Define std::to_array for Debug Mode
[official-gcc.git] / gcc / ira-costs.c
blobaefec08da548475c0509a70afdca8eb3b4e2a97d
1 /* IRA hard register and memory cost calculation for allocnos or pseudos.
2 Copyright (C) 2006-2019 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "regs.h"
33 #include "ira.h"
34 #include "ira-int.h"
35 #include "addresses.h"
36 #include "reload.h"
38 /* The flags is set up every time when we calculate pseudo register
39 classes through function ira_set_pseudo_classes. */
40 static bool pseudo_classes_defined_p = false;
42 /* TRUE if we work with allocnos. Otherwise we work with pseudos. */
43 static bool allocno_p;
45 /* Number of elements in array `costs'. */
46 static int cost_elements_num;
48 /* The `costs' struct records the cost of using hard registers of each
49 class considered for the calculation and of using memory for each
50 allocno or pseudo. */
51 struct costs
53 int mem_cost;
54 /* Costs for register classes start here. We process only some
55 allocno classes. */
56 int cost[1];
59 #define max_struct_costs_size \
60 (this_target_ira_int->x_max_struct_costs_size)
61 #define init_cost \
62 (this_target_ira_int->x_init_cost)
63 #define temp_costs \
64 (this_target_ira_int->x_temp_costs)
65 #define op_costs \
66 (this_target_ira_int->x_op_costs)
67 #define this_op_costs \
68 (this_target_ira_int->x_this_op_costs)
70 /* Costs of each class for each allocno or pseudo. */
71 static struct costs *costs;
73 /* Accumulated costs of each class for each allocno. */
74 static struct costs *total_allocno_costs;
76 /* It is the current size of struct costs. */
77 static size_t struct_costs_size;
79 /* Return pointer to structure containing costs of allocno or pseudo
80 with given NUM in array ARR. */
81 #define COSTS(arr, num) \
82 ((struct costs *) ((char *) (arr) + (num) * struct_costs_size))
84 /* Return index in COSTS when processing reg with REGNO. */
85 #define COST_INDEX(regno) (allocno_p \
86 ? ALLOCNO_NUM (ira_curr_regno_allocno_map[regno]) \
87 : (int) regno)
89 /* Record register class preferences of each allocno or pseudo. Null
90 value means no preferences. It happens on the 1st iteration of the
91 cost calculation. */
92 static enum reg_class *pref;
94 /* Allocated buffers for pref. */
95 static enum reg_class *pref_buffer;
97 /* Record allocno class of each allocno with the same regno. */
98 static enum reg_class *regno_aclass;
100 /* Record cost gains for not allocating a register with an invariant
101 equivalence. */
102 static int *regno_equiv_gains;
104 /* Execution frequency of the current insn. */
105 static int frequency;
109 /* Info about reg classes whose costs are calculated for a pseudo. */
110 struct cost_classes
112 /* Number of the cost classes in the subsequent array. */
113 int num;
114 /* Container of the cost classes. */
115 enum reg_class classes[N_REG_CLASSES];
116 /* Map reg class -> index of the reg class in the previous array.
117 -1 if it is not a cost class. */
118 int index[N_REG_CLASSES];
119 /* Map hard regno index of first class in array CLASSES containing
120 the hard regno, -1 otherwise. */
121 int hard_regno_index[FIRST_PSEUDO_REGISTER];
124 /* Types of pointers to the structure above. */
125 typedef struct cost_classes *cost_classes_t;
126 typedef const struct cost_classes *const_cost_classes_t;
128 /* Info about cost classes for each pseudo. */
129 static cost_classes_t *regno_cost_classes;
131 /* Helper for cost_classes hashing. */
133 struct cost_classes_hasher : pointer_hash <cost_classes>
135 static inline hashval_t hash (const cost_classes *);
136 static inline bool equal (const cost_classes *, const cost_classes *);
137 static inline void remove (cost_classes *);
140 /* Returns hash value for cost classes info HV. */
141 inline hashval_t
142 cost_classes_hasher::hash (const cost_classes *hv)
144 return iterative_hash (&hv->classes, sizeof (enum reg_class) * hv->num, 0);
147 /* Compares cost classes info HV1 and HV2. */
148 inline bool
149 cost_classes_hasher::equal (const cost_classes *hv1, const cost_classes *hv2)
151 return (hv1->num == hv2->num
152 && memcmp (hv1->classes, hv2->classes,
153 sizeof (enum reg_class) * hv1->num) == 0);
156 /* Delete cost classes info V from the hash table. */
157 inline void
158 cost_classes_hasher::remove (cost_classes *v)
160 ira_free (v);
163 /* Hash table of unique cost classes. */
164 static hash_table<cost_classes_hasher> *cost_classes_htab;
166 /* Map allocno class -> cost classes for pseudo of given allocno
167 class. */
168 static cost_classes_t cost_classes_aclass_cache[N_REG_CLASSES];
170 /* Map mode -> cost classes for pseudo of give mode. */
171 static cost_classes_t cost_classes_mode_cache[MAX_MACHINE_MODE];
173 /* Cost classes that include all classes in ira_important_classes. */
174 static cost_classes all_cost_classes;
176 /* Use the array of classes in CLASSES_PTR to fill out the rest of
177 the structure. */
178 static void
179 complete_cost_classes (cost_classes_t classes_ptr)
181 for (int i = 0; i < N_REG_CLASSES; i++)
182 classes_ptr->index[i] = -1;
183 for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
184 classes_ptr->hard_regno_index[i] = -1;
185 for (int i = 0; i < classes_ptr->num; i++)
187 enum reg_class cl = classes_ptr->classes[i];
188 classes_ptr->index[cl] = i;
189 for (int j = ira_class_hard_regs_num[cl] - 1; j >= 0; j--)
191 unsigned int hard_regno = ira_class_hard_regs[cl][j];
192 if (classes_ptr->hard_regno_index[hard_regno] < 0)
193 classes_ptr->hard_regno_index[hard_regno] = i;
198 /* Initialize info about the cost classes for each pseudo. */
199 static void
200 initiate_regno_cost_classes (void)
202 int size = sizeof (cost_classes_t) * max_reg_num ();
204 regno_cost_classes = (cost_classes_t *) ira_allocate (size);
205 memset (regno_cost_classes, 0, size);
206 memset (cost_classes_aclass_cache, 0,
207 sizeof (cost_classes_t) * N_REG_CLASSES);
208 memset (cost_classes_mode_cache, 0,
209 sizeof (cost_classes_t) * MAX_MACHINE_MODE);
210 cost_classes_htab = new hash_table<cost_classes_hasher> (200);
211 all_cost_classes.num = ira_important_classes_num;
212 for (int i = 0; i < ira_important_classes_num; i++)
213 all_cost_classes.classes[i] = ira_important_classes[i];
214 complete_cost_classes (&all_cost_classes);
217 /* Create new cost classes from cost classes FROM and set up members
218 index and hard_regno_index. Return the new classes. The function
219 implements some common code of two functions
220 setup_regno_cost_classes_by_aclass and
221 setup_regno_cost_classes_by_mode. */
222 static cost_classes_t
223 setup_cost_classes (cost_classes_t from)
225 cost_classes_t classes_ptr;
227 classes_ptr = (cost_classes_t) ira_allocate (sizeof (struct cost_classes));
228 classes_ptr->num = from->num;
229 for (int i = 0; i < from->num; i++)
230 classes_ptr->classes[i] = from->classes[i];
231 complete_cost_classes (classes_ptr);
232 return classes_ptr;
235 /* Return a version of FULL that only considers registers in REGS that are
236 valid for mode MODE. Both FULL and the returned class are globally
237 allocated. */
238 static cost_classes_t
239 restrict_cost_classes (cost_classes_t full, machine_mode mode,
240 const_hard_reg_set regs)
242 static struct cost_classes narrow;
243 int map[N_REG_CLASSES];
244 narrow.num = 0;
245 for (int i = 0; i < full->num; i++)
247 /* Assume that we'll drop the class. */
248 map[i] = -1;
250 /* Ignore classes that are too small for the mode. */
251 enum reg_class cl = full->classes[i];
252 if (!contains_reg_of_mode[cl][mode])
253 continue;
255 /* Calculate the set of registers in CL that belong to REGS and
256 are valid for MODE. */
257 HARD_REG_SET valid_for_cl = reg_class_contents[cl] & regs;
258 valid_for_cl &= ~(ira_prohibited_class_mode_regs[cl][mode]
259 | ira_no_alloc_regs);
260 if (hard_reg_set_empty_p (valid_for_cl))
261 continue;
263 /* Don't use this class if the set of valid registers is a subset
264 of an existing class. For example, suppose we have two classes
265 GR_REGS and FR_REGS and a union class GR_AND_FR_REGS. Suppose
266 that the mode changes allowed by FR_REGS are not as general as
267 the mode changes allowed by GR_REGS.
269 In this situation, the mode changes for GR_AND_FR_REGS could
270 either be seen as the union or the intersection of the mode
271 changes allowed by the two subclasses. The justification for
272 the union-based definition would be that, if you want a mode
273 change that's only allowed by GR_REGS, you can pick a register
274 from the GR_REGS subclass. The justification for the
275 intersection-based definition would be that every register
276 from the class would allow the mode change.
278 However, if we have a register that needs to be in GR_REGS,
279 using GR_AND_FR_REGS with the intersection-based definition
280 would be too pessimistic, since it would bring in restrictions
281 that only apply to FR_REGS. Conversely, if we have a register
282 that needs to be in FR_REGS, using GR_AND_FR_REGS with the
283 union-based definition would lose the extra restrictions
284 placed on FR_REGS. GR_AND_FR_REGS is therefore only useful
285 for cases where GR_REGS and FP_REGS are both valid. */
286 int pos;
287 for (pos = 0; pos < narrow.num; ++pos)
289 enum reg_class cl2 = narrow.classes[pos];
290 if (hard_reg_set_subset_p (valid_for_cl, reg_class_contents[cl2]))
291 break;
293 map[i] = pos;
294 if (pos == narrow.num)
296 /* If several classes are equivalent, prefer to use the one
297 that was chosen as the allocno class. */
298 enum reg_class cl2 = ira_allocno_class_translate[cl];
299 if (ira_class_hard_regs_num[cl] == ira_class_hard_regs_num[cl2])
300 cl = cl2;
301 narrow.classes[narrow.num++] = cl;
304 if (narrow.num == full->num)
305 return full;
307 cost_classes **slot = cost_classes_htab->find_slot (&narrow, INSERT);
308 if (*slot == NULL)
310 cost_classes_t classes = setup_cost_classes (&narrow);
311 /* Map equivalent classes to the representative that we chose above. */
312 for (int i = 0; i < ira_important_classes_num; i++)
314 enum reg_class cl = ira_important_classes[i];
315 int index = full->index[cl];
316 if (index >= 0)
317 classes->index[cl] = map[index];
319 *slot = classes;
321 return *slot;
324 /* Setup cost classes for pseudo REGNO whose allocno class is ACLASS.
