2009-06-03 Richard Guenther <rguenther@suse.de>
[official-gcc.git] / gcc / ada / sem_ch4.adb
blobb8e8b42d211108768a0f5887e05c16ba776dc645
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 4 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Debug; use Debug;
28 with Einfo; use Einfo;
29 with Elists; use Elists;
30 with Errout; use Errout;
31 with Exp_Util; use Exp_Util;
32 with Fname; use Fname;
33 with Itypes; use Itypes;
34 with Lib; use Lib;
35 with Lib.Xref; use Lib.Xref;
36 with Namet; use Namet;
37 with Namet.Sp; use Namet.Sp;
38 with Nlists; use Nlists;
39 with Nmake; use Nmake;
40 with Opt; use Opt;
41 with Output; use Output;
42 with Restrict; use Restrict;
43 with Rident; use Rident;
44 with Sem; use Sem;
45 with Sem_Aux; use Sem_Aux;
46 with Sem_Cat; use Sem_Cat;
47 with Sem_Ch3; use Sem_Ch3;
48 with Sem_Ch6; use Sem_Ch6;
49 with Sem_Ch8; use Sem_Ch8;
50 with Sem_Disp; use Sem_Disp;
51 with Sem_Dist; use Sem_Dist;
52 with Sem_Eval; use Sem_Eval;
53 with Sem_Res; use Sem_Res;
54 with Sem_Util; use Sem_Util;
55 with Sem_Type; use Sem_Type;
56 with Stand; use Stand;
57 with Sinfo; use Sinfo;
58 with Snames; use Snames;
59 with Tbuild; use Tbuild;
61 package body Sem_Ch4 is
63 -----------------------
64 -- Local Subprograms --
65 -----------------------
67 procedure Analyze_Concatenation_Rest (N : Node_Id);
68 -- Does the "rest" of the work of Analyze_Concatenation, after the left
69 -- operand has been analyzed. See Analyze_Concatenation for details.
71 procedure Analyze_Expression (N : Node_Id);
72 -- For expressions that are not names, this is just a call to analyze.
73 -- If the expression is a name, it may be a call to a parameterless
74 -- function, and if so must be converted into an explicit call node
75 -- and analyzed as such. This deproceduring must be done during the first
76 -- pass of overload resolution, because otherwise a procedure call with
77 -- overloaded actuals may fail to resolve.
79 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id);
80 -- Analyze a call of the form "+"(x, y), etc. The prefix of the call
81 -- is an operator name or an expanded name whose selector is an operator
82 -- name, and one possible interpretation is as a predefined operator.
84 procedure Analyze_Overloaded_Selected_Component (N : Node_Id);
85 -- If the prefix of a selected_component is overloaded, the proper
86 -- interpretation that yields a record type with the proper selector
87 -- name must be selected.
89 procedure Analyze_User_Defined_Binary_Op (N : Node_Id; Op_Id : Entity_Id);
90 -- Procedure to analyze a user defined binary operator, which is resolved
91 -- like a function, but instead of a list of actuals it is presented
92 -- with the left and right operands of an operator node.
94 procedure Analyze_User_Defined_Unary_Op (N : Node_Id; Op_Id : Entity_Id);
95 -- Procedure to analyze a user defined unary operator, which is resolved
96 -- like a function, but instead of a list of actuals, it is presented with
97 -- the operand of the operator node.
99 procedure Ambiguous_Operands (N : Node_Id);
100 -- for equality, membership, and comparison operators with overloaded
101 -- arguments, list possible interpretations.
103 procedure Analyze_One_Call
104 (N : Node_Id;
105 Nam : Entity_Id;
106 Report : Boolean;
107 Success : out Boolean;
108 Skip_First : Boolean := False);
109 -- Check one interpretation of an overloaded subprogram name for
110 -- compatibility with the types of the actuals in a call. If there is a
111 -- single interpretation which does not match, post error if Report is
112 -- set to True.
114 -- Nam is the entity that provides the formals against which the actuals
115 -- are checked. Nam is either the name of a subprogram, or the internal
116 -- subprogram type constructed for an access_to_subprogram. If the actuals
117 -- are compatible with Nam, then Nam is added to the list of candidate
118 -- interpretations for N, and Success is set to True.
120 -- The flag Skip_First is used when analyzing a call that was rewritten
121 -- from object notation. In this case the first actual may have to receive
122 -- an explicit dereference, depending on the first formal of the operation
123 -- being called. The caller will have verified that the object is legal
124 -- for the call. If the remaining parameters match, the first parameter
125 -- will rewritten as a dereference if needed, prior to completing analysis.
127 procedure Check_Misspelled_Selector
128 (Prefix : Entity_Id;
129 Sel : Node_Id);
130 -- Give possible misspelling diagnostic if Sel is likely to be a mis-
131 -- spelling of one of the selectors of the Prefix. This is called by
132 -- Analyze_Selected_Component after producing an invalid selector error
133 -- message.
135 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean;
136 -- Verify that type T is declared in scope S. Used to find interpretations
137 -- for operators given by expanded names. This is abstracted as a separate
138 -- function to handle extensions to System, where S is System, but T is
139 -- declared in the extension.
141 procedure Find_Arithmetic_Types
142 (L, R : Node_Id;
143 Op_Id : Entity_Id;
144 N : Node_Id);
145 -- L and R are the operands of an arithmetic operator. Find
146 -- consistent pairs of interpretations for L and R that have a
147 -- numeric type consistent with the semantics of the operator.
149 procedure Find_Comparison_Types
150 (L, R : Node_Id;
151 Op_Id : Entity_Id;
152 N : Node_Id);
153 -- L and R are operands of a comparison operator. Find consistent
154 -- pairs of interpretations for L and R.
156 procedure Find_Concatenation_Types
157 (L, R : Node_Id;
158 Op_Id : Entity_Id;
159 N : Node_Id);
160 -- For the four varieties of concatenation
162 procedure Find_Equality_Types
163 (L, R : Node_Id;
164 Op_Id : Entity_Id;
165 N : Node_Id);
166 -- Ditto for equality operators
168 procedure Find_Boolean_Types
169 (L, R : Node_Id;
170 Op_Id : Entity_Id;
171 N : Node_Id);
172 -- Ditto for binary logical operations
174 procedure Find_Negation_Types
175 (R : Node_Id;
176 Op_Id : Entity_Id;
177 N : Node_Id);
178 -- Find consistent interpretation for operand of negation operator
180 procedure Find_Non_Universal_Interpretations
181 (N : Node_Id;
182 R : Node_Id;
183 Op_Id : Entity_Id;
184 T1 : Entity_Id);
185 -- For equality and comparison operators, the result is always boolean,
186 -- and the legality of the operation is determined from the visibility
187 -- of the operand types. If one of the operands has a universal interpre-
188 -- tation, the legality check uses some compatible non-universal
189 -- interpretation of the other operand. N can be an operator node, or
190 -- a function call whose name is an operator designator.
192 function Find_Primitive_Operation (N : Node_Id) return Boolean;
193 -- Find candidate interpretations for the name Obj.Proc when it appears
194 -- in a subprogram renaming declaration.
196 procedure Find_Unary_Types
197 (R : Node_Id;
198 Op_Id : Entity_Id;
199 N : Node_Id);
200 -- Unary arithmetic types: plus, minus, abs
202 procedure Check_Arithmetic_Pair
203 (T1, T2 : Entity_Id;
204 Op_Id : Entity_Id;
205 N : Node_Id);
206 -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid
207 -- types for left and right operand. Determine whether they constitute
208 -- a valid pair for the given operator, and record the corresponding
209 -- interpretation of the operator node. The node N may be an operator
210 -- node (the usual case) or a function call whose prefix is an operator
211 -- designator. In both cases Op_Id is the operator name itself.
213 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id);
214 -- Give detailed information on overloaded call where none of the
215 -- interpretations match. N is the call node, Nam the designator for
216 -- the overloaded entity being called.
218 function Junk_Operand (N : Node_Id) return Boolean;
219 -- Test for an operand that is an inappropriate entity (e.g. a package
220 -- name or a label). If so, issue an error message and return True. If
221 -- the operand is not an inappropriate entity kind, return False.
223 procedure Operator_Check (N : Node_Id);
224 -- Verify that an operator has received some valid interpretation. If none
225 -- was found, determine whether a use clause would make the operation
226 -- legal. The variable Candidate_Type (defined in Sem_Type) is set for
227 -- every type compatible with the operator, even if the operator for the
228 -- type is not directly visible. The routine uses this type to emit a more
229 -- informative message.
231 function Process_Implicit_Dereference_Prefix
232 (E : Entity_Id;
233 P : Node_Id) return Entity_Id;
234 -- Called when P is the prefix of an implicit dereference, denoting an
235 -- object E. The function returns the designated type of the prefix, taking
236 -- into account that the designated type of an anonymous access type may be
237 -- a limited view, when the non-limited view is visible.
238 -- If in semantics only mode (-gnatc or generic), the function also records
239 -- that the prefix is a reference to E, if any. Normally, such a reference
240 -- is generated only when the implicit dereference is expanded into an
241 -- explicit one, but for consistency we must generate the reference when
242 -- expansion is disabled as well.
244 procedure Remove_Abstract_Operations (N : Node_Id);
245 -- Ada 2005: implementation of AI-310. An abstract non-dispatching
246 -- operation is not a candidate interpretation.
248 function Try_Indexed_Call
249 (N : Node_Id;
250 Nam : Entity_Id;
251 Typ : Entity_Id;
252 Skip_First : Boolean) return Boolean;
253 -- If a function has defaults for all its actuals, a call to it may in fact
254 -- be an indexing on the result of the call. Try_Indexed_Call attempts the
255 -- interpretation as an indexing, prior to analysis as a call. If both are
256 -- possible, the node is overloaded with both interpretations (same symbol
257 -- but two different types). If the call is written in prefix form, the
258 -- prefix becomes the first parameter in the call, and only the remaining
259 -- actuals must be checked for the presence of defaults.
261 function Try_Indirect_Call
262 (N : Node_Id;
263 Nam : Entity_Id;
264 Typ : Entity_Id) return Boolean;
265 -- Similarly, a function F that needs no actuals can return an access to a
266 -- subprogram, and the call F (X) interpreted as F.all (X). In this case
267 -- the call may be overloaded with both interpretations.
269 function Try_Object_Operation (N : Node_Id) return Boolean;
270 -- Ada 2005 (AI-252): Support the object.operation notation
272 procedure wpo (T : Entity_Id);
273 pragma Warnings (Off, wpo);
274 -- Used for debugging: obtain list of primitive operations even if
275 -- type is not frozen and dispatch table is not built yet.
277 ------------------------
278 -- Ambiguous_Operands --
279 ------------------------
281 procedure Ambiguous_Operands (N : Node_Id) is
282 procedure List_Operand_Interps (Opnd : Node_Id);
284 --------------------------
285 -- List_Operand_Interps --
286 --------------------------
288 procedure List_Operand_Interps (Opnd : Node_Id) is
289 Nam : Node_Id;
290 Err : Node_Id := N;
292 begin
293 if Is_Overloaded (Opnd) then
294 if Nkind (Opnd) in N_Op then
295 Nam := Opnd;
296 elsif Nkind (Opnd) = N_Function_Call then
297 Nam := Name (Opnd);
298 else
299 return;
300 end if;
302 else
303 return;
304 end if;
306 if Opnd = Left_Opnd (N) then
307 Error_Msg_N
308 ("\left operand has the following interpretations", N);
309 else
310 Error_Msg_N
311 ("\right operand has the following interpretations", N);
312 Err := Opnd;
313 end if;
315 List_Interps (Nam, Err);
316 end List_Operand_Interps;
318 -- Start of processing for Ambiguous_Operands
320 begin
321 if Nkind (N) in N_Membership_Test then
322 Error_Msg_N ("ambiguous operands for membership", N);
324 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne) then
325 Error_Msg_N ("ambiguous operands for equality", N);
327 else
328 Error_Msg_N ("ambiguous operands for comparison", N);
329 end if;
331 if All_Errors_Mode then
332 List_Operand_Interps (Left_Opnd (N));
333 List_Operand_Interps (Right_Opnd (N));
334 else
335 Error_Msg_N ("\use -gnatf switch for details", N);
336 end if;
337 end Ambiguous_Operands;
339 -----------------------
340 -- Analyze_Aggregate --
341 -----------------------
343 -- Most of the analysis of Aggregates requires that the type be known,
344 -- and is therefore put off until resolution.
346 procedure Analyze_Aggregate (N : Node_Id) is
347 begin
348 if No (Etype (N)) then
349 Set_Etype (N, Any_Composite);
350 end if;
351 end Analyze_Aggregate;
353 -----------------------
354 -- Analyze_Allocator --
355 -----------------------
357 procedure Analyze_Allocator (N : Node_Id) is
358 Loc : constant Source_Ptr := Sloc (N);
359 Sav_Errs : constant Nat := Serious_Errors_Detected;
360 E : Node_Id := Expression (N);
361 Acc_Type : Entity_Id;
362 Type_Id : Entity_Id;
364 begin
365 -- In accordance with H.4(7), the No_Allocators restriction only applies
366 -- to user-written allocators.
368 if Comes_From_Source (N) then
369 Check_Restriction (No_Allocators, N);
370 end if;
372 if Nkind (E) = N_Qualified_Expression then
373 Acc_Type := Create_Itype (E_Allocator_Type, N);
374 Set_Etype (Acc_Type, Acc_Type);
375 Find_Type (Subtype_Mark (E));
377 -- Analyze the qualified expression, and apply the name resolution
378 -- rule given in 4.7 (3).
380 Analyze (E);
381 Type_Id := Etype (E);
382 Set_Directly_Designated_Type (Acc_Type, Type_Id);
384 Resolve (Expression (E), Type_Id);
386 if Is_Limited_Type (Type_Id)
387 and then Comes_From_Source (N)
388 and then not In_Instance_Body
389 then
390 if not OK_For_Limited_Init (Expression (E)) then
391 Error_Msg_N ("initialization not allowed for limited types", N);
392 Explain_Limited_Type (Type_Id, N);
393 end if;
394 end if;
396 -- A qualified expression requires an exact match of the type,
397 -- class-wide matching is not allowed.
399 -- if Is_Class_Wide_Type (Type_Id)
400 -- and then Base_Type
401 -- (Etype (Expression (E))) /= Base_Type (Type_Id)
402 -- then
403 -- Wrong_Type (Expression (E), Type_Id);
404 -- end if;
406 Check_Non_Static_Context (Expression (E));
408 -- We don't analyze the qualified expression itself because it's
409 -- part of the allocator
411 Set_Etype (E, Type_Id);
413 -- Case where allocator has a subtype indication
415 else
416 declare
417 Def_Id : Entity_Id;
418 Base_Typ : Entity_Id;
420 begin
421 -- If the allocator includes a N_Subtype_Indication then a
422 -- constraint is present, otherwise the node is a subtype mark.
423 -- Introduce an explicit subtype declaration into the tree
424 -- defining some anonymous subtype and rewrite the allocator to
425 -- use this subtype rather than the subtype indication.
427 -- It is important to introduce the explicit subtype declaration
428 -- so that the bounds of the subtype indication are attached to
429 -- the tree in case the allocator is inside a generic unit.
