[gcc]
[official-gcc.git] / gcc / lra.c
blob9309d5e44c2c7658c598892ab65f44aef3143a8f
1 /* LRA (local register allocator) driver and LRA utilities.
2 Copyright (C) 2010-2014 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* The Local Register Allocator (LRA) is a replacement of former
23 reload pass. It is focused to simplify code solving the reload
24 pass tasks, to make the code maintenance easier, and to implement new
25 perspective optimizations.
27 The major LRA design solutions are:
28 o division small manageable, separated sub-tasks
29 o reflection of all transformations and decisions in RTL as more
30 as possible
31 o insn constraints as a primary source of the info (minimizing
32 number of target-depended macros/hooks)
34 In brief LRA works by iterative insn process with the final goal is
35 to satisfy all insn and address constraints:
36 o New reload insns (in brief reloads) and reload pseudos might be
37 generated;
38 o Some pseudos might be spilled to assign hard registers to
39 new reload pseudos;
40 o Recalculating spilled pseudo values (rematerialization);
41 o Changing spilled pseudos to stack memory or their equivalences;
42 o Allocation stack memory changes the address displacement and
43 new iteration is needed.
45 Here is block diagram of LRA passes:
47 ------------------------
48 --------------- | Undo inheritance for | ---------------
49 | Memory-memory | | spilled pseudos, | | New (and old) |
50 | move coalesce |<---| splits for pseudos got |<-- | pseudos |
51 --------------- | the same hard regs, | | assignment |
52 Start | | and optional reloads | ---------------
53 | | ------------------------ ^
54 V | ---------------- |
55 ----------- V | Update virtual | |
56 | Remove |----> ------------>| register | |
57 | scratches | ^ | displacements | |
58 ----------- | ---------------- |
59 | | |
60 | V New |
61 | ------------ pseudos -------------------
62 | |Constraints:| or insns | Inheritance/split |
63 | | RTL |--------->| transformations |
64 | | transfor- | | in EBB scope |
65 | substi- | mations | -------------------
66 | tutions ------------
67 | | No change
68 ---------------- V
69 | Spilled pseudo | -------------------
70 | to memory |<----| Rematerialization |
71 | substitution | -------------------
72 ----------------
73 | No susbtitions
75 -------------------------
76 | Hard regs substitution, |
77 | devirtalization, and |------> Finish
78 | restoring scratches got |
79 | memory |
80 -------------------------
82 To speed up the process:
83 o We process only insns affected by changes on previous
84 iterations;
85 o We don't use DFA-infrastructure because it results in much slower
86 compiler speed than a special IR described below does;
87 o We use a special insn representation for quick access to insn
88 info which is always *synchronized* with the current RTL;
89 o Insn IR is minimized by memory. It is divided on three parts:
90 o one specific for each insn in RTL (only operand locations);
91 o one common for all insns in RTL with the same insn code
92 (different operand attributes from machine descriptions);
93 o one oriented for maintenance of live info (list of pseudos).
94 o Pseudo data:
95 o all insns where the pseudo is referenced;
96 o live info (conflicting hard regs, live ranges, # of
97 references etc);
98 o data used for assigning (preferred hard regs, costs etc).
100 This file contains LRA driver, LRA utility functions and data, and
101 code for dealing with scratches. */
103 #include "config.h"
104 #include "system.h"
105 #include "coretypes.h"
106 #include "tm.h"
107 #include "hard-reg-set.h"
108 #include "rtl.h"
109 #include "tm_p.h"
110 #include "regs.h"
111 #include "insn-config.h"
112 #include "insn-codes.h"
113 #include "recog.h"
114 #include "output.h"
115 #include "addresses.h"
116 #include "flags.h"
117 #include "hashtab.h"
118 #include "hash-set.h"
119 #include "vec.h"
120 #include "machmode.h"
121 #include "input.h"
122 #include "function.h"
123 #include "tree-core.h"
124 #include "optabs.h"
125 #include "expr.h"
126 #include "predict.h"
127 #include "dominance.h"
128 #include "cfg.h"
129 #include "cfgrtl.h"
130 #include "cfgbuild.h"
131 #include "basic-block.h"
132 #include "except.h"
133 #include "tree-pass.h"
134 #include "timevar.h"
135 #include "target.h"
136 #include "ira.h"
137 #include "lra-int.h"
138 #include "df.h"
140 /* Dump bitmap SET with TITLE and BB INDEX. */
141 void
142 lra_dump_bitmap_with_title (const char *title, bitmap set, int index)
144 unsigned int i;
145 int count;
146 bitmap_iterator bi;
147 static const int max_nums_on_line = 10;
149 if (bitmap_empty_p (set))
150 return;
151 fprintf (lra_dump_file, " %s %d:", title, index);
152 fprintf (lra_dump_file, "\n");
153 count = max_nums_on_line + 1;
154 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
156 if (count > max_nums_on_line)
158 fprintf (lra_dump_file, "\n ");
159 count = 0;
161 fprintf (lra_dump_file, " %4u", i);
162 count++;
164 fprintf (lra_dump_file, "\n");
167 /* Hard registers currently not available for allocation. It can
168 changed after some hard registers become not eliminable. */
169 HARD_REG_SET lra_no_alloc_regs;
171 static int get_new_reg_value (void);
172 static void expand_reg_info (void);
173 static void invalidate_insn_recog_data (int);
174 static int get_insn_freq (rtx_insn *);
175 static void invalidate_insn_data_regno_info (lra_insn_recog_data_t,
176 rtx_insn *, int);
178 /* Expand all regno related info needed for LRA. */
179 static void
180 expand_reg_data (int old)
182 resize_reg_info ();
183 expand_reg_info ();
184 ira_expand_reg_equiv ();
185 for (int i = (int) max_reg_num () - 1; i >= old; i--)
186 lra_change_class (i, ALL_REGS, " Set", true);
189 /* Create and return a new reg of ORIGINAL mode. If ORIGINAL is NULL
190 or of VOIDmode, use MD_MODE for the new reg. Initialize its
191 register class to RCLASS. Print message about assigning class
192 RCLASS containing new register name TITLE unless it is NULL. Use
193 attributes of ORIGINAL if it is a register. The created register
194 will have unique held value. */
196 lra_create_new_reg_with_unique_value (machine_mode md_mode, rtx original,
197 enum reg_class rclass, const char *title)
199 machine_mode mode;
200 rtx new_reg;
202 if (original == NULL_RTX || (mode = GET_MODE (original)) == VOIDmode)
203 mode = md_mode;
204 lra_assert (mode != VOIDmode);
205 new_reg = gen_reg_rtx (mode);
206 if (original == NULL_RTX || ! REG_P (original))
208 if (lra_dump_file != NULL)
209 fprintf (lra_dump_file, " Creating newreg=%i", REGNO (new_reg));
211 else
213 if (ORIGINAL_REGNO (original) >= FIRST_PSEUDO_REGISTER)
214 ORIGINAL_REGNO (new_reg) = ORIGINAL_REGNO (original);
215 REG_USERVAR_P (new_reg) = REG_USERVAR_P (original);
216 REG_POINTER (new_reg) = REG_POINTER (original);
217 REG_ATTRS (new_reg) = REG_ATTRS (original);
218 if (lra_dump_file != NULL)
219 fprintf (lra_dump_file, " Creating newreg=%i from oldreg=%i",
220 REGNO (new_reg), REGNO (original));
222 if (lra_dump_file != NULL)
224 if (title != NULL)
225 fprintf (lra_dump_file, ", assigning class %s to%s%s r%d",
226 reg_class_names[rclass], *title == '\0' ? "" : " ",
227 title, REGNO (new_reg));
228 fprintf (lra_dump_file, "\n");
230 expand_reg_data (max_reg_num ());
231 setup_reg_classes (REGNO (new_reg), rclass, NO_REGS, rclass);
232 return new_reg;
235 /* Analogous to the previous function but also inherits value of
236 ORIGINAL. */
238 lra_create_new_reg (machine_mode md_mode, rtx original,
239 enum reg_class rclass, const char *title)
241 rtx new_reg;
243 new_reg
244 = lra_create_new_reg_with_unique_value (md_mode, original, rclass, title);
245 if (original != NULL_RTX && REG_P (original))
246 lra_assign_reg_val (REGNO (original), REGNO (new_reg));
247 return new_reg;
250 /* Set up for REGNO unique hold value. */
251 void
252 lra_set_regno_unique_value (int regno)
254 lra_reg_info[regno].val = get_new_reg_value ();
257 /* Invalidate INSN related info used by LRA. The info should never be
258 used after that. */
259 void
260 lra_invalidate_insn_data (rtx_insn *insn)
262 lra_invalidate_insn_regno_info (insn);
263 invalidate_insn_recog_data (INSN_UID (insn));
266 /* Mark INSN deleted and invalidate the insn related info used by
267 LRA. */
268 void
269 lra_set_insn_deleted (rtx_insn *insn)
271 lra_invalidate_insn_data (insn);
272 SET_INSN_DELETED (insn);
275 /* Delete an unneeded INSN and any previous insns who sole purpose is
276 loading data that is dead in INSN. */
277 void
278 lra_delete_dead_insn (rtx_insn *insn)
280 rtx_insn *prev = prev_real_insn (insn);
281 rtx prev_dest;
283 /* If the previous insn sets a register that dies in our insn,
284 delete it too. */
285 if (prev && GET_CODE (PATTERN (prev)) == SET
286 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
287 && reg_mentioned_p (prev_dest, PATTERN (insn))
288 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
289 && ! side_effects_p (SET_SRC (PATTERN (prev))))
290 lra_delete_dead_insn (prev);
292 lra_set_insn_deleted (insn);
295 /* Emit insn x = y + z. Return NULL if we failed to do it.