325 This function is used when we know an initial approximation of
326 allocno class of the pseudo already, e.g. on the second iteration
327 of class cost calculation or after class cost calculation in
328 register-pressure sensitive insn scheduling or register-pressure
329 sensitive loop-invariant motion. */
330 static void
331 setup_regno_cost_classes_by_aclass (int regno, enum reg_class aclass)
333 static struct cost_classes classes;
334 cost_classes_t classes_ptr;
335 enum reg_class cl;
336 int i;
337 cost_classes **slot;
338 HARD_REG_SET temp, temp2;
339 bool exclude_p;
341 if ((classes_ptr = cost_classes_aclass_cache[aclass]) == NULL)
343 temp = reg_class_contents[aclass] & ~ira_no_alloc_regs;
344 /* We exclude classes from consideration which are subsets of
345 ACLASS only if ACLASS is an uniform class. */
346 exclude_p = ira_uniform_class_p[aclass];
347 classes.num = 0;
348 for (i = 0; i < ira_important_classes_num; i++)
350 cl = ira_important_classes[i];
351 if (exclude_p)
353 /* Exclude non-uniform classes which are subsets of
354 ACLASS. */
355 temp2 = reg_class_contents[cl] & ~ira_no_alloc_regs;
356 if (hard_reg_set_subset_p (temp2, temp) && cl != aclass)
357 continue;
359 classes.classes[classes.num++] = cl;
361 slot = cost_classes_htab->find_slot (&classes, INSERT);
362 if (*slot == NULL)
364 classes_ptr = setup_cost_classes (&classes);
365 *slot = classes_ptr;
367 classes_ptr = cost_classes_aclass_cache[aclass] = (cost_classes_t) *slot;
369 if (regno_reg_rtx[regno] != NULL_RTX)
371 /* Restrict the classes to those that are valid for REGNO's mode
372 (which might for example exclude singleton classes if the mode
373 requires two registers). Also restrict the classes to those that
374 are valid for subregs of REGNO. */
375 const HARD_REG_SET *valid_regs = valid_mode_changes_for_regno (regno);
376 if (!valid_regs)
377 valid_regs = &reg_class_contents[ALL_REGS];
378 classes_ptr = restrict_cost_classes (classes_ptr,
379 PSEUDO_REGNO_MODE (regno),
380 *valid_regs);
382 regno_cost_classes[regno] = classes_ptr;
385 /* Setup cost classes for pseudo REGNO with MODE. Usage of MODE can
386 decrease number of cost classes for the pseudo, if hard registers
387 of some important classes cannot hold a value of MODE. So the
388 pseudo cannot get hard register of some important classes and cost
389 calculation for such important classes is only wasting CPU
390 time. */
391 static void
392 setup_regno_cost_classes_by_mode (int regno, machine_mode mode)
394 if (const HARD_REG_SET *valid_regs = valid_mode_changes_for_regno (regno))
395 regno_cost_classes[regno] = restrict_cost_classes (&all_cost_classes,
396 mode, *valid_regs);
397 else
399 if (cost_classes_mode_cache[mode] == NULL)
400 cost_classes_mode_cache[mode]
401 = restrict_cost_classes (&all_cost_classes, mode,
402 reg_class_contents[ALL_REGS]);
403 regno_cost_classes[regno] = cost_classes_mode_cache[mode];
407 /* Finalize info about the cost classes for each pseudo. */
408 static void
409 finish_regno_cost_classes (void)
411 ira_free (regno_cost_classes);
412 delete cost_classes_htab;
413 cost_classes_htab = NULL;
418 /* Compute the cost of loading X into (if TO_P is TRUE) or from (if
419 TO_P is FALSE) a register of class RCLASS in mode MODE. X must not
420 be a pseudo register. */
421 static int
422 copy_cost (rtx x, machine_mode mode, reg_class_t rclass, bool to_p,
423 secondary_reload_info *prev_sri)
425 secondary_reload_info sri;
426 reg_class_t secondary_class = NO_REGS;
428 /* If X is a SCRATCH, there is actually nothing to move since we are
429 assuming optimal allocation. */
430 if (GET_CODE (x) == SCRATCH)
431 return 0;
433 /* Get the class we will actually use for a reload. */
434 rclass = targetm.preferred_reload_class (x, rclass);
436 /* If we need a secondary reload for an intermediate, the cost is
437 that to load the input into the intermediate register, then to
438 copy it. */
439 sri.prev_sri = prev_sri;
440 sri.extra_cost = 0;
441 /* PR 68770: Secondary reload might examine the t_icode field. */
442 sri.t_icode = CODE_FOR_nothing;
444 secondary_class = targetm.secondary_reload (to_p, x, rclass, mode, &sri);
446 if (secondary_class != NO_REGS)
448 ira_init_register_move_cost_if_necessary (mode);
449 return (ira_register_move_cost[mode][(int) secondary_class][(int) rclass]
450 + sri.extra_cost
451 + copy_cost (x, mode, secondary_class, to_p, &sri));
454 /* For memory, use the memory move cost, for (hard) registers, use
455 the cost to move between the register classes, and use 2 for
456 everything else (constants). */
457 if (MEM_P (x) || rclass == NO_REGS)
458 return sri.extra_cost
459 + ira_memory_move_cost[mode][(int) rclass][to_p != 0];
460 else if (REG_P (x))
462 reg_class_t x_class = REGNO_REG_CLASS (REGNO (x));
464 ira_init_register_move_cost_if_necessary (mode);
465 return (sri.extra_cost
466 + ira_register_move_cost[mode][(int) x_class][(int) rclass]);
468 else
469 /* If this is a constant, we may eventually want to call rtx_cost
470 here. */
471 return sri.extra_cost + COSTS_N_INSNS (1);
476 /* Record the cost of using memory or hard registers of various
477 classes for the operands in INSN.
479 N_ALTS is the number of alternatives.
480 N_OPS is the number of operands.
481 OPS is an array of the operands.
482 MODES are the modes of the operands, in case any are VOIDmode.
483 CONSTRAINTS are the constraints to use for the operands. This array
484 is modified by this procedure.
486 This procedure works alternative by alternative. For each
487 alternative we assume that we will be able to allocate all allocnos
488 to their ideal register class and calculate the cost of using that
489 alternative. Then we compute, for each operand that is a
490 pseudo-register, the cost of having the allocno allocated to each
491 register class and using it in that alternative. To this cost is
492 added the cost of the alternative.
494 The cost of each class for this insn is its lowest cost among all
495 the alternatives. */
496 static void
497 record_reg_classes (int n_alts, int n_ops, rtx *ops,
498 machine_mode *modes, const char **constraints,
499 rtx_insn *insn, enum reg_class *pref)
501 int alt;
502 int i, j, k;
503 int insn_allows_mem[MAX_RECOG_OPERANDS];
504 move_table *move_in_cost, *move_out_cost;
505 short (*mem_cost)[2];
507 for (i = 0; i < n_ops; i++)
508 insn_allows_mem[i] = 0;
510 /* Process each alternative, each time minimizing an operand's cost
511 with the cost for each operand in that alternative. */
512 alternative_mask preferred = get_preferred_alternatives (insn);
513 for (alt = 0; alt < n_alts; alt++)
515 enum reg_class classes[MAX_RECOG_OPERANDS];
516 int allows_mem[MAX_RECOG_OPERANDS];
517 enum reg_class rclass;
518 int alt_fail = 0;
519 int alt_cost = 0, op_cost_add;
521 if (!TEST_BIT (preferred, alt))
523 for (i = 0; i < recog_data.n_operands; i++)
524 constraints[i] = skip_alternative (constraints[i]);
526 continue;
529 for (i = 0; i < n_ops; i++)
531 unsigned char c;
532 const char *p = constraints[i];
533 rtx op = ops[i];
534 machine_mode mode = modes[i];
535 int allows_addr = 0;
536 int win = 0;
538 /* Initially show we know nothing about the register class. */
539 classes[i] = NO_REGS;
540 allows_mem[i] = 0;
542 /* If this operand has no constraints at all, we can
543 conclude nothing about it since anything is valid. */
544 if (*p == 0)
546 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
547 memset (this_op_costs[i], 0, struct_costs_size);
548 continue;
551 /* If this alternative is only relevant when this operand
552 matches a previous operand, we do different things
553 depending on whether this operand is a allocno-reg or not.
554 We must process any modifiers for the operand before we
555 can make this test. */
556 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
557 p++;
559 if (p[0] >= '0' && p[0] <= '0' + i)
561 /* Copy class and whether memory is allowed from the
562 matching alternative. Then perform any needed cost
563 computations and/or adjustments. */
564 j = p[0] - '0';
565 classes[i] = classes[j];
566 allows_mem[i] = allows_mem[j];
567 if (allows_mem[i])
568 insn_allows_mem[i] = 1;
570 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
572 /* If this matches the other operand, we have no
573 added cost and we win. */
574 if (rtx_equal_p (ops[j], op))
575 win = 1;
576 /* If we can put the other operand into a register,
577 add to the cost of this alternative the cost to
578 copy this operand to the register used for the
579 other operand. */
580 else if (classes[j] != NO_REGS)
582 alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
583 win = 1;
586 else if (! REG_P (ops[j])
587 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
589 /* This op is an allocno but the one it matches is
590 not. */
592 /* If we can't put the other operand into a
593 register, this alternative can't be used. */
595 if (classes[j] == NO_REGS)
596 alt_fail = 1;
597 /* Otherwise, add to the cost of this alternative
598 the cost to copy the other operand to the hard
599 register used for this operand. */
600 else
601 alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
603 else
605 /* The costs of this operand are not the same as the
606 other operand since move costs are not symmetric.
