1 /* LRA (local register allocator) driver and LRA utilities.
2 Copyright (C) 2010-2014 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* The Local Register Allocator (LRA) is a replacement of former
23 reload pass. It is focused to simplify code solving the reload
24 pass tasks, to make the code maintenance easier, and to implement new
25 perspective optimizations.
27 The major LRA design solutions are:
28 o division small manageable, separated sub-tasks
29 o reflection of all transformations and decisions in RTL as more
31 o insn constraints as a primary source of the info (minimizing
32 number of target-depended macros/hooks)
34 In brief LRA works by iterative insn process with the final goal is
35 to satisfy all insn and address constraints:
36 o New reload insns (in brief reloads) and reload pseudos might be
38 o Some pseudos might be spilled to assign hard registers to
40 o Recalculating spilled pseudo values (rematerialization);
41 o Changing spilled pseudos to stack memory or their equivalences;
42 o Allocation stack memory changes the address displacement and
43 new iteration is needed.
45 Here is block diagram of LRA passes:
47 ------------------------
48 --------------- | Undo inheritance for | ---------------
49 | Memory-memory | | spilled pseudos, | | New (and old) |
50 | move coalesce |<---| splits for pseudos got |<-- | pseudos |
51 --------------- | the same hard regs, | | assignment |
52 Start | | and optional reloads | ---------------
53 | | ------------------------ ^
54 V | ---------------- |
55 ----------- V | Update virtual | |
56 | Remove |----> ------------>| register | |
57 | scratches | ^ | displacements | |
58 ----------- | ---------------- |
61 | ------------ pseudos -------------------
62 | |Constraints:| or insns | Inheritance/split |
63 | | RTL |--------->| transformations |
64 | | transfor- | | in EBB scope |
65 | substi- | mations | -------------------
66 | tutions ------------
69 | Spilled pseudo | -------------------
70 | to memory |<----| Rematerialization |
71 | substitution | -------------------
75 -------------------------
76 | Hard regs substitution, |
77 | devirtalization, and |------> Finish
78 | restoring scratches got |
80 -------------------------
82 To speed up the process:
83 o We process only insns affected by changes on previous
85 o We don't use DFA-infrastructure because it results in much slower
86 compiler speed than a special IR described below does;
87 o We use a special insn representation for quick access to insn
88 info which is always *synchronized* with the current RTL;
89 o Insn IR is minimized by memory. It is divided on three parts:
90 o one specific for each insn in RTL (only operand locations);
91 o one common for all insns in RTL with the same insn code
92 (different operand attributes from machine descriptions);
93 o one oriented for maintenance of live info (list of pseudos).
95 o all insns where the pseudo is referenced;
96 o live info (conflicting hard regs, live ranges, # of
98 o data used for assigning (preferred hard regs, costs etc).
100 This file contains LRA driver, LRA utility functions and data, and
101 code for dealing with scratches. */
105 #include "coretypes.h"
107 #include "hard-reg-set.h"
111 #include "insn-config.h"
112 #include "insn-codes.h"
115 #include "addresses.h"
118 #include "hash-set.h"
120 #include "machmode.h"
122 #include "function.h"
123 #include "tree-core.h"
127 #include "dominance.h"
130 #include "cfgbuild.h"
131 #include "basic-block.h"
133 #include "tree-pass.h"
140 /* Dump bitmap SET with TITLE and BB INDEX. */
142 lra_dump_bitmap_with_title (const char *title
, bitmap set
, int index
)
147 static const int max_nums_on_line
= 10;
149 if (bitmap_empty_p (set
))
151 fprintf (lra_dump_file
, " %s %d:", title
, index
);
152 fprintf (lra_dump_file
, "\n");
153 count
= max_nums_on_line
+ 1;
154 EXECUTE_IF_SET_IN_BITMAP (set
, 0, i
, bi
)
156 if (count
> max_nums_on_line
)
158 fprintf (lra_dump_file
, "\n ");
161 fprintf (lra_dump_file
, " %4u", i
);
164 fprintf (lra_dump_file
, "\n");
167 /* Hard registers currently not available for allocation. It can
168 changed after some hard registers become not eliminable. */
169 HARD_REG_SET lra_no_alloc_regs
;
171 static int get_new_reg_value (void);
172 static void expand_reg_info (void);
173 static void invalidate_insn_recog_data (int);
174 static int get_insn_freq (rtx_insn
*);
175 static void invalidate_insn_data_regno_info (lra_insn_recog_data_t
,
178 /* Expand all regno related info needed for LRA. */
180 expand_reg_data (int old
)
184 ira_expand_reg_equiv ();
185 for (int i
= (int) max_reg_num () - 1; i
>= old
; i
--)
186 lra_change_class (i
, ALL_REGS
, " Set", true);
189 /* Create and return a new reg of ORIGINAL mode. If ORIGINAL is NULL
190 or of VOIDmode, use MD_MODE for the new reg. Initialize its
191 register class to RCLASS. Print message about assigning class
192 RCLASS containing new register name TITLE unless it is NULL. Use
193 attributes of ORIGINAL if it is a register. The created register
194 will have unique held value. */
196 lra_create_new_reg_with_unique_value (machine_mode md_mode
, rtx original
,
197 enum reg_class rclass
, const char *title
)
202 if (original
== NULL_RTX
|| (mode
= GET_MODE (original
)) == VOIDmode
)
204 lra_assert (mode
!= VOIDmode
);
205 new_reg
= gen_reg_rtx (mode
);
206 if (original
== NULL_RTX
|| ! REG_P (original
))
208 if (lra_dump_file
!= NULL
)
209 fprintf (lra_dump_file
, " Creating newreg=%i", REGNO (new_reg
));
213 if (ORIGINAL_REGNO (original
) >= FIRST_PSEUDO_REGISTER
)
214 ORIGINAL_REGNO (new_reg
) = ORIGINAL_REGNO (original
);
215 REG_USERVAR_P (new_reg
) = REG_USERVAR_P (original
);
216 REG_POINTER (new_reg
) = REG_POINTER (original
);
217 REG_ATTRS (new_reg
) = REG_ATTRS (original
);
218 if (lra_dump_file
!= NULL
)
219 fprintf (lra_dump_file
, " Creating newreg=%i from oldreg=%i",
220 REGNO (new_reg
), REGNO (original
));
222 if (lra_dump_file
!= NULL
)
225 fprintf (lra_dump_file
, ", assigning class %s to%s%s r%d",
226 reg_class_names
[rclass
], *title
== '\0' ? "" : " ",
227 title
, REGNO (new_reg
));
228 fprintf (lra_dump_file
, "\n");
230 expand_reg_data (max_reg_num ());
231 setup_reg_classes (REGNO (new_reg
), rclass
, NO_REGS
, rclass
);
235 /* Analogous to the previous function but also inherits value of
238 lra_create_new_reg (machine_mode md_mode
, rtx original
,
239 enum reg_class rclass
, const char *title
)
244 = lra_create_new_reg_with_unique_value (md_mode
, original
, rclass
, title
);
245 if (original
!= NULL_RTX
&& REG_P (original
))
246 lra_assign_reg_val (REGNO (original
), REGNO (new_reg
));
250 /* Set up for REGNO unique hold value. */
252 lra_set_regno_unique_value (int regno
)
254 lra_reg_info
[regno
].val
= get_new_reg_value ();
257 /* Invalidate INSN related info used by LRA. The info should never be
260 lra_invalidate_insn_data (rtx_insn
*insn
)
262 lra_invalidate_insn_regno_info (insn
);
263 invalidate_insn_recog_data (INSN_UID (insn
));
266 /* Mark INSN deleted and invalidate the insn related info used by
269 lra_set_insn_deleted (rtx_insn
*insn
)
271 lra_invalidate_insn_data (insn
);
272 SET_INSN_DELETED (insn
);
275 /* Delete an unneeded INSN and any previous insns who sole purpose is
276 loading data that is dead in INSN. */
278 lra_delete_dead_insn (rtx_insn
*insn
)
280 rtx_insn
*prev
= prev_real_insn (insn
);
283 /* If the previous insn sets a register that dies in our insn,
285 if (prev
&& GET_CODE (PATTERN (prev
)) == SET
286 && (prev_dest
= SET_DEST (PATTERN (prev
)), REG_P (prev_dest
))
287 && reg_mentioned_p (prev_dest
, PATTERN (insn
))
288 && find_regno_note (insn
, REG_DEAD
, REGNO (prev_dest
))
289 && ! side_effects_p (SET_SRC (PATTERN (prev
))))
290 lra_delete_dead_insn (prev
);
292 lra_set_insn_deleted (insn
);
295 /* Emit insn x = y + z. Return NULL if we failed to do it.
296 Otherwise, return the insn. We don't use gen_add3_insn as it might
299 emit_add3_insn (rtx x
, rtx y
, rtx z
)
303 last
= get_last_insn ();
305 if (have_addptr3_insn (x
, y
, z
))
307 rtx insn
= gen_addptr3_insn (x
, y
, z
);
309 /* If the target provides an "addptr" pattern it hopefully does
310 for a reason. So falling back to the normal add would be
312 lra_assert (insn
!= NULL_RTX
);
317 rtx_insn
*insn
= emit_insn (gen_rtx_SET (VOIDmode
, x
,
318 gen_rtx_PLUS (GET_MODE (y
), y
, z
)));
319 if (recog_memoized (insn
) < 0)
321 delete_insns_since (last
);
327 /* Emit insn x = x + y. Return the insn. We use gen_add2_insn as the
330 emit_add2_insn (rtx x
, rtx y
)
334 insn
= emit_add3_insn (x
, x
, y
);
335 if (insn
== NULL_RTX
)
337 insn
= gen_add2_insn (x
, y
);
338 if (insn
!= NULL_RTX
)
344 /* Target checks operands through operand predicates to recognize an
345 insn. We should have a special precaution to generate add insns
346 which are frequent results of elimination.