296 Otherwise, return the insn. We don't use gen_add3_insn as it might
297 clobber CC. */
298 static rtx
299 emit_add3_insn (rtx x, rtx y, rtx z)
301 rtx_insn *last;
303 last = get_last_insn ();
305 if (have_addptr3_insn (x, y, z))
307 rtx insn = gen_addptr3_insn (x, y, z);
309 /* If the target provides an "addptr" pattern it hopefully does
310 for a reason. So falling back to the normal add would be
311 a bug. */
312 lra_assert (insn != NULL_RTX);
313 emit_insn (insn);
314 return insn;
317 rtx_insn *insn = emit_insn (gen_rtx_SET (VOIDmode, x,
318 gen_rtx_PLUS (GET_MODE (y), y, z)));
319 if (recog_memoized (insn) < 0)
321 delete_insns_since (last);
322 insn = NULL;
324 return insn;
327 /* Emit insn x = x + y. Return the insn. We use gen_add2_insn as the
328 last resort. */
329 static rtx
330 emit_add2_insn (rtx x, rtx y)
332 rtx insn;
334 insn = emit_add3_insn (x, x, y);
335 if (insn == NULL_RTX)
337 insn = gen_add2_insn (x, y);
338 if (insn != NULL_RTX)
339 emit_insn (insn);
341 return insn;
344 /* Target checks operands through operand predicates to recognize an
345 insn. We should have a special precaution to generate add insns
346 which are frequent results of elimination.
348 Emit insns for x = y + z. X can be used to store intermediate
349 values and should be not in Y and Z when we use X to store an
350 intermediate value. Y + Z should form [base] [+ index[ * scale]] [
351 + disp] where base and index are registers, disp and scale are
352 constants. Y should contain base if it is present, Z should
353 contain disp if any. index[*scale] can be part of Y or Z. */
354 void
355 lra_emit_add (rtx x, rtx y, rtx z)
357 int old;
358 rtx_insn *last;
359 rtx a1, a2, base, index, disp, scale, index_scale;
360 bool ok_p;
362 rtx add3_insn = emit_add3_insn (x, y, z);
363 old = max_reg_num ();
364 if (add3_insn != NULL)
366 else
368 disp = a2 = NULL_RTX;
369 if (GET_CODE (y) == PLUS)
371 a1 = XEXP (y, 0);
372 a2 = XEXP (y, 1);
373 disp = z;
375 else
377 a1 = y;
378 if (CONSTANT_P (z))
379 disp = z;
380 else
381 a2 = z;
383 index_scale = scale = NULL_RTX;
384 if (GET_CODE (a1) == MULT)
386 index_scale = a1;
387 index = XEXP (a1, 0);
388 scale = XEXP (a1, 1);
389 base = a2;
391 else if (a2 != NULL_RTX && GET_CODE (a2) == MULT)
393 index_scale = a2;
394 index = XEXP (a2, 0);
395 scale = XEXP (a2, 1);
396 base = a1;
398 else
400 base = a1;
401 index = a2;
403 if (! (REG_P (base) || GET_CODE (base) == SUBREG)
404 || (index != NULL_RTX
405 && ! (REG_P (index) || GET_CODE (index) == SUBREG))
406 || (disp != NULL_RTX && ! CONSTANT_P (disp))
407 || (scale != NULL_RTX && ! CONSTANT_P (scale)))
409 /* Probably we have no 3 op add. Last chance is to use 2-op
410 add insn. To succeed, don't move Z to X as an address
411 segment always comes in Y. Otherwise, we might fail when
412 adding the address segment to register. */
413 lra_assert (x != y && x != z);
414 emit_move_insn (x, y);
415 rtx insn = emit_add2_insn (x, z);
416 lra_assert (insn != NULL_RTX);
418 else
420 if (index_scale == NULL_RTX)
421 index_scale = index;
422 if (disp == NULL_RTX)
424 /* Generate x = index_scale; x = x + base. */
425 lra_assert (index_scale != NULL_RTX && base != NULL_RTX);
426 emit_move_insn (x, index_scale);
427 rtx insn = emit_add2_insn (x, base);
428 lra_assert (insn != NULL_RTX);
430 else if (scale == NULL_RTX)
432 /* Try x = base + disp. */
433 lra_assert (base != NULL_RTX);
434 last = get_last_insn ();
435 rtx_insn *move_insn =
436 emit_move_insn (x, gen_rtx_PLUS (GET_MODE (base), base, disp));
437 if (recog_memoized (move_insn) < 0)
439 delete_insns_since (last);
440 /* Generate x = disp; x = x + base. */
441 emit_move_insn (x, disp);
442 rtx add2_insn = emit_add2_insn (x, base);
443 lra_assert (add2_insn != NULL_RTX);
445 /* Generate x = x + index. */
446 if (index != NULL_RTX)
448 rtx insn = emit_add2_insn (x, index);
449 lra_assert (insn != NULL_RTX);
452 else
454 /* Try x = index_scale; x = x + disp; x = x + base. */
455 last = get_last_insn ();
456 rtx_insn *move_insn = emit_move_insn (x, index_scale);
457 ok_p = false;
458 if (recog_memoized (move_insn) >= 0)
460 rtx insn = emit_add2_insn (x, disp);
461 if (insn != NULL_RTX)
463 insn = emit_add2_insn (x, disp);
464 if (insn != NULL_RTX)
465 ok_p = true;
468 if (! ok_p)
470 delete_insns_since (last);
471 /* Generate x = disp; x = x + base; x = x + index_scale. */
472 emit_move_insn (x, disp);
473 rtx insn = emit_add2_insn (x, base);
474 lra_assert (insn != NULL_RTX);
475 insn = emit_add2_insn (x, index_scale);
476 lra_assert (insn != NULL_RTX);
481 /* Functions emit_... can create pseudos -- so expand the pseudo
482 data. */
483 if (old != max_reg_num ())
484 expand_reg_data (old);
487 /* The number of emitted reload insns so far. */
488 int lra_curr_reload_num;
490 /* Emit x := y, processing special case when y = u + v or y = u + v *
491 scale + w through emit_add (Y can be an address which is base +
492 index reg * scale + displacement in general case). X may be used
493 as intermediate result therefore it should be not in Y. */
494 void
495 lra_emit_move (rtx x, rtx y)
497 int old;
499 if (GET_CODE (y) != PLUS)
501 if (rtx_equal_p (x, y))
502 return;
503 old = max_reg_num ();
504 emit_move_insn (x, y);
505 if (REG_P (x))
506 lra_reg_info[ORIGINAL_REGNO (x)].last_reload = ++lra_curr_reload_num;
507 /* Function emit_move can create pseudos -- so expand the pseudo
508 data. */
509 if (old != max_reg_num ())
510 expand_reg_data (old);
511 return;
513 lra_emit_add (x, XEXP (y, 0), XEXP (y, 1));
516 /* Update insn operands which are duplication of operands whose
517 numbers are in array of NOPS (with end marker -1). The insn is
518 represented by its LRA internal representation ID. */
519 void
520 lra_update_dups (lra_insn_recog_data_t id, signed char *nops)
522 int i, j, nop;
523 struct lra_static_insn_data *static_id = id->insn_static_data;
525 for (i = 0; i < static_id->n_dups; i++)
526 for (j = 0; (nop = nops[j]) >= 0; j++)
527 if (static_id->dup_num[i] == nop)
528 *id->dup_loc[i] = *id->operand_loc[nop];
533 /* This page contains code dealing with info about registers in the
534 insns. */
536 /* Pools for insn reg info. */
537 static alloc_pool insn_reg_pool;
539 /* Initiate pool for insn reg info. */
540 static void
541 init_insn_regs (void)
543 insn_reg_pool
544 = create_alloc_pool ("insn regs", sizeof (struct lra_insn_reg), 100);
547 /* Create LRA insn related info about a reference to REGNO in INSN with
548 TYPE (in/out/inout), biggest reference mode MODE, flag that it is
549 reference through subreg (SUBREG_P), flag that is early clobbered
550 in the insn (EARLY_CLOBBER), and reference to the next insn reg
551 info (NEXT). */
552 static struct lra_insn_reg *
553 new_insn_reg (rtx_insn *insn, int regno, enum op_type type,
554 machine_mode mode,
555 bool subreg_p, bool early_clobber, struct lra_insn_reg *next)
557 struct lra_insn_reg *ir;
559 ir = (struct lra_insn_reg *) pool_alloc (insn_reg_pool);
560 ir->type = type;
561 ir->biggest_mode = mode;
562 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (lra_reg_info[regno].biggest_mode)
563 && NONDEBUG_INSN_P (insn))
564 lra_reg_info[regno].biggest_mode = mode;
565 ir->subreg_p = subreg_p;
566 ir->early_clobber = early_clobber;
567 ir->regno = regno;
568 ir->next = next;
569 return ir;
572 /* Free insn reg info IR. */
573 static void
574 free_insn_reg (struct lra_insn_reg *ir)
576 pool_free (insn_reg_pool, ir);
579 /* Free insn reg info list IR. */
580 static void
581 free_insn_regs (struct lra_insn_reg *ir)
583 struct lra_insn_reg *next_ir;
585 for (; ir != NULL; ir = next_ir)
587 next_ir = ir->next;
588 free_insn_reg (ir);
592 /* Finish pool for insn reg info. */
593 static void
594 finish_insn_regs (void)
596 free_alloc_pool (insn_reg_pool);
601 /* This page contains code dealing LRA insn info (or in other words
602 LRA internal insn representation). */
604 /* Map INSN_CODE -> the static insn data. This info is valid during
605 all translation unit. */
606 struct lra_static_insn_data *insn_code_data[LAST_INSN_CODE];
608 /* Debug insns are represented as a special insn with one input
609 operand which is RTL expression in var_location. */
611 /* The following data are used as static insn operand data for all
612 debug insns. If structure lra_operand_data is changed, the
613 initializer should be changed too. */
614 static struct lra_operand_data debug_operand_data =
616 NULL, /* alternative */
617 VOIDmode, /* We are not interesting in the operand mode. */
618 OP_IN,
619 0, 0, 0, 0
622 /* The following data are used as static insn data for all debug
623 insns. If structure lra_static_insn_data is changed, the
624 initializer should be changed too. */
625 static struct lra_static_insn_data debug_insn_static_data =
627 &debug_operand_data,
628 0, /* Duplication operands #. */