607 Moreover, if we cannot tie them, this alternative
608 needs to do a copy, which is one insn. */
609 struct costs *pp = this_op_costs[i];
610 int *pp_costs = pp->cost;
611 cost_classes_t cost_classes_ptr
612 = regno_cost_classes[REGNO (op)];
613 enum reg_class *cost_classes = cost_classes_ptr->classes;
614 bool in_p = recog_data.operand_type[i] != OP_OUT;
615 bool out_p = recog_data.operand_type[i] != OP_IN;
616 enum reg_class op_class = classes[i];
618 ira_init_register_move_cost_if_necessary (mode);
619 if (! in_p)
621 ira_assert (out_p);
622 if (op_class == NO_REGS)
624 mem_cost = ira_memory_move_cost[mode];
625 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
627 rclass = cost_classes[k];
628 pp_costs[k] = mem_cost[rclass][0] * frequency;
631 else
633 move_out_cost = ira_may_move_out_cost[mode];
634 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
636 rclass = cost_classes[k];
637 pp_costs[k]
638 = move_out_cost[op_class][rclass] * frequency;
642 else if (! out_p)
644 ira_assert (in_p);
645 if (op_class == NO_REGS)
647 mem_cost = ira_memory_move_cost[mode];
648 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
650 rclass = cost_classes[k];
651 pp_costs[k] = mem_cost[rclass][1] * frequency;
654 else
656 move_in_cost = ira_may_move_in_cost[mode];
657 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
659 rclass = cost_classes[k];
660 pp_costs[k]
661 = move_in_cost[rclass][op_class] * frequency;
665 else
667 if (op_class == NO_REGS)
669 mem_cost = ira_memory_move_cost[mode];
670 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
672 rclass = cost_classes[k];
673 pp_costs[k] = ((mem_cost[rclass][0]
674 + mem_cost[rclass][1])
675 * frequency);
678 else
680 move_in_cost = ira_may_move_in_cost[mode];
681 move_out_cost = ira_may_move_out_cost[mode];
682 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
684 rclass = cost_classes[k];
685 pp_costs[k] = ((move_in_cost[rclass][op_class]
686 + move_out_cost[op_class][rclass])
687 * frequency);
692 /* If the alternative actually allows memory, make
693 things a bit cheaper since we won't need an extra
694 insn to load it. */
695 pp->mem_cost
696 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
697 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
698 - allows_mem[i]) * frequency;
700 /* If we have assigned a class to this allocno in
701 our first pass, add a cost to this alternative
702 corresponding to what we would add if this
703 allocno were not in the appropriate class. */
704 if (pref)
706 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
708 if (pref_class == NO_REGS)
709 alt_cost
710 += ((out_p
711 ? ira_memory_move_cost[mode][op_class][0] : 0)
712 + (in_p
713 ? ira_memory_move_cost[mode][op_class][1]
714 : 0));
715 else if (ira_reg_class_intersect
716 [pref_class][op_class] == NO_REGS)
717 alt_cost
718 += ira_register_move_cost[mode][pref_class][op_class];
720 if (REGNO (ops[i]) != REGNO (ops[j])
721 && ! find_reg_note (insn, REG_DEAD, op))
722 alt_cost += 2;
724 p++;
728 /* Scan all the constraint letters. See if the operand
729 matches any of the constraints. Collect the valid
730 register classes and see if this operand accepts
731 memory. */
732 while ((c = *p))
734 switch (c)
736 case '*':
737 /* Ignore the next letter for this pass. */
738 c = *++p;
739 break;
741 case '^':
742 alt_cost += 2;
743 break;
745 case '?':
746 alt_cost += 2;
747 break;
749 case 'g':
750 if (MEM_P (op)
751 || (CONSTANT_P (op)
752 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
753 win = 1;
754 insn_allows_mem[i] = allows_mem[i] = 1;
755 classes[i] = ira_reg_class_subunion[classes[i]][GENERAL_REGS];
756 break;
758 default:
759 enum constraint_num cn = lookup_constraint (p);
760 enum reg_class cl;
761 switch (get_constraint_type (cn))
763 case CT_REGISTER:
764 cl = reg_class_for_constraint (cn);
765 if (cl != NO_REGS)
766 classes[i] = ira_reg_class_subunion[classes[i]][cl];
767 break;
769 case CT_CONST_INT:
770 if (CONST_INT_P (op)
771 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
772 win = 1;
773 break;
775 case CT_MEMORY:
776 /* Every MEM can be reloaded to fit. */
777 insn_allows_mem[i] = allows_mem[i] = 1;
778 if (MEM_P (op))
779 win = 1;
780 break;
782 case CT_SPECIAL_MEMORY:
783 insn_allows_mem[i] = allows_mem[i] = 1;
784 if (MEM_P (op) && constraint_satisfied_p (op, cn))
785 win = 1;
786 break;
788 case CT_ADDRESS:
789 /* Every address can be reloaded to fit. */
790 allows_addr = 1;
791 if (address_operand (op, GET_MODE (op))
792 || constraint_satisfied_p (op, cn))
793 win = 1;
794 /* We know this operand is an address, so we
795 want it to be allocated to a hard register
796 that can be the base of an address,
797 i.e. BASE_REG_CLASS. */
798 classes[i]
799 = ira_reg_class_subunion[classes[i]]
800 [base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
801 ADDRESS, SCRATCH)];
802 break;
804 case CT_FIXED_FORM:
805 if (constraint_satisfied_p (op, cn))
806 win = 1;
807 break;
809 break;
811 p += CONSTRAINT_LEN (c, p);
812 if (c == ',')
813 break;
816 constraints[i] = p;
818 if (alt_fail)
819 break;
821 /* How we account for this operand now depends on whether it
822 is a pseudo register or not. If it is, we first check if
823 any register classes are valid. If not, we ignore this
824 alternative, since we want to assume that all allocnos get
825 allocated for register preferencing. If some register
826 class is valid, compute the costs of moving the allocno
827 into that class. */
828 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
830 if (classes[i] == NO_REGS && ! allows_mem[i])
832 /* We must always fail if the operand is a REG, but
833 we did not find a suitable class and memory is
834 not allowed.
836 Otherwise we may perform an uninitialized read
837 from this_op_costs after the `continue' statement
838 below. */
839 alt_fail = 1;
841 else
843 unsigned int regno = REGNO (op);
844 struct costs *pp = this_op_costs[i];
845 int *pp_costs = pp->cost;
846 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
847 enum reg_class *cost_classes = cost_classes_ptr->classes;
848 bool in_p = recog_data.operand_type[i] != OP_OUT;
849 bool out_p = recog_data.operand_type[i] != OP_IN;
850 enum reg_class op_class = classes[i];
852 ira_init_register_move_cost_if_necessary (mode);
853 if (! in_p)
855 ira_assert (out_p);
856 if (op_class == NO_REGS)
858 mem_cost = ira_memory_move_cost[mode];
859 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
861 rclass = cost_classes[k];
862 pp_costs[k] = mem_cost[rclass][0] * frequency;
865 else
867 move_out_cost = ira_may_move_out_cost[mode];
868 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
870 rclass = cost_classes[k];
871 pp_costs[k]
872 = move_out_cost[op_class][rclass] * frequency;
876 else if (! out_p)
878 ira_assert (in_p);
879 if (op_class == NO_REGS)
881 mem_cost = ira_memory_move_cost[mode];
882 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
884 rclass = cost_classes[k];
885 pp_costs[k] = mem_cost[rclass][1] * frequency;
888 else
890 move_in_cost = ira_may_move_in_cost[mode];
891 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
893 rclass = cost_classes[k];
894 pp_costs[k]
895 = move_in_cost[rclass][op_class] * frequency;
899 else
901 if (op_class == NO_REGS)
903 mem_cost = ira_memory_move_cost[mode];
904 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
906 rclass = cost_classes[k];
907 pp_costs[k] = ((mem_cost[rclass][0]
908 + mem_cost[rclass][1])
909 * frequency);
912 else
914 move_in_cost = ira_may_move_in_cost[mode];
915 move_out_cost = ira_may_move_out_cost[mode];
916 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
918 rclass = cost_classes[k];
919 pp_costs[k] = ((move_in_cost[rclass][op_class]
920 + move_out_cost[op_class][rclass])
921 * frequency);
926 if (op_class == NO_REGS)
927 /* Although we don't need insn to reload from
928 memory, still accessing memory is usually more
929 expensive than a register. */
930 pp->mem_cost = frequency;
931 else
932 /* If the alternative actually allows memory, make
933 things a bit cheaper since we won't need an
934 extra insn to load it. */
935 pp->mem_cost
936 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
937 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
938 - allows_mem[i]) * frequency;
939 /* If we have assigned a class to this allocno in
940 our first pass, add a cost to this alternative
941 corresponding to what we would add if this
942 allocno were not in the appropriate class. */
943 if (pref)
945 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
947 if (pref_class == NO_REGS)
949 if (op_class != NO_REGS)
950 alt_cost
951 += ((out_p
952 ? ira_memory_move_cost[mode][op_class][0]
953 : 0)
954 + (in_p
955 ? ira_memory_move_cost[mode][op_class][1]
956 : 0));
958 else if (op_class == NO_REGS)
959 alt_cost
960 += ((out_p
961 ? ira_memory_move_cost[mode][pref_class][1]
962 : 0)
963 + (in_p
964 ? ira_memory_move_cost[mode][pref_class][0]
965 : 0));
966 else if (ira_reg_class_intersect[pref_class][op_class]
967 == NO_REGS)
968 alt_cost += (ira_register_move_cost
969 [mode][pref_class][op_class]);
974 /* Otherwise, if this alternative wins, either because we
975 have already determined that or if we have a hard
976 register of the proper class, there is no cost for this
977 alternative. */
978 else if (win || (REG_P (op)
979 && reg_fits_class_p (op, classes[i],
980 0, GET_MODE (op))))
983 /* If registers are valid, the cost of this alternative
984 includes copying the object to and/or from a
985 register. */
986 else if (classes[i] != NO_REGS)
988 if (recog_data.operand_type[i] != OP_OUT)
989 alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
991 if (recog_data.operand_type[i] != OP_IN)
992 alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
994 /* The only other way this alternative can be used is if
995 this is a constant that could be placed into memory. */
996 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
997 alt_cost += ira_memory_move_cost[mode][classes[i]][1];
998 else
999 alt_fail = 1;
1001 if (alt_fail)
1002 break;
1005 if (alt_fail)
1007 /* The loop above might have exited early once the failure
1008 was seen. Skip over the constraints for the remaining
1009 operands. */
1010 i += 1;
1011 for (; i < n_ops; ++i)
1012 constraints[i] = skip_alternative (constraints[i]);
1013 continue;
1016 op_cost_add = alt_cost * frequency;
1017 /* Finally, update the costs with the information we've
1018 calculated about this alternative. */
1019 for (i = 0; i < n_ops; i++)
1020 if (REG_P (ops[i]) && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1022 struct costs *pp = op_costs[i], *qq = this_op_costs[i];
1023 int *pp_costs = pp->cost, *qq_costs = qq->cost;
1024 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1025 cost_classes_t cost_classes_ptr
1026 = regno_cost_classes[REGNO (ops[i])];
1028 pp->mem_cost = MIN (pp->mem_cost,
1029 (qq->mem_cost + op_cost_add) * scale);
1031 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1032 pp_costs[k]
1033 = MIN (pp_costs[k], (qq_costs[k] + op_cost_add) * scale);
1037 if (allocno_p)
1038 for (i = 0; i < n_ops; i++)
1040 ira_allocno_t a;
1041 rtx op = ops[i];
1043 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
1044 continue;
1045 a = ira_curr_regno_allocno_map [REGNO (op)];
1046 if (! ALLOCNO_BAD_SPILL_P (a) && insn_allows_mem[i] == 0)
1047 ALLOCNO_BAD_SPILL_P (a) = true;
1054 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
1055 static inline bool
1056 ok_for_index_p_nonstrict (rtx reg)
1058 unsigned regno = REGNO (reg);
1060 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
1063 /* A version of regno_ok_for_base_p for use here, when all
1064 pseudo-registers should count as OK. Arguments as for
1065 regno_ok_for_base_p. */
1066 static inline bool
1067 ok_for_base_p_nonstrict (rtx reg, machine_mode mode, addr_space_t as,
1068 enum rtx_code outer_code, enum rtx_code index_code)
1070 unsigned regno = REGNO (reg);
1072 if (regno >= FIRST_PSEUDO_REGISTER)
1073 return true;
1074 return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
1077 /* Record the pseudo registers we must reload into hard registers in a
1078 subexpression of a memory address, X.
