match.pd: u + 3 < u is u > UINT_MAX - 3
[official-gcc.git] / gcc / match.pd
blob476818709cf0f2ba2a1da68589ee56e14c1a28ac
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2    This file is consumed by genmatch which produces gimple-match.c
3    and generic-match.c from it.
5    Copyright (C) 2014-2016 Free Software Foundation, Inc.
6    Contributed by Richard Biener <rguenther@suse.de>
7    and Prathamesh Kulkarni  <bilbotheelffriend@gmail.com>
9 This file is part of GCC.
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
19 for more details.
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3.  If not see
23 <http://www.gnu.org/licenses/>.  */
26 /* Generic tree predicates we inherit.  */
27 (define_predicates
28    integer_onep integer_zerop integer_all_onesp integer_minus_onep
29    integer_each_onep integer_truep integer_nonzerop
30    real_zerop real_onep real_minus_onep
31    zerop
32    CONSTANT_CLASS_P
33    tree_expr_nonnegative_p
34    integer_valued_real_p
35    integer_pow2p
36    HONOR_NANS)
38 /* Operator lists.  */
39 (define_operator_list tcc_comparison
40   lt   le   eq ne ge   gt   unordered ordered   unlt unle ungt unge uneq ltgt)
41 (define_operator_list inverted_tcc_comparison
42   ge   gt   ne eq lt   le   ordered   unordered ge   gt   le   lt   ltgt uneq)
43 (define_operator_list inverted_tcc_comparison_with_nans
44   unge ungt ne eq unlt unle ordered   unordered ge   gt   le   lt   ltgt uneq)
45 (define_operator_list swapped_tcc_comparison
46   gt   ge   eq ne le   lt   unordered ordered   ungt unge unlt unle uneq ltgt)
47 (define_operator_list simple_comparison         lt   le   eq ne ge   gt)
48 (define_operator_list swapped_simple_comparison gt   ge   eq ne le   lt)
50 #include "cfn-operators.pd"
52 /* Define operand lists for math rounding functions {,i,l,ll}FN,
53    where the versions prefixed with "i" return an int, those prefixed with
54    "l" return a long and those prefixed with "ll" return a long long.
56    Also define operand lists:
58      X<FN>F for all float functions, in the order i, l, ll
59      X<FN> for all double functions, in the same order
60      X<FN>L for all long double functions, in the same order.  */
61 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
62   (define_operator_list X##FN##F BUILT_IN_I##FN##F \
63                                  BUILT_IN_L##FN##F \
64                                  BUILT_IN_LL##FN##F) \
65   (define_operator_list X##FN BUILT_IN_I##FN \
66                               BUILT_IN_L##FN \
67                               BUILT_IN_LL##FN) \
68   (define_operator_list X##FN##L BUILT_IN_I##FN##L \
69                                  BUILT_IN_L##FN##L \
70                                  BUILT_IN_LL##FN##L)
72 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
73 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
74 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
75 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
77 /* Simplifications of operations with one constant operand and
78    simplifications to constants or single values.  */
80 (for op (plus pointer_plus minus bit_ior bit_xor)
81   (simplify
82     (op @0 integer_zerop)
83     (non_lvalue @0)))
85 /* 0 +p index -> (type)index */
86 (simplify
87  (pointer_plus integer_zerop @1)
88  (non_lvalue (convert @1)))
90 /* See if ARG1 is zero and X + ARG1 reduces to X.
91    Likewise if the operands are reversed.  */
92 (simplify
93  (plus:c @0 real_zerop@1)
94  (if (fold_real_zero_addition_p (type, @1, 0))
95   (non_lvalue @0)))
97 /* See if ARG1 is zero and X - ARG1 reduces to X.  */
98 (simplify
99  (minus @0 real_zerop@1)
100  (if (fold_real_zero_addition_p (type, @1, 1))
101   (non_lvalue @0)))
103 /* Simplify x - x.
104    This is unsafe for certain floats even in non-IEEE formats.
105    In IEEE, it is unsafe because it does wrong for NaNs.
106    Also note that operand_equal_p is always false if an operand
107    is volatile.  */
108 (simplify
109  (minus @0 @0)
110  (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
111   { build_zero_cst (type); }))
113 (simplify
114  (mult @0 integer_zerop@1)
115  @1)
117 /* Maybe fold x * 0 to 0.  The expressions aren't the same
118    when x is NaN, since x * 0 is also NaN.  Nor are they the
119    same in modes with signed zeros, since multiplying a
120    negative value by 0 gives -0, not +0.  */
121 (simplify
122  (mult @0 real_zerop@1)
123  (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
124   @1))
126 /* In IEEE floating point, x*1 is not equivalent to x for snans.
127    Likewise for complex arithmetic with signed zeros.  */
128 (simplify
129  (mult @0 real_onep)
130  (if (!HONOR_SNANS (type)
131       && (!HONOR_SIGNED_ZEROS (type)
132           || !COMPLEX_FLOAT_TYPE_P (type)))
133   (non_lvalue @0)))
135 /* Transform x * -1.0 into -x.  */
136 (simplify
137  (mult @0 real_minus_onep)
138   (if (!HONOR_SNANS (type)
139        && (!HONOR_SIGNED_ZEROS (type)
140            || !COMPLEX_FLOAT_TYPE_P (type)))
141    (negate @0)))
143 /* Make sure to preserve divisions by zero.  This is the reason why
144    we don't simplify x / x to 1 or 0 / x to 0.  */
145 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
146   (simplify
147     (op @0 integer_onep)
148     (non_lvalue @0)))
150 /* X / -1 is -X.  */
151 (for div (trunc_div ceil_div floor_div round_div exact_div)
152  (simplify
153    (div @0 integer_minus_onep@1)
154    (if (!TYPE_UNSIGNED (type))
155     (negate @0))))
157 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
158    TRUNC_DIV_EXPR.  Rewrite into the latter in this case.  */
159 (simplify
160  (floor_div @0 @1)
161  (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
162       && TYPE_UNSIGNED (type))
163   (trunc_div @0 @1)))
165 /* Combine two successive divisions.  Note that combining ceil_div
166    and floor_div is trickier and combining round_div even more so.  */
167 (for div (trunc_div exact_div)
168  (simplify
169   (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
170   (with {
171     bool overflow_p;
172     wide_int mul = wi::mul (@1, @2, TYPE_SIGN (type), &overflow_p);
173    }
174    (if (!overflow_p)
175     (div @0 { wide_int_to_tree (type, mul); })
176     (if (TYPE_UNSIGNED (type)
177          || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
178      { build_zero_cst (type); })))))
180 /* Optimize A / A to 1.0 if we don't care about
181    NaNs or Infinities.  */
182 (simplify
183  (rdiv @0 @0)
184  (if (FLOAT_TYPE_P (type)
185       && ! HONOR_NANS (type)
186       && ! HONOR_INFINITIES (type))
187   { build_one_cst (type); }))
189 /* Optimize -A / A to -1.0 if we don't care about
190    NaNs or Infinities.  */
191 (simplify
192  (rdiv:c @0 (negate @0))
193  (if (FLOAT_TYPE_P (type)
194       && ! HONOR_NANS (type)
195       && ! HONOR_INFINITIES (type))
196   { build_minus_one_cst (type); }))
198 /* In IEEE floating point, x/1 is not equivalent to x for snans.  */
199 (simplify
200  (rdiv @0 real_onep)
201  (if (!HONOR_SNANS (type))
202   (non_lvalue @0)))
204 /* In IEEE floating point, x/-1 is not equivalent to -x for snans.  */
205 (simplify
206  (rdiv @0 real_minus_onep)
207  (if (!HONOR_SNANS (type))
208   (negate @0)))
210 (if (flag_reciprocal_math)
211  /* Convert (A/B)/C to A/(B*C)  */
212  (simplify
213   (rdiv (rdiv:s @0 @1) @2)
214    (rdiv @0 (mult @1 @2)))
216  /* Convert A/(B/C) to (A/B)*C  */
217  (simplify
218   (rdiv @0 (rdiv:s @1 @2))
219    (mult (rdiv @0 @1) @2)))
221 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
222 (for div (trunc_div ceil_div floor_div round_div exact_div)
223  (simplify
224   (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
225   (if (integer_pow2p (@2)
226        && tree_int_cst_sgn (@2) > 0
227        && wi::add (@2, @1) == 0
228        && tree_nop_conversion_p (type, TREE_TYPE (@0)))
229    (rshift (convert @0) { build_int_cst (integer_type_node,
230                                          wi::exact_log2 (@2)); }))))
232 /* If ARG1 is a constant, we can convert this to a multiply by the
233    reciprocal.  This does not have the same rounding properties,
234    so only do this if -freciprocal-math.  We can actually
235    always safely do it if ARG1 is a power of two, but it's hard to
236    tell if it is or not in a portable manner.  */
237 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
238  (simplify
239   (rdiv @0 cst@1)
240   (if (optimize)
241    (if (flag_reciprocal_math
242         && !real_zerop (@1))
243     (with
244      { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
245      (if (tem)
246       (mult @0 { tem; } )))
247     (if (cst != COMPLEX_CST)
248      (with { tree inverse = exact_inverse (type, @1); }
249       (if (inverse)
250        (mult @0 { inverse; } ))))))))
252 /* Same applies to modulo operations, but fold is inconsistent here
253    and simplifies 0 % x to 0, only preserving literal 0 % 0.  */
254 (for mod (ceil_mod floor_mod round_mod trunc_mod)
255  /* 0 % X is always zero.  */
256  (simplify
257   (mod integer_zerop@0 @1)
258   /* But not for 0 % 0 so that we can get the proper warnings and errors.  */
259   (if (!integer_zerop (@1))
260    @0))
261  /* X % 1 is always zero.  */
262  (simplify
263   (mod @0 integer_onep)
264   { build_zero_cst (type); })
265  /* X % -1 is zero.  */
266  (simplify
267   (mod @0 integer_minus_onep@1)
268   (if (!TYPE_UNSIGNED (type))
269    { build_zero_cst (type); }))
270  /* (X % Y) % Y is just X % Y.  */
271  (simplify
272   (mod (mod@2 @0 @1) @1)
273   @2)
274  /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2.  */
275  (simplify
276   (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
277   (if (ANY_INTEGRAL_TYPE_P (type)
278        && TYPE_OVERFLOW_UNDEFINED (type)
279        && wi::multiple_of_p (@1, @2, TYPE_SIGN (type)))
280    { build_zero_cst (type); })))
282 /* X % -C is the same as X % C.  */
283 (simplify
284  (trunc_mod @0 INTEGER_CST@1)
285   (if (TYPE_SIGN (type) == SIGNED
286        && !TREE_OVERFLOW (@1)
287        && wi::neg_p (@1)
288        && !TYPE_OVERFLOW_TRAPS (type)
289        /* Avoid this transformation if C is INT_MIN, i.e. C == -C.  */
290        && !sign_bit_p (@1, @1))
291    (trunc_mod @0 (negate @1))))
293 /* X % -Y is the same as X % Y.  */
294 (simplify
295  (trunc_mod @0 (convert? (negate @1)))
296  (if (INTEGRAL_TYPE_P (type)
297       && !TYPE_UNSIGNED (type)
298       && !TYPE_OVERFLOW_TRAPS (type)
299       && tree_nop_conversion_p (type, TREE_TYPE (@1))
300       /* Avoid this transformation if X might be INT_MIN or
301          Y might be -1, because we would then change valid
302          INT_MIN % -(-1) into invalid INT_MIN % -1.  */
303       && (expr_not_equal_to (@0, TYPE_MIN_VALUE (type))
304           || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
305                                                         (TREE_TYPE (@1))))))
306   (trunc_mod @0 (convert @1))))
308 /* X - (X / Y) * Y is the same as X % Y.  */
309 (simplify
310  (minus (convert1? @2) (convert2? (mult:c (trunc_div @0 @1) @1)))
311  /* We cannot use matching captures here, since in the case of
312     constants we really want the type of @0, not @2.  */
313  (if (operand_equal_p (@0, @2, 0)
314       && (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type)))
315   (convert (trunc_mod @0 @1))))
317 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
318    i.e. "X % C" into "X & (C - 1)", if X and C are positive.
