handle subtypes
11002 if Ekind_In (Opnd, E_Protected_Subtype, E_Task_Subtype) then
11003 Opnd := Etype (Opnd);
11004 end if;
11006 if Is_Class_Wide_Type (Opnd)
11007 or else Interface_Present_In_Ancestor
11008 (Typ => Opnd,
11009 Iface => Target)
11010 then
11011 Expand_Interface_Conversion (N);
11012 else
11013 Error_Msg_Name_1 := Chars (Etype (Target));
11014 Error_Msg_Name_2 := Chars (Opnd);
11015 Error_Msg_N
11016 ("wrong interface conversion (% is not a progenitor "
11017 & "of %)", N);
11018 end if;
11019 end if;
11020 end;
11021 end if;
11023 -- Ada 2012: if target type has predicates, the result requires a
11024 -- predicate check. If the context is a call to another predicate
11025 -- check we must prevent infinite recursion.
11027 if Has_Predicates (Target_Typ) then
11028 if Nkind (Parent (N)) = N_Function_Call
11029 and then Present (Name (Parent (N)))
11030 and then (Is_Predicate_Function (Entity (Name (Parent (N))))
11031 or else
11032 Is_Predicate_Function_M (Entity (Name (Parent (N)))))
11033 then
11034 null;
11036 else
11037 Apply_Predicate_Check (N, Target_Typ);
11038 end if;
11039 end if;
11041 -- If at this stage we have a real to integer conversion, make sure
11042 -- that the Do_Range_Check flag is set, because such conversions in
11043 -- general need a range check. We only need this if expansion is off
11044 -- or we are in GNATProve mode.
11046 if Nkind (N) = N_Type_Conversion
11047 and then (GNATprove_Mode or not Expander_Active)
11048 and then Is_Integer_Type (Target_Typ)
11049 and then Is_Real_Type (Operand_Typ)
11050 then
11051 Set_Do_Range_Check (Operand);
11052 end if;
11054 -- Generating C code a type conversion of an access to constrained
11055 -- array type to access to unconstrained array type involves building
11056 -- a fat pointer which in general cannot be generated on the fly. We
11057 -- remove side effects in order to store the result of the conversion
11058 -- into a temporary.
11060 if Modify_Tree_For_C
11061 and then Nkind (N) = N_Type_Conversion
11062 and then Nkind (Parent (N)) /= N_Object_Declaration
11063 and then Is_Access_Type (Etype (N))
11064 and then Is_Array_Type (Designated_Type (Etype (N)))
11065 and then not Is_Constrained (Designated_Type (Etype (N)))
11066 and then Is_Constrained (Designated_Type (Etype (Expression (N))))
11067 then
11068 Remove_Side_Effects (N);
11069 end if;
11070 end Resolve_Type_Conversion;
11072 ----------------------
11073 -- Resolve_Unary_Op --
11074 ----------------------
11076 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
11077 B_Typ : constant Entity_Id := Base_Type (Typ);
11078 R : constant Node_Id := Right_Opnd (N);
11079 OK : Boolean;
11080 Lo : Uint;
11081 Hi : Uint;
11083 begin
11084 if Is_Modular_Integer_Type (Typ) and then Nkind (N) /= N_Op_Not then
11085 Error_Msg_Name_1 := Chars (Typ);
11086 Check_SPARK_05_Restriction
11087 ("unary operator not defined for modular type%", N);
11088 end if;
11090 -- Deal with intrinsic unary operators
11092 if Comes_From_Source (N)
11093 and then Ekind (Entity (N)) = E_Function
11094 and then Is_Imported (Entity (N))
11095 and then Is_Intrinsic_Subprogram (Entity (N))
11096 then
11097 Resolve_Intrinsic_Unary_Operator (N, Typ);
11098 return;
11099 end if;
11101 -- Deal with universal cases
11103 if Etype (R) = Universal_Integer
11104 or else
11105 Etype (R) = Universal_Real
11106 then
11107 Check_For_Visible_Operator (N, B_Typ);
11108 end if;
11110 Set_Etype (N, B_Typ);
11111 Resolve (R, B_Typ);
11113 -- Generate warning for expressions like abs (x mod 2)
11115 if Warn_On_Redundant_Constructs
11116 and then Nkind (N) = N_Op_Abs
11117 then
11118 Determine_Range (Right_Opnd (N), OK, Lo, Hi);
11120 if OK and then Hi >= Lo and then Lo >= 0 then
11121 Error_Msg_N -- CODEFIX
11122 ("?r?abs applied to known non-negative value has no effect", N);
11123 end if;
11124 end if;
11126 -- Deal with reference generation
11128 Check_Unset_Reference (R);
11129 Generate_Operator_Reference (N, B_Typ);
11130 Analyze_Dimension (N);
11131 Eval_Unary_Op (N);
11133 -- Set overflow checking bit. Much cleverer code needed here eventually
11134 -- and perhaps the Resolve routines should be separated for the various
11135 -- arithmetic operations, since they will need different processing ???
11137 if Nkind (N) in N_Op then
11138 if not Overflow_Checks_Suppressed (Etype (N)) then
11139 Enable_Overflow_Check (N);
11140 end if;
11141 end if;
11143 -- Generate warning for expressions like -5 mod 3 for integers. No need
11144 -- to worry in the floating-point case, since parens do not affect the
11145 -- result so there is no point in giving in a warning.
11147 declare
11148 Norig : constant Node_Id := Original_Node (N);
11149 Rorig : Node_Id;
11150 Val : Uint;
11151 HB : Uint;
11152 LB : Uint;
11153 Lval : Uint;
11154 Opnd : Node_Id;
11156 begin
11157 if Warn_On_Questionable_Missing_Parens
11158 and then Comes_From_Source (Norig)
11159 and then Is_Integer_Type (Typ)
11160 and then Nkind (Norig) = N_Op_Minus
11161 then
11162 Rorig := Original_Node (Right_Opnd (Norig));
11164 -- We are looking for cases where the right operand is not
11165 -- parenthesized, and is a binary operator, multiply, divide, or
11166 -- mod. These are the cases where the grouping can affect results.
11168 if Paren_Count (Rorig) = 0
11169 and then Nkind_In (Rorig, N_Op_Mod, N_Op_Multiply, N_Op_Divide)
11170 then
11171 -- For mod, we always give the warning, since the value is
11172 -- affected by the parenthesization (e.g. (-5) mod 315 /=
11173 -- -(5 mod 315)). But for the other cases, the only concern is
11174 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
11175 -- overflows, but (-2) * 64 does not). So we try to give the
11176 -- message only when overflow is possible.
11178 if Nkind (Rorig) /= N_Op_Mod
11179 and then Compile_Time_Known_Value (R)
11180 then
11181 Val := Expr_Value (R);
11183 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
11184 HB := Expr_Value (Type_High_Bound (Typ));
11185 else
11186 HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
11187 end if;
11189 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
11190 LB := Expr_Value (Type_Low_Bound (Typ));
11191 else
11192 LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
11193 end if;
11195 -- Note that the test below is deliberately excluding the
11196 -- largest negative number, since that is a potentially
11197 -- troublesome case (e.g. -2 * x, where the result is the
11198 -- largest negative integer has an overflow with 2 * x).