1080 If CONTEXT is 0, we are looking at the base part of an address,
1081 otherwise we are looking at the index part.
1083 MODE and AS are the mode and address space of the memory reference;
1084 OUTER_CODE and INDEX_CODE give the context that the rtx appears in.
1085 These four arguments are passed down to base_reg_class.
1087 SCALE is twice the amount to multiply the cost by (it is twice so
1088 we can represent half-cost adjustments). */
1089 static void
1090 record_address_regs (machine_mode mode, addr_space_t as, rtx x,
1091 int context, enum rtx_code outer_code,
1092 enum rtx_code index_code, int scale)
1094 enum rtx_code code = GET_CODE (x);
1095 enum reg_class rclass;
1097 if (context == 1)
1098 rclass = INDEX_REG_CLASS;
1099 else
1100 rclass = base_reg_class (mode, as, outer_code, index_code);
1102 switch (code)
1104 case CONST_INT:
1105 case CONST:
1106 case CC0:
1107 case PC:
1108 case SYMBOL_REF:
1109 case LABEL_REF:
1110 return;
1112 case PLUS:
1113 /* When we have an address that is a sum, we must determine
1114 whether registers are "base" or "index" regs. If there is a
1115 sum of two registers, we must choose one to be the "base".
1116 Luckily, we can use the REG_POINTER to make a good choice
1117 most of the time. We only need to do this on machines that
1118 can have two registers in an address and where the base and
1119 index register classes are different.
1121 ??? This code used to set REGNO_POINTER_FLAG in some cases,
1122 but that seems bogus since it should only be set when we are
1123 sure the register is being used as a pointer. */
1125 rtx arg0 = XEXP (x, 0);
1126 rtx arg1 = XEXP (x, 1);
1127 enum rtx_code code0 = GET_CODE (arg0);
1128 enum rtx_code code1 = GET_CODE (arg1);
1130 /* Look inside subregs. */
1131 if (code0 == SUBREG)
1132 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1133 if (code1 == SUBREG)
1134 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1136 /* If index registers do not appear, or coincide with base registers,
1137 just record registers in any non-constant operands. We
1138 assume here, as well as in the tests below, that all
1139 addresses are in canonical form. */
1140 if (MAX_REGS_PER_ADDRESS == 1
1141 || INDEX_REG_CLASS == base_reg_class (VOIDmode, as, PLUS, SCRATCH))
1143 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1144 if (! CONSTANT_P (arg1))
1145 record_address_regs (mode, as, arg1, context, PLUS, code0, scale);
1148 /* If the second operand is a constant integer, it doesn't
1149 change what class the first operand must be. */
1150 else if (CONST_SCALAR_INT_P (arg1))
1151 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1152 /* If the second operand is a symbolic constant, the first
1153 operand must be an index register. */
1154 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1155 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1156 /* If both operands are registers but one is already a hard
1157 register of index or reg-base class, give the other the
1158 class that the hard register is not. */
1159 else if (code0 == REG && code1 == REG
1160 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1161 && (ok_for_base_p_nonstrict (arg0, mode, as, PLUS, REG)
1162 || ok_for_index_p_nonstrict (arg0)))
1163 record_address_regs (mode, as, arg1,
1164 ok_for_base_p_nonstrict (arg0, mode, as,
1165 PLUS, REG) ? 1 : 0,
1166 PLUS, REG, scale);
1167 else if (code0 == REG && code1 == REG
1168 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1169 && (ok_for_base_p_nonstrict (arg1, mode, as, PLUS, REG)
1170 || ok_for_index_p_nonstrict (arg1)))
1171 record_address_regs (mode, as, arg0,
1172 ok_for_base_p_nonstrict (arg1, mode, as,
1173 PLUS, REG) ? 1 : 0,
1174 PLUS, REG, scale);
1175 /* If one operand is known to be a pointer, it must be the
1176 base with the other operand the index. Likewise if the
1177 other operand is a MULT. */
1178 else if ((code0 == REG && REG_POINTER (arg0)) || code1 == MULT)
1180 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1181 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale);
1183 else if ((code1 == REG && REG_POINTER (arg1)) || code0 == MULT)
1185 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1186 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale);
1188 /* Otherwise, count equal chances that each might be a base or
1189 index register. This case should be rare. */
1190 else
1192 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale / 2);
1193 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale / 2);
1194 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale / 2);
1195 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale / 2);
1198 break;
1200 /* Double the importance of an allocno that is incremented or
1201 decremented, since it would take two extra insns if it ends
1202 up in the wrong place. */
1203 case POST_MODIFY:
1204 case PRE_MODIFY:
1205 record_address_regs (mode, as, XEXP (x, 0), 0, code,
1206 GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
1207 if (REG_P (XEXP (XEXP (x, 1), 1)))
1208 record_address_regs (mode, as, XEXP (XEXP (x, 1), 1), 1, code, REG,
1209 2 * scale);
1210 break;
1212 case POST_INC:
1213 case PRE_INC:
1214 case POST_DEC:
1215 case PRE_DEC:
1216 /* Double the importance of an allocno that is incremented or
1217 decremented, since it would take two extra insns if it ends
1218 up in the wrong place. */
1219 record_address_regs (mode, as, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
1220 break;
1222 case REG:
1224 struct costs *pp;
1225 int *pp_costs;
1226 enum reg_class i;
1227 int k, regno, add_cost;
1228 cost_classes_t cost_classes_ptr;
1229 enum reg_class *cost_classes;
1230 move_table *move_in_cost;
1232 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
1233 break;
1235 regno = REGNO (x);
1236 if (allocno_p)
1237 ALLOCNO_BAD_SPILL_P (ira_curr_regno_allocno_map[regno]) = true;
1238 pp = COSTS (costs, COST_INDEX (regno));
1239 add_cost = (ira_memory_move_cost[Pmode][rclass][1] * scale) / 2;
1240 if (INT_MAX - add_cost < pp->mem_cost)
1241 pp->mem_cost = INT_MAX;
1242 else
1243 pp->mem_cost += add_cost;
1244 cost_classes_ptr = regno_cost_classes[regno];
1245 cost_classes = cost_classes_ptr->classes;
1246 pp_costs = pp->cost;
1247 ira_init_register_move_cost_if_necessary (Pmode);
1248 move_in_cost = ira_may_move_in_cost[Pmode];
1249 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1251 i = cost_classes[k];
1252 add_cost = (move_in_cost[i][rclass] * scale) / 2;
1253 if (INT_MAX - add_cost < pp_costs[k])
1254 pp_costs[k] = INT_MAX;
1255 else
1256 pp_costs[k] += add_cost;
1259 break;
1261 default:
1263 const char *fmt = GET_RTX_FORMAT (code);
1264 int i;
1265 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1266 if (fmt[i] == 'e')
1267 record_address_regs (mode, as, XEXP (x, i), context, code, SCRATCH,
1268 scale);
1275 /* Calculate the costs of insn operands. */
1276 static void
1277 record_operand_costs (rtx_insn *insn, enum reg_class *pref)
1279 const char *constraints[MAX_RECOG_OPERANDS];
1280 machine_mode modes[MAX_RECOG_OPERANDS];
1281 rtx set;
1282 int i;
1284 if ((set = single_set (insn)) != NULL_RTX
1285 /* In rare cases the single set insn might have less 2 operands
1286 as the source can be a fixed special reg. */
1287 && recog_data.n_operands > 1
1288 && recog_data.operand[0] == SET_DEST (set)
1289 && recog_data.operand[1] == SET_SRC (set))
1291 int regno, other_regno;
1292 rtx dest = SET_DEST (set);
1293 rtx src = SET_SRC (set);
1295 if (GET_CODE (dest) == SUBREG
1296 && known_eq (GET_MODE_SIZE (GET_MODE (dest)),