431 if Nkind (E) = N_Subtype_Indication then
433 -- A constraint is only allowed for a composite type in Ada
434 -- 95. In Ada 83, a constraint is also allowed for an
435 -- access-to-composite type, but the constraint is ignored.
437 Find_Type (Subtype_Mark (E));
438 Base_Typ := Entity (Subtype_Mark (E));
440 if Is_Elementary_Type (Base_Typ) then
441 if not (Ada_Version = Ada_83
442 and then Is_Access_Type (Base_Typ))
443 then
444 Error_Msg_N ("constraint not allowed here", E);
446 if Nkind (Constraint (E)) =
447 N_Index_Or_Discriminant_Constraint
448 then
449 Error_Msg_N -- CODEFIX
450 ("\if qualified expression was meant, " &
451 "use apostrophe", Constraint (E));
452 end if;
453 end if;
455 -- Get rid of the bogus constraint:
457 Rewrite (E, New_Copy_Tree (Subtype_Mark (E)));
458 Analyze_Allocator (N);
459 return;
461 -- Ada 2005, AI-363: if the designated type has a constrained
462 -- partial view, it cannot receive a discriminant constraint,
463 -- and the allocated object is unconstrained.
465 elsif Ada_Version >= Ada_05
466 and then Has_Constrained_Partial_View (Base_Typ)
467 then
468 Error_Msg_N
469 ("constraint no allowed when type " &
470 "has a constrained partial view", Constraint (E));
471 end if;
473 if Expander_Active then
474 Def_Id :=
475 Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
477 Insert_Action (E,
478 Make_Subtype_Declaration (Loc,
479 Defining_Identifier => Def_Id,
480 Subtype_Indication => Relocate_Node (E)));
482 if Sav_Errs /= Serious_Errors_Detected
483 and then Nkind (Constraint (E)) =
484 N_Index_Or_Discriminant_Constraint
485 then
486 Error_Msg_N -- CODEFIX
487 ("if qualified expression was meant, " &
488 "use apostrophe!", Constraint (E));
489 end if;
491 E := New_Occurrence_Of (Def_Id, Loc);
492 Rewrite (Expression (N), E);
493 end if;
494 end if;
496 Type_Id := Process_Subtype (E, N);
497 Acc_Type := Create_Itype (E_Allocator_Type, N);
498 Set_Etype (Acc_Type, Acc_Type);
499 Set_Directly_Designated_Type (Acc_Type, Type_Id);
500 Check_Fully_Declared (Type_Id, N);
502 -- Ada 2005 (AI-231): If the designated type is itself an access
503 -- type that excludes null, its default initialization will
504 -- be a null object, and we can insert an unconditional raise
505 -- before the allocator.
507 if Can_Never_Be_Null (Type_Id) then
508 declare
509 Not_Null_Check : constant Node_Id :=
510 Make_Raise_Constraint_Error (Sloc (E),
511 Reason => CE_Null_Not_Allowed);
512 begin
513 if Expander_Active then
514 Insert_Action (N, Not_Null_Check);
515 Analyze (Not_Null_Check);
516 else
517 Error_Msg_N ("null value not allowed here?", E);
518 end if;
519 end;
520 end if;
522 -- Check restriction against dynamically allocated protected
523 -- objects. Note that when limited aggregates are supported,
524 -- a similar test should be applied to an allocator with a
525 -- qualified expression ???
527 if Is_Protected_Type (Type_Id) then
528 Check_Restriction (No_Protected_Type_Allocators, N);
529 end if;
531 -- Check for missing initialization. Skip this check if we already
532 -- had errors on analyzing the allocator, since in that case these
533 -- are probably cascaded errors.
535 if Is_Indefinite_Subtype (Type_Id)
536 and then Serious_Errors_Detected = Sav_Errs
537 then
538 if Is_Class_Wide_Type (Type_Id) then
539 Error_Msg_N
540 ("initialization required in class-wide allocation", N);
541 else
542 if Ada_Version < Ada_05
543 and then Is_Limited_Type (Type_Id)
544 then
545 Error_Msg_N ("unconstrained allocation not allowed", N);
547 if Is_Array_Type (Type_Id) then
548 Error_Msg_N
549 ("\constraint with array bounds required", N);
551 elsif Has_Unknown_Discriminants (Type_Id) then
552 null;
554 else pragma Assert (Has_Discriminants (Type_Id));
555 Error_Msg_N
556 ("\constraint with discriminant values required", N);
557 end if;
559 -- Limited Ada 2005 and general non-limited case
561 else
562 Error_Msg_N
563 ("uninitialized unconstrained allocation not allowed",
566 if Is_Array_Type (Type_Id) then
567 Error_Msg_N
568 ("\qualified expression or constraint with " &
569 "array bounds required", N);
571 elsif Has_Unknown_Discriminants (Type_Id) then
572 Error_Msg_N ("\qualified expression required", N);
574 else pragma Assert (Has_Discriminants (Type_Id));
575 Error_Msg_N
576 ("\qualified expression or constraint with " &
577 "discriminant values required", N);
578 end if;
579 end if;
580 end if;
581 end if;
582 end;
583 end if;
585 if Is_Abstract_Type (Type_Id) then
586 Error_Msg_N ("cannot allocate abstract object", E);
587 end if;
589 if Has_Task (Designated_Type (Acc_Type)) then
590 Check_Restriction (No_Tasking, N);
591 Check_Restriction (Max_Tasks, N);
592 Check_Restriction (No_Task_Allocators, N);
593 end if;
595 -- If the No_Streams restriction is set, check that the type of the
596 -- object is not, and does not contain, any subtype derived from
597 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
598 -- Has_Stream just for efficiency reasons. There is no point in
599 -- spending time on a Has_Stream check if the restriction is not set.
601 if Restrictions.Set (No_Streams) then
602 if Has_Stream (Designated_Type (Acc_Type)) then
603 Check_Restriction (No_Streams, N);
604 end if;
605 end if;
607 Set_Etype (N, Acc_Type);
609 if not Is_Library_Level_Entity (Acc_Type) then
610 Check_Restriction (No_Local_Allocators, N);
611 end if;
613 if Serious_Errors_Detected > Sav_Errs then
614 Set_Error_Posted (N);
615 Set_Etype (N, Any_Type);
616 end if;
617 end Analyze_Allocator;
619 ---------------------------
620 -- Analyze_Arithmetic_Op --
621 ---------------------------
623 procedure Analyze_Arithmetic_Op (N : Node_Id) is
624 L : constant Node_Id := Left_Opnd (N);
625 R : constant Node_Id := Right_Opnd (N);
626 Op_Id : Entity_Id;
628 begin
629 Candidate_Type := Empty;
630 Analyze_Expression (L);
631 Analyze_Expression (R);
633 -- If the entity is already set, the node is the instantiation of a
634 -- generic node with a non-local reference, or was manufactured by a
635 -- call to Make_Op_xxx. In either case the entity is known to be valid,
636 -- and we do not need to collect interpretations, instead we just get
637 -- the single possible interpretation.
639 Op_Id := Entity (N);
641 if Present (Op_Id) then
642 if Ekind (Op_Id) = E_Operator then
644 if Nkind_In (N, N_Op_Divide, N_Op_Mod, N_Op_Multiply, N_Op_Rem)
645 and then Treat_Fixed_As_Integer (N)
646 then
647 null;
648 else
649 Set_Etype (N, Any_Type);
650 Find_Arithmetic_Types (L, R, Op_Id, N);
651 end if;
653 else
654 Set_Etype (N, Any_Type);
655 Add_One_Interp (N, Op_Id, Etype (Op_Id));
656 end if;
658 -- Entity is not already set, so we do need to collect interpretations
660 else
661 Op_Id := Get_Name_Entity_Id (Chars (N));
662 Set_Etype (N, Any_Type);
664 while Present (Op_Id) loop
665 if Ekind (Op_Id) = E_Operator
666 and then Present (Next_Entity (First_Entity (Op_Id)))
667 then
668 Find_Arithmetic_Types (L, R, Op_Id, N);
670 -- The following may seem superfluous, because an operator cannot
671 -- be generic, but this ignores the cleverness of the author of
672 -- ACVC bc1013a.
674 elsif Is_Overloadable (Op_Id) then
675 Analyze_User_Defined_Binary_Op (N, Op_Id);
676 end if;
678 Op_Id := Homonym (Op_Id);
679 end loop;
680 end if;
682 Operator_Check (N);
683 end Analyze_Arithmetic_Op;
685 ------------------
686 -- Analyze_Call --
687 ------------------
689 -- Function, procedure, and entry calls are checked here. The Name in
690 -- the call may be overloaded. The actuals have been analyzed and may
691 -- themselves be overloaded. On exit from this procedure, the node N
692 -- may have zero, one or more interpretations. In the first case an
693 -- error message is produced. In the last case, the node is flagged
694 -- as overloaded and the interpretations are collected in All_Interp.
696 -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
697 -- the type-checking is similar to that of other calls.
699 procedure Analyze_Call (N : Node_Id) is
700 Actuals : constant List_Id := Parameter_Associations (N);
701 Nam : Node_Id;
702 X : Interp_Index;
703 It : Interp;
704 Nam_Ent : Entity_Id;
705 Success : Boolean := False;
707 Deref : Boolean := False;
708 -- Flag indicates whether an interpretation of the prefix is a
709 -- parameterless call that returns an access_to_subprogram.
711 function Name_Denotes_Function return Boolean;
712 -- If the type of the name is an access to subprogram, this may be the
713 -- type of a name, or the return type of the function being called. If
714 -- the name is not an entity then it can denote a protected function.
715 -- Until we distinguish Etype from Return_Type, we must use this routine
716 -- to resolve the meaning of the name in the call.
718 procedure No_Interpretation;
719 -- Output error message when no valid interpretation exists
721 ---------------------------
722 -- Name_Denotes_Function --
723 ---------------------------
725 function Name_Denotes_Function return Boolean is
726 begin
727 if Is_Entity_Name (Nam) then
728 return Ekind (Entity (Nam)) = E_Function;
730 elsif Nkind (Nam) = N_Selected_Component then
731 return Ekind (Entity (Selector_Name (Nam))) = E_Function;
733 else
734 return False;
735 end if;
736 end Name_Denotes_Function;
738 -----------------------
739 -- No_Interpretation --
740 -----------------------
742 procedure No_Interpretation is
743 L : constant Boolean := Is_List_Member (N);
744 K : constant Node_Kind := Nkind (Parent (N));
746 begin
747 -- If the node is in a list whose parent is not an expression then it
748 -- must be an attempted procedure call.
750 if L and then K not in N_Subexpr then
751 if Ekind (Entity (Nam)) = E_Generic_Procedure then
752 Error_Msg_NE
753 ("must instantiate generic procedure& before call",
754 Nam, Entity (Nam));
755 else
756 Error_Msg_N
757 ("procedure or entry name expected", Nam);
758 end if;
760 -- Check for tasking cases where only an entry call will do
762 elsif not L
763 and then Nkind_In (K, N_Entry_Call_Alternative,
764 N_Triggering_Alternative)
765 then
766 Error_Msg_N ("entry name expected", Nam);
768 -- Otherwise give general error message
770 else
771 Error_Msg_N ("invalid prefix in call", Nam);
772 end if;
773 end No_Interpretation;
775 -- Start of processing for Analyze_Call
777 begin
778 -- Initialize the type of the result of the call to the error type,
779 -- which will be reset if the type is successfully resolved.
781 Set_Etype (N, Any_Type);
783 Nam := Name (N);
785 if not Is_Overloaded (Nam) then
787 -- Only one interpretation to check
789 if Ekind (Etype (Nam)) = E_Subprogram_Type then
790 Nam_Ent := Etype (Nam);
792 -- If the prefix is an access_to_subprogram, this may be an indirect
793 -- call. This is the case if the name in the call is not an entity
794 -- name, or if it is a function name in the context of a procedure
795 -- call. In this latter case, we have a call to a parameterless
796 -- function that returns a pointer_to_procedure which is the entity
797 -- being called. Finally, F (X) may be a call to a parameterless
798 -- function that returns a pointer to a function with parameters.
800 elsif Is_Access_Type (Etype (Nam))
801 and then Ekind (Designated_Type (Etype (Nam))) = E_Subprogram_Type
802 and then
803 (not Name_Denotes_Function
804 or else Nkind (N) = N_Procedure_Call_Statement
805 or else
806 (Nkind (Parent (N)) /= N_Explicit_Dereference
807 and then Is_Entity_Name (Nam)
808 and then No (First_Formal (Entity (Nam)))
809 and then Present (Actuals)))
810 then
811 Nam_Ent := Designated_Type (Etype (Nam));
812 Insert_Explicit_Dereference (Nam);
814 -- Selected component case. Simple entry or protected operation,
815 -- where the entry name is given by the selector name.
817 elsif Nkind (Nam) = N_Selected_Component then
818 Nam_Ent := Entity (Selector_Name (Nam));
820 if Ekind (Nam_Ent) /= E_Entry
821 and then Ekind (Nam_Ent) /= E_Entry_Family
822 and then Ekind (Nam_Ent) /= E_Function
823 and then Ekind (Nam_Ent) /= E_Procedure
824 then
825 Error_Msg_N ("name in call is not a callable entity", Nam);
826 Set_Etype (N, Any_Type);
827 return;
828 end if;
830 -- If the name is an Indexed component, it can be a call to a member
831 -- of an entry family. The prefix must be a selected component whose
832 -- selector is the entry. Analyze_Procedure_Call normalizes several
833 -- kinds of call into this form.
835 elsif Nkind (Nam) = N_Indexed_Component then
836 if Nkind (Prefix (Nam)) = N_Selected_Component then
837 Nam_Ent := Entity (Selector_Name (Prefix (Nam)));
838 else
839 Error_Msg_N ("name in call is not a callable entity", Nam);
840 Set_Etype (N, Any_Type);
841 return;
842 end if;
844 elsif not Is_Entity_Name (Nam) then
845 Error_Msg_N ("name in call is not a callable entity", Nam);
846 Set_Etype (N, Any_Type);
847 return;
849 else
850 Nam_Ent := Entity (Nam);
852 -- If no interpretations, give error message
854 if not Is_Overloadable (Nam_Ent) then
855 No_Interpretation;
856 return;
857 end if;
858 end if;
860 -- Operations generated for RACW stub types are called only through
861 -- dispatching, and can never be the static interpretation of a call.
863 if Is_RACW_Stub_Type_Operation (Nam_Ent) then
864 No_Interpretation;
865 return;
866 end if;
868 Analyze_One_Call (N, Nam_Ent, True, Success);
870 -- If this is an indirect call, the return type of the access_to
871 -- subprogram may be an incomplete type. At the point of the call,
872 -- use the full type if available, and at the same time update
873 -- the return type of the access_to_subprogram.
875 if Success
876 and then Nkind (Nam) = N_Explicit_Dereference
877 and then Ekind (Etype (N)) = E_Incomplete_Type
878 and then Present (Full_View (Etype (N)))
879 then
880 Set_Etype (N, Full_View (Etype (N)));
881 Set_Etype (Nam_Ent, Etype (N));
882 end if;
884 else
885 -- An overloaded selected component must denote overloaded operations
886 -- of a concurrent type. The interpretations are attached to the
887 -- simple name of those operations.