629 -1, /* Commutative operand #. */
630 1, /* Operands #. There is only one operand which is debug RTL
631 expression. */
632 0, /* Duplications #. */
633 0, /* Alternatives #. We are not interesting in alternatives
634 because we does not proceed debug_insns for reloads. */
635 NULL, /* Hard registers referenced in machine description. */
636 NULL /* Descriptions of operands in alternatives. */
639 /* Called once per compiler work to initialize some LRA data related
640 to insns. */
641 static void
642 init_insn_code_data_once (void)
644 memset (insn_code_data, 0, sizeof (insn_code_data));
647 /* Called once per compiler work to finalize some LRA data related to
648 insns. */
649 static void
650 finish_insn_code_data_once (void)
652 int i;
654 for (i = 0; i < LAST_INSN_CODE; i++)
656 if (insn_code_data[i] != NULL)
657 free (insn_code_data[i]);
661 /* Return static insn data, allocate and setup if necessary. Although
662 dup_num is static data (it depends only on icode), to set it up we
663 need to extract insn first. So recog_data should be valid for
664 normal insn (ICODE >= 0) before the call. */
665 static struct lra_static_insn_data *
666 get_static_insn_data (int icode, int nop, int ndup, int nalt)
668 struct lra_static_insn_data *data;
669 size_t n_bytes;
671 lra_assert (icode < LAST_INSN_CODE);
672 if (icode >= 0 && (data = insn_code_data[icode]) != NULL)
673 return data;
674 lra_assert (nop >= 0 && ndup >= 0 && nalt >= 0);
675 n_bytes = sizeof (struct lra_static_insn_data)
676 + sizeof (struct lra_operand_data) * nop
677 + sizeof (int) * ndup;
678 data = XNEWVAR (struct lra_static_insn_data, n_bytes);
679 data->operand_alternative = NULL;
680 data->n_operands = nop;
681 data->n_dups = ndup;
682 data->n_alternatives = nalt;
683 data->operand = ((struct lra_operand_data *)
684 ((char *) data + sizeof (struct lra_static_insn_data)));
685 data->dup_num = ((int *) ((char *) data->operand
686 + sizeof (struct lra_operand_data) * nop));
687 if (icode >= 0)
689 int i;
691 insn_code_data[icode] = data;
692 for (i = 0; i < nop; i++)
694 data->operand[i].constraint
695 = insn_data[icode].operand[i].constraint;
696 data->operand[i].mode = insn_data[icode].operand[i].mode;
697 data->operand[i].strict_low = insn_data[icode].operand[i].strict_low;
698 data->operand[i].is_operator
699 = insn_data[icode].operand[i].is_operator;
700 data->operand[i].type
701 = (data->operand[i].constraint[0] == '=' ? OP_OUT
702 : data->operand[i].constraint[0] == '+' ? OP_INOUT
703 : OP_IN);
704 data->operand[i].is_address = false;
706 for (i = 0; i < ndup; i++)
707 data->dup_num[i] = recog_data.dup_num[i];
709 return data;
712 /* The current length of the following array. */
713 int lra_insn_recog_data_len;
715 /* Map INSN_UID -> the insn recog data (NULL if unknown). */
716 lra_insn_recog_data_t *lra_insn_recog_data;
718 /* Initialize LRA data about insns. */
719 static void
720 init_insn_recog_data (void)
722 lra_insn_recog_data_len = 0;
723 lra_insn_recog_data = NULL;
724 init_insn_regs ();
727 /* Expand, if necessary, LRA data about insns. */
728 static void
729 check_and_expand_insn_recog_data (int index)
731 int i, old;
733 if (lra_insn_recog_data_len > index)
734 return;
735 old = lra_insn_recog_data_len;
736 lra_insn_recog_data_len = index * 3 / 2 + 1;
737 lra_insn_recog_data = XRESIZEVEC (lra_insn_recog_data_t,
738 lra_insn_recog_data,
739 lra_insn_recog_data_len);
740 for (i = old; i < lra_insn_recog_data_len; i++)
741 lra_insn_recog_data[i] = NULL;
744 /* Finish LRA DATA about insn. */
745 static void
746 free_insn_recog_data (lra_insn_recog_data_t data)
748 if (data->operand_loc != NULL)
749 free (data->operand_loc);
750 if (data->dup_loc != NULL)
751 free (data->dup_loc);
752 if (data->arg_hard_regs != NULL)
753 free (data->arg_hard_regs);
754 if (data->icode < 0 && NONDEBUG_INSN_P (data->insn))
756 if (data->insn_static_data->operand_alternative != NULL)
757 free (const_cast <operand_alternative *>
758 (data->insn_static_data->operand_alternative));
759 free_insn_regs (data->insn_static_data->hard_regs);
760 free (data->insn_static_data);
762 free_insn_regs (data->regs);
763 data->regs = NULL;
764 free (data);
767 /* Finish LRA data about all insns. */
768 static void
769 finish_insn_recog_data (void)
771 int i;
772 lra_insn_recog_data_t data;
774 for (i = 0; i < lra_insn_recog_data_len; i++)
775 if ((data = lra_insn_recog_data[i]) != NULL)
776 free_insn_recog_data (data);
777 finish_insn_regs ();
778 free (lra_insn_recog_data);
781 /* Setup info about operands in alternatives of LRA DATA of insn. */
782 static void
783 setup_operand_alternative (lra_insn_recog_data_t data,
784 const operand_alternative *op_alt)
786 int i, j, nop, nalt;
787 int icode = data->icode;
788 struct lra_static_insn_data *static_data = data->insn_static_data;
790 static_data->commutative = -1;
791 nop = static_data->n_operands;
792 nalt = static_data->n_alternatives;
793 static_data->operand_alternative = op_alt;
794 for (i = 0; i < nop; i++)
796 static_data->operand[i].early_clobber = false;
797 static_data->operand[i].is_address = false;
798 if (static_data->operand[i].constraint[0] == '%')
800 /* We currently only support one commutative pair of operands. */
801 if (static_data->commutative < 0)
802 static_data->commutative = i;
803 else
804 lra_assert (icode < 0); /* Asm */
805 /* The last operand should not be marked commutative. */
806 lra_assert (i != nop - 1);
809 for (j = 0; j < nalt; j++)
810 for (i = 0; i < nop; i++, op_alt++)
812 static_data->operand[i].early_clobber |= op_alt->earlyclobber;
813 static_data->operand[i].is_address |= op_alt->is_address;
817 /* Recursively process X and collect info about registers, which are
818 not the insn operands, in X with TYPE (in/out/inout) and flag that
819 it is early clobbered in the insn (EARLY_CLOBBER) and add the info
820 to LIST. X is a part of insn given by DATA. Return the result
821 list. */
822 static struct lra_insn_reg *
823 collect_non_operand_hard_regs (rtx *x, lra_insn_recog_data_t data,
824 struct lra_insn_reg *list,
825 enum op_type type, bool early_clobber)
827 int i, j, regno, last;
828 bool subreg_p;
829 machine_mode mode;
830 struct lra_insn_reg *curr;
831 rtx op = *x;
832 enum rtx_code code = GET_CODE (op);
833 const char *fmt = GET_RTX_FORMAT (code);
835 for (i = 0; i < data->insn_static_data->n_operands; i++)
836 if (x == data->operand_loc[i])
837 /* It is an operand loc. Stop here. */
838 return list;
839 for (i = 0; i < data->insn_static_data->n_dups; i++)
840 if (x == data->dup_loc[i])
841 /* It is a dup loc. Stop here. */
842 return list;
843 mode = GET_MODE (op);
844 subreg_p = false;
845 if (code == SUBREG)
847 op = SUBREG_REG (op);
848 code = GET_CODE (op);
849 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (op)))
851 mode = GET_MODE (op);
852 if (GET_MODE_SIZE (mode) > REGMODE_NATURAL_SIZE (mode))
853 subreg_p = true;
856 if (REG_P (op))
858 if ((regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER)
859 return list;
860 /* Process all regs even unallocatable ones as we need info
861 about all regs for rematerialization pass. */
862 for (last = regno + hard_regno_nregs[regno][mode];
863 regno < last;
864 regno++)
866 for (curr = list; curr != NULL; curr = curr->next)
867 if (curr->regno == regno && curr->subreg_p == subreg_p
868 && curr->biggest_mode == mode)
870 if (curr->type != type)
871 curr->type = OP_INOUT;
872 if (curr->early_clobber != early_clobber)
873 curr->early_clobber = true;
874 break;
876 if (curr == NULL)
878 /* This is a new hard regno or the info can not be
879 integrated into the found structure. */
880 #ifdef STACK_REGS
881 early_clobber
882 = (early_clobber
883 /* This clobber is to inform popping floating
884 point stack only. */
885 && ! (FIRST_STACK_REG <= regno
886 && regno <= LAST_STACK_REG));
887 #endif
888 list = new_insn_reg (data->insn, regno, type, mode, subreg_p,
889 early_clobber, list);
892 return list;
894 switch (code)
896 case SET:
897 list = collect_non_operand_hard_regs (&SET_DEST (op), data,
898 list, OP_OUT, false);
899 list = collect_non_operand_hard_regs (&SET_SRC (op), data,
900 list, OP_IN, false);
901 break;
902 case CLOBBER:
903 /* We treat clobber of non-operand hard registers as early
904 clobber (the behavior is expected from asm). */
905 list = collect_non_operand_hard_regs (&XEXP (op, 0), data,
906 list, OP_OUT, true);
907 break;
908 case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC:
909 list = collect_non_operand_hard_regs (&XEXP (op, 0), data,
910 list, OP_INOUT, false);
911 break;
912 case PRE_MODIFY: case POST_MODIFY:
913 list = collect_non_operand_hard_regs (&XEXP (op, 0), data,
914 list, OP_INOUT, false);
915 list = collect_non_operand_hard_regs (&XEXP (op, 1), data,
916 list, OP_IN, false);
917 break;
918 default:
919 fmt = GET_RTX_FORMAT (code);