11200 if Val > LB and then Val <= HB then
11201 return;
11202 end if;
11203 end if;
11205 -- For the multiplication case, the only case we have to worry
11206 -- about is when (-a)*b is exactly the largest negative number
11207 -- so that -(a*b) can cause overflow. This can only happen if
11208 -- a is a power of 2, and more generally if any operand is a
11209 -- constant that is not a power of 2, then the parentheses
11210 -- cannot affect whether overflow occurs. We only bother to
11211 -- test the left most operand
11213 -- Loop looking at left operands for one that has known value
11215 Opnd := Rorig;
11216 Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
11217 if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
11218 Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
11220 -- Operand value of 0 or 1 skips warning
11222 if Lval <= 1 then
11223 return;
11225 -- Otherwise check power of 2, if power of 2, warn, if
11226 -- anything else, skip warning.
11228 else
11229 while Lval /= 2 loop
11230 if Lval mod 2 = 1 then
11231 return;
11232 else
11233 Lval := Lval / 2;
11234 end if;
11235 end loop;
11237 exit Opnd_Loop;
11238 end if;
11239 end if;
11241 -- Keep looking at left operands
11243 Opnd := Left_Opnd (Opnd);
11244 end loop Opnd_Loop;
11246 -- For rem or "/" we can only have a problematic situation
11247 -- if the divisor has a value of minus one or one. Otherwise
11248 -- overflow is impossible (divisor > 1) or we have a case of
11249 -- division by zero in any case.
11251 if Nkind_In (Rorig, N_Op_Divide, N_Op_Rem)
11252 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
11253 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
11254 then
11255 return;
11256 end if;
11258 -- If we fall through warning should be issued
11260 -- Shouldn't we test Warn_On_Questionable_Missing_Parens ???
11262 Error_Msg_N
11263 ("??unary minus expression should be parenthesized here!", N);
11264 end if;
11265 end if;
11266 end;
11267 end Resolve_Unary_Op;
11269 ----------------------------------
11270 -- Resolve_Unchecked_Expression --
11271 ----------------------------------
11273 procedure Resolve_Unchecked_Expression
11274 (N : Node_Id;
11275 Typ : Entity_Id)
11277 begin
11278 Resolve (Expression (N), Typ, Suppress => All_Checks);
11279 Set_Etype (N, Typ);
11280 end Resolve_Unchecked_Expression;
11282 ---------------------------------------
11283 -- Resolve_Unchecked_Type_Conversion --
11284 ---------------------------------------
11286 procedure Resolve_Unchecked_Type_Conversion
11287 (N : Node_Id;
11288 Typ : Entity_Id)
11290 pragma Warnings (Off, Typ);
11292 Operand : constant Node_Id := Expression (N);
11293 Opnd_Type : constant Entity_Id := Etype (Operand);
11295 begin
11296 -- Resolve operand using its own type
11298 Resolve (Operand, Opnd_Type);
11300 -- In an inlined context, the unchecked conversion may be applied
11301 -- to a literal, in which case its type is the type of the context.
11302 -- (In other contexts conversions cannot apply to literals).
11304 if In_Inlined_Body
11305 and then (Opnd_Type = Any_Character or else
11306 Opnd_Type = Any_Integer or else
11307 Opnd_Type = Any_Real)
11308 then
11309 Set_Etype (Operand, Typ);
11310 end if;
11312 Analyze_Dimension (N);
11313 Eval_Unchecked_Conversion (N);
11314 end Resolve_Unchecked_Type_Conversion;
11316 ------------------------------
11317 -- Rewrite_Operator_As_Call --
11318 ------------------------------
11320 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
11321 Loc : constant Source_Ptr := Sloc (N);
11322 Actuals : constant List_Id := New_List;
11323 New_N : Node_Id;
11325 begin
11326 if Nkind (N) in N_Binary_Op then
11327 Append (Left_Opnd (N), Actuals);
11328 end if;
11330 Append (Right_Opnd (N), Actuals);
11332 New_N :=
11333 Make_Function_Call (Sloc => Loc,
11334 Name => New_Occurrence_Of (Nam, Loc),
11335 Parameter_Associations => Actuals);
11337 Preserve_Comes_From_Source (New_N, N);
11338 Preserve_Comes_From_Source (Name (New_N), N);
11339 Rewrite (N, New_N);
11340 Set_Etype (N, Etype (Nam));
11341 end Rewrite_Operator_As_Call;
11343 ------------------------------
11344 -- Rewrite_Renamed_Operator --
11345 ------------------------------
11347 procedure Rewrite_Renamed_Operator
11348 (N : Node_Id;
11349 Op : Entity_Id;
11350 Typ : Entity_Id)
11352 Nam : constant Name_Id := Chars (Op);
11353 Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
11354 Op_Node : Node_Id;
11356 begin
11357 -- Do not perform this transformation within a pre/postcondition,
11358 -- because the expression will be re-analyzed, and the transformation
11359 -- might affect the visibility of the operator, e.g. in an instance.
11360 -- Note that fully analyzed and expanded pre/postconditions appear as
11361 -- pragma Check equivalents.
11363 if In_Pre_Post_Condition (N) then
11364 return;
11365 end if;
11367 -- Rewrite the operator node using the real operator, not its renaming.
11368 -- Exclude user-defined intrinsic operations of the same name, which are
11369 -- treated separately and rewritten as calls.
11371 if Ekind (Op) /= E_Function or else Chars (N) /= Nam then
11372 Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
11373 Set_Chars (Op_Node, Nam);
11374 Set_Etype (Op_Node, Etype (N));
11375 Set_Entity (Op_Node, Op);
11376 Set_Right_Opnd (Op_Node, Right_Opnd (N));
11378 -- Indicate that both the original entity and its renaming are
11379 -- referenced at this point.
11381 Generate_Reference (Entity (N), N);
11382 Generate_Reference (Op, N);
11384 if Is_Binary then
11385 Set_Left_Opnd (Op_Node, Left_Opnd (N));
11386 end if;
11388 Rewrite (N, Op_Node);
11390 -- If the context type is private, add the appropriate conversions so
11391 -- that the operator is applied to the full view. This is done in the
11392 -- routines that resolve intrinsic operators.
11394 if Is_Intrinsic_Subprogram (Op) and then Is_Private_Type (Typ) then
11395 case Nkind (N) is
11396 when N_Op_Add
11397 | N_Op_Divide
11398 | N_Op_Expon
11399 | N_Op_Mod
11400 | N_Op_Multiply
11401 | N_Op_Rem
11402 | N_Op_Subtract
11404 Resolve_Intrinsic_Operator (N, Typ);
11406 when N_Op_Abs
11407 | N_Op_Minus
11408 | N_Op_Plus
11410 Resolve_Intrinsic_Unary_Operator (N, Typ);
11412 when others =>
11413 Resolve (N, Typ);
11414 end case;
11415 end if;
11417 elsif Ekind (Op) = E_Function and then Is_Intrinsic_Subprogram (Op) then
11419 -- Operator renames a user-defined operator of the same name. Use the
11420 -- original operator in the node, which is the one Gigi knows about.
11422 Set_Entity (N, Op);
11423 Set_Is_Overloaded (N, False);
11424 end if;
11425 end Rewrite_Renamed_Operator;
11427 -----------------------
11428 -- Set_Slice_Subtype --
11429 -----------------------
11431 -- Build an implicit subtype declaration to represent the type delivered by
11432 -- the slice. This is an abbreviated version of an array subtype. We define
11433 -- an index subtype for the slice, using either the subtype name or the
11434 -- discrete range of the slice. To be consistent with index usage elsewhere
11435 -- we create a list header to hold the single index. This list is not
11436 -- otherwise attached to the syntax tree.
