2009-06-03 Richard Guenther <rguenther@suse.de>
[official-gcc.git] / gcc / lambda-code.c
blob852be11153cc2a0e0d0944357ff94db4b5814124
1 /* Loop transformation code generation
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Daniel Berlin <dberlin@dberlin.org>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "tree.h"
28 #include "target.h"
29 #include "rtl.h"
30 #include "basic-block.h"
31 #include "diagnostic.h"
32 #include "obstack.h"
33 #include "tree-flow.h"
34 #include "tree-dump.h"
35 #include "timevar.h"
36 #include "cfgloop.h"
37 #include "expr.h"
38 #include "optabs.h"
39 #include "tree-chrec.h"
40 #include "tree-data-ref.h"
41 #include "tree-pass.h"
42 #include "tree-scalar-evolution.h"
43 #include "vec.h"
44 #include "lambda.h"
45 #include "vecprim.h"
46 #include "pointer-set.h"
48 /* This loop nest code generation is based on non-singular matrix
49 math.
51 A little terminology and a general sketch of the algorithm. See "A singular
52 loop transformation framework based on non-singular matrices" by Wei Li and
53 Keshav Pingali for formal proofs that the various statements below are
54 correct.
56 A loop iteration space represents the points traversed by the loop. A point in the
57 iteration space can be represented by a vector of size <loop depth>. You can
58 therefore represent the iteration space as an integral combinations of a set
59 of basis vectors.
61 A loop iteration space is dense if every integer point between the loop
62 bounds is a point in the iteration space. Every loop with a step of 1
63 therefore has a dense iteration space.
65 for i = 1 to 3, step 1 is a dense iteration space.
67 A loop iteration space is sparse if it is not dense. That is, the iteration
68 space skips integer points that are within the loop bounds.
70 for i = 1 to 3, step 2 is a sparse iteration space, because the integer point
71 2 is skipped.
73 Dense source spaces are easy to transform, because they don't skip any
74 points to begin with. Thus we can compute the exact bounds of the target
75 space using min/max and floor/ceil.
77 For a dense source space, we take the transformation matrix, decompose it
78 into a lower triangular part (H) and a unimodular part (U).
79 We then compute the auxiliary space from the unimodular part (source loop
80 nest . U = auxiliary space) , which has two important properties:
81 1. It traverses the iterations in the same lexicographic order as the source
82 space.
83 2. It is a dense space when the source is a dense space (even if the target
84 space is going to be sparse).
86 Given the auxiliary space, we use the lower triangular part to compute the
87 bounds in the target space by simple matrix multiplication.
88 The gaps in the target space (IE the new loop step sizes) will be the
89 diagonals of the H matrix.
91 Sparse source spaces require another step, because you can't directly compute
92 the exact bounds of the auxiliary and target space from the sparse space.
93 Rather than try to come up with a separate algorithm to handle sparse source
94 spaces directly, we just find a legal transformation matrix that gives you
95 the sparse source space, from a dense space, and then transform the dense
96 space.
98 For a regular sparse space, you can represent the source space as an integer
99 lattice, and the base space of that lattice will always be dense. Thus, we
100 effectively use the lattice to figure out the transformation from the lattice
101 base space, to the sparse iteration space (IE what transform was applied to
102 the dense space to make it sparse). We then compose this transform with the
103 transformation matrix specified by the user (since our matrix transformations
104 are closed under composition, this is okay). We can then use the base space
105 (which is dense) plus the composed transformation matrix, to compute the rest
106 of the transform using the dense space algorithm above.
108 In other words, our sparse source space (B) is decomposed into a dense base
109 space (A), and a matrix (L) that transforms A into B, such that A.L = B.
110 We then compute the composition of L and the user transformation matrix (T),
111 so that T is now a transform from A to the result, instead of from B to the
112 result.
113 IE A.(LT) = result instead of B.T = result
114 Since A is now a dense source space, we can use the dense source space
115 algorithm above to compute the result of applying transform (LT) to A.
117 Fourier-Motzkin elimination is used to compute the bounds of the base space
118 of the lattice. */
120 static bool perfect_nestify (struct loop *, VEC(tree,heap) *,
121 VEC(tree,heap) *, VEC(int,heap) *,
122 VEC(tree,heap) *);
123 /* Lattice stuff that is internal to the code generation algorithm. */
125 typedef struct lambda_lattice_s
127 /* Lattice base matrix. */
128 lambda_matrix base;
129 /* Lattice dimension. */
130 int dimension;
131 /* Origin vector for the coefficients. */
132 lambda_vector origin;
133 /* Origin matrix for the invariants. */
134 lambda_matrix origin_invariants;
135 /* Number of invariants. */
136 int invariants;
137 } *lambda_lattice;
139 #define LATTICE_BASE(T) ((T)->base)
140 #define LATTICE_DIMENSION(T) ((T)->dimension)
141 #define LATTICE_ORIGIN(T) ((T)->origin)
142 #define LATTICE_ORIGIN_INVARIANTS(T) ((T)->origin_invariants)
143 #define LATTICE_INVARIANTS(T) ((T)->invariants)
145 static bool lle_equal (lambda_linear_expression, lambda_linear_expression,
146 int, int);
147 static lambda_lattice lambda_lattice_new (int, int, struct obstack *);
148 static lambda_lattice lambda_lattice_compute_base (lambda_loopnest,
149 struct obstack *);
151 static bool can_convert_to_perfect_nest (struct loop *);
153 /* Create a new lambda body vector. */
155 lambda_body_vector
156 lambda_body_vector_new (int size, struct obstack * lambda_obstack)
158 lambda_body_vector ret;
160 ret = (lambda_body_vector)obstack_alloc (lambda_obstack, sizeof (*ret));
161 LBV_COEFFICIENTS (ret) = lambda_vector_new (size);
162 LBV_SIZE (ret) = size;
163 LBV_DENOMINATOR (ret) = 1;
164 return ret;
167 /* Compute the new coefficients for the vector based on the
168 *inverse* of the transformation matrix. */
170 lambda_body_vector
171 lambda_body_vector_compute_new (lambda_trans_matrix transform,
172 lambda_body_vector vect,
173 struct obstack * lambda_obstack)
175 lambda_body_vector temp;
176 int depth;
178 /* Make sure the matrix is square. */
179 gcc_assert (LTM_ROWSIZE (transform) == LTM_COLSIZE (transform));
181 depth = LTM_ROWSIZE (transform);
183 temp = lambda_body_vector_new (depth, lambda_obstack);
184 LBV_DENOMINATOR (temp) =
185 LBV_DENOMINATOR (vect) * LTM_DENOMINATOR (transform);
186 lambda_vector_matrix_mult (LBV_COEFFICIENTS (vect), depth,
187 LTM_MATRIX (transform), depth,
188 LBV_COEFFICIENTS (temp));
189 LBV_SIZE (temp) = LBV_SIZE (vect);
190 return temp;
193 /* Print out a lambda body vector. */
195 void
196 print_lambda_body_vector (FILE * outfile, lambda_body_vector body)
198 print_lambda_vector (outfile, LBV_COEFFICIENTS (body), LBV_SIZE (body));
201 /* Return TRUE if two linear expressions are equal. */
203 static bool
204 lle_equal (lambda_linear_expression lle1, lambda_linear_expression lle2,
205 int depth, int invariants)
207 int i;
209 if (lle1 == NULL || lle2 == NULL)
210 return false;
211 if (LLE_CONSTANT (lle1) != LLE_CONSTANT (lle2))
212 return false;
213 if (LLE_DENOMINATOR (lle1) != LLE_DENOMINATOR (lle2))
214 return false;
215 for (i = 0; i < depth; i++)
216 if (LLE_COEFFICIENTS (lle1)[i] != LLE_COEFFICIENTS (lle2)[i])
217 return false;
218 for (i = 0; i < invariants; i++)
219 if (LLE_INVARIANT_COEFFICIENTS (lle1)[i] !=
220 LLE_INVARIANT_COEFFICIENTS (lle2)[i])
221 return false;
222 return true;
225 /* Create a new linear expression with dimension DIM, and total number
226 of invariants INVARIANTS. */
228 lambda_linear_expression
229 lambda_linear_expression_new (int dim, int invariants,
230 struct obstack * lambda_obstack)
232 lambda_linear_expression ret;
234 ret = (lambda_linear_expression)obstack_alloc (lambda_obstack,
235 sizeof (*ret));
236 LLE_COEFFICIENTS (ret) = lambda_vector_new (dim);
237 LLE_CONSTANT (ret) = 0;
238 LLE_INVARIANT_COEFFICIENTS (ret) = lambda_vector_new (invariants);
239 LLE_DENOMINATOR (ret) = 1;
240 LLE_NEXT (ret) = NULL;
242 return ret;
245 /* Print out a linear expression EXPR, with SIZE coefficients, to OUTFILE.
246 The starting letter used for variable names is START. */
248 static void
249 print_linear_expression (FILE * outfile, lambda_vector expr, int size,
250 char start)
252 int i;
253 bool first = true;
254 for (i = 0; i < size; i++)
256 if (expr[i] != 0)
258 if (first)
260 if (expr[i] < 0)
261 fprintf (outfile, "-");
262 first = false;
264 else if (expr[i] > 0)
265 fprintf (outfile, " + ");
266 else
267 fprintf (outfile, " - ");
268 if (abs (expr[i]) == 1)
269 fprintf (outfile, "%c", start + i);
270 else
271 fprintf (outfile, "%d%c", abs (expr[i]), start + i);
276 /* Print out a lambda linear expression structure, EXPR, to OUTFILE. The
277 depth/number of coefficients is given by DEPTH, the number of invariants is
278 given by INVARIANTS, and the character to start variable names with is given
279 by START. */
281 void
282 print_lambda_linear_expression (FILE * outfile,
283 lambda_linear_expression expr,
284 int depth, int invariants, char start)
286 fprintf (outfile, "\tLinear expression: ");
287 print_linear_expression (outfile, LLE_COEFFICIENTS (expr), depth, start);
288 fprintf (outfile, " constant: %d ", LLE_CONSTANT (expr));
289 fprintf (outfile, " invariants: ");
290 print_linear_expression (outfile, LLE_INVARIANT_COEFFICIENTS (expr),
291 invariants, 'A');
292 fprintf (outfile, " denominator: %d\n", LLE_DENOMINATOR (expr));
295 /* Print a lambda loop structure LOOP to OUTFILE. The depth/number of
296 coefficients is given by DEPTH, the number of invariants is
297 given by INVARIANTS, and the character to start variable names with is given
298 by START. */
300 void
301 print_lambda_loop (FILE * outfile, lambda_loop loop, int depth,
302 int invariants, char start)
304 int step;
305 lambda_linear_expression expr;
307 gcc_assert (loop);
309 expr = LL_LINEAR_OFFSET (loop);
310 step = LL_STEP (loop);
311 fprintf (outfile, " step size = %d \n", step);
313 if (expr)
315 fprintf (outfile, " linear offset: \n");
316 print_lambda_linear_expression (outfile, expr, depth, invariants,
317 start);
320 fprintf (outfile, " lower bound: \n");
321 for (expr = LL_LOWER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
322 print_lambda_linear_expression (outfile, expr, depth, invariants, start);
323 fprintf (outfile, " upper bound: \n");
324 for (expr = LL_UPPER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
325 print_lambda_linear_expression (outfile, expr, depth, invariants, start);
328 /* Create a new loop nest structure with DEPTH loops, and INVARIANTS as the
329 number of invariants. */
331 lambda_loopnest
332 lambda_loopnest_new (int depth, int invariants,
333 struct obstack * lambda_obstack)
335 lambda_loopnest ret;
336 ret = (lambda_loopnest)obstack_alloc (lambda_obstack, sizeof (*ret));
338 LN_LOOPS (ret) = (lambda_loop *)
339 obstack_alloc (lambda_obstack, depth * sizeof(LN_LOOPS(ret)));
340 LN_DEPTH (ret) = depth;
341 LN_INVARIANTS (ret) = invariants;
343 return ret;
346 /* Print a lambda loopnest structure, NEST, to OUTFILE. The starting
347 character to use for loop names is given by START. */
349 void
350 print_lambda_loopnest (FILE * outfile, lambda_loopnest nest, char start)
352 int i;
353 for (i = 0; i < LN_DEPTH (nest); i++)
355 fprintf (outfile, "Loop %c\n", start + i);
356 print_lambda_loop (outfile, LN_LOOPS (nest)[i], LN_DEPTH (nest),
357 LN_INVARIANTS (nest), 'i');
358 fprintf (outfile, "\n");
362 /* Allocate a new lattice structure of DEPTH x DEPTH, with INVARIANTS number
363 of invariants. */
365 static lambda_lattice
366 lambda_lattice_new (int depth, int invariants, struct obstack * lambda_obstack)
368 lambda_lattice ret
369 = (lambda_lattice)obstack_alloc (lambda_obstack, sizeof (*ret));
370 LATTICE_BASE (ret) = lambda_matrix_new (depth, depth);
371 LATTICE_ORIGIN (ret) = lambda_vector_new (depth);
372 LATTICE_ORIGIN_INVARIANTS (ret) = lambda_matrix_new (depth, invariants);
373 LATTICE_DIMENSION (ret) = depth;
374 LATTICE_INVARIANTS (ret) = invariants;
375 return ret;
378 /* Compute the lattice base for NEST. The lattice base is essentially a
379 non-singular transform from a dense base space to a sparse iteration space.