889 if Nkind (Nam) = N_Selected_Component then
890 Nam := Selector_Name (Nam);
891 end if;
893 Get_First_Interp (Nam, X, It);
895 while Present (It.Nam) loop
896 Nam_Ent := It.Nam;
897 Deref := False;
899 -- Name may be call that returns an access to subprogram, or more
900 -- generally an overloaded expression one of whose interpretations
901 -- yields an access to subprogram. If the name is an entity, we
902 -- do not dereference, because the node is a call that returns
903 -- the access type: note difference between f(x), where the call
904 -- may return an access subprogram type, and f(x)(y), where the
905 -- type returned by the call to f is implicitly dereferenced to
906 -- analyze the outer call.
908 if Is_Access_Type (Nam_Ent) then
909 Nam_Ent := Designated_Type (Nam_Ent);
911 elsif Is_Access_Type (Etype (Nam_Ent))
912 and then
913 (not Is_Entity_Name (Nam)
914 or else Nkind (N) = N_Procedure_Call_Statement)
915 and then Ekind (Designated_Type (Etype (Nam_Ent)))
916 = E_Subprogram_Type
917 then
918 Nam_Ent := Designated_Type (Etype (Nam_Ent));
920 if Is_Entity_Name (Nam) then
921 Deref := True;
922 end if;
923 end if;
925 Analyze_One_Call (N, Nam_Ent, False, Success);
927 -- If the interpretation succeeds, mark the proper type of the
928 -- prefix (any valid candidate will do). If not, remove the
929 -- candidate interpretation. This only needs to be done for
930 -- overloaded protected operations, for other entities disambi-
931 -- guation is done directly in Resolve.
933 if Success then
934 if Deref
935 and then Nkind (Parent (N)) /= N_Explicit_Dereference
936 then
937 Set_Entity (Nam, It.Nam);
938 Insert_Explicit_Dereference (Nam);
939 Set_Etype (Nam, Nam_Ent);
941 else
942 Set_Etype (Nam, It.Typ);
943 end if;
945 elsif Nkind_In (Name (N), N_Selected_Component,
946 N_Function_Call)
947 then
948 Remove_Interp (X);
949 end if;
951 Get_Next_Interp (X, It);
952 end loop;
954 -- If the name is the result of a function call, it can only
955 -- be a call to a function returning an access to subprogram.
956 -- Insert explicit dereference.
958 if Nkind (Nam) = N_Function_Call then
959 Insert_Explicit_Dereference (Nam);
960 end if;
962 if Etype (N) = Any_Type then
964 -- None of the interpretations is compatible with the actuals
966 Diagnose_Call (N, Nam);
968 -- Special checks for uninstantiated put routines
970 if Nkind (N) = N_Procedure_Call_Statement
971 and then Is_Entity_Name (Nam)
972 and then Chars (Nam) = Name_Put
973 and then List_Length (Actuals) = 1
974 then
975 declare
976 Arg : constant Node_Id := First (Actuals);
977 Typ : Entity_Id;
979 begin
980 if Nkind (Arg) = N_Parameter_Association then
981 Typ := Etype (Explicit_Actual_Parameter (Arg));
982 else
983 Typ := Etype (Arg);
984 end if;
986 if Is_Signed_Integer_Type (Typ) then
987 Error_Msg_N
988 ("possible missing instantiation of " &
989 "'Text_'I'O.'Integer_'I'O!", Nam);
991 elsif Is_Modular_Integer_Type (Typ) then
992 Error_Msg_N
993 ("possible missing instantiation of " &
994 "'Text_'I'O.'Modular_'I'O!", Nam);
996 elsif Is_Floating_Point_Type (Typ) then
997 Error_Msg_N
998 ("possible missing instantiation of " &
999 "'Text_'I'O.'Float_'I'O!", Nam);
1001 elsif Is_Ordinary_Fixed_Point_Type (Typ) then
1002 Error_Msg_N
1003 ("possible missing instantiation of " &
1004 "'Text_'I'O.'Fixed_'I'O!", Nam);
1006 elsif Is_Decimal_Fixed_Point_Type (Typ) then
1007 Error_Msg_N
1008 ("possible missing instantiation of " &
1009 "'Text_'I'O.'Decimal_'I'O!", Nam);
1011 elsif Is_Enumeration_Type (Typ) then
1012 Error_Msg_N
1013 ("possible missing instantiation of " &
1014 "'Text_'I'O.'Enumeration_'I'O!", Nam);
1015 end if;
1016 end;
1017 end if;
1019 elsif not Is_Overloaded (N)
1020 and then Is_Entity_Name (Nam)
1021 then
1022 -- Resolution yields a single interpretation. Verify that the
1023 -- reference has capitalization consistent with the declaration.
1025 Set_Entity_With_Style_Check (Nam, Entity (Nam));
1026 Generate_Reference (Entity (Nam), Nam);
1028 Set_Etype (Nam, Etype (Entity (Nam)));
1029 else
1030 Remove_Abstract_Operations (N);
1031 end if;
1033 End_Interp_List;
1034 end if;
1035 end Analyze_Call;
1037 ---------------------------
1038 -- Analyze_Comparison_Op --
1039 ---------------------------
1041 procedure Analyze_Comparison_Op (N : Node_Id) is
1042 L : constant Node_Id := Left_Opnd (N);
1043 R : constant Node_Id := Right_Opnd (N);
1044 Op_Id : Entity_Id := Entity (N);
1046 begin
1047 Set_Etype (N, Any_Type);
1048 Candidate_Type := Empty;
1050 Analyze_Expression (L);
1051 Analyze_Expression (R);
1053 if Present (Op_Id) then
1054 if Ekind (Op_Id) = E_Operator then
1055 Find_Comparison_Types (L, R, Op_Id, N);
1056 else
1057 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1058 end if;
1060 if Is_Overloaded (L) then
1061 Set_Etype (L, Intersect_Types (L, R));
1062 end if;
1064 else
1065 Op_Id := Get_Name_Entity_Id (Chars (N));
1066 while Present (Op_Id) loop
1067 if Ekind (Op_Id) = E_Operator then
1068 Find_Comparison_Types (L, R, Op_Id, N);
1069 else
1070 Analyze_User_Defined_Binary_Op (N, Op_Id);
1071 end if;
1073 Op_Id := Homonym (Op_Id);
1074 end loop;
1075 end if;
1077 Operator_Check (N);
1078 end Analyze_Comparison_Op;
1080 ---------------------------
1081 -- Analyze_Concatenation --
1082 ---------------------------
1084 procedure Analyze_Concatenation (N : Node_Id) is
1086 -- We wish to avoid deep recursion, because concatenations are often
1087 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
1088 -- operands nonrecursively until we find something that is not a
1089 -- concatenation (A in this case), or has already been analyzed. We
1090 -- analyze that, and then walk back up the tree following Parent
1091 -- pointers, calling Analyze_Concatenation_Rest to do the rest of the
1092 -- work at each level. The Parent pointers allow us to avoid recursion,
1093 -- and thus avoid running out of memory.
1095 NN : Node_Id := N;
1096 L : Node_Id;
1098 begin
1099 Candidate_Type := Empty;
1101 -- The following code is equivalent to:
1103 -- Set_Etype (N, Any_Type);
1104 -- Analyze_Expression (Left_Opnd (N));
1105 -- Analyze_Concatenation_Rest (N);
1107 -- where the Analyze_Expression call recurses back here if the left
1108 -- operand is a concatenation.
1110 -- Walk down left operands
1112 loop
1113 Set_Etype (NN, Any_Type);
1114 L := Left_Opnd (NN);
1115 exit when Nkind (L) /= N_Op_Concat or else Analyzed (L);
1116 NN := L;
1117 end loop;
1119 -- Now (given the above example) NN is A&B and L is A
1121 -- First analyze L ...
1123 Analyze_Expression (L);
1125 -- ... then walk NN back up until we reach N (where we started), calling
1126 -- Analyze_Concatenation_Rest along the way.
1128 loop
1129 Analyze_Concatenation_Rest (NN);
1130 exit when NN = N;
1131 NN := Parent (NN);
1132 end loop;
1133 end Analyze_Concatenation;
1135 --------------------------------
1136 -- Analyze_Concatenation_Rest --
1137 --------------------------------
1139 -- If the only one-dimensional array type in scope is String,
1140 -- this is the resulting type of the operation. Otherwise there
1141 -- will be a concatenation operation defined for each user-defined
1142 -- one-dimensional array.
1144 procedure Analyze_Concatenation_Rest (N : Node_Id) is
1145 L : constant Node_Id := Left_Opnd (N);
1146 R : constant Node_Id := Right_Opnd (N);
1147 Op_Id : Entity_Id := Entity (N);
1148 LT : Entity_Id;
1149 RT : Entity_Id;
1151 begin
1152 Analyze_Expression (R);
1154 -- If the entity is present, the node appears in an instance, and
1155 -- denotes a predefined concatenation operation. The resulting type is
1156 -- obtained from the arguments when possible. If the arguments are
1157 -- aggregates, the array type and the concatenation type must be
1158 -- visible.
1160 if Present (Op_Id) then
1161 if Ekind (Op_Id) = E_Operator then
1163 LT := Base_Type (Etype (L));
1164 RT := Base_Type (Etype (R));
1166 if Is_Array_Type (LT)
1167 and then (RT = LT or else RT = Base_Type (Component_Type (LT)))
1168 then
1169 Add_One_Interp (N, Op_Id, LT);
1171 elsif Is_Array_Type (RT)
1172 and then LT = Base_Type (Component_Type (RT))
1173 then
1174 Add_One_Interp (N, Op_Id, RT);
1176 -- If one operand is a string type or a user-defined array type,
1177 -- and the other is a literal, result is of the specific type.
1179 elsif
1180 (Root_Type (LT) = Standard_String
1181 or else Scope (LT) /= Standard_Standard)
1182 and then Etype (R) = Any_String
1183 then
1184 Add_One_Interp (N, Op_Id, LT);
1186 elsif
1187 (Root_Type (RT) = Standard_String
1188 or else Scope (RT) /= Standard_Standard)
1189 and then Etype (L) = Any_String
1190 then
1191 Add_One_Interp (N, Op_Id, RT);
1193 elsif not Is_Generic_Type (Etype (Op_Id)) then
1194 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1196 else
1197 -- Type and its operations must be visible
1199 Set_Entity (N, Empty);
1200 Analyze_Concatenation (N);
1201 end if;
1203 else
1204 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1205 end if;
1207 else
1208 Op_Id := Get_Name_Entity_Id (Name_Op_Concat);
1209 while Present (Op_Id) loop
1210 if Ekind (Op_Id) = E_Operator then
1212 -- Do not consider operators declared in dead code, they can
1213 -- not be part of the resolution.
1215 if Is_Eliminated (Op_Id) then
1216 null;
1217 else
1218 Find_Concatenation_Types (L, R, Op_Id, N);
1219 end if;
1221 else
1222 Analyze_User_Defined_Binary_Op (N, Op_Id);
1223 end if;
1225 Op_Id := Homonym (Op_Id);
1226 end loop;
1227 end if;
1229 Operator_Check (N);
1230 end Analyze_Concatenation_Rest;
1232 ------------------------------------
1233 -- Analyze_Conditional_Expression --
1234 ------------------------------------
1236 procedure Analyze_Conditional_Expression (N : Node_Id) is
1237 Condition : constant Node_Id := First (Expressions (N));
1238 Then_Expr : constant Node_Id := Next (Condition);
1239 Else_Expr : constant Node_Id := Next (Then_Expr);
1240 begin
1241 Analyze_Expression (Condition);
1242 Analyze_Expression (Then_Expr);
1243 Analyze_Expression (Else_Expr);
1244 Set_Etype (N, Etype (Then_Expr));
1245 end Analyze_Conditional_Expression;
1247 -------------------------
1248 -- Analyze_Equality_Op --
1249 -------------------------
1251 procedure Analyze_Equality_Op (N : Node_Id) is
1252 Loc : constant Source_Ptr := Sloc (N);
1253 L : constant Node_Id := Left_Opnd (N);
1254 R : constant Node_Id := Right_Opnd (N);
1255 Op_Id : Entity_Id;
1257 begin
1258 Set_Etype (N, Any_Type);
1259 Candidate_Type := Empty;
1261 Analyze_Expression (L);
1262 Analyze_Expression (R);
1264 -- If the entity is set, the node is a generic instance with a non-local
1265 -- reference to the predefined operator or to a user-defined function.
1266 -- It can also be an inequality that is expanded into the negation of a
1267 -- call to a user-defined equality operator.
1269 -- For the predefined case, the result is Boolean, regardless of the
1270 -- type of the operands. The operands may even be limited, if they are
1271 -- generic actuals. If they are overloaded, label the left argument with
1272 -- the common type that must be present, or with the type of the formal
1273 -- of the user-defined function.
1275 if Present (Entity (N)) then
1276 Op_Id := Entity (N);
1278 if Ekind (Op_Id) = E_Operator then
1279 Add_One_Interp (N, Op_Id, Standard_Boolean);
1280 else
1281 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1282 end if;
1284 if Is_Overloaded (L) then
1285 if Ekind (Op_Id) = E_Operator then
1286 Set_Etype (L, Intersect_Types (L, R));
1287 else
1288 Set_Etype (L, Etype (First_Formal (Op_Id)));
1289 end if;
1290 end if;
1292 else
1293 Op_Id := Get_Name_Entity_Id (Chars (N));
1294 while Present (Op_Id) loop
1295 if Ekind (Op_Id) = E_Operator then
1296 Find_Equality_Types (L, R, Op_Id, N);
1297 else
1298 Analyze_User_Defined_Binary_Op (N, Op_Id);
1299 end if;
1301 Op_Id := Homonym (Op_Id);
1302 end loop;
1303 end if;
1305 -- If there was no match, and the operator is inequality, this may
1306 -- be a case where inequality has not been made explicit, as for
1307 -- tagged types. Analyze the node as the negation of an equality
1308 -- operation. This cannot be done earlier, because before analysis
1309 -- we cannot rule out the presence of an explicit inequality.