11438 procedure Set_Slice_Subtype (N : Node_Id) is
11439 Loc : constant Source_Ptr := Sloc (N);
11440 Index_List : constant List_Id := New_List;
11441 Index : Node_Id;
11442 Index_Subtype : Entity_Id;
11443 Index_Type : Entity_Id;
11444 Slice_Subtype : Entity_Id;
11445 Drange : constant Node_Id := Discrete_Range (N);
11447 begin
11448 Index_Type := Base_Type (Etype (Drange));
11450 if Is_Entity_Name (Drange) then
11451 Index_Subtype := Entity (Drange);
11453 else
11454 -- We force the evaluation of a range. This is definitely needed in
11455 -- the renamed case, and seems safer to do unconditionally. Note in
11456 -- any case that since we will create and insert an Itype referring
11457 -- to this range, we must make sure any side effect removal actions
11458 -- are inserted before the Itype definition.
11460 if Nkind (Drange) = N_Range then
11461 Force_Evaluation (Low_Bound (Drange));
11462 Force_Evaluation (High_Bound (Drange));
11464 -- If the discrete range is given by a subtype indication, the
11465 -- type of the slice is the base of the subtype mark.
11467 elsif Nkind (Drange) = N_Subtype_Indication then
11468 declare
11469 R : constant Node_Id := Range_Expression (Constraint (Drange));
11470 begin
11471 Index_Type := Base_Type (Entity (Subtype_Mark (Drange)));
11472 Force_Evaluation (Low_Bound (R));
11473 Force_Evaluation (High_Bound (R));
11474 end;
11475 end if;
11477 Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11479 -- Take a new copy of Drange (where bounds have been rewritten to
11480 -- reference side-effect-free names). Using a separate tree ensures
11481 -- that further expansion (e.g. while rewriting a slice assignment
11482 -- into a FOR loop) does not attempt to remove side effects on the
11483 -- bounds again (which would cause the bounds in the index subtype
11484 -- definition to refer to temporaries before they are defined) (the
11485 -- reason is that some names are considered side effect free here
11486 -- for the subtype, but not in the context of a loop iteration
11487 -- scheme).
11489 Set_Scalar_Range (Index_Subtype, New_Copy_Tree (Drange));
11490 Set_Parent (Scalar_Range (Index_Subtype), Index_Subtype);
11491 Set_Etype (Index_Subtype, Index_Type);
11492 Set_Size_Info (Index_Subtype, Index_Type);
11493 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11494 end if;
11496 Slice_Subtype := Create_Itype (E_Array_Subtype, N);
11498 Index := New_Occurrence_Of (Index_Subtype, Loc);
11499 Set_Etype (Index, Index_Subtype);
11500 Append (Index, Index_List);
11502 Set_First_Index (Slice_Subtype, Index);
11503 Set_Etype (Slice_Subtype, Base_Type (Etype (N)));
11504 Set_Is_Constrained (Slice_Subtype, True);
11506 Check_Compile_Time_Size (Slice_Subtype);
11508 -- The Etype of the existing Slice node is reset to this slice subtype.
11509 -- Its bounds are obtained from its first index.
11511 Set_Etype (N, Slice_Subtype);
11513 -- For packed slice subtypes, freeze immediately (except in the case of
11514 -- being in a "spec expression" where we never freeze when we first see
11515 -- the expression).
11517 if Is_Packed (Slice_Subtype) and not In_Spec_Expression then
11518 Freeze_Itype (Slice_Subtype, N);
11520 -- For all other cases insert an itype reference in the slice's actions
11521 -- so that the itype is frozen at the proper place in the tree (i.e. at
11522 -- the point where actions for the slice are analyzed). Note that this
11523 -- is different from freezing the itype immediately, which might be
11524 -- premature (e.g. if the slice is within a transient scope). This needs
11525 -- to be done only if expansion is enabled.
11527 elsif Expander_Active then
11528 Ensure_Defined (Typ => Slice_Subtype, N => N);
11529 end if;
11530 end Set_Slice_Subtype;
11532 --------------------------------
11533 -- Set_String_Literal_Subtype --
11534 --------------------------------
11536 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
11537 Loc : constant Source_Ptr := Sloc (N);
11538 Low_Bound : constant Node_Id :=
11539 Type_Low_Bound (Etype (First_Index (Typ)));
11540 Subtype_Id : Entity_Id;
11542 begin
11543 if Nkind (N) /= N_String_Literal then
11544 return;
11545 end if;
11547 Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
11548 Set_String_Literal_Length (Subtype_Id, UI_From_Int
11549 (String_Length (Strval (N))));
11550 Set_Etype (Subtype_Id, Base_Type (Typ));
11551 Set_Is_Constrained (Subtype_Id);
11552 Set_Etype (N, Subtype_Id);
11554 -- The low bound is set from the low bound of the corresponding index
11555 -- type. Note that we do not store the high bound in the string literal
11556 -- subtype, but it can be deduced if necessary from the length and the
11557 -- low bound.
11559 if Is_OK_Static_Expression (Low_Bound) then
11560 Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
11562 -- If the lower bound is not static we create a range for the string
11563 -- literal, using the index type and the known length of the literal.
11564 -- The index type is not necessarily Positive, so the upper bound is
11565 -- computed as T'Val (T'Pos (Low_Bound) + L - 1).
11567 else
11568 declare
11569 Index_List : constant List_Id := New_List;
11570 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
11571 High_Bound : constant Node_Id :=
11572 Make_Attribute_Reference (Loc,
11573 Attribute_Name => Name_Val,
11574 Prefix =>
11575 New_Occurrence_Of (Index_Type, Loc),
11576 Expressions => New_List (
11577 Make_Op_Add (Loc,
11578 Left_Opnd =>
11579 Make_Attribute_Reference (Loc,
11580 Attribute_Name => Name_Pos,
11581 Prefix =>
11582 New_Occurrence_Of (Index_Type, Loc),
11583 Expressions =>
11584 New_List (New_Copy_Tree (Low_Bound))),
11585 Right_Opnd =>
11586 Make_Integer_Literal (Loc,
11587 String_Length (Strval (N)) - 1))));
11589 Array_Subtype : Entity_Id;
11590 Drange : Node_Id;
11591 Index : Node_Id;
11592 Index_Subtype : Entity_Id;
11594 begin
11595 if Is_Integer_Type (Index_Type) then
11596 Set_String_Literal_Low_Bound
11597 (Subtype_Id, Make_Integer_Literal (Loc, 1));
11599 else
11600 -- If the index type is an enumeration type, build bounds
11601 -- expression with attributes.
11603 Set_String_Literal_Low_Bound
11604 (Subtype_Id,
11605 Make_Attribute_Reference (Loc,
11606 Attribute_Name => Name_First,
11607 Prefix =>
11608 New_Occurrence_Of (Base_Type (Index_Type), Loc)));
11609 Set_Etype (String_Literal_Low_Bound (Subtype_Id), Index_Type);
11610 end if;
11612 Analyze_And_Resolve (String_Literal_Low_Bound (Subtype_Id));
11614 -- Build bona fide subtype for the string, and wrap it in an
11615 -- unchecked conversion, because the backend expects the
11616 -- String_Literal_Subtype to have a static lower bound.
11618 Index_Subtype :=
11619 Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11620 Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
11621 Set_Scalar_Range (Index_Subtype, Drange);
11622 Set_Parent (Drange, N);
11623 Analyze_And_Resolve (Drange, Index_Type);
11625 -- In the context, the Index_Type may already have a constraint,
11626 -- so use common base type on string subtype. The base type may
11627 -- be used when generating attributes of the string, for example
11628 -- in the context of a slice assignment.