380 We use it so that we don't have to specially handle the case of a sparse
381 iteration space in other parts of the algorithm. As a result, this routine
382 only does something interesting (IE produce a matrix that isn't the
383 identity matrix) if NEST is a sparse space. */
385 static lambda_lattice
386 lambda_lattice_compute_base (lambda_loopnest nest,
387 struct obstack * lambda_obstack)
389 lambda_lattice ret;
390 int depth, invariants;
391 lambda_matrix base;
393 int i, j, step;
394 lambda_loop loop;
395 lambda_linear_expression expression;
397 depth = LN_DEPTH (nest);
398 invariants = LN_INVARIANTS (nest);
400 ret = lambda_lattice_new (depth, invariants, lambda_obstack);
401 base = LATTICE_BASE (ret);
402 for (i = 0; i < depth; i++)
404 loop = LN_LOOPS (nest)[i];
405 gcc_assert (loop);
406 step = LL_STEP (loop);
407 /* If we have a step of 1, then the base is one, and the
408 origin and invariant coefficients are 0. */
409 if (step == 1)
411 for (j = 0; j < depth; j++)
412 base[i][j] = 0;
413 base[i][i] = 1;
414 LATTICE_ORIGIN (ret)[i] = 0;
415 for (j = 0; j < invariants; j++)
416 LATTICE_ORIGIN_INVARIANTS (ret)[i][j] = 0;
418 else
420 /* Otherwise, we need the lower bound expression (which must
421 be an affine function) to determine the base. */
422 expression = LL_LOWER_BOUND (loop);
423 gcc_assert (expression && !LLE_NEXT (expression)
424 && LLE_DENOMINATOR (expression) == 1);
426 /* The lower triangular portion of the base is going to be the
427 coefficient times the step */
428 for (j = 0; j < i; j++)
429 base[i][j] = LLE_COEFFICIENTS (expression)[j]
430 * LL_STEP (LN_LOOPS (nest)[j]);
431 base[i][i] = step;
432 for (j = i + 1; j < depth; j++)
433 base[i][j] = 0;
435 /* Origin for this loop is the constant of the lower bound
436 expression. */
437 LATTICE_ORIGIN (ret)[i] = LLE_CONSTANT (expression);
439 /* Coefficient for the invariants are equal to the invariant
440 coefficients in the expression. */
441 for (j = 0; j < invariants; j++)
442 LATTICE_ORIGIN_INVARIANTS (ret)[i][j] =
443 LLE_INVARIANT_COEFFICIENTS (expression)[j];
446 return ret;
449 /* Compute the least common multiple of two numbers A and B . */
452 least_common_multiple (int a, int b)
454 return (abs (a) * abs (b) / gcd (a, b));
457 /* Perform Fourier-Motzkin elimination to calculate the bounds of the
458 auxiliary nest.
459 Fourier-Motzkin is a way of reducing systems of linear inequalities so that
460 it is easy to calculate the answer and bounds.
461 A sketch of how it works:
462 Given a system of linear inequalities, ai * xj >= bk, you can always
463 rewrite the constraints so they are all of the form
464 a <= x, or x <= b, or x >= constant for some x in x1 ... xj (and some b
465 in b1 ... bk, and some a in a1...ai)
466 You can then eliminate this x from the non-constant inequalities by
467 rewriting these as a <= b, x >= constant, and delete the x variable.
468 You can then repeat this for any remaining x variables, and then we have
469 an easy to use variable <= constant (or no variables at all) form that we
470 can construct our bounds from.
472 In our case, each time we eliminate, we construct part of the bound from
473 the ith variable, then delete the ith variable.
475 Remember the constant are in our vector a, our coefficient matrix is A,
476 and our invariant coefficient matrix is B.
478 SIZE is the size of the matrices being passed.
479 DEPTH is the loop nest depth.
480 INVARIANTS is the number of loop invariants.
481 A, B, and a are the coefficient matrix, invariant coefficient, and a
482 vector of constants, respectively. */
484 static lambda_loopnest
485 compute_nest_using_fourier_motzkin (int size,
486 int depth,
487 int invariants,
488 lambda_matrix A,
489 lambda_matrix B,
490 lambda_vector a,
491 struct obstack * lambda_obstack)
494 int multiple, f1, f2;
495 int i, j, k;
496 lambda_linear_expression expression;
497 lambda_loop loop;
498 lambda_loopnest auxillary_nest;
499 lambda_matrix swapmatrix, A1, B1;
500 lambda_vector swapvector, a1;
501 int newsize;
503 A1 = lambda_matrix_new (128, depth);
504 B1 = lambda_matrix_new (128, invariants);
505 a1 = lambda_vector_new (128);
507 auxillary_nest = lambda_loopnest_new (depth, invariants, lambda_obstack);
509 for (i = depth - 1; i >= 0; i--)
511 loop = lambda_loop_new ();
512 LN_LOOPS (auxillary_nest)[i] = loop;
513 LL_STEP (loop) = 1;
515 for (j = 0; j < size; j++)
517 if (A[j][i] < 0)
519 /* Any linear expression in the matrix with a coefficient less
520 than 0 becomes part of the new lower bound. */
521 expression = lambda_linear_expression_new (depth, invariants,
522 lambda_obstack);
524 for (k = 0; k < i; k++)
525 LLE_COEFFICIENTS (expression)[k] = A[j][k];
527 for (k = 0; k < invariants; k++)
528 LLE_INVARIANT_COEFFICIENTS (expression)[k] = -1 * B[j][k];
530 LLE_DENOMINATOR (expression) = -1 * A[j][i];
531 LLE_CONSTANT (expression) = -1 * a[j];
533 /* Ignore if identical to the existing lower bound. */
534 if (!lle_equal (LL_LOWER_BOUND (loop),
535 expression, depth, invariants))
537 LLE_NEXT (expression) = LL_LOWER_BOUND (loop);
538 LL_LOWER_BOUND (loop) = expression;
542 else if (A[j][i] > 0)
544 /* Any linear expression with a coefficient greater than 0
545 becomes part of the new upper bound. */
546 expression = lambda_linear_expression_new (depth, invariants,
547 lambda_obstack);
548 for (k = 0; k < i; k++)
549 LLE_COEFFICIENTS (expression)[k] = -1 * A[j][k];
551 for (k = 0; k < invariants; k++)
552 LLE_INVARIANT_COEFFICIENTS (expression)[k] = B[j][k];
554 LLE_DENOMINATOR (expression) = A[j][i];
555 LLE_CONSTANT (expression) = a[j];
557 /* Ignore if identical to the existing upper bound. */
558 if (!lle_equal (LL_UPPER_BOUND (loop),
559 expression, depth, invariants))
561 LLE_NEXT (expression) = LL_UPPER_BOUND (loop);
562 LL_UPPER_BOUND (loop) = expression;
568 /* This portion creates a new system of linear inequalities by deleting
569 the i'th variable, reducing the system by one variable. */
570 newsize = 0;
571 for (j = 0; j < size; j++)
573 /* If the coefficient for the i'th variable is 0, then we can just
574 eliminate the variable straightaway. Otherwise, we have to
575 multiply through by the coefficients we are eliminating. */
576 if (A[j][i] == 0)
578 lambda_vector_copy (A[j], A1[newsize], depth);
579 lambda_vector_copy (B[j], B1[newsize], invariants);
580 a1[newsize] = a[j];
581 newsize++;
583 else if (A[j][i] > 0)
585 for (k = 0; k < size; k++)
587 if (A[k][i] < 0)
589 multiple = least_common_multiple (A[j][i], A[k][i]);
590 f1 = multiple / A[j][i];
591 f2 = -1 * multiple / A[k][i];
593 lambda_vector_add_mc (A[j], f1, A[k], f2,
594 A1[newsize], depth);
595 lambda_vector_add_mc (B[j], f1, B[k], f2,
596 B1[newsize], invariants);
597 a1[newsize] = f1 * a[j] + f2 * a[k];
598 newsize++;
604 swapmatrix = A;
605 A = A1;
606 A1 = swapmatrix;
608 swapmatrix = B;
609 B = B1;
610 B1 = swapmatrix;
612 swapvector = a;
613 a = a1;
614 a1 = swapvector;
616 size = newsize;
619 return auxillary_nest;
622 /* Compute the loop bounds for the auxiliary space NEST.
623 Input system used is Ax <= b. TRANS is the unimodular transformation.
624 Given the original nest, this function will
625 1. Convert the nest into matrix form, which consists of a matrix for the
626 coefficients, a matrix for the
627 invariant coefficients, and a vector for the constants.
628 2. Use the matrix form to calculate the lattice base for the nest (which is
629 a dense space)
630 3. Compose the dense space transform with the user specified transform, to
631 get a transform we can easily calculate transformed bounds for.
632 4. Multiply the composed transformation matrix times the matrix form of the
633 loop.
634 5. Transform the newly created matrix (from step 4) back into a loop nest
635 using Fourier-Motzkin elimination to figure out the bounds. */
637 static lambda_loopnest
638 lambda_compute_auxillary_space (lambda_loopnest nest,
639 lambda_trans_matrix trans,
640 struct obstack * lambda_obstack)
642 lambda_matrix A, B, A1, B1;
643 lambda_vector a, a1;
644 lambda_matrix invertedtrans;
645 int depth, invariants, size;
646 int i, j;
647 lambda_loop loop;
648 lambda_linear_expression expression;
649 lambda_lattice lattice;
651 depth = LN_DEPTH (nest);
652 invariants = LN_INVARIANTS (nest);
654 /* Unfortunately, we can't know the number of constraints we'll have
655 ahead of time, but this should be enough even in ridiculous loop nest
656 cases. We must not go over this limit. */
657 A = lambda_matrix_new (128, depth);
658 B = lambda_matrix_new (128, invariants);
659 a = lambda_vector_new (128);
661 A1 = lambda_matrix_new (128, depth);
662 B1 = lambda_matrix_new (128, invariants);
663 a1 = lambda_vector_new (128);
665 /* Store the bounds in the equation matrix A, constant vector a, and
666 invariant matrix B, so that we have Ax <= a + B.