1297 GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))))
1298 dest = SUBREG_REG (dest);
1299 if (GET_CODE (src) == SUBREG
1300 && known_eq (GET_MODE_SIZE (GET_MODE (src)),
1301 GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
1302 src = SUBREG_REG (src);
1303 if (REG_P (src) && REG_P (dest)
1304 && (((regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
1305 && (other_regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER)
1306 || ((regno = REGNO (dest)) >= FIRST_PSEUDO_REGISTER
1307 && (other_regno = REGNO (src)) < FIRST_PSEUDO_REGISTER)))
1309 machine_mode mode = GET_MODE (SET_SRC (set));
1310 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1311 enum reg_class *cost_classes = cost_classes_ptr->classes;
1312 reg_class_t rclass, hard_reg_class, pref_class, bigger_hard_reg_class;
1313 int cost, k;
1314 move_table *move_costs;
1315 bool dead_p = find_regno_note (insn, REG_DEAD, REGNO (src));
1317 ira_init_register_move_cost_if_necessary (mode);
1318 move_costs = ira_register_move_cost[mode];
1319 hard_reg_class = REGNO_REG_CLASS (other_regno);
1320 bigger_hard_reg_class = ira_pressure_class_translate[hard_reg_class];
1321 /* Target code may return any cost for mode which does not
1322 fit the the hard reg class (e.g. DImode for AREG on
1323 i386). Check this and use a bigger class to get the
1324 right cost. */
1325 if (bigger_hard_reg_class != NO_REGS
1326 && ! ira_hard_reg_in_set_p (other_regno, mode,
1327 reg_class_contents[hard_reg_class]))
1328 hard_reg_class = bigger_hard_reg_class;
1329 i = regno == (int) REGNO (src) ? 1 : 0;
1330 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1332 rclass = cost_classes[k];
1333 cost = (i == 0
1334 ? move_costs[hard_reg_class][rclass]
1335 : move_costs[rclass][hard_reg_class]);
1337 op_costs[i]->cost[k] = cost * frequency;
1338 /* If we have assigned a class to this allocno in our
1339 first pass, add a cost to this alternative
1340 corresponding to what we would add if this allocno
1341 were not in the appropriate class. */
1342 if (pref)
1344 if ((pref_class = pref[COST_INDEX (regno)]) == NO_REGS)
1345 op_costs[i]->cost[k]
1346 += ((i == 0 ? ira_memory_move_cost[mode][rclass][0] : 0)
1347 + (i == 1 ? ira_memory_move_cost[mode][rclass][1] : 0)
1348 * frequency);
1349 else if (ira_reg_class_intersect[pref_class][rclass]
1350 == NO_REGS)
1351 op_costs[i]->cost[k]
1352 += (move_costs[pref_class][rclass]
1353 * frequency);
1355 /* If this insn is a single set copying operand 1 to
1356 operand 0 and one operand is an allocno with the
1357 other a hard reg or an allocno that prefers a hard
1358 register that is in its own register class then we
1359 may want to adjust the cost of that register class to
1362 Avoid the adjustment if the source does not die to
1363 avoid stressing of register allocator by preferencing
1364 two colliding registers into single class. */
1365 if (dead_p
1366 && TEST_HARD_REG_BIT (reg_class_contents[rclass], other_regno)
1367 && (reg_class_size[(int) rclass]
1368 == (ira_reg_class_max_nregs
1369 [(int) rclass][(int) GET_MODE(src)])))
1371 if (reg_class_size[rclass] == 1)
1372 op_costs[i]->cost[k] = -frequency;
1373 else if (in_hard_reg_set_p (reg_class_contents[rclass],
1374 GET_MODE(src), other_regno))
1375 op_costs[i]->cost[k] = -frequency;
1378 op_costs[i]->mem_cost
1379 = ira_memory_move_cost[mode][hard_reg_class][i] * frequency;
1380 if (pref && (pref_class = pref[COST_INDEX (regno)]) != NO_REGS)
1381 op_costs[i]->mem_cost
1382 += ira_memory_move_cost[mode][pref_class][i] * frequency;
1383 return;
1387 for (i = 0; i < recog_data.n_operands; i++)
1389 constraints[i] = recog_data.constraints[i];
1390 modes[i] = recog_data.operand_mode[i];
1393 /* If we get here, we are set up to record the costs of all the
1394 operands for this insn. Start by initializing the costs. Then
1395 handle any address registers. Finally record the desired classes
1396 for any allocnos, doing it twice if some pair of operands are
1397 commutative. */
1398 for (i = 0; i < recog_data.n_operands; i++)
1400 memcpy (op_costs[i], init_cost, struct_costs_size);
1402 if (GET_CODE (recog_data.operand[i]) == SUBREG)
1403 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1405 if (MEM_P (recog_data.operand[i]))
1406 record_address_regs (GET_MODE (recog_data.operand[i]),
1407 MEM_ADDR_SPACE (recog_data.operand[i]),
1408 XEXP (recog_data.operand[i], 0),
1409 0, MEM, SCRATCH, frequency * 2);
1410 else if (constraints[i][0] == 'p'
1411 || (insn_extra_address_constraint
1412 (lookup_constraint (constraints[i]))))
1413 record_address_regs (VOIDmode, ADDR_SPACE_GENERIC,
1414 recog_data.operand[i], 0, ADDRESS, SCRATCH,
1415 frequency * 2);
1418 /* Check for commutative in a separate loop so everything will have
1419 been initialized. We must do this even if one operand is a
1420 constant--see addsi3 in m68k.md. */
1421 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1422 if (constraints[i][0] == '%')
1424 const char *xconstraints[MAX_RECOG_OPERANDS];
1425 int j;
1427 /* Handle commutative operands by swapping the
1428 constraints. We assume the modes are the same. */
1429 for (j = 0; j < recog_data.n_operands; j++)
1430 xconstraints[j] = constraints[j];
1432 xconstraints[i] = constraints[i+1];
1433 xconstraints[i+1] = constraints[i];
1434 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1435 recog_data.operand, modes,
1436 xconstraints, insn, pref);
1438 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1439 recog_data.operand, modes,
1440 constraints, insn, pref);
1445 /* Process one insn INSN. Scan it and record each time it would save
1446 code to put a certain allocnos in a certain class. Return the last
1447 insn processed, so that the scan can be continued from there. */
1448 static rtx_insn *
1449 scan_one_insn (rtx_insn *insn)
1451 enum rtx_code pat_code;
1452 rtx set, note;
1453 int i, k;
1454 bool counted_mem;
1456 if (!NONDEBUG_INSN_P (insn))
1457 return insn;
1459 pat_code = GET_CODE (PATTERN (insn));
1460 if (pat_code == ASM_INPUT)
1461 return insn;
1463 /* If INSN is a USE/CLOBBER of a pseudo in a mode M then go ahead
1464 and initialize the register move costs of mode M.
1466 The pseudo may be related to another pseudo via a copy (implicit or
1467 explicit) and if there are no mode M uses/sets of the original
1468 pseudo, then we may leave the register move costs uninitialized for
1469 mode M. */
1470 if (pat_code == USE || pat_code == CLOBBER)
1472 rtx x = XEXP (PATTERN (insn), 0);
1473 if (GET_CODE (x) == REG
1474 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1475 && have_regs_of_mode[GET_MODE (x)])
1476 ira_init_register_move_cost_if_necessary (GET_MODE (x));
1477 return insn;
1480 if (pat_code == CLOBBER_HIGH)
1482 gcc_assert (REG_P (XEXP (PATTERN (insn), 0))
1483 && HARD_REGISTER_P (XEXP (PATTERN (insn), 0)));
1484 return insn;
1487 counted_mem = false;
1488 set = single_set (insn);
1489 extract_insn (insn);
1491 /* If this insn loads a parameter from its stack slot, then it
1492 represents a savings, rather than a cost, if the parameter is
1493 stored in memory. Record this fact.
1495 Similarly if we're loading other constants from memory (constant
1496 pool, TOC references, small data areas, etc) and this is the only
1497 assignment to the destination pseudo.
1499 Don't do this if SET_SRC (set) isn't a general operand, if it is
1500 a memory requiring special instructions to load it, decreasing
1501 mem_cost might result in it being loaded using the specialized
1502 instruction into a register, then stored into stack and loaded
1503 again from the stack. See PR52208.