11630 Set_Etype (Index_Subtype, Base_Type (Index_Type));
11631 Set_Size_Info (Index_Subtype, Index_Type);
11632 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11634 Array_Subtype := Create_Itype (E_Array_Subtype, N);
11636 Index := New_Occurrence_Of (Index_Subtype, Loc);
11637 Set_Etype (Index, Index_Subtype);
11638 Append (Index, Index_List);
11640 Set_First_Index (Array_Subtype, Index);
11641 Set_Etype (Array_Subtype, Base_Type (Typ));
11642 Set_Is_Constrained (Array_Subtype, True);
11644 Rewrite (N,
11645 Make_Unchecked_Type_Conversion (Loc,
11646 Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
11647 Expression => Relocate_Node (N)));
11648 Set_Etype (N, Array_Subtype);
11649 end;
11650 end if;
11651 end Set_String_Literal_Subtype;
11653 ------------------------------
11654 -- Simplify_Type_Conversion --
11655 ------------------------------
11657 procedure Simplify_Type_Conversion (N : Node_Id) is
11658 begin
11659 if Nkind (N) = N_Type_Conversion then
11660 declare
11661 Operand : constant Node_Id := Expression (N);
11662 Target_Typ : constant Entity_Id := Etype (N);
11663 Opnd_Typ : constant Entity_Id := Etype (Operand);
11665 begin
11666 -- Special processing if the conversion is the expression of a
11667 -- Rounding or Truncation attribute reference. In this case we
11668 -- replace:
11670 -- ityp (ftyp'Rounding (x)) or ityp (ftyp'Truncation (x))
11672 -- by
11674 -- ityp (x)
11676 -- with the Float_Truncate flag set to False or True respectively,
11677 -- which is more efficient.
11679 if Is_Floating_Point_Type (Opnd_Typ)
11680 and then
11681 (Is_Integer_Type (Target_Typ)
11682 or else (Is_Fixed_Point_Type (Target_Typ)
11683 and then Conversion_OK (N)))
11684 and then Nkind (Operand) = N_Attribute_Reference
11685 and then Nam_In (Attribute_Name (Operand), Name_Rounding,
11686 Name_Truncation)
11687 then
11688 declare
11689 Truncate : constant Boolean :=
11690 Attribute_Name (Operand) = Name_Truncation;
11691 begin
11692 Rewrite (Operand,
11693 Relocate_Node (First (Expressions (Operand))));
11694 Set_Float_Truncate (N, Truncate);
11695 end;
11696 end if;
11697 end;
11698 end if;
11699 end Simplify_Type_Conversion;
11701 -----------------------------
11702 -- Unique_Fixed_Point_Type --
11703 -----------------------------
11705 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
11706 T1 : Entity_Id := Empty;
11707 T2 : Entity_Id;
11708 Item : Node_Id;
11709 Scop : Entity_Id;
11711 procedure Fixed_Point_Error;
11712 -- Give error messages for true ambiguity. Messages are posted on node
11713 -- N, and entities T1, T2 are the possible interpretations.
11715 -----------------------
11716 -- Fixed_Point_Error --
11717 -----------------------
11719 procedure Fixed_Point_Error is
11720 begin
11721 Error_Msg_N ("ambiguous universal_fixed_expression", N);
11722 Error_Msg_NE ("\\possible interpretation as}", N, T1);
11723 Error_Msg_NE ("\\possible interpretation as}", N, T2);
11724 end Fixed_Point_Error;
11726 -- Start of processing for Unique_Fixed_Point_Type
11728 begin
11729 -- The operations on Duration are visible, so Duration is always a
11730 -- possible interpretation.
11732 T1 := Standard_Duration;
11734 -- Look for fixed-point types in enclosing scopes
11736 Scop := Current_Scope;
11737 while Scop /= Standard_Standard loop
11738 T2 := First_Entity (Scop);
11739 while Present (T2) loop
11740 if Is_Fixed_Point_Type (T2)
11741 and then Current_Entity (T2) = T2
11742 and then Scope (Base_Type (T2)) = Scop
11743 then
11744 if Present (T1) then
11745 Fixed_Point_Error;
11746 return Any_Type;
11747 else
11748 T1 := T2;
11749 end if;
11750 end if;
11752 Next_Entity (T2);
11753 end loop;
11755 Scop := Scope (Scop);
11756 end loop;
11758 -- Look for visible fixed type declarations in the context
11760 Item := First (Context_Items (Cunit (Current_Sem_Unit)));
11761 while Present (Item) loop
11762 if Nkind (Item) = N_With_Clause then
11763 Scop := Entity (Name (Item));
11764 T2 := First_Entity (Scop);
11765 while Present (T2) loop
11766 if Is_Fixed_Point_Type (T2)
11767 and then Scope (Base_Type (T2)) = Scop
11768 and then (Is_Potentially_Use_Visible (T2) or else In_Use (T2))
11769 then
11770 if Present (T1) then
11771 Fixed_Point_Error;
11772 return Any_Type;
11773 else
11774 T1 := T2;
11775 end if;
11776 end if;
11778 Next_Entity (T2);
11779 end loop;
11780 end if;
11782 Next (Item);
11783 end loop;
11785 if Nkind (N) = N_Real_Literal then
11786 Error_Msg_NE
11787 ("??real literal interpreted as }!", N, T1);
11788 else
11789 Error_Msg_NE
11790 ("??universal_fixed expression interpreted as }!", N, T1);
11791 end if;
11793 return T1;
11794 end Unique_Fixed_Point_Type;
11796 ----------------------
11797 -- Valid_Conversion --
11798 ----------------------
11800 function Valid_Conversion
11801 (N : Node_Id;
11802 Target : Entity_Id;
11803 Operand : Node_Id;
11804 Report_Errs : Boolean := True) return Boolean
11806 Target_Type : constant Entity_Id := Base_Type (Target);
11807 Opnd_Type : Entity_Id := Etype (Operand);
11808 Inc_Ancestor : Entity_Id;
11810 function Conversion_Check
11811 (Valid : Boolean;
11812 Msg : String) return Boolean;
11813 -- Little routine to post Msg if Valid is False, returns Valid value
11815 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id);
11816 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
11818 procedure Conversion_Error_NE
11819 (Msg : String;
11820 N : Node_Or_Entity_Id;
11821 E : Node_Or_Entity_Id);
11822 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
11824 function Valid_Tagged_Conversion
11825 (Target_Type : Entity_Id;
11826 Opnd_Type : Entity_Id) return Boolean;
11827 -- Specifically test for validity of tagged conversions
11829 function Valid_Array_Conversion return Boolean;
11830 -- Check index and component conformance, and accessibility levels if
11831 -- the component types are anonymous access types (Ada 2005).
11833 ----------------------
11834 -- Conversion_Check --
11835 ----------------------
11837 function Conversion_Check
11838 (Valid : Boolean;
11839 Msg : String) return Boolean
11841 begin
11842 if not Valid
11844 -- A generic unit has already been analyzed and we have verified
11845 -- that a particular conversion is OK in that context. Since the
11846 -- instance is reanalyzed without relying on the relationships
11847 -- established during the analysis of the generic, it is possible
11848 -- to end up with inconsistent views of private types. Do not emit
11849 -- the error message in such cases. The rest of the machinery in
11850 -- Valid_Conversion still ensures the proper compatibility of
11851 -- target and operand types.