1311 if Etype (N) = Any_Type
1312 and then Nkind (N) = N_Op_Ne
1313 then
1314 Op_Id := Get_Name_Entity_Id (Name_Op_Eq);
1315 while Present (Op_Id) loop
1316 if Ekind (Op_Id) = E_Operator then
1317 Find_Equality_Types (L, R, Op_Id, N);
1318 else
1319 Analyze_User_Defined_Binary_Op (N, Op_Id);
1320 end if;
1322 Op_Id := Homonym (Op_Id);
1323 end loop;
1325 if Etype (N) /= Any_Type then
1326 Op_Id := Entity (N);
1328 Rewrite (N,
1329 Make_Op_Not (Loc,
1330 Right_Opnd =>
1331 Make_Op_Eq (Loc,
1332 Left_Opnd => Left_Opnd (N),
1333 Right_Opnd => Right_Opnd (N))));
1335 Set_Entity (Right_Opnd (N), Op_Id);
1336 Analyze (N);
1337 end if;
1338 end if;
1340 Operator_Check (N);
1341 end Analyze_Equality_Op;
1343 ----------------------------------
1344 -- Analyze_Explicit_Dereference --
1345 ----------------------------------
1347 procedure Analyze_Explicit_Dereference (N : Node_Id) is
1348 Loc : constant Source_Ptr := Sloc (N);
1349 P : constant Node_Id := Prefix (N);
1350 T : Entity_Id;
1351 I : Interp_Index;
1352 It : Interp;
1353 New_N : Node_Id;
1355 function Is_Function_Type return Boolean;
1356 -- Check whether node may be interpreted as an implicit function call
1358 ----------------------
1359 -- Is_Function_Type --
1360 ----------------------
1362 function Is_Function_Type return Boolean is
1363 I : Interp_Index;
1364 It : Interp;
1366 begin
1367 if not Is_Overloaded (N) then
1368 return Ekind (Base_Type (Etype (N))) = E_Subprogram_Type
1369 and then Etype (Base_Type (Etype (N))) /= Standard_Void_Type;
1371 else
1372 Get_First_Interp (N, I, It);
1373 while Present (It.Nam) loop
1374 if Ekind (Base_Type (It.Typ)) /= E_Subprogram_Type
1375 or else Etype (Base_Type (It.Typ)) = Standard_Void_Type
1376 then
1377 return False;
1378 end if;
1380 Get_Next_Interp (I, It);
1381 end loop;
1383 return True;
1384 end if;
1385 end Is_Function_Type;
1387 -- Start of processing for Analyze_Explicit_Dereference
1389 begin
1390 Analyze (P);
1391 Set_Etype (N, Any_Type);
1393 -- Test for remote access to subprogram type, and if so return
1394 -- after rewriting the original tree.
1396 if Remote_AST_E_Dereference (P) then
1397 return;
1398 end if;
1400 -- Normal processing for other than remote access to subprogram type
1402 if not Is_Overloaded (P) then
1403 if Is_Access_Type (Etype (P)) then
1405 -- Set the Etype. We need to go through Is_For_Access_Subtypes to
1406 -- avoid other problems caused by the Private_Subtype and it is
1407 -- safe to go to the Base_Type because this is the same as
1408 -- converting the access value to its Base_Type.
1410 declare
1411 DT : Entity_Id := Designated_Type (Etype (P));
1413 begin
1414 if Ekind (DT) = E_Private_Subtype
1415 and then Is_For_Access_Subtype (DT)
1416 then
1417 DT := Base_Type (DT);
1418 end if;
1420 -- An explicit dereference is a legal occurrence of an
1421 -- incomplete type imported through a limited_with clause,
1422 -- if the full view is visible.
1424 if From_With_Type (DT)
1425 and then not From_With_Type (Scope (DT))
1426 and then
1427 (Is_Immediately_Visible (Scope (DT))
1428 or else
1429 (Is_Child_Unit (Scope (DT))
1430 and then Is_Visible_Child_Unit (Scope (DT))))
1431 then
1432 Set_Etype (N, Available_View (DT));
1434 else
1435 Set_Etype (N, DT);
1436 end if;
1437 end;
1439 elsif Etype (P) /= Any_Type then
1440 Error_Msg_N ("prefix of dereference must be an access type", N);
1441 return;
1442 end if;
1444 else
1445 Get_First_Interp (P, I, It);
1446 while Present (It.Nam) loop
1447 T := It.Typ;
1449 if Is_Access_Type (T) then
1450 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
1451 end if;
1453 Get_Next_Interp (I, It);
1454 end loop;
1456 -- Error if no interpretation of the prefix has an access type
1458 if Etype (N) = Any_Type then
1459 Error_Msg_N
1460 ("access type required in prefix of explicit dereference", P);
1461 Set_Etype (N, Any_Type);
1462 return;
1463 end if;
1464 end if;
1466 if Is_Function_Type
1467 and then Nkind (Parent (N)) /= N_Indexed_Component
1469 and then (Nkind (Parent (N)) /= N_Function_Call
1470 or else N /= Name (Parent (N)))
1472 and then (Nkind (Parent (N)) /= N_Procedure_Call_Statement
1473 or else N /= Name (Parent (N)))
1475 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
1476 and then (Nkind (Parent (N)) /= N_Attribute_Reference
1477 or else
1478 (Attribute_Name (Parent (N)) /= Name_Address
1479 and then
1480 Attribute_Name (Parent (N)) /= Name_Access))
1481 then
1482 -- Name is a function call with no actuals, in a context that
1483 -- requires deproceduring (including as an actual in an enclosing
1484 -- function or procedure call). There are some pathological cases
1485 -- where the prefix might include functions that return access to
1486 -- subprograms and others that return a regular type. Disambiguation
1487 -- of those has to take place in Resolve.
1489 New_N :=
1490 Make_Function_Call (Loc,
1491 Name => Make_Explicit_Dereference (Loc, P),
1492 Parameter_Associations => New_List);
1494 -- If the prefix is overloaded, remove operations that have formals,
1495 -- we know that this is a parameterless call.
1497 if Is_Overloaded (P) then
1498 Get_First_Interp (P, I, It);
1499 while Present (It.Nam) loop
1500 T := It.Typ;
1502 if No (First_Formal (Base_Type (Designated_Type (T)))) then
1503 Set_Etype (P, T);
1504 else
1505 Remove_Interp (I);
1506 end if;
1508 Get_Next_Interp (I, It);
1509 end loop;
1510 end if;
1512 Rewrite (N, New_N);
1513 Analyze (N);
1515 elsif not Is_Function_Type
1516 and then Is_Overloaded (N)
1517 then
1518 -- The prefix may include access to subprograms and other access
1519 -- types. If the context selects the interpretation that is a
1520 -- function call (not a procedure call) we cannot rewrite the node
1521 -- yet, but we include the result of the call interpretation.
1523 Get_First_Interp (N, I, It);
1524 while Present (It.Nam) loop
1525 if Ekind (Base_Type (It.Typ)) = E_Subprogram_Type
1526 and then Etype (Base_Type (It.Typ)) /= Standard_Void_Type
1527 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
1528 then
1529 Add_One_Interp (N, Etype (It.Typ), Etype (It.Typ));
1530 end if;
1532 Get_Next_Interp (I, It);
1533 end loop;
1534 end if;
1536 -- A value of remote access-to-class-wide must not be dereferenced
1537 -- (RM E.2.2(16)).
1539 Validate_Remote_Access_To_Class_Wide_Type (N);
1540 end Analyze_Explicit_Dereference;
1542 ------------------------
1543 -- Analyze_Expression --
1544 ------------------------
1546 procedure Analyze_Expression (N : Node_Id) is
1547 begin
1548 Analyze (N);
1549 Check_Parameterless_Call (N);
1550 end Analyze_Expression;
1552 ------------------------------------
1553 -- Analyze_Indexed_Component_Form --
1554 ------------------------------------
1556 procedure Analyze_Indexed_Component_Form (N : Node_Id) is
1557 P : constant Node_Id := Prefix (N);
1558 Exprs : constant List_Id := Expressions (N);
1559 Exp : Node_Id;
1560 P_T : Entity_Id;
1561 E : Node_Id;
1562 U_N : Entity_Id;
1564 procedure Process_Function_Call;
1565 -- Prefix in indexed component form is an overloadable entity,
1566 -- so the node is a function call. Reformat it as such.
1568 procedure Process_Indexed_Component;
1569 -- Prefix in indexed component form is actually an indexed component.
1570 -- This routine processes it, knowing that the prefix is already
1571 -- resolved.
1573 procedure Process_Indexed_Component_Or_Slice;
1574 -- An indexed component with a single index may designate a slice if
1575 -- the index is a subtype mark. This routine disambiguates these two
1576 -- cases by resolving the prefix to see if it is a subtype mark.
1578 procedure Process_Overloaded_Indexed_Component;
1579 -- If the prefix of an indexed component is overloaded, the proper
1580 -- interpretation is selected by the index types and the context.
1582 ---------------------------
1583 -- Process_Function_Call --
1584 ---------------------------
1586 procedure Process_Function_Call is
1587 Actual : Node_Id;
1589 begin
1590 Change_Node (N, N_Function_Call);
1591 Set_Name (N, P);
1592 Set_Parameter_Associations (N, Exprs);
1594 -- Analyze actuals prior to analyzing the call itself
1596 Actual := First (Parameter_Associations (N));
1597 while Present (Actual) loop
1598 Analyze (Actual);
1599 Check_Parameterless_Call (Actual);
1601 -- Move to next actual. Note that we use Next, not Next_Actual
1602 -- here. The reason for this is a bit subtle. If a function call
1603 -- includes named associations, the parser recognizes the node as
1604 -- a call, and it is analyzed as such. If all associations are
1605 -- positional, the parser builds an indexed_component node, and
1606 -- it is only after analysis of the prefix that the construct
1607 -- is recognized as a call, in which case Process_Function_Call
1608 -- rewrites the node and analyzes the actuals. If the list of
1609 -- actuals is malformed, the parser may leave the node as an
1610 -- indexed component (despite the presence of named associations).
1611 -- The iterator Next_Actual is equivalent to Next if the list is
1612 -- positional, but follows the normalized chain of actuals when
1613 -- named associations are present. In this case normalization has
1614 -- not taken place, and actuals remain unanalyzed, which leads to
1615 -- subsequent crashes or loops if there is an attempt to continue
1616 -- analysis of the program.
1618 Next (Actual);
1619 end loop;
1621 Analyze_Call (N);
1622 end Process_Function_Call;
1624 -------------------------------
1625 -- Process_Indexed_Component --
1626 -------------------------------
1628 procedure Process_Indexed_Component is
1629 Exp : Node_Id;
1630 Array_Type : Entity_Id;
1631 Index : Node_Id;
1632 Pent : Entity_Id := Empty;
1634 begin
1635 Exp := First (Exprs);
1637 if Is_Overloaded (P) then
1638 Process_Overloaded_Indexed_Component;
1640 else
1641 Array_Type := Etype (P);
1643 if Is_Entity_Name (P) then
1644 Pent := Entity (P);
1645 elsif Nkind (P) = N_Selected_Component
1646 and then Is_Entity_Name (Selector_Name (P))
1647 then
1648 Pent := Entity (Selector_Name (P));
1649 end if;
1651 -- Prefix must be appropriate for an array type, taking into
1652 -- account a possible implicit dereference.
1654 if Is_Access_Type (Array_Type) then
1655 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
1656 Array_Type := Process_Implicit_Dereference_Prefix (Pent, P);
1657 end if;
1659 if Is_Array_Type (Array_Type) then
1660 null;
1662 elsif Present (Pent) and then Ekind (Pent) = E_Entry_Family then
1663 Analyze (Exp);
1664 Set_Etype (N, Any_Type);
1666 if not Has_Compatible_Type
1667 (Exp, Entry_Index_Type (Pent))
1668 then
1669 Error_Msg_N ("invalid index type in entry name", N);
1671 elsif Present (Next (Exp)) then
1672 Error_Msg_N ("too many subscripts in entry reference", N);
1674 else
1675 Set_Etype (N, Etype (P));
1676 end if;
1678 return;
1680 elsif Is_Record_Type (Array_Type)
1681 and then Remote_AST_I_Dereference (P)
1682 then
1683 return;
1685 elsif Array_Type = Any_Type then
1686 Set_Etype (N, Any_Type);
1687 return;
1689 -- Here we definitely have a bad indexing
1691 else
1692 if Nkind (Parent (N)) = N_Requeue_Statement
1693 and then Present (Pent) and then Ekind (Pent) = E_Entry
1694 then
1695 Error_Msg_N
1696 ("REQUEUE does not permit parameters", First (Exprs));
1698 elsif Is_Entity_Name (P)
1699 and then Etype (P) = Standard_Void_Type
1700 then
1701 Error_Msg_NE ("incorrect use of&", P, Entity (P));
1703 else
1704 Error_Msg_N ("array type required in indexed component", P);
1705 end if;
1707 Set_Etype (N, Any_Type);
1708 return;
1709 end if;
1711 Index := First_Index (Array_Type);
1712 while Present (Index) and then Present (Exp) loop
1713 if not Has_Compatible_Type (Exp, Etype (Index)) then
1714 Wrong_Type (Exp, Etype (Index));
1715 Set_Etype (N, Any_Type);
1716 return;
1717 end if;
1719 Next_Index (Index);
1720 Next (Exp);
1721 end loop;
1723 Set_Etype (N, Component_Type (Array_Type));
1725 if Present (Index) then
1726 Error_Msg_N
1727 ("too few subscripts in array reference", First (Exprs));
1729 elsif Present (Exp) then
1730 Error_Msg_N ("too many subscripts in array reference", Exp);
1731 end if;
1732 end if;
1733 end Process_Indexed_Component;
1735 ----------------------------------------
1736 -- Process_Indexed_Component_Or_Slice --
1737 ----------------------------------------
1739 procedure Process_Indexed_Component_Or_Slice is
1740 begin
1741 Exp := First (Exprs);
1742 while Present (Exp) loop
1743 Analyze_Expression (Exp);
1744 Next (Exp);
1745 end loop;
1747 Exp := First (Exprs);
1749 -- If one index is present, and it is a subtype name, then the
1750 -- node denotes a slice (note that the case of an explicit range
1751 -- for a slice was already built as an N_Slice node in the first
1752 -- place, so that case is not handled here).
1754 -- We use a replace rather than a rewrite here because this is one
1755 -- of the cases in which the tree built by the parser is plain wrong.
1757 if No (Next (Exp))
1758 and then Is_Entity_Name (Exp)
1759 and then Is_Type (Entity (Exp))
1760 then
1761 Replace (N,
1762 Make_Slice (Sloc (N),
1763 Prefix => P,
1764 Discrete_Range => New_Copy (Exp)));
1765 Analyze (N);
1767 -- Otherwise (more than one index present, or single index is not
1768 -- a subtype name), then we have the indexed component case.
1770 else
1771 Process_Indexed_Component;
1772 end if;
1773 end Process_Indexed_Component_Or_Slice;
1775 ------------------------------------------
1776 -- Process_Overloaded_Indexed_Component --
1777 ------------------------------------------
1779 procedure Process_Overloaded_Indexed_Component is
1780 Exp : Node_Id;
1781 I : Interp_Index;
1782 It : Interp;
1783 Typ : Entity_Id;
1784 Index : Node_Id;
1785 Found : Boolean;
1787 begin
1788 Set_Etype (N, Any_Type);
1790 Get_First_Interp (P, I, It);
1791 while Present (It.Nam) loop
1792 Typ := It.Typ;
1794 if Is_Access_Type (Typ) then
1795 Typ := Designated_Type (Typ);
1796 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
1797 end if;
1799 if Is_Array_Type (Typ) then
1801 -- Got a candidate: verify that index types are compatible
1803 Index := First_Index (Typ);
1804 Found := True;
1805 Exp := First (Exprs);
1806 while Present (Index) and then Present (Exp) loop
1807 if Has_Compatible_Type (Exp, Etype (Index)) then
1808 null;
1809 else
1810 Found := False;
1811 Remove_Interp (I);
1812 exit;
1813 end if;
1815 Next_Index (Index);
1816 Next (Exp);
1817 end loop;
1819 if Found and then No (Index) and then No (Exp) then
1820 Add_One_Interp (N,
1821 Etype (Component_Type (Typ)),
1822 Etype (Component_Type (Typ)));
1823 end if;
1824 end if;
1826 Get_Next_Interp (I, It);
1827 end loop;
1829 if Etype (N) = Any_Type then
1830 Error_Msg_N ("no legal interpretation for indexed component", N);
1831 Set_Is_Overloaded (N, False);
1832 end if;
1834 End_Interp_List;
1835 end Process_Overloaded_Indexed_Component;
1837 -- Start of processing for Analyze_Indexed_Component_Form
1839 begin
1840 -- Get name of array, function or type
1842 Analyze (P);
1844 if Nkind_In (N, N_Function_Call, N_Procedure_Call_Statement) then
1846 -- If P is an explicit dereference whose prefix is of a
1847 -- remote access-to-subprogram type, then N has already
1848 -- been rewritten as a subprogram call and analyzed.