667 This requires a little equation rearranging so that everything is on the
668 correct side of the inequality. */
669 size = 0;
670 for (i = 0; i < depth; i++)
672 loop = LN_LOOPS (nest)[i];
674 /* First we do the lower bound. */
675 if (LL_STEP (loop) > 0)
676 expression = LL_LOWER_BOUND (loop);
677 else
678 expression = LL_UPPER_BOUND (loop);
680 for (; expression != NULL; expression = LLE_NEXT (expression))
682 /* Fill in the coefficient. */
683 for (j = 0; j < i; j++)
684 A[size][j] = LLE_COEFFICIENTS (expression)[j];
686 /* And the invariant coefficient. */
687 for (j = 0; j < invariants; j++)
688 B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
690 /* And the constant. */
691 a[size] = LLE_CONSTANT (expression);
693 /* Convert (2x+3y+2+b)/4 <= z to 2x+3y-4z <= -2-b. IE put all
694 constants and single variables on */
695 A[size][i] = -1 * LLE_DENOMINATOR (expression);
696 a[size] *= -1;
697 for (j = 0; j < invariants; j++)
698 B[size][j] *= -1;
700 size++;
701 /* Need to increase matrix sizes above. */
702 gcc_assert (size <= 127);
706 /* Then do the exact same thing for the upper bounds. */
707 if (LL_STEP (loop) > 0)
708 expression = LL_UPPER_BOUND (loop);
709 else
710 expression = LL_LOWER_BOUND (loop);
712 for (; expression != NULL; expression = LLE_NEXT (expression))
714 /* Fill in the coefficient. */
715 for (j = 0; j < i; j++)
716 A[size][j] = LLE_COEFFICIENTS (expression)[j];
718 /* And the invariant coefficient. */
719 for (j = 0; j < invariants; j++)
720 B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
722 /* And the constant. */
723 a[size] = LLE_CONSTANT (expression);
725 /* Convert z <= (2x+3y+2+b)/4 to -2x-3y+4z <= 2+b. */
726 for (j = 0; j < i; j++)
727 A[size][j] *= -1;
728 A[size][i] = LLE_DENOMINATOR (expression);
729 size++;
730 /* Need to increase matrix sizes above. */
731 gcc_assert (size <= 127);
736 /* Compute the lattice base x = base * y + origin, where y is the
737 base space. */
738 lattice = lambda_lattice_compute_base (nest, lambda_obstack);
740 /* Ax <= a + B then becomes ALy <= a+B - A*origin. L is the lattice base */
742 /* A1 = A * L */
743 lambda_matrix_mult (A, LATTICE_BASE (lattice), A1, size, depth, depth);
745 /* a1 = a - A * origin constant. */
746 lambda_matrix_vector_mult (A, size, depth, LATTICE_ORIGIN (lattice), a1);
747 lambda_vector_add_mc (a, 1, a1, -1, a1, size);
749 /* B1 = B - A * origin invariant. */
750 lambda_matrix_mult (A, LATTICE_ORIGIN_INVARIANTS (lattice), B1, size, depth,
751 invariants);
752 lambda_matrix_add_mc (B, 1, B1, -1, B1, size, invariants);
754 /* Now compute the auxiliary space bounds by first inverting U, multiplying
755 it by A1, then performing Fourier-Motzkin. */
757 invertedtrans = lambda_matrix_new (depth, depth);
759 /* Compute the inverse of U. */
760 lambda_matrix_inverse (LTM_MATRIX (trans),
761 invertedtrans, depth);
763 /* A = A1 inv(U). */
764 lambda_matrix_mult (A1, invertedtrans, A, size, depth, depth);
766 return compute_nest_using_fourier_motzkin (size, depth, invariants,
767 A, B1, a1, lambda_obstack);
770 /* Compute the loop bounds for the target space, using the bounds of
771 the auxiliary nest AUXILLARY_NEST, and the triangular matrix H.
772 The target space loop bounds are computed by multiplying the triangular
773 matrix H by the auxiliary nest, to get the new loop bounds. The sign of
774 the loop steps (positive or negative) is then used to swap the bounds if
775 the loop counts downwards.
776 Return the target loopnest. */
778 static lambda_loopnest
779 lambda_compute_target_space (lambda_loopnest auxillary_nest,
780 lambda_trans_matrix H, lambda_vector stepsigns,
781 struct obstack * lambda_obstack)
783 lambda_matrix inverse, H1;
784 int determinant, i, j;
785 int gcd1, gcd2;
786 int factor;
788 lambda_loopnest target_nest;
789 int depth, invariants;
790 lambda_matrix target;
792 lambda_loop auxillary_loop, target_loop;
793 lambda_linear_expression expression, auxillary_expr, target_expr, tmp_expr;
795 depth = LN_DEPTH (auxillary_nest);
796 invariants = LN_INVARIANTS (auxillary_nest);
798 inverse = lambda_matrix_new (depth, depth);
799 determinant = lambda_matrix_inverse (LTM_MATRIX (H), inverse, depth);
801 /* H1 is H excluding its diagonal. */
802 H1 = lambda_matrix_new (depth, depth);
803 lambda_matrix_copy (LTM_MATRIX (H), H1, depth, depth);
805 for (i = 0; i < depth; i++)
806 H1[i][i] = 0;
808 /* Computes the linear offsets of the loop bounds. */
809 target = lambda_matrix_new (depth, depth);
810 lambda_matrix_mult (H1, inverse, target, depth, depth, depth);
812 target_nest = lambda_loopnest_new (depth, invariants, lambda_obstack);
814 for (i = 0; i < depth; i++)
817 /* Get a new loop structure. */
818 target_loop = lambda_loop_new ();
819 LN_LOOPS (target_nest)[i] = target_loop;
821 /* Computes the gcd of the coefficients of the linear part. */
822 gcd1 = lambda_vector_gcd (target[i], i);
824 /* Include the denominator in the GCD. */
825 gcd1 = gcd (gcd1, determinant);
827 /* Now divide through by the gcd. */
828 for (j = 0; j < i; j++)
829 target[i][j] = target[i][j] / gcd1;
831 expression = lambda_linear_expression_new (depth, invariants,
832 lambda_obstack);
833 lambda_vector_copy (target[i], LLE_COEFFICIENTS (expression), depth);
834 LLE_DENOMINATOR (expression) = determinant / gcd1;
835 LLE_CONSTANT (expression) = 0;
836 lambda_vector_clear (LLE_INVARIANT_COEFFICIENTS (expression),
837 invariants);
838 LL_LINEAR_OFFSET (target_loop) = expression;
841 /* For each loop, compute the new bounds from H. */
842 for (i = 0; i < depth; i++)
844 auxillary_loop = LN_LOOPS (auxillary_nest)[i];
845 target_loop = LN_LOOPS (target_nest)[i];
846 LL_STEP (target_loop) = LTM_MATRIX (H)[i][i];
847 factor = LTM_MATRIX (H)[i][i];
849 /* First we do the lower bound. */
850 auxillary_expr = LL_LOWER_BOUND (auxillary_loop);
852 for (; auxillary_expr != NULL;
853 auxillary_expr = LLE_NEXT (auxillary_expr))
855 target_expr = lambda_linear_expression_new (depth, invariants,
856 lambda_obstack);
857 lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
858 depth, inverse, depth,
859 LLE_COEFFICIENTS (target_expr));
860 lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
861 LLE_COEFFICIENTS (target_expr), depth,
862 factor);
864 LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
865 lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
866 LLE_INVARIANT_COEFFICIENTS (target_expr),
867 invariants);
868 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
869 LLE_INVARIANT_COEFFICIENTS (target_expr),
870 invariants, factor);
871 LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
873 if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
875 LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
876 * determinant;
877 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
878 (target_expr),
879 LLE_INVARIANT_COEFFICIENTS
880 (target_expr), invariants,
881 determinant);
882 LLE_DENOMINATOR (target_expr) =
883 LLE_DENOMINATOR (target_expr) * determinant;
885 /* Find the gcd and divide by it here, rather than doing it
886 at the tree level. */
887 gcd1 = lambda_vector_gcd (LLE_COEFFICIENTS (target_expr), depth);
888 gcd2 = lambda_vector_gcd (LLE_INVARIANT_COEFFICIENTS (target_expr),
889 invariants);
890 gcd1 = gcd (gcd1, gcd2);
891 gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
892 gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
893 for (j = 0; j < depth; j++)
894 LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
895 for (j = 0; j < invariants; j++)
896 LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
897 LLE_CONSTANT (target_expr) /= gcd1;
898 LLE_DENOMINATOR (target_expr) /= gcd1;
899 /* Ignore if identical to existing bound. */
900 if (!lle_equal (LL_LOWER_BOUND (target_loop), target_expr, depth,
901 invariants))
903 LLE_NEXT (target_expr) = LL_LOWER_BOUND (target_loop);
904 LL_LOWER_BOUND (target_loop) = target_expr;
907 /* Now do the upper bound. */
908 auxillary_expr = LL_UPPER_BOUND (auxillary_loop);
910 for (; auxillary_expr != NULL;
911 auxillary_expr = LLE_NEXT (auxillary_expr))
913 target_expr = lambda_linear_expression_new (depth, invariants,
914 lambda_obstack);
915 lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
916 depth, inverse, depth,
917 LLE_COEFFICIENTS (target_expr));
918 lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
919 LLE_COEFFICIENTS (target_expr), depth,
920 factor);
921 LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
922 lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
923 LLE_INVARIANT_COEFFICIENTS (target_expr),
924 invariants);
925 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
926 LLE_INVARIANT_COEFFICIENTS (target_expr),
927 invariants, factor);
928 LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
930 if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
932 LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
933 * determinant;
934 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
935 (target_expr),
936 LLE_INVARIANT_COEFFICIENTS
937 (target_expr), invariants,
938 determinant);
939 LLE_DENOMINATOR (target_expr) =
940 LLE_DENOMINATOR (target_expr) * determinant;
942 /* Find the gcd and divide by it here, instead of at the
943 tree level. */
944 gcd1 = lambda_vector_gcd (LLE_COEFFICIENTS (target_expr), depth);
945 gcd2 = lambda_vector_gcd (LLE_INVARIANT_COEFFICIENTS (target_expr),
946 invariants);
947 gcd1 = gcd (gcd1, gcd2);
948 gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
949 gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
950 for (j = 0; j < depth; j++)
951 LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
952 for (j = 0; j < invariants; j++)
953 LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
954 LLE_CONSTANT (target_expr) /= gcd1;
955 LLE_DENOMINATOR (target_expr) /= gcd1;
956 /* Ignore if equal to existing bound. */
957 if (!lle_equal (LL_UPPER_BOUND (target_loop), target_expr, depth,
958 invariants))
960 LLE_NEXT (target_expr) = LL_UPPER_BOUND (target_loop);
961 LL_UPPER_BOUND (target_loop) = target_expr;
965 for (i = 0; i < depth; i++)
967 target_loop = LN_LOOPS (target_nest)[i];
968 /* If necessary, exchange the upper and lower bounds and negate
969 the step size. */
970 if (stepsigns[i] < 0)
972 LL_STEP (target_loop) *= -1;
973 tmp_expr = LL_LOWER_BOUND (target_loop);
974 LL_LOWER_BOUND (target_loop) = LL_UPPER_BOUND (target_loop);
975 LL_UPPER_BOUND (target_loop) = tmp_expr;
978 return target_nest;
981 /* Compute the step signs of TRANS, using TRANS and stepsigns. Return the new
982 result. */
984 static lambda_vector
985 lambda_compute_step_signs (lambda_trans_matrix trans, lambda_vector stepsigns)
987 lambda_matrix matrix, H;
988 int size;
989 lambda_vector newsteps;
990 int i, j, factor, minimum_column;
991 int temp;
993 matrix = LTM_MATRIX (trans);
994 size = LTM_ROWSIZE (trans);
995 H = lambda_matrix_new (size, size);
997 newsteps = lambda_vector_new (size);
998 lambda_vector_copy (stepsigns, newsteps, size);
1000 lambda_matrix_copy (matrix, H, size, size);
1002 for (j = 0; j < size; j++)
1004 lambda_vector row;
1005 row = H[j];
1006 for (i = j; i < size; i++)
1007 if (row[i] < 0)
1008 lambda_matrix_col_negate (H, size, i);
1009 while (lambda_vector_first_nz (row, size, j + 1) < size)
1011 minimum_column = lambda_vector_min_nz (row, size, j);
1012 lambda_matrix_col_exchange (H, size, j, minimum_column);
1014 temp = newsteps[j];
1015 newsteps[j] = newsteps[minimum_column];
1016 newsteps[minimum_column] = temp;
1018 for (i = j + 1; i < size; i++)
1020 factor = row[i] / row[j];
1021 lambda_matrix_col_add (H, size, j, i, -1 * factor);
1025 return newsteps;
1028 /* Transform NEST according to TRANS, and return the new loopnest.
1029 This involves
1030 1. Computing a lattice base for the transformation
1031 2. Composing the dense base with the specified transformation (TRANS)
1032 3. Decomposing the combined transformation into a lower triangular portion,
1033 and a unimodular portion.
1034 4. Computing the auxiliary nest using the unimodular portion.