348 Emit insns for x = y + z. X can be used to store intermediate
349 values and should be not in Y and Z when we use X to store an
350 intermediate value. Y + Z should form [base] [+ index[ * scale]] [
351 + disp] where base and index are registers, disp and scale are
352 constants. Y should contain base if it is present, Z should
353 contain disp if any. index[*scale] can be part of Y or Z. */
355 lra_emit_add (rtx x
, rtx y
, rtx z
)
359 rtx a1
, a2
, base
, index
, disp
, scale
, index_scale
;
362 rtx add3_insn
= emit_add3_insn (x
, y
, z
);
363 old
= max_reg_num ();
364 if (add3_insn
!= NULL
)
368 disp
= a2
= NULL_RTX
;
369 if (GET_CODE (y
) == PLUS
)
383 index_scale
= scale
= NULL_RTX
;
384 if (GET_CODE (a1
) == MULT
)
387 index
= XEXP (a1
, 0);
388 scale
= XEXP (a1
, 1);
391 else if (a2
!= NULL_RTX
&& GET_CODE (a2
) == MULT
)
394 index
= XEXP (a2
, 0);
395 scale
= XEXP (a2
, 1);
403 if (! (REG_P (base
) || GET_CODE (base
) == SUBREG
)
404 || (index
!= NULL_RTX
405 && ! (REG_P (index
) || GET_CODE (index
) == SUBREG
))
406 || (disp
!= NULL_RTX
&& ! CONSTANT_P (disp
))
407 || (scale
!= NULL_RTX
&& ! CONSTANT_P (scale
)))
409 /* Probably we have no 3 op add. Last chance is to use 2-op
410 add insn. To succeed, don't move Z to X as an address
411 segment always comes in Y. Otherwise, we might fail when
412 adding the address segment to register. */
413 lra_assert (x
!= y
&& x
!= z
);
414 emit_move_insn (x
, y
);
415 rtx insn
= emit_add2_insn (x
, z
);
416 lra_assert (insn
!= NULL_RTX
);
420 if (index_scale
== NULL_RTX
)
422 if (disp
== NULL_RTX
)
424 /* Generate x = index_scale; x = x + base. */
425 lra_assert (index_scale
!= NULL_RTX
&& base
!= NULL_RTX
);
426 emit_move_insn (x
, index_scale
);
427 rtx insn
= emit_add2_insn (x
, base
);
428 lra_assert (insn
!= NULL_RTX
);
430 else if (scale
== NULL_RTX
)
432 /* Try x = base + disp. */
433 lra_assert (base
!= NULL_RTX
);
434 last
= get_last_insn ();
435 rtx_insn
*move_insn
=
436 emit_move_insn (x
, gen_rtx_PLUS (GET_MODE (base
), base
, disp
));
437 if (recog_memoized (move_insn
) < 0)
439 delete_insns_since (last
);
440 /* Generate x = disp; x = x + base. */
441 emit_move_insn (x
, disp
);
442 rtx add2_insn
= emit_add2_insn (x
, base
);
443 lra_assert (add2_insn
!= NULL_RTX
);
445 /* Generate x = x + index. */
446 if (index
!= NULL_RTX
)
448 rtx insn
= emit_add2_insn (x
, index
);
449 lra_assert (insn
!= NULL_RTX
);
454 /* Try x = index_scale; x = x + disp; x = x + base. */
455 last
= get_last_insn ();
456 rtx_insn
*move_insn
= emit_move_insn (x
, index_scale
);
458 if (recog_memoized (move_insn
) >= 0)
460 rtx insn
= emit_add2_insn (x
, disp
);
461 if (insn
!= NULL_RTX
)
463 insn
= emit_add2_insn (x
, disp
);
464 if (insn
!= NULL_RTX
)
470 delete_insns_since (last
);
471 /* Generate x = disp; x = x + base; x = x + index_scale. */
472 emit_move_insn (x
, disp
);
473 rtx insn
= emit_add2_insn (x
, base
);
474 lra_assert (insn
!= NULL_RTX
);
475 insn
= emit_add2_insn (x
, index_scale
);
476 lra_assert (insn
!= NULL_RTX
);
481 /* Functions emit_... can create pseudos -- so expand the pseudo
483 if (old
!= max_reg_num ())
484 expand_reg_data (old
);
487 /* The number of emitted reload insns so far. */
488 int lra_curr_reload_num
;
490 /* Emit x := y, processing special case when y = u + v or y = u + v *
491 scale + w through emit_add (Y can be an address which is base +
492 index reg * scale + displacement in general case). X may be used
493 as intermediate result therefore it should be not in Y. */
495 lra_emit_move (rtx x
, rtx y
)
499 if (GET_CODE (y
) != PLUS
)
501 if (rtx_equal_p (x
, y
))
503 old
= max_reg_num ();
504 emit_move_insn (x
, y
);
506 lra_reg_info
[ORIGINAL_REGNO (x
)].last_reload
= ++lra_curr_reload_num
;
507 /* Function emit_move can create pseudos -- so expand the pseudo
509 if (old
!= max_reg_num ())
510 expand_reg_data (old
);
513 lra_emit_add (x
, XEXP (y
, 0), XEXP (y
, 1));
516 /* Update insn operands which are duplication of operands whose
517 numbers are in array of NOPS (with end marker -1). The insn is
518 represented by its LRA internal representation ID. */
520 lra_update_dups (lra_insn_recog_data_t id
, signed char *nops
)
523 struct lra_static_insn_data
*static_id
= id
->insn_static_data
;
525 for (i
= 0; i
< static_id
->n_dups
; i
++)
526 for (j
= 0; (nop
= nops
[j
]) >= 0; j
++)
527 if (static_id
->dup_num
[i
] == nop
)
528 *id
->dup_loc
[i
] = *id
->operand_loc
[nop
];
533 /* This page contains code dealing with info about registers in the
536 /* Pools for insn reg info. */
537 static alloc_pool insn_reg_pool
;
539 /* Initiate pool for insn reg info. */
541 init_insn_regs (void)
544 = create_alloc_pool ("insn regs", sizeof (struct lra_insn_reg
), 100);
547 /* Create LRA insn related info about a reference to REGNO in INSN with
548 TYPE (in/out/inout), biggest reference mode MODE, flag that it is
549 reference through subreg (SUBREG_P), flag that is early clobbered
550 in the insn (EARLY_CLOBBER), and reference to the next insn reg
552 static struct lra_insn_reg
*
553 new_insn_reg (rtx_insn
*insn
, int regno
, enum op_type type
,
555 bool subreg_p
, bool early_clobber
, struct lra_insn_reg
*next
)
557 struct lra_insn_reg
*ir
;
559 ir
= (struct lra_insn_reg
*) pool_alloc (insn_reg_pool
);
561 ir
->biggest_mode
= mode
;
562 if (GET_MODE_SIZE (mode
) > GET_MODE_SIZE (lra_reg_info
[regno
].biggest_mode
)
563 && NONDEBUG_INSN_P (insn
))
564 lra_reg_info
[regno
].biggest_mode
= mode
;
565 ir
->subreg_p
= subreg_p
;
566 ir
->early_clobber
= early_clobber
;
572 /* Free insn reg info IR. */
574 free_insn_reg (struct lra_insn_reg
*ir
)
576 pool_free (insn_reg_pool
, ir
);
579 /* Free insn reg info list IR. */
581 free_insn_regs (struct lra_insn_reg
*ir
)
583 struct lra_insn_reg
*next_ir
;
585 for (; ir
!= NULL
; ir
= next_ir
)
592 /* Finish pool for insn reg info. */
594 finish_insn_regs (void)
596 free_alloc_pool (insn_reg_pool
);
601 /* This page contains code dealing LRA insn info (or in other words
602 LRA internal insn representation). */
604 /* Map INSN_CODE -> the static insn data. This info is valid during
605 all translation unit. */
606 struct lra_static_insn_data
*insn_code_data
[LAST_INSN_CODE
];
608 /* Debug insns are represented as a special insn with one input
609 operand which is RTL expression in var_location. */
611 /* The following data are used as static insn operand data for all
612 debug insns. If structure lra_operand_data is changed, the
613 initializer should be changed too. */
614 static struct lra_operand_data debug_operand_data
=
616 NULL
, /* alternative */
617 VOIDmode
, /* We are not interesting in the operand mode. */
622 /* The following data are used as static insn data for all debug
623 insns. If structure lra_static_insn_data is changed, the
624 initializer should be changed too. */
625 static struct lra_static_insn_data debug_insn_static_data
=
628 0, /* Duplication operands #. */
629 -1, /* Commutative operand #. */
630 1, /* Operands #. There is only one operand which is debug RTL
632 0, /* Duplications #. */
633 0, /* Alternatives #. We are not interesting in alternatives
634 because we does not proceed debug_insns for reloads. */
635 NULL
, /* Hard registers referenced in machine description. */
636 NULL
/* Descriptions of operands in alternatives. */
639 /* Called once per compiler work to initialize some LRA data related
642 init_insn_code_data_once (void)
644 memset (insn_code_data
, 0, sizeof (insn_code_data
));
647 /* Called once per compiler work to finalize some LRA data related to
650 finish_insn_code_data_once (void)
654 for (i
= 0; i
< LAST_INSN_CODE
; i
++)
656 if (insn_code_data
[i
] != NULL
)
657 free (insn_code_data
[i
]);
661 /* Return static insn data, allocate and setup if necessary. Although