1850 return;
1851 end if;
1853 pragma Assert (Nkind (N) = N_Indexed_Component);
1855 P_T := Base_Type (Etype (P));
1857 if Is_Entity_Name (P)
1858 or else Nkind (P) = N_Operator_Symbol
1859 then
1860 U_N := Entity (P);
1862 if Is_Type (U_N) then
1864 -- Reformat node as a type conversion
1866 E := Remove_Head (Exprs);
1868 if Present (First (Exprs)) then
1869 Error_Msg_N
1870 ("argument of type conversion must be single expression", N);
1871 end if;
1873 Change_Node (N, N_Type_Conversion);
1874 Set_Subtype_Mark (N, P);
1875 Set_Etype (N, U_N);
1876 Set_Expression (N, E);
1878 -- After changing the node, call for the specific Analysis
1879 -- routine directly, to avoid a double call to the expander.
1881 Analyze_Type_Conversion (N);
1882 return;
1883 end if;
1885 if Is_Overloadable (U_N) then
1886 Process_Function_Call;
1888 elsif Ekind (Etype (P)) = E_Subprogram_Type
1889 or else (Is_Access_Type (Etype (P))
1890 and then
1891 Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type)
1892 then
1893 -- Call to access_to-subprogram with possible implicit dereference
1895 Process_Function_Call;
1897 elsif Is_Generic_Subprogram (U_N) then
1899 -- A common beginner's (or C++ templates fan) error
1901 Error_Msg_N ("generic subprogram cannot be called", N);
1902 Set_Etype (N, Any_Type);
1903 return;
1905 else
1906 Process_Indexed_Component_Or_Slice;
1907 end if;
1909 -- If not an entity name, prefix is an expression that may denote
1910 -- an array or an access-to-subprogram.
1912 else
1913 if Ekind (P_T) = E_Subprogram_Type
1914 or else (Is_Access_Type (P_T)
1915 and then
1916 Ekind (Designated_Type (P_T)) = E_Subprogram_Type)
1917 then
1918 Process_Function_Call;
1920 elsif Nkind (P) = N_Selected_Component
1921 and then Is_Overloadable (Entity (Selector_Name (P)))
1922 then
1923 Process_Function_Call;
1925 else
1926 -- Indexed component, slice, or a call to a member of a family
1927 -- entry, which will be converted to an entry call later.
1929 Process_Indexed_Component_Or_Slice;
1930 end if;
1931 end if;
1932 end Analyze_Indexed_Component_Form;
1934 ------------------------
1935 -- Analyze_Logical_Op --
1936 ------------------------
1938 procedure Analyze_Logical_Op (N : Node_Id) is
1939 L : constant Node_Id := Left_Opnd (N);
1940 R : constant Node_Id := Right_Opnd (N);
1941 Op_Id : Entity_Id := Entity (N);
1943 begin
1944 Set_Etype (N, Any_Type);
1945 Candidate_Type := Empty;
1947 Analyze_Expression (L);
1948 Analyze_Expression (R);
1950 if Present (Op_Id) then
1952 if Ekind (Op_Id) = E_Operator then
1953 Find_Boolean_Types (L, R, Op_Id, N);
1954 else
1955 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1956 end if;
1958 else
1959 Op_Id := Get_Name_Entity_Id (Chars (N));
1960 while Present (Op_Id) loop
1961 if Ekind (Op_Id) = E_Operator then
1962 Find_Boolean_Types (L, R, Op_Id, N);
1963 else
1964 Analyze_User_Defined_Binary_Op (N, Op_Id);
1965 end if;
1967 Op_Id := Homonym (Op_Id);
1968 end loop;
1969 end if;
1971 Operator_Check (N);
1972 end Analyze_Logical_Op;
1974 ---------------------------
1975 -- Analyze_Membership_Op --
1976 ---------------------------
1978 procedure Analyze_Membership_Op (N : Node_Id) is
1979 L : constant Node_Id := Left_Opnd (N);
1980 R : constant Node_Id := Right_Opnd (N);
1982 Index : Interp_Index;
1983 It : Interp;
1984 Found : Boolean := False;
1985 I_F : Interp_Index;
1986 T_F : Entity_Id;
1988 procedure Try_One_Interp (T1 : Entity_Id);
1989 -- Routine to try one proposed interpretation. Note that the context
1990 -- of the operation plays no role in resolving the arguments, so that
1991 -- if there is more than one interpretation of the operands that is
1992 -- compatible with a membership test, the operation is ambiguous.
1994 --------------------
1995 -- Try_One_Interp --
1996 --------------------
1998 procedure Try_One_Interp (T1 : Entity_Id) is
1999 begin
2000 if Has_Compatible_Type (R, T1) then
2001 if Found
2002 and then Base_Type (T1) /= Base_Type (T_F)
2003 then
2004 It := Disambiguate (L, I_F, Index, Any_Type);
2006 if It = No_Interp then
2007 Ambiguous_Operands (N);
2008 Set_Etype (L, Any_Type);
2009 return;
2011 else
2012 T_F := It.Typ;
2013 end if;
2015 else
2016 Found := True;
2017 T_F := T1;
2018 I_F := Index;
2019 end if;
2021 Set_Etype (L, T_F);
2022 end if;
2024 end Try_One_Interp;
2026 -- Start of processing for Analyze_Membership_Op
2028 begin
2029 Analyze_Expression (L);
2031 if Nkind (R) = N_Range
2032 or else (Nkind (R) = N_Attribute_Reference
2033 and then Attribute_Name (R) = Name_Range)
2034 then
2035 Analyze (R);
2037 if not Is_Overloaded (L) then
2038 Try_One_Interp (Etype (L));
2040 else
2041 Get_First_Interp (L, Index, It);
2042 while Present (It.Typ) loop
2043 Try_One_Interp (It.Typ);
2044 Get_Next_Interp (Index, It);
2045 end loop;
2046 end if;
2048 -- If not a range, it can only be a subtype mark, or else there
2049 -- is a more basic error, to be diagnosed in Find_Type.
2051 else
2052 Find_Type (R);
2054 if Is_Entity_Name (R) then
2055 Check_Fully_Declared (Entity (R), R);
2056 end if;
2057 end if;
2059 -- Compatibility between expression and subtype mark or range is
2060 -- checked during resolution. The result of the operation is Boolean
2061 -- in any case.
2063 Set_Etype (N, Standard_Boolean);
2065 if Comes_From_Source (N)
2066 and then Is_CPP_Class (Etype (Etype (Right_Opnd (N))))
2067 then
2068 Error_Msg_N ("membership test not applicable to cpp-class types", N);
2069 end if;
2070 end Analyze_Membership_Op;
2072 ----------------------
2073 -- Analyze_Negation --
2074 ----------------------
2076 procedure Analyze_Negation (N : Node_Id) is
2077 R : constant Node_Id := Right_Opnd (N);
2078 Op_Id : Entity_Id := Entity (N);
2080 begin
2081 Set_Etype (N, Any_Type);
2082 Candidate_Type := Empty;
2084 Analyze_Expression (R);
2086 if Present (Op_Id) then
2087 if Ekind (Op_Id) = E_Operator then
2088 Find_Negation_Types (R, Op_Id, N);
2089 else
2090 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2091 end if;
2093 else
2094 Op_Id := Get_Name_Entity_Id (Chars (N));
2095 while Present (Op_Id) loop
2096 if Ekind (Op_Id) = E_Operator then
2097 Find_Negation_Types (R, Op_Id, N);
2098 else
2099 Analyze_User_Defined_Unary_Op (N, Op_Id);
2100 end if;
2102 Op_Id := Homonym (Op_Id);
2103 end loop;
2104 end if;
2106 Operator_Check (N);
2107 end Analyze_Negation;
2109 ------------------
2110 -- Analyze_Null --
2111 ------------------
2113 procedure Analyze_Null (N : Node_Id) is
2114 begin
2115 Set_Etype (N, Any_Access);
2116 end Analyze_Null;
2118 ----------------------
2119 -- Analyze_One_Call --
2120 ----------------------
2122 procedure Analyze_One_Call
2123 (N : Node_Id;
2124 Nam : Entity_Id;
2125 Report : Boolean;
2126 Success : out Boolean;
2127 Skip_First : Boolean := False)
2129 Actuals : constant List_Id := Parameter_Associations (N);
2130 Prev_T : constant Entity_Id := Etype (N);
2132 Must_Skip : constant Boolean := Skip_First
2133 or else Nkind (Original_Node (N)) = N_Selected_Component
2134 or else
2135 (Nkind (Original_Node (N)) = N_Indexed_Component
2136 and then Nkind (Prefix (Original_Node (N)))
2137 = N_Selected_Component);
2138 -- The first formal must be omitted from the match when trying to find
2139 -- a primitive operation that is a possible interpretation, and also
2140 -- after the call has been rewritten, because the corresponding actual
2141 -- is already known to be compatible, and because this may be an
2142 -- indexing of a call with default parameters.
2144 Formal : Entity_Id;
2145 Actual : Node_Id;
2146 Is_Indexed : Boolean := False;
2147 Is_Indirect : Boolean := False;
2148 Subp_Type : constant Entity_Id := Etype (Nam);
2149 Norm_OK : Boolean;
2151 function Operator_Hidden_By (Fun : Entity_Id) return Boolean;
2152 -- There may be a user-defined operator that hides the current
2153 -- interpretation. We must check for this independently of the
2154 -- analysis of the call with the user-defined operation, because
2155 -- the parameter names may be wrong and yet the hiding takes place.
2156 -- This fixes a problem with ACATS test B34014O.
2158 -- When the type Address is a visible integer type, and the DEC
2159 -- system extension is visible, the predefined operator may be
2160 -- hidden as well, by one of the address operations in auxdec.
2161 -- Finally, The abstract operations on address do not hide the
2162 -- predefined operator (this is the purpose of making them abstract).
2164 procedure Indicate_Name_And_Type;
2165 -- If candidate interpretation matches, indicate name and type of
2166 -- result on call node.
2168 ----------------------------
2169 -- Indicate_Name_And_Type --
2170 ----------------------------
2172 procedure Indicate_Name_And_Type is
2173 begin
2174 Add_One_Interp (N, Nam, Etype (Nam));
2175 Success := True;
2177 -- If the prefix of the call is a name, indicate the entity
2178 -- being called. If it is not a name, it is an expression that
2179 -- denotes an access to subprogram or else an entry or family. In
2180 -- the latter case, the name is a selected component, and the entity
2181 -- being called is noted on the selector.
2183 if not Is_Type (Nam) then
2184 if Is_Entity_Name (Name (N))
2185 or else Nkind (Name (N)) = N_Operator_Symbol
2186 then
2187 Set_Entity (Name (N), Nam);
2189 elsif Nkind (Name (N)) = N_Selected_Component then
2190 Set_Entity (Selector_Name (Name (N)), Nam);
2191 end if;
2192 end if;
2194 if Debug_Flag_E and not Report then
2195 Write_Str (" Overloaded call ");
2196 Write_Int (Int (N));
2197 Write_Str (" compatible with ");
2198 Write_Int (Int (Nam));
2199 Write_Eol;
2200 end if;
2201 end Indicate_Name_And_Type;
2203 ------------------------
2204 -- Operator_Hidden_By --
2205 ------------------------
2207 function Operator_Hidden_By (Fun : Entity_Id) return Boolean is
2208 Act1 : constant Node_Id := First_Actual (N);
2209 Act2 : constant Node_Id := Next_Actual (Act1);
2210 Form1 : constant Entity_Id := First_Formal (Fun);
2211 Form2 : constant Entity_Id := Next_Formal (Form1);
2213 begin
2214 if Ekind (Fun) /= E_Function
2215 or else Is_Abstract_Subprogram (Fun)
2216 then
2217 return False;
2219 elsif not Has_Compatible_Type (Act1, Etype (Form1)) then
2220 return False;
2222 elsif Present (Form2) then
2224 No (Act2) or else not Has_Compatible_Type (Act2, Etype (Form2))
2225 then
2226 return False;
2227 end if;
2229 elsif Present (Act2) then
2230 return False;
2231 end if;
2233 -- Now we know that the arity of the operator matches the function,
2234 -- and the function call is a valid interpretation. The function
2235 -- hides the operator if it has the right signature, or if one of
2236 -- its operands is a non-abstract operation on Address when this is
2237 -- a visible integer type.
2239 return Hides_Op (Fun, Nam)
2240 or else Is_Descendent_Of_Address (Etype (Form1))
2241 or else
2242 (Present (Form2)
2243 and then Is_Descendent_Of_Address (Etype (Form2)));
2244 end Operator_Hidden_By;
2246 -- Start of processing for Analyze_One_Call
2248 begin
2249 Success := False;
2251 -- If the subprogram has no formals or if all the formals have defaults,
2252 -- and the return type is an array type, the node may denote an indexing
2253 -- of the result of a parameterless call. In Ada 2005, the subprogram
2254 -- may have one non-defaulted formal, and the call may have been written
2255 -- in prefix notation, so that the rebuilt parameter list has more than
2256 -- one actual.
2258 if not Is_Overloadable (Nam)
2259 and then Ekind (Nam) /= E_Subprogram_Type
2260 and then Ekind (Nam) /= E_Entry_Family
2261 then
2262 return;
2263 end if;
2265 if Present (Actuals)
2266 and then
2267 (Needs_No_Actuals (Nam)
2268 or else
2269 (Needs_One_Actual (Nam)
2270 and then Present (Next_Actual (First (Actuals)))))
2271 then
2272 if Is_Array_Type (Subp_Type) then
2273 Is_Indexed := Try_Indexed_Call (N, Nam, Subp_Type, Must_Skip);
2275 elsif Is_Access_Type (Subp_Type)
2276 and then Is_Array_Type (Designated_Type (Subp_Type))
2277 then
2278 Is_Indexed :=
2279 Try_Indexed_Call
2280 (N, Nam, Designated_Type (Subp_Type), Must_Skip);
2282 -- The prefix can also be a parameterless function that returns an
2283 -- access to subprogram, in which case this is an indirect call.
2284 -- If this succeeds, an explicit dereference is added later on,
2285 -- in Analyze_Call or Resolve_Call.