920 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
922 if (fmt[i] == 'e')
923 list = collect_non_operand_hard_regs (&XEXP (op, i), data,
924 list, OP_IN, false);
925 else if (fmt[i] == 'E')
926 for (j = XVECLEN (op, i) - 1; j >= 0; j--)
927 list = collect_non_operand_hard_regs (&XVECEXP (op, i, j), data,
928 list, OP_IN, false);
931 return list;
934 /* Set up and return info about INSN. Set up the info if it is not set up
935 yet. */
936 lra_insn_recog_data_t
937 lra_set_insn_recog_data (rtx_insn *insn)
939 lra_insn_recog_data_t data;
940 int i, n, icode;
941 rtx **locs;
942 unsigned int uid = INSN_UID (insn);
943 struct lra_static_insn_data *insn_static_data;
945 check_and_expand_insn_recog_data (uid);
946 if (DEBUG_INSN_P (insn))
947 icode = -1;
948 else
950 icode = INSN_CODE (insn);
951 if (icode < 0)
952 /* It might be a new simple insn which is not recognized yet. */
953 INSN_CODE (insn) = icode = recog_memoized (insn);
955 data = XNEW (struct lra_insn_recog_data);
956 lra_insn_recog_data[uid] = data;
957 data->insn = insn;
958 data->used_insn_alternative = -1;
959 data->icode = icode;
960 data->regs = NULL;
961 if (DEBUG_INSN_P (insn))
963 data->insn_static_data = &debug_insn_static_data;
964 data->dup_loc = NULL;
965 data->arg_hard_regs = NULL;
966 data->preferred_alternatives = ALL_ALTERNATIVES;
967 data->operand_loc = XNEWVEC (rtx *, 1);
968 data->operand_loc[0] = &INSN_VAR_LOCATION_LOC (insn);
969 return data;
971 if (icode < 0)
973 int nop, nalt;
974 machine_mode operand_mode[MAX_RECOG_OPERANDS];
975 const char *constraints[MAX_RECOG_OPERANDS];
977 nop = asm_noperands (PATTERN (insn));
978 data->operand_loc = data->dup_loc = NULL;
979 nalt = 1;
980 if (nop < 0)
982 /* It is a special insn like USE or CLOBBER. We should
983 recognize any regular insn otherwise LRA can do nothing
984 with this insn. */
985 gcc_assert (GET_CODE (PATTERN (insn)) == USE
986 || GET_CODE (PATTERN (insn)) == CLOBBER
987 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
988 data->insn_static_data = insn_static_data
989 = get_static_insn_data (-1, 0, 0, nalt);
991 else
993 /* expand_asm_operands makes sure there aren't too many
994 operands. */
995 lra_assert (nop <= MAX_RECOG_OPERANDS);
996 if (nop != 0)
997 data->operand_loc = XNEWVEC (rtx *, nop);
998 /* Now get the operand values and constraints out of the
999 insn. */
1000 decode_asm_operands (PATTERN (insn), NULL,
1001 data->operand_loc,
1002 constraints, operand_mode, NULL);
1003 if (nop > 0)
1005 const char *p = recog_data.constraints[0];
1007 for (p = constraints[0]; *p; p++)
1008 nalt += *p == ',';
1010 data->insn_static_data = insn_static_data
1011 = get_static_insn_data (-1, nop, 0, nalt);
1012 for (i = 0; i < nop; i++)
1014 insn_static_data->operand[i].mode = operand_mode[i];
1015 insn_static_data->operand[i].constraint = constraints[i];
1016 insn_static_data->operand[i].strict_low = false;
1017 insn_static_data->operand[i].is_operator = false;
1018 insn_static_data->operand[i].is_address = false;
1021 for (i = 0; i < insn_static_data->n_operands; i++)
1022 insn_static_data->operand[i].type
1023 = (insn_static_data->operand[i].constraint[0] == '=' ? OP_OUT
1024 : insn_static_data->operand[i].constraint[0] == '+' ? OP_INOUT
1025 : OP_IN);
1026 data->preferred_alternatives = ALL_ALTERNATIVES;
1027 if (nop > 0)
1029 operand_alternative *op_alt = XCNEWVEC (operand_alternative,
1030 nalt * nop);
1031 preprocess_constraints (nop, nalt, constraints, op_alt);
1032 setup_operand_alternative (data, op_alt);
1035 else
1037 insn_extract (insn);
1038 data->insn_static_data = insn_static_data
1039 = get_static_insn_data (icode, insn_data[icode].n_operands,
1040 insn_data[icode].n_dups,
1041 insn_data[icode].n_alternatives);
1042 n = insn_static_data->n_operands;
1043 if (n == 0)
1044 locs = NULL;
1045 else
1047 locs = XNEWVEC (rtx *, n);
1048 memcpy (locs, recog_data.operand_loc, n * sizeof (rtx *));
1050 data->operand_loc = locs;
1051 n = insn_static_data->n_dups;
1052 if (n == 0)
1053 locs = NULL;
1054 else
1056 locs = XNEWVEC (rtx *, n);
1057 memcpy (locs, recog_data.dup_loc, n * sizeof (rtx *));
1059 data->dup_loc = locs;
1060 data->preferred_alternatives = get_preferred_alternatives (insn);
1061 const operand_alternative *op_alt = preprocess_insn_constraints (icode);
1062 if (!insn_static_data->operand_alternative)
1063 setup_operand_alternative (data, op_alt);
1064 else if (op_alt != insn_static_data->operand_alternative)
1065 insn_static_data->operand_alternative = op_alt;
1067 if (GET_CODE (PATTERN (insn)) == CLOBBER || GET_CODE (PATTERN (insn)) == USE)
1068 insn_static_data->hard_regs = NULL;
1069 else
1070 insn_static_data->hard_regs
1071 = collect_non_operand_hard_regs (&PATTERN (insn), data,
1072 NULL, OP_IN, false);
1073 data->arg_hard_regs = NULL;
1074 if (CALL_P (insn))
1076 rtx link;
1077 int n_hard_regs, regno, arg_hard_regs[FIRST_PSEUDO_REGISTER];
1079 n_hard_regs = 0;
1080 /* Finding implicit hard register usage. We believe it will be
1081 not changed whatever transformations are used. Call insns
1082 are such example. */
1083 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1084 link != NULL_RTX;
1085 link = XEXP (link, 1))
1086 if (GET_CODE (XEXP (link, 0)) == USE
1087 && REG_P (XEXP (XEXP (link, 0), 0)))
1089 regno = REGNO (XEXP (XEXP (link, 0), 0));
1090 lra_assert (regno < FIRST_PSEUDO_REGISTER);
1091 /* It is an argument register. */
1092 for (i = (hard_regno_nregs
1093 [regno][GET_MODE (XEXP (XEXP (link, 0), 0))]) - 1;
1094 i >= 0;
1095 i--)
1096 arg_hard_regs[n_hard_regs++] = regno + i;
1098 if (n_hard_regs != 0)
1100 arg_hard_regs[n_hard_regs++] = -1;
1101 data->arg_hard_regs = XNEWVEC (int, n_hard_regs);
1102 memcpy (data->arg_hard_regs, arg_hard_regs,
1103 sizeof (int) * n_hard_regs);
1106 /* Some output operand can be recognized only from the context not
1107 from the constraints which are empty in this case. Call insn may
1108 contain a hard register in set destination with empty constraint
1109 and extract_insn treats them as an input. */
1110 for (i = 0; i < insn_static_data->n_operands; i++)
1112 int j;
1113 rtx pat, set;
1114 struct lra_operand_data *operand = &insn_static_data->operand[i];
1116 /* ??? Should we treat 'X' the same way. It looks to me that
1117 'X' means anything and empty constraint means we do not
1118 care. */
1119 if (operand->type != OP_IN || *operand->constraint != '\0'
1120 || operand->is_operator)
1121 continue;
1122 pat = PATTERN (insn);
1123 if (GET_CODE (pat) == SET)
1125 if (data->operand_loc[i] != &SET_DEST (pat))
1126 continue;
1128 else if (GET_CODE (pat) == PARALLEL)
1130 for (j = XVECLEN (pat, 0) - 1; j >= 0; j--)
1132 set = XVECEXP (PATTERN (insn), 0, j);
1133 if (GET_CODE (set) == SET
1134 && &SET_DEST (set) == data->operand_loc[i])
1135 break;
1137 if (j < 0)
1138 continue;
1140 else
1141 continue;
1142 operand->type = OP_OUT;
1144 return data;
1147 /* Return info about insn give by UID. The info should be already set
1148 up. */
1149 static lra_insn_recog_data_t
1150 get_insn_recog_data_by_uid (int uid)
1152 lra_insn_recog_data_t data;
1154 data = lra_insn_recog_data[uid];
1155 lra_assert (data != NULL);
1156 return data;
1159 /* Invalidate all info about insn given by its UID. */
1160 static void
1161 invalidate_insn_recog_data (int uid)
1163 lra_insn_recog_data_t data;
1165 data = lra_insn_recog_data[uid];
1166 lra_assert (data != NULL);
1167 free_insn_recog_data (data);
1168 lra_insn_recog_data[uid] = NULL;
1171 /* Update all the insn info about INSN. It is usually called when
1172 something in the insn was changed. Return the updated info. */
1173 lra_insn_recog_data_t
1174 lra_update_insn_recog_data (rtx_insn *insn)
1176 lra_insn_recog_data_t data;
1177 int n;
1178 unsigned int uid = INSN_UID (insn);
1179 struct lra_static_insn_data *insn_static_data;
1180 HOST_WIDE_INT sp_offset = 0;
1182 check_and_expand_insn_recog_data (uid);
1183 if ((data = lra_insn_recog_data[uid]) != NULL
1184 && data->icode != INSN_CODE (insn))
1186 sp_offset = data->sp_offset;
1187 invalidate_insn_data_regno_info (data, insn, get_insn_freq (insn));
1188 invalidate_insn_recog_data (uid);
1189 data = NULL;
1191 if (data == NULL)
1193 data = lra_get_insn_recog_data (insn);
1194 /* Initiate or restore SP offset. */
1195 data->sp_offset = sp_offset;
1196 return data;
1198 insn_static_data = data->insn_static_data;
1199 data->used_insn_alternative = -1;
1200 if (DEBUG_INSN_P (insn))
1201 return data;
1202 if (data->icode < 0)
1204 int nop;
1205 machine_mode operand_mode[MAX_RECOG_OPERANDS];
1206 const char *constraints[MAX_RECOG_OPERANDS];
1208 nop = asm_noperands (PATTERN (insn));
1209 if (nop >= 0)
1211 lra_assert (nop == data->insn_static_data->n_operands);
1212 /* Now get the operand values and constraints out of the
1213 insn. */
1214 decode_asm_operands (PATTERN (insn), NULL,