662 dup_num is static data (it depends only on icode), to set it up we
663 need to extract insn first. So recog_data should be valid for
664 normal insn (ICODE >= 0) before the call. */
665 static struct lra_static_insn_data
*
666 get_static_insn_data (int icode
, int nop
, int ndup
, int nalt
)
668 struct lra_static_insn_data
*data
;
671 lra_assert (icode
< LAST_INSN_CODE
);
672 if (icode
>= 0 && (data
= insn_code_data
[icode
]) != NULL
)
674 lra_assert (nop
>= 0 && ndup
>= 0 && nalt
>= 0);
675 n_bytes
= sizeof (struct lra_static_insn_data
)
676 + sizeof (struct lra_operand_data
) * nop
677 + sizeof (int) * ndup
;
678 data
= XNEWVAR (struct lra_static_insn_data
, n_bytes
);
679 data
->operand_alternative
= NULL
;
680 data
->n_operands
= nop
;
682 data
->n_alternatives
= nalt
;
683 data
->operand
= ((struct lra_operand_data
*)
684 ((char *) data
+ sizeof (struct lra_static_insn_data
)));
685 data
->dup_num
= ((int *) ((char *) data
->operand
686 + sizeof (struct lra_operand_data
) * nop
));
691 insn_code_data
[icode
] = data
;
692 for (i
= 0; i
< nop
; i
++)
694 data
->operand
[i
].constraint
695 = insn_data
[icode
].operand
[i
].constraint
;
696 data
->operand
[i
].mode
= insn_data
[icode
].operand
[i
].mode
;
697 data
->operand
[i
].strict_low
= insn_data
[icode
].operand
[i
].strict_low
;
698 data
->operand
[i
].is_operator
699 = insn_data
[icode
].operand
[i
].is_operator
;
700 data
->operand
[i
].type
701 = (data
->operand
[i
].constraint
[0] == '=' ? OP_OUT
702 : data
->operand
[i
].constraint
[0] == '+' ? OP_INOUT
704 data
->operand
[i
].is_address
= false;
706 for (i
= 0; i
< ndup
; i
++)
707 data
->dup_num
[i
] = recog_data
.dup_num
[i
];
712 /* The current length of the following array. */
713 int lra_insn_recog_data_len
;
715 /* Map INSN_UID -> the insn recog data (NULL if unknown). */
716 lra_insn_recog_data_t
*lra_insn_recog_data
;
718 /* Initialize LRA data about insns. */
720 init_insn_recog_data (void)
722 lra_insn_recog_data_len
= 0;
723 lra_insn_recog_data
= NULL
;
727 /* Expand, if necessary, LRA data about insns. */
729 check_and_expand_insn_recog_data (int index
)
733 if (lra_insn_recog_data_len
> index
)
735 old
= lra_insn_recog_data_len
;
736 lra_insn_recog_data_len
= index
* 3 / 2 + 1;
737 lra_insn_recog_data
= XRESIZEVEC (lra_insn_recog_data_t
,
739 lra_insn_recog_data_len
);
740 for (i
= old
; i
< lra_insn_recog_data_len
; i
++)
741 lra_insn_recog_data
[i
] = NULL
;
744 /* Finish LRA DATA about insn. */
746 free_insn_recog_data (lra_insn_recog_data_t data
)
748 if (data
->operand_loc
!= NULL
)
749 free (data
->operand_loc
);
750 if (data
->dup_loc
!= NULL
)
751 free (data
->dup_loc
);
752 if (data
->arg_hard_regs
!= NULL
)
753 free (data
->arg_hard_regs
);
754 if (data
->icode
< 0 && NONDEBUG_INSN_P (data
->insn
))
756 if (data
->insn_static_data
->operand_alternative
!= NULL
)
757 free (const_cast <operand_alternative
*>
758 (data
->insn_static_data
->operand_alternative
));
759 free_insn_regs (data
->insn_static_data
->hard_regs
);
760 free (data
->insn_static_data
);
762 free_insn_regs (data
->regs
);
767 /* Finish LRA data about all insns. */
769 finish_insn_recog_data (void)
772 lra_insn_recog_data_t data
;
774 for (i
= 0; i
< lra_insn_recog_data_len
; i
++)
775 if ((data
= lra_insn_recog_data
[i
]) != NULL
)
776 free_insn_recog_data (data
);
778 free (lra_insn_recog_data
);
781 /* Setup info about operands in alternatives of LRA DATA of insn. */
783 setup_operand_alternative (lra_insn_recog_data_t data
,
784 const operand_alternative
*op_alt
)
787 int icode
= data
->icode
;
788 struct lra_static_insn_data
*static_data
= data
->insn_static_data
;
790 static_data
->commutative
= -1;
791 nop
= static_data
->n_operands
;
792 nalt
= static_data
->n_alternatives
;
793 static_data
->operand_alternative
= op_alt
;
794 for (i
= 0; i
< nop
; i
++)
796 static_data
->operand
[i
].early_clobber
= false;
797 static_data
->operand
[i
].is_address
= false;
798 if (static_data
->operand
[i
].constraint
[0] == '%')
800 /* We currently only support one commutative pair of operands. */
801 if (static_data
->commutative
< 0)
802 static_data
->commutative
= i
;
804 lra_assert (icode
< 0); /* Asm */
805 /* The last operand should not be marked commutative. */
806 lra_assert (i
!= nop
- 1);
809 for (j
= 0; j
< nalt
; j
++)
810 for (i
= 0; i
< nop
; i
++, op_alt
++)
812 static_data
->operand
[i
].early_clobber
|= op_alt
->earlyclobber
;
813 static_data
->operand
[i
].is_address
|= op_alt
->is_address
;
817 /* Recursively process X and collect info about registers, which are
818 not the insn operands, in X with TYPE (in/out/inout) and flag that
819 it is early clobbered in the insn (EARLY_CLOBBER) and add the info
820 to LIST. X is a part of insn given by DATA. Return the result
822 static struct lra_insn_reg
*
823 collect_non_operand_hard_regs (rtx
*x
, lra_insn_recog_data_t data
,
824 struct lra_insn_reg
*list
,
825 enum op_type type
, bool early_clobber
)
827 int i
, j
, regno
, last
;
830 struct lra_insn_reg
*curr
;
832 enum rtx_code code
= GET_CODE (op
);
833 const char *fmt
= GET_RTX_FORMAT (code
);
835 for (i
= 0; i
< data
->insn_static_data
->n_operands
; i
++)
836 if (x
== data
->operand_loc
[i
])
837 /* It is an operand loc. Stop here. */
839 for (i
= 0; i
< data
->insn_static_data
->n_dups
; i
++)
840 if (x
== data
->dup_loc
[i
])
841 /* It is a dup loc. Stop here. */
843 mode
= GET_MODE (op
);
847 op
= SUBREG_REG (op
);
848 code
= GET_CODE (op
);
849 if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (op
)))
851 mode
= GET_MODE (op
);
852 if (GET_MODE_SIZE (mode
) > REGMODE_NATURAL_SIZE (mode
))
858 if ((regno
= REGNO (op
)) >= FIRST_PSEUDO_REGISTER
)
860 /* Process all regs even unallocatable ones as we need info
861 about all regs for rematerialization pass. */
862 for (last
= regno
+ hard_regno_nregs
[regno
][mode
];
866 for (curr
= list
; curr
!= NULL
; curr
= curr
->next
)
867 if (curr
->regno
== regno
&& curr
->subreg_p
== subreg_p
868 && curr
->biggest_mode
== mode
)
870 if (curr
->type
!= type
)
871 curr
->type
= OP_INOUT
;
872 if (curr
->early_clobber
!= early_clobber
)
873 curr
->early_clobber
= true;
878 /* This is a new hard regno or the info can not be
879 integrated into the found structure. */
883 /* This clobber is to inform popping floating
885 && ! (FIRST_STACK_REG
<= regno
886 && regno
<= LAST_STACK_REG
));
888 list
= new_insn_reg (data
->insn
, regno
, type
, mode
, subreg_p
,
889 early_clobber
, list
);
897 list
= collect_non_operand_hard_regs (&SET_DEST (op
), data
,
898 list
, OP_OUT
, false);
899 list
= collect_non_operand_hard_regs (&SET_SRC (op
), data
,
903 /* We treat clobber of non-operand hard registers as early
904 clobber (the behavior is expected from asm). */
905 list
= collect_non_operand_hard_regs (&XEXP (op
, 0), data
,
908 case PRE_INC
: case PRE_DEC
: case POST_INC
: case POST_DEC
:
909 list
= collect_non_operand_hard_regs (&XEXP (op
, 0), data
,
910 list
, OP_INOUT
, false);
912 case PRE_MODIFY
: case POST_MODIFY
:
913 list
= collect_non_operand_hard_regs (&XEXP (op
, 0), data
,
914 list
, OP_INOUT
, false);
915 list
= collect_non_operand_hard_regs (&XEXP (op
, 1), data
,
919 fmt
= GET_RTX_FORMAT (code
);
920 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
923 list
= collect_non_operand_hard_regs (&XEXP (op
, i
), data
,
925 else if (fmt
[i
] == 'E')
926 for (j
= XVECLEN (op
, i
) - 1; j
>= 0; j
--)
927 list
= collect_non_operand_hard_regs (&XVECEXP (op
, i
, j
), data
,
934 /* Set up and return info about INSN. Set up the info if it is not set up
936 lra_insn_recog_data_t
937 lra_set_insn_recog_data (rtx_insn
*insn
)
939 lra_insn_recog_data_t data
;
942 unsigned int uid
= INSN_UID (insn
);
943 struct lra_static_insn_data