1035 5. Computing the target nest using the auxiliary nest and the lower
1036 triangular portion. */
1038 lambda_loopnest
1039 lambda_loopnest_transform (lambda_loopnest nest, lambda_trans_matrix trans,
1040 struct obstack * lambda_obstack)
1042 lambda_loopnest auxillary_nest, target_nest;
1044 int depth, invariants;
1045 int i, j;
1046 lambda_lattice lattice;
1047 lambda_trans_matrix trans1, H, U;
1048 lambda_loop loop;
1049 lambda_linear_expression expression;
1050 lambda_vector origin;
1051 lambda_matrix origin_invariants;
1052 lambda_vector stepsigns;
1053 int f;
1055 depth = LN_DEPTH (nest);
1056 invariants = LN_INVARIANTS (nest);
1058 /* Keep track of the signs of the loop steps. */
1059 stepsigns = lambda_vector_new (depth);
1060 for (i = 0; i < depth; i++)
1062 if (LL_STEP (LN_LOOPS (nest)[i]) > 0)
1063 stepsigns[i] = 1;
1064 else
1065 stepsigns[i] = -1;
1068 /* Compute the lattice base. */
1069 lattice = lambda_lattice_compute_base (nest, lambda_obstack);
1070 trans1 = lambda_trans_matrix_new (depth, depth);
1072 /* Multiply the transformation matrix by the lattice base. */
1074 lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_BASE (lattice),
1075 LTM_MATRIX (trans1), depth, depth, depth);
1077 /* Compute the Hermite normal form for the new transformation matrix. */
1078 H = lambda_trans_matrix_new (depth, depth);
1079 U = lambda_trans_matrix_new (depth, depth);
1080 lambda_matrix_hermite (LTM_MATRIX (trans1), depth, LTM_MATRIX (H),
1081 LTM_MATRIX (U));
1083 /* Compute the auxiliary loop nest's space from the unimodular
1084 portion. */
1085 auxillary_nest = lambda_compute_auxillary_space (nest, U, lambda_obstack);
1087 /* Compute the loop step signs from the old step signs and the
1088 transformation matrix. */
1089 stepsigns = lambda_compute_step_signs (trans1, stepsigns);
1091 /* Compute the target loop nest space from the auxiliary nest and
1092 the lower triangular matrix H. */
1093 target_nest = lambda_compute_target_space (auxillary_nest, H, stepsigns,
1094 lambda_obstack);
1095 origin = lambda_vector_new (depth);
1096 origin_invariants = lambda_matrix_new (depth, invariants);
1097 lambda_matrix_vector_mult (LTM_MATRIX (trans), depth, depth,
1098 LATTICE_ORIGIN (lattice), origin);
1099 lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_ORIGIN_INVARIANTS (lattice),
1100 origin_invariants, depth, depth, invariants);
1102 for (i = 0; i < depth; i++)
1104 loop = LN_LOOPS (target_nest)[i];
1105 expression = LL_LINEAR_OFFSET (loop);
1106 if (lambda_vector_zerop (LLE_COEFFICIENTS (expression), depth))
1107 f = 1;
1108 else
1109 f = LLE_DENOMINATOR (expression);
1111 LLE_CONSTANT (expression) += f * origin[i];
1113 for (j = 0; j < invariants; j++)
1114 LLE_INVARIANT_COEFFICIENTS (expression)[j] +=
1115 f * origin_invariants[i][j];
1118 return target_nest;
1122 /* Convert a gcc tree expression EXPR to a lambda linear expression, and
1123 return the new expression. DEPTH is the depth of the loopnest.
1124 OUTERINDUCTIONVARS is an array of the induction variables for outer loops
1125 in this nest. INVARIANTS is the array of invariants for the loop. EXTRA
1126 is the amount we have to add/subtract from the expression because of the
1127 type of comparison it is used in. */
1129 static lambda_linear_expression
1130 gcc_tree_to_linear_expression (int depth, tree expr,
1131 VEC(tree,heap) *outerinductionvars,
1132 VEC(tree,heap) *invariants, int extra,
1133 struct obstack * lambda_obstack)
1135 lambda_linear_expression lle = NULL;
1136 switch (TREE_CODE (expr))
1138 case INTEGER_CST:
1140 lle = lambda_linear_expression_new (depth, 2 * depth, lambda_obstack);
1141 LLE_CONSTANT (lle) = TREE_INT_CST_LOW (expr);
1142 if (extra != 0)
1143 LLE_CONSTANT (lle) += extra;
1145 LLE_DENOMINATOR (lle) = 1;
1147 break;
1148 case SSA_NAME:
1150 tree iv, invar;
1151 size_t i;
1152 for (i = 0; VEC_iterate (tree, outerinductionvars, i, iv); i++)
1153 if (iv != NULL)
1155 if (SSA_NAME_VAR (iv) == SSA_NAME_VAR (expr))
1157 lle = lambda_linear_expression_new (depth, 2 * depth,
1158 lambda_obstack);
1159 LLE_COEFFICIENTS (lle)[i] = 1;
1160 if (extra != 0)
1161 LLE_CONSTANT (lle) = extra;
1163 LLE_DENOMINATOR (lle) = 1;
1166 for (i = 0; VEC_iterate (tree, invariants, i, invar); i++)
1167 if (invar != NULL)
1169 if (SSA_NAME_VAR (invar) == SSA_NAME_VAR (expr))
1171 lle = lambda_linear_expression_new (depth, 2 * depth,
1172 lambda_obstack);
1173 LLE_INVARIANT_COEFFICIENTS (lle)[i] = 1;
1174 if (extra != 0)
1175 LLE_CONSTANT (lle) = extra;
1176 LLE_DENOMINATOR (lle) = 1;
1180 break;
1181 default:
1182 return NULL;
1185 return lle;
1188 /* Return the depth of the loopnest NEST */
1190 static int
1191 depth_of_nest (struct loop *nest)
1193 size_t depth = 0;
1194 while (nest)
1196 depth++;
1197 nest = nest->inner;
1199 return depth;
1203 /* Return true if OP is invariant in LOOP and all outer loops. */
1205 static bool
1206 invariant_in_loop_and_outer_loops (struct loop *loop, tree op)
1208 if (is_gimple_min_invariant (op))
1209 return true;
1210 if (loop_depth (loop) == 0)
1211 return true;
1212 if (!expr_invariant_in_loop_p (loop, op))
1213 return false;
1214 if (!invariant_in_loop_and_outer_loops (loop_outer (loop), op))
1215 return false;
1216 return true;
1219 /* Generate a lambda loop from a gcc loop LOOP. Return the new lambda loop,
1220 or NULL if it could not be converted.
1221 DEPTH is the depth of the loop.
1222 INVARIANTS is a pointer to the array of loop invariants.
1223 The induction variable for this loop should be stored in the parameter
1224 OURINDUCTIONVAR.
1225 OUTERINDUCTIONVARS is an array of induction variables for outer loops. */
1227 static lambda_loop
1228 gcc_loop_to_lambda_loop (struct loop *loop, int depth,
1229 VEC(tree,heap) ** invariants,
1230 tree * ourinductionvar,
1231 VEC(tree,heap) * outerinductionvars,
1232 VEC(tree,heap) ** lboundvars,
1233 VEC(tree,heap) ** uboundvars,
1234 VEC(int,heap) ** steps,
1235 struct obstack * lambda_obstack)
1237 gimple phi;
1238 gimple exit_cond;
1239 tree access_fn, inductionvar;
1240 tree step;
1241 lambda_loop lloop = NULL;
1242 lambda_linear_expression lbound, ubound;
1243 tree test_lhs, test_rhs;
1244 int stepint;
1245 int extra = 0;
1246 tree lboundvar, uboundvar, uboundresult;
1248 /* Find out induction var and exit condition. */
1249 inductionvar = find_induction_var_from_exit_cond (loop);
1250 exit_cond = get_loop_exit_condition (loop);
1252 if (inductionvar == NULL || exit_cond == NULL)
1254 if (dump_file && (dump_flags & TDF_DETAILS))
1255 fprintf (dump_file,
1256 "Unable to convert loop: Cannot determine exit condition or induction variable for loop.\n");
1257 return NULL;
1260 if (SSA_NAME_DEF_STMT (inductionvar) == NULL)
1263 if (dump_file && (dump_flags & TDF_DETAILS))
1264 fprintf (dump_file,
1265 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1267 return NULL;
1270 phi = SSA_NAME_DEF_STMT (inductionvar);
1271 if (gimple_code (phi) != GIMPLE_PHI)
1273 tree op = SINGLE_SSA_TREE_OPERAND (phi, SSA_OP_USE);
1274 if (!op)
1277 if (dump_file && (dump_flags & TDF_DETAILS))
1278 fprintf (dump_file,
1279 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1281 return NULL;
1284 phi = SSA_NAME_DEF_STMT (op);
1285 if (gimple_code (phi) != GIMPLE_PHI)
1287 if (dump_file && (dump_flags & TDF_DETAILS))
1288 fprintf (dump_file,
1289 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1290 return NULL;
1294 /* The induction variable name/version we want to put in the array is the
1295 result of the induction variable phi node. */
1296 *ourinductionvar = PHI_RESULT (phi);
1297 access_fn = instantiate_parameters
1298 (loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
1299 if (access_fn == chrec_dont_know)
1301 if (dump_file && (dump_flags & TDF_DETAILS))
1302 fprintf (dump_file,
1303 "Unable to convert loop: Access function for induction variable phi is unknown\n");
1305 return NULL;
1308 step = evolution_part_in_loop_num (access_fn, loop->num);
1309 if (!step || step == chrec_dont_know)
1311 if (dump_file && (dump_flags & TDF_DETAILS))
1312 fprintf (dump_file,
1313 "Unable to convert loop: Cannot determine step of loop.\n");
1315 return NULL;
1317 if (TREE_CODE (step) != INTEGER_CST)
1320 if (dump_file && (dump_flags & TDF_DETAILS))
1321 fprintf (dump_file,
1322 "Unable to convert loop: Step of loop is not integer.\n");
1323 return NULL;
1326 stepint = TREE_INT_CST_LOW (step);
1328 /* Only want phis for induction vars, which will have two
1329 arguments. */
1330 if (gimple_phi_num_args (phi) != 2)
1332 if (dump_file && (dump_flags & TDF_DETAILS))
1333 fprintf (dump_file,
1334 "Unable to convert loop: PHI node for induction variable has >2 arguments\n");
1335 return NULL;
1338 /* Another induction variable check. One argument's source should be
1339 in the loop, one outside the loop. */
1340 if (flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, 0)->src)
1341 && flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, 1)->src))
1344 if (dump_file && (dump_flags & TDF_DETAILS))
1345 fprintf (dump_file,
1346 "Unable to convert loop: PHI edges both inside loop, or both outside loop.\n");
1348 return NULL;
1351 if (flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, 0)->src))
1353 lboundvar = PHI_ARG_DEF (phi, 1);
1354 lbound = gcc_tree_to_linear_expression (depth, lboundvar,
1355 outerinductionvars, *invariants,
1356 0, lambda_obstack);
1358 else
1360 lboundvar = PHI_ARG_DEF (phi, 0);
1361 lbound = gcc_tree_to_linear_expression (depth, lboundvar,
1362 outerinductionvars, *invariants,
1363 0, lambda_obstack);
1366 if (!lbound)
1369 if (dump_file && (dump_flags & TDF_DETAILS))
1370 fprintf (dump_file,
1371 "Unable to convert loop: Cannot convert lower bound to linear expression\n");
1373 return NULL;
1375 /* One part of the test may be a loop invariant tree. */
1376 VEC_reserve (tree, heap, *invariants, 1);
1377 test_lhs = gimple_cond_lhs (exit_cond);
1378 test_rhs = gimple_cond_rhs (exit_cond);
1380 if (TREE_CODE (test_rhs) == SSA_NAME
1381 && invariant_in_loop_and_outer_loops (loop, test_rhs))
1382 VEC_quick_push (tree, *invariants, test_rhs);
1383 else if (TREE_CODE (test_lhs) == SSA_NAME
1384 && invariant_in_loop_and_outer_loops (loop, test_lhs))
1385 VEC_quick_push (tree, *invariants, test_lhs);
1387 /* The non-induction variable part of the test is the upper bound variable.
1389 if (test_lhs == inductionvar)
1390 uboundvar = test_rhs;
1391 else
1392 uboundvar = test_lhs;
1394 /* We only size the vectors assuming we have, at max, 2 times as many
1395 invariants as we do loops (one for each bound).