2287 elsif Is_Access_Type (Subp_Type)
2288 and then Ekind (Designated_Type (Subp_Type)) = E_Subprogram_Type
2289 then
2290 Is_Indirect := Try_Indirect_Call (N, Nam, Subp_Type);
2291 end if;
2293 end if;
2295 -- If the call has been transformed into a slice, it is of the form
2296 -- F (Subtype) where F is parameterless. The node has been rewritten in
2297 -- Try_Indexed_Call and there is nothing else to do.
2299 if Is_Indexed
2300 and then Nkind (N) = N_Slice
2301 then
2302 return;
2303 end if;
2305 Normalize_Actuals
2306 (N, Nam, (Report and not Is_Indexed and not Is_Indirect), Norm_OK);
2308 if not Norm_OK then
2310 -- If an indirect call is a possible interpretation, indicate
2311 -- success to the caller.
2313 if Is_Indirect then
2314 Success := True;
2315 return;
2317 -- Mismatch in number or names of parameters
2319 elsif Debug_Flag_E then
2320 Write_Str (" normalization fails in call ");
2321 Write_Int (Int (N));
2322 Write_Str (" with subprogram ");
2323 Write_Int (Int (Nam));
2324 Write_Eol;
2325 end if;
2327 -- If the context expects a function call, discard any interpretation
2328 -- that is a procedure. If the node is not overloaded, leave as is for
2329 -- better error reporting when type mismatch is found.
2331 elsif Nkind (N) = N_Function_Call
2332 and then Is_Overloaded (Name (N))
2333 and then Ekind (Nam) = E_Procedure
2334 then
2335 return;
2337 -- Ditto for function calls in a procedure context
2339 elsif Nkind (N) = N_Procedure_Call_Statement
2340 and then Is_Overloaded (Name (N))
2341 and then Etype (Nam) /= Standard_Void_Type
2342 then
2343 return;
2345 elsif No (Actuals) then
2347 -- If Normalize succeeds, then there are default parameters for
2348 -- all formals.
2350 Indicate_Name_And_Type;
2352 elsif Ekind (Nam) = E_Operator then
2353 if Nkind (N) = N_Procedure_Call_Statement then
2354 return;
2355 end if;
2357 -- This can occur when the prefix of the call is an operator
2358 -- name or an expanded name whose selector is an operator name.
2360 Analyze_Operator_Call (N, Nam);
2362 if Etype (N) /= Prev_T then
2364 -- Check that operator is not hidden by a function interpretation
2366 if Is_Overloaded (Name (N)) then
2367 declare
2368 I : Interp_Index;
2369 It : Interp;
2371 begin
2372 Get_First_Interp (Name (N), I, It);
2373 while Present (It.Nam) loop
2374 if Operator_Hidden_By (It.Nam) then
2375 Set_Etype (N, Prev_T);
2376 return;
2377 end if;
2379 Get_Next_Interp (I, It);
2380 end loop;
2381 end;
2382 end if;
2384 -- If operator matches formals, record its name on the call.
2385 -- If the operator is overloaded, Resolve will select the
2386 -- correct one from the list of interpretations. The call
2387 -- node itself carries the first candidate.
2389 Set_Entity (Name (N), Nam);
2390 Success := True;
2392 elsif Report and then Etype (N) = Any_Type then
2393 Error_Msg_N ("incompatible arguments for operator", N);
2394 end if;
2396 else
2397 -- Normalize_Actuals has chained the named associations in the
2398 -- correct order of the formals.
2400 Actual := First_Actual (N);
2401 Formal := First_Formal (Nam);
2403 -- If we are analyzing a call rewritten from object notation,
2404 -- skip first actual, which may be rewritten later as an
2405 -- explicit dereference.
2407 if Must_Skip then
2408 Next_Actual (Actual);
2409 Next_Formal (Formal);
2410 end if;
2412 while Present (Actual) and then Present (Formal) loop
2413 if Nkind (Parent (Actual)) /= N_Parameter_Association
2414 or else Chars (Selector_Name (Parent (Actual))) = Chars (Formal)
2415 then
2416 -- The actual can be compatible with the formal, but we must
2417 -- also check that the context is not an address type that is
2418 -- visibly an integer type, as is the case in VMS_64. In this
2419 -- case the use of literals is illegal, except in the body of
2420 -- descendents of system, where arithmetic operations on
2421 -- address are of course used.
2423 if Has_Compatible_Type (Actual, Etype (Formal))
2424 and then
2425 (Etype (Actual) /= Universal_Integer
2426 or else not Is_Descendent_Of_Address (Etype (Formal))
2427 or else
2428 Is_Predefined_File_Name
2429 (Unit_File_Name (Get_Source_Unit (N))))
2430 then
2431 Next_Actual (Actual);
2432 Next_Formal (Formal);
2434 else
2435 if Debug_Flag_E then
2436 Write_Str (" type checking fails in call ");
2437 Write_Int (Int (N));
2438 Write_Str (" with formal ");
2439 Write_Int (Int (Formal));
2440 Write_Str (" in subprogram ");
2441 Write_Int (Int (Nam));
2442 Write_Eol;
2443 end if;
2445 if Report and not Is_Indexed and not Is_Indirect then
2447 -- Ada 2005 (AI-251): Complete the error notification
2448 -- to help new Ada 2005 users
2450 if Is_Class_Wide_Type (Etype (Formal))
2451 and then Is_Interface (Etype (Etype (Formal)))
2452 and then not Interface_Present_In_Ancestor
2453 (Typ => Etype (Actual),
2454 Iface => Etype (Etype (Formal)))
2455 then
2456 Error_Msg_NE
2457 ("(Ada 2005) does not implement interface }",
2458 Actual, Etype (Etype (Formal)));
2459 end if;
2461 Wrong_Type (Actual, Etype (Formal));
2463 if Nkind (Actual) = N_Op_Eq
2464 and then Nkind (Left_Opnd (Actual)) = N_Identifier
2465 then
2466 Formal := First_Formal (Nam);
2467 while Present (Formal) loop
2468 if Chars (Left_Opnd (Actual)) = Chars (Formal) then
2469 Error_Msg_N -- CODEFIX
2470 ("possible misspelling of `='>`!", Actual);
2471 exit;
2472 end if;
2474 Next_Formal (Formal);
2475 end loop;
2476 end if;
2478 if All_Errors_Mode then
2479 Error_Msg_Sloc := Sloc (Nam);
2481 if Is_Overloadable (Nam)
2482 and then Present (Alias (Nam))
2483 and then not Comes_From_Source (Nam)
2484 then
2485 Error_Msg_NE
2486 ("\\ =='> in call to inherited operation & #!",
2487 Actual, Nam);
2489 elsif Ekind (Nam) = E_Subprogram_Type then
2490 declare
2491 Access_To_Subprogram_Typ :
2492 constant Entity_Id :=
2493 Defining_Identifier
2494 (Associated_Node_For_Itype (Nam));
2495 begin
2496 Error_Msg_NE (
2497 "\\ =='> in call to dereference of &#!",
2498 Actual, Access_To_Subprogram_Typ);
2499 end;
2501 else
2502 Error_Msg_NE
2503 ("\\ =='> in call to &#!", Actual, Nam);
2505 end if;
2506 end if;
2507 end if;
2509 return;
2510 end if;
2512 else
2513 -- Normalize_Actuals has verified that a default value exists
2514 -- for this formal. Current actual names a subsequent formal.
2516 Next_Formal (Formal);
2517 end if;
2518 end loop;
2520 -- On exit, all actuals match
2522 Indicate_Name_And_Type;
2523 end if;
2524 end Analyze_One_Call;
2526 ---------------------------
2527 -- Analyze_Operator_Call --
2528 ---------------------------
2530 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id) is
2531 Op_Name : constant Name_Id := Chars (Op_Id);
2532 Act1 : constant Node_Id := First_Actual (N);
2533 Act2 : constant Node_Id := Next_Actual (Act1);
2535 begin
2536 -- Binary operator case
2538 if Present (Act2) then
2540 -- If more than two operands, then not binary operator after all
2542 if Present (Next_Actual (Act2)) then
2543 return;
2545 elsif Op_Name = Name_Op_Add
2546 or else Op_Name = Name_Op_Subtract
2547 or else Op_Name = Name_Op_Multiply
2548 or else Op_Name = Name_Op_Divide
2549 or else Op_Name = Name_Op_Mod
2550 or else Op_Name = Name_Op_Rem
2551 or else Op_Name = Name_Op_Expon
2552 then
2553 Find_Arithmetic_Types (Act1, Act2, Op_Id, N);
2555 elsif Op_Name = Name_Op_And
2556 or else Op_Name = Name_Op_Or
2557 or else Op_Name = Name_Op_Xor
2558 then
2559 Find_Boolean_Types (Act1, Act2, Op_Id, N);
2561 elsif Op_Name = Name_Op_Lt
2562 or else Op_Name = Name_Op_Le
2563 or else Op_Name = Name_Op_Gt
2564 or else Op_Name = Name_Op_Ge
2565 then
2566 Find_Comparison_Types (Act1, Act2, Op_Id, N);
2568 elsif Op_Name = Name_Op_Eq
2569 or else Op_Name = Name_Op_Ne
2570 then
2571 Find_Equality_Types (Act1, Act2, Op_Id, N);
2573 elsif Op_Name = Name_Op_Concat then
2574 Find_Concatenation_Types (Act1, Act2, Op_Id, N);
2576 -- Is this else null correct, or should it be an abort???
2578 else
2579 null;
2580 end if;
2582 -- Unary operator case
2584 else
2585 if Op_Name = Name_Op_Subtract or else
2586 Op_Name = Name_Op_Add or else
2587 Op_Name = Name_Op_Abs
2588 then
2589 Find_Unary_Types (Act1, Op_Id, N);
2591 elsif
2592 Op_Name = Name_Op_Not
2593 then
2594 Find_Negation_Types (Act1, Op_Id, N);
2596 -- Is this else null correct, or should it be an abort???
2598 else
2599 null;
2600 end if;
2601 end if;
2602 end Analyze_Operator_Call;
2604 -------------------------------------------
2605 -- Analyze_Overloaded_Selected_Component --
2606 -------------------------------------------
2608 procedure Analyze_Overloaded_Selected_Component (N : Node_Id) is
2609 Nam : constant Node_Id := Prefix (N);
2610 Sel : constant Node_Id := Selector_Name (N);
2611 Comp : Entity_Id;
2612 I : Interp_Index;
2613 It : Interp;
2614 T : Entity_Id;
2616 begin
2617 Set_Etype (Sel, Any_Type);
2619 Get_First_Interp (Nam, I, It);
2620 while Present (It.Typ) loop
2621 if Is_Access_Type (It.Typ) then
2622 T := Designated_Type (It.Typ);
2623 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
2624 else
2625 T := It.Typ;
2626 end if;
2628 if Is_Record_Type (T) then
2630 -- If the prefix is a class-wide type, the visible components are
2631 -- those of the base type.
2633 if Is_Class_Wide_Type (T) then
2634 T := Etype (T);
2635 end if;
2637 Comp := First_Entity (T);
2638 while Present (Comp) loop
2639 if Chars (Comp) = Chars (Sel)
2640 and then Is_Visible_Component (Comp)
2641 then
2643 -- AI05-105: if the context is an object renaming with
2644 -- an anonymous access type, the expected type of the
2645 -- object must be anonymous. This is a name resolution rule.
2647 if Nkind (Parent (N)) /= N_Object_Renaming_Declaration
2648 or else No (Access_Definition (Parent (N)))
2649 or else Ekind (Etype (Comp)) = E_Anonymous_Access_Type
2650 or else
2651 Ekind (Etype (Comp)) = E_Anonymous_Access_Subprogram_Type
2652 then
2653 Set_Entity (Sel, Comp);
2654 Set_Etype (Sel, Etype (Comp));
2655 Add_One_Interp (N, Etype (Comp), Etype (Comp));
2657 -- This also specifies a candidate to resolve the name.
2658 -- Further overloading will be resolved from context.
2659 -- The selector name itself does not carry overloading
2660 -- information.
2662 Set_Etype (Nam, It.Typ);
2664 else
2665 -- Named access type in the context of a renaming
2666 -- declaration with an access definition. Remove
2667 -- inapplicable candidate.
2669 Remove_Interp (I);
2670 end if;
2671 end if;
2673 Next_Entity (Comp);
2674 end loop;
2676 elsif Is_Concurrent_Type (T) then
2677 Comp := First_Entity (T);
2678 while Present (Comp)
2679 and then Comp /= First_Private_Entity (T)
2680 loop
2681 if Chars (Comp) = Chars (Sel) then
2682 if Is_Overloadable (Comp) then
2683 Add_One_Interp (Sel, Comp, Etype (Comp));
2684 else
2685 Set_Entity_With_Style_Check (Sel, Comp);
2686 Generate_Reference (Comp, Sel);
2687 end if;
2689 Set_Etype (Sel, Etype (Comp));
2690 Set_Etype (N, Etype (Comp));
2691 Set_Etype (Nam, It.Typ);
2693 -- For access type case, introduce explicit deference for
2694 -- more uniform treatment of entry calls. Do this only
2695 -- once if several interpretations yield an access type.
2697 if Is_Access_Type (Etype (Nam))
2698 and then Nkind (Nam) /= N_Explicit_Dereference
2699 then
2700 Insert_Explicit_Dereference (Nam);
2701 Error_Msg_NW
2702 (Warn_On_Dereference, "?implicit dereference", N);
2703 end if;
2704 end if;
2706 Next_Entity (Comp);
2707 end loop;
2709 Set_Is_Overloaded (N, Is_Overloaded (Sel));
2710 end if;
2712 Get_Next_Interp (I, It);
2713 end loop;
2715 if Etype (N) = Any_Type
2716 and then not Try_Object_Operation (N)
2717 then
2718 Error_Msg_NE ("undefined selector& for overloaded prefix", N, Sel);
2719 Set_Entity (Sel, Any_Id);
2720 Set_Etype (Sel, Any_Type);
2721 end if;
2722 end Analyze_Overloaded_Selected_Component;
2724 ----------------------------------
2725 -- Analyze_Qualified_Expression --
2726 ----------------------------------
2728 procedure Analyze_Qualified_Expression (N : Node_Id) is
2729 Mark : constant Entity_Id := Subtype_Mark (N);
2730 Expr : constant Node_Id := Expression (N);
2731 I : Interp_Index;
2732 It : Interp;
2733 T : Entity_Id;
2735 begin
2736 Analyze_Expression (Expr);
2738 Set_Etype (N, Any_Type);
2739 Find_Type (Mark);
2740 T := Entity (Mark);
2741 Set_Etype (N, T);
2743 if T = Any_Type then
2744 return;
2745 end if;
2747 Check_Fully_Declared (T, N);
2749 -- If expected type is class-wide, check for exact match before
2750 -- expansion, because if the expression is a dispatching call it
2751 -- may be rewritten as explicit dereference with class-wide result.
2752 -- If expression is overloaded, retain only interpretations that
2753 -- will yield exact matches.