*insn_static_data
;
945 check_and_expand_insn_recog_data (uid
);
946 if (DEBUG_INSN_P (insn
))
950 icode
= INSN_CODE (insn
);
952 /* It might be a new simple insn which is not recognized yet. */
953 INSN_CODE (insn
) = icode
= recog_memoized (insn
);
955 data
= XNEW (struct lra_insn_recog_data
);
956 lra_insn_recog_data
[uid
] = data
;
958 data
->used_insn_alternative
= -1;
961 if (DEBUG_INSN_P (insn
))
963 data
->insn_static_data
= &debug_insn_static_data
;
964 data
->dup_loc
= NULL
;
965 data
->arg_hard_regs
= NULL
;
966 data
->preferred_alternatives
= ALL_ALTERNATIVES
;
967 data
->operand_loc
= XNEWVEC (rtx
*, 1);
968 data
->operand_loc
[0] = &INSN_VAR_LOCATION_LOC (insn
);
974 machine_mode operand_mode
[MAX_RECOG_OPERANDS
];
975 const char *constraints
[MAX_RECOG_OPERANDS
];
977 nop
= asm_noperands (PATTERN (insn
));
978 data
->operand_loc
= data
->dup_loc
= NULL
;
982 /* It is a special insn like USE or CLOBBER. We should
983 recognize any regular insn otherwise LRA can do nothing
985 gcc_assert (GET_CODE (PATTERN (insn
)) == USE
986 || GET_CODE (PATTERN (insn
)) == CLOBBER
987 || GET_CODE (PATTERN (insn
)) == ASM_INPUT
);
988 data
->insn_static_data
= insn_static_data
989 = get_static_insn_data (-1, 0, 0, nalt
);
993 /* expand_asm_operands makes sure there aren't too many
995 lra_assert (nop
<= MAX_RECOG_OPERANDS
);
997 data
->operand_loc
= XNEWVEC (rtx
*, nop
);
998 /* Now get the operand values and constraints out of the
1000 decode_asm_operands (PATTERN (insn
), NULL
,
1002 constraints
, operand_mode
, NULL
);
1005 const char *p
= recog_data
.constraints
[0];
1007 for (p
= constraints
[0]; *p
; p
++)
1010 data
->insn_static_data
= insn_static_data
1011 = get_static_insn_data (-1, nop
, 0, nalt
);
1012 for (i
= 0; i
< nop
; i
++)
1014 insn_static_data
->operand
[i
].mode
= operand_mode
[i
];
1015 insn_static_data
->operand
[i
].constraint
= constraints
[i
];
1016 insn_static_data
->operand
[i
].strict_low
= false;
1017 insn_static_data
->operand
[i
].is_operator
= false;
1018 insn_static_data
->operand
[i
].is_address
= false;
1021 for (i
= 0; i
< insn_static_data
->n_operands
; i
++)
1022 insn_static_data
->operand
[i
].type
1023 = (insn_static_data
->operand
[i
].constraint
[0] == '=' ? OP_OUT
1024 : insn_static_data
->operand
[i
].constraint
[0] == '+' ? OP_INOUT
1026 data
->preferred_alternatives
= ALL_ALTERNATIVES
;
1029 operand_alternative
*op_alt
= XCNEWVEC (operand_alternative
,
1031 preprocess_constraints (nop
, nalt
, constraints
, op_alt
);
1032 setup_operand_alternative (data
, op_alt
);
1037 insn_extract (insn
);
1038 data
->insn_static_data
= insn_static_data
1039 = get_static_insn_data (icode
, insn_data
[icode
].n_operands
,
1040 insn_data
[icode
].n_dups
,
1041 insn_data
[icode
].n_alternatives
);
1042 n
= insn_static_data
->n_operands
;
1047 locs
= XNEWVEC (rtx
*, n
);
1048 memcpy (locs
, recog_data
.operand_loc
, n
* sizeof (rtx
*));
1050 data
->operand_loc
= locs
;
1051 n
= insn_static_data
->n_dups
;
1056 locs
= XNEWVEC (rtx
*, n
);
1057 memcpy (locs
, recog_data
.dup_loc
, n
* sizeof (rtx
*));
1059 data
->dup_loc
= locs
;
1060 data
->preferred_alternatives
= get_preferred_alternatives (insn
);
1061 const operand_alternative
*op_alt
= preprocess_insn_constraints (icode
);
1062 if (!insn_static_data
->operand_alternative
)
1063 setup_operand_alternative (data
, op_alt
);
1064 else if (op_alt
!= insn_static_data
->operand_alternative
)
1065 insn_static_data
->operand_alternative
= op_alt
;
1067 if (GET_CODE (PATTERN (insn
)) == CLOBBER
|| GET_CODE (PATTERN (insn
)) == USE
)
1068 insn_static_data
->hard_regs
= NULL
;
1070 insn_static_data
->hard_regs
1071 = collect_non_operand_hard_regs (&PATTERN (insn
), data
,
1072 NULL
, OP_IN
, false);
1073 data
->arg_hard_regs
= NULL
;
1077 int n_hard_regs
, regno
, arg_hard_regs
[FIRST_PSEUDO_REGISTER
];
1080 /* Finding implicit hard register usage. We believe it will be
1081 not changed whatever transformations are used. Call insns
1082 are such example. */
1083 for (link
= CALL_INSN_FUNCTION_USAGE (insn
);
1085 link
= XEXP (link
, 1))
1086 if (GET_CODE (XEXP (link
, 0)) == USE
1087 && REG_P (XEXP (XEXP (link
, 0), 0)))
1089 regno
= REGNO (XEXP (XEXP (link
, 0), 0));
1090 lra_assert (regno
< FIRST_PSEUDO_REGISTER
);
1091 /* It is an argument register. */
1092 for (i
= (hard_regno_nregs
1093 [regno
][GET_MODE (XEXP (XEXP (link
, 0), 0))]) - 1;
1096 arg_hard_regs
[n_hard_regs
++] = regno
+ i
;
1098 if (n_hard_regs
!= 0)
1100 arg_hard_regs
[n_hard_regs
++] = -1;
1101 data
->arg_hard_regs
= XNEWVEC (int, n_hard_regs
);
1102 memcpy (data
->arg_hard_regs
, arg_hard_regs
,
1103 sizeof (int) * n_hard_regs
);
1106 /* Some output operand can be recognized only from the context not
1107 from the constraints which are empty in this case. Call insn may
1108 contain a hard register in set destination with empty constraint
1109 and extract_insn treats them as an input. */
1110 for (i
= 0; i
< insn_static_data
->n_operands
; i
++)
1114 struct lra_operand_data
*operand
= &insn_static_data
->operand
[i
];
1116 /* ??? Should we treat 'X' the same way. It looks to me that
1117 'X' means anything and empty constraint means we do not
1119 if (operand
->type
!= OP_IN
|| *operand
->constraint
!= '\0'
1120 || operand
->is_operator
)
1122 pat
= PATTERN (insn
);
1123 if (GET_CODE (pat
) == SET
)
1125 if (data
->operand_loc
[i
] != &SET_DEST (pat
))
1128 else if (GET_CODE (pat
) == PARALLEL
)
1130 for (j
= XVECLEN (pat
, 0) - 1; j
>= 0; j
--)
1132 set
= XVECEXP (PATTERN (insn
), 0, j
);
1133 if (GET_CODE (set
) == SET
1134 && &SET_DEST (set
) == data
->operand_loc
[i
])
1142 operand
->type
= OP_OUT
;
1147 /* Return info about insn give by UID. The info should be already set
1149 static lra_insn_recog_data_t
1150 get_insn_recog_data_by_uid (int uid
)
1152 lra_insn_recog_data_t data
;
1154 data
= lra_insn_recog_data
[uid
];
1155 lra_assert (data
!= NULL
);
1159 /* Invalidate all info about insn given by its UID. */
1161 invalidate_insn_recog_data (int uid
)
1163 lra_insn_recog_data_t data
;
1165 data
= lra_insn_recog_data
[uid
];
1166 lra_assert (data
!= NULL
);
1167 free_insn_recog_data (data
);
1168 lra_insn_recog_data
[uid
] = NULL
;
1171 /* Update all the insn info about INSN. It is usually called when
1172 something in the insn was changed. Return the updated info. */
1173 lra_insn_recog_data_t
1174 lra_update_insn_recog_data (rtx_insn
*insn
)
1176 lra_insn_recog_data_t data
;
1178 unsigned int uid
= INSN_UID (insn
);
1179 struct lra_static_insn_data
*insn_static_data
;
1180 HOST_WIDE_INT sp_offset
= 0;
1182 check_and_expand_insn_recog_data (uid
);
1183 if ((data
= lra_insn_recog_data
[uid
]) != NULL
1184 && data
->icode
!= INSN_CODE (insn
))
1186 sp_offset
= data
->sp_offset
;
1187 invalidate_insn_data_regno_info (data
, insn
, get_insn_freq (insn
));
1188 invalidate_insn_recog_data (uid
);
1193 data
= lra_get_insn_recog_data (insn
);
1194 /* Initiate or restore SP offset. */
1195 data
->sp_offset
= sp_offset
;
1198 insn_static_data
= data
->insn_static_data
;
1199 data
->used_insn_alternative
= -1;
1200 if (DEBUG_INSN_P (insn
))
1202 if (data
->icode
< 0)
1205 machine_mode operand_mode
[MAX_RECOG_OPERANDS
];
1206 const char *constraints
[MAX_RECOG_OPERANDS
];
1208 nop
= asm_noperands (PATTERN (insn
));
1211 lra_assert (nop
== data
->insn_static_data
->n_operands
);
1212 /* Now get the operand values and constraints out of the
1214 decode_asm_operands (PATTERN (insn
), NULL
,
1216 constraints
, operand_mode
, NULL
);
1217 #ifdef ENABLE_CHECKING
1221 for (i
= 0; i
< nop
; i
++)
1223 (insn_static_data
->operand
[i
].mode
== operand_mode
[i
]
1224 && insn_static_data
->operand
[i
].constraint
== constraints
[i
]
1225 && ! insn_static_data
->operand
[i
].is_operator
);