319    Also optimize A % (C << N)  where C is a power of 2,
320    to A & ((C << N) - 1).  */
321 (match (power_of_two_cand @1)
322  INTEGER_CST@1)
323 (match (power_of_two_cand @1)
324  (lshift INTEGER_CST@1 @2))
325 (for mod (trunc_mod floor_mod)
326  (simplify
327   (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
328   (if ((TYPE_UNSIGNED (type)
329         || tree_expr_nonnegative_p (@0))
330         && tree_nop_conversion_p (type, TREE_TYPE (@3))
331         && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
332    (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
334 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF.  */
335 (simplify
336  (trunc_div (mult @0 integer_pow2p@1) @1)
337  (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
338   (bit_and @0 { wide_int_to_tree
339                 (type, wi::mask (TYPE_PRECISION (type) - wi::exact_log2 (@1),
340                                  false, TYPE_PRECISION (type))); })))
342 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1.  */
343 (simplify
344  (mult (trunc_div @0 integer_pow2p@1) @1)
345  (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
346   (bit_and @0 (negate @1))))
348 /* Simplify (t * 2) / 2) -> t.  */
349 (for div (trunc_div ceil_div floor_div round_div exact_div)
350  (simplify
351   (div (mult @0 @1) @1)
352   (if (ANY_INTEGRAL_TYPE_P (type)
353        && TYPE_OVERFLOW_UNDEFINED (type))
354    @0)))
356 (for op (negate abs)
357  /* Simplify cos(-x) and cos(|x|) -> cos(x).  Similarly for cosh.  */
358  (for coss (COS COSH)
359   (simplify
360    (coss (op @0))
361     (coss @0)))
362  /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer.  */
363  (for pows (POW)
364   (simplify
365    (pows (op @0) REAL_CST@1)
366    (with { HOST_WIDE_INT n; }
367     (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
368      (pows @0 @1)))))
369  /* Strip negate and abs from both operands of hypot.  */
370  (for hypots (HYPOT)
371   (simplify
372    (hypots (op @0) @1)
373    (hypots @0 @1))
374   (simplify
375    (hypots @0 (op @1))
376    (hypots @0 @1)))
377  /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y).  */
378  (for copysigns (COPYSIGN)
379   (simplify
380    (copysigns (op @0) @1)
381    (copysigns @0 @1))))
383 /* abs(x)*abs(x) -> x*x.  Should be valid for all types.  */
384 (simplify
385  (mult (abs@1 @0) @1)
386  (mult @0 @0))
388 /* cos(copysign(x, y)) -> cos(x).  Similarly for cosh.  */
389 (for coss (COS COSH)
390      copysigns (COPYSIGN)
391  (simplify
392   (coss (copysigns @0 @1))
393    (coss @0)))
395 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer.  */
396 (for pows (POW)
397      copysigns (COPYSIGN)
398  (simplify
399   (pows (copysigns @0 @1) REAL_CST@1)
400   (with { HOST_WIDE_INT n; }
401    (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
402     (pows @0 @1)))))
404 (for hypots (HYPOT)
405      copysigns (COPYSIGN)
406  /* hypot(copysign(x, y), z) -> hypot(x, z).  */
407  (simplify
408   (hypots (copysigns @0 @1) @2)
409   (hypots @0 @2))
410  /* hypot(x, copysign(y, z)) -> hypot(x, y).  */
411  (simplify
412   (hypots @0 (copysigns @1 @2))
413   (hypots @0 @1)))
415 /* copysign(copysign(x, y), z) -> copysign(x, z).  */
416 (for copysigns (COPYSIGN)
417  (simplify
418   (copysigns (copysigns @0 @1) @2)
419   (copysigns @0 @2)))
421 /* copysign(x,y)*copysign(x,y) -> x*x.  */
422 (for copysigns (COPYSIGN)
423  (simplify
424   (mult (copysigns@2 @0 @1) @2)
425   (mult @0 @0)))
427 /* ccos(-x) -> ccos(x).  Similarly for ccosh.  */
428 (for ccoss (CCOS CCOSH)
429  (simplify
430   (ccoss (negate @0))
431    (ccoss @0)))
433 /* cabs(-x) and cos(conj(x)) -> cabs(x).  */
434 (for ops (conj negate)
435  (for cabss (CABS)
436   (simplify
437    (cabss (ops @0))
438    (cabss @0))))
440 /* Fold (a * (1 << b)) into (a << b)  */
441 (simplify
442  (mult:c @0 (convert? (lshift integer_onep@1 @2)))
443   (if (! FLOAT_TYPE_P (type)
444        && tree_nop_conversion_p (type, TREE_TYPE (@1)))
445    (lshift @0 @2)))
447 /* Fold (C1/X)*C2 into (C1*C2)/X.  */
448 (simplify
449  (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
450   (if (flag_associative_math
451        && single_use (@3))
452    (with
453     { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
454     (if (tem)
455      (rdiv { tem; } @1)))))
457 /* Convert C1/(X*C2) into (C1/C2)/X  */
458 (simplify
459  (rdiv REAL_CST@0 (mult @1 REAL_CST@2))
460   (if (flag_reciprocal_math)
461    (with
462     { tree tem = const_binop (RDIV_EXPR, type, @0, @2); }
463     (if (tem)
464      (rdiv { tem; } @1)))))
466 /* Simplify ~X & X as zero.  */
467 (simplify
468  (bit_and:c (convert? @0) (convert? (bit_not @0)))
469   { build_zero_cst (type); })
471 /* Fold (A & ~B) - (A & B) into (A ^ B) - B.  */
472 (simplify
473  (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
474   (minus (bit_xor @0 @1) @1))
475 (simplify
476  (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
477  (if (wi::bit_not (@2) == @1)
478   (minus (bit_xor @0 @1) @1)))
480 /* Fold (A & B) - (A & ~B) into B - (A ^ B).  */
481 (simplify
482  (minus (bit_and:s @0 @1) (bit_and:cs @0 (bit_not @1)))
483   (minus @1 (bit_xor @0 @1)))
485 /* Simplify (X & ~Y) | (~X & Y) -> X ^ Y.  */
486 (simplify
487  (bit_ior (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
488   (bit_xor @0 @1))
489 (simplify
490  (bit_ior:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
491  (if (wi::bit_not (@2) == @1)
492   (bit_xor @0 @1)))
494 /* X % Y is smaller than Y.  */
495 (for cmp (lt ge)
496  (simplify
497   (cmp (trunc_mod @0 @1) @1)
498   (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
499    { constant_boolean_node (cmp == LT_EXPR, type); })))
500 (for cmp (gt le)
501  (simplify
502   (cmp @1 (trunc_mod @0 @1))
503   (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
504    { constant_boolean_node (cmp == GT_EXPR, type); })))
506 /* x | ~0 -> ~0  */
507 (simplify
508   (bit_ior @0 integer_all_onesp@1)
509   @1)
511 /* x & 0 -> 0  */
512 (simplify
513   (bit_and @0 integer_zerop@1)
514   @1)
516 /* ~x | x -> -1 */
517 /* ~x ^ x -> -1 */
518 /* ~x + x -> -1 */
519 (for op (bit_ior bit_xor plus)
520  (simplify
521   (op:c (convert? @0) (convert? (bit_not @0)))
522   (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
524 /* x ^ x -> 0 */
525 (simplify
526   (bit_xor @0 @0)
527   { build_zero_cst (type); })
529 /* Canonicalize X ^ ~0 to ~X.  */
530 (simplify
531   (bit_xor @0 integer_all_onesp@1)
532   (bit_not @0))
534 /* x & ~0 -> x  */
535 (simplify
536  (bit_and @0 integer_all_onesp)
537   (non_lvalue @0))
539 /* x & x -> x,  x | x -> x  */
540 (for bitop (bit_and bit_ior)
541  (simplify
542   (bitop @0 @0)
543   (non_lvalue @0)))
545 /* x + (x & 1) -> (x + 1) & ~1 */
546 (simplify
547  (plus:c @0 (bit_and:s @0 integer_onep@1))
548  (bit_and (plus @0 @1) (bit_not @1)))
550 /* x & ~(x & y) -> x & ~y */
551 /* x | ~(x | y) -> x | ~y  */
552 (for bitop (bit_and bit_ior)
553  (simplify
554   (bitop:c @0 (bit_not (bitop:cs @0 @1)))
555   (bitop @0 (bit_not @1))))
557 /* (x | y) & ~x -> y & ~x */
558 /* (x & y) | ~x -> y | ~x */
559 (for bitop (bit_and bit_ior)
560      rbitop (bit_ior bit_and)
561  (simplify
562   (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
563   (bitop @1 @2)))
565 /* (x & y) ^ (x | y) -> x ^ y */
566 (simplify
567  (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
568  (bit_xor @0 @1))
570 /* (x ^ y) ^ (x | y) -> x & y */
571 (simplify
572  (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
573  (bit_and @0 @1))
575 /* (x & y) + (x ^ y) -> x | y */
576 /* (x & y) | (x ^ y) -> x | y */
577 /* (x & y) ^ (x ^ y) -> x | y */
578 (for op (plus bit_ior bit_xor)
579  (simplify
580   (op:c (bit_and @0 @1) (bit_xor @0 @1))
581   (bit_ior @0 @1)))
583 /* (x & y) + (x | y) -> x + y */
584 (simplify
585  (plus:c (bit_and @0 @1) (bit_ior @0 @1))
586  (plus @0 @1))
588 /* (x + y) - (x | y) -> x & y */
589 (simplify
590  (minus (plus @0 @1) (bit_ior @0 @1))
591  (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
592       && !TYPE_SATURATING (type))
593   (bit_and @0 @1)))
595 /* (x + y) - (x & y) -> x | y */
596 (simplify
597  (minus (plus @0 @1) (bit_and @0 @1))
598  (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
599       && !TYPE_SATURATING (type))
600   (bit_ior @0 @1)))
602 /* (x | y) - (x ^ y) -> x & y */
603 (simplify
604  (minus (bit_ior @0 @1) (bit_xor @0 @1))
605  (bit_and @0 @1))
607 /* (x | y) - (x & y) -> x ^ y */
608 (simplify
609  (minus (bit_ior @0 @1) (bit_and @0 @1))
610  (bit_xor @0 @1))
612 /* (x | y) & ~(x & y) -> x ^ y */
613 (simplify
614  (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
615  (bit_xor @0 @1))
617 /* (x | y) & (~x ^ y) -> x & y */
618 (simplify
619  (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
620  (bit_and @0 @1))
622 /* ~x & ~y -> ~(x | y)
623    ~x | ~y -> ~(x & y) */
624 (for op (bit_and bit_ior)
625      rop (bit_ior bit_and)
626  (simplify
627   (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
628   (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
629        && tree_nop_conversion_p (type, TREE_TYPE (@1)))
630    (bit_not (rop (convert @0) (convert @1))))))
632 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
633    with a constant, and the two constants have no bits in common,
634    we should treat this as a BIT_IOR_EXPR since this may produce more
635    simplifications.  */
636 (for op (bit_xor plus)
637  (simplify
638   (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
639       (convert2? (bit_and@5 @2 INTEGER_CST@3)))
640   (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
641        && tree_nop_conversion_p (type, TREE_TYPE (@2))
642        && wi::bit_and (@1, @3) == 0)
643    (bit_ior (convert @4) (convert @5)))))
645 /* (X | Y) ^ X -> Y & ~ X*/
646 (simplify
647  (bit_xor:c (convert? (bit_ior:c @0 @1)) (convert? @0))
648  (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
649   (convert (bit_and @1 (bit_not @0)))))
651 /* Convert ~X ^ ~Y to X ^ Y.  */
652 (simplify
653  (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
654  (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
655       && tree_nop_conversion_p (type, TREE_TYPE (@1)))
656   (bit_xor (convert @0) (convert @1))))
658 /* Convert ~X ^ C to X ^ ~C.  */
659 (simplify
660  (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
661  (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
662   (bit_xor (convert @0) (bit_not @1))))
664 /* Fold (X & Y) ^ Y as ~X & Y.  */
665 (simplify
666  (bit_xor:c (bit_and:c @0 @1) @1)
667  (bit_and (bit_not @0) @1))
669 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
670    operands are another bit-wise operation with a common input.  If so,
671    distribute the bit operations to save an operation and possibly two if
672    constants are involved.  For example, convert
673      (A | B) & (A | C) into A | (B & C)
674    Further simplification will occur if B and C are constants.  */
675 (for op (bit_and bit_ior)
676      rop (bit_ior bit_and)
677  (simplify
678   (op (convert? (rop:c @0 @1)) (convert? (rop @0 @2)))
679   (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
680    (rop (convert @0) (op (convert @1) (convert @2))))))
683 (simplify
684  (abs (abs@1 @0))
685  @1)
686 (simplify
687  (abs (negate @0))
688  (abs @0))
689 (simplify
690  (abs tree_expr_nonnegative_p@0)
691  @0)
693 /* A few cases of fold-const.c negate_expr_p predicate.  */
694 (match negate_expr_p
695  INTEGER_CST
696  (if ((INTEGRAL_TYPE_P (type)
697        && TYPE_OVERFLOW_WRAPS (type))
698       || (!TYPE_OVERFLOW_SANITIZED (type)
699           && may_negate_without_overflow_p (t)))))
700 (match negate_expr_p
701  FIXED_CST)
702 (match negate_expr_p
703  (negate @0)
704  (if (!TYPE_OVERFLOW_SANITIZED (type))))
705 (match negate_expr_p
706  REAL_CST
707  (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
708 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
709    ways.  */
710 (match negate_expr_p
711  VECTOR_CST
712  (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
714 /* (-A) * (-B) -> A * B  */
715 (simplify
716  (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
717   (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
718        && tree_nop_conversion_p (type, TREE_TYPE (@1)))
719    (mult (convert @0) (convert (negate @1)))))
721 /* -(A + B) -> (-B) - A.  */
722 (simplify
723  (negate (plus:c @0 negate_expr_p@1))
724  (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
725       && !HONOR_SIGNED_ZEROS (element_mode (type)))
726   (minus (negate @1) @0)))
728 /* A - B -> A + (-B) if B is easily negatable.  */
729 (simplify
730  (minus @0 negate_expr_p@1)
731  (if (!FIXED_POINT_TYPE_P (type))
732  (plus @0 (negate @1))))
734 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
735    when profitable.
736    For bitwise binary operations apply operand conversions to the
737    binary operation result instead of to the operands.  This allows
738    to combine successive conversions and bitwise binary operations.
739    We combine the above two cases by using a conditional convert.  */
740 (for bitop (bit_and bit_ior bit_xor)
741  (simplify
742   (bitop (convert @0) (convert? @1))
743   (if (((TREE_CODE (@1) == INTEGER_CST
744          && INTEGRAL_TYPE_P (TREE_TYPE (@0))
745          && int_fits_type_p (@1, TREE_TYPE (@0)))
746         || types_match (@0, @1))
747        /* ???  This transform conflicts with fold-const.c doing
748           Convert (T)(x & c) into (T)x & (T)c, if c is an integer
749           constants (if x has signed type, the sign bit cannot be set
750           in c).  This folds extension into the BIT_AND_EXPR.
751           Restrict it to GIMPLE to avoid endless recursions.  */
752        && (bitop != BIT_AND_EXPR || GIMPLE)
753        && (/* That's a good idea if the conversion widens the operand, thus
754               after hoisting the conversion the operation will be narrower.  */
755            TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
756            /* It's also a good idea if the conversion is to a non-integer
757               mode.  */
758            || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
759            /* Or if the precision of TO is not the same as the precision
760               of its mode.  */
761            || TYPE_PRECISION (type) != GET_MODE_PRECISION (TYPE_MODE (type))))
762    (convert (bitop @0 (convert @1))))))
764 (for bitop (bit_and bit_ior)
765      rbitop (bit_ior bit_and)
766   /* (x | y) & x -> x */
767   /* (x & y) | x -> x */
768  (simplify
769   (bitop:c (rbitop:c @0 @1) @0)
770   @0)
771  /* (~x | y) & x -> x & y */
772  /* (~x & y) | x -> x | y */
773  (simplify
774   (bitop:c (rbitop:c (bit_not @0) @1) @0)
775   (bitop @0 @1)))
777 /* Simplify (A & B) OP0 (C & B) to (A OP0 C) & B. */
778 (for bitop (bit_and bit_ior bit_xor)
779  (simplify
780   (bitop (bit_and:c @0 @1) (bit_and @2 @1))
781   (bit_and (bitop @0 @2) @1)))
783 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
784 (simplify
785   (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
786   (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
788 /* Combine successive equal operations with constants.  */
789 (for bitop (bit_and bit_ior bit_xor)
790  (simplify
791   (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
792   (bitop @0 (bitop @1 @2))))
794 /* Try simple folding for X op !X, and X op X with the help
795    of the truth_valued_p and logical_inverted_value predicates.  */
796 (match truth_valued_p
797  @0
798  (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
799 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
800  (match truth_valued_p
801   (op @0 @1)))
802 (match truth_valued_p
803   (truth_not @0))
805 (match (logical_inverted_value @0)
806  (truth_not @0))
807 (match (logical_inverted_value @0)
808  (bit_not truth_valued_p@0))
809 (match (logical_inverted_value @0)
810  (eq @0 integer_zerop))
811 (match (logical_inverted_value @0)
812  (ne truth_valued_p@0 integer_truep))
813 (match (logical_inverted_value @0)
814  (bit_xor truth_valued_p@0 integer_truep))
816 /* X & !X -> 0.  */
817 (simplify
818  (bit_and:c @0 (logical_inverted_value @0))
819  { build_zero_cst (type); })
820 /* X | !X and X ^ !X -> 1, , if X is truth-valued.  */
821 (for op (bit_ior bit_xor)
822  (simplify
823   (op:c truth_valued_p@0 (logical_inverted_value @0))
824   { constant_boolean_node (true, type); }))
825 /* X ==/!= !X is false/true.  */
826 (for op (eq ne)
827  (simplify
828   (op:c truth_valued_p@0 (logical_inverted_value @0))
829   { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
831 /* If arg1 and arg2 are booleans (or any single bit type)
832    then try to simplify:
834    (~X & Y) -> X < Y
835    (X & ~Y) -> Y < X
836    (~X | Y) -> X <= Y
837    (X | ~Y) -> Y <= X
839    But only do this if our result feeds into a comparison as
840    this transformation is not always a win, particularly on
841    targets with and-not instructions.