11853 and then not In_Instance
11854 then
11855 Conversion_Error_N (Msg, Operand);
11856 end if;
11858 return Valid;
11859 end Conversion_Check;
11861 ------------------------
11862 -- Conversion_Error_N --
11863 ------------------------
11865 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id) is
11866 begin
11867 if Report_Errs then
11868 Error_Msg_N (Msg, N);
11869 end if;
11870 end Conversion_Error_N;
11872 -------------------------
11873 -- Conversion_Error_NE --
11874 -------------------------
11876 procedure Conversion_Error_NE
11877 (Msg : String;
11878 N : Node_Or_Entity_Id;
11879 E : Node_Or_Entity_Id)
11881 begin
11882 if Report_Errs then
11883 Error_Msg_NE (Msg, N, E);
11884 end if;
11885 end Conversion_Error_NE;
11887 ----------------------------
11888 -- Valid_Array_Conversion --
11889 ----------------------------
11891 function Valid_Array_Conversion return Boolean is
11892 Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
11893 Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
11895 Opnd_Index : Node_Id;
11896 Opnd_Index_Type : Entity_Id;
11898 Target_Comp_Type : constant Entity_Id :=
11899 Component_Type (Target_Type);
11900 Target_Comp_Base : constant Entity_Id :=
11901 Base_Type (Target_Comp_Type);
11903 Target_Index : Node_Id;
11904 Target_Index_Type : Entity_Id;
11906 begin
11907 -- Error if wrong number of dimensions
11910 Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
11911 then
11912 Conversion_Error_N
11913 ("incompatible number of dimensions for conversion", Operand);
11914 return False;
11916 -- Number of dimensions matches
11918 else
11919 -- Loop through indexes of the two arrays
11921 Target_Index := First_Index (Target_Type);
11922 Opnd_Index := First_Index (Opnd_Type);
11923 while Present (Target_Index) and then Present (Opnd_Index) loop
11924 Target_Index_Type := Etype (Target_Index);
11925 Opnd_Index_Type := Etype (Opnd_Index);
11927 -- Error if index types are incompatible
11929 if not (Is_Integer_Type (Target_Index_Type)
11930 and then Is_Integer_Type (Opnd_Index_Type))
11931 and then (Root_Type (Target_Index_Type)
11932 /= Root_Type (Opnd_Index_Type))
11933 then
11934 Conversion_Error_N
11935 ("incompatible index types for array conversion",
11936 Operand);
11937 return False;
11938 end if;
11940 Next_Index (Target_Index);
11941 Next_Index (Opnd_Index);
11942 end loop;
11944 -- If component types have same base type, all set
11946 if Target_Comp_Base = Opnd_Comp_Base then
11947 null;
11949 -- Here if base types of components are not the same. The only
11950 -- time this is allowed is if we have anonymous access types.
11952 -- The conversion of arrays of anonymous access types can lead
11953 -- to dangling pointers. AI-392 formalizes the accessibility
11954 -- checks that must be applied to such conversions to prevent
11955 -- out-of-scope references.
11957 elsif Ekind_In
11958 (Target_Comp_Base, E_Anonymous_Access_Type,
11959 E_Anonymous_Access_Subprogram_Type)
11960 and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
11961 and then
11962 Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
11963 then
11964 if Type_Access_Level (Target_Type) <
11965 Deepest_Type_Access_Level (Opnd_Type)
11966 then
11967 if In_Instance_Body then
11968 Error_Msg_Warn := SPARK_Mode /= On;
11969 Conversion_Error_N
11970 ("source array type has deeper accessibility "
11971 & "level than target<<", Operand);
11972 Conversion_Error_N ("\Program_Error [<<", Operand);
11973 Rewrite (N,
11974 Make_Raise_Program_Error (Sloc (N),
11975 Reason => PE_Accessibility_Check_Failed));
11976 Set_Etype (N, Target_Type);
11977 return False;
11979 -- Conversion not allowed because of accessibility levels
11981 else
11982 Conversion_Error_N
11983 ("source array type has deeper accessibility "
11984 & "level than target", Operand);
11985 return False;
11986 end if;
11988 else
11989 null;
11990 end if;
11992 -- All other cases where component base types do not match
11994 else
11995 Conversion_Error_N
11996 ("incompatible component types for array conversion",
11997 Operand);
11998 return False;
11999 end if;
12001 -- Check that component subtypes statically match. For numeric
12002 -- types this means that both must be either constrained or
12003 -- unconstrained. For enumeration types the bounds must match.
12004 -- All of this is checked in Subtypes_Statically_Match.
12006 if not Subtypes_Statically_Match
12007 (Target_Comp_Type, Opnd_Comp_Type)
12008 then
12009 Conversion_Error_N
12010 ("component subtypes must statically match", Operand);
12011 return False;
12012 end if;
12013 end if;
12015 return True;
12016 end Valid_Array_Conversion;
12018 -----------------------------
12019 -- Valid_Tagged_Conversion --
12020 -----------------------------
12022 function Valid_Tagged_Conversion
12023 (Target_Type : Entity_Id;
12024 Opnd_Type : Entity_Id) return Boolean
12026 begin
12027 -- Upward conversions are allowed (RM 4.6(22))
12029 if Covers (Target_Type, Opnd_Type)
12030 or else Is_Ancestor (Target_Type, Opnd_Type)
12031 then
12032 return True;
12034 -- Downward conversion are allowed if the operand is class-wide
12035 -- (RM 4.6(23)).
12037 elsif Is_Class_Wide_Type (Opnd_Type)
12038 and then Covers (Opnd_Type, Target_Type)
12039 then
12040 return True;
12042 elsif Covers (Opnd_Type, Target_Type)
12043 or else Is_Ancestor (Opnd_Type, Target_Type)
12044 then
12045 return
12046 Conversion_Check (False,
12047 "downward conversion of tagged objects not allowed");
12049 -- Ada 2005 (AI-251): The conversion to/from interface types is
12050 -- always valid. The types involved may be class-wide (sub)types.
12052 elsif Is_Interface (Etype (Base_Type (Target_Type)))
12053 or else Is_Interface (Etype (Base_Type (Opnd_Type)))
12054 then
12055 return True;
12057 -- If the operand is a class-wide type obtained through a limited_
12058 -- with clause, and the context includes the nonlimited view, use
12059 -- it to determine whether the conversion is legal.
12061 elsif Is_Class_Wide_Type (Opnd_Type)
12062 and then From_Limited_With (Opnd_Type)
12063 and then Present (Non_Limited_View (Etype (Opnd_Type)))
12064 and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
12065 then
12066 return True;
12068 elsif Is_Access_Type (Opnd_Type)
12069 and then Is_Interface (Directly_Designated_Type (Opnd_Type))
12070 then
12071 return True;
12073 else
12074 Conversion_Error_NE
12075 ("invalid tagged conversion, not compatible with}",
12076 N, First_Subtype (Opnd_Type));
12077 return False;
12078 end if;
12079 end Valid_Tagged_Conversion;
12081 -- Start of processing for Valid_Conversion
12083 begin
12084 Check_Parameterless_Call (Operand);
12086 if Is_Overloaded (Operand) then
12087 declare
12088 I : Interp_Index;
12089 I1 : Interp_Index;
12090 It : Interp;
12091 It1 : Interp;
12092 N1 : Entity_Id;
12093 T1 : Entity_Id;
12095 begin
12096 -- Remove procedure calls, which syntactically cannot appear in
12097 -- this context, but which cannot be removed by type checking,
12098 -- because the context does not impose a type.
12100 -- The node may be labelled overloaded, but still contain only one
12101 -- interpretation because others were discarded earlier. If this
12102 -- is the case, retain the single interpretation if legal.
12104 Get_First_Interp (Operand, I, It);
12105 Opnd_Type := It.Typ;
12106 Get_Next_Interp (I, It);
12108 if Present (It.Typ)
12109 and then Opnd_Type /= Standard_Void_Type
12110 then
12111 -- More than one candidate interpretation is available
12113 Get_First_Interp (Operand, I, It);
12114 while Present (It.Typ) loop
12115 if It.Typ = Standard_Void_Type then
12116 Remove_Interp (I);
12117 end if;
12119 -- When compiling for a system where Address is of a visible
12120 -- integer type, spurious ambiguities can be produced when
12121 -- arithmetic operations have a literal operand and return
12122 -- System.Address or a descendant of it. These ambiguities
12123 -- are usually resolved by the context, but for conversions
12124 -- there is no context type and the removal of the spurious
12125 -- operations must be done explicitly here.