1229 #ifdef ENABLE_CHECKING
1233 for (i
= 0; i
< insn_static_data
->n_operands
; i
++)
1235 (insn_static_data
->operand
[i
].type
1236 == (insn_static_data
->operand
[i
].constraint
[0] == '=' ? OP_OUT
1237 : insn_static_data
->operand
[i
].constraint
[0] == '+' ? OP_INOUT
1244 insn_extract (insn
);
1245 n
= insn_static_data
->n_operands
;
1247 memcpy (data
->operand_loc
, recog_data
.operand_loc
, n
* sizeof (rtx
*));
1248 n
= insn_static_data
->n_dups
;
1250 memcpy (data
->dup_loc
, recog_data
.dup_loc
, n
* sizeof (rtx
*));
1251 lra_assert (check_bool_attrs (insn
));
1256 /* Set up that INSN is using alternative ALT now. */
1258 lra_set_used_insn_alternative (rtx_insn
*insn
, int alt
)
1260 lra_insn_recog_data_t data
;
1262 data
= lra_get_insn_recog_data (insn
);
1263 data
->used_insn_alternative
= alt
;
1266 /* Set up that insn with UID is using alternative ALT now. The insn
1267 info should be already set up. */
1269 lra_set_used_insn_alternative_by_uid (int uid
, int alt
)
1271 lra_insn_recog_data_t data
;
1273 check_and_expand_insn_recog_data (uid
);
1274 data
= lra_insn_recog_data
[uid
];
1275 lra_assert (data
!= NULL
);
1276 data
->used_insn_alternative
= alt
;
1281 /* This page contains code dealing with common register info and
1284 /* The size of the following array. */
1285 static int reg_info_size
;
1286 /* Common info about each register. */
1287 struct lra_reg
*lra_reg_info
;
1289 /* Last register value. */
1290 static int last_reg_value
;
1292 /* Return new register value. */
1294 get_new_reg_value (void)
1296 return ++last_reg_value
;
1299 /* Pools for copies. */
1300 static alloc_pool copy_pool
;
1302 /* Vec referring to pseudo copies. */
1303 static vec
<lra_copy_t
> copy_vec
;
1305 /* Initialize I-th element of lra_reg_info. */
1307 initialize_lra_reg_info_element (int i
)
1309 bitmap_initialize (&lra_reg_info
[i
].insn_bitmap
, ®_obstack
);
1311 lra_reg_info
[i
].no_stack_p
= false;
1313 CLEAR_HARD_REG_SET (lra_reg_info
[i
].conflict_hard_regs
);
1314 CLEAR_HARD_REG_SET (lra_reg_info
[i
].actual_call_used_reg_set
);
1315 lra_reg_info
[i
].preferred_hard_regno1
= -1;
1316 lra_reg_info
[i
].preferred_hard_regno2
= -1;
1317 lra_reg_info
[i
].preferred_hard_regno_profit1
= 0;
1318 lra_reg_info
[i
].preferred_hard_regno_profit2
= 0;
1319 lra_reg_info
[i
].biggest_mode
= VOIDmode
;
1320 lra_reg_info
[i
].live_ranges
= NULL
;
1321 lra_reg_info
[i
].nrefs
= lra_reg_info
[i
].freq
= 0;
1322 lra_reg_info
[i
].last_reload
= 0;
1323 lra_reg_info
[i
].restore_regno
= -1;
1324 lra_reg_info
[i
].val
= get_new_reg_value ();
1325 lra_reg_info
[i
].offset
= 0;
1326 lra_reg_info
[i
].copies
= NULL
;
1329 /* Initialize common reg info and copies. */
1331 init_reg_info (void)
1336 reg_info_size
= max_reg_num () * 3 / 2 + 1;
1337 lra_reg_info
= XNEWVEC (struct lra_reg
, reg_info_size
);
1338 for (i
= 0; i
< reg_info_size
; i
++)
1339 initialize_lra_reg_info_element (i
);
1341 = create_alloc_pool ("lra copies", sizeof (struct lra_copy
), 100);
1342 copy_vec
.create (100);
1346 /* Finish common reg info and copies. */
1348 finish_reg_info (void)
1352 for (i
= 0; i
< reg_info_size
; i
++)
1353 bitmap_clear (&lra_reg_info
[i
].insn_bitmap
);
1354 free (lra_reg_info
);
1356 free_alloc_pool (copy_pool
);
1357 copy_vec
.release ();
1360 /* Expand common reg info if it is necessary. */
1362 expand_reg_info (void)
1364 int i
, old
= reg_info_size
;
1366 if (reg_info_size
> max_reg_num ())
1368 reg_info_size
= max_reg_num () * 3 / 2 + 1;
1369 lra_reg_info
= XRESIZEVEC (struct lra_reg
, lra_reg_info
, reg_info_size
);
1370 for (i
= old
; i
< reg_info_size
; i
++)
1371 initialize_lra_reg_info_element (i
);
1374 /* Free all copies. */
1376 lra_free_copies (void)
1380 while (copy_vec
.length () != 0)
1382 cp
= copy_vec
.pop ();
1383 lra_reg_info
[cp
->regno1
].copies
= lra_reg_info
[cp
->regno2
].copies
= NULL
;
1384 pool_free (copy_pool
, cp
);
1388 /* Create copy of two pseudos REGNO1 and REGNO2. The copy execution
1389 frequency is FREQ. */
1391 lra_create_copy (int regno1
, int regno2
, int freq
)
1396 lra_assert (regno1
!= regno2
);
1397 regno1_dest_p
= true;
1398 if (regno1
> regno2
)
1402 regno1_dest_p
= false;
1406 cp
= (lra_copy_t
) pool_alloc (copy_pool
);
1407 copy_vec
.safe_push (cp
);
1408 cp
->regno1_dest_p
= regno1_dest_p
;
1410 cp
->regno1
= regno1
;
1411 cp
->regno2
= regno2
;
1412 cp
->regno1_next
= lra_reg_info
[regno1
].copies
;
1413 lra_reg_info
[regno1
].copies
= cp
;
1414 cp
->regno2_next
= lra_reg_info
[regno2
].copies
;
1415 lra_reg_info
[regno2
].copies
= cp
;
1416 if (lra_dump_file
!= NULL
)
1417 fprintf (lra_dump_file
, " Creating copy r%d%sr%d@%d\n",
1418 regno1
, regno1_dest_p
? "<-" : "->", regno2
, freq
);
1421 /* Return N-th (0, 1, ...) copy. If there is no copy, return
1424 lra_get_copy (int n
)
1426 if (n
>= (int) copy_vec
.length ())
1433 /* This page contains code dealing with info about registers in
1436 /* Process X of insn UID recursively and add info (operand type is
1437 given by TYPE, flag of that it is early clobber is EARLY_CLOBBER)
1438 about registers in X to the insn DATA. */
1440 add_regs_to_insn_regno_info (lra_insn_recog_data_t data
, rtx x
, int uid
,
1441 enum op_type type
, bool early_clobber
)
1448 struct lra_insn_reg
*curr
;
1450 code
= GET_CODE (x
);
1451 mode
= GET_MODE (x
);
1453 if (GET_CODE (x
) == SUBREG
)
1456 code
= GET_CODE (x
);
1457 if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (x
)))
1459 mode
= GET_MODE (x
);
1460 if (GET_MODE_SIZE (mode
) > REGMODE_NATURAL_SIZE (mode
))
1467 /* Process all regs even unallocatable ones as we need info about
1468 all regs for rematerialization pass. */
1470 if (bitmap_set_bit (&lra_reg_info
[regno
].insn_bitmap
, uid
))
1472 data
->regs
= new_insn_reg (data
->insn
, regno
, type
, mode
, subreg_p
,
1473 early_clobber
, data
->regs
);
1478 for (curr
= data
->regs
; curr
!= NULL
; curr
= curr
->next
)
1479 if (curr
->regno
== regno
)
1481 if (curr
->subreg_p
!= subreg_p
|| curr
->biggest_mode
!= mode
)
1482 /* The info can not be integrated into the found
1484 data
->regs
= new_insn_reg (data
->insn
, regno
, type
, mode
,
1485 subreg_p
, early_clobber
,
1489 if (curr
->type
!= type
)
1490 curr
->type
= OP_INOUT
;
1491 if (curr
->early_clobber
!= early_clobber
)
1492 curr
->early_clobber
= true;
1503 add_regs_to_insn_regno_info (data
, SET_DEST (x
), uid
, OP_OUT
, false);
1504 add_regs_to_insn_regno_info (data
, SET_SRC (x
), uid
, OP_IN
, false);
1507 /* We treat clobber of non-operand hard registers as early
1508 clobber (the behavior is expected from asm). */
1509 add_regs_to_insn_regno_info (data
, XEXP (x
, 0), uid
, OP_OUT
, true);
1511 case PRE_INC
: case PRE_DEC
: case POST_INC
: case POST_DEC
:
1512 add_regs_to_insn_regno_info (data
, XEXP (x
, 0), uid
, OP_INOUT
, false);
1514 case PRE_MODIFY
: case POST_MODIFY
:
1515 add_regs_to_insn_regno_info (data
, XEXP (x
, 0), uid
, OP_INOUT
, false);
1516 add_regs_to_insn_regno_info (data
, XEXP (x
, 1), uid
, OP_IN
, false);
1519 if ((code
!= PARALLEL
&& code
!= EXPR_LIST
) || type
!= OP_OUT
)
1520 /* Some targets place small structures in registers for return
1521 values of functions, and those registers are wrapped in
1522 PARALLEL that we may see as the destination of a SET. Here
1525 (call_insn 13 12 14 2 (set (parallel:BLK [
1526 (expr_list:REG_DEP_TRUE (reg:DI 0 ax)
1528 (expr_list:REG_DEP_TRUE (reg:DI 1 dx)
1529 (const_int 8 [0x8]))
1531 (call (mem:QI (symbol_ref:DI (... */
1533 fmt
= GET_RTX_FORMAT (code
);
1534 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1537 add_regs_to_insn_regno_info (data
, XEXP (x
, i
), uid
, type
, false);
1538 else if (fmt
[i
] == 'E')
1540 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1541 add_regs_to_insn_regno_info (data