1215 data->operand_loc,
1216 constraints, operand_mode, NULL);
1217 #ifdef ENABLE_CHECKING
1219 int i;
1221 for (i = 0; i < nop; i++)
1222 lra_assert
1223 (insn_static_data->operand[i].mode == operand_mode[i]
1224 && insn_static_data->operand[i].constraint == constraints[i]
1225 && ! insn_static_data->operand[i].is_operator);
1227 #endif
1229 #ifdef ENABLE_CHECKING
1231 int i;
1233 for (i = 0; i < insn_static_data->n_operands; i++)
1234 lra_assert
1235 (insn_static_data->operand[i].type
1236 == (insn_static_data->operand[i].constraint[0] == '=' ? OP_OUT
1237 : insn_static_data->operand[i].constraint[0] == '+' ? OP_INOUT
1238 : OP_IN));
1240 #endif
1242 else
1244 insn_extract (insn);
1245 n = insn_static_data->n_operands;
1246 if (n != 0)
1247 memcpy (data->operand_loc, recog_data.operand_loc, n * sizeof (rtx *));
1248 n = insn_static_data->n_dups;
1249 if (n != 0)
1250 memcpy (data->dup_loc, recog_data.dup_loc, n * sizeof (rtx *));
1251 lra_assert (check_bool_attrs (insn));
1253 return data;
1256 /* Set up that INSN is using alternative ALT now. */
1257 void
1258 lra_set_used_insn_alternative (rtx_insn *insn, int alt)
1260 lra_insn_recog_data_t data;
1262 data = lra_get_insn_recog_data (insn);
1263 data->used_insn_alternative = alt;
1266 /* Set up that insn with UID is using alternative ALT now. The insn
1267 info should be already set up. */
1268 void
1269 lra_set_used_insn_alternative_by_uid (int uid, int alt)
1271 lra_insn_recog_data_t data;
1273 check_and_expand_insn_recog_data (uid);
1274 data = lra_insn_recog_data[uid];
1275 lra_assert (data != NULL);
1276 data->used_insn_alternative = alt;
1281 /* This page contains code dealing with common register info and
1282 pseudo copies. */
1284 /* The size of the following array. */
1285 static int reg_info_size;
1286 /* Common info about each register. */
1287 struct lra_reg *lra_reg_info;
1289 /* Last register value. */
1290 static int last_reg_value;
1292 /* Return new register value. */
1293 static int
1294 get_new_reg_value (void)
1296 return ++last_reg_value;
1299 /* Pools for copies. */
1300 static alloc_pool copy_pool;
1302 /* Vec referring to pseudo copies. */
1303 static vec<lra_copy_t> copy_vec;
1305 /* Initialize I-th element of lra_reg_info. */
1306 static inline void
1307 initialize_lra_reg_info_element (int i)
1309 bitmap_initialize (&lra_reg_info[i].insn_bitmap, &reg_obstack);
1310 #ifdef STACK_REGS
1311 lra_reg_info[i].no_stack_p = false;
1312 #endif
1313 CLEAR_HARD_REG_SET (lra_reg_info[i].conflict_hard_regs);
1314 CLEAR_HARD_REG_SET (lra_reg_info[i].actual_call_used_reg_set);
1315 lra_reg_info[i].preferred_hard_regno1 = -1;
1316 lra_reg_info[i].preferred_hard_regno2 = -1;
1317 lra_reg_info[i].preferred_hard_regno_profit1 = 0;
1318 lra_reg_info[i].preferred_hard_regno_profit2 = 0;
1319 lra_reg_info[i].biggest_mode = VOIDmode;
1320 lra_reg_info[i].live_ranges = NULL;
1321 lra_reg_info[i].nrefs = lra_reg_info[i].freq = 0;
1322 lra_reg_info[i].last_reload = 0;
1323 lra_reg_info[i].restore_regno = -1;
1324 lra_reg_info[i].val = get_new_reg_value ();
1325 lra_reg_info[i].offset = 0;
1326 lra_reg_info[i].copies = NULL;
1329 /* Initialize common reg info and copies. */
1330 static void
1331 init_reg_info (void)
1333 int i;
1335 last_reg_value = 0;
1336 reg_info_size = max_reg_num () * 3 / 2 + 1;
1337 lra_reg_info = XNEWVEC (struct lra_reg, reg_info_size);
1338 for (i = 0; i < reg_info_size; i++)
1339 initialize_lra_reg_info_element (i);
1340 copy_pool
1341 = create_alloc_pool ("lra copies", sizeof (struct lra_copy), 100);
1342 copy_vec.create (100);
1346 /* Finish common reg info and copies. */
1347 static void
1348 finish_reg_info (void)
1350 int i;
1352 for (i = 0; i < reg_info_size; i++)
1353 bitmap_clear (&lra_reg_info[i].insn_bitmap);
1354 free (lra_reg_info);
1355 reg_info_size = 0;
1356 free_alloc_pool (copy_pool);
1357 copy_vec.release ();
1360 /* Expand common reg info if it is necessary. */
1361 static void
1362 expand_reg_info (void)
1364 int i, old = reg_info_size;
1366 if (reg_info_size > max_reg_num ())
1367 return;
1368 reg_info_size = max_reg_num () * 3 / 2 + 1;
1369 lra_reg_info = XRESIZEVEC (struct lra_reg, lra_reg_info, reg_info_size);
1370 for (i = old; i < reg_info_size; i++)
1371 initialize_lra_reg_info_element (i);
1374 /* Free all copies. */
1375 void
1376 lra_free_copies (void)
1378 lra_copy_t cp;
1380 while (copy_vec.length () != 0)
1382 cp = copy_vec.pop ();
1383 lra_reg_info[cp->regno1].copies = lra_reg_info[cp->regno2].copies = NULL;
1384 pool_free (copy_pool, cp);
1388 /* Create copy of two pseudos REGNO1 and REGNO2. The copy execution
1389 frequency is FREQ. */
1390 void
1391 lra_create_copy (int regno1, int regno2, int freq)
1393 bool regno1_dest_p;
1394 lra_copy_t cp;
1396 lra_assert (regno1 != regno2);
1397 regno1_dest_p = true;
1398 if (regno1 > regno2)
1400 int temp = regno2;
1402 regno1_dest_p = false;
1403 regno2 = regno1;
1404 regno1 = temp;
1406 cp = (lra_copy_t) pool_alloc (copy_pool);
1407 copy_vec.safe_push (cp);
1408 cp->regno1_dest_p = regno1_dest_p;
1409 cp->freq = freq;
1410 cp->regno1 = regno1;
1411 cp->regno2 = regno2;
1412 cp->regno1_next = lra_reg_info[regno1].copies;
1413 lra_reg_info[regno1].copies = cp;
1414 cp->regno2_next = lra_reg_info[regno2].copies;
1415 lra_reg_info[regno2].copies = cp;
1416 if (lra_dump_file != NULL)
1417 fprintf (lra_dump_file, " Creating copy r%d%sr%d@%d\n",
1418 regno1, regno1_dest_p ? "<-" : "->", regno2, freq);
1421 /* Return N-th (0, 1, ...) copy. If there is no copy, return
1422 NULL. */
1423 lra_copy_t
1424 lra_get_copy (int n)
1426 if (n >= (int) copy_vec.length ())
1427 return NULL;
1428 return copy_vec[n];
1433 /* This page contains code dealing with info about registers in
1434 insns. */
1436 /* Process X of insn UID recursively and add info (operand type is
1437 given by TYPE, flag of that it is early clobber is EARLY_CLOBBER)
1438 about registers in X to the insn DATA. */
1439 static void
1440 add_regs_to_insn_regno_info (lra_insn_recog_data_t data, rtx x, int uid,
1441 enum op_type type, bool early_clobber)
1443 int i, j, regno;
1444 bool subreg_p;
1445 machine_mode mode;
1446 const char *fmt;
1447 enum rtx_code code;
1448 struct lra_insn_reg *curr;
1450 code = GET_CODE (x);
1451 mode = GET_MODE (x);
1452 subreg_p = false;
1453 if (GET_CODE (x) == SUBREG)
1455 x = SUBREG_REG (x);
1456 code = GET_CODE (x);
1457 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
1459 mode = GET_MODE (x);
1460 if (GET_MODE_SIZE (mode) > REGMODE_NATURAL_SIZE (mode))
1461 subreg_p = true;
1464 if (REG_P (x))
1466 regno = REGNO (x);
1467 /* Process all regs even unallocatable ones as we need info about
1468 all regs for rematerialization pass. */
1469 expand_reg_info ();
1470 if (bitmap_set_bit (&lra_reg_info[regno].insn_bitmap, uid))
1472 data->regs = new_insn_reg (data->insn, regno, type, mode, subreg_p,
1473 early_clobber, data->regs);
1474 return;
1476 else
1478 for (curr = data->regs; curr != NULL; curr = curr->next)
1479 if (curr->regno == regno)
1481 if (curr->subreg_p != subreg_p || curr->biggest_mode != mode)
1482 /* The info can not be integrated into the found
1483 structure. */
1484 data->regs = new_insn_reg (data->insn, regno, type, mode,
1485 subreg_p, early_clobber,
1486 data->regs);
1487 else
1489 if (curr->type != type)
1490 curr->type = OP_INOUT;
1491 if (curr->early_clobber != early_clobber)
1492 curr->early_clobber = true;
1494 return;
1496 gcc_unreachable ();
1500 switch (code)
1502 case SET:
1503 add_regs_to_insn_regno_info (data, SET_DEST (x), uid, OP_OUT, false);
1504 add_regs_to_insn_regno_info (data, SET_SRC (x), uid, OP_IN, false);
1505 break;
1506 case CLOBBER:
1507 /* We treat clobber of non-operand hard registers as early
1508 clobber (the behavior is expected from asm). */
1509 add_regs_to_insn_regno_info (data, XEXP (x, 0), uid, OP_OUT, true);
1510 break;
1511 case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC:
1512 add_regs_to_insn_regno_info (data, XEXP (x, 0), uid, OP_INOUT, false);
1513 break;
1514 case PRE_MODIFY: case POST_MODIFY:
1515 add_regs_to_insn_regno_info (data, XEXP (x, 0), uid, OP_INOUT, false);
1516 add_regs_to_insn_regno_info (data, XEXP (x, 1), uid, OP_IN, false);
1517 break;
1518 default:
1519 if ((code != PARALLEL && code != EXPR_LIST) || type != OP_OUT)
1520 /* Some targets place small structures in registers for return
1521 values of functions, and those registers are wrapped in
1522 PARALLEL that we may see as the destination of a SET. Here
1523 is an example:
1525 (call_insn 13 12 14 2 (set (parallel:BLK [
1526 (expr_list:REG_DEP_TRUE (reg:DI 0 ax)
1527 (const_int 0 [0]))
1528 (expr_list:REG_DEP_TRUE (reg:DI 1 dx)
1529 (const_int 8 [0x8]))
1531 (call (mem:QI (symbol_ref:DI (... */
1532 type = OP_IN;
1533 fmt = GET_RTX_FORMAT (code);