1396 This is just an arbitrary number, but it has to be matched against the
1397 code below. */
1398 gcc_assert (VEC_length (tree, *invariants) <= (unsigned int) (2 * depth));
1401 /* We might have some leftover. */
1402 if (gimple_cond_code (exit_cond) == LT_EXPR)
1403 extra = -1 * stepint;
1404 else if (gimple_cond_code (exit_cond) == NE_EXPR)
1405 extra = -1 * stepint;
1406 else if (gimple_cond_code (exit_cond) == GT_EXPR)
1407 extra = -1 * stepint;
1408 else if (gimple_cond_code (exit_cond) == EQ_EXPR)
1409 extra = 1 * stepint;
1411 ubound = gcc_tree_to_linear_expression (depth, uboundvar,
1412 outerinductionvars,
1413 *invariants, extra, lambda_obstack);
1414 uboundresult = build2 (PLUS_EXPR, TREE_TYPE (uboundvar), uboundvar,
1415 build_int_cst (TREE_TYPE (uboundvar), extra));
1416 VEC_safe_push (tree, heap, *uboundvars, uboundresult);
1417 VEC_safe_push (tree, heap, *lboundvars, lboundvar);
1418 VEC_safe_push (int, heap, *steps, stepint);
1419 if (!ubound)
1421 if (dump_file && (dump_flags & TDF_DETAILS))
1422 fprintf (dump_file,
1423 "Unable to convert loop: Cannot convert upper bound to linear expression\n");
1424 return NULL;
1427 lloop = lambda_loop_new ();
1428 LL_STEP (lloop) = stepint;
1429 LL_LOWER_BOUND (lloop) = lbound;
1430 LL_UPPER_BOUND (lloop) = ubound;
1431 return lloop;
1434 /* Given a LOOP, find the induction variable it is testing against in the exit
1435 condition. Return the induction variable if found, NULL otherwise. */
1437 tree
1438 find_induction_var_from_exit_cond (struct loop *loop)
1440 gimple expr = get_loop_exit_condition (loop);
1441 tree ivarop;
1442 tree test_lhs, test_rhs;
1443 if (expr == NULL)
1444 return NULL_TREE;
1445 if (gimple_code (expr) != GIMPLE_COND)
1446 return NULL_TREE;
1447 test_lhs = gimple_cond_lhs (expr);
1448 test_rhs = gimple_cond_rhs (expr);
1450 /* Find the side that is invariant in this loop. The ivar must be the other
1451 side. */
1453 if (expr_invariant_in_loop_p (loop, test_lhs))
1454 ivarop = test_rhs;
1455 else if (expr_invariant_in_loop_p (loop, test_rhs))
1456 ivarop = test_lhs;
1457 else
1458 return NULL_TREE;
1460 if (TREE_CODE (ivarop) != SSA_NAME)
1461 return NULL_TREE;
1462 return ivarop;
1465 DEF_VEC_P(lambda_loop);
1466 DEF_VEC_ALLOC_P(lambda_loop,heap);
1468 /* Generate a lambda loopnest from a gcc loopnest LOOP_NEST.
1469 Return the new loop nest.
1470 INDUCTIONVARS is a pointer to an array of induction variables for the
1471 loopnest that will be filled in during this process.
1472 INVARIANTS is a pointer to an array of invariants that will be filled in
1473 during this process. */
1475 lambda_loopnest
1476 gcc_loopnest_to_lambda_loopnest (struct loop *loop_nest,
1477 VEC(tree,heap) **inductionvars,
1478 VEC(tree,heap) **invariants,
1479 struct obstack * lambda_obstack)
1481 lambda_loopnest ret = NULL;
1482 struct loop *temp = loop_nest;
1483 int depth = depth_of_nest (loop_nest);
1484 size_t i;
1485 VEC(lambda_loop,heap) *loops = NULL;
1486 VEC(tree,heap) *uboundvars = NULL;
1487 VEC(tree,heap) *lboundvars = NULL;
1488 VEC(int,heap) *steps = NULL;
1489 lambda_loop newloop;
1490 tree inductionvar = NULL;
1491 bool perfect_nest = perfect_nest_p (loop_nest);
1493 if (!perfect_nest && !can_convert_to_perfect_nest (loop_nest))
1494 goto fail;
1496 while (temp)
1498 newloop = gcc_loop_to_lambda_loop (temp, depth, invariants,
1499 &inductionvar, *inductionvars,
1500 &lboundvars, &uboundvars,
1501 &steps, lambda_obstack);
1502 if (!newloop)
1503 goto fail;
1505 VEC_safe_push (tree, heap, *inductionvars, inductionvar);
1506 VEC_safe_push (lambda_loop, heap, loops, newloop);
1507 temp = temp->inner;
1510 if (!perfect_nest)
1512 if (!perfect_nestify (loop_nest, lboundvars, uboundvars, steps,
1513 *inductionvars))
1515 if (dump_file)
1516 fprintf (dump_file,
1517 "Not a perfect loop nest and couldn't convert to one.\n");
1518 goto fail;
1520 else if (dump_file)
1521 fprintf (dump_file,
1522 "Successfully converted loop nest to perfect loop nest.\n");
1525 ret = lambda_loopnest_new (depth, 2 * depth, lambda_obstack);
1527 for (i = 0; VEC_iterate (lambda_loop, loops, i, newloop); i++)
1528 LN_LOOPS (ret)[i] = newloop;
1530 fail:
1531 VEC_free (lambda_loop, heap, loops);
1532 VEC_free (tree, heap, uboundvars);
1533 VEC_free (tree, heap, lboundvars);
1534 VEC_free (int, heap, steps);
1536 return ret;
1539 /* Convert a lambda body vector LBV to a gcc tree, and return the new tree.
1540 STMTS_TO_INSERT is a pointer to a tree where the statements we need to be
1541 inserted for us are stored. INDUCTION_VARS is the array of induction
1542 variables for the loop this LBV is from. TYPE is the tree type to use for
1543 the variables and trees involved. */
1545 static tree
1546 lbv_to_gcc_expression (lambda_body_vector lbv,
1547 tree type, VEC(tree,heap) *induction_vars,
1548 gimple_seq *stmts_to_insert)
1550 int k;
1551 tree resvar;
1552 tree expr = build_linear_expr (type, LBV_COEFFICIENTS (lbv), induction_vars);
1554 k = LBV_DENOMINATOR (lbv);
1555 gcc_assert (k != 0);
1556 if (k != 1)
1557 expr = fold_build2 (CEIL_DIV_EXPR, type, expr, build_int_cst (type, k));
1559 resvar = create_tmp_var (type, "lbvtmp");
1560 add_referenced_var (resvar);
1561 return force_gimple_operand (fold (expr), stmts_to_insert, true, resvar);
1564 /* Convert a linear expression from coefficient and constant form to a
1565 gcc tree.
1566 Return the tree that represents the final value of the expression.
1567 LLE is the linear expression to convert.
1568 OFFSET is the linear offset to apply to the expression.
1569 TYPE is the tree type to use for the variables and math.
1570 INDUCTION_VARS is a vector of induction variables for the loops.
1571 INVARIANTS is a vector of the loop nest invariants.
1572 WRAP specifies what tree code to wrap the results in, if there is more than
1573 one (it is either MAX_EXPR, or MIN_EXPR).
1574 STMTS_TO_INSERT Is a pointer to the statement list we fill in with
1575 statements that need to be inserted for the linear expression. */
1577 static tree
1578 lle_to_gcc_expression (lambda_linear_expression lle,
1579 lambda_linear_expression offset,
1580 tree type,
1581 VEC(tree,heap) *induction_vars,
1582 VEC(tree,heap) *invariants,
1583 enum tree_code wrap, gimple_seq *stmts_to_insert)
1585 int k;
1586 tree resvar;
1587 tree expr = NULL_TREE;
1588 VEC(tree,heap) *results = NULL;
1590 gcc_assert (wrap == MAX_EXPR || wrap == MIN_EXPR);
1592 /* Build up the linear expressions. */
1593 for (; lle != NULL; lle = LLE_NEXT (lle))
1595 expr = build_linear_expr (type, LLE_COEFFICIENTS (lle), induction_vars);
1596 expr = fold_build2 (PLUS_EXPR, type, expr,
1597 build_linear_expr (type,
1598 LLE_INVARIANT_COEFFICIENTS (lle),
1599 invariants));
1601 k = LLE_CONSTANT (lle);
1602 if (k)
1603 expr = fold_build2 (PLUS_EXPR, type, expr, build_int_cst (type, k));
1605 k = LLE_CONSTANT (offset);
1606 if (k)
1607 expr = fold_build2 (PLUS_EXPR, type, expr, build_int_cst (type, k));
1609 k = LLE_DENOMINATOR (lle);
1610 if (k != 1)
1611 expr = fold_build2 (wrap == MAX_EXPR ? CEIL_DIV_EXPR : FLOOR_DIV_EXPR,
1612 type, expr, build_int_cst (type, k));
1614 expr = fold (expr);
1615 VEC_safe_push (tree, heap, results, expr);
1618 gcc_assert (expr);
1620 /* We may need to wrap the results in a MAX_EXPR or MIN_EXPR. */
1621 if (VEC_length (tree, results) > 1)
1623 size_t i;
1624 tree op;
1626 expr = VEC_index (tree, results, 0);
1627 for (i = 1; VEC_iterate (tree, results, i, op); i++)
1628 expr = fold_build2 (wrap, type, expr, op);
1631 VEC_free (tree, heap, results);
1633 resvar = create_tmp_var (type, "lletmp");
1634 add_referenced_var (resvar);
1635 return force_gimple_operand (fold (expr), stmts_to_insert, true, resvar);
1638 /* Remove the induction variable defined at IV_STMT. */
1640 void
1641 remove_iv (gimple iv_stmt)
1643 gimple_stmt_iterator si = gsi_for_stmt (iv_stmt);
1645 if (gimple_code (iv_stmt) == GIMPLE_PHI)
1647 unsigned i;
1649 for (i = 0; i < gimple_phi_num_args (iv_stmt); i++)
1651 gimple stmt;
1652 imm_use_iterator imm_iter;
1653 tree arg = gimple_phi_arg_def (iv_stmt, i);
1654 bool used = false;
1656 if (TREE_CODE (arg) != SSA_NAME)
1657 continue;
1659 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, arg)
1660 if (stmt != iv_stmt)
1661 used = true;
1663 if (!used)
1664 remove_iv (SSA_NAME_DEF_STMT (arg));
1667 remove_phi_node (&si, true);
1669 else
1671 gsi_remove (&si, true);
1672 release_defs (iv_stmt);
1676 /* Transform a lambda loopnest NEW_LOOPNEST, which had TRANSFORM applied to
1677 it, back into gcc code. This changes the
1678 loops, their induction variables, and their bodies, so that they
1679 match the transformed loopnest.
1680 OLD_LOOPNEST is the loopnest before we've replaced it with the new
1681 loopnest.
1682 OLD_IVS is a vector of induction variables from the old loopnest.
1683 INVARIANTS is a vector of loop invariants from the old loopnest.
1684 NEW_LOOPNEST is the new lambda loopnest to replace OLD_LOOPNEST with.
1685 TRANSFORM is the matrix transform that was applied to OLD_LOOPNEST to get
1686 NEW_LOOPNEST. */
1688 void
1689 lambda_loopnest_to_gcc_loopnest (struct loop *old_loopnest,
1690 VEC(tree,heap) *old_ivs,
1691 VEC(tree,heap) *invariants,
1692 VEC(gimple,heap) **remove_ivs,
1693 lambda_loopnest new_loopnest,
1694 lambda_trans_matrix transform,
1695 struct obstack * lambda_obstack)
1697 struct loop *temp;
1698 size_t i = 0;
1699 unsigned j;
1700 size_t depth = 0;
1701 VEC(tree,heap) *new_ivs = NULL;
1702 tree oldiv;
1703 gimple_stmt_iterator bsi;
1705 transform = lambda_trans_matrix_inverse (transform);
1707 if (dump_file)
1709 fprintf (dump_file, "Inverse of transformation matrix:\n");
1710 print_lambda_trans_matrix (dump_file, transform);
1712 depth = depth_of_nest (old_loopnest);
1713 temp = old_loopnest;
1715 while (temp)
1717 lambda_loop newloop;
1718 basic_block bb;
1719 edge exit;
1720 tree ivvar, ivvarinced;
1721 gimple exitcond;
1722 gimple_seq stmts;
1723 enum tree_code testtype;
1724 tree newupperbound, newlowerbound;
1725 lambda_linear_expression offset;
1726 tree type;
1727 bool insert_after;
1728 gimple inc_stmt;
1730 oldiv = VEC_index (tree, old_ivs, i);
1731 type = TREE_TYPE (oldiv);
1733 /* First, build the new induction variable temporary */
1735 ivvar = create_tmp_var (type, "lnivtmp");
1736 add_referenced_var (ivvar);
1738 VEC_safe_push (tree, heap, new_ivs, ivvar);
1740 newloop = LN_LOOPS (new_loopnest)[i];
1742 /* Linear offset is a bit tricky to handle. Punt on the unhandled
1743 cases for now. */
1744 offset = LL_LINEAR_OFFSET (newloop);
1746 gcc_assert (LLE_DENOMINATOR (offset) == 1 &&
1747 lambda_vector_zerop (LLE_COEFFICIENTS (offset), depth));
1749 /* Now build the new lower bounds, and insert the statements
1750 necessary to generate it on the loop preheader. */
1751 stmts = NULL;
1752 newlowerbound = lle_to_gcc_expression (LL_LOWER_BOUND (newloop),
1753 LL_LINEAR_OFFSET (newloop),
1754 type,
1755 new_ivs,
1756 invariants, MAX_EXPR, &stmts);
1758 if (stmts)
1760 gsi_insert_seq_on_edge (loop_preheader_edge (temp), stmts);
1761 gsi_commit_edge_inserts ();
1763 /* Build the new upper bound and insert its statements in the
1764 basic block of the exit condition */
1765 stmts = NULL;
1766 newupperbound = lle_to_gcc_expression (LL_UPPER_BOUND (newloop),
1767 LL_LINEAR_OFFSET (newloop),
1768 type,
1769 new_ivs,
1770 invariants, MIN_EXPR, &stmts);
1771 exit = single_exit (temp);
1772 exitcond = get_loop_exit_condition (temp);
1773 bb = gimple_bb (exitcond);
1774 bsi = gsi_after_labels (bb);
1775 if (stmts)
1776 gsi_insert_seq_before (&bsi, stmts, GSI_NEW_STMT);
1778 /* Create the new iv. */
1780 standard_iv_increment_position (temp, &bsi, &insert_after);
1781 create_iv (newlowerbound,
1782 build_int_cst (type, LL_STEP (newloop)),
1783 ivvar, temp, &bsi, insert_after, &ivvar,
1784 NULL);
1786 /* Unfortunately, the incremented ivvar that create_iv inserted may not
1787 dominate the block containing the exit condition.