842    -> simplify_bitwise_binary_boolean */
843 (simplify
844   (ne (bit_and:c (bit_not @0) @1) integer_zerop)
845   (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
846        && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
847    (lt @0 @1)))
848 (simplify
849   (ne (bit_ior:c (bit_not @0) @1) integer_zerop)
850   (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
851        && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
852    (le @0 @1)))
854 /* ~~x -> x */
855 (simplify
856   (bit_not (bit_not @0))
857   @0)
859 /* Convert ~ (-A) to A - 1.  */
860 (simplify
861  (bit_not (convert? (negate @0)))
862  (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
863   (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
865 /* Convert ~ (A - 1) or ~ (A + -1) to -A.  */
866 (simplify
867  (bit_not (convert? (minus @0 integer_each_onep)))
868  (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
869   (convert (negate @0))))
870 (simplify
871  (bit_not (convert? (plus @0 integer_all_onesp)))
872  (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
873   (convert (negate @0))))
875 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify.  */
876 (simplify
877  (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
878  (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
879   (convert (bit_xor @0 (bit_not @1)))))
880 (simplify
881  (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
882  (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
883   (convert (bit_xor @0 @1))))
885 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
886 (simplify
887  (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
888  (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
890 /* Fold A - (A & B) into ~B & A.  */
891 (simplify
892  (minus (convert? @0) (convert?:s (bit_and:cs @0 @1)))
893  (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
894       && tree_nop_conversion_p (type, TREE_TYPE (@1)))
895   (convert (bit_and (bit_not @1) @0))))
899 /* ((X inner_op C0) outer_op C1)
900    With X being a tree where value_range has reasoned certain bits to always be
901    zero throughout its computed value range,
902    inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
903    where zero_mask has 1's for all bits that are sure to be 0 in
904    and 0's otherwise.
905    if (inner_op == '^') C0 &= ~C1;
906    if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
907    if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
909 (for inner_op (bit_ior bit_xor)
910      outer_op (bit_xor bit_ior)
911 (simplify
912  (outer_op
913   (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
914  (with
915   {
916     bool fail = false;
917     wide_int zero_mask_not;
918     wide_int C0;
919     wide_int cst_emit;
921     if (TREE_CODE (@2) == SSA_NAME)
922       zero_mask_not = get_nonzero_bits (@2);
923     else
924       fail = true;
926     if (inner_op == BIT_XOR_EXPR)
927       {
928         C0 = wi::bit_and_not (@0, @1);
929         cst_emit = wi::bit_or (C0, @1);
930       }
931     else
932       {
933         C0 = @0;
934         cst_emit = wi::bit_xor (@0, @1);
935       }
936   }
937   (if (!fail && wi::bit_and (C0, zero_mask_not) == 0)
938    (outer_op @2 { wide_int_to_tree (type, cst_emit); })
939    (if (!fail && wi::bit_and (@1, zero_mask_not) == 0)
940     (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
942 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)).  */
943 (simplify
944   (pointer_plus (pointer_plus:s @0 @1) @3)
945   (pointer_plus @0 (plus @1 @3)))
947 /* Pattern match
948      tem1 = (long) ptr1;
949      tem2 = (long) ptr2;
950      tem3 = tem2 - tem1;
951      tem4 = (unsigned long) tem3;
952      tem5 = ptr1 + tem4;
953    and produce
954      tem5 = ptr2;  */
955 (simplify
956   (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
957   /* Conditionally look through a sign-changing conversion.  */
958   (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
959        && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
960             || (GENERIC && type == TREE_TYPE (@1))))
961    @1))
963 /* Pattern match
964      tem = (sizetype) ptr;
965      tem = tem & algn;
966      tem = -tem;
967      ... = ptr p+ tem;
968    and produce the simpler and easier to analyze with respect to alignment
969      ... = ptr & ~algn;  */
970 (simplify
971   (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
972   (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), wi::bit_not (@1)); }
973    (bit_and @0 { algn; })))
975 /* Try folding difference of addresses.  */
976 (simplify
977  (minus (convert ADDR_EXPR@0) (convert @1))
978  (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
979   (with { HOST_WIDE_INT diff; }
980    (if (ptr_difference_const (@0, @1, &diff))
981     { build_int_cst_type (type, diff); }))))
982 (simplify
983  (minus (convert @0) (convert ADDR_EXPR@1))
984  (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
985   (with { HOST_WIDE_INT diff; }
986    (if (ptr_difference_const (@0, @1, &diff))
987     { build_int_cst_type (type, diff); }))))
989 /* If arg0 is derived from the address of an object or function, we may
990    be able to fold this expression using the object or function's
991    alignment.  */
992 (simplify
993  (bit_and (convert? @0) INTEGER_CST@1)
994  (if (POINTER_TYPE_P (TREE_TYPE (@0))
995       && tree_nop_conversion_p (type, TREE_TYPE (@0)))
996   (with
997    {
998      unsigned int align;
999      unsigned HOST_WIDE_INT bitpos;
1000      get_pointer_alignment_1 (@0, &align, &bitpos);
1001    }
1002    (if (wi::ltu_p (@1, align / BITS_PER_UNIT))
1003     { wide_int_to_tree (type, wi::bit_and (@1, bitpos / BITS_PER_UNIT)); }))))
1006 /* We can't reassociate at all for saturating types.  */
1007 (if (!TYPE_SATURATING (type))
1009  /* Contract negates.  */
1010  /* A + (-B) -> A - B */
1011  (simplify
1012   (plus:c (convert1? @0) (convert2? (negate @1)))
1013   /* Apply STRIP_NOPS on @0 and the negate.  */
1014   (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1015        && tree_nop_conversion_p (type, TREE_TYPE (@1))
1016        && !TYPE_OVERFLOW_SANITIZED (type))
1017    (minus (convert @0) (convert @1))))
1018  /* A - (-B) -> A + B */
1019  (simplify
1020   (minus (convert1? @0) (convert2? (negate @1)))
1021   (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1022        && tree_nop_conversion_p (type, TREE_TYPE (@1))
1023        && !TYPE_OVERFLOW_SANITIZED (type))
1024    (plus (convert @0) (convert @1))))
1025  /* -(-A) -> A */
1026  (simplify
1027   (negate (convert? (negate @1)))
1028   (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1029        && !TYPE_OVERFLOW_SANITIZED (type))
1030    (convert @1)))
1032  /* We can't reassociate floating-point unless -fassociative-math
1033     or fixed-point plus or minus because of saturation to +-Inf.  */
1034  (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1035       && !FIXED_POINT_TYPE_P (type))
1037   /* Match patterns that allow contracting a plus-minus pair
1038      irrespective of overflow issues.  */
1039   /* (A +- B) - A       ->  +- B */
1040   /* (A +- B) -+ B      ->  A */
1041   /* A - (A +- B)       -> -+ B */
1042   /* A +- (B -+ A)      ->  +- B */
1043   (simplify
1044     (minus (plus:c @0 @1) @0)
1045     @1)
1046   (simplify
1047     (minus (minus @0 @1) @0)
1048     (negate @1))
1049   (simplify
1050     (plus:c (minus @0 @1) @1)
1051     @0)
1052   (simplify
1053    (minus @0 (plus:c @0 @1))
1054    (negate @1))
1055   (simplify
1056    (minus @0 (minus @0 @1))
1057    @1)
1059   /* (A +- CST) +- CST -> A + CST  */
1060   (for outer_op (plus minus)
1061    (for inner_op (plus minus)
1062     (simplify
1063      (outer_op (inner_op @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1064      /* If the constant operation overflows we cannot do the transform
1065         as we would introduce undefined overflow, for example
1066         with (a - 1) + INT_MIN.  */
1067      (with { tree cst = const_binop (outer_op == inner_op
1068                                      ? PLUS_EXPR : MINUS_EXPR, type, @1, @2); }
1069       (if (cst && !TREE_OVERFLOW (cst))
1070        (inner_op @0 { cst; } ))))))
1072   /* (CST - A) +- CST -> CST - A  */
1073   (for outer_op (plus minus)
1074    (simplify
1075     (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
1076     (with { tree cst = const_binop (outer_op, type, @1, @2); }
1077      (if (cst && !TREE_OVERFLOW (cst))
1078       (minus { cst; } @0)))))
1080   /* ~A + A -> -1 */
1081   (simplify
1082    (plus:c (bit_not @0) @0)
1083    (if (!TYPE_OVERFLOW_TRAPS (type))
1084     { build_all_ones_cst (type); }))
1086   /* ~A + 1 -> -A */
1087   (simplify
1088    (plus (convert? (bit_not @0)) integer_each_onep)
1089    (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1090     (negate (convert @0))))
1092   /* -A - 1 -> ~A */
1093   (simplify
1094    (minus (convert? (negate @0)) integer_each_onep)
1095    (if (!TYPE_OVERFLOW_TRAPS (type)
1096         && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1097     (bit_not (convert @0))))
1099   /* -1 - A -> ~A */
1100   (simplify
1101    (minus integer_all_onesp @0)
1102    (bit_not @0))
1104   /* (T)(P + A) - (T)P -> (T) A */
1105   (for add (plus pointer_plus)
1106    (simplify
1107     (minus (convert (add @0 @1))
1108      (convert @0))
1109     (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1110          /* For integer types, if A has a smaller type
1111             than T the result depends on the possible
1112             overflow in P + A.
1113             E.g. T=size_t, A=(unsigned)429497295, P>0.
1114             However, if an overflow in P + A would cause
1115             undefined behavior, we can assume that there
1116             is no overflow.  */
1117          || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1118              && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1119          /* For pointer types, if the conversion of A to the
1120             final type requires a sign- or zero-extension,
1121             then we have to punt - it is not defined which
1122             one is correct.  */
1123          || (POINTER_TYPE_P (TREE_TYPE (@0))
1124              && TREE_CODE (@1) == INTEGER_CST
1125              && tree_int_cst_sign_bit (@1) == 0))
1126      (convert @1))))
1128   /* (T)P - (T)(P + A) -> -(T) A */
1129   (for add (plus pointer_plus)
1130    (simplify
1131     (minus (convert @0)
1132      (convert (add @0 @1)))
1133     (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1134          /* For integer types, if A has a smaller type
1135             than T the result depends on the possible
1136             overflow in P + A.
1137             E.g. T=size_t, A=(unsigned)429497295, P>0.
1138             However, if an overflow in P + A would cause
1139             undefined behavior, we can assume that there
1140             is no overflow.  */
1141          || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1142              && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1143          /* For pointer types, if the conversion of A to the
1144             final type requires a sign- or zero-extension,
1145             then we have to punt - it is not defined which
1146             one is correct.  */
1147          || (POINTER_TYPE_P (TREE_TYPE (@0))
1148              && TREE_CODE (@1) == INTEGER_CST
1149              && tree_int_cst_sign_bit (@1) == 0))
1150      (negate (convert @1)))))
1152   /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
1153   (for add (plus pointer_plus)
1154    (simplify
1155     (minus (convert (add @0 @1))
1156      (convert (add @0 @2)))
1157     (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1158          /* For integer types, if A has a smaller type
1159             than T the result depends on the possible
1160             overflow in P + A.
1161             E.g. T=size_t, A=(unsigned)429497295, P>0.
1162             However, if an overflow in P + A would cause
1163             undefined behavior, we can assume that there
1164             is no overflow.  */
1165          || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1166              && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1167          /* For pointer types, if the conversion of A to the
1168             final type requires a sign- or zero-extension,
1169             then we have to punt - it is not defined which
1170             one is correct.  */
1171          || (POINTER_TYPE_P (TREE_TYPE (@0))
1172              && TREE_CODE (@1) == INTEGER_CST
1173              && tree_int_cst_sign_bit (@1) == 0
1174              && TREE_CODE (@2) == INTEGER_CST
1175              && tree_int_cst_sign_bit (@2) == 0))
1176      (minus (convert @1) (convert @2)))))))
1179 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax().  */
1181 (for minmax (min max FMIN FMAX)
1182  (simplify
1183   (minmax @0 @0)
1184   @0))
1185 /* min(max(x,y),y) -> y.  */
1186 (simplify
1187  (min:c (max:c @0 @1) @1)
1188  @1)
1189 /* max(min(x,y),y) -> y.  */
1190 (simplify
1191  (max:c (min:c @0 @1) @1)
1192  @1)
1193 (simplify
1194  (min @0 @1)
1195  (switch
1196   (if (INTEGRAL_TYPE_P (type)
1197        && TYPE_MIN_VALUE (type)
1198        && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
1199    @1)
1200   (if (INTEGRAL_TYPE_P (type)
1201        && TYPE_MAX_VALUE (type)
1202        && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
1203    @0)))
1204 (simplify
1205  (max @0 @1)
1206  (switch
1207   (if (INTEGRAL_TYPE_P (type)
1208        && TYPE_MAX_VALUE (type)
1209        && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
1210    @1)
1211   (if (INTEGRAL_TYPE_P (type)
1212        && TYPE_MIN_VALUE (type)
1213        && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
1214    @0)))
1215 (for minmax (FMIN FMAX)
1216  /* If either argument is NaN, return the other one.  Avoid the
1217     transformation if we get (and honor) a signalling NaN.  */
1218  (simplify
1219   (minmax:c @0 REAL_CST@1)
1220   (if (real_isnan (TREE_REAL_CST_PTR (@1))
1221        && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
1222    @0)))
1223 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR.  C99 requires these
1224    functions to return the numeric arg if the other one is NaN.