1534 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1536 if (fmt[i] == 'e')
1537 add_regs_to_insn_regno_info (data, XEXP (x, i), uid, type, false);
1538 else if (fmt[i] == 'E')
1540 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1541 add_regs_to_insn_regno_info (data, XVECEXP (x, i, j), uid,
1542 type, false);
1548 /* Return execution frequency of INSN. */
1549 static int
1550 get_insn_freq (rtx_insn *insn)
1552 basic_block bb = BLOCK_FOR_INSN (insn);
1554 gcc_checking_assert (bb != NULL);
1555 return REG_FREQ_FROM_BB (bb);
1558 /* Invalidate all reg info of INSN with DATA and execution frequency
1559 FREQ. Update common info about the invalidated registers. */
1560 static void
1561 invalidate_insn_data_regno_info (lra_insn_recog_data_t data, rtx_insn *insn,
1562 int freq)
1564 int uid;
1565 bool debug_p;
1566 unsigned int i;
1567 struct lra_insn_reg *ir, *next_ir;
1569 uid = INSN_UID (insn);
1570 debug_p = DEBUG_INSN_P (insn);
1571 for (ir = data->regs; ir != NULL; ir = next_ir)
1573 i = ir->regno;
1574 next_ir = ir->next;
1575 free_insn_reg (ir);
1576 bitmap_clear_bit (&lra_reg_info[i].insn_bitmap, uid);
1577 if (i >= FIRST_PSEUDO_REGISTER && ! debug_p)
1579 lra_reg_info[i].nrefs--;
1580 lra_reg_info[i].freq -= freq;
1581 lra_assert (lra_reg_info[i].nrefs >= 0 && lra_reg_info[i].freq >= 0);
1584 data->regs = NULL;
1587 /* Invalidate all reg info of INSN. Update common info about the
1588 invalidated registers. */
1589 void
1590 lra_invalidate_insn_regno_info (rtx_insn *insn)
1592 invalidate_insn_data_regno_info (lra_get_insn_recog_data (insn), insn,
1593 get_insn_freq (insn));
1596 /* Update common reg info from reg info of insn given by its DATA and
1597 execution frequency FREQ. */
1598 static void
1599 setup_insn_reg_info (lra_insn_recog_data_t data, int freq)
1601 unsigned int i;
1602 struct lra_insn_reg *ir;
1604 for (ir = data->regs; ir != NULL; ir = ir->next)
1605 if ((i = ir->regno) >= FIRST_PSEUDO_REGISTER)
1607 lra_reg_info[i].nrefs++;
1608 lra_reg_info[i].freq += freq;
1612 /* Set up insn reg info of INSN. Update common reg info from reg info
1613 of INSN. */
1614 void
1615 lra_update_insn_regno_info (rtx_insn *insn)
1617 int i, uid, freq;
1618 lra_insn_recog_data_t data;
1619 struct lra_static_insn_data *static_data;
1620 enum rtx_code code;
1622 if (! INSN_P (insn))
1623 return;
1624 data = lra_get_insn_recog_data (insn);
1625 static_data = data->insn_static_data;
1626 freq = get_insn_freq (insn);
1627 invalidate_insn_data_regno_info (data, insn, freq);
1628 uid = INSN_UID (insn);
1629 for (i = static_data->n_operands - 1; i >= 0; i--)
1630 add_regs_to_insn_regno_info (data, *data->operand_loc[i], uid,
1631 static_data->operand[i].type,
1632 static_data->operand[i].early_clobber);
1633 if ((code = GET_CODE (PATTERN (insn))) == CLOBBER || code == USE)
1634 add_regs_to_insn_regno_info (data, XEXP (PATTERN (insn), 0), uid,
1635 code == USE ? OP_IN : OP_OUT, false);
1636 if (NONDEBUG_INSN_P (insn))
1637 setup_insn_reg_info (data, freq);
1640 /* Return reg info of insn given by it UID. */
1641 struct lra_insn_reg *
1642 lra_get_insn_regs (int uid)
1644 lra_insn_recog_data_t data;
1646 data = get_insn_recog_data_by_uid (uid);
1647 return data->regs;
1652 /* This page contains code dealing with stack of the insns which
1653 should be processed by the next constraint pass. */
1655 /* Bitmap used to put an insn on the stack only in one exemplar. */
1656 static sbitmap lra_constraint_insn_stack_bitmap;
1658 /* The stack itself. */
1659 vec<rtx_insn *> lra_constraint_insn_stack;
1661 /* Put INSN on the stack. If ALWAYS_UPDATE is true, always update the reg
1662 info for INSN, otherwise only update it if INSN is not already on the
1663 stack. */
1664 static inline void
1665 lra_push_insn_1 (rtx_insn *insn, bool always_update)
1667 unsigned int uid = INSN_UID (insn);
1668 if (always_update)
1669 lra_update_insn_regno_info (insn);
1670 if (uid >= SBITMAP_SIZE (lra_constraint_insn_stack_bitmap))
1671 lra_constraint_insn_stack_bitmap =
1672 sbitmap_resize (lra_constraint_insn_stack_bitmap, 3 * uid / 2, 0);
1673 if (bitmap_bit_p (lra_constraint_insn_stack_bitmap, uid))
1674 return;
1675 bitmap_set_bit (lra_constraint_insn_stack_bitmap, uid);
1676 if (! always_update)
1677 lra_update_insn_regno_info (insn);
1678 lra_constraint_insn_stack.safe_push (insn);
1681 /* Put INSN on the stack. */
1682 void
1683 lra_push_insn (rtx_insn *insn)
1685 lra_push_insn_1 (insn, false);
1688 /* Put INSN on the stack and update its reg info. */
1689 void
1690 lra_push_insn_and_update_insn_regno_info (rtx_insn *insn)
1692 lra_push_insn_1 (insn, true);
1695 /* Put insn with UID on the stack. */
1696 void
1697 lra_push_insn_by_uid (unsigned int uid)
1699 lra_push_insn (lra_insn_recog_data[uid]->insn);
1702 /* Take the last-inserted insns off the stack and return it. */
1703 rtx_insn *
1704 lra_pop_insn (void)
1706 rtx_insn *insn = lra_constraint_insn_stack.pop ();
1707 bitmap_clear_bit (lra_constraint_insn_stack_bitmap, INSN_UID (insn));
1708 return insn;
1711 /* Return the current size of the insn stack. */
1712 unsigned int
1713 lra_insn_stack_length (void)
1715 return lra_constraint_insn_stack.length ();
1718 /* Push insns FROM to TO (excluding it) going in reverse order. */
1719 static void
1720 push_insns (rtx_insn *from, rtx_insn *to)
1722 rtx_insn *insn;
1724 if (from == NULL_RTX)
1725 return;
1726 for (insn = from; insn != to; insn = PREV_INSN (insn))
1727 if (INSN_P (insn))
1728 lra_push_insn (insn);
1731 /* Set up sp offset for insn in range [FROM, LAST]. The offset is
1732 taken from the next BB insn after LAST or zero if there in such
1733 insn. */
1734 static void
1735 setup_sp_offset (rtx_insn *from, rtx_insn *last)
1737 rtx_insn *before = next_nonnote_insn_bb (last);
1738 HOST_WIDE_INT offset = (before == NULL_RTX || ! INSN_P (before)
1739 ? 0 : lra_get_insn_recog_data (before)->sp_offset);
1741 for (rtx_insn *insn = from; insn != NEXT_INSN (last); insn = NEXT_INSN (insn))
1742 lra_get_insn_recog_data (insn)->sp_offset = offset;
1745 /* Emit insns BEFORE before INSN and insns AFTER after INSN. Put the
1746 insns onto the stack. Print about emitting the insns with
1747 TITLE. */
1748 void
1749 lra_process_new_insns (rtx_insn *insn, rtx_insn *before, rtx_insn *after,
1750 const char *title)
1752 rtx_insn *last;
1754 if (before == NULL_RTX && after == NULL_RTX)
1755 return;
1756 if (lra_dump_file != NULL)
1758 dump_insn_slim (lra_dump_file, insn);
1759 if (before != NULL_RTX)
1761 fprintf (lra_dump_file," %s before:\n", title);
1762 dump_rtl_slim (lra_dump_file, before, NULL, -1, 0);
1764 if (after != NULL_RTX)
1766 fprintf (lra_dump_file, " %s after:\n", title);
1767 dump_rtl_slim (lra_dump_file, after, NULL, -1, 0);
1769 fprintf (lra_dump_file, "\n");
1771 if (before != NULL_RTX)
1773 emit_insn_before (before, insn);
1774 push_insns (PREV_INSN (insn), PREV_INSN (before));
1775 setup_sp_offset (before, PREV_INSN (insn));
1777 if (after != NULL_RTX)
1779 for (last = after; NEXT_INSN (last) != NULL_RTX; last = NEXT_INSN (last))
1781 emit_insn_after (after, insn);
1782 push_insns (last, insn);
1783 setup_sp_offset (after, last);
1789 /* Replace all references to register OLD_REGNO in *LOC with pseudo
1790 register NEW_REG. Return true if any change was made. */
1791 bool
1792 lra_substitute_pseudo (rtx *loc, int old_regno, rtx new_reg)
1794 rtx x = *loc;
1795 bool result = false;
1796 enum rtx_code code;
1797 const char *fmt;
1798 int i, j;
1800 if (x == NULL_RTX)
1801 return false;
1803 code = GET_CODE (x);
1804 if (code == REG && (int) REGNO (x) == old_regno)
1806 machine_mode mode = GET_MODE (*loc);
1807 machine_mode inner_mode = GET_MODE (new_reg);
1809 if (mode != inner_mode)
1811 if (GET_MODE_SIZE (mode) >= GET_MODE_SIZE (inner_mode)
1812 || ! SCALAR_INT_MODE_P (inner_mode))
1813 new_reg = gen_rtx_SUBREG (mode, new_reg, 0);
1814 else
1815 new_reg = gen_lowpart_SUBREG (mode, new_reg);
1817 *loc = new_reg;
1818 return true;
1821 /* Scan all the operand sub-expressions. */
1822 fmt = GET_RTX_FORMAT (code);
1823 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1825 if (fmt[i] == 'e')
1827 if (lra_substitute_pseudo (&XEXP (x, i), old_regno, new_reg))
1828 result = true;
1830 else if (fmt[i] == 'E')
1832 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1833 if (lra_substitute_pseudo (&XVECEXP (x, i, j), old_regno, new_reg))
1834 result = true;
1837 return result;
1840 /* Call lra_substitute_pseudo within an insn. This won't update the insn ptr,
1841 just the contents of the insn. */
1842 bool
1843 lra_substitute_pseudo_within_insn (rtx_insn *insn, int old_regno, rtx new_reg)
1845 rtx loc = insn;
1846 return lra_substitute_pseudo (&loc, old_regno, new_reg);
1851 /* This page contains code dealing with scratches (changing them onto
1852 pseudos and restoring them from the pseudos).