1788 So we simply create our own incremented iv to use in the new exit
1789 test, and let redundancy elimination sort it out. */
1790 inc_stmt = gimple_build_assign_with_ops (PLUS_EXPR, SSA_NAME_VAR (ivvar),
1791 ivvar,
1792 build_int_cst (type, LL_STEP (newloop)));
1794 ivvarinced = make_ssa_name (SSA_NAME_VAR (ivvar), inc_stmt);
1795 gimple_assign_set_lhs (inc_stmt, ivvarinced);
1796 bsi = gsi_for_stmt (exitcond);
1797 gsi_insert_before (&bsi, inc_stmt, GSI_SAME_STMT);
1799 /* Replace the exit condition with the new upper bound
1800 comparison. */
1802 testtype = LL_STEP (newloop) >= 0 ? LE_EXPR : GE_EXPR;
1804 /* We want to build a conditional where true means exit the loop, and
1805 false means continue the loop.
1806 So swap the testtype if this isn't the way things are.*/
1808 if (exit->flags & EDGE_FALSE_VALUE)
1809 testtype = swap_tree_comparison (testtype);
1811 gimple_cond_set_condition (exitcond, testtype, newupperbound, ivvarinced);
1812 update_stmt (exitcond);
1813 VEC_replace (tree, new_ivs, i, ivvar);
1815 i++;
1816 temp = temp->inner;
1819 /* Rewrite uses of the old ivs so that they are now specified in terms of
1820 the new ivs. */
1822 for (i = 0; VEC_iterate (tree, old_ivs, i, oldiv); i++)
1824 imm_use_iterator imm_iter;
1825 use_operand_p use_p;
1826 tree oldiv_def;
1827 gimple oldiv_stmt = SSA_NAME_DEF_STMT (oldiv);
1828 gimple stmt;
1830 if (gimple_code (oldiv_stmt) == GIMPLE_PHI)
1831 oldiv_def = PHI_RESULT (oldiv_stmt);
1832 else
1833 oldiv_def = SINGLE_SSA_TREE_OPERAND (oldiv_stmt, SSA_OP_DEF);
1834 gcc_assert (oldiv_def != NULL_TREE);
1836 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, oldiv_def)
1838 tree newiv;
1839 gimple_seq stmts;
1840 lambda_body_vector lbv, newlbv;
1842 /* Compute the new expression for the induction
1843 variable. */
1844 depth = VEC_length (tree, new_ivs);
1845 lbv = lambda_body_vector_new (depth, lambda_obstack);
1846 LBV_COEFFICIENTS (lbv)[i] = 1;
1848 newlbv = lambda_body_vector_compute_new (transform, lbv,
1849 lambda_obstack);
1851 stmts = NULL;
1852 newiv = lbv_to_gcc_expression (newlbv, TREE_TYPE (oldiv),
1853 new_ivs, &stmts);
1855 if (stmts && gimple_code (stmt) != GIMPLE_PHI)
1857 bsi = gsi_for_stmt (stmt);
1858 gsi_insert_seq_before (&bsi, stmts, GSI_SAME_STMT);
1861 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1862 propagate_value (use_p, newiv);
1864 if (stmts && gimple_code (stmt) == GIMPLE_PHI)
1865 for (j = 0; j < gimple_phi_num_args (stmt); j++)
1866 if (gimple_phi_arg_def (stmt, j) == newiv)
1867 gsi_insert_seq_on_edge (gimple_phi_arg_edge (stmt, j), stmts);
1869 update_stmt (stmt);
1872 /* Remove the now unused induction variable. */
1873 VEC_safe_push (gimple, heap, *remove_ivs, oldiv_stmt);
1875 VEC_free (tree, heap, new_ivs);
1878 /* Return TRUE if this is not interesting statement from the perspective of
1879 determining if we have a perfect loop nest. */
1881 static bool
1882 not_interesting_stmt (gimple stmt)
1884 /* Note that COND_EXPR's aren't interesting because if they were exiting the
1885 loop, we would have already failed the number of exits tests. */
1886 if (gimple_code (stmt) == GIMPLE_LABEL
1887 || gimple_code (stmt) == GIMPLE_GOTO
1888 || gimple_code (stmt) == GIMPLE_COND)
1889 return true;
1890 return false;
1893 /* Return TRUE if PHI uses DEF for it's in-the-loop edge for LOOP. */
1895 static bool
1896 phi_loop_edge_uses_def (struct loop *loop, gimple phi, tree def)
1898 unsigned i;
1899 for (i = 0; i < gimple_phi_num_args (phi); i++)
1900 if (flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, i)->src))
1901 if (PHI_ARG_DEF (phi, i) == def)
1902 return true;
1903 return false;
1906 /* Return TRUE if STMT is a use of PHI_RESULT. */
1908 static bool
1909 stmt_uses_phi_result (gimple stmt, tree phi_result)
1911 tree use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1913 /* This is conservatively true, because we only want SIMPLE bumpers
1914 of the form x +- constant for our pass. */
1915 return (use == phi_result);
1918 /* STMT is a bumper stmt for LOOP if the version it defines is used in the
1919 in-loop-edge in a phi node, and the operand it uses is the result of that
1920 phi node.
1921 I.E. i_29 = i_3 + 1
1922 i_3 = PHI (0, i_29); */
1924 static bool
1925 stmt_is_bumper_for_loop (struct loop *loop, gimple stmt)
1927 gimple use;
1928 tree def;
1929 imm_use_iterator iter;
1930 use_operand_p use_p;
1932 def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF);
1933 if (!def)
1934 return false;
1936 FOR_EACH_IMM_USE_FAST (use_p, iter, def)
1938 use = USE_STMT (use_p);
1939 if (gimple_code (use) == GIMPLE_PHI)
1941 if (phi_loop_edge_uses_def (loop, use, def))
1942 if (stmt_uses_phi_result (stmt, PHI_RESULT (use)))
1943 return true;
1946 return false;
1950 /* Return true if LOOP is a perfect loop nest.
1951 Perfect loop nests are those loop nests where all code occurs in the
1952 innermost loop body.
1953 If S is a program statement, then
1955 i.e.
1956 DO I = 1, 20
1958 DO J = 1, 20
1960 END DO
1961 END DO
1962 is not a perfect loop nest because of S1.
1964 DO I = 1, 20
1965 DO J = 1, 20
1968 END DO
1969 END DO
1970 is a perfect loop nest.
1972 Since we don't have high level loops anymore, we basically have to walk our
1973 statements and ignore those that are there because the loop needs them (IE
1974 the induction variable increment, and jump back to the top of the loop). */
1976 bool
1977 perfect_nest_p (struct loop *loop)
1979 basic_block *bbs;
1980 size_t i;
1981 gimple exit_cond;
1983 /* Loops at depth 0 are perfect nests. */
1984 if (!loop->inner)
1985 return true;
1987 bbs = get_loop_body (loop);
1988 exit_cond = get_loop_exit_condition (loop);
1990 for (i = 0; i < loop->num_nodes; i++)
1992 if (bbs[i]->loop_father == loop)
1994 gimple_stmt_iterator bsi;
1996 for (bsi = gsi_start_bb (bbs[i]); !gsi_end_p (bsi); gsi_next (&bsi))
1998 gimple stmt = gsi_stmt (bsi);
2000 if (gimple_code (stmt) == GIMPLE_COND
2001 && exit_cond != stmt)
2002 goto non_perfectly_nested;
2004 if (stmt == exit_cond
2005 || not_interesting_stmt (stmt)
2006 || stmt_is_bumper_for_loop (loop, stmt))
2007 continue;
2009 non_perfectly_nested:
2010 free (bbs);
2011 return false;
2016 free (bbs);
2018 return perfect_nest_p (loop->inner);
2021 /* Replace the USES of X in STMT, or uses with the same step as X with Y.