1505 Don't do this if SET_SRC (set) has side effect. See PR56124. */
1506 if (set != 0 && REG_P (SET_DEST (set)) && MEM_P (SET_SRC (set))
1507 && (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL_RTX
1508 && ((MEM_P (XEXP (note, 0))
1509 && !side_effects_p (SET_SRC (set)))
1510 || (CONSTANT_P (XEXP (note, 0))
1511 && targetm.legitimate_constant_p (GET_MODE (SET_DEST (set)),
1512 XEXP (note, 0))
1513 && REG_N_SETS (REGNO (SET_DEST (set))) == 1))
1514 && general_operand (SET_SRC (set), GET_MODE (SET_SRC (set)))
1515 /* LRA does not use equiv with a symbol for PIC code. */
1516 && (! ira_use_lra_p || ! pic_offset_table_rtx
1517 || ! contains_symbol_ref_p (XEXP (note, 0))))
1519 enum reg_class cl = GENERAL_REGS;
1520 rtx reg = SET_DEST (set);
1521 int num = COST_INDEX (REGNO (reg));
1523 COSTS (costs, num)->mem_cost
1524 -= ira_memory_move_cost[GET_MODE (reg)][cl][1] * frequency;
1525 record_address_regs (GET_MODE (SET_SRC (set)),
1526 MEM_ADDR_SPACE (SET_SRC (set)),
1527 XEXP (SET_SRC (set), 0), 0, MEM, SCRATCH,
1528 frequency * 2);
1529 counted_mem = true;
1532 record_operand_costs (insn, pref);
1534 /* Now add the cost for each operand to the total costs for its
1535 allocno. */
1536 for (i = 0; i < recog_data.n_operands; i++)
1538 rtx op = recog_data.operand[i];
1540 if (GET_CODE (op) == SUBREG)
1541 op = SUBREG_REG (op);
1542 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1544 int regno = REGNO (op);
1545 struct costs *p = COSTS (costs, COST_INDEX (regno));
1546 struct costs *q = op_costs[i];
1547 int *p_costs = p->cost, *q_costs = q->cost;
1548 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1549 int add_cost;
1551 /* If the already accounted for the memory "cost" above, don't
1552 do so again. */
1553 if (!counted_mem)
1555 add_cost = q->mem_cost;
1556 if (add_cost > 0 && INT_MAX - add_cost < p->mem_cost)
1557 p->mem_cost = INT_MAX;
1558 else
1559 p->mem_cost += add_cost;
1561 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1563 add_cost = q_costs[k];
1564 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1565 p_costs[k] = INT_MAX;
1566 else
1567 p_costs[k] += add_cost;
1571 return insn;
1576 /* Print allocnos costs to file F. */
1577 static void
1578 print_allocno_costs (FILE *f)
1580 int k;
1581 ira_allocno_t a;
1582 ira_allocno_iterator ai;
1584 ira_assert (allocno_p);
1585 fprintf (f, "\n");
1586 FOR_EACH_ALLOCNO (a, ai)
1588 int i, rclass;
1589 basic_block bb;
1590 int regno = ALLOCNO_REGNO (a);
1591 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1592 enum reg_class *cost_classes = cost_classes_ptr->classes;
1594 i = ALLOCNO_NUM (a);
1595 fprintf (f, " a%d(r%d,", i, regno);
1596 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1597 fprintf (f, "b%d", bb->index);
1598 else
1599 fprintf (f, "l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1600 fprintf (f, ") costs:");
1601 for (k = 0; k < cost_classes_ptr->num; k++)
1603 rclass = cost_classes[k];
1604 fprintf (f, " %s:%d", reg_class_names[rclass],
1605 COSTS (costs, i)->cost[k]);
1606 if (flag_ira_region == IRA_REGION_ALL
1607 || flag_ira_region == IRA_REGION_MIXED)
1608 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->cost[k]);
1610 fprintf (f, " MEM:%i", COSTS (costs, i)->mem_cost);
1611 if (flag_ira_region == IRA_REGION_ALL
1612 || flag_ira_region == IRA_REGION_MIXED)
1613 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->mem_cost);
1614 fprintf (f, "\n");
1618 /* Print pseudo costs to file F. */
1619 static void
1620 print_pseudo_costs (FILE *f)
1622 int regno, k;
1623 int rclass;
1624 cost_classes_t cost_classes_ptr;
1625 enum reg_class *cost_classes;
1627 ira_assert (! allocno_p);
1628 fprintf (f, "\n");
1629 for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
1631 if (REG_N_REFS (regno) <= 0)
1632 continue;
1633 cost_classes_ptr = regno_cost_classes[regno];
1634 cost_classes = cost_classes_ptr->classes;
1635 fprintf (f, " r%d costs:", regno);
1636 for (k = 0; k < cost_classes_ptr->num; k++)
1638 rclass = cost_classes[k];
1639 fprintf (f, " %s:%d", reg_class_names[rclass],
1640 COSTS (costs, regno)->cost[k]);
1642 fprintf (f, " MEM:%i\n", COSTS (costs, regno)->mem_cost);
1646 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1647 costs. */
1648 static void
1649 process_bb_for_costs (basic_block bb)
1651 rtx_insn *insn;
1653 frequency = REG_FREQ_FROM_BB (bb);
1654 if (frequency == 0)
1655 frequency = 1;
1656 FOR_BB_INSNS (bb, insn)
1657 insn = scan_one_insn (insn);
1660 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1661 costs. */
1662 static void
1663 process_bb_node_for_costs (ira_loop_tree_node_t loop_tree_node)
1665 basic_block bb;
1667 bb = loop_tree_node->bb;
1668 if (bb != NULL)
1669 process_bb_for_costs (bb);
1672 /* Find costs of register classes and memory for allocnos or pseudos
1673 and their best costs. Set up preferred, alternative and allocno
1674 classes for pseudos. */
1675 static void
1676 find_costs_and_classes (FILE *dump_file)
1678 int i, k, start, max_cost_classes_num;
1679 int pass;
1680 basic_block bb;
1681 enum reg_class *regno_best_class, new_class;
1683 init_recog ();
1684 regno_best_class
1685 = (enum reg_class *) ira_allocate (max_reg_num ()
1686 * sizeof (enum reg_class));
1687 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1688 regno_best_class[i] = NO_REGS;
1689 if (!resize_reg_info () && allocno_p
1690 && pseudo_classes_defined_p && flag_expensive_optimizations)
1692 ira_allocno_t a;
1693 ira_allocno_iterator ai;
1695 pref = pref_buffer;
1696 max_cost_classes_num = 1;
1697 FOR_EACH_ALLOCNO (a, ai)
1699 pref[ALLOCNO_NUM (a)] = reg_preferred_class (ALLOCNO_REGNO (a));
1700 setup_regno_cost_classes_by_aclass
1701 (ALLOCNO_REGNO (a), pref[ALLOCNO_NUM (a)]);
1702 max_cost_classes_num
1703 = MAX (max_cost_classes_num,
1704 regno_cost_classes[ALLOCNO_REGNO (a)]->num);
1706 start = 1;
1708 else
1710 pref = NULL;
1711 max_cost_classes_num = ira_important_classes_num;
1712 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1713 if (regno_reg_rtx[i] != NULL_RTX)
1714 setup_regno_cost_classes_by_mode (i, PSEUDO_REGNO_MODE (i));
1715 else
1716 setup_regno_cost_classes_by_aclass (i, ALL_REGS);
1717 start = 0;
1719 if (allocno_p)
1720 /* Clear the flag for the next compiled function. */
1721 pseudo_classes_defined_p = false;
1722 /* Normally we scan the insns once and determine the best class to
1723 use for each allocno. However, if -fexpensive-optimizations are
1724 on, we do so twice, the second time using the tentative best
1725 classes to guide the selection. */
1726 for (pass = start; pass <= flag_expensive_optimizations; pass++)
1728 if ((!allocno_p || internal_flag_ira_verbose > 0) && dump_file)
1729 fprintf (dump_file,
1730 "\nPass %i for finding pseudo/allocno costs\n\n", pass);
1732 if (pass != start)
1734 max_cost_classes_num = 1;
1735 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1737 setup_regno_cost_classes_by_aclass (i, regno_best_class[i]);
1738 max_cost_classes_num
1739 = MAX (max_cost_classes_num, regno_cost_classes[i]->num);
1743 struct_costs_size
1744 = sizeof (struct costs) + sizeof (int) * (max_cost_classes_num - 1);
1745 /* Zero out our accumulation of the cost of each class for each
1746 allocno. */
1747 memset (costs, 0, cost_elements_num * struct_costs_size);
1749 if (allocno_p)
1751 /* Scan the instructions and record each time it would save code
1752 to put a certain allocno in a certain class. */
1753 ira_traverse_loop_tree (true, ira_loop_tree_root,
1754 process_bb_node_for_costs, NULL);
1756 memcpy (total_allocno_costs, costs,
1757 max_struct_costs_size * ira_allocnos_num);
1759 else
1761 basic_block bb;
1763 FOR_EACH_BB_FN (bb, cfun)
1764 process_bb_for_costs (bb);
1767 if (pass == 0)
1768 pref = pref_buffer;
1770 /* Now for each allocno look at how desirable each class is and
1771 find which class is preferred. */
1772 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1774 ira_allocno_t a, parent_a;
1775 int rclass, a_num, parent_a_num, add_cost;
1776 ira_loop_tree_node_t parent;
1777 int best_cost, allocno_cost;
1778 enum reg_class best, alt_class;
1779 cost_classes_t cost_classes_ptr = regno_cost_classes[i];
1780 enum reg_class *cost_classes;
1781 int *i_costs = temp_costs->cost;
1782 int i_mem_cost;
1783 int equiv_savings = regno_equiv_gains[i];
1785 if (! allocno_p)
1787 if (regno_reg_rtx[i] == NULL_RTX)
1788 continue;
1789 memcpy (temp_costs, COSTS (costs, i), struct_costs_size);
1790 i_mem_cost = temp_costs->mem_cost;
1791 cost_classes = cost_classes_ptr->classes;
1793 else
1795 if (ira_regno_allocno_map[i] == NULL)
1796 continue;
1797 memset (temp_costs, 0, struct_costs_size);
1798 i_mem_cost = 0;
1799 cost_classes = cost_classes_ptr->classes;
1800 /* Find cost of all allocnos with the same regno. */
1801 for (a = ira_regno_allocno_map[i];
1802 a != NULL;
1803 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1805 int *a_costs, *p_costs;
1807 a_num = ALLOCNO_NUM (a);
1808 if ((flag_ira_region == IRA_REGION_ALL
1809 || flag_ira_region == IRA_REGION_MIXED)
1810 && (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
1811 && (parent_a = parent->regno_allocno_map[i]) != NULL
1812 /* There are no caps yet. */
1813 && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE
1814 (a)->border_allocnos,
1815 ALLOCNO_NUM (a)))
1817 /* Propagate costs to upper levels in the region
1818 tree. */
1819 parent_a_num = ALLOCNO_NUM (parent_a);
1820 a_costs = COSTS (total_allocno_costs, a_num)->cost;
1821 p_costs = COSTS (total_allocno_costs, parent_a_num)->cost;
1822 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1824 add_cost = a_costs[k];
1825 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1826 p_costs[k] = INT_MAX;
1827 else
1828 p_costs[k] += add_cost;
1830 add_cost = COSTS (total_allocno_costs, a_num)->mem_cost;
1831 if (add_cost > 0
1832 && (INT_MAX - add_cost
1833 < COSTS (total_allocno_costs,
1834 parent_a_num)->mem_cost))
1835 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1836 = INT_MAX;
1837 else
1838 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1839 += add_cost;
1841 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1842 COSTS (total_allocno_costs, parent_a_num)->mem_cost = 0;
1844 a_costs = COSTS (costs, a_num)->cost;
1845 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1847 add_cost = a_costs[k];
1848 if (add_cost > 0 && INT_MAX - add_cost < i_costs[k])
1849 i_costs[k] = INT_MAX;
1850 else
1851 i_costs[k] += add_cost;
1853 add_cost = COSTS (costs, a_num)->mem_cost;
1854 if (add_cost > 0 && INT_MAX - add_cost < i_mem_cost)
1855 i_mem_cost = INT_MAX;
1856 else
1857 i_mem_cost += add_cost;
1860 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1861 i_mem_cost = 0;
1862 else if (equiv_savings < 0)
1863 i_mem_cost = -equiv_savings;
1864 else if (equiv_savings > 0)
1866 i_mem_cost = 0;
1867 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1868 i_costs[k] += equiv_savings;
1871 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1872 best = ALL_REGS;
1873 alt_class = NO_REGS;
1874 /* Find best common class for all allocnos with the same
1875 regno. */
1876 for (k = 0; k < cost_classes_ptr->num; k++)
1878 rclass = cost_classes[k];
1879 if (i_costs[k] < best_cost)
1881 best_cost = i_costs[k];
1882 best = (enum reg_class) rclass;
1884 else if (i_costs[k] == best_cost)
1885 best = ira_reg_class_subunion[best][rclass];
1886 if (pass == flag_expensive_optimizations
1887 /* We still prefer registers to memory even at this
1888 stage if their costs are the same. We will make
1889 a final decision during assigning hard registers
1890 when we have all info including more accurate
1891 costs which might be affected by assigning hard
1892 registers to other pseudos because the pseudos
1893 involved in moves can be coalesced. */
1894 && i_costs[k] <= i_mem_cost
1895 && (reg_class_size[reg_class_subunion[alt_class][rclass]]
1896 > reg_class_size[alt_class]))
1897 alt_class = reg_class_subunion[alt_class][rclass];
1899 alt_class = ira_allocno_class_translate[alt_class];
1900 if (best_cost > i_mem_cost
1901 && ! non_spilled_static_chain_regno_p (i))
1902 regno_aclass[i] = NO_REGS;
1903 else if (!optimize && !targetm.class_likely_spilled_p (best))
1904 /* Registers in the alternative class are likely to need
1905 longer or slower sequences than registers in the best class.