1854 We change scratches into pseudos at the beginning of LRA to
1855 simplify dealing with them (conflicts, hard register assignments).
1857 If the pseudo denoting scratch was spilled it means that we do need
1858 a hard register for it. Such pseudos are transformed back to
1859 scratches at the end of LRA. */
1861 /* Description of location of a former scratch operand. */
1862 struct sloc
1864 rtx_insn *insn; /* Insn where the scratch was. */
1865 int nop; /* Number of the operand which was a scratch. */
1868 typedef struct sloc *sloc_t;
1870 /* Locations of the former scratches. */
1871 static vec<sloc_t> scratches;
1873 /* Bitmap of scratch regnos. */
1874 static bitmap_head scratch_bitmap;
1876 /* Bitmap of scratch operands. */
1877 static bitmap_head scratch_operand_bitmap;
1879 /* Return true if pseudo REGNO is made of SCRATCH. */
1880 bool
1881 lra_former_scratch_p (int regno)
1883 return bitmap_bit_p (&scratch_bitmap, regno);
1886 /* Return true if the operand NOP of INSN is a former scratch. */
1887 bool
1888 lra_former_scratch_operand_p (rtx_insn *insn, int nop)
1890 return bitmap_bit_p (&scratch_operand_bitmap,
1891 INSN_UID (insn) * MAX_RECOG_OPERANDS + nop) != 0;
1894 /* Change scratches onto pseudos and save their location. */
1895 static void
1896 remove_scratches (void)
1898 int i;
1899 bool insn_changed_p;
1900 basic_block bb;
1901 rtx_insn *insn;
1902 rtx reg;
1903 sloc_t loc;
1904 lra_insn_recog_data_t id;
1905 struct lra_static_insn_data *static_id;
1907 scratches.create (get_max_uid ());
1908 bitmap_initialize (&scratch_bitmap, &reg_obstack);
1909 bitmap_initialize (&scratch_operand_bitmap, &reg_obstack);
1910 FOR_EACH_BB_FN (bb, cfun)
1911 FOR_BB_INSNS (bb, insn)
1912 if (INSN_P (insn))
1914 id = lra_get_insn_recog_data (insn);
1915 static_id = id->insn_static_data;
1916 insn_changed_p = false;
1917 for (i = 0; i < static_id->n_operands; i++)
1918 if (GET_CODE (*id->operand_loc[i]) == SCRATCH
1919 && GET_MODE (*id->operand_loc[i]) != VOIDmode)
1921 insn_changed_p = true;
1922 *id->operand_loc[i] = reg
1923 = lra_create_new_reg (static_id->operand[i].mode,
1924 *id->operand_loc[i], ALL_REGS, NULL);
1925 add_reg_note (insn, REG_UNUSED, reg);
1926 lra_update_dup (id, i);
1927 loc = XNEW (struct sloc);
1928 loc->insn = insn;
1929 loc->nop = i;
1930 scratches.safe_push (loc);
1931 bitmap_set_bit (&scratch_bitmap, REGNO (*id->operand_loc[i]));
1932 bitmap_set_bit (&scratch_operand_bitmap,
1933 INSN_UID (insn) * MAX_RECOG_OPERANDS + i);
1934 if (lra_dump_file != NULL)
1935 fprintf (lra_dump_file,
1936 "Removing SCRATCH in insn #%u (nop %d)\n",
1937 INSN_UID (insn), i);
1939 if (insn_changed_p)
1940 /* Because we might use DF right after caller-saves sub-pass
1941 we need to keep DF info up to date. */
1942 df_insn_rescan (insn);
1946 /* Changes pseudos created by function remove_scratches onto scratches. */
1947 static void
1948 restore_scratches (void)
1950 int regno;
1951 unsigned i;
1952 sloc_t loc;
1953 rtx_insn *last = NULL;
1954 lra_insn_recog_data_t id = NULL;
1956 for (i = 0; scratches.iterate (i, &loc); i++)
1958 if (last != loc->insn)
1960 last = loc->insn;
1961 id = lra_get_insn_recog_data (last);
1963 if (REG_P (*id->operand_loc[loc->nop])
1964 && ((regno = REGNO (*id->operand_loc[loc->nop]))
1965 >= FIRST_PSEUDO_REGISTER)
1966 && lra_get_regno_hard_regno (regno) < 0)
1968 /* It should be only case when scratch register with chosen
1969 constraint 'X' did not get memory or hard register. */
1970 lra_assert (lra_former_scratch_p (regno));
1971 *id->operand_loc[loc->nop]
1972 = gen_rtx_SCRATCH (GET_MODE (*id->operand_loc[loc->nop]));
1973 lra_update_dup (id, loc->nop);
1974 if (lra_dump_file != NULL)
1975 fprintf (lra_dump_file, "Restoring SCRATCH in insn #%u(nop %d)\n",
1976 INSN_UID (loc->insn), loc->nop);
1979 for (i = 0; scratches.iterate (i, &loc); i++)
1980 free (loc);
1981 scratches.release ();
1982 bitmap_clear (&scratch_bitmap);
1983 bitmap_clear (&scratch_operand_bitmap);
1988 #ifdef ENABLE_CHECKING
1990 /* Function checks RTL for correctness. If FINAL_P is true, it is
1991 done at the end of LRA and the check is more rigorous. */
1992 static void
1993 check_rtl (bool final_p)
1995 basic_block bb;
1996 rtx_insn *insn;
1998 lra_assert (! final_p || reload_completed);
1999 FOR_EACH_BB_FN (bb, cfun)
2000 FOR_BB_INSNS (bb, insn)
2001 if (NONDEBUG_INSN_P (insn)
2002 && GET_CODE (PATTERN (insn)) != USE
2003 && GET_CODE (PATTERN (insn)) != CLOBBER
2004 && GET_CODE (PATTERN (insn)) != ASM_INPUT)
2006 if (final_p)
2008 #ifdef ENABLED_CHECKING
2009 extract_constrain_insn (insn);
2010 #endif
2011 continue;
2013 /* LRA code is based on assumption that all addresses can be
2014 correctly decomposed. LRA can generate reloads for
2015 decomposable addresses. The decomposition code checks the
2016 correctness of the addresses. So we don't need to check
2017 the addresses here. Don't call insn_invalid_p here, it can
2018 change the code at this stage. */
2019 if (recog_memoized (insn) < 0 && asm_noperands (PATTERN (insn)) < 0)
2020 fatal_insn_not_found (insn);
2023 #endif /* #ifdef ENABLE_CHECKING */
2025 /* Determine if the current function has an exception receiver block
2026 that reaches the exit block via non-exceptional edges */
2027 static bool
2028 has_nonexceptional_receiver (void)
2030 edge e;
2031 edge_iterator ei;
2032 basic_block *tos, *worklist, bb;
2034 /* If we're not optimizing, then just err on the safe side. */
2035 if (!optimize)
2036 return true;
2038 /* First determine which blocks can reach exit via normal paths. */
2039 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
2041 FOR_EACH_BB_FN (bb, cfun)
2042 bb->flags &= ~BB_REACHABLE;
2044 /* Place the exit block on our worklist. */
2045 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
2046 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
2048 /* Iterate: find everything reachable from what we've already seen. */
2049 while (tos != worklist)
2051 bb = *--tos;
2053 FOR_EACH_EDGE (e, ei, bb->preds)
2054 if (e->flags & EDGE_ABNORMAL)
2056 free (worklist);
2057 return true;
2059 else
2061 basic_block src = e->src;
2063 if (!(src->flags & BB_REACHABLE))
2065 src->flags |= BB_REACHABLE;
2066 *tos++ = src;
2070 free (worklist);
2071 /* No exceptional block reached exit unexceptionally. */
2072 return false;
2075 #ifdef AUTO_INC_DEC
2077 /* Process recursively X of INSN and add REG_INC notes if necessary. */
2078 static void
2079 add_auto_inc_notes (rtx_insn *insn, rtx x)
2081 enum rtx_code code = GET_CODE (x);
2082 const char *fmt;
2083 int i, j;
2085 if (code == MEM && auto_inc_p (XEXP (x, 0)))
2087 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
2088 return;
2091 /* Scan all X sub-expressions. */
2092 fmt = GET_RTX_FORMAT (code);
2093 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2095 if (fmt[i] == 'e')
2096 add_auto_inc_notes (insn, XEXP (x, i));
2097 else if (fmt[i] == 'E')
2098 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2099 add_auto_inc_notes (insn, XVECEXP (x, i, j));
2103 #endif
2105 /* Remove all REG_DEAD and REG_UNUSED notes and regenerate REG_INC.