1225    MIN and MAX don't honor that, so only transform if -ffinite-math-only
1226    is set.  C99 doesn't require -0.0 to be handled, so we don't have to
1227    worry about it either.  */
1228 (if (flag_finite_math_only)
1229  (simplify
1230   (FMIN @0 @1)
1231   (min @0 @1))
1232  (simplify
1233   (FMAX @0 @1)
1234   (max @0 @1)))
1235 /* min (-A, -B) -> -max (A, B)  */
1236 (for minmax (min max FMIN FMAX)
1237      maxmin (max min FMAX FMIN)
1238  (simplify
1239   (minmax (negate:s@2 @0) (negate:s@3 @1))
1240   (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1241        || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1242            && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1243    (negate (maxmin @0 @1)))))
1244 /* MIN (~X, ~Y) -> ~MAX (X, Y)
1245    MAX (~X, ~Y) -> ~MIN (X, Y)  */
1246 (for minmax (min max)
1247  maxmin (max min)
1248  (simplify
1249   (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
1250   (bit_not (maxmin @0 @1))))
1252 /* Simplifications of shift and rotates.  */
1254 (for rotate (lrotate rrotate)
1255  (simplify
1256   (rotate integer_all_onesp@0 @1)
1257   @0))
1259 /* Optimize -1 >> x for arithmetic right shifts.  */
1260 (simplify
1261  (rshift integer_all_onesp@0 @1)
1262  (if (!TYPE_UNSIGNED (type)
1263       && tree_expr_nonnegative_p (@1))
1264   @0))
1266 /* Optimize (x >> c) << c into x & (-1<<c).  */
1267 (simplify
1268  (lshift (rshift @0 INTEGER_CST@1) @1)
1269  (if (wi::ltu_p (@1, element_precision (type)))
1270   (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
1272 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
1273    types.  */
1274 (simplify
1275  (rshift (lshift @0 INTEGER_CST@1) @1)
1276  (if (TYPE_UNSIGNED (type)
1277       && (wi::ltu_p (@1, element_precision (type))))
1278   (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
1280 (for shiftrotate (lrotate rrotate lshift rshift)
1281  (simplify
1282   (shiftrotate @0 integer_zerop)
1283   (non_lvalue @0))
1284  (simplify
1285   (shiftrotate integer_zerop@0 @1)
1286   @0)
1287  /* Prefer vector1 << scalar to vector1 << vector2
1288     if vector2 is uniform.  */
1289  (for vec (VECTOR_CST CONSTRUCTOR)
1290   (simplify
1291    (shiftrotate @0 vec@1)
1292    (with { tree tem = uniform_vector_p (@1); }
1293     (if (tem)
1294      (shiftrotate @0 { tem; }))))))
1296 /* Rewrite an LROTATE_EXPR by a constant into an
1297    RROTATE_EXPR by a new constant.  */
1298 (simplify
1299  (lrotate @0 INTEGER_CST@1)
1300  (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
1301                             build_int_cst (TREE_TYPE (@1),
1302                                            element_precision (type)), @1); }))
1304 /* Turn (a OP c1) OP c2 into a OP (c1+c2).  */
1305 (for op (lrotate rrotate rshift lshift)
1306  (simplify
1307   (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
1308   (with { unsigned int prec = element_precision (type); }
1309    (if (wi::ge_p (@1, 0, TYPE_SIGN (TREE_TYPE (@1)))
1310         && wi::lt_p (@1, prec, TYPE_SIGN (TREE_TYPE (@1)))
1311         && wi::ge_p (@2, 0, TYPE_SIGN (TREE_TYPE (@2)))
1312         && wi::lt_p (@2, prec, TYPE_SIGN (TREE_TYPE (@2))))
1313     (with { unsigned int low = wi::add (@1, @2).to_uhwi (); }
1314      /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
1315         being well defined.  */
1316      (if (low >= prec)
1317       (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
1318        (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
1319        (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
1320         { build_zero_cst (type); }
1321         (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
1322       (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
1325 /* ((1 << A) & 1) != 0 -> A == 0
1326    ((1 << A) & 1) == 0 -> A != 0 */
1327 (for cmp (ne eq)
1328      icmp (eq ne)
1329  (simplify
1330   (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
1331   (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
1333 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
1334    (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
1335    if CST2 != 0.  */
1336 (for cmp (ne eq)
1337  (simplify
1338   (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
1339   (with { int cand = wi::ctz (@2) - wi::ctz (@0); }
1340    (if (cand < 0
1341         || (!integer_zerop (@2)
1342             && wi::ne_p (wi::lshift (@0, cand), @2)))
1343     { constant_boolean_node (cmp == NE_EXPR, type); }
1344     (if (!integer_zerop (@2)
1345          && wi::eq_p (wi::lshift (@0, cand), @2))
1346      (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
1348 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
1349         (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
1350    if the new mask might be further optimized.  */
1351 (for shift (lshift rshift)
1352  (simplify
1353   (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
1354            INTEGER_CST@2)
1355    (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
1356         && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
1357         && tree_fits_uhwi_p (@1)
1358         && tree_to_uhwi (@1) > 0
1359         && tree_to_uhwi (@1) < TYPE_PRECISION (type))
1360     (with
1361      {
1362        unsigned int shiftc = tree_to_uhwi (@1);
1363        unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
1364        unsigned HOST_WIDE_INT newmask, zerobits = 0;
1365        tree shift_type = TREE_TYPE (@3);
1366        unsigned int prec;
1368        if (shift == LSHIFT_EXPR)
1369          zerobits = ((((unsigned HOST_WIDE_INT) 1) << shiftc) - 1);
1370        else if (shift == RSHIFT_EXPR
1371                 && (TYPE_PRECISION (shift_type)
1372                     == GET_MODE_PRECISION (TYPE_MODE (shift_type))))
1373          {
1374            prec = TYPE_PRECISION (TREE_TYPE (@3));
1375            tree arg00 = @0;
1376            /* See if more bits can be proven as zero because of
1377               zero extension.  */
1378            if (@3 != @0
1379                && TYPE_UNSIGNED (TREE_TYPE (@0)))
1380              {
1381                tree inner_type = TREE_TYPE (@0);
1382                if ((TYPE_PRECISION (inner_type)
1383                     == GET_MODE_PRECISION (TYPE_MODE (inner_type)))
1384                    && TYPE_PRECISION (inner_type) < prec)
1385                  {
1386                    prec = TYPE_PRECISION (inner_type);
1387                    /* See if we can shorten the right shift.  */
1388                    if (shiftc < prec)
1389                      shift_type = inner_type;
1390                    /* Otherwise X >> C1 is all zeros, so we'll optimize
1391                       it into (X, 0) later on by making sure zerobits
1392                       is all ones.  */
1393                  }
1394              }
1395            zerobits = ~(unsigned HOST_WIDE_INT) 0;
1396            if (shiftc < prec)
1397              {
1398                zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
1399                zerobits <<= prec - shiftc;
1400              }
1401            /* For arithmetic shift if sign bit could be set, zerobits
1402               can contain actually sign bits, so no transformation is
1403               possible, unless MASK masks them all away.  In that
1404               case the shift needs to be converted into logical shift.  */
1405            if (!TYPE_UNSIGNED (TREE_TYPE (@3))
1406                && prec == TYPE_PRECISION (TREE_TYPE (@3)))
1407              {
1408                if ((mask & zerobits) == 0)
1409                  shift_type = unsigned_type_for (TREE_TYPE (@3));
1410                else
1411                  zerobits = 0;
1412              }
1413          }
1414      }
1415      /* ((X << 16) & 0xff00) is (X, 0).  */
1416      (if ((mask & zerobits) == mask)
1417       { build_int_cst (type, 0); }
1418       (with { newmask = mask | zerobits; }
1419        (if (newmask != mask && (newmask & (newmask + 1)) == 0)
1420         (with
1421          {
1422            /* Only do the transformation if NEWMASK is some integer
1423               mode's mask.  */
1424            for (prec = BITS_PER_UNIT;
1425                 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
1426              if (newmask == (((unsigned HOST_WIDE_INT) 1) << prec) - 1)
1427                break;
1428          }
1429          (if (prec < HOST_BITS_PER_WIDE_INT
1430               || newmask == ~(unsigned HOST_WIDE_INT) 0)
1431           (with
1432            { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
1433            (if (!tree_int_cst_equal (newmaskt, @2))
1434             (if (shift_type != TREE_TYPE (@3))
1435              (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
1436              (bit_and @4 { newmaskt; })))))))))))))
1438 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
1439    (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1).  */
1440 (for shift (lshift rshift)
1441  (for bit_op (bit_and bit_xor bit_ior)
1442   (simplify
1443    (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
1444    (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1445     (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
1446      (bit_op (shift (convert @0) @1) { mask; }))))))
1449 /* Simplifications of conversions.  */
1451 /* Basic strip-useless-type-conversions / strip_nops.  */
1452 (for cvt (convert view_convert float fix_trunc)
1453  (simplify
1454   (cvt @0)
1455   (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
1456        || (GENERIC && type == TREE_TYPE (@0)))
1457    @0)))
1459 /* Contract view-conversions.  */
1460 (simplify
1461   (view_convert (view_convert @0))
1462   (view_convert @0))
1464 /* For integral conversions with the same precision or pointer
1465    conversions use a NOP_EXPR instead.  */
1466 (simplify
1467   (view_convert @0)
1468   (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
1469        && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
1470        && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
1471    (convert @0)))
1473 /* Strip inner integral conversions that do not change precision or size.  */
1474 (simplify
1475   (view_convert (convert@0 @1))
1476   (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
1477        && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
1478        && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
1479        && (TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))))
1480    (view_convert @1)))
1482 /* Re-association barriers around constants and other re-association
1483    barriers can be removed.  */
1484 (simplify
1485  (paren CONSTANT_CLASS_P@0)
1486  @0)
1487 (simplify
1488  (paren (paren@1 @0))
1489  @1)
1491 /* Handle cases of two conversions in a row.  */
1492 (for ocvt (convert float fix_trunc)
1493  (for icvt (convert float)
1494   (simplify
1495    (ocvt (icvt@1 @0))
1496    (with
1497     {
1498       tree inside_type = TREE_TYPE (@0);
1499       tree inter_type = TREE_TYPE (@1);
1500       int inside_int = INTEGRAL_TYPE_P (inside_type);
1501       int inside_ptr = POINTER_TYPE_P (inside_type);
1502       int inside_float = FLOAT_TYPE_P (inside_type);
1503       int inside_vec = VECTOR_TYPE_P (inside_type);
1504       unsigned int inside_prec = TYPE_PRECISION (inside_type);
1505       int inside_unsignedp = TYPE_UNSIGNED (inside_type);
1506       int inter_int = INTEGRAL_TYPE_P (inter_type);
1507       int inter_ptr = POINTER_TYPE_P (inter_type);
1508       int inter_float = FLOAT_TYPE_P (inter_type);
1509       int inter_vec = VECTOR_TYPE_P (inter_type);
1510       unsigned int inter_prec = TYPE_PRECISION (inter_type);
1511       int inter_unsignedp = TYPE_UNSIGNED (inter_type);
1512       int final_int = INTEGRAL_TYPE_P (type);
1513       int final_ptr = POINTER_TYPE_P (type);
1514       int final_float = FLOAT_TYPE_P (type);
1515       int final_vec = VECTOR_TYPE_P (type);
1516       unsigned int final_prec = TYPE_PRECISION (type);
1517       int final_unsignedp = TYPE_UNSIGNED (type);
1518     }
1519    (switch
1520     /* In addition to the cases of two conversions in a row
1521        handled below, if we are converting something to its own
1522        type via an object of identical or wider precision, neither
1523        conversion is needed.  */
1524     (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
1525           || (GENERIC
1526               && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
1527          && (((inter_int || inter_ptr) && final_int)
1528              || (inter_float && final_float))
1529          && inter_prec >= final_prec)
1530      (ocvt @0))
1532     /* Likewise, if the intermediate and initial types are either both
1533        float or both integer, we don't need the middle conversion if the
1534        former is wider than the latter and doesn't change the signedness
1535        (for integers).  Avoid this if the final type is a pointer since
1536        then we sometimes need the middle conversion.  Likewise if the
1537        final type has a precision not equal to the size of its mode.  */
1538     (if (((inter_int && inside_int) || (inter_float && inside_float))
1539          && (final_int || final_float)
1540          && inter_prec >= inside_prec
1541          && (inter_float || inter_unsignedp == inside_unsignedp)
1542          && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
1543                && TYPE_MODE (type) == TYPE_MODE (inter_type)))
1544      (ocvt @0))
1546     /* If we have a sign-extension of a zero-extended value, we can
1547        replace that by a single zero-extension.  Likewise if the
1548        final conversion does not change precision we can drop the
1549        intermediate conversion.  */
1550     (if (inside_int && inter_int && final_int
1551          && ((inside_prec < inter_prec && inter_prec < final_prec
1552               && inside_unsignedp && !inter_unsignedp)
1553              || final_prec == inter_prec))
1554      (ocvt @0))
1556     /* Two conversions in a row are not needed unless:
1557         - some conversion is floating-point (overstrict for now), or
1558         - some conversion is a vector (overstrict for now), or
1559         - the intermediate type is narrower than both initial and
1560           final, or
1561         - the intermediate type and innermost type differ in signedness,
1562           and the outermost type is wider than the intermediate, or
1563         - the initial type is a pointer type and the precisions of the
1564           intermediate and final types differ, or
1565         - the final type is a pointer type and the precisions of the
1566           initial and intermediate types differ.  */
1567     (if (! inside_float && ! inter_float && ! final_float
1568          && ! inside_vec && ! inter_vec && ! final_vec
1569          && (inter_prec >= inside_prec || inter_prec >= final_prec)
1570          && ! (inside_int && inter_int
1571                && inter_unsignedp != inside_unsignedp
1572                && inter_prec < final_prec)
1573          && ((inter_unsignedp && inter_prec > inside_prec)
1574              == (final_unsignedp && final_prec > inter_prec))
1575          && ! (inside_ptr && inter_prec != final_prec)
1576          && ! (final_ptr && inside_prec != inter_prec)
1577          && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
1578                && TYPE_MODE (type) == TYPE_MODE (inter_type)))
1579      (ocvt @0))
1581     /* A truncation to an unsigned type (a zero-extension) should be
1582        canonicalized as bitwise and of a mask.  */
1583     (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion.  */
1584          && final_int && inter_int && inside_int
1585          && final_prec == inside_prec
1586          && final_prec > inter_prec
1587          && inter_unsignedp)
1588      (convert (bit_and @0 { wide_int_to_tree
1589                               (inside_type,
1590                                wi::mask (inter_prec, false,
1591                                          TYPE_PRECISION (inside_type))); })))
1593     /* If we are converting an integer to a floating-point that can
1594        represent it exactly and back to an integer, we can skip the
1595        floating-point conversion.  */
1596     (if (GIMPLE /* PR66211 */
1597          && inside_int && inter_float && final_int &&
1598          (unsigned) significand_size (TYPE_MODE (inter_type))
1599          >= inside_prec - !inside_unsignedp)
1600      (convert @0)))))))
1602 /* If we have a narrowing conversion to an integral type that is fed by a
1603    BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
1604    masks off bits outside the final type (and nothing else).  */
1605 (simplify
1606   (convert (bit_and @0 INTEGER_CST@1))
1607   (if (INTEGRAL_TYPE_P (type)
1608        && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1609        && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
1610        && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
1611                                                     TYPE_PRECISION (type)), 0))
1612    (convert @0)))
1615 /* (X /[ex] A) * A -> X.  */
1616 (simplify
1617   (mult (convert? (exact_div @0 @1)) @1)
1618   /* Look through a sign-changing conversion.  */
1619   (convert @0))
1621 /* Canonicalization of binary operations.  */
1623 /* Convert X + -C into X - C.  */
1624 (simplify
1625  (plus @0 REAL_CST@1)
1626  (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
1627   (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
1628    (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
1629     (minus @0 { tem; })))))
1631 /* Convert x+x into x*2.  */
1632 (simplify
1633  (plus @0 @0)
1634  (if (SCALAR_FLOAT_TYPE_P (type))
1635   (mult @0 { build_real (type, dconst2); })
1636   (if (INTEGRAL_TYPE_P (type))
1637    (mult @0 { build_int_cst (type, 2); }))))
1639 (simplify
1640  (minus integer_zerop @1)
1641  (negate @1))
1643 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0).  So check whether
1644    ARG0 is zero and X + ARG0 reduces to X, since that would mean
1645    (-ARG1 + ARG0) reduces to -ARG1.  */
1646 (simplify
1647  (minus real_zerop@0 @1)
1648  (if (fold_real_zero_addition_p (type, @0, 0))
1649   (negate @1)))
1651 /* Transform x * -1 into -x.  */
1652 (simplify
1653  (mult @0 integer_minus_onep)
1654  (negate @0))
1656 /* True if we can easily extract the real and imaginary parts of a complex
1657    number.  */
1658 (match compositional_complex
1659  (convert? (complex @0 @1)))
1661 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations.  */
1662 (simplify
1663  (complex (realpart @0) (imagpart @0))
1664  @0)
1665 (simplify
1666  (realpart (complex @0 @1))
1667  @0)
1668 (simplify
1669  (imagpart (complex @0 @1))
1670  @1)
1672 /* Sometimes we only care about half of a complex expression.  */
1673 (simplify
1674  (realpart (convert?:s (conj:s @0)))
1675  (convert (realpart @0)))
1676 (simplify
1677  (imagpart (convert?:s (conj:s @0)))
1678  (convert (negate (imagpart @0))))
1679 (for part (realpart imagpart)
1680  (for op (plus minus)
1681   (simplify
1682    (part (convert?:s@2 (op:s @0 @1)))
1683    (convert (op (part @0) (part @1))))))
1684 (simplify
1685  (realpart (convert?:s (CEXPI:s @0)))
1686  (convert (COS @0)))
1687 (simplify
1688  (imagpart (convert?:s (CEXPI:s @0)))
1689  (convert (SIN @0)))
1691 /* conj(conj(x)) -> x  */
1692 (simplify
1693  (conj (convert? (conj @0)))
1694  (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
1695   (convert @0)))
1697 /* conj({x,y}) -> {x,-y}  */
1698 (simplify
1699  (conj (convert?:s (complex:s @0 @1)))
1700  (with { tree itype = TREE_TYPE (type); }
1701   (complex (convert:itype @0) (negate (convert:itype @1)))))
1703 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c.  */
1704 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
1705  (simplify
1706   (bswap (bswap @0))
1707   @0)
1708  (simplify
1709   (bswap (bit_not (bswap @0)))
1710   (bit_not @0))
1711  (for bitop (bit_xor bit_ior bit_and)
1712   (simplify
1713    (bswap (bitop:c (bswap @0) @1))
1714    (bitop @0 (bswap @1)))))
1717 /* Combine COND_EXPRs and VEC_COND_EXPRs.  */
1719 /* Simplify constant conditions.