, XVECEXP (x
, i
, j
), uid
,
1548 /* Return execution frequency of INSN. */
1550 get_insn_freq (rtx_insn
*insn
)
1552 basic_block bb
= BLOCK_FOR_INSN (insn
);
1554 gcc_checking_assert (bb
!= NULL
);
1555 return REG_FREQ_FROM_BB (bb
);
1558 /* Invalidate all reg info of INSN with DATA and execution frequency
1559 FREQ. Update common info about the invalidated registers. */
1561 invalidate_insn_data_regno_info (lra_insn_recog_data_t data
, rtx_insn
*insn
,
1567 struct lra_insn_reg
*ir
, *next_ir
;
1569 uid
= INSN_UID (insn
);
1570 debug_p
= DEBUG_INSN_P (insn
);
1571 for (ir
= data
->regs
; ir
!= NULL
; ir
= next_ir
)
1576 bitmap_clear_bit (&lra_reg_info
[i
].insn_bitmap
, uid
);
1577 if (i
>= FIRST_PSEUDO_REGISTER
&& ! debug_p
)
1579 lra_reg_info
[i
].nrefs
--;
1580 lra_reg_info
[i
].freq
-= freq
;
1581 lra_assert (lra_reg_info
[i
].nrefs
>= 0 && lra_reg_info
[i
].freq
>= 0);
1587 /* Invalidate all reg info of INSN. Update common info about the
1588 invalidated registers. */
1590 lra_invalidate_insn_regno_info (rtx_insn
*insn
)
1592 invalidate_insn_data_regno_info (lra_get_insn_recog_data (insn
), insn
,
1593 get_insn_freq (insn
));
1596 /* Update common reg info from reg info of insn given by its DATA and
1597 execution frequency FREQ. */
1599 setup_insn_reg_info (lra_insn_recog_data_t data
, int freq
)
1602 struct lra_insn_reg
*ir
;
1604 for (ir
= data
->regs
; ir
!= NULL
; ir
= ir
->next
)
1605 if ((i
= ir
->regno
) >= FIRST_PSEUDO_REGISTER
)
1607 lra_reg_info
[i
].nrefs
++;
1608 lra_reg_info
[i
].freq
+= freq
;
1612 /* Set up insn reg info of INSN. Update common reg info from reg info
1615 lra_update_insn_regno_info (rtx_insn
*insn
)
1618 lra_insn_recog_data_t data
;
1619 struct lra_static_insn_data
*static_data
;
1622 if (! INSN_P (insn
))
1624 data
= lra_get_insn_recog_data (insn
);
1625 static_data
= data
->insn_static_data
;
1626 freq
= get_insn_freq (insn
);
1627 invalidate_insn_data_regno_info (data
, insn
, freq
);
1628 uid
= INSN_UID (insn
);
1629 for (i
= static_data
->n_operands
- 1; i
>= 0; i
--)
1630 add_regs_to_insn_regno_info (data
, *data
->operand_loc
[i
], uid
,
1631 static_data
->operand
[i
].type
,
1632 static_data
->operand
[i
].early_clobber
);
1633 if ((code
= GET_CODE (PATTERN (insn
))) == CLOBBER
|| code
== USE
)
1634 add_regs_to_insn_regno_info (data
, XEXP (PATTERN (insn
), 0), uid
,
1635 code
== USE
? OP_IN
: OP_OUT
, false);
1636 if (NONDEBUG_INSN_P (insn
))
1637 setup_insn_reg_info (data
, freq
);
1640 /* Return reg info of insn given by it UID. */
1641 struct lra_insn_reg
*
1642 lra_get_insn_regs (int uid
)
1644 lra_insn_recog_data_t data
;
1646 data
= get_insn_recog_data_by_uid (uid
);
1652 /* This page contains code dealing with stack of the insns which
1653 should be processed by the next constraint pass. */
1655 /* Bitmap used to put an insn on the stack only in one exemplar. */
1656 static sbitmap lra_constraint_insn_stack_bitmap
;
1658 /* The stack itself. */
1659 vec
<rtx_insn
*> lra_constraint_insn_stack
;
1661 /* Put INSN on the stack. If ALWAYS_UPDATE is true, always update the reg
1662 info for INSN, otherwise only update it if INSN is not already on the
1665 lra_push_insn_1 (rtx_insn
*insn
, bool always_update
)
1667 unsigned int uid
= INSN_UID (insn
);
1669 lra_update_insn_regno_info (insn
);
1670 if (uid
>= SBITMAP_SIZE (lra_constraint_insn_stack_bitmap
))
1671 lra_constraint_insn_stack_bitmap
=
1672 sbitmap_resize (lra_constraint_insn_stack_bitmap
, 3 * uid
/ 2, 0);
1673 if (bitmap_bit_p (lra_constraint_insn_stack_bitmap
, uid
))
1675 bitmap_set_bit (lra_constraint_insn_stack_bitmap
, uid
);
1676 if (! always_update
)
1677 lra_update_insn_regno_info (insn
);
1678 lra_constraint_insn_stack
.safe_push (insn
);
1681 /* Put INSN on the stack. */
1683 lra_push_insn (rtx_insn
*insn
)
1685 lra_push_insn_1 (insn
, false);
1688 /* Put INSN on the stack and update its reg info. */
1690 lra_push_insn_and_update_insn_regno_info (rtx_insn
*insn
)
1692 lra_push_insn_1 (insn
, true);
1695 /* Put insn with UID on the stack. */
1697 lra_push_insn_by_uid (unsigned int uid
)
1699 lra_push_insn (lra_insn_recog_data
[uid
]->insn
);
1702 /* Take the last-inserted insns off the stack and return it. */
1706 rtx_insn
*insn
= lra_constraint_insn_stack
.pop ();
1707 bitmap_clear_bit (lra_constraint_insn_stack_bitmap
, INSN_UID (insn
));
1711 /* Return the current size of the insn stack. */
1713 lra_insn_stack_length (void)
1715 return lra_constraint_insn_stack
.length ();
1718 /* Push insns FROM to TO (excluding it) going in reverse order. */
1720 push_insns (rtx_insn
*from
, rtx_insn
*to
)
1724 if (from
== NULL_RTX
)
1726 for (insn
= from
; insn
!= to
; insn
= PREV_INSN (insn
))
1728 lra_push_insn (insn
);
1731 /* Set up sp offset for insn in range [FROM, LAST]. The offset is
1732 taken from the next BB insn after LAST or zero if there in such
1735 setup_sp_offset (rtx_insn
*from
, rtx_insn
*last
)
1737 rtx_insn
*before
= next_nonnote_insn_bb (last
);
1738 HOST_WIDE_INT offset
= (before
== NULL_RTX
|| ! INSN_P (before
)
1739 ? 0 : lra_get_insn_recog_data (before
)->sp_offset
);
1741 for (rtx_insn
*insn
= from
; insn
!= NEXT_INSN (last
); insn
= NEXT_INSN (insn
))
1742 lra_get_insn_recog_data (insn
)->sp_offset
= offset
;
1745 /* Emit insns BEFORE before INSN and insns AFTER after INSN. Put the
1746 insns onto the stack. Print about emitting the insns with
1749 lra_process_new_insns (rtx_insn
*insn
, rtx_insn
*before
, rtx_insn
*after
,
1754 if (before
== NULL_RTX
&& after
== NULL_RTX
)
1756 if (lra_dump_file
!= NULL
)
1758 dump_insn_slim (lra_dump_file
, insn
);
1759 if (before
!= NULL_RTX
)
1761 fprintf (lra_dump_file
," %s before:\n", title
);
1762 dump_rtl_slim (lra_dump_file
, before
, NULL
, -1, 0);
1764 if (after
!= NULL_RTX
)
1766 fprintf (lra_dump_file
, " %s after:\n", title
);
1767 dump_rtl_slim (lra_dump_file
, after
, NULL
, -1, 0);
1769 fprintf (lra_dump_file
, "\n");
1771 if (before
!= NULL_RTX
)
1773 emit_insn_before (before
, insn
);
1774 push_insns (PREV_INSN (insn
), PREV_INSN (before
));
1775 setup_sp_offset (before
, PREV_INSN (insn
));
1777 if (after
!= NULL_RTX
)
1779 for (last
= after
; NEXT_INSN (last
) != NULL_RTX
; last
= NEXT_INSN (last
))
1781 emit_insn_after (after
, insn
);
1782 push_insns (last
, insn
);
1783 setup_sp_offset (after
, last
);
1789 /* Replace all references to register OLD_REGNO in *LOC with pseudo
1790 register NEW_REG. Return true if any change was made. */
1792 lra_substitute_pseudo (rtx
*loc
, int old_regno
, rtx new_reg
)
1795 bool result
= false;
1803 code
= GET_CODE (x
);
1804 if (code
== REG
&& (int) REGNO (x
) == old_regno
)
1806 machine_mode mode
= GET_MODE (*loc
);
1807 machine_mode inner_mode
= GET_MODE (new_reg
);
1809 if (mode
!= inner_mode
)
1811 if (GET_MODE_SIZE (mode
) >= GET_MODE_SIZE (inner_mode
)
1812 || ! SCALAR_INT_MODE_P (inner_mode
))
1813 new_reg
= gen_rtx_SUBREG (mode
, new_reg
, 0);
1815 new_reg
= gen_lowpart_SUBREG (mode
, new_reg
);
1821 /* Scan all the operand sub-expressions. */
1822 fmt
= GET_RTX_FORMAT (code
);
1823 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1827 if (lra_substitute_pseudo (&XEXP (x
, i
), old_regno
, new_reg
))
1830 else if (fmt
[i
] == 'E')
1832 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1833 if (lra_substitute_pseudo (&XVECEXP (x
, i
, j
), old_regno
, new_reg
))
1840 /* Call lra_substitute_pseudo within an insn. This won't update the insn ptr,
1841 just the contents of the insn. */
1843 lra_substitute_pseudo_within_insn (rtx_insn
*insn
, int old_regno
, rtx new_reg
)
1846 return lra_substitute_pseudo (&loc
, old_regno
, new_reg
);
1851 /* This page contains code dealing with scratches (changing them onto
1852 pseudos and restoring them from the pseudos).