12127 if not Address_Is_Private
12128 and then Is_Descendant_Of_Address (It.Typ)
12129 then
12130 Remove_Interp (I);
12131 end if;
12133 Get_Next_Interp (I, It);
12134 end loop;
12135 end if;
12137 Get_First_Interp (Operand, I, It);
12138 I1 := I;
12139 It1 := It;
12141 if No (It.Typ) then
12142 Conversion_Error_N ("illegal operand in conversion", Operand);
12143 return False;
12144 end if;
12146 Get_Next_Interp (I, It);
12148 if Present (It.Typ) then
12149 N1 := It1.Nam;
12150 T1 := It1.Typ;
12151 It1 := Disambiguate (Operand, I1, I, Any_Type);
12153 if It1 = No_Interp then
12154 Conversion_Error_N
12155 ("ambiguous operand in conversion", Operand);
12157 -- If the interpretation involves a standard operator, use
12158 -- the location of the type, which may be user-defined.
12160 if Sloc (It.Nam) = Standard_Location then
12161 Error_Msg_Sloc := Sloc (It.Typ);
12162 else
12163 Error_Msg_Sloc := Sloc (It.Nam);
12164 end if;
12166 Conversion_Error_N -- CODEFIX
12167 ("\\possible interpretation#!", Operand);
12169 if Sloc (N1) = Standard_Location then
12170 Error_Msg_Sloc := Sloc (T1);
12171 else
12172 Error_Msg_Sloc := Sloc (N1);
12173 end if;
12175 Conversion_Error_N -- CODEFIX
12176 ("\\possible interpretation#!", Operand);
12178 return False;
12179 end if;
12180 end if;
12182 Set_Etype (Operand, It1.Typ);
12183 Opnd_Type := It1.Typ;
12184 end;
12185 end if;
12187 -- Deal with conversion of integer type to address if the pragma
12188 -- Allow_Integer_Address is in effect. We convert the conversion to
12189 -- an unchecked conversion in this case and we are all done.
12191 if Address_Integer_Convert_OK (Opnd_Type, Target_Type) then
12192 Rewrite (N, Unchecked_Convert_To (Target_Type, Expression (N)));
12193 Analyze_And_Resolve (N, Target_Type);
12194 return True;
12195 end if;
12197 -- If we are within a child unit, check whether the type of the
12198 -- expression has an ancestor in a parent unit, in which case it
12199 -- belongs to its derivation class even if the ancestor is private.
12200 -- See RM 7.3.1 (5.2/3).
12202 Inc_Ancestor := Get_Incomplete_View_Of_Ancestor (Opnd_Type);
12204 -- Numeric types
12206 if Is_Numeric_Type (Target_Type) then
12208 -- A universal fixed expression can be converted to any numeric type
12210 if Opnd_Type = Universal_Fixed then
12211 return True;
12213 -- Also no need to check when in an instance or inlined body, because
12214 -- the legality has been established when the template was analyzed.
12215 -- Furthermore, numeric conversions may occur where only a private
12216 -- view of the operand type is visible at the instantiation point.
12217 -- This results in a spurious error if we check that the operand type
12218 -- is a numeric type.
12220 -- Note: in a previous version of this unit, the following tests were
12221 -- applied only for generated code (Comes_From_Source set to False),
12222 -- but in fact the test is required for source code as well, since
12223 -- this situation can arise in source code.
12225 elsif In_Instance or else In_Inlined_Body then
12226 return True;
12228 -- Otherwise we need the conversion check
12230 else
12231 return Conversion_Check
12232 (Is_Numeric_Type (Opnd_Type)
12233 or else
12234 (Present (Inc_Ancestor)
12235 and then Is_Numeric_Type (Inc_Ancestor)),
12236 "illegal operand for numeric conversion");
12237 end if;
12239 -- Array types
12241 elsif Is_Array_Type (Target_Type) then
12242 if not Is_Array_Type (Opnd_Type)
12243 or else Opnd_Type = Any_Composite
12244 or else Opnd_Type = Any_String
12245 then
12246 Conversion_Error_N
12247 ("illegal operand for array conversion", Operand);
12248 return False;
12250 else
12251 return Valid_Array_Conversion;
12252 end if;
12254 -- Ada 2005 (AI-251): Internally generated conversions of access to
12255 -- interface types added to force the displacement of the pointer to
12256 -- reference the corresponding dispatch table.
12258 elsif not Comes_From_Source (N)
12259 and then Is_Access_Type (Target_Type)
12260 and then Is_Interface (Designated_Type (Target_Type))
12261 then
12262 return True;
12264 -- Ada 2005 (AI-251): Anonymous access types where target references an
12265 -- interface type.
12267 elsif Is_Access_Type (Opnd_Type)
12268 and then Ekind_In (Target_Type, E_General_Access_Type,
12269 E_Anonymous_Access_Type)
12270 and then Is_Interface (Directly_Designated_Type (Target_Type))
12271 then
12272 -- Check the static accessibility rule of 4.6(17). Note that the
12273 -- check is not enforced when within an instance body, since the
12274 -- RM requires such cases to be caught at run time.
12276 -- If the operand is a rewriting of an allocator no check is needed
12277 -- because there are no accessibility issues.
12279 if Nkind (Original_Node (N)) = N_Allocator then
12280 null;
12282 elsif Ekind (Target_Type) /= E_Anonymous_Access_Type then
12283 if Type_Access_Level (Opnd_Type) >
12284 Deepest_Type_Access_Level (Target_Type)
12285 then
12286 -- In an instance, this is a run-time check, but one we know
12287 -- will fail, so generate an appropriate warning. The raise
12288 -- will be generated by Expand_N_Type_Conversion.
12290 if In_Instance_Body then
12291 Error_Msg_Warn := SPARK_Mode /= On;
12292 Conversion_Error_N
12293 ("cannot convert local pointer to non-local access type<<",
12294 Operand);
12295 Conversion_Error_N ("\Program_Error [<<", Operand);
12297 else
12298 Conversion_Error_N
12299 ("cannot convert local pointer to non-local access type",
12300 Operand);
12301 return False;
12302 end if;
12304 -- Special accessibility checks are needed in the case of access
12305 -- discriminants declared for a limited type.
12307 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12308 and then not Is_Local_Anonymous_Access (Opnd_Type)
12309 then
12310 -- When the operand is a selected access discriminant the check
12311 -- needs to be made against the level of the object denoted by
12312 -- the prefix of the selected name (Object_Access_Level handles
12313 -- checking the prefix of the operand for this case).
12315 if Nkind (Operand) = N_Selected_Component
12316 and then Object_Access_Level (Operand) >
12317 Deepest_Type_Access_Level (Target_Type)
12318 then
12319 -- In an instance, this is a run-time check, but one we know
12320 -- will fail, so generate an appropriate warning. The raise
12321 -- will be generated by Expand_N_Type_Conversion.