1720    Only optimize constant conditions when the selected branch
1721    has the same type as the COND_EXPR.  This avoids optimizing
1722    away "c ? x : throw", where the throw has a void type.
1723    Note that we cannot throw away the fold-const.c variant nor
1724    this one as we depend on doing this transform before possibly
1725    A ? B : B -> B triggers and the fold-const.c one can optimize
1726    0 ? A : B to B even if A has side-effects.  Something
1727    genmatch cannot handle.  */
1728 (simplify
1729  (cond INTEGER_CST@0 @1 @2)
1730  (if (integer_zerop (@0))
1731   (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
1732    @2)
1733   (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
1734    @1)))
1735 (simplify
1736  (vec_cond VECTOR_CST@0 @1 @2)
1737  (if (integer_all_onesp (@0))
1738   @1
1739   (if (integer_zerop (@0))
1740    @2)))
1742 (for cnd (cond vec_cond)
1743  /* A ? B : (A ? X : C) -> A ? B : C.  */
1744  (simplify
1745   (cnd @0 (cnd @0 @1 @2) @3)
1746   (cnd @0 @1 @3))
1747  (simplify
1748   (cnd @0 @1 (cnd @0 @2 @3))
1749   (cnd @0 @1 @3))
1750  /* A ? B : (!A ? C : X) -> A ? B : C.  */
1751  /* ???  This matches embedded conditions open-coded because genmatch
1752     would generate matching code for conditions in separate stmts only.
1753     The following is still important to merge then and else arm cases
1754     from if-conversion.  */
1755  (simplify
1756   (cnd @0 @1 (cnd @2 @3 @4))
1757   (if (COMPARISON_CLASS_P (@0)
1758        && COMPARISON_CLASS_P (@2)
1759        && invert_tree_comparison
1760            (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@2)
1761        && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@2, 0), 0)
1762        && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@2, 1), 0))
1763    (cnd @0 @1 @3)))
1764  (simplify
1765   (cnd @0 (cnd @1 @2 @3) @4)
1766   (if (COMPARISON_CLASS_P (@0)
1767        && COMPARISON_CLASS_P (@1)
1768        && invert_tree_comparison
1769            (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@1)
1770        && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@1, 0), 0)
1771        && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@1, 1), 0))
1772    (cnd @0 @3 @4)))
1774  /* A ? B : B -> B.  */
1775  (simplify
1776   (cnd @0 @1 @1)
1777   @1)
1779  /* !A ? B : C -> A ? C : B.  */
1780  (simplify
1781   (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
1782   (cnd @0 @2 @1)))
1784 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
1785    return all -1 or all 0 results.  */
1786 /* ??? We could instead convert all instances of the vec_cond to negate,
1787    but that isn't necessarily a win on its own.  */
1788 (simplify
1789  (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
1790  (if (VECTOR_TYPE_P (type)
1791       && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1))
1792       && (TYPE_MODE (TREE_TYPE (type))
1793           == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
1794   (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
1796 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0).  */
1797 (simplify
1798  (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
1799  (if (VECTOR_TYPE_P (type)
1800       && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1))
1801       && (TYPE_MODE (TREE_TYPE (type))
1802           == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
1803   (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
1806 /* Simplifications of comparisons.  */
1808 /* See if we can reduce the magnitude of a constant involved in a
1809    comparison by changing the comparison code.  This is a canonicalization
1810    formerly done by maybe_canonicalize_comparison_1.  */
1811 (for cmp  (le gt)
1812      acmp (lt ge)
1813  (simplify
1814   (cmp @0 INTEGER_CST@1)
1815   (if (tree_int_cst_sgn (@1) == -1)
1816    (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::add (@1, 1)); }))))
1817 (for cmp  (ge lt)
1818      acmp (gt le)
1819  (simplify
1820   (cmp @0 INTEGER_CST@1)
1821   (if (tree_int_cst_sgn (@1) == 1)
1822    (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::sub (@1, 1)); }))))
1825 /* We can simplify a logical negation of a comparison to the
1826    inverted comparison.  As we cannot compute an expression
1827    operator using invert_tree_comparison we have to simulate
1828    that with expression code iteration.  */
1829 (for cmp (tcc_comparison)
1830      icmp (inverted_tcc_comparison)
1831      ncmp (inverted_tcc_comparison_with_nans)
1832  /* Ideally we'd like to combine the following two patterns
1833     and handle some more cases by using
1834       (logical_inverted_value (cmp @0 @1))
1835     here but for that genmatch would need to "inline" that.
1836     For now implement what forward_propagate_comparison did.  */
1837  (simplify
1838   (bit_not (cmp @0 @1))
1839   (if (VECTOR_TYPE_P (type)
1840        || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
1841    /* Comparison inversion may be impossible for trapping math,
1842       invert_tree_comparison will tell us.  But we can't use
1843       a computed operator in the replacement tree thus we have
1844       to play the trick below.  */
1845    (with { enum tree_code ic = invert_tree_comparison
1846              (cmp, HONOR_NANS (@0)); }
1847     (if (ic == icmp)
1848      (icmp @0 @1)
1849      (if (ic == ncmp)
1850       (ncmp @0 @1))))))
1851  (simplify
1852   (bit_xor (cmp @0 @1) integer_truep)
1853   (with { enum tree_code ic = invert_tree_comparison
1854             (cmp, HONOR_NANS (@0)); }
1855    (if (ic == icmp)
1856     (icmp @0 @1)
1857     (if (ic == ncmp)
1858      (ncmp @0 @1))))))
1860 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
1861    ??? The transformation is valid for the other operators if overflow
1862    is undefined for the type, but performing it here badly interacts
1863    with the transformation in fold_cond_expr_with_comparison which
1864    attempts to synthetize ABS_EXPR.  */
1865 (for cmp (eq ne)
1866  (simplify
1867   (cmp (minus@2 @0 @1) integer_zerop)
1868   (if (single_use (@2))
1869    (cmp @0 @1))))
1871 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
1872    signed arithmetic case.  That form is created by the compiler
1873    often enough for folding it to be of value.  One example is in
1874    computing loop trip counts after Operator Strength Reduction.  */
1875 (for cmp (simple_comparison)
1876      scmp (swapped_simple_comparison)
1877  (simplify
1878   (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
1879   /* Handle unfolded multiplication by zero.  */
1880   (if (integer_zerop (@1))
1881    (cmp @1 @2)
1882    (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1883         && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1884         && single_use (@3))
1885     /* If @1 is negative we swap the sense of the comparison.  */
1886     (if (tree_int_cst_sgn (@1) < 0)
1887      (scmp @0 @2)
1888      (cmp @0 @2))))))
1890 /* Simplify comparison of something with itself.  For IEEE
1891    floating-point, we can only do some of these simplifications.  */
1892 (for cmp (eq ge le)
1893  (simplify
1894   (cmp @0 @0)
1895   (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
1896        || ! HONOR_NANS (@0))
1897    { constant_boolean_node (true, type); }
1898    (if (cmp != EQ_EXPR)
1899     (eq @0 @0)))))
1900 (for cmp (ne gt lt)
1901  (simplify
1902   (cmp @0 @0)
1903   (if (cmp != NE_EXPR
1904        || ! FLOAT_TYPE_P (TREE_TYPE (@0))
1905        || ! HONOR_NANS (@0))
1906    { constant_boolean_node (false, type); })))
1907 (for cmp (unle unge uneq)
1908  (simplify
1909   (cmp @0 @0)
1910   { constant_boolean_node (true, type); }))
1911 (simplify
1912  (ltgt @0 @0)
1913  (if (!flag_trapping_math)
1914   { constant_boolean_node (false, type); }))
1916 /* Fold ~X op ~Y as Y op X.  */
1917 (for cmp (simple_comparison)
1918  (simplify
1919   (cmp (bit_not@2 @0) (bit_not@3 @1))
1920   (if (single_use (@2) && single_use (@3))
1921    (cmp @1 @0))))
1923 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison.  */
1924 (for cmp (simple_comparison)
1925      scmp (swapped_simple_comparison)
1926  (simplify
1927   (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
1928   (if (single_use (@2)
1929        && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
1930    (scmp @0 (bit_not @1)))))
1932 (for cmp (simple_comparison)
1933  /* Fold (double)float1 CMP (double)float2 into float1 CMP float2.  */
1934  (simplify
1935   (cmp (convert@2 @0) (convert? @1))
1936   (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1937        && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
1938            == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
1939        && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
1940            == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
1941    (with
1942     {
1943       tree type1 = TREE_TYPE (@1);
1944       if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
1945         {
1946           REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
1947           if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
1948               && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
1949             type1 = float_type_node;
1950           if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
1951               && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
1952             type1 = double_type_node;
1953         }
1954       tree newtype
1955         = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
1956            ? TREE_TYPE (@0) : type1); 
1957     }
1958     (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
1959      (cmp (convert:newtype @0) (convert:newtype @1))))))
1961  (simplify
1962   (cmp @0 REAL_CST@1)
1963   /* IEEE doesn't distinguish +0 and -0 in comparisons.  */
1964   (switch
1965    /* a CMP (-0) -> a CMP 0  */
1966    (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
1967     (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
1968    /* x != NaN is always true, other ops are always false.  */
1969    (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
1970         && ! HONOR_SNANS (@1))
1971     { constant_boolean_node (cmp == NE_EXPR, type); })
1972    /* Fold comparisons against infinity.  */
1973    (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
1974         && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
1975     (with
1976      {
1977        REAL_VALUE_TYPE max;
1978        enum tree_code code = cmp;
1979        bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
1980        if (neg)
1981          code = swap_tree_comparison (code);
1982      }
1983      (switch
1984       /* x > +Inf is always false, if with ignore sNANs.  */
1985       (if (code == GT_EXPR
1986            && ! HONOR_SNANS (@0))
1987        { constant_boolean_node (false, type); })
1988       (if (code == LE_EXPR)
1989        /* x <= +Inf is always true, if we don't case about NaNs.  */
1990        (if (! HONOR_NANS (@0))
1991         { constant_boolean_node (true, type); }
1992         /* x <= +Inf is the same as x == x, i.e. !isnan(x).  */
1993         (eq @0 @0)))
1994       /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX.  */
1995       (if (code == EQ_EXPR || code == GE_EXPR)
1996        (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
1997         (if (neg)
1998          (lt @0 { build_real (TREE_TYPE (@0), max); })
1999          (gt @0 { build_real (TREE_TYPE (@0), max); }))))
2000       /* x < +Inf is always equal to x <= DBL_MAX.  */
2001       (if (code == LT_EXPR)
2002        (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
2003         (if (neg)
2004          (ge @0 { build_real (TREE_TYPE (@0), max); })
2005          (le @0 { build_real (TREE_TYPE (@0), max); }))))
2006       /* x != +Inf is always equal to !(x > DBL_MAX).  */
2007       (if (code == NE_EXPR)
2008        (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
2009         (if (! HONOR_NANS (@0))
2010          (if (neg)
2011           (ge @0 { build_real (TREE_TYPE (@0), max); })
2012           (le @0 { build_real (TREE_TYPE (@0), max); }))
2013          (if (neg)
2014           (bit_xor (lt @0 { build_real (TREE_TYPE (@0), max); })
2015            { build_one_cst (type); })
2016           (bit_xor (gt @0 { build_real (TREE_TYPE (@0), max); })
2017            { build_one_cst (type); }))))))))))
2019  /* If this is a comparison of a real constant with a PLUS_EXPR
2020     or a MINUS_EXPR of a real constant, we can convert it into a
2021     comparison with a revised real constant as long as no overflow
2022     occurs when unsafe_math_optimizations are enabled.  */
2023  (if (flag_unsafe_math_optimizations)
2024   (for op (plus minus)
2025    (simplify
2026     (cmp (op @0 REAL_CST@1) REAL_CST@2)
2027     (with
2028      {
2029        tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
2030                                TREE_TYPE (@1), @2, @1);
2031      }
2032      (if (tem && !TREE_OVERFLOW (tem))
2033       (cmp @0 { tem; }))))))
2035  /* Likewise, we can simplify a comparison of a real constant with
2036     a MINUS_EXPR whose first operand is also a real constant, i.e.