1906 When optimizing we make some effort to use the best class
1907 over the alternative class where possible, but at -O0 we
1908 effectively give the alternative class equal weight.
1909 We then run the risk of using slower alternative registers
1910 when plenty of registers from the best class are still free.
1911 This is especially true because live ranges tend to be very
1912 short in -O0 code and so register pressure tends to be low.
1914 Avoid that by ignoring the alternative class if the best
1915 class has plenty of registers.
1917 The union class arrays give important classes and only
1918 part of it are allocno classes. So translate them into
1919 allocno classes. */
1920 regno_aclass[i] = ira_allocno_class_translate[best];
1921 else
1923 /* Make the common class the biggest class of best and
1924 alt_class. Translate the common class into an
1925 allocno class too. */
1926 regno_aclass[i] = (ira_allocno_class_translate
1927 [ira_reg_class_superunion[best][alt_class]]);
1928 ira_assert (regno_aclass[i] != NO_REGS
1929 && ira_reg_allocno_class_p[regno_aclass[i]]);
1931 if ((new_class
1932 = (reg_class) (targetm.ira_change_pseudo_allocno_class
1933 (i, regno_aclass[i], best))) != regno_aclass[i])
1935 regno_aclass[i] = new_class;
1936 if (hard_reg_set_subset_p (reg_class_contents[new_class],
1937 reg_class_contents[best]))
1938 best = new_class;
1939 if (hard_reg_set_subset_p (reg_class_contents[new_class],
1940 reg_class_contents[alt_class]))
1941 alt_class = new_class;
1943 if (pass == flag_expensive_optimizations)
1945 if (best_cost > i_mem_cost
1946 /* Do not assign NO_REGS to static chain pointer
1947 pseudo when non-local goto is used. */
1948 && ! non_spilled_static_chain_regno_p (i))
1949 best = alt_class = NO_REGS;
1950 else if (best == alt_class)
1951 alt_class = NO_REGS;
1952 setup_reg_classes (i, best, alt_class, regno_aclass[i]);
1953 if ((!allocno_p || internal_flag_ira_verbose > 2)
1954 && dump_file != NULL)
1955 fprintf (dump_file,
1956 " r%d: preferred %s, alternative %s, allocno %s\n",
1957 i, reg_class_names[best], reg_class_names[alt_class],
1958 reg_class_names[regno_aclass[i]]);
1960 regno_best_class[i] = best;
1961 if (! allocno_p)
1963 pref[i] = (best_cost > i_mem_cost
1964 && ! non_spilled_static_chain_regno_p (i)
1965 ? NO_REGS : best);
1966 continue;
1968 for (a = ira_regno_allocno_map[i];
1969 a != NULL;
1970 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1972 enum reg_class aclass = regno_aclass[i];
1973 int a_num = ALLOCNO_NUM (a);
1974 int *total_a_costs = COSTS (total_allocno_costs, a_num)->cost;
1975 int *a_costs = COSTS (costs, a_num)->cost;
1977 if (aclass == NO_REGS)
1978 best = NO_REGS;
1979 else
1981 /* Finding best class which is subset of the common
1982 class. */
1983 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1984 allocno_cost = best_cost;
1985 best = ALL_REGS;
1986 for (k = 0; k < cost_classes_ptr->num; k++)
1988 rclass = cost_classes[k];
1989 if (! ira_class_subset_p[rclass][aclass])
1990 continue;
1991 if (total_a_costs[k] < best_cost)
1993 best_cost = total_a_costs[k];
1994 allocno_cost = a_costs[k];
1995 best = (enum reg_class) rclass;
1997 else if (total_a_costs[k] == best_cost)
1999 best = ira_reg_class_subunion[best][rclass];
2000 allocno_cost = MAX (allocno_cost, a_costs[k]);
2003 ALLOCNO_CLASS_COST (a) = allocno_cost;
2005 if (internal_flag_ira_verbose > 2 && dump_file != NULL
2006 && (pass == 0 || pref[a_num] != best))
2008 fprintf (dump_file, " a%d (r%d,", a_num, i);
2009 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
2010 fprintf (dump_file, "b%d", bb->index);
2011 else
2012 fprintf (dump_file, "l%d",
2013 ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
2014 fprintf (dump_file, ") best %s, allocno %s\n",
2015 reg_class_names[best],
2016 reg_class_names[aclass]);
2018 pref[a_num] = best;
2019 if (pass == flag_expensive_optimizations && best != aclass
2020 && ira_class_hard_regs_num[best] > 0
2021 && (ira_reg_class_max_nregs[best][ALLOCNO_MODE (a)]
2022 >= ira_class_hard_regs_num[best]))
2024 int ind = cost_classes_ptr->index[aclass];
2026 ira_assert (ind >= 0);
2027 ira_init_register_move_cost_if_necessary (ALLOCNO_MODE (a));
2028 ira_add_allocno_pref (a, ira_class_hard_regs[best][0],
2029 (a_costs[ind] - ALLOCNO_CLASS_COST (a))
2030 / (ira_register_move_cost
2031 [ALLOCNO_MODE (a)][best][aclass]));
2032 for (k = 0; k < cost_classes_ptr->num; k++)
2033 if (ira_class_subset_p[cost_classes[k]][best])
2034 a_costs[k] = a_costs[ind];
2039 if (internal_flag_ira_verbose > 4 && dump_file)
2041 if (allocno_p)
2042 print_allocno_costs (dump_file);
2043 else
2044 print_pseudo_costs (dump_file);
2045 fprintf (dump_file,"\n");
2048 ira_free (regno_best_class);
2053 /* Process moves involving hard regs to modify allocno hard register
2054 costs. We can do this only after determining allocno class. If a
2055 hard register forms a register class, then moves with the hard
2056 register are already taken into account in class costs for the
2057 allocno. */
2058 static void
2059 process_bb_node_for_hard_reg_moves (ira_loop_tree_node_t loop_tree_node)
2061 int i, freq, src_regno, dst_regno, hard_regno, a_regno;
2062 bool to_p;
2063 ira_allocno_t a, curr_a;
2064 ira_loop_tree_node_t curr_loop_tree_node;
2065 enum reg_class rclass;
2066 basic_block bb;
2067 rtx_insn *insn;
2068 rtx set, src, dst;
2070 bb = loop_tree_node->bb;
2071 if (bb == NULL)
2072 return;
2073 freq = REG_FREQ_FROM_BB (bb);
2074 if (freq == 0)
2075 freq = 1;
2076 FOR_BB_INSNS (bb, insn)
2078 if (!NONDEBUG_INSN_P (insn))
2079 continue;
2080 set = single_set (insn);
2081 if (set == NULL_RTX)
2082 continue;
2083 dst = SET_DEST (set);
2084 src = SET_SRC (set);
2085 if (! REG_P (dst) || ! REG_P (src))
2086 continue;
2087 dst_regno = REGNO (dst);
2088 src_regno = REGNO (src);
2089 if (dst_regno >= FIRST_PSEUDO_REGISTER
2090 && src_regno < FIRST_PSEUDO_REGISTER)
2092 hard_regno = src_regno;
2093 a = ira_curr_regno_allocno_map[dst_regno];
2094 to_p = true;
2096 else if (src_regno >= FIRST_PSEUDO_REGISTER
2097 && dst_regno < FIRST_PSEUDO_REGISTER)
2099 hard_regno = dst_regno;
2100 a = ira_curr_regno_allocno_map[src_regno];
2101 to_p = false;
2103 else
2104 continue;
2105 if (reg_class_size[(int) REGNO_REG_CLASS (hard_regno)]
2106 == (ira_reg_class_max_nregs
2107 [REGNO_REG_CLASS (hard_regno)][(int) ALLOCNO_MODE(a)]))
2108 /* If the class can provide only one hard reg to the allocno,
2109 we processed the insn record_operand_costs already and we
2110 actually updated the hard reg cost there. */
2111 continue;
2112 rclass = ALLOCNO_CLASS (a);
2113 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], hard_regno))
2114 continue;
2115 i = ira_class_hard_reg_index[rclass][hard_regno];
2116 if (i < 0)
2117 continue;
2118 a_regno = ALLOCNO_REGNO (a);
2119 for (curr_loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
2120 curr_loop_tree_node != NULL;
2121 curr_loop_tree_node = curr_loop_tree_node->parent)
2122 if ((curr_a = curr_loop_tree_node->regno_allocno_map[a_regno]) != NULL)
2123 ira_add_allocno_pref (curr_a, hard_regno, freq);
2125 int cost;
2126 enum reg_class hard_reg_class;
2127 machine_mode mode;
2129 mode = ALLOCNO_MODE (a);
2130 hard_reg_class = REGNO_REG_CLASS (hard_regno);
2131 ira_init_register_move_cost_if_necessary (mode);
2132 cost = (to_p ? ira_register_move_cost[mode][hard_reg_class][rclass]
2133 : ira_register_move_cost[mode][rclass][hard_reg_class]) * freq;
2134 ira_allocate_and_set_costs (&ALLOCNO_HARD_REG_COSTS (a), rclass,
2135 ALLOCNO_CLASS_COST (a));
2136 ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
2137 rclass, 0);
2138 ALLOCNO_HARD_REG_COSTS (a)[i] -= cost;
2139 ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[i] -= cost;
2140 ALLOCNO_CLASS_COST (a) = MIN (ALLOCNO_CLASS_COST (a),
2141 ALLOCNO_HARD_REG_COSTS (a)[i]);
2146 /* After we find hard register and memory costs for allocnos, define
2147 its class and modify hard register cost because insns moving
2148 allocno to/from hard registers. */
2149 static void
2150 setup_allocno_class_and_costs (void)
2152 int i, j, n, regno, hard_regno, num;
2153 int *reg_costs;
2154 enum reg_class aclass, rclass;
2155 ira_allocno_t a;
2156 ira_allocno_iterator ai;