12323 if In_Instance_Body then
12324 Error_Msg_Warn := SPARK_Mode /= On;
12325 Conversion_Error_N
12326 ("cannot convert access discriminant to non-local "
12327 & "access type<<", Operand);
12328 Conversion_Error_N ("\Program_Error [<<", Operand);
12330 -- Real error if not in instance body
12332 else
12333 Conversion_Error_N
12334 ("cannot convert access discriminant to non-local "
12335 & "access type", Operand);
12336 return False;
12337 end if;
12338 end if;
12340 -- The case of a reference to an access discriminant from
12341 -- within a limited type declaration (which will appear as
12342 -- a discriminal) is always illegal because the level of the
12343 -- discriminant is considered to be deeper than any (nameable)
12344 -- access type.
12346 if Is_Entity_Name (Operand)
12347 and then not Is_Local_Anonymous_Access (Opnd_Type)
12348 and then
12349 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12350 and then Present (Discriminal_Link (Entity (Operand)))
12351 then
12352 Conversion_Error_N
12353 ("discriminant has deeper accessibility level than target",
12354 Operand);
12355 return False;
12356 end if;
12357 end if;
12358 end if;
12360 return True;
12362 -- General and anonymous access types
12364 elsif Ekind_In (Target_Type, E_General_Access_Type,
12365 E_Anonymous_Access_Type)
12366 and then
12367 Conversion_Check
12368 (Is_Access_Type (Opnd_Type)
12369 and then not
12370 Ekind_In (Opnd_Type, E_Access_Subprogram_Type,
12371 E_Access_Protected_Subprogram_Type),
12372 "must be an access-to-object type")
12373 then
12374 if Is_Access_Constant (Opnd_Type)
12375 and then not Is_Access_Constant (Target_Type)
12376 then
12377 Conversion_Error_N
12378 ("access-to-constant operand type not allowed", Operand);
12379 return False;
12380 end if;
12382 -- Check the static accessibility rule of 4.6(17). Note that the
12383 -- check is not enforced when within an instance body, since the RM
12384 -- requires such cases to be caught at run time.
12386 if Ekind (Target_Type) /= E_Anonymous_Access_Type
12387 or else Is_Local_Anonymous_Access (Target_Type)
12388 or else Nkind (Associated_Node_For_Itype (Target_Type)) =
12389 N_Object_Declaration
12390 then
12391 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
12392 -- conversions from an anonymous access type to a named general
12393 -- access type. Such conversions are not allowed in the case of
12394 -- access parameters and stand-alone objects of an anonymous
12395 -- access type. The implicit conversion case is recognized by
12396 -- testing that Comes_From_Source is False and that it's been
12397 -- rewritten. The Comes_From_Source test isn't sufficient because
12398 -- nodes in inlined calls to predefined library routines can have
12399 -- Comes_From_Source set to False. (Is there a better way to test
12400 -- for implicit conversions???)
12402 if Ada_Version >= Ada_2012
12403 and then not Comes_From_Source (N)
12404 and then N /= Original_Node (N)
12405 and then Ekind (Target_Type) = E_General_Access_Type
12406 and then Ekind (Opnd_Type) = E_Anonymous_Access_Type
12407 then
12408 if Is_Itype (Opnd_Type) then
12410 -- Implicit conversions aren't allowed for objects of an
12411 -- anonymous access type, since such objects have nonstatic
12412 -- levels in Ada 2012.
12414 if Nkind (Associated_Node_For_Itype (Opnd_Type)) =
12415 N_Object_Declaration
12416 then
12417 Conversion_Error_N
12418 ("implicit conversion of stand-alone anonymous "
12419 & "access object not allowed", Operand);
12420 return False;
12422 -- Implicit conversions aren't allowed for anonymous access
12423 -- parameters. The "not Is_Local_Anonymous_Access_Type" test
12424 -- is done to exclude anonymous access results.
12426 elsif not Is_Local_Anonymous_Access (Opnd_Type)
12427 and then Nkind_In (Associated_Node_For_Itype (Opnd_Type),
12428 N_Function_Specification,
12429 N_Procedure_Specification)
12430 then
12431 Conversion_Error_N
12432 ("implicit conversion of anonymous access formal "
12433 & "not allowed", Operand);
12434 return False;
12436 -- This is a case where there's an enclosing object whose
12437 -- to which the "statically deeper than" relationship does
12438 -- not apply (such as an access discriminant selected from
12439 -- a dereference of an access parameter).
12441 elsif Object_Access_Level (Operand)
12442 = Scope_Depth (Standard_Standard)
12443 then
12444 Conversion_Error_N
12445 ("implicit conversion of anonymous access value "
12446 & "not allowed", Operand);
12447 return False;
12449 -- In other cases, the level of the operand's type must be
12450 -- statically less deep than that of the target type, else
12451 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
12453 elsif Type_Access_Level (Opnd_Type) >
12454 Deepest_Type_Access_Level (Target_Type)
12455 then
12456 Conversion_Error_N
12457 ("implicit conversion of anonymous access value "
12458 & "violates accessibility", Operand);
12459 return False;
12460 end if;
12461 end if;
12463 elsif Type_Access_Level (Opnd_Type) >
12464 Deepest_Type_Access_Level (Target_Type)
12465 then
12466 -- In an instance, this is a run-time check, but one we know
12467 -- will fail, so generate an appropriate warning. The raise
12468 -- will be generated by Expand_N_Type_Conversion.
12470 if In_Instance_Body then
12471 Error_Msg_Warn := SPARK_Mode /= On;
12472 Conversion_Error_N
12473 ("cannot convert local pointer to non-local access type<<",
12474 Operand);
12475 Conversion_Error_N ("\Program_Error [<<", Operand);
12477 -- If not in an instance body, this is a real error
12479 else
12480 -- Avoid generation of spurious error message
12482 if not Error_Posted (N) then
12483 Conversion_Error_N
12484 ("cannot convert local pointer to non-local access type",
12485 Operand);
12486 end if;
12488 return False;
12489 end if;
12491 -- Special accessibility checks are needed in the case of access
12492 -- discriminants declared for a limited type.
12494 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12495 and then not Is_Local_Anonymous_Access (Opnd_Type)
12496 then
12497 -- When the operand is a selected access discriminant the check
12498 -- needs to be made against the level of the object denoted by
12499 -- the prefix of the selected name (Object_Access_Level handles
12500 -- checking the prefix of the operand for this case).
12502 if Nkind (Operand) = N_Selected_Component
12503 and then Object_Access_Level (Operand) >
12504 Deepest_Type_Access_Level (Target_Type)
12505 then
12506 -- In an instance, this is a run-time check, but one we know
12507 -- will fail, so generate an appropriate warning. The raise
12508 -- will be generated by Expand_N_Type_Conversion.
12510 if In_Instance_Body then
12511 Error_Msg_Warn := SPARK_Mode /= On;
12512 Conversion_Error_N
12513 ("cannot convert access discriminant to non-local "
12514 & "access type<<", Operand);
12515 Conversion_Error_N ("\Program_Error [<<", Operand);
12517 -- If not in an instance body, this is a real error
12519 else
12520 Conversion_Error_N
12521 ("cannot convert access discriminant to non-local "
12522 & "access type", Operand);
12523 return False;
12524 end if;
12525 end if;
12527 -- The case of a reference to an access discriminant from
12528 -- within a limited type declaration (which will appear as
12529 -- a discriminal) is always illegal because the level of the
12530 -- discriminant is considered to be deeper than any (nameable)
12531 -- access type.
12533 if Is_Entity_Name (Operand)
12534 and then
12535 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12536 and then Present (Discriminal_Link (Entity (Operand)))
12537 then
12538 Conversion_Error_N
12539 ("discriminant has deeper accessibility level than target",
12540 Operand);
12541 return False;
12542 end if;
12543 end if;
12544 end if;
12546 -- In the presence of limited_with clauses we have to use nonlimited
12547 -- views, if available.