2037     (c1 - x) < c2 becomes x > c1-c2.  Reordering is allowed on
2038     floating-point types only if -fassociative-math is set.  */
2039  (if (flag_associative_math)
2040   (simplify
2041    (cmp (minus REAL_CST@0 @1) REAL_CST@2)
2042    (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
2043     (if (tem && !TREE_OVERFLOW (tem))
2044      (cmp { tem; } @1)))))
2046  /* Fold comparisons against built-in math functions.  */
2047  (if (flag_unsafe_math_optimizations
2048       && ! flag_errno_math)
2049   (for sq (SQRT)
2050    (simplify
2051     (cmp (sq @0) REAL_CST@1)
2052     (switch
2053      (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
2054       (switch
2055        /* sqrt(x) < y is always false, if y is negative.  */
2056        (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
2057         { constant_boolean_node (false, type); })
2058        /* sqrt(x) > y is always true, if y is negative and we
2059           don't care about NaNs, i.e. negative values of x.  */
2060        (if (cmp == NE_EXPR || !HONOR_NANS (@0))
2061         { constant_boolean_node (true, type); })
2062        /* sqrt(x) > y is the same as x >= 0, if y is negative.  */
2063        (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
2064      (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
2065       (switch
2066        /* sqrt(x) < 0 is always false.  */
2067        (if (cmp == LT_EXPR)
2068         { constant_boolean_node (false, type); })
2069        /* sqrt(x) >= 0 is always true if we don't care about NaNs.  */
2070        (if (cmp == GE_EXPR && !HONOR_NANS (@0))
2071         { constant_boolean_node (true, type); })
2072        /* sqrt(x) <= 0 -> x == 0.  */
2073        (if (cmp == LE_EXPR)
2074         (eq @0 @1))
2075        /* Otherwise sqrt(x) cmp 0 -> x cmp 0.  Here cmp can be >=, >,
2076           == or !=.  In the last case:
2078             (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
2080           if x is negative or NaN.  Due to -funsafe-math-optimizations,
2081           the results for other x follow from natural arithmetic.  */
2082        (cmp @0 @1)))
2083      (if (cmp == GT_EXPR || cmp == GE_EXPR)
2084       (with
2085        {
2086          REAL_VALUE_TYPE c2;
2087          real_arithmetic (&c2, MULT_EXPR,
2088                           &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
2089          real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
2090        }
2091        (if (REAL_VALUE_ISINF (c2))
2092         /* sqrt(x) > y is x == +Inf, when y is very large.  */
2093         (if (HONOR_INFINITIES (@0))
2094          (eq @0 { build_real (TREE_TYPE (@0), c2); })
2095          { constant_boolean_node (false, type); })
2096         /* sqrt(x) > c is the same as x > c*c.  */
2097         (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
2098      (if (cmp == LT_EXPR || cmp == LE_EXPR)
2099       (with
2100        {
2101          REAL_VALUE_TYPE c2;
2102          real_arithmetic (&c2, MULT_EXPR,
2103                           &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
2104          real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
2105        }
2106        (if (REAL_VALUE_ISINF (c2))
2107         (switch
2108          /* sqrt(x) < y is always true, when y is a very large
2109             value and we don't care about NaNs or Infinities.  */
2110          (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
2111           { constant_boolean_node (true, type); })
2112          /* sqrt(x) < y is x != +Inf when y is very large and we
2113             don't care about NaNs.  */
2114          (if (! HONOR_NANS (@0))
2115           (ne @0 { build_real (TREE_TYPE (@0), c2); }))
2116          /* sqrt(x) < y is x >= 0 when y is very large and we
2117             don't care about Infinities.  */
2118          (if (! HONOR_INFINITIES (@0))
2119           (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
2120          /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large.  */
2121          (if (GENERIC)
2122           (truth_andif
2123            (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
2124            (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
2125         /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs.  */
2126         (if (! HONOR_NANS (@0))
2127          (cmp @0 { build_real (TREE_TYPE (@0), c2); })
2128          /* sqrt(x) < c is the same as x >= 0 && x < c*c.  */
2129          (if (GENERIC)
2130           (truth_andif
2131            (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
2132            (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))))))))))
2134 /* Unordered tests if either argument is a NaN.  */
2135 (simplify
2136  (bit_ior (unordered @0 @0) (unordered @1 @1))
2137  (if (types_match (@0, @1))
2138   (unordered @0 @1)))
2139 (simplify
2140  (bit_and (ordered @0 @0) (ordered @1 @1))
2141  (if (types_match (@0, @1))
2142   (ordered @0 @1)))
2143 (simplify
2144  (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
2145  @2)
2146 (simplify
2147  (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
2148  @2)
2150 /* Simple range test simplifications.  */
2151 /* A < B || A >= B -> true.  */
2152 (for test1 (lt le le le ne ge)
2153      test2 (ge gt ge ne eq ne)
2154  (simplify
2155   (bit_ior:c (test1 @0 @1) (test2 @0 @1))
2156   (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2157        || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
2158    { constant_boolean_node (true, type); })))
2159 /* A < B && A >= B -> false.  */
2160 (for test1 (lt lt lt le ne eq)
2161      test2 (ge gt eq gt eq gt)
2162  (simplify
2163   (bit_and:c (test1 @0 @1) (test2 @0 @1))
2164   (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2165        || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
2166    { constant_boolean_node (false, type); })))
2168 /* -A CMP -B -> B CMP A.  */
2169 (for cmp (tcc_comparison)
2170      scmp (swapped_tcc_comparison)
2171  (simplify
2172   (cmp (negate @0) (negate @1))
2173   (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2174        || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2175            && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2176    (scmp @0 @1)))
2177  (simplify
2178   (cmp (negate @0) CONSTANT_CLASS_P@1)
2179   (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2180        || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2181            && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2182    (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
2183     (if (tem && !TREE_OVERFLOW (tem))
2184      (scmp @0 { tem; }))))))
2186 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0.  */
2187 (for op (eq ne)
2188  (simplify
2189   (op (abs @0) zerop@1)
2190   (op @0 @1)))
2192 /* From fold_sign_changed_comparison and fold_widened_comparison.  */
2193 (for cmp (simple_comparison)
2194  (simplify
2195   (cmp (convert@0 @00) (convert?@1 @10))
2196   (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2197        /* Disable this optimization if we're casting a function pointer
2198           type on targets that require function pointer canonicalization.  */
2199        && !(targetm.have_canonicalize_funcptr_for_compare ()
2200             && TREE_CODE (TREE_TYPE (@00)) == POINTER_TYPE
2201             && TREE_CODE (TREE_TYPE (TREE_TYPE (@00))) == FUNCTION_TYPE)
2202        && single_use (@0))
2203    (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
2204         && (TREE_CODE (@10) == INTEGER_CST
2205             || (@1 != @10 && types_match (TREE_TYPE (@10), TREE_TYPE (@00))))
2206         && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
2207             || cmp == NE_EXPR
2208             || cmp == EQ_EXPR)
2209         && (POINTER_TYPE_P (TREE_TYPE (@00)) == POINTER_TYPE_P (TREE_TYPE (@0))))
2210     /* ???  The special-casing of INTEGER_CST conversion was in the original
2211        code and here to avoid a spurious overflow flag on the resulting
2212        constant which fold_convert produces.  */
2213     (if (TREE_CODE (@1) == INTEGER_CST)
2214      (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
2215                                 TREE_OVERFLOW (@1)); })
2216      (cmp @00 (convert @1)))
2218     (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
2219      /* If possible, express the comparison in the shorter mode.  */
2220      (if ((cmp == EQ_EXPR || cmp == NE_EXPR
2221            || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00)))
2222           && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
2223               || ((TYPE_PRECISION (TREE_TYPE (@00))
2224                    >= TYPE_PRECISION (TREE_TYPE (@10)))
2225                   && (TYPE_UNSIGNED (TREE_TYPE (@00))
2226                       == TYPE_UNSIGNED (TREE_TYPE (@10))))
2227               || (TREE_CODE (@10) == INTEGER_CST
2228                   && INTEGRAL_TYPE_P (TREE_TYPE (@00))
2229                   && int_fits_type_p (@10, TREE_TYPE (@00)))))
2230       (cmp @00 (convert @10))
2231       (if (TREE_CODE (@10) == INTEGER_CST
2232            && INTEGRAL_TYPE_P (TREE_TYPE (@00))
2233            && !int_fits_type_p (@10, TREE_TYPE (@00)))
2234        (with
2235         {
2236           tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
2237           tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
2238           bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
2239           bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
2240         }
2241         (if (above || below)
2242          (if (cmp == EQ_EXPR || cmp == NE_EXPR)
2243           { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
2244           (if (cmp == LT_EXPR || cmp == LE_EXPR)
2245            { constant_boolean_node (above ? true : false, type); }
2246            (if (cmp == GT_EXPR || cmp == GE_EXPR)
2247             { constant_boolean_node (above ? false : true, type); }))))))))))))
2249 (for cmp (eq ne)
2250  /* A local variable can never be pointed to by
2251     the default SSA name of an incoming parameter.
2252     SSA names are canonicalized to 2nd place.  */
2253  (simplify
2254   (cmp addr@0 SSA_NAME@1)
2255   (if (SSA_NAME_IS_DEFAULT_DEF (@1)
2256        && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
2257    (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
2258     (if (TREE_CODE (base) == VAR_DECL
2259          && auto_var_in_fn_p (base, current_function_decl))
2260      (if (cmp == NE_EXPR)
2261       { constant_boolean_node (true, type); }
2262       { constant_boolean_node (false, type); }))))))
2264 /* Equality compare simplifications from fold_binary  */
2265 (for cmp (eq ne)
2267  /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
2268     Similarly for NE_EXPR.  */
2269  (simplify
2270   (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
2271   (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
2272        && wi::bit_and_not (@1, @2) != 0)
2273    { constant_boolean_node (cmp == NE_EXPR, type); }))
2275  /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y.  */
2276  (simplify
2277   (cmp (bit_xor @0 @1) integer_zerop)
2278   (cmp @0 @1))
2280  /* (X ^ Y) == Y becomes X == 0.
2281     Likewise (X ^ Y) == X becomes Y == 0.  */
2282  (simplify
2283   (cmp:c (bit_xor:c @0 @1) @0)
2284   (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
2286  /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2).  */
2287  (simplify
2288   (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
2289   (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
2290    (cmp @0 (bit_xor @1 (convert @2)))))
2292  (simplify
2293   (cmp (convert? addr@0) integer_zerop)
2294   (if (tree_single_nonzero_warnv_p (@0, NULL))
2295    { constant_boolean_node (cmp == NE_EXPR, type); })))
2297 /* If we have (A & C) == C where C is a power of 2, convert this into
2298    (A & C) != 0.  Similarly for NE_EXPR.  */
2299 (for cmp (eq ne)
2300      icmp (ne eq)
2301  (simplify
2302   (cmp (bit_and@2 @0 integer_pow2p@1) @1)
2303   (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
2305 /* If we have (A & C) != 0 where C is the sign bit of A, convert
2306    this into A < 0.  Similarly for (A & C) == 0 into A >= 0.  */
2307 (for cmp (eq ne)
2308      ncmp (ge lt)
2309  (simplify
2310   (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
2311   (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2312        && (TYPE_PRECISION (TREE_TYPE (@0))
2313            == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
2314        && element_precision (@2) >= element_precision (@0)
2315        && wi::only_sign_bit_p (@1, element_precision (@0)))
2316    (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
2317     (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
2319 /* When the addresses are not directly of decls compare base and offset.