2022 YINIT is the initial value of Y, REPLACEMENTS is a hash table to
2023 avoid creating duplicate temporaries and FIRSTBSI is statement
2024 iterator where new temporaries should be inserted at the beginning
2025 of body basic block. */
2027 static void
2028 replace_uses_equiv_to_x_with_y (struct loop *loop, gimple stmt, tree x,
2029 int xstep, tree y, tree yinit,
2030 htab_t replacements,
2031 gimple_stmt_iterator *firstbsi)
2033 ssa_op_iter iter;
2034 use_operand_p use_p;
2036 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
2038 tree use = USE_FROM_PTR (use_p);
2039 tree step = NULL_TREE;
2040 tree scev, init, val, var;
2041 gimple setstmt;
2042 struct tree_map *h, in;
2043 void **loc;
2045 /* Replace uses of X with Y right away. */
2046 if (use == x)
2048 SET_USE (use_p, y);
2049 continue;
2052 scev = instantiate_parameters (loop,
2053 analyze_scalar_evolution (loop, use));
2055 if (scev == NULL || scev == chrec_dont_know)
2056 continue;
2058 step = evolution_part_in_loop_num (scev, loop->num);
2059 if (step == NULL
2060 || step == chrec_dont_know
2061 || TREE_CODE (step) != INTEGER_CST
2062 || int_cst_value (step) != xstep)
2063 continue;
2065 /* Use REPLACEMENTS hash table to cache already created
2066 temporaries. */
2067 in.hash = htab_hash_pointer (use);
2068 in.base.from = use;
2069 h = (struct tree_map *) htab_find_with_hash (replacements, &in, in.hash);
2070 if (h != NULL)
2072 SET_USE (use_p, h->to);
2073 continue;
2076 /* USE which has the same step as X should be replaced
2077 with a temporary set to Y + YINIT - INIT. */
2078 init = initial_condition_in_loop_num (scev, loop->num);
2079 gcc_assert (init != NULL && init != chrec_dont_know);
2080 if (TREE_TYPE (use) == TREE_TYPE (y))
2082 val = fold_build2 (MINUS_EXPR, TREE_TYPE (y), init, yinit);
2083 val = fold_build2 (PLUS_EXPR, TREE_TYPE (y), y, val);
2084 if (val == y)
2086 /* If X has the same type as USE, the same step
2087 and same initial value, it can be replaced by Y. */
2088 SET_USE (use_p, y);
2089 continue;
2092 else
2094 val = fold_build2 (MINUS_EXPR, TREE_TYPE (y), y, yinit);
2095 val = fold_convert (TREE_TYPE (use), val);
2096 val = fold_build2 (PLUS_EXPR, TREE_TYPE (use), val, init);
2099 /* Create a temporary variable and insert it at the beginning
2100 of the loop body basic block, right after the PHI node
2101 which sets Y. */
2102 var = create_tmp_var (TREE_TYPE (use), "perfecttmp");
2103 add_referenced_var (var);
2104 val = force_gimple_operand_gsi (firstbsi, val, false, NULL,
2105 true, GSI_SAME_STMT);
2106 setstmt = gimple_build_assign (var, val);
2107 var = make_ssa_name (var, setstmt);
2108 gimple_assign_set_lhs (setstmt, var);
2109 gsi_insert_before (firstbsi, setstmt, GSI_SAME_STMT);
2110 update_stmt (setstmt);
2111 SET_USE (use_p, var);
2112 h = GGC_NEW (struct tree_map);
2113 h->hash = in.hash;
2114 h->base.from = use;
2115 h->to = var;
2116 loc = htab_find_slot_with_hash (replacements, h, in.hash, INSERT);
2117 gcc_assert ((*(struct tree_map **)loc) == NULL);
2118 *(struct tree_map **) loc = h;
2122 /* Return true if STMT is an exit PHI for LOOP */
2124 static bool
2125 exit_phi_for_loop_p (struct loop *loop, gimple stmt)
2127 if (gimple_code (stmt) != GIMPLE_PHI
2128 || gimple_phi_num_args (stmt) != 1
2129 || gimple_bb (stmt) != single_exit (loop)->dest)
2130 return false;
2132 return true;
2135 /* Return true if STMT can be put back into the loop INNER, by
2136 copying it to the beginning of that loop and changing the uses. */
2138 static bool
2139 can_put_in_inner_loop (struct loop *inner, gimple stmt)
2141 imm_use_iterator imm_iter;
2142 use_operand_p use_p;
2144 gcc_assert (is_gimple_assign (stmt));
2145 if (gimple_vuse (stmt)
2146 || !stmt_invariant_in_loop_p (inner, stmt))
2147 return false;
2149 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_assign_lhs (stmt))
2151 if (!exit_phi_for_loop_p (inner, USE_STMT (use_p)))
2153 basic_block immbb = gimple_bb (USE_STMT (use_p));
2155 if (!flow_bb_inside_loop_p (inner, immbb))
2156 return false;
2159 return true;
2162 /* Return true if STMT can be put *after* the inner loop of LOOP. */
2164 static bool
2165 can_put_after_inner_loop (struct loop *loop, gimple stmt)
2167 imm_use_iterator imm_iter;
2168 use_operand_p use_p;
2170 if (gimple_vuse (stmt))
2171 return false;
2173 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_assign_lhs (stmt))
2175 if (!exit_phi_for_loop_p (loop, USE_STMT (use_p)))
2177 basic_block immbb = gimple_bb (USE_STMT (use_p));
2179 if (!dominated_by_p (CDI_DOMINATORS,
2180 immbb,
2181 loop->inner->header)
2182 && !can_put_in_inner_loop (loop->inner, stmt))
2183 return false;
2186 return true;
2189 /* Return true when the induction variable IV is simple enough to be
2190 re-synthesized. */
2192 static bool
2193 can_duplicate_iv (tree iv, struct loop *loop)
2195 tree scev = instantiate_parameters
2196 (loop, analyze_scalar_evolution (loop, iv));
2198 if (!automatically_generated_chrec_p (scev))
2200 tree step = evolution_part_in_loop_num (scev, loop->num);
2202 if (step && step != chrec_dont_know && TREE_CODE (step) == INTEGER_CST)
2203 return true;
2206 return false;
2209 /* If this is a scalar operation that can be put back into the inner
2210 loop, or after the inner loop, through copying, then do so. This
2211 works on the theory that any amount of scalar code we have to
2212 reduplicate into or after the loops is less expensive that the win
2213 we get from rearranging the memory walk the loop is doing so that
2214 it has better cache behavior. */
2216 static bool
2217 cannot_convert_modify_to_perfect_nest (gimple stmt, struct loop *loop)
2219 use_operand_p use_a, use_b;
2220 imm_use_iterator imm_iter;
2221 ssa_op_iter op_iter, op_iter1;
2222 tree op0 = gimple_assign_lhs (stmt);
2224 /* The statement should not define a variable used in the inner
2225 loop. */
2226 if (TREE_CODE (op0) == SSA_NAME
2227 && !can_duplicate_iv (op0, loop))
2228 FOR_EACH_IMM_USE_FAST (use_a, imm_iter, op0)
2229 if (gimple_bb (USE_STMT (use_a))->loop_father == loop->inner)
2230 return true;
2232 FOR_EACH_SSA_USE_OPERAND (use_a, stmt, op_iter, SSA_OP_USE)
2234 gimple node;
2235 tree op = USE_FROM_PTR (use_a);
2237 /* The variables should not be used in both loops. */
2238 if (!can_duplicate_iv (op, loop))
2239 FOR_EACH_IMM_USE_FAST (use_b, imm_iter, op)
2240 if (gimple_bb (USE_STMT (use_b))->loop_father == loop->inner)
2241 return true;
2243 /* The statement should not use the value of a scalar that was
2244 modified in the loop. */
2245 node = SSA_NAME_DEF_STMT (op);
2246 if (gimple_code (node) == GIMPLE_PHI)
2247 FOR_EACH_PHI_ARG (use_b, node, op_iter1, SSA_OP_USE)
2249 tree arg = USE_FROM_PTR (use_b);
2251 if (TREE_CODE (arg) == SSA_NAME)
2253 gimple arg_stmt = SSA_NAME_DEF_STMT (arg);
2255 if (gimple_bb (arg_stmt)
2256 && (gimple_bb (arg_stmt)->loop_father == loop->inner))
2257 return true;
2262 return false;
2264 /* Return true when BB contains statements that can harm the transform
2265 to a perfect loop nest. */
2267 static bool
2268 cannot_convert_bb_to_perfect_nest (basic_block bb, struct loop *loop)
2270 gimple_stmt_iterator bsi;
2271 gimple exit_condition = get_loop_exit_condition (loop);
2273 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2275 gimple stmt = gsi_stmt (bsi);
2277 if (stmt == exit_condition
2278 || not_interesting_stmt (stmt)
2279 || stmt_is_bumper_for_loop (loop, stmt))
2280 continue;
2282 if (is_gimple_assign (stmt))
2284 if (cannot_convert_modify_to_perfect_nest (stmt, loop))
2285 return true;
2287 if (can_duplicate_iv (gimple_assign_lhs (stmt), loop))
2288 continue;
2290 if (can_put_in_inner_loop (loop->inner, stmt)
2291 || can_put_after_inner_loop (loop, stmt))
2292 continue;
2295 /* If the bb of a statement we care about isn't dominated by the
2296 header of the inner loop, then we can't handle this case
2297 right now. This test ensures that the statement comes
2298 completely *after* the inner loop. */
2299 if (!dominated_by_p (CDI_DOMINATORS,
2300 gimple_bb (stmt),
2301 loop->inner->header))
2302 return true;
2305 return false;
2309 /* Return TRUE if LOOP is an imperfect nest that we can convert to a
2310 perfect one. At the moment, we only handle imperfect nests of
2311 depth 2, where all of the statements occur after the inner loop. */
2313 static bool
2314 can_convert_to_perfect_nest (struct loop *loop)
2316 basic_block *bbs;
2317 size_t i;
2318 gimple_stmt_iterator si;
2320 /* Can't handle triply nested+ loops yet. */
2321 if (!loop->inner || loop->inner->inner)
2322 return false;
2324 bbs = get_loop_body (loop);
2325 for (i = 0; i < loop->num_nodes; i++)
2326 if (bbs[i]->loop_father == loop
2327 && cannot_convert_bb_to_perfect_nest (bbs[i], loop))
2328 goto fail;
2330 /* We also need to make sure the loop exit only has simple copy phis in it,
2331 otherwise we don't know how to transform it into a perfect nest. */
2332 for (si = gsi_start_phis (single_exit (loop)->dest);
2333 !gsi_end_p (si);
2334 gsi_next (&si))
2335 if (gimple_phi_num_args (gsi_stmt (si)) != 1)
2336 goto fail;
2338 free (bbs);
2339 return true;
2341 fail:
2342 free (bbs);
2343 return false;
2346 /* Transform the loop nest into a perfect nest, if possible.
2347 LOOP is the loop nest to transform into a perfect nest
2348 LBOUNDS are the lower bounds for the loops to transform
2349 UBOUNDS are the upper bounds for the loops to transform
2350 STEPS is the STEPS for the loops to transform.
2351 LOOPIVS is the induction variables for the loops to transform.
2353 Basically, for the case of
2355 FOR (i = 0; i < 50; i++)
2357 FOR (j =0; j < 50; j++)
2359 <whatever>
2361 <some code>
2364 This function will transform it into a perfect loop nest by splitting the
2365 outer loop into two loops, like so:
2367 FOR (i = 0; i < 50; i++)
2369 FOR (j = 0; j < 50; j++)
2371 <whatever>
2375 FOR (i = 0; i < 50; i ++)
2377 <some code>
2380 Return FALSE if we can't make this loop into a perfect nest. */
2382 static bool
2383 perfect_nestify (struct loop *loop,
2384 VEC(tree,heap) *lbounds,
2385 VEC(tree,heap) *ubounds,
2386 VEC(int,heap) *steps,
2387 VEC(tree,heap) *loopivs)
2389 basic_block *bbs;
2390 gimple exit_condition;
2391 gimple cond_stmt;
2392 basic_block preheaderbb, headerbb, bodybb, latchbb, olddest;
2393 int i;
2394 gimple_stmt_iterator bsi, firstbsi;
2395 bool insert_after;
2396 edge e;
2397 struct loop *newloop;
2398 gimple phi;
2399 tree uboundvar;
2400 gimple stmt;
2401 tree oldivvar, ivvar, ivvarinced;
2402 VEC(tree,heap) *phis = NULL;
2403 htab_t replacements = NULL;
2405 /* Create the new loop. */
2406 olddest = single_exit (loop)->dest;
2407 preheaderbb = split_edge (single_exit (loop));
2408 headerbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2410 /* Push the exit phi nodes that we are moving. */
2411 for (bsi = gsi_start_phis (olddest); !gsi_end_p (bsi); gsi_next (&bsi))
2413 phi = gsi_stmt (bsi);
2414 VEC_reserve (tree, heap, phis, 2);
2415 VEC_quick_push (tree, phis, PHI_RESULT (phi));
2416 VEC_quick_push (tree, phis, PHI_ARG_DEF (phi, 0));
2418 e = redirect_edge_and_branch (single_succ_edge (preheaderbb), headerbb);
2420 /* Remove the exit phis from the old basic block. */
2421 for (bsi = gsi_start_phis (olddest); !gsi_end_p (bsi); )
2422 remove_phi_node (&bsi, false);
2424 /* and add them back to the new basic block. */
2425 while (VEC_length (tree, phis) != 0)
2427 tree def;
2428 tree phiname;
2429 def = VEC_pop (tree, phis);
2430 phiname = VEC_pop (tree, phis);
2431 phi = create_phi_node (phiname, preheaderbb);
2432 add_phi_arg (phi, def, single_pred_edge (preheaderbb));
2434 flush_pending_stmts (e);
2435 VEC_free (tree, heap, phis);
2437 bodybb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2438 latchbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2439 make_edge (headerbb, bodybb, EDGE_FALLTHRU);
2440 cond_stmt = gimple_build_cond (NE_EXPR, integer_one_node, integer_zero_node,
2441 NULL_TREE, NULL_TREE);
2442 bsi = gsi_start_bb (bodybb);
2443 gsi_insert_after (&bsi, cond_stmt, GSI_NEW_STMT);
2444 e = make_edge (bodybb, olddest, EDGE_FALSE_VALUE);
2445 make_edge (bodybb, latchbb, EDGE_TRUE_VALUE);
2446 make_edge (latchbb, headerbb, EDGE_FALLTHRU);
2448 /* Update the loop structures. */
2449 newloop = duplicate_loop (loop, olddest->loop_father);
2450 newloop->header = headerbb;
2451 newloop->latch = latchbb;
2452 add_bb_to_loop (latchbb, newloop);
2453 add_bb_to_loop (bodybb, newloop);
2454 add_bb_to_loop (headerbb, newloop);
2455 set_immediate_dominator (CDI_DOMINATORS, bodybb, headerbb);
2456 set_immediate_dominator (CDI_DOMINATORS, headerbb, preheaderbb);
2457 set_immediate_dominator (CDI_DOMINATORS, preheaderbb,
2458 single_exit (loop)->src);
2459 set_immediate_dominator (CDI_DOMINATORS, latchbb, bodybb);
2460 set_immediate_dominator (CDI_DOMINATORS, olddest,
2461 recompute_dominator (CDI_DOMINATORS, olddest));
2462 /* Create the new iv. */
2463 oldivvar = VEC_index (tree, loopivs, 0);
2464 ivvar = create_tmp_var (TREE_TYPE (oldivvar), "perfectiv");
2465 add_referenced_var (ivvar);
2466 standard_iv_increment_position (newloop, &bsi, &insert_after);
2467 create_iv (VEC_index (tree, lbounds, 0),
2468 build_int_cst (TREE_TYPE (oldivvar), VEC_index (int, steps, 0)),
2469 ivvar, newloop, &bsi, insert_after, &ivvar, &ivvarinced);
2471 /* Create the new upper bound. This may be not just a variable, so we copy
2472 it to one just in case. */
2474 exit_condition = get_loop_exit_condition (newloop);
2475 uboundvar = create_tmp_var (TREE_TYPE (VEC_index (tree, ubounds, 0)),
2476 "uboundvar");
2477 add_referenced_var (uboundvar);
2478 stmt = gimple_build_assign (uboundvar, VEC_index (tree, ubounds, 0));
2479 uboundvar = make_ssa_name (uboundvar, stmt);
2480 gimple_assign_set_lhs (stmt, uboundvar);
2482 if (insert_after)
2483 gsi_insert_after (&bsi, stmt, GSI_SAME_STMT);
2484 else
2485 gsi_insert_before (&bsi, stmt, GSI_SAME_STMT);
2486 update_stmt (stmt);
2487 gimple_cond_set_condition (exit_condition, GE_EXPR, uboundvar, ivvarinced);
2488 update_stmt (exit_condition);
2489 replacements = htab_create_ggc (20, tree_map_hash,
2490 tree_map_eq, NULL);
2491 bbs = get_loop_body_in_dom_order (loop);
2492 /* Now move the statements, and replace the induction variable in the moved
2493 statements with the correct loop induction variable. */
2494 oldivvar = VEC_index (tree, loopivs, 0);
2495 firstbsi = gsi_start_bb (bodybb);
2496 for (i = loop->num_nodes - 1; i >= 0 ; i--)
2498 gimple_stmt_iterator tobsi = gsi_last_bb (bodybb);
2499 if (bbs[i]->loop_father == loop)
2501 /* If this is true, we are *before* the inner loop.