2755 if Is_Class_Wide_Type (T) then
2756 if not Is_Overloaded (Expr) then
2757 if Base_Type (Etype (Expr)) /= Base_Type (T) then
2758 if Nkind (Expr) = N_Aggregate then
2759 Error_Msg_N ("type of aggregate cannot be class-wide", Expr);
2760 else
2761 Wrong_Type (Expr, T);
2762 end if;
2763 end if;
2765 else
2766 Get_First_Interp (Expr, I, It);
2768 while Present (It.Nam) loop
2769 if Base_Type (It.Typ) /= Base_Type (T) then
2770 Remove_Interp (I);
2771 end if;
2773 Get_Next_Interp (I, It);
2774 end loop;
2775 end if;
2776 end if;
2778 Set_Etype (N, T);
2779 end Analyze_Qualified_Expression;
2781 -------------------
2782 -- Analyze_Range --
2783 -------------------
2785 procedure Analyze_Range (N : Node_Id) is
2786 L : constant Node_Id := Low_Bound (N);
2787 H : constant Node_Id := High_Bound (N);
2788 I1, I2 : Interp_Index;
2789 It1, It2 : Interp;
2791 procedure Check_Common_Type (T1, T2 : Entity_Id);
2792 -- Verify the compatibility of two types, and choose the
2793 -- non universal one if the other is universal.
2795 procedure Check_High_Bound (T : Entity_Id);
2796 -- Test one interpretation of the low bound against all those
2797 -- of the high bound.
2799 procedure Check_Universal_Expression (N : Node_Id);
2800 -- In Ada83, reject bounds of a universal range that are not
2801 -- literals or entity names.
2803 -----------------------
2804 -- Check_Common_Type --
2805 -----------------------
2807 procedure Check_Common_Type (T1, T2 : Entity_Id) is
2808 begin
2809 if Covers (T1 => T1, T2 => T2)
2810 or else
2811 Covers (T1 => T2, T2 => T1)
2812 then
2813 if T1 = Universal_Integer
2814 or else T1 = Universal_Real
2815 or else T1 = Any_Character
2816 then
2817 Add_One_Interp (N, Base_Type (T2), Base_Type (T2));
2819 elsif T1 = T2 then
2820 Add_One_Interp (N, T1, T1);
2822 else
2823 Add_One_Interp (N, Base_Type (T1), Base_Type (T1));
2824 end if;
2825 end if;
2826 end Check_Common_Type;
2828 ----------------------
2829 -- Check_High_Bound --
2830 ----------------------
2832 procedure Check_High_Bound (T : Entity_Id) is
2833 begin
2834 if not Is_Overloaded (H) then
2835 Check_Common_Type (T, Etype (H));
2836 else
2837 Get_First_Interp (H, I2, It2);
2838 while Present (It2.Typ) loop
2839 Check_Common_Type (T, It2.Typ);
2840 Get_Next_Interp (I2, It2);
2841 end loop;
2842 end if;
2843 end Check_High_Bound;
2845 -----------------------------
2846 -- Is_Universal_Expression --
2847 -----------------------------
2849 procedure Check_Universal_Expression (N : Node_Id) is
2850 begin
2851 if Etype (N) = Universal_Integer
2852 and then Nkind (N) /= N_Integer_Literal
2853 and then not Is_Entity_Name (N)
2854 and then Nkind (N) /= N_Attribute_Reference
2855 then
2856 Error_Msg_N ("illegal bound in discrete range", N);
2857 end if;
2858 end Check_Universal_Expression;
2860 -- Start of processing for Analyze_Range
2862 begin
2863 Set_Etype (N, Any_Type);
2864 Analyze_Expression (L);
2865 Analyze_Expression (H);
2867 if Etype (L) = Any_Type or else Etype (H) = Any_Type then
2868 return;
2870 else
2871 if not Is_Overloaded (L) then
2872 Check_High_Bound (Etype (L));
2873 else
2874 Get_First_Interp (L, I1, It1);
2875 while Present (It1.Typ) loop
2876 Check_High_Bound (It1.Typ);
2877 Get_Next_Interp (I1, It1);
2878 end loop;
2879 end if;
2881 -- If result is Any_Type, then we did not find a compatible pair
2883 if Etype (N) = Any_Type then
2884 Error_Msg_N ("incompatible types in range ", N);
2885 end if;
2886 end if;
2888 if Ada_Version = Ada_83
2889 and then
2890 (Nkind (Parent (N)) = N_Loop_Parameter_Specification
2891 or else Nkind (Parent (N)) = N_Constrained_Array_Definition)
2892 then
2893 Check_Universal_Expression (L);
2894 Check_Universal_Expression (H);
2895 end if;
2896 end Analyze_Range;
2898 -----------------------
2899 -- Analyze_Reference --
2900 -----------------------
2902 procedure Analyze_Reference (N : Node_Id) is
2903 P : constant Node_Id := Prefix (N);
2904 E : Entity_Id;
2905 T : Entity_Id;
2906 Acc_Type : Entity_Id;
2908 begin
2909 Analyze (P);
2911 -- An interesting error check, if we take the 'Reference of an object
2912 -- for which a pragma Atomic or Volatile has been given, and the type
2913 -- of the object is not Atomic or Volatile, then we are in trouble. The
2914 -- problem is that no trace of the atomic/volatile status will remain
2915 -- for the backend to respect when it deals with the resulting pointer,
2916 -- since the pointer type will not be marked atomic (it is a pointer to
2917 -- the base type of the object).
2919 -- It is not clear if that can ever occur, but in case it does, we will
2920 -- generate an error message. Not clear if this message can ever be
2921 -- generated, and pretty clear that it represents a bug if it is, still
2922 -- seems worth checking!
2924 T := Etype (P);
2926 if Is_Entity_Name (P)
2927 and then Is_Object_Reference (P)
2928 then
2929 E := Entity (P);
2930 T := Etype (P);
2932 if (Has_Atomic_Components (E)
2933 and then not Has_Atomic_Components (T))
2934 or else
2935 (Has_Volatile_Components (E)
2936 and then not Has_Volatile_Components (T))
2937 or else (Is_Atomic (E) and then not Is_Atomic (T))
2938 or else (Is_Volatile (E) and then not Is_Volatile (T))
2939 then
2940 Error_Msg_N ("cannot take reference to Atomic/Volatile object", N);
2941 end if;
2942 end if;
2944 -- Carry on with normal processing
2946 Acc_Type := Create_Itype (E_Allocator_Type, N);
2947 Set_Etype (Acc_Type, Acc_Type);
2948 Set_Directly_Designated_Type (Acc_Type, Etype (P));
2949 Set_Etype (N, Acc_Type);
2950 end Analyze_Reference;
2952 --------------------------------
2953 -- Analyze_Selected_Component --
2954 --------------------------------
2956 -- Prefix is a record type or a task or protected type. In the
2957 -- later case, the selector must denote a visible entry.
2959 procedure Analyze_Selected_Component (N : Node_Id) is
2960 Name : constant Node_Id := Prefix (N);
2961 Sel : constant Node_Id := Selector_Name (N);
2962 Act_Decl : Node_Id;
2963 Comp : Entity_Id;
2964 Has_Candidate : Boolean := False;
2965 In_Scope : Boolean;
2966 Parent_N : Node_Id;
2967 Pent : Entity_Id := Empty;
2968 Prefix_Type : Entity_Id;
2970 Type_To_Use : Entity_Id;
2971 -- In most cases this is the Prefix_Type, but if the Prefix_Type is
2972 -- a class-wide type, we use its root type, whose components are
2973 -- present in the class-wide type.
2975 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean;
2976 -- It is known that the parent of N denotes a subprogram call. Comp
2977 -- is an overloadable component of the concurrent type of the prefix.
2978 -- Determine whether all formals of the parent of N and Comp are mode
2979 -- conformant. If the parent node is not analyzed yet it may be an
2980 -- indexed component rather than a function call.
2982 ------------------------------
2983 -- Has_Mode_Conformant_Spec --
2984 ------------------------------
2986 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean is
2987 Comp_Param : Entity_Id;
2988 Param : Node_Id;
2989 Param_Typ : Entity_Id;
2991 begin
2992 Comp_Param := First_Formal (Comp);
2994 if Nkind (Parent (N)) = N_Indexed_Component then
2995 Param := First (Expressions (Parent (N)));
2996 else
2997 Param := First (Parameter_Associations (Parent (N)));
2998 end if;
3000 while Present (Comp_Param)
3001 and then Present (Param)
3002 loop
3003 Param_Typ := Find_Parameter_Type (Param);
3005 if Present (Param_Typ)
3006 and then
3007 not Conforming_Types
3008 (Etype (Comp_Param), Param_Typ, Mode_Conformant)
3009 then
3010 return False;
3011 end if;
3013 Next_Formal (Comp_Param);
3014 Next (Param);
3015 end loop;
3017 -- One of the specs has additional formals
3019 if Present (Comp_Param) or else Present (Param) then
3020 return False;
3021 end if;
3023 return True;
3024 end Has_Mode_Conformant_Spec;
3026 -- Start of processing for Analyze_Selected_Component
3028 begin
3029 Set_Etype (N, Any_Type);
3031 if Is_Overloaded (Name) then
3032 Analyze_Overloaded_Selected_Component (N);
3033 return;
3035 elsif Etype (Name) = Any_Type then
3036 Set_Entity (Sel, Any_Id);
3037 Set_Etype (Sel, Any_Type);
3038 return;
3040 else
3041 Prefix_Type := Etype (Name);
3042 end if;
3044 if Is_Access_Type (Prefix_Type) then
3046 -- A RACW object can never be used as prefix of a selected
3047 -- component since that means it is dereferenced without
3048 -- being a controlling operand of a dispatching operation
3049 -- (RM E.2.2(16/1)). Before reporting an error, we must check
3050 -- whether this is actually a dispatching call in prefix form.
3052 if Is_Remote_Access_To_Class_Wide_Type (Prefix_Type)
3053 and then Comes_From_Source (N)
3054 then
3055 if Try_Object_Operation (N) then
3056 return;
3057 else
3058 Error_Msg_N
3059 ("invalid dereference of a remote access-to-class-wide value",
3061 end if;
3063 -- Normal case of selected component applied to access type
3065 else
3066 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
3068 if Is_Entity_Name (Name) then
3069 Pent := Entity (Name);
3070 elsif Nkind (Name) = N_Selected_Component
3071 and then Is_Entity_Name (Selector_Name (Name))
3072 then
3073 Pent := Entity (Selector_Name (Name));
3074 end if;
3076 Prefix_Type := Process_Implicit_Dereference_Prefix (Pent, Name);
3077 end if;
3079 -- If we have an explicit dereference of a remote access-to-class-wide
3080 -- value, then issue an error (see RM-E.2.2(16/1)). However we first
3081 -- have to check for the case of a prefix that is a controlling operand
3082 -- of a prefixed dispatching call, as the dereference is legal in that
3083 -- case. Normally this condition is checked in Validate_Remote_Access_
3084 -- To_Class_Wide_Type, but we have to defer the checking for selected
3085 -- component prefixes because of the prefixed dispatching call case.
3086 -- Note that implicit dereferences are checked for this just above.
3088 elsif Nkind (Name) = N_Explicit_Dereference
3089 and then Is_Remote_Access_To_Class_Wide_Type (Etype (Prefix (Name)))
3090 and then Comes_From_Source (N)
3091 then
3092 if Try_Object_Operation (N) then
3093 return;
3094 else
3095 Error_Msg_N
3096 ("invalid dereference of a remote access-to-class-wide value",
3098 end if;
3099 end if;
3101 -- (Ada 2005): if the prefix is the limited view of a type, and
3102 -- the context already includes the full view, use the full view
3103 -- in what follows, either to retrieve a component of to find
3104 -- a primitive operation. If the prefix is an explicit dereference,
3105 -- set the type of the prefix to reflect this transformation.
3106 -- If the non-limited view is itself an incomplete type, get the
3107 -- full view if available.
3109 if Is_Incomplete_Type (Prefix_Type)
3110 and then From_With_Type (Prefix_Type)
3111 and then Present (Non_Limited_View (Prefix_Type))
3112 then
3113 Prefix_Type := Get_Full_View (Non_Limited_View (Prefix_Type));
3115 if Nkind (N) = N_Explicit_Dereference then
3116 Set_Etype (Prefix (N), Prefix_Type);
3117 end if;
3119 elsif Ekind (Prefix_Type) = E_Class_Wide_Type
3120 and then From_With_Type (Prefix_Type)
3121 and then Present (Non_Limited_View (Etype (Prefix_Type)))
3122 then
3123 Prefix_Type :=
3124 Class_Wide_Type (Non_Limited_View (Etype (Prefix_Type)));
3126 if Nkind (N) = N_Explicit_Dereference then
3127 Set_Etype (Prefix (N), Prefix_Type);
3128 end if;
3129 end if;
3131 if Ekind (Prefix_Type) = E_Private_Subtype then
3132 Prefix_Type := Base_Type (Prefix_Type);
3133 end if;
3135 Type_To_Use := Prefix_Type;
3137 -- For class-wide types, use the entity list of the root type. This
3138 -- indirection is specially important for private extensions because
3139 -- only the root type get switched (not the class-wide type).
3141 if Is_Class_Wide_Type (Prefix_Type) then
3142 Type_To_Use := Root_Type (Prefix_Type);
3143 end if;
3145 Comp := First_Entity (Type_To_Use);
3147 -- If the selector has an original discriminant, the node appears in
3148 -- an instance. Replace the discriminant with the corresponding one
3149 -- in the current discriminated type. For nested generics, this must
3150 -- be done transitively, so note the new original discriminant.
3152 if Nkind (Sel) = N_Identifier
3153 and then Present (Original_Discriminant (Sel))
3154 then
3155 Comp := Find_Corresponding_Discriminant (Sel, Prefix_Type);
3157 -- Mark entity before rewriting, for completeness and because
3158 -- subsequent semantic checks might examine the original node.
3160 Set_Entity (Sel, Comp);
3161 Rewrite (Selector_Name (N),
3162 New_Occurrence_Of (Comp, Sloc (N)));
3163 Set_Original_Discriminant (Selector_Name (N), Comp);
3164 Set_Etype (N, Etype (Comp));
3166 if Is_Access_Type (Etype (Name)) then
3167 Insert_Explicit_Dereference (Name);
3168 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
3169 end if;
3171 elsif Is_Record_Type (Prefix_Type) then
3173 -- Find component with given name
3175 while Present (Comp) loop
3176 if Chars (Comp) = Chars (Sel)
3177 and then Is_Visible_Component (Comp)
3178 then
3179 Set_Entity_With_Style_Check (Sel, Comp);
3180 Set_Etype (Sel, Etype (Comp));
3182 if Ekind (Comp) = E_Discriminant then
3183 if Is_Unchecked_Union (Base_Type (Prefix_Type)) then
3184 Error_Msg_N
3185 ("cannot reference discriminant of Unchecked_Union",
3186 Sel);
3187 end if;
3189 if Is_Generic_Type (Prefix_Type)
3190 or else
3191 Is_Generic_Type (Root_Type (Prefix_Type))
3192 then
3193 Set_Original_Discriminant (Sel, Comp);
3194 end if;
3195 end if;
3197 -- Resolve the prefix early otherwise it is not possible to
3198 -- build the actual subtype of the component: it may need
3199 -- to duplicate this prefix and duplication is only allowed
3200 -- on fully resolved expressions.