2106 We change pseudos by hard registers without notification of DF and
2107 that can make the notes obsolete. DF-infrastructure does not deal
2108 with REG_INC notes -- so we should regenerate them here. */
2109 static void
2110 update_inc_notes (void)
2112 rtx *pnote;
2113 basic_block bb;
2114 rtx_insn *insn;
2116 FOR_EACH_BB_FN (bb, cfun)
2117 FOR_BB_INSNS (bb, insn)
2118 if (NONDEBUG_INSN_P (insn))
2120 pnote = &REG_NOTES (insn);
2121 while (*pnote != 0)
2123 if (REG_NOTE_KIND (*pnote) == REG_DEAD
2124 || REG_NOTE_KIND (*pnote) == REG_UNUSED
2125 || REG_NOTE_KIND (*pnote) == REG_INC)
2126 *pnote = XEXP (*pnote, 1);
2127 else
2128 pnote = &XEXP (*pnote, 1);
2130 #ifdef AUTO_INC_DEC
2131 add_auto_inc_notes (insn, PATTERN (insn));
2132 #endif
2136 /* Set to 1 while in lra. */
2137 int lra_in_progress;
2139 /* Start of pseudo regnos before the LRA. */
2140 int lra_new_regno_start;
2142 /* Start of reload pseudo regnos before the new spill pass. */
2143 int lra_constraint_new_regno_start;
2145 /* Inheritance pseudo regnos before the new spill pass. */
2146 bitmap_head lra_inheritance_pseudos;
2148 /* Split regnos before the new spill pass. */
2149 bitmap_head lra_split_regs;
2151 /* Reload pseudo regnos before the new assignmnet pass which still can
2152 be spilled after the assinment pass as memory is also accepted in
2153 insns for the reload pseudos. */
2154 bitmap_head lra_optional_reload_pseudos;
2156 /* Pseudo regnos used for subreg reloads before the new assignment
2157 pass. Such pseudos still can be spilled after the assinment
2158 pass. */
2159 bitmap_head lra_subreg_reload_pseudos;
2161 /* File used for output of LRA debug information. */
2162 FILE *lra_dump_file;
2164 /* True if we should try spill into registers of different classes
2165 instead of memory. */
2166 bool lra_reg_spill_p;
2168 /* Set up value LRA_REG_SPILL_P. */
2169 static void
2170 setup_reg_spill_flag (void)
2172 int cl, mode;
2174 if (targetm.spill_class != NULL)
2175 for (cl = 0; cl < (int) LIM_REG_CLASSES; cl++)
2176 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
2177 if (targetm.spill_class ((enum reg_class) cl,
2178 (machine_mode) mode) != NO_REGS)
2180 lra_reg_spill_p = true;
2181 return;
2183 lra_reg_spill_p = false;
2186 /* True if the current function is too big to use regular algorithms
2187 in LRA. In other words, we should use simpler and faster algorithms
2188 in LRA. It also means we should not worry about generation code
2189 for caller saves. The value is set up in IRA. */
2190 bool lra_simple_p;
2192 /* Major LRA entry function. F is a file should be used to dump LRA
2193 debug info. */
2194 void
2195 lra (FILE *f)
2197 int i;
2198 bool live_p, scratch_p, inserted_p;
2200 lra_dump_file = f;
2202 timevar_push (TV_LRA);
2204 /* Make sure that the last insn is a note. Some subsequent passes
2205 need it. */
2206 emit_note (NOTE_INSN_DELETED);
2208 COPY_HARD_REG_SET (lra_no_alloc_regs, ira_no_alloc_regs);
2210 init_reg_info ();
2211 expand_reg_info ();
2213 init_insn_recog_data ();
2215 #ifdef ENABLE_CHECKING
2216 /* Some quick check on RTL generated by previous passes. */
2217 check_rtl (false);
2218 #endif
2220 lra_in_progress = 1;
2222 lra_live_range_iter = lra_coalesce_iter = lra_constraint_iter = 0;
2223 lra_assignment_iter = lra_assignment_iter_after_spill = 0;
2224 lra_inheritance_iter = lra_undo_inheritance_iter = 0;
2226 setup_reg_spill_flag ();
2228 /* Function remove_scratches can creates new pseudos for clobbers --
2229 so set up lra_constraint_new_regno_start before its call to
2230 permit changing reg classes for pseudos created by this
2231 simplification. */
2232 lra_constraint_new_regno_start = lra_new_regno_start = max_reg_num ();
2233 remove_scratches ();
2234 scratch_p = lra_constraint_new_regno_start != max_reg_num ();
2236 /* A function that has a non-local label that can reach the exit
2237 block via non-exceptional paths must save all call-saved
2238 registers. */
2239 if (cfun->has_nonlocal_label && has_nonexceptional_receiver ())
2240 crtl->saves_all_registers = 1;
2242 if (crtl->saves_all_registers)
2243 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2244 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
2245 df_set_regs_ever_live (i, true);
2247 /* We don't DF from now and avoid its using because it is to
2248 expensive when a lot of RTL changes are made. */
2249 df_set_flags (DF_NO_INSN_RESCAN);
2250 lra_constraint_insn_stack.create (get_max_uid ());
2251 lra_constraint_insn_stack_bitmap = sbitmap_alloc (get_max_uid ());
2252 bitmap_clear (lra_constraint_insn_stack_bitmap);
2253 lra_live_ranges_init ();
2254 lra_constraints_init ();
2255 lra_curr_reload_num = 0;
2256 push_insns (get_last_insn (), NULL);
2257 /* It is needed for the 1st coalescing. */
2258 bitmap_initialize (&lra_inheritance_pseudos, &reg_obstack);
2259 bitmap_initialize (&lra_split_regs, &reg_obstack);
2260 bitmap_initialize (&lra_optional_reload_pseudos, &reg_obstack);
2261 bitmap_initialize (&lra_subreg_reload_pseudos, &reg_obstack);
2262 live_p = false;
2263 if (get_frame_size () != 0 && crtl->stack_alignment_needed)
2264 /* If we have a stack frame, we must align it now. The stack size
2265 may be a part of the offset computation for register
2266 elimination. */
2267 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
2268 lra_init_equiv ();
2269 for (;;)
2271 for (;;)
2273 /* We should try to assign hard registers to scratches even
2274 if there were no RTL transformations in
2275 lra_constraints. */
2276 if (! lra_constraints (lra_constraint_iter == 0)
2277 && (lra_constraint_iter > 1
2278 || (! scratch_p && ! caller_save_needed)))
2279 break;
2280 /* Constraint transformations may result in that eliminable
2281 hard regs become uneliminable and pseudos which use them
2282 should be spilled. It is better to do it before pseudo
2283 assignments.
2285 For example, rs6000 can make
2286 RS6000_PIC_OFFSET_TABLE_REGNUM uneliminable if we started
2287 to use a constant pool. */
2288 lra_eliminate (false, false);
2289 /* Do inheritance only for regular algorithms. */
2290 if (! lra_simple_p)
2292 if (flag_use_caller_save)
2294 if (live_p)
2295 lra_clear_live_ranges ();
2296 /* As a side-effect of lra_create_live_ranges, we calculate
2297 actual_call_used_reg_set, which is needed during
2298 lra_inheritance. */
2299 lra_create_live_ranges (true, true);
2301 lra_inheritance ();
2303 if (live_p)
2304 lra_clear_live_ranges ();
2305 /* We need live ranges for lra_assign -- so build them. But
2306 don't remove dead insns or change global live info as we
2307 can undo inheritance transformations after inheritance
2308 pseudo assigning. */
2309 lra_create_live_ranges (true, false);
2310 live_p = true;
2311 /* If we don't spill non-reload and non-inheritance pseudos,
2312 there is no sense to run memory-memory move coalescing.
2313 If inheritance pseudos were spilled, the memory-memory
2314 moves involving them will be removed by pass undoing
2315 inheritance. */
2316 if (lra_simple_p)
2317 lra_assign ();
2318 else
2320 bool spill_p = !lra_assign ();
2322 if (lra_undo_inheritance ())
2323 live_p = false;
2324 if (spill_p)
2326 if (! live_p)
2328 lra_create_live_ranges (true, true);
2329 live_p = true;
2331 if (lra_coalesce ())
2332 live_p = false;
2334 if (! live_p)
2335 lra_clear_live_ranges ();
2338 /* Don't clear optional reloads bitmap until all constraints are
2339 satisfied as we need to differ them from regular reloads. */
2340 bitmap_clear (&lra_optional_reload_pseudos);
2341 bitmap_clear (&lra_subreg_reload_pseudos);
2342 bitmap_clear (&lra_inheritance_pseudos);
2343 bitmap_clear (&lra_split_regs);
2344 if (! live_p)
2346 /* We need full live info for spilling pseudos into
2347 registers instead of memory. */
2348 lra_create_live_ranges (lra_reg_spill_p, true);
2349 live_p = true;
2351 /* We should check necessity for spilling here as the above live
2352 range pass can remove spilled pseudos. */
2353 if (! lra_need_for_spills_p ())
2354 break;
2355 /* Now we know what pseudos should be spilled. Try to
2356 rematerialize them first. */
2357 if (lra_remat ())
2359 /* We need full live info -- see the comment above. */
2360 lra_create_live_ranges (lra_reg_spill_p, true);
2361 live_p = true;
2362 if (! lra_need_for_spills_p ())
2363 break;
2365 lra_spill ();
2366 /* Assignment of stack slots changes elimination offsets for
2367 some eliminations. So update the offsets here. */
2368 lra_eliminate (false, false);
2369 lra_constraint_new_regno_start = max_reg_num ();
2370 lra_assignment_iter_after_spill = 0;
2372 restore_scratches ();
2373 lra_eliminate (true, false);
2374 lra_final_code_change ();
2375 lra_in_progress = 0;
2376 if (live_p)
2377 lra_clear_live_ranges ();
2378 lra_live_ranges_finish ();
2379 lra_constraints_finish ();
2380 finish_reg_info ();
2381 sbitmap_free (lra_constraint_insn_stack_bitmap);
2382 lra_constraint_insn_stack.release ();
2383 finish_insn_recog_data ();
2384 regstat_free_n_sets_and_refs ();
2385 regstat_free_ri ();
2386 reload_completed = 1;
2387 update_inc_notes ();
2389 inserted_p = fixup_abnormal_edges ();
2391 /* We've possibly turned single trapping insn into multiple ones. */
2392 if (cfun->can_throw_non_call_exceptions)
2394 sbitmap blocks;
2395 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
2396 bitmap_ones (blocks);
2397 find_many_sub_basic_blocks (blocks);
2398 sbitmap_free (blocks);
2401 if (inserted_p)
2402 commit_edge_insertions ();
2404 /* Replacing pseudos with their memory equivalents might have
2405 created shared rtx. Subsequent passes would get confused
2406 by this, so unshare everything here. */
2407 unshare_all_rtl_again (get_insns ());
2409 #ifdef ENABLE_CHECKING
2410 check_rtl (true);
2411 #endif
2413 timevar_pop (TV_LRA);
2416 /* Called once per compiler to initialize LRA data once. */
2417 void
2418 lra_init_once (void)
2420 init_insn_code_data_once ();
2423 /* Called once per compiler to finish LRA data which are initialize
2424 once. */
2425 void
2426 lra_finish_once (void)
2428 finish_insn_code_data_once ();