2157 cost_classes_t cost_classes_ptr;
2159 ira_assert (allocno_p);
2160 FOR_EACH_ALLOCNO (a, ai)
2162 i = ALLOCNO_NUM (a);
2163 regno = ALLOCNO_REGNO (a);
2164 aclass = regno_aclass[regno];
2165 cost_classes_ptr = regno_cost_classes[regno];
2166 ira_assert (pref[i] == NO_REGS || aclass != NO_REGS);
2167 ALLOCNO_MEMORY_COST (a) = COSTS (costs, i)->mem_cost;
2168 ira_set_allocno_class (a, aclass);
2169 if (aclass == NO_REGS)
2170 continue;
2171 if (optimize && ALLOCNO_CLASS (a) != pref[i])
2173 n = ira_class_hard_regs_num[aclass];
2174 ALLOCNO_HARD_REG_COSTS (a)
2175 = reg_costs = ira_allocate_cost_vector (aclass);
2176 for (j = n - 1; j >= 0; j--)
2178 hard_regno = ira_class_hard_regs[aclass][j];
2179 if (TEST_HARD_REG_BIT (reg_class_contents[pref[i]], hard_regno))
2180 reg_costs[j] = ALLOCNO_CLASS_COST (a);
2181 else
2183 rclass = REGNO_REG_CLASS (hard_regno);
2184 num = cost_classes_ptr->index[rclass];
2185 if (num < 0)
2187 num = cost_classes_ptr->hard_regno_index[hard_regno];
2188 ira_assert (num >= 0);
2190 reg_costs[j] = COSTS (costs, i)->cost[num];
2195 if (optimize)
2196 ira_traverse_loop_tree (true, ira_loop_tree_root,
2197 process_bb_node_for_hard_reg_moves, NULL);
2202 /* Function called once during compiler work. */
2203 void
2204 ira_init_costs_once (void)
2206 int i;
2208 init_cost = NULL;
2209 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2211 op_costs[i] = NULL;
2212 this_op_costs[i] = NULL;
2214 temp_costs = NULL;
2217 /* Free allocated temporary cost vectors. */
2218 void
2219 target_ira_int::free_ira_costs ()
2221 int i;
2223 free (x_init_cost);
2224 x_init_cost = NULL;
2225 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2227 free (x_op_costs[i]);
2228 free (x_this_op_costs[i]);
2229 x_op_costs[i] = x_this_op_costs[i] = NULL;
2231 free (x_temp_costs);
2232 x_temp_costs = NULL;
2235 /* This is called each time register related information is
2236 changed. */
2237 void
2238 ira_init_costs (void)
2240 int i;
2242 this_target_ira_int->free_ira_costs ();
2243 max_struct_costs_size
2244 = sizeof (struct costs) + sizeof (int) * (ira_important_classes_num - 1);
2245 /* Don't use ira_allocate because vectors live through several IRA
2246 calls. */
2247 init_cost = (struct costs *) xmalloc (max_struct_costs_size);
2248 init_cost->mem_cost = 1000000;
2249 for (i = 0; i < ira_important_classes_num; i++)
2250 init_cost->cost[i] = 1000000;
2251 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2253 op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2254 this_op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2256 temp_costs = (struct costs *) xmalloc (max_struct_costs_size);
2261 /* Common initialization function for ira_costs and
2262 ira_set_pseudo_classes. */
2263 static void
2264 init_costs (void)
2266 init_subregs_of_mode ();
2267 costs = (struct costs *) ira_allocate (max_struct_costs_size
2268 * cost_elements_num);
2269 pref_buffer = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2270 * cost_elements_num);
2271 regno_aclass = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2272 * max_reg_num ());
2273 regno_equiv_gains = (int *) ira_allocate (sizeof (int) * max_reg_num ());
2274 memset (regno_equiv_gains, 0, sizeof (int) * max_reg_num ());
2277 /* Common finalization function for ira_costs and
2278 ira_set_pseudo_classes. */
2279 static void
2280 finish_costs (void)
2282 finish_subregs_of_mode ();
2283 ira_free (regno_equiv_gains);
2284 ira_free (regno_aclass);
2285 ira_free (pref_buffer);
2286 ira_free (costs);
2289 /* Entry function which defines register class, memory and hard
2290 register costs for each allocno. */
2291 void
2292 ira_costs (void)
2294 allocno_p = true;
2295 cost_elements_num = ira_allocnos_num;
2296 init_costs ();
2297 total_allocno_costs = (struct costs *) ira_allocate (max_struct_costs_size
2298 * ira_allocnos_num);
2299 initiate_regno_cost_classes ();
2300 calculate_elim_costs_all_insns ();
2301 find_costs_and_classes (ira_dump_file);
2302 setup_allocno_class_and_costs ();
2303 finish_regno_cost_classes ();
2304 finish_costs ();
2305 ira_free (total_allocno_costs);
2308 /* Entry function which defines classes for pseudos.
2309 Set pseudo_classes_defined_p only if DEFINE_PSEUDO_CLASSES is true. */
2310 void
2311 ira_set_pseudo_classes (bool define_pseudo_classes, FILE *dump_file)
2313 allocno_p = false;
2314 internal_flag_ira_verbose = flag_ira_verbose;
2315 cost_elements_num = max_reg_num ();
2316 init_costs ();
2317 initiate_regno_cost_classes ();
2318 find_costs_and_classes (dump_file);
2319 finish_regno_cost_classes ();
2320 if (define_pseudo_classes)
2321 pseudo_classes_defined_p = true;
2323 finish_costs ();
2328 /* Change hard register costs for allocnos which lives through
2329 function calls. This is called only when we found all intersected
2330 calls during building allocno live ranges. */
2331 void
2332 ira_tune_allocno_costs (void)
2334 int j, n, regno;
2335 int cost, min_cost, *reg_costs;
2336 enum reg_class aclass, rclass;
2337 machine_mode mode;
2338 ira_allocno_t a;
2339 ira_allocno_iterator ai;
2340 ira_allocno_object_iterator oi;
2341 ira_object_t obj;
2342 bool skip_p;
2343 HARD_REG_SET *crossed_calls_clobber_regs;
2345 FOR_EACH_ALLOCNO (a, ai)
2347 aclass = ALLOCNO_CLASS (a);
2348 if (aclass == NO_REGS)
2349 continue;
2350 mode = ALLOCNO_MODE (a);
2351 n = ira_class_hard_regs_num[aclass];
2352 min_cost = INT_MAX;
2353 if (ALLOCNO_CALLS_CROSSED_NUM (a)
2354 != ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2356 ira_allocate_and_set_costs
2357 (&ALLOCNO_HARD_REG_COSTS (a), aclass,
2358 ALLOCNO_CLASS_COST (a));
2359 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2360 for (j = n - 1; j >= 0; j--)
2362 regno = ira_class_hard_regs[aclass][j];
2363 skip_p = false;
2364 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
2366 if (ira_hard_reg_set_intersection_p (regno, mode,
2367 OBJECT_CONFLICT_HARD_REGS
2368 (obj)))
2370 skip_p = true;
2371 break;
2374 if (skip_p)
2375 continue;
2376 rclass = REGNO_REG_CLASS (regno);
2377 cost = 0;
2378 crossed_calls_clobber_regs
2379 = &(ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a));
2380 if (ira_hard_reg_set_intersection_p (regno, mode,
2381 *crossed_calls_clobber_regs)
2382 && (ira_hard_reg_set_intersection_p (regno, mode,
2383 call_used_or_fixed_regs)
2384 || targetm.hard_regno_call_part_clobbered (NULL, regno,
2385 mode)))
2386 cost += (ALLOCNO_CALL_FREQ (a)
2387 * (ira_memory_move_cost[mode][rclass][0]
2388 + ira_memory_move_cost[mode][rclass][1]));
2389 #ifdef IRA_HARD_REGNO_ADD_COST_MULTIPLIER
2390 cost += ((ira_memory_move_cost[mode][rclass][0]
2391 + ira_memory_move_cost[mode][rclass][1])
2392 * ALLOCNO_FREQ (a)
2393 * IRA_HARD_REGNO_ADD_COST_MULTIPLIER (regno) / 2);
2394 #endif
2395 if (INT_MAX - cost < reg_costs[j])
2396 reg_costs[j] = INT_MAX;
2397 else
2398 reg_costs[j] += cost;
2399 if (min_cost > reg_costs[j])
2400 min_cost = reg_costs[j];
2403 if (min_cost != INT_MAX)
2404 ALLOCNO_CLASS_COST (a) = min_cost;
2406 /* Some targets allow pseudos to be allocated to unaligned sequences
2407 of hard registers. However, selecting an unaligned sequence can
2408 unnecessarily restrict later allocations. So increase the cost of
2409 unaligned hard regs to encourage the use of aligned hard regs. */
2411 const int nregs = ira_reg_class_max_nregs[aclass][ALLOCNO_MODE (a)];
2413 if (nregs > 1)
2415 ira_allocate_and_set_costs
2416 (&ALLOCNO_HARD_REG_COSTS (a), aclass, ALLOCNO_CLASS_COST (a));
2417 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2418 for (j = n - 1; j >= 0; j--)
2420 regno = ira_non_ordered_class_hard_regs[aclass][j];
2421 if ((regno % nregs) != 0)
2423 int index = ira_class_hard_reg_index[aclass][regno];
2424 ira_assert (index != -1);
2425 reg_costs[index] += ALLOCNO_FREQ (a);
2433 /* Add COST to the estimated gain for eliminating REGNO with its
2434 equivalence. If COST is zero, record that no such elimination is
2435 possible. */
2437 void
2438 ira_adjust_equiv_reg_cost (unsigned regno, int cost)
2440 if (cost == 0)
2441 regno_equiv_gains[regno] = 0;
2442 else
2443 regno_equiv_gains[regno] += cost;
2446 void
2447 ira_costs_c_finalize (void)
2449 this_target_ira_int->free_ira_costs ();