2320    This implements some remaining parts of fold_comparison address
2321    comparisons but still no complete part of it.  Still it is good
2322    enough to make fold_stmt not regress when not dispatching to fold_binary.  */
2323 (for cmp (simple_comparison)
2324  (simplify
2325   (cmp (convert1?@2 addr@0) (convert2? addr@1))
2326   (with
2327    {
2328      HOST_WIDE_INT off0, off1;
2329      tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
2330      tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
2331      if (base0 && TREE_CODE (base0) == MEM_REF)
2332        {
2333          off0 += mem_ref_offset (base0).to_short_addr ();
2334          base0 = TREE_OPERAND (base0, 0);
2335        }
2336      if (base1 && TREE_CODE (base1) == MEM_REF)
2337        {
2338          off1 += mem_ref_offset (base1).to_short_addr ();
2339          base1 = TREE_OPERAND (base1, 0);
2340        }
2341    }
2342    (if (base0 && base1)
2343     (with
2344      {
2345        int equal = 2;
2346        if (decl_in_symtab_p (base0)
2347            && decl_in_symtab_p (base1))
2348          equal = symtab_node::get_create (base0)
2349                    ->equal_address_to (symtab_node::get_create (base1));
2350        else if ((DECL_P (base0)
2351                  || TREE_CODE (base0) == SSA_NAME
2352                  || TREE_CODE (base0) == STRING_CST)
2353                 && (DECL_P (base1)
2354                     || TREE_CODE (base1) == SSA_NAME
2355                     || TREE_CODE (base1) == STRING_CST))
2356          equal = (base0 == base1);
2357      }
2358      (if (equal == 1
2359           && (cmp == EQ_EXPR || cmp == NE_EXPR
2360               /* If the offsets are equal we can ignore overflow.  */
2361               || off0 == off1
2362               || POINTER_TYPE_OVERFLOW_UNDEFINED
2363               /* Or if we compare using pointers to decls or strings.  */
2364               || (POINTER_TYPE_P (TREE_TYPE (@2))
2365                   && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
2366       (switch
2367        (if (cmp == EQ_EXPR)
2368         { constant_boolean_node (off0 == off1, type); })
2369        (if (cmp == NE_EXPR)
2370         { constant_boolean_node (off0 != off1, type); })
2371        (if (cmp == LT_EXPR)
2372         { constant_boolean_node (off0 < off1, type); })
2373        (if (cmp == LE_EXPR)
2374         { constant_boolean_node (off0 <= off1, type); })
2375        (if (cmp == GE_EXPR)
2376         { constant_boolean_node (off0 >= off1, type); })
2377        (if (cmp == GT_EXPR)
2378         { constant_boolean_node (off0 > off1, type); }))
2379       (if (equal == 0
2380            && DECL_P (base0) && DECL_P (base1)
2381            /* If we compare this as integers require equal offset.  */
2382            && (!INTEGRAL_TYPE_P (TREE_TYPE (@2))
2383                || off0 == off1))
2384        (switch
2385         (if (cmp == EQ_EXPR)
2386          { constant_boolean_node (false, type); })
2387         (if (cmp == NE_EXPR)
2388          { constant_boolean_node (true, type); })))))))))
2390 /* Non-equality compare simplifications from fold_binary  */
2391 (for cmp (lt gt le ge)
2392  /* Comparisons with the highest or lowest possible integer of
2393     the specified precision will have known values.  */
2394  (simplify
2395   (cmp (convert?@2 @0) INTEGER_CST@1)
2396   (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
2397        && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
2398    (with
2399     {
2400       tree arg1_type = TREE_TYPE (@1);
2401       unsigned int prec = TYPE_PRECISION (arg1_type);
2402       wide_int max = wi::max_value (arg1_type);
2403       wide_int signed_max = wi::max_value (prec, SIGNED);
2404       wide_int min = wi::min_value (arg1_type);
2405     }
2406     (switch
2407      (if (wi::eq_p (@1, max))
2408       (switch
2409        (if (cmp == GT_EXPR)
2410         { constant_boolean_node (false, type); })
2411        (if (cmp == GE_EXPR)
2412         (eq @2 @1))
2413        (if (cmp == LE_EXPR)
2414         { constant_boolean_node (true, type); })
2415        (if (cmp == LT_EXPR)
2416         (ne @2 @1))))
2417      (if (wi::eq_p (@1, min))
2418       (switch
2419        (if (cmp == LT_EXPR)
2420         { constant_boolean_node (false, type); })
2421        (if (cmp == LE_EXPR)
2422         (eq @2 @1))
2423        (if (cmp == GE_EXPR)
2424         { constant_boolean_node (true, type); })
2425        (if (cmp == GT_EXPR)
2426         (ne @2 @1))))
2427      (if (wi::eq_p (@1, max - 1))
2428       (switch
2429        (if (cmp == GT_EXPR)
2430         (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::add (@1, 1)); }))
2431        (if (cmp == LE_EXPR)
2432         (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::add (@1, 1)); }))))
2433      (if (wi::eq_p (@1, min + 1))
2434       (switch
2435        (if (cmp == GE_EXPR)
2436         (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::sub (@1, 1)); }))
2437        (if (cmp == LT_EXPR)
2438         (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::sub (@1, 1)); }))))
2439      (if (wi::eq_p (@1, signed_max)
2440           && TYPE_UNSIGNED (arg1_type)
2441           /* We will flip the signedness of the comparison operator
2442              associated with the mode of @1, so the sign bit is
2443              specified by this mode.  Check that @1 is the signed
2444              max associated with this sign bit.  */
2445           && prec == GET_MODE_PRECISION (TYPE_MODE (arg1_type))
2446           /* signed_type does not work on pointer types.  */
2447           && INTEGRAL_TYPE_P (arg1_type))
2448       /* The following case also applies to X < signed_max+1
2449          and X >= signed_max+1 because previous transformations.  */
2450       (if (cmp == LE_EXPR || cmp == GT_EXPR)
2451        (with { tree st = signed_type_for (arg1_type); }
2452         (if (cmp == LE_EXPR)
2453          (ge (convert:st @0) { build_zero_cst (st); })
2454          (lt (convert:st @0) { build_zero_cst (st); }))))))))))
2456 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
2457  /* If the second operand is NaN, the result is constant.  */
2458  (simplify
2459   (cmp @0 REAL_CST@1)
2460   (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
2461        && (cmp != LTGT_EXPR || ! flag_trapping_math))
2462    { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
2463                             ? false : true, type); })))
2465 /* bool_var != 0 becomes bool_var.  */
2466 (simplify
2467  (ne @0 integer_zerop)
2468  (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
2469       && types_match (type, TREE_TYPE (@0)))
2470   (non_lvalue @0)))
2471 /* bool_var == 1 becomes bool_var.  */
2472 (simplify
2473  (eq @0 integer_onep)
2474  (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
2475       && types_match (type, TREE_TYPE (@0)))
2476   (non_lvalue @0)))
2477 /* Do not handle
2478    bool_var == 0 becomes !bool_var or
2479    bool_var != 1 becomes !bool_var
2480    here because that only is good in assignment context as long
2481    as we require a tcc_comparison in GIMPLE_CONDs where we'd
2482    replace if (x == 0) with tem = ~x; if (tem != 0) which is
2483    clearly less optimal and which we'll transform again in forwprop.  */
2485 /* When one argument is a constant, overflow detection can be simplified.
2486    Currently restricted to single use so as not to interfere too much with
2487    ADD_OVERFLOW detection in tree-ssa-math-opts.c.
2488    A + CST CMP A  ->  A CMP' CST' */
2489 (for cmp (lt le ge gt)
2490      out (gt gt le le)
2491  (simplify
2492   (cmp (plus@2 @0 INTEGER_CST@1) @0)
2493   (if (TYPE_UNSIGNED (TREE_TYPE (@0))
2494        && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
2495        && wi::ne_p (@1, 0)
2496        && single_use (@2))
2497    (out @0 { wide_int_to_tree (TREE_TYPE (@0), wi::max_value
2498                (TYPE_PRECISION (TREE_TYPE (@0)), UNSIGNED) - @1); }))))
2499 /* A CMP A + CST  ->  A CMP' CST' */
2500 (for cmp (gt ge le lt)
2501      out (gt gt le le)
2502  (simplify
2503   (cmp @0 (plus@2 @0 INTEGER_CST@1))
2504   (if (TYPE_UNSIGNED (TREE_TYPE (@0))
2505        && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
2506        && wi::ne_p (@1, 0)
2507        && single_use (@2))
2508    (out @0 { wide_int_to_tree (TREE_TYPE (@0), wi::max_value
2509                (TYPE_PRECISION (TREE_TYPE (@0)), UNSIGNED) - @1); }))))
2512 /* Simplification of math builtins.  These rules must all be optimizations
2513    as well as IL simplifications.  If there is a possibility that the new
2514    form could be a pessimization, the rule should go in the canonicalization
2515    section that follows this one.
2517    Rules can generally go in this section if they satisfy one of
2518    the following:
2520    - the rule describes an identity
2522    - the rule replaces calls with something as simple as addition or
2523      multiplication
2525    - the rule contains unary calls only and simplifies the surrounding
2526      arithmetic.  (The idea here is to exclude non-unary calls in which
2527      one operand is constant and in which the call is known to be cheap
2528      when the operand has that value.)  */
2530 (if (flag_unsafe_math_optimizations)
2531  /* Simplify sqrt(x) * sqrt(x) -> x.  */
2532  (simplify
2533   (mult (SQRT@1 @0) @1)
2534   (if (!HONOR_SNANS (type))
2535    @0))
2537  /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y).  */
2538  (for root (SQRT CBRT)
2539   (simplify
2540    (mult (root:s @0) (root:s @1))
2541     (root (mult @0 @1))))
2543  /* Simplify expN(x) * expN(y) -> expN(x+y). */
2544  (for exps (EXP EXP2 EXP10 POW10)
2545   (simplify
2546    (mult (exps:s @0) (exps:s @1))
2547     (exps (plus @0 @1))))
2549  /* Simplify a/root(b/c) into a*root(c/b).  */
2550  (for root (SQRT CBRT)
2551   (simplify
2552    (rdiv @0 (root:s (rdiv:s @1 @2)))
2553     (mult @0 (root (rdiv @2 @1)))))
2555  /* Simplify x/expN(y) into x*expN(-y).  */
2556  (for exps (EXP EXP2 EXP10 POW10)
2557   (simplify
2558    (rdiv @0 (exps:s @1))
2559     (mult @0 (exps (negate @1)))))
2561  (for logs (LOG LOG2 LOG10 LOG10)
2562       exps (EXP EXP2 EXP10 POW10)
2563   /* logN(expN(x)) -> x.  */
2564   (simplify
2565    (logs (exps @0))
2566    @0)
2567   /* expN(logN(x)) -> x.  */
2568   (simplify
2569    (exps (logs @0))
2570    @0))
2572  /* Optimize logN(func()) for various exponential functions.  We
2573     want to determine the value "x" and the power "exponent" in
2574     order to transform logN(x**exponent) into exponent*logN(x).  */
2575  (for logs (LOG  LOG   LOG   LOG2 LOG2  LOG2  LOG10 LOG10)
2576       exps (EXP2 EXP10 POW10 EXP  EXP10 POW10 EXP   EXP2)
2577   (simplify
2578    (logs (exps @0))
2579    (if (SCALAR_FLOAT_TYPE_P (type))
2580     (with {
2581       tree x;
2582       switch (exps)
2583         {
2584         CASE_CFN_EXP:
2585           /* Prepare to do logN(exp(exponent)) -> exponent*logN(e).  */
2586           x = build_real_truncate (type, dconst_e ());
2587           break;
2588         CASE_CFN_EXP2:
2589           /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2).  */
2590           x = build_real (type, dconst2);
2591           break;
2592         CASE_CFN_EXP10:
2593         CASE_CFN_POW10:
2594           /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10).  */
2595           {
2596             REAL_VALUE_TYPE dconst10;
2597             real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
2598             x = build_real (type, dconst10);
2599           }
2600           break;
2601         default:
2602           gcc_unreachable ();
2603         }
2604       }
2605      (mult (logs { x; }) @0)))))
2607  (for logs (LOG LOG
2608             LOG2 LOG2
2609             LOG10 LOG10)
2610       exps (SQRT CBRT)
2611   (simplify
2612    (logs (exps @0))
2613    (if (SCALAR_FLOAT_TYPE_P (type))
2614     (with {
2615       tree x;
2616       switch (exps)
2617         {
2618         CASE_CFN_SQRT:
2619           /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x).  */
2620           x = build_real (type, dconsthalf);
2621           break;
2622         CASE_CFN_CBRT:
2623           /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x).  */
2624           x = build_real_truncate (type, dconst_third ());
2625           break;
2626         default:
2627           gcc_unreachable ();
2628         }
2629       }
2630      (mult { x; } (logs @0))))))
2632  /* logN(pow(x,exponent)) -> exponent*logN(x).  */
2633  (for logs (LOG LOG2 LOG10)
2634       pows (POW)
2635   (simplify
2636    (logs (pows @0 @1))
2637    (mult @1 (logs @0))))
2639  (for sqrts (SQRT)
2640       cbrts (CBRT)
2641       pows (POW)
2642       exps (EXP EXP2 EXP10 POW10)
2643   /* sqrt(expN(x)) -> expN(x*0.5).  */
2644   (simplify
2645    (sqrts (exps @0))
2646    (exps (mult @0 { build_real (type, dconsthalf); })))
2647   /* cbrt(expN(x)) -> expN(x/3).  */
2648   (simplify
2649    (cbrts (exps @0))
2650    (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
2651   /* pow(expN(x), y) -> expN(x*y).  */
2652   (simplify
2653    (pows (exps @0) @1)
2654    (exps (mult @0 @1))))
2656  /* tan(atan(x)) -> x.  */
2657  (for tans (TAN)
2658       atans (ATAN)
2659   (simplify
2660    (tans (atans @0))
2661    @0)))
2663 /* cabs(x+0i) or cabs(0+xi) -> abs(x).  */
2664 (simplify
2665  (CABS (complex:c @0 real_zerop@1))
2666  (abs @0))
2668 /* trunc(trunc(x)) -> trunc(x), etc.  */
2669 (for fns (TRUNC FLOOR CEIL ROUND NEARBYINT RINT)
2670  (simplify
2671   (fns (fns @0))
2672   (fns @0)))
2673 /* f(x) -> x if x is integer valued and f does nothing for such values.  */
2674 (for fns (TRUNC FLOOR CEIL ROUND NEARBYINT RINT)
2675  (simplify
2676   (fns integer_valued_real_p@0)
2677   @0))
2679 /* hypot(x,0) and hypot(0,x) -> abs(x).  */
2680 (simplify
2681  (HYPOT:c @0 real_zerop@1)
2682  (abs @0))
2684 /* pow(1,x) -> 1.  */
2685 (simplify
2686  (POW real_onep@0 @1)
2687  @0)
2689 (simplify
2690  /* copysign(x,x) -> x.  */
2691  (COPYSIGN @0 @0)
2692  @0)
2694 (simplify
2695  /* copysign(x,y) -> fabs(x) if y is nonnegative.  */
2696  (COPYSIGN @0 tree_expr_nonnegative_p@1)
2697  (abs @0))
2699 (for scale (LDEXP SCALBN SCALBLN)
2700  /* ldexp(0, x) -> 0.  */
2701  (simplify
2702   (scale real_zerop@0 @1)
2703   @0)
2704  /* ldexp(x, 0) -> x.  */
2705  (simplify
2706   (scale @0 integer_zerop@1)
2707   @0)
2708  /* ldexp(x, y) -> x if x is +-Inf or NaN.  */
2709  (simplify
2710   (scale REAL_CST@0 @1)
2711   (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
2712    @0)))
2714 /* Canonicalization of sequences of math builtins.  These rules represent
2715    IL simplifications but are not necessarily optimizations.
2717    The sincos pass is responsible for picking "optimal" implementations
2718    of math builtins, which may be more complicated and can sometimes go
2719    the other way, e.g. converting pow into a sequence of sqrts.