12549 Check_Limited : declare
12550 function Full_Designated_Type (T : Entity_Id) return Entity_Id;
12551 -- Helper function to handle limited views
12553 --------------------------
12554 -- Full_Designated_Type --
12555 --------------------------
12557 function Full_Designated_Type (T : Entity_Id) return Entity_Id is
12558 Desig : constant Entity_Id := Designated_Type (T);
12560 begin
12561 -- Handle the limited view of a type
12563 if From_Limited_With (Desig)
12564 and then Has_Non_Limited_View (Desig)
12565 then
12566 return Available_View (Desig);
12567 else
12568 return Desig;
12569 end if;
12570 end Full_Designated_Type;
12572 -- Local Declarations
12574 Target : constant Entity_Id := Full_Designated_Type (Target_Type);
12575 Opnd : constant Entity_Id := Full_Designated_Type (Opnd_Type);
12577 Same_Base : constant Boolean :=
12578 Base_Type (Target) = Base_Type (Opnd);
12580 -- Start of processing for Check_Limited
12582 begin
12583 if Is_Tagged_Type (Target) then
12584 return Valid_Tagged_Conversion (Target, Opnd);
12586 else
12587 if not Same_Base then
12588 Conversion_Error_NE
12589 ("target designated type not compatible with }",
12590 N, Base_Type (Opnd));
12591 return False;
12593 -- Ada 2005 AI-384: legality rule is symmetric in both
12594 -- designated types. The conversion is legal (with possible
12595 -- constraint check) if either designated type is
12596 -- unconstrained.
12598 elsif Subtypes_Statically_Match (Target, Opnd)
12599 or else
12600 (Has_Discriminants (Target)
12601 and then
12602 (not Is_Constrained (Opnd)
12603 or else not Is_Constrained (Target)))
12604 then
12605 -- Special case, if Value_Size has been used to make the
12606 -- sizes different, the conversion is not allowed even
12607 -- though the subtypes statically match.
12609 if Known_Static_RM_Size (Target)
12610 and then Known_Static_RM_Size (Opnd)
12611 and then RM_Size (Target) /= RM_Size (Opnd)
12612 then
12613 Conversion_Error_NE
12614 ("target designated subtype not compatible with }",
12615 N, Opnd);
12616 Conversion_Error_NE
12617 ("\because sizes of the two designated subtypes differ",
12618 N, Opnd);
12619 return False;
12621 -- Normal case where conversion is allowed
12623 else
12624 return True;
12625 end if;
12627 else
12628 Error_Msg_NE
12629 ("target designated subtype not compatible with }",
12630 N, Opnd);
12631 return False;
12632 end if;
12633 end if;
12634 end Check_Limited;
12636 -- Access to subprogram types. If the operand is an access parameter,
12637 -- the type has a deeper accessibility that any master, and cannot be
12638 -- assigned. We must make an exception if the conversion is part of an
12639 -- assignment and the target is the return object of an extended return
12640 -- statement, because in that case the accessibility check takes place
12641 -- after the return.
12643 elsif Is_Access_Subprogram_Type (Target_Type)
12645 -- Note: this test of Opnd_Type is there to prevent entering this
12646 -- branch in the case of a remote access to subprogram type, which
12647 -- is internally represented as an E_Record_Type.
12649 and then Is_Access_Type (Opnd_Type)
12650 then
12651 if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
12652 and then Is_Entity_Name (Operand)
12653 and then Ekind (Entity (Operand)) = E_In_Parameter
12654 and then
12655 (Nkind (Parent (N)) /= N_Assignment_Statement
12656 or else not Is_Entity_Name (Name (Parent (N)))
12657 or else not Is_Return_Object (Entity (Name (Parent (N)))))
12658 then
12659 Conversion_Error_N
12660 ("illegal attempt to store anonymous access to subprogram",
12661 Operand);
12662 Conversion_Error_N
12663 ("\value has deeper accessibility than any master "
12664 & "(RM 3.10.2 (13))",
12665 Operand);
12667 Error_Msg_NE
12668 ("\use named access type for& instead of access parameter",
12669 Operand, Entity (Operand));
12670 end if;
12672 -- Check that the designated types are subtype conformant
12674 Check_Subtype_Conformant (New_Id => Designated_Type (Target_Type),
12675 Old_Id => Designated_Type (Opnd_Type),
12676 Err_Loc => N);
12678 -- Check the static accessibility rule of 4.6(20)
12680 if Type_Access_Level (Opnd_Type) >
12681 Deepest_Type_Access_Level (Target_Type)
12682 then
12683 Conversion_Error_N
12684 ("operand type has deeper accessibility level than target",
12685 Operand);
12687 -- Check that if the operand type is declared in a generic body,
12688 -- then the target type must be declared within that same body
12689 -- (enforces last sentence of 4.6(20)).
12691 elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
12692 declare
12693 O_Gen : constant Node_Id :=
12694 Enclosing_Generic_Body (Opnd_Type);
12696 T_Gen : Node_Id;
12698 begin
12699 T_Gen := Enclosing_Generic_Body (Target_Type);
12700 while Present (T_Gen) and then T_Gen /= O_Gen loop
12701 T_Gen := Enclosing_Generic_Body (T_Gen);
12702 end loop;
12704 if T_Gen /= O_Gen then
12705 Conversion_Error_N
12706 ("target type must be declared in same generic body "
12707 & "as operand type", N);
12708 end if;
12709 end;
12710 end if;
12712 return True;
12714 -- Remote access to subprogram types
12716 elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
12717 and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
12718 then
12719 -- It is valid to convert from one RAS type to another provided
12720 -- that their specification statically match.
12722 -- Note: at this point, remote access to subprogram types have been
12723 -- expanded to their E_Record_Type representation, and we need to
12724 -- go back to the original access type definition using the
12725 -- Corresponding_Remote_Type attribute in order to check that the
12726 -- designated profiles match.
12728 pragma Assert (Ekind (Target_Type) = E_Record_Type);
12729 pragma Assert (Ekind (Opnd_Type) = E_Record_Type);
12731 Check_Subtype_Conformant
12732 (New_Id =>
12733 Designated_Type (Corresponding_Remote_Type (Target_Type)),
12734 Old_Id =>
12735 Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
12736 Err_Loc =>
12738 return True;
12740 -- If it was legal in the generic, it's legal in the instance
12742 elsif In_Instance_Body then
12743 return True;
12745 -- If both are tagged types, check legality of view conversions
12747 elsif Is_Tagged_Type (Target_Type)
12748 and then
12749 Is_Tagged_Type (Opnd_Type)
12750 then
12751 return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
12753 -- Types derived from the same root type are convertible
12755 elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
12756 return True;
12758 -- In an instance or an inlined body, there may be inconsistent views of
12759 -- the same type, or of types derived from a common root.
12761 elsif (In_Instance or In_Inlined_Body)
12762 and then
12763 Root_Type (Underlying_Type (Target_Type)) =
12764 Root_Type (Underlying_Type (Opnd_Type))
12765 then
12766 return True;
12768 -- Special check for common access type error case
12770 elsif Ekind (Target_Type) = E_Access_Type
12771 and then Is_Access_Type (Opnd_Type)
12772 then
12773 Conversion_Error_N ("target type must be general access type!", N);
12774 Conversion_Error_NE -- CODEFIX
12775 ("add ALL to }!", N, Target_Type);
12776 return False;
12778 -- Here we have a real conversion error
12780 else
12781 Conversion_Error_NE
12782 ("invalid conversion, not compatible with }", N, Opnd_Type);
12783 return False;
12784 end if;
12785 end Valid_Conversion;
12787 end Sem_Res;