1854 We change scratches into pseudos at the beginning of LRA to
1855 simplify dealing with them (conflicts, hard register assignments).
1857 If the pseudo denoting scratch was spilled it means that we do need
1858 a hard register for it. Such pseudos are transformed back to
1859 scratches at the end of LRA. */
1861 /* Description of location of a former scratch operand. */
1864 rtx_insn
*insn
; /* Insn where the scratch was. */
1865 int nop
; /* Number of the operand which was a scratch. */
1868 typedef struct sloc
*sloc_t
;
1870 /* Locations of the former scratches. */
1871 static vec
<sloc_t
> scratches
;
1873 /* Bitmap of scratch regnos. */
1874 static bitmap_head scratch_bitmap
;
1876 /* Bitmap of scratch operands. */
1877 static bitmap_head scratch_operand_bitmap
;
1879 /* Return true if pseudo REGNO is made of SCRATCH. */
1881 lra_former_scratch_p (int regno
)
1883 return bitmap_bit_p (&scratch_bitmap
, regno
);
1886 /* Return true if the operand NOP of INSN is a former scratch. */
1888 lra_former_scratch_operand_p (rtx_insn
*insn
, int nop
)
1890 return bitmap_bit_p (&scratch_operand_bitmap
,
1891 INSN_UID (insn
) * MAX_RECOG_OPERANDS
+ nop
) != 0;
1894 /* Change scratches onto pseudos and save their location. */
1896 remove_scratches (void)
1899 bool insn_changed_p
;
1904 lra_insn_recog_data_t id
;
1905 struct lra_static_insn_data
*static_id
;
1907 scratches
.create (get_max_uid ());
1908 bitmap_initialize (&scratch_bitmap
, ®_obstack
);
1909 bitmap_initialize (&scratch_operand_bitmap
, ®_obstack
);
1910 FOR_EACH_BB_FN (bb
, cfun
)
1911 FOR_BB_INSNS (bb
, insn
)
1914 id
= lra_get_insn_recog_data (insn
);
1915 static_id
= id
->insn_static_data
;
1916 insn_changed_p
= false;
1917 for (i
= 0; i
< static_id
->n_operands
; i
++)
1918 if (GET_CODE (*id
->operand_loc
[i
]) == SCRATCH
1919 && GET_MODE (*id
->operand_loc
[i
]) != VOIDmode
)
1921 insn_changed_p
= true;
1922 *id
->operand_loc
[i
] = reg
1923 = lra_create_new_reg (static_id
->operand
[i
].mode
,
1924 *id
->operand_loc
[i
], ALL_REGS
, NULL
);
1925 add_reg_note (insn
, REG_UNUSED
, reg
);
1926 lra_update_dup (id
, i
);
1927 loc
= XNEW (struct sloc
);
1930 scratches
.safe_push (loc
);
1931 bitmap_set_bit (&scratch_bitmap
, REGNO (*id
->operand_loc
[i
]));
1932 bitmap_set_bit (&scratch_operand_bitmap
,
1933 INSN_UID (insn
) * MAX_RECOG_OPERANDS
+ i
);
1934 if (lra_dump_file
!= NULL
)
1935 fprintf (lra_dump_file
,
1936 "Removing SCRATCH in insn #%u (nop %d)\n",
1937 INSN_UID (insn
), i
);
1940 /* Because we might use DF right after caller-saves sub-pass
1941 we need to keep DF info up to date. */
1942 df_insn_rescan (insn
);
1946 /* Changes pseudos created by function remove_scratches onto scratches. */
1948 restore_scratches (void)
1953 rtx_insn
*last
= NULL
;
1954 lra_insn_recog_data_t id
= NULL
;
1956 for (i
= 0; scratches
.iterate (i
, &loc
); i
++)
1958 if (last
!= loc
->insn
)
1961 id
= lra_get_insn_recog_data (last
);
1963 if (REG_P (*id
->operand_loc
[loc
->nop
])
1964 && ((regno
= REGNO (*id
->operand_loc
[loc
->nop
]))
1965 >= FIRST_PSEUDO_REGISTER
)
1966 && lra_get_regno_hard_regno (regno
) < 0)
1968 /* It should be only case when scratch register with chosen
1969 constraint 'X' did not get memory or hard register. */
1970 lra_assert (lra_former_scratch_p (regno
));
1971 *id
->operand_loc
[loc
->nop
]
1972 = gen_rtx_SCRATCH (GET_MODE (*id
->operand_loc
[loc
->nop
]));
1973 lra_update_dup (id
, loc
->nop
);
1974 if (lra_dump_file
!= NULL
)
1975 fprintf (lra_dump_file
, "Restoring SCRATCH in insn #%u(nop %d)\n",
1976 INSN_UID (loc
->insn
), loc
->nop
);
1979 for (i
= 0; scratches
.iterate (i
, &loc
); i
++)
1981 scratches
.release ();
1982 bitmap_clear (&scratch_bitmap
);
1983 bitmap_clear (&scratch_operand_bitmap
);
1988 #ifdef ENABLE_CHECKING
1990 /* Function checks RTL for correctness. If FINAL_P is true, it is
1991 done at the end of LRA and the check is more rigorous. */
1993 check_rtl (bool final_p
)
1998 lra_assert (! final_p
|| reload_completed
);
1999 FOR_EACH_BB_FN (bb
, cfun
)
2000 FOR_BB_INSNS (bb
, insn
)
2001 if (NONDEBUG_INSN_P (insn
)
2002 && GET_CODE (PATTERN (insn
)) != USE
2003 && GET_CODE (PATTERN (insn
)) != CLOBBER
2004 && GET_CODE (PATTERN (insn
)) != ASM_INPUT
)
2008 #ifdef ENABLED_CHECKING
2009 extract_constrain_insn (insn
);
2013 /* LRA code is based on assumption that all addresses can be
2014 correctly decomposed. LRA can generate reloads for
2015 decomposable addresses. The decomposition code checks the
2016 correctness of the addresses. So we don't need to check
2017 the addresses here. Don't call insn_invalid_p here, it can
2018 change the code at this stage. */
2019 if (recog_memoized (insn
) < 0 && asm_noperands (PATTERN (insn
)) < 0)
2020 fatal_insn_not_found (insn
);
2023 #endif /* #ifdef ENABLE_CHECKING */
2025 /* Determine if the current function has an exception receiver block
2026 that reaches the exit block via non-exceptional edges */
2028 has_nonexceptional_receiver (void)
2032 basic_block
*tos
, *worklist
, bb
;
2034 /* If we're not optimizing, then just err on the safe side. */
2038 /* First determine which blocks can reach exit via normal paths. */
2039 tos
= worklist
= XNEWVEC (basic_block
, n_basic_blocks_for_fn (cfun
) + 1);
2041 FOR_EACH_BB_FN (bb
, cfun
)
2042 bb
->flags
&= ~BB_REACHABLE
;
2044 /* Place the exit block on our worklist. */
2045 EXIT_BLOCK_PTR_FOR_FN (cfun
)->flags
|= BB_REACHABLE
;
2046 *tos
++ = EXIT_BLOCK_PTR_FOR_FN (cfun
);
2048 /* Iterate: find everything reachable from what we've already seen. */
2049 while (tos
!= worklist
)
2053 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
2054 if (e
->flags
& EDGE_ABNORMAL
)
2061 basic_block src
= e
->src
;
2063 if (!(src
->flags
& BB_REACHABLE
))
2065 src
->flags
|= BB_REACHABLE
;
2071 /* No exceptional block reached exit unexceptionally. */
2077 /* Process recursively X of INSN and add REG_INC notes if necessary. */
2079 add_auto_inc_notes (rtx_insn
*insn
, rtx x
)
2081 enum rtx_code code
= GET_CODE (x
);
2085 if (code
== MEM
&& auto_inc_p (XEXP (x
, 0)))
2087 add_reg_note (insn
, REG_INC
, XEXP (XEXP (x
, 0), 0));
2091 /* Scan all X sub-expressions. */
2092 fmt
= GET_RTX_FORMAT (code
);
2093 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2096 add_auto_inc_notes (insn
, XEXP (x
, i
));
2097 else if (fmt
[i
] == 'E')
2098 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2099 add_auto_inc_notes (insn
, XVECEXP (x
, i
, j
));
2105 /* Remove all REG_DEAD and REG_UNUSED notes and regenerate REG_INC.