2720    We only want to do these canonicalizations before the pass has run.  */
2722 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
2723  /* Simplify tan(x) * cos(x) -> sin(x). */
2724  (simplify
2725   (mult:c (TAN:s @0) (COS:s @0))
2726    (SIN @0))
2728  /* Simplify x * pow(x,c) -> pow(x,c+1). */
2729  (simplify
2730   (mult @0 (POW:s @0 REAL_CST@1))
2731   (if (!TREE_OVERFLOW (@1))
2732    (POW @0 (plus @1 { build_one_cst (type); }))))
2734  /* Simplify sin(x) / cos(x) -> tan(x). */
2735  (simplify
2736   (rdiv (SIN:s @0) (COS:s @0))
2737    (TAN @0))
2739  /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
2740  (simplify
2741   (rdiv (COS:s @0) (SIN:s @0))
2742    (rdiv { build_one_cst (type); } (TAN @0)))
2744  /* Simplify sin(x) / tan(x) -> cos(x). */
2745  (simplify
2746   (rdiv (SIN:s @0) (TAN:s @0))
2747   (if (! HONOR_NANS (@0)
2748        && ! HONOR_INFINITIES (@0))
2749    (COS @0)))
2751  /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
2752  (simplify
2753   (rdiv (TAN:s @0) (SIN:s @0))
2754   (if (! HONOR_NANS (@0)
2755        && ! HONOR_INFINITIES (@0))
2756    (rdiv { build_one_cst (type); } (COS @0))))
2758  /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
2759  (simplify
2760   (mult (POW:s @0 @1) (POW:s @0 @2))
2761    (POW @0 (plus @1 @2)))
2763  /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
2764  (simplify
2765   (mult (POW:s @0 @1) (POW:s @2 @1))
2766    (POW (mult @0 @2) @1))
2768  /* Simplify pow(x,c) / x -> pow(x,c-1). */
2769  (simplify
2770   (rdiv (POW:s @0 REAL_CST@1) @0)
2771   (if (!TREE_OVERFLOW (@1))
2772    (POW @0 (minus @1 { build_one_cst (type); }))))
2774  /* Simplify x / pow (y,z) -> x * pow(y,-z). */
2775  (simplify
2776   (rdiv @0 (POW:s @1 @2))
2777    (mult @0 (POW @1 (negate @2))))
2779  (for sqrts (SQRT)
2780       cbrts (CBRT)
2781       pows (POW)
2782   /* sqrt(sqrt(x)) -> pow(x,1/4).  */
2783   (simplify
2784    (sqrts (sqrts @0))
2785    (pows @0 { build_real (type, dconst_quarter ()); }))
2786   /* sqrt(cbrt(x)) -> pow(x,1/6).  */
2787   (simplify
2788    (sqrts (cbrts @0))
2789    (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
2790   /* cbrt(sqrt(x)) -> pow(x,1/6).  */
2791   (simplify
2792    (cbrts (sqrts @0))
2793    (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
2794   /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative.  */
2795   (simplify
2796    (cbrts (cbrts tree_expr_nonnegative_p@0))
2797    (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
2798   /* sqrt(pow(x,y)) -> pow(|x|,y*0.5).  */
2799   (simplify
2800    (sqrts (pows @0 @1))
2801    (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
2802   /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative.  */
2803   (simplify
2804    (cbrts (pows tree_expr_nonnegative_p@0 @1))
2805    (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
2806   /* pow(sqrt(x),y) -> pow(x,y*0.5).  */
2807   (simplify
2808    (pows (sqrts @0) @1)
2809    (pows @0 (mult @1 { build_real (type, dconsthalf); })))
2810   /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative.  */
2811   (simplify
2812    (pows (cbrts tree_expr_nonnegative_p@0) @1)
2813    (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
2814   /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative.  */
2815   (simplify
2816    (pows (pows tree_expr_nonnegative_p@0 @1) @2)
2817    (pows @0 (mult @1 @2))))
2819  /* cabs(x+xi) -> fabs(x)*sqrt(2).  */
2820  (simplify
2821   (CABS (complex @0 @0))
2822   (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
2824  /* hypot(x,x) -> fabs(x)*sqrt(2).  */
2825  (simplify
2826   (HYPOT @0 @0)
2827   (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
2829  /* cexp(x+yi) -> exp(x)*cexpi(y).  */
2830  (for cexps (CEXP)
2831       exps (EXP)
2832       cexpis (CEXPI)
2833   (simplify
2834    (cexps compositional_complex@0)
2835    (if (targetm.libc_has_function (function_c99_math_complex))
2836     (complex
2837      (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
2838      (mult @1 (imagpart @2)))))))
2840 (if (canonicalize_math_p ())
2841  /* floor(x) -> trunc(x) if x is nonnegative.  */
2842  (for floors (FLOOR)
2843       truncs (TRUNC)
2844   (simplify
2845    (floors tree_expr_nonnegative_p@0)
2846    (truncs @0))))
2848 (match double_value_p
2849  @0
2850  (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
2851 (for froms (BUILT_IN_TRUNCL
2852             BUILT_IN_FLOORL
2853             BUILT_IN_CEILL
2854             BUILT_IN_ROUNDL
2855             BUILT_IN_NEARBYINTL
2856             BUILT_IN_RINTL)
2857      tos (BUILT_IN_TRUNC
2858           BUILT_IN_FLOOR
2859           BUILT_IN_CEIL
2860           BUILT_IN_ROUND
2861           BUILT_IN_NEARBYINT
2862           BUILT_IN_RINT)
2863  /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double.  */
2864  (if (optimize && canonicalize_math_p ())
2865   (simplify
2866    (froms (convert double_value_p@0))
2867    (convert (tos @0)))))
2869 (match float_value_p
2870  @0
2871  (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
2872 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
2873             BUILT_IN_FLOORL BUILT_IN_FLOOR
2874             BUILT_IN_CEILL BUILT_IN_CEIL
2875             BUILT_IN_ROUNDL BUILT_IN_ROUND
2876             BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
2877             BUILT_IN_RINTL BUILT_IN_RINT)
2878      tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
2879           BUILT_IN_FLOORF BUILT_IN_FLOORF
2880           BUILT_IN_CEILF BUILT_IN_CEILF
2881           BUILT_IN_ROUNDF BUILT_IN_ROUNDF
2882           BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
2883           BUILT_IN_RINTF BUILT_IN_RINTF)
2884  /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
2885     if x is a float.  */
2886  (if (optimize && canonicalize_math_p ()
2887       && targetm.libc_has_function (function_c99_misc))
2888   (simplify
2889    (froms (convert float_value_p@0))
2890    (convert (tos @0)))))
2892 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
2893      tos (XFLOOR XCEIL XROUND XRINT)
2894  /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double.  */
2895  (if (optimize && canonicalize_math_p ())
2896   (simplify
2897    (froms (convert double_value_p@0))
2898    (tos @0))))
2900 (for froms (XFLOORL XCEILL XROUNDL XRINTL
2901             XFLOOR XCEIL XROUND XRINT)
2902      tos (XFLOORF XCEILF XROUNDF XRINTF)
2903  /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
2904     if x is a float.  */
2905  (if (optimize && canonicalize_math_p ())
2906   (simplify
2907    (froms (convert float_value_p@0))
2908    (tos @0))))
2910 (if (canonicalize_math_p ())
2911  /* xfloor(x) -> fix_trunc(x) if x is nonnegative.  */
2912  (for floors (IFLOOR LFLOOR LLFLOOR)
2913   (simplify
2914    (floors tree_expr_nonnegative_p@0)
2915    (fix_trunc @0))))
2917 (if (canonicalize_math_p ())
2918  /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued.  */
2919  (for fns (IFLOOR LFLOOR LLFLOOR
2920            ICEIL LCEIL LLCEIL
2921            IROUND LROUND LLROUND)
2922   (simplify
2923    (fns integer_valued_real_p@0)
2924    (fix_trunc @0)))
2925  (if (!flag_errno_math)
2926   /* xrint(x) -> fix_trunc(x), etc., if x is integer valued.  */
2927   (for rints (IRINT LRINT LLRINT)
2928    (simplify
2929     (rints integer_valued_real_p@0)
2930     (fix_trunc @0)))))
2932 (if (canonicalize_math_p ())
2933  (for ifn (IFLOOR ICEIL IROUND IRINT)
2934       lfn (LFLOOR LCEIL LROUND LRINT)
2935       llfn (LLFLOOR LLCEIL LLROUND LLRINT)
2936   /* Canonicalize iround (x) to lround (x) on ILP32 targets where
2937      sizeof (int) == sizeof (long).  */
2938   (if (TYPE_PRECISION (integer_type_node)
2939        == TYPE_PRECISION (long_integer_type_node))
2940    (simplify
2941     (ifn @0)
2942     (lfn:long_integer_type_node @0)))
2943   /* Canonicalize llround (x) to lround (x) on LP64 targets where
2944      sizeof (long long) == sizeof (long).  */
2945   (if (TYPE_PRECISION (long_long_integer_type_node)
2946        == TYPE_PRECISION (long_integer_type_node))
2947    (simplify
2948     (llfn @0)
2949     (lfn:long_integer_type_node @0)))))
2951 /* cproj(x) -> x if we're ignoring infinities.  */
2952 (simplify
2953  (CPROJ @0)
2954  (if (!HONOR_INFINITIES (type))
2955    @0))
2957 /* If the real part is inf and the imag part is known to be
2958    nonnegative, return (inf + 0i).  */
2959 (simplify
2960  (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
2961  (if (real_isinf (TREE_REAL_CST_PTR (@0)))
2962   { build_complex_inf (type, false); }))
2964 /* If the imag part is inf, return (inf+I*copysign(0,imag)).  */
2965 (simplify
2966  (CPROJ (complex @0 REAL_CST@1))
2967  (if (real_isinf (TREE_REAL_CST_PTR (@1)))
2968   { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
2970 (for pows (POW)
2971      sqrts (SQRT)
2972      cbrts (CBRT)
2973  (simplify
2974   (pows @0 REAL_CST@1)
2975   (with {
2976     const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
2977     REAL_VALUE_TYPE tmp;
2978    }
2979    (switch
2980     /* pow(x,0) -> 1.  */
2981     (if (real_equal (value, &dconst0))
2982      { build_real (type, dconst1); })
2983     /* pow(x,1) -> x.  */
2984     (if (real_equal (value, &dconst1))
2985      @0)
2986     /* pow(x,-1) -> 1/x.  */
2987     (if (real_equal (value, &dconstm1))
2988      (rdiv { build_real (type, dconst1); } @0))
2989     /* pow(x,0.5) -> sqrt(x).  */
2990     (if (flag_unsafe_math_optimizations
2991          && canonicalize_math_p ()
2992          && real_equal (value, &dconsthalf))
2993      (sqrts @0))
2994     /* pow(x,1/3) -> cbrt(x).  */
2995     (if (flag_unsafe_math_optimizations
2996          && canonicalize_math_p ()
2997          && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
2998              real_equal (value, &tmp)))
2999      (cbrts @0))))))
3001 /* powi(1,x) -> 1.  */
3002 (simplify
3003  (POWI real_onep@0 @1)
3004  @0)
3006 (simplify
3007  (POWI @0 INTEGER_CST@1)
3008  (switch
3009   /* powi(x,0) -> 1.  */
3010   (if (wi::eq_p (@1, 0))
3011    { build_real (type, dconst1); })
3012   /* powi(x,1) -> x.  */
3013   (if (wi::eq_p (@1, 1))
3014    @0)
3015   /* powi(x,-1) -> 1/x.  */
3016   (if (wi::eq_p (@1, -1))
3017    (rdiv { build_real (type, dconst1); } @0))))
3019 /* Narrowing of arithmetic and logical operations. 
3021    These are conceptually similar to the transformations performed for
3022    the C/C++ front-ends by shorten_binary_op and shorten_compare.  Long
3023    term we want to move all that code out of the front-ends into here.  */
3025 /* If we have a narrowing conversion of an arithmetic operation where
3026    both operands are widening conversions from the same type as the outer
3027    narrowing conversion.  Then convert the innermost operands to a suitable
3028    unsigned type (to avoid introducing undefined behavior), perform the
3029    operation and convert the result to the desired type.  */
3030 (for op (plus minus)
3031   (simplify
3032     (convert (op:s (convert@2 @0) (convert@3 @1)))
3033     (if (INTEGRAL_TYPE_P (type)
3034          /* We check for type compatibility between @0 and @1 below,
3035             so there's no need to check that @1/@3 are integral types.  */
3036          && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3037          && INTEGRAL_TYPE_P (TREE_TYPE (@2))
3038          /* The precision of the type of each operand must match the
3039             precision of the mode of each operand, similarly for the
3040             result.  */
3041          && (TYPE_PRECISION (TREE_TYPE (@0))
3042              == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
3043          && (TYPE_PRECISION (TREE_TYPE (@1))
3044              == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
3045          && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
3046          /* The inner conversion must be a widening conversion.  */
3047          && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
3048          && types_match (@0, @1)
3049          && types_match (@0, type))
3050       (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
3051         (convert (op @0 @1))
3052         (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
3053          (convert (op (convert:utype @0) (convert:utype @1))))))))
3055 /* This is another case of narrowing, specifically when there's an outer
3056    BIT_AND_EXPR which masks off bits outside the type of the innermost
3057    operands.   Like the previous case we have to convert the operands
3058    to unsigned types to avoid introducing undefined behavior for the
3059    arithmetic operation.  */
3060 (for op (minus plus)
3061  (simplify
3062   (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
3063   (if (INTEGRAL_TYPE_P (type)
3064        /* We check for type compatibility between @0 and @1 below,
3065           so there's no need to check that @1/@3 are integral types.  */
3066        && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3067        && INTEGRAL_TYPE_P (TREE_TYPE (@2))
3068        /* The precision of the type of each operand must match the
3069           precision of the mode of each operand, similarly for the
3070           result.  */
3071        && (TYPE_PRECISION (TREE_TYPE (@0))
3072            == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
3073        && (TYPE_PRECISION (TREE_TYPE (@1))
3074            == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
3075        && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
3076        /* The inner conversion must be a widening conversion.  */
3077        && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
3078        && types_match (@0, @1)
3079        && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
3080            <= TYPE_PRECISION (TREE_TYPE (@0)))
3081        && (wi::bit_and (@4, wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
3082                         true, TYPE_PRECISION (type))) == 0))
3083    (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
3084     (with { tree ntype = TREE_TYPE (@0); }
3085      (convert (bit_and (op @0 @1) (convert:ntype @4))))
3086     (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
3087      (convert (bit_and (op (convert:utype @0) (convert:utype @1))
3088                (convert:utype @4))))))))
3090 /* Transform (@0 < @1 and @0 < @2) to use min, 
3091    (@0 > @1 and @0 > @2) to use max */
3092 (for op (lt le gt ge)
3093      ext (min min max max)
3094  (simplify
3095   (bit_and (op:s @0 @1) (op:s @0 @2))
3096   (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3097    (op @0 (ext @1 @2)))))
3099 (simplify
3100  /* signbit(x) -> 0 if x is nonnegative.  */
3101  (SIGNBIT tree_expr_nonnegative_p@0)
3102  { integer_zero_node; })
3104 (simplify
3105  /* signbit(x) -> x<0 if x doesn't have signed zeros.  */
3106  (SIGNBIT @0)
3107  (if (!HONOR_SIGNED_ZEROS (@0))
3108   (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))