3202 Resolve (Name);
3204 -- Ada 2005 (AI-50217): Check wrong use of incomplete types or
3205 -- subtypes in a package specification.
3206 -- Example:
3208 -- limited with Pkg;
3209 -- package Pkg is
3210 -- type Acc_Inc is access Pkg.T;
3211 -- X : Acc_Inc;
3212 -- N : Natural := X.all.Comp; -- ERROR, limited view
3213 -- end Pkg; -- Comp is not visible
3215 if Nkind (Name) = N_Explicit_Dereference
3216 and then From_With_Type (Etype (Prefix (Name)))
3217 and then not Is_Potentially_Use_Visible (Etype (Name))
3218 and then Nkind (Parent (Cunit_Entity (Current_Sem_Unit))) =
3219 N_Package_Specification
3220 then
3221 Error_Msg_NE
3222 ("premature usage of incomplete}", Prefix (Name),
3223 Etype (Prefix (Name)));
3224 end if;
3226 -- We never need an actual subtype for the case of a selection
3227 -- for a indexed component of a non-packed array, since in
3228 -- this case gigi generates all the checks and can find the
3229 -- necessary bounds information.
3231 -- We also do not need an actual subtype for the case of
3232 -- a first, last, length, or range attribute applied to a
3233 -- non-packed array, since gigi can again get the bounds in
3234 -- these cases (gigi cannot handle the packed case, since it
3235 -- has the bounds of the packed array type, not the original
3236 -- bounds of the type). However, if the prefix is itself a
3237 -- selected component, as in a.b.c (i), gigi may regard a.b.c
3238 -- as a dynamic-sized temporary, so we do generate an actual
3239 -- subtype for this case.
3241 Parent_N := Parent (N);
3243 if not Is_Packed (Etype (Comp))
3244 and then
3245 ((Nkind (Parent_N) = N_Indexed_Component
3246 and then Nkind (Name) /= N_Selected_Component)
3247 or else
3248 (Nkind (Parent_N) = N_Attribute_Reference
3249 and then (Attribute_Name (Parent_N) = Name_First
3250 or else
3251 Attribute_Name (Parent_N) = Name_Last
3252 or else
3253 Attribute_Name (Parent_N) = Name_Length
3254 or else
3255 Attribute_Name (Parent_N) = Name_Range)))
3256 then
3257 Set_Etype (N, Etype (Comp));
3259 -- If full analysis is not enabled, we do not generate an
3260 -- actual subtype, because in the absence of expansion
3261 -- reference to a formal of a protected type, for example,
3262 -- will not be properly transformed, and will lead to
3263 -- out-of-scope references in gigi.
3265 -- In all other cases, we currently build an actual subtype.
3266 -- It seems likely that many of these cases can be avoided,
3267 -- but right now, the front end makes direct references to the
3268 -- bounds (e.g. in generating a length check), and if we do
3269 -- not make an actual subtype, we end up getting a direct
3270 -- reference to a discriminant, which will not do.
3272 elsif Full_Analysis then
3273 Act_Decl :=
3274 Build_Actual_Subtype_Of_Component (Etype (Comp), N);
3275 Insert_Action (N, Act_Decl);
3277 if No (Act_Decl) then
3278 Set_Etype (N, Etype (Comp));
3280 else
3281 -- Component type depends on discriminants. Enter the
3282 -- main attributes of the subtype.
3284 declare
3285 Subt : constant Entity_Id :=
3286 Defining_Identifier (Act_Decl);
3288 begin
3289 Set_Etype (Subt, Base_Type (Etype (Comp)));
3290 Set_Ekind (Subt, Ekind (Etype (Comp)));
3291 Set_Etype (N, Subt);
3292 end;
3293 end if;
3295 -- If Full_Analysis not enabled, just set the Etype
3297 else
3298 Set_Etype (N, Etype (Comp));
3299 end if;
3301 return;
3302 end if;
3304 -- If the prefix is a private extension, check only the visible
3305 -- components of the partial view. This must include the tag,
3306 -- which can appear in expanded code in a tag check.
3308 if Ekind (Type_To_Use) = E_Record_Type_With_Private
3309 and then Chars (Selector_Name (N)) /= Name_uTag
3310 then
3311 exit when Comp = Last_Entity (Type_To_Use);
3312 end if;
3314 Next_Entity (Comp);
3315 end loop;
3317 -- Ada 2005 (AI-252): The selected component can be interpreted as
3318 -- a prefixed view of a subprogram. Depending on the context, this is
3319 -- either a name that can appear in a renaming declaration, or part
3320 -- of an enclosing call given in prefix form.
3322 -- Ada 2005 (AI05-0030): In the case of dispatching requeue, the
3323 -- selected component should resolve to a name.
3325 if Ada_Version >= Ada_05
3326 and then Is_Tagged_Type (Prefix_Type)
3327 and then not Is_Concurrent_Type (Prefix_Type)
3328 then
3329 if Nkind (Parent (N)) = N_Generic_Association
3330 or else Nkind (Parent (N)) = N_Requeue_Statement
3331 or else Nkind (Parent (N)) = N_Subprogram_Renaming_Declaration
3332 then
3333 if Find_Primitive_Operation (N) then
3334 return;
3335 end if;
3337 elsif Try_Object_Operation (N) then
3338 return;
3339 end if;
3341 -- If the transformation fails, it will be necessary to redo the
3342 -- analysis with all errors enabled, to indicate candidate
3343 -- interpretations and reasons for each failure ???
3345 end if;
3347 elsif Is_Private_Type (Prefix_Type) then
3349 -- Allow access only to discriminants of the type. If the type has
3350 -- no full view, gigi uses the parent type for the components, so we
3351 -- do the same here.
3353 if No (Full_View (Prefix_Type)) then
3354 Type_To_Use := Root_Type (Base_Type (Prefix_Type));
3355 Comp := First_Entity (Type_To_Use);
3356 end if;
3358 while Present (Comp) loop
3359 if Chars (Comp) = Chars (Sel) then
3360 if Ekind (Comp) = E_Discriminant then
3361 Set_Entity_With_Style_Check (Sel, Comp);
3362 Generate_Reference (Comp, Sel);
3364 Set_Etype (Sel, Etype (Comp));
3365 Set_Etype (N, Etype (Comp));
3367 if Is_Generic_Type (Prefix_Type)
3368 or else Is_Generic_Type (Root_Type (Prefix_Type))
3369 then
3370 Set_Original_Discriminant (Sel, Comp);
3371 end if;
3373 -- Before declaring an error, check whether this is tagged
3374 -- private type and a call to a primitive operation.
3376 elsif Ada_Version >= Ada_05
3377 and then Is_Tagged_Type (Prefix_Type)
3378 and then Try_Object_Operation (N)
3379 then
3380 return;
3382 else
3383 Error_Msg_NE
3384 ("invisible selector for }",
3385 N, First_Subtype (Prefix_Type));
3386 Set_Entity (Sel, Any_Id);
3387 Set_Etype (N, Any_Type);
3388 end if;
3390 return;
3391 end if;
3393 Next_Entity (Comp);
3394 end loop;
3396 elsif Is_Concurrent_Type (Prefix_Type) then
3398 -- Find visible operation with given name. For a protected type,
3399 -- the possible candidates are discriminants, entries or protected
3400 -- procedures. For a task type, the set can only include entries or
3401 -- discriminants if the task type is not an enclosing scope. If it
3402 -- is an enclosing scope (e.g. in an inner task) then all entities
3403 -- are visible, but the prefix must denote the enclosing scope, i.e.
3404 -- can only be a direct name or an expanded name.
3406 Set_Etype (Sel, Any_Type);
3407 In_Scope := In_Open_Scopes (Prefix_Type);
3409 while Present (Comp) loop
3410 if Chars (Comp) = Chars (Sel) then
3411 if Is_Overloadable (Comp) then
3412 Add_One_Interp (Sel, Comp, Etype (Comp));
3414 -- If the prefix is tagged, the correct interpretation may
3415 -- lie in the primitive or class-wide operations of the
3416 -- type. Perform a simple conformance check to determine
3417 -- whether Try_Object_Operation should be invoked even if
3418 -- a visible entity is found.
3420 if Is_Tagged_Type (Prefix_Type)
3421 and then
3422 Nkind_In (Parent (N), N_Procedure_Call_Statement,
3423 N_Function_Call,
3424 N_Indexed_Component)
3425 and then Has_Mode_Conformant_Spec (Comp)
3426 then
3427 Has_Candidate := True;
3428 end if;
3430 elsif Ekind (Comp) = E_Discriminant
3431 or else Ekind (Comp) = E_Entry_Family
3432 or else (In_Scope
3433 and then Is_Entity_Name (Name))
3434 then
3435 Set_Entity_With_Style_Check (Sel, Comp);
3436 Generate_Reference (Comp, Sel);
3438 else
3439 goto Next_Comp;
3440 end if;
3442 Set_Etype (Sel, Etype (Comp));
3443 Set_Etype (N, Etype (Comp));
3445 if Ekind (Comp) = E_Discriminant then
3446 Set_Original_Discriminant (Sel, Comp);
3447 end if;
3449 -- For access type case, introduce explicit deference for more
3450 -- uniform treatment of entry calls.
3452 if Is_Access_Type (Etype (Name)) then
3453 Insert_Explicit_Dereference (Name);
3454 Error_Msg_NW
3455 (Warn_On_Dereference, "?implicit dereference", N);
3456 end if;
3457 end if;
3459 <<Next_Comp>>
3460 Next_Entity (Comp);
3461 exit when not In_Scope
3462 and then
3463 Comp = First_Private_Entity (Base_Type (Prefix_Type));
3464 end loop;
3466 -- If there is no visible entity with the given name or none of the
3467 -- visible entities are plausible interpretations, check whether
3468 -- there is some other primitive operation with that name.
3470 if Ada_Version >= Ada_05
3471 and then Is_Tagged_Type (Prefix_Type)
3472 then
3473 if (Etype (N) = Any_Type
3474 or else not Has_Candidate)
3475 and then Try_Object_Operation (N)
3476 then
3477 return;
3479 -- If the context is not syntactically a procedure call, it
3480 -- may be a call to a primitive function declared outside of
3481 -- the synchronized type.
3483 -- If the context is a procedure call, there might still be
3484 -- an overloading between an entry and a primitive procedure
3485 -- declared outside of the synchronized type, called in prefix
3486 -- notation. This is harder to disambiguate because in one case
3487 -- the controlling formal is implicit ???
3489 elsif Nkind (Parent (N)) /= N_Procedure_Call_Statement
3490 and then Nkind (Parent (N)) /= N_Indexed_Component
3491 and then Try_Object_Operation (N)
3492 then
3493 return;
3494 end if;
3495 end if;
3497 Set_Is_Overloaded (N, Is_Overloaded (Sel));
3499 else
3500 -- Invalid prefix
3502 Error_Msg_NE ("invalid prefix in selected component&", N, Sel);
3503 end if;
3505 -- If N still has no type, the component is not defined in the prefix
3507 if Etype (N) = Any_Type then
3509 -- If the prefix is a single concurrent object, use its name in the
3510 -- error message, rather than that of its anonymous type.
3512 if Is_Concurrent_Type (Prefix_Type)
3513 and then Is_Internal_Name (Chars (Prefix_Type))
3514 and then not Is_Derived_Type (Prefix_Type)
3515 and then Is_Entity_Name (Name)
3516 then
3518 Error_Msg_Node_2 := Entity (Name);
3519 Error_Msg_NE ("no selector& for&", N, Sel);
3521 Check_Misspelled_Selector (Type_To_Use, Sel);
3523 elsif Is_Generic_Type (Prefix_Type)
3524 and then Ekind (Prefix_Type) = E_Record_Type_With_Private
3525 and then Prefix_Type /= Etype (Prefix_Type)
3526 and then Is_Record_Type (Etype (Prefix_Type))
3527 then
3528 -- If this is a derived formal type, the parent may have
3529 -- different visibility at this point. Try for an inherited
3530 -- component before reporting an error.
3532 Set_Etype (Prefix (N), Etype (Prefix_Type));
3533 Analyze_Selected_Component (N);
3534 return;
3536 elsif Ekind (Prefix_Type) = E_Record_Subtype_With_Private
3537 and then Is_Generic_Actual_Type (Prefix_Type)
3538 and then Present (Full_View (Prefix_Type))
3539 then
3540 -- Similarly, if this the actual for a formal derived type, the
3541 -- component inherited from the generic parent may not be visible
3542 -- in the actual, but the selected component is legal.
3544 declare
3545 Comp : Entity_Id;
3547 begin
3548 Comp :=
3549 First_Component (Generic_Parent_Type (Parent (Prefix_Type)));
3550 while Present (Comp) loop
3551 if Chars (Comp) = Chars (Sel) then
3552 Set_Entity_With_Style_Check (Sel, Comp);
3553 Set_Etype (Sel, Etype (Comp));
3554 Set_Etype (N, Etype (Comp));
3555 return;
3556 end if;
3558 Next_Component (Comp);
3559 end loop;
3561 pragma Assert (Etype (N) /= Any_Type);
3562 end;
3564 else
3565 if Ekind (Prefix_Type) = E_Record_Subtype then
3567 -- Check whether this is a component of the base type
3568 -- which is absent from a statically constrained subtype.
3569 -- This will raise constraint error at run-time, but is
3570 -- not a compile-time error. When the selector is illegal
3571 -- for base type as well fall through and generate a
3572 -- compilation error anyway.
3574 Comp := First_Component (Base_Type (Prefix_Type));
3575 while Present (Comp) loop
3576 if Chars (Comp) = Chars (Sel)
3577 and then Is_Visible_Component (Comp)
3578 then
3579 Set_Entity_With_Style_Check (Sel, Comp);
3580 Generate_Reference (Comp, Sel);
3581 Set_Etype (Sel, Etype (Comp));
3582 Set_Etype (N, Etype (Comp));
3584 -- Emit appropriate message. Gigi will replace the
3585 -- node subsequently with the appropriate Raise.
3587 Apply_Compile_Time_Constraint_Error
3588 (N, "component not present in }?",
3589 CE_Discriminant_Check_Failed,
3590 Ent => Prefix_Type, Rep => False);
3591 Set_Raises_Constraint_Error (N);
3592 return;
3593 end if;
3595 Next_Component (Comp);
3596 end loop;
3598 end if;
3600 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
3601 Error_Msg_NE ("no selector& for}", N, Sel);
3603 Check_Misspelled_Selector (Type_To_Use, Sel);
3604 end if;
3606 Set_Entity (Sel, Any_Id);
3607 Set_Etype (Sel, Any_Type);
3608 end if;
3609 end Analyze_Selected_Component;
3611 ---------------------------
3612 -- Analyze_Short_Circuit --
3613 ---------------------------
3615 procedure Analyze_Short_Circuit (N : Node_Id) is
3616 L : constant Node_Id := Left_Opnd (N);
3617 R : constant Node_Id := Right_Opnd (N);
3618 Ind : Interp_Index;
3619 It : Interp;
3621 begin
3622 Analyze_Expression (L);
3