2106 We change pseudos by hard registers without notification of DF and
2107 that can make the notes obsolete. DF-infrastructure does not deal
2108 with REG_INC notes -- so we should regenerate them here. */
2110 update_inc_notes (void)
2116 FOR_EACH_BB_FN (bb
, cfun
)
2117 FOR_BB_INSNS (bb
, insn
)
2118 if (NONDEBUG_INSN_P (insn
))
2120 pnote
= ®_NOTES (insn
);
2123 if (REG_NOTE_KIND (*pnote
) == REG_DEAD
2124 || REG_NOTE_KIND (*pnote
) == REG_UNUSED
2125 || REG_NOTE_KIND (*pnote
) == REG_INC
)
2126 *pnote
= XEXP (*pnote
, 1);
2128 pnote
= &XEXP (*pnote
, 1);
2131 add_auto_inc_notes (insn
, PATTERN (insn
));
2136 /* Set to 1 while in lra. */
2137 int lra_in_progress
;
2139 /* Start of pseudo regnos before the LRA. */
2140 int lra_new_regno_start
;
2142 /* Start of reload pseudo regnos before the new spill pass. */
2143 int lra_constraint_new_regno_start
;
2145 /* Inheritance pseudo regnos before the new spill pass. */
2146 bitmap_head lra_inheritance_pseudos
;
2148 /* Split regnos before the new spill pass. */
2149 bitmap_head lra_split_regs
;
2151 /* Reload pseudo regnos before the new assignmnet pass which still can
2152 be spilled after the assinment pass as memory is also accepted in
2153 insns for the reload pseudos. */
2154 bitmap_head lra_optional_reload_pseudos
;
2156 /* Pseudo regnos used for subreg reloads before the new assignment
2157 pass. Such pseudos still can be spilled after the assinment
2159 bitmap_head lra_subreg_reload_pseudos
;
2161 /* File used for output of LRA debug information. */
2162 FILE *lra_dump_file
;
2164 /* True if we should try spill into registers of different classes
2165 instead of memory. */
2166 bool lra_reg_spill_p
;
2168 /* Set up value LRA_REG_SPILL_P. */
2170 setup_reg_spill_flag (void)
2174 if (targetm
.spill_class
!= NULL
)
2175 for (cl
= 0; cl
< (int) LIM_REG_CLASSES
; cl
++)
2176 for (mode
= 0; mode
< MAX_MACHINE_MODE
; mode
++)
2177 if (targetm
.spill_class ((enum reg_class
) cl
,
2178 (machine_mode
) mode
) != NO_REGS
)
2180 lra_reg_spill_p
= true;
2183 lra_reg_spill_p
= false;
2186 /* True if the current function is too big to use regular algorithms
2187 in LRA. In other words, we should use simpler and faster algorithms
2188 in LRA. It also means we should not worry about generation code
2189 for caller saves. The value is set up in IRA. */
2192 /* Major LRA entry function. F is a file should be used to dump LRA
2198 bool live_p
, scratch_p
, inserted_p
;
2202 timevar_push (TV_LRA
);
2204 /* Make sure that the last insn is a note. Some subsequent passes
2206 emit_note (NOTE_INSN_DELETED
);
2208 COPY_HARD_REG_SET (lra_no_alloc_regs
, ira_no_alloc_regs
);
2213 init_insn_recog_data ();
2215 #ifdef ENABLE_CHECKING
2216 /* Some quick check on RTL generated by previous passes. */
2220 lra_in_progress
= 1;
2222 lra_live_range_iter
= lra_coalesce_iter
= lra_constraint_iter
= 0;
2223 lra_assignment_iter
= lra_assignment_iter_after_spill
= 0;
2224 lra_inheritance_iter
= lra_undo_inheritance_iter
= 0;
2226 setup_reg_spill_flag ();
2228 /* Function remove_scratches can creates new pseudos for clobbers --
2229 so set up lra_constraint_new_regno_start before its call to
2230 permit changing reg classes for pseudos created by this
2232 lra_constraint_new_regno_start
= lra_new_regno_start
= max_reg_num ();
2233 remove_scratches ();
2234 scratch_p
= lra_constraint_new_regno_start
!= max_reg_num ();
2236 /* A function that has a non-local label that can reach the exit
2237 block via non-exceptional paths must save all call-saved
2239 if (cfun
->has_nonlocal_label
&& has_nonexceptional_receiver ())
2240 crtl
->saves_all_registers
= 1;
2242 if (crtl
->saves_all_registers
)
2243 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2244 if (! call_used_regs
[i
] && ! fixed_regs
[i
] && ! LOCAL_REGNO (i
))
2245 df_set_regs_ever_live (i
, true);
2247 /* We don't DF from now and avoid its using because it is to
2248 expensive when a lot of RTL changes are made. */
2249 df_set_flags (DF_NO_INSN_RESCAN
);
2250 lra_constraint_insn_stack
.create (get_max_uid ());
2251 lra_constraint_insn_stack_bitmap
= sbitmap_alloc (get_max_uid ());
2252 bitmap_clear (lra_constraint_insn_stack_bitmap
);
2253 lra_live_ranges_init ();
2254 lra_constraints_init ();
2255 lra_curr_reload_num
= 0;
2256 push_insns (get_last_insn (), NULL
);
2257 /* It is needed for the 1st coalescing. */
2258 bitmap_initialize (&lra_inheritance_pseudos
, ®_obstack
);
2259 bitmap_initialize (&lra_split_regs
, ®_obstack
);
2260 bitmap_initialize (&lra_optional_reload_pseudos
, ®_obstack
);
2261 bitmap_initialize (&lra_subreg_reload_pseudos
, ®_obstack
);
2263 if (get_frame_size () != 0 && crtl
->stack_alignment_needed
)
2264 /* If we have a stack frame, we must align it now. The stack size
2265 may be a part of the offset computation for register
2267 assign_stack_local (BLKmode
, 0, crtl
->stack_alignment_needed
);
2273 /* We should try to assign hard registers to scratches even
2274 if there were no RTL transformations in
2276 if (! lra_constraints (lra_constraint_iter
== 0)
2277 && (lra_constraint_iter
> 1
2278 || (! scratch_p
&& ! caller_save_needed
)))
2280 /* Constraint transformations may result in that eliminable
2281 hard regs become uneliminable and pseudos which use them
2282 should be spilled. It is better to do it before pseudo
2285 For example, rs6000 can make
2286 RS6000_PIC_OFFSET_TABLE_REGNUM uneliminable if we started
2287 to use a constant pool. */
2288 lra_eliminate (false, false);
2289 /* Do inheritance only for regular algorithms. */
2292 if (flag_use_caller_save
)
2295 lra_clear_live_ranges ();
2296 /* As a side-effect of lra_create_live_ranges, we calculate
2297 actual_call_used_reg_set, which is needed during
2299 lra_create_live_ranges (true, true);
2304 lra_clear_live_ranges ();
2305 /* We need live ranges for lra_assign -- so build them. But
2306 don't remove dead insns or change global live info as we
2307 can undo inheritance transformations after inheritance
2308 pseudo assigning. */
2309 lra_create_live_ranges (true, false);
2311 /* If we don't spill non-reload and non-inheritance pseudos,
2312 there is no sense to run memory-memory move coalescing.
2313 If inheritance pseudos were spilled, the memory-memory
2314 moves involving them will be removed by pass undoing
2320 bool spill_p
= !lra_assign ();
2322 if (lra_undo_inheritance ())
2328 lra_create_live_ranges (true, true);
2331 if (lra_coalesce ())
2335 lra_clear_live_ranges ();
2338 /* Don't clear optional reloads bitmap until all constraints are
2339 satisfied as we need to differ them from regular reloads. */
2340 bitmap_clear (&lra_optional_reload_pseudos
);
2341 bitmap_clear (&lra_subreg_reload_pseudos
);
2342 bitmap_clear (&lra_inheritance_pseudos
);
2343 bitmap_clear (&lra_split_regs
);
2346 /* We need full live info for spilling pseudos into
2347 registers instead of memory. */
2348 lra_create_live_ranges (lra_reg_spill_p
, true);
2351 /* We should check necessity for spilling here as the above live
2352 range pass can remove spilled pseudos. */
2353 if (! lra_need_for_spills_p ())
2355 /* Now we know what pseudos should be spilled. Try to
2356 rematerialize them first. */
2359 /* We need full live info -- see the comment above. */
2360 lra_create_live_ranges (lra_reg_spill_p
, true);
2362 if (! lra_need_for_spills_p ())
2366 /* Assignment of stack slots changes elimination offsets for
2367 some eliminations. So update the offsets here. */
2368 lra_eliminate (false, false);
2369 lra_constraint_new_regno_start
= max_reg_num ();
2370 lra_assignment_iter_after_spill
= 0;
2372 restore_scratches ();
2373 lra_eliminate (true, false);
2374 lra_final_code_change ();
2375 lra_in_progress
= 0;
2377 lra_clear_live_ranges ();
2378 lra_live_ranges_finish ();
2379 lra_constraints_finish ();
2381 sbitmap_free (lra_constraint_insn_stack_bitmap
);
2382 lra_constraint_insn_stack
.release ();
2383 finish_insn_recog_data ();
2384 regstat_free_n_sets_and_refs ();
2386 reload_completed
= 1;
2387 update_inc_notes ();
2389 inserted_p
= fixup_abnormal_edges ();
2391 /* We've possibly turned single trapping insn into multiple ones. */
2392 if (cfun
->can_throw_non_call_exceptions
)
2395 blocks
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
2396 bitmap_ones (blocks
);
2397 find_many_sub_basic_blocks (blocks
);
2398 sbitmap_free (blocks
);
2402 commit_edge_insertions ();
2404 /* Replacing pseudos with their memory equivalents might have
2405 created shared rtx. Subsequent passes would get confused
2406 by this, so unshare everything here. */
2407 unshare_all_rtl_again (get_insns ());
2409 #ifdef ENABLE_CHECKING
2413 timevar_pop (TV_LRA
);
2416 /* Called once per compiler to initialize LRA data once. */
2418 lra_init_once (void)
2420 init_insn_code_data_once ();
2423 /* Called once per compiler to finish LRA data which are initialize
2426 lra_finish_once (void)
2428 finish_insn_code_data_once ();