2502 If this isn't true, we are *after* it.
2504 The only time can_convert_to_perfect_nest returns true when we
2505 have statements before the inner loop is if they can be moved
2506 into the inner loop.
2508 The only time can_convert_to_perfect_nest returns true when we
2509 have statements after the inner loop is if they can be moved into
2510 the new split loop. */
2512 if (dominated_by_p (CDI_DOMINATORS, loop->inner->header, bbs[i]))
2514 gimple_stmt_iterator header_bsi
2515 = gsi_after_labels (loop->inner->header);
2517 for (bsi = gsi_start_bb (bbs[i]); !gsi_end_p (bsi);)
2519 gimple stmt = gsi_stmt (bsi);
2521 if (stmt == exit_condition
2522 || not_interesting_stmt (stmt)
2523 || stmt_is_bumper_for_loop (loop, stmt))
2525 gsi_next (&bsi);
2526 continue;
2529 gsi_move_before (&bsi, &header_bsi);
2532 else
2534 /* Note that the bsi only needs to be explicitly incremented
2535 when we don't move something, since it is automatically
2536 incremented when we do. */
2537 for (bsi = gsi_start_bb (bbs[i]); !gsi_end_p (bsi);)
2539 gimple stmt = gsi_stmt (bsi);
2541 if (stmt == exit_condition
2542 || not_interesting_stmt (stmt)
2543 || stmt_is_bumper_for_loop (loop, stmt))
2545 gsi_next (&bsi);
2546 continue;
2549 replace_uses_equiv_to_x_with_y
2550 (loop, stmt, oldivvar, VEC_index (int, steps, 0), ivvar,
2551 VEC_index (tree, lbounds, 0), replacements, &firstbsi);
2553 gsi_move_before (&bsi, &tobsi);
2555 /* If the statement has any virtual operands, they may
2556 need to be rewired because the original loop may
2557 still reference them. */
2558 if (gimple_vuse (stmt))
2559 mark_sym_for_renaming (gimple_vop (cfun));
2566 free (bbs);
2567 htab_delete (replacements);
2568 return perfect_nest_p (loop);
2571 /* Return true if TRANS is a legal transformation matrix that respects
2572 the dependence vectors in DISTS and DIRS. The conservative answer
2573 is false.
2575 "Wolfe proves that a unimodular transformation represented by the
2576 matrix T is legal when applied to a loop nest with a set of
2577 lexicographically non-negative distance vectors RDG if and only if
2578 for each vector d in RDG, (T.d >= 0) is lexicographically positive.
2579 i.e.: if and only if it transforms the lexicographically positive
2580 distance vectors to lexicographically positive vectors. Note that
2581 a unimodular matrix must transform the zero vector (and only it) to
2582 the zero vector." S.Muchnick. */
2584 bool
2585 lambda_transform_legal_p (lambda_trans_matrix trans,
2586 int nb_loops,
2587 VEC (ddr_p, heap) *dependence_relations)
2589 unsigned int i, j;
2590 lambda_vector distres;
2591 struct data_dependence_relation *ddr;
2593 gcc_assert (LTM_COLSIZE (trans) == nb_loops
2594 && LTM_ROWSIZE (trans) == nb_loops);
2596 /* When there are no dependences, the transformation is correct. */
2597 if (VEC_length (ddr_p, dependence_relations) == 0)
2598 return true;
2600 ddr = VEC_index (ddr_p, dependence_relations, 0);
2601 if (ddr == NULL)
2602 return true;
2604 /* When there is an unknown relation in the dependence_relations, we
2605 know that it is no worth looking at this loop nest: give up. */
2606 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
2607 return false;
2609 distres = lambda_vector_new (nb_loops);
2611 /* For each distance vector in the dependence graph. */
2612 for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
2614 /* Don't care about relations for which we know that there is no
2615 dependence, nor about read-read (aka. output-dependences):
2616 these data accesses can happen in any order. */
2617 if (DDR_ARE_DEPENDENT (ddr) == chrec_known
2618 || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
2619 continue;
2621 /* Conservatively answer: "this transformation is not valid". */
2622 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
2623 return false;
2625 /* If the dependence could not be captured by a distance vector,
2626 conservatively answer that the transform is not valid. */
2627 if (DDR_NUM_DIST_VECTS (ddr) == 0)
2628 return false;
2630 /* Compute trans.dist_vect */
2631 for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
2633 lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
2634 DDR_DIST_VECT (ddr, j), distres);
2636 if (!lambda_vector_lexico_pos (distres, nb_loops))
2637 return false;
2640 return true;
2644 /* Collects parameters from affine function ACCESS_FUNCTION, and push
2645 them in PARAMETERS. */
2647 static void
2648 lambda_collect_parameters_from_af (tree access_function,
2649 struct pointer_set_t *param_set,
2650 VEC (tree, heap) **parameters)
2652 if (access_function == NULL)
2653 return;
2655 if (TREE_CODE (access_function) == SSA_NAME
2656 && pointer_set_contains (param_set, access_function) == 0)
2658 pointer_set_insert (param_set, access_function);
2659 VEC_safe_push (tree, heap, *parameters, access_function);
2661 else
2663 int i, num_operands = tree_operand_length (access_function);
2665 for (i = 0; i < num_operands; i++)
2666 lambda_collect_parameters_from_af (TREE_OPERAND (access_function, i),
2667 param_set, parameters);
2671 /* Collects parameters from DATAREFS, and push them in PARAMETERS. */
2673 void
2674 lambda_collect_parameters (VEC (data_reference_p, heap) *datarefs,
2675 VEC (tree, heap) **parameters)
2677 unsigned i, j;
2678 struct pointer_set_t *parameter_set = pointer_set_create ();
2679 data_reference_p data_reference;
2681 for (i = 0; VEC_iterate (data_reference_p, datarefs, i, data_reference); i++)
2682 for (j = 0; j < DR_NUM_DIMENSIONS (data_reference); j++)
2683 lambda_collect_parameters_from_af (DR_ACCESS_FN (data_reference, j),
2684 parameter_set, parameters);
2685 pointer_set_destroy (parameter_set);
2688 /* Translates BASE_EXPR to vector CY. AM is needed for inferring
2689 indexing positions in the data access vector. CST is the analyzed
2690 integer constant. */
2692 static bool
2693 av_for_af_base (tree base_expr, lambda_vector cy, struct access_matrix *am,
2694 int cst)
2696 bool result = true;
2698 switch (TREE_CODE (base_expr))
2700 case INTEGER_CST:
2701 /* Constant part. */
2702 cy[AM_CONST_COLUMN_INDEX (am)] += int_cst_value (base_expr) * cst;
2703 return true;
2705 case SSA_NAME:
2707 int param_index =
2708 access_matrix_get_index_for_parameter (base_expr, am);
2710 if (param_index >= 0)
2712 cy[param_index] = cst + cy[param_index];
2713 return true;
2716 return false;
2719 case PLUS_EXPR:
2720 return av_for_af_base (TREE_OPERAND (base_expr, 0), cy, am, cst)
2721 && av_for_af_base (TREE_OPERAND (base_expr, 1), cy, am, cst);
2723 case MINUS_EXPR:
2724 return av_for_af_base (TREE_OPERAND (base_expr, 0), cy, am, cst)
2725 && av_for_af_base (TREE_OPERAND (base_expr, 1), cy, am, -1 * cst);
2727 case MULT_EXPR:
2728 if (TREE_CODE (TREE_OPERAND (base_expr, 0)) == INTEGER_CST)
2729 result = av_for_af_base (TREE_OPERAND (base_expr, 1),
2730 cy, am, cst *
2731 int_cst_value (TREE_OPERAND (base_expr, 0)));
2732 else if (TREE_CODE (TREE_OPERAND (base_expr, 1)) == INTEGER_CST)
2733 result = av_for_af_base (TREE_OPERAND (base_expr, 0),
2734 cy, am, cst *
2735 int_cst_value (TREE_OPERAND (base_expr, 1)));
2736 else
2737 result = false;
2739 return result;
2741 case NEGATE_EXPR:
2742 return av_for_af_base (TREE_OPERAND (base_expr, 0), cy, am, -1 * cst);
2744 default:
2745 return false;
2748 return result;
2751 /* Translates ACCESS_FUN to vector CY. AM is needed for inferring
2752 indexing positions in the data access vector. */
2754 static bool
2755 av_for_af (tree access_fun, lambda_vector cy, struct access_matrix *am)
2757 switch (TREE_CODE (access_fun))
2759 case POLYNOMIAL_CHREC:
2761 tree left = CHREC_LEFT (access_fun);
2762 tree right = CHREC_RIGHT (access_fun);
2763 unsigned var;
2765 if (TREE_CODE (right) != INTEGER_CST)
2766 return false;
2768 var = am_vector_index_for_loop (am, CHREC_VARIABLE (access_fun));
2769 cy[var] = int_cst_value (right);
2771 if (TREE_CODE (left) == POLYNOMIAL_CHREC)
2772 return av_for_af (left, cy, am);
2773 else
2774 return av_for_af_base (left, cy, am, 1);
2777 case INTEGER_CST:
2778 /* Constant part. */
2779 return av_for_af_base (access_fun, cy, am, 1);
2781 default:
2782 return false;
2786 /* Initializes the access matrix for DATA_REFERENCE. */
2788 static bool
2789 build_access_matrix (data_reference_p data_reference,
2790 VEC (tree, heap) *parameters, VEC (loop_p, heap) *nest)
2792 struct access_matrix *am = GGC_NEW (struct access_matrix);
2793 unsigned i, ndim = DR_NUM_DIMENSIONS (data_reference);
2794 unsigned nivs = VEC_length (loop_p, nest);
2795 unsigned lambda_nb_columns;
2797 AM_LOOP_NEST (am) = nest;
2798 AM_NB_INDUCTION_VARS (am) = nivs;
2799 AM_PARAMETERS (am) = parameters;
2801 lambda_nb_columns = AM_NB_COLUMNS (am);
2802 AM_MATRIX (am) = VEC_alloc (lambda_vector, gc, ndim);
2804 for (i = 0; i < ndim; i++)
2806 lambda_vector access_vector = lambda_vector_new (lambda_nb_columns);
2807 tree access_function = DR_ACCESS_FN (data_reference, i);
2809 if (!av_for_af (access_function, access_vector, am))
2810 return false;
2812 VEC_quick_push (lambda_vector, AM_MATRIX (am), access_vector);
2815 DR_ACCESS_MATRIX (data_reference) = am;
2816 return true;
2819 /* Returns false when one of the access matrices cannot be built. */
2821 bool
2822 lambda_compute_access_matrices (VEC (data_reference_p, heap) *datarefs,
2823 VEC (tree, heap) *parameters,
2824 VEC (loop_p, heap) *nest)
2826 data_reference_p dataref;
2827 unsigned ix;
2829 for (ix = 0; VEC_iterate (data_reference_p, datarefs, ix, dataref); ix++)
2830 if (!build_access_matrix (dataref, parameters, nest))
2831 return false;
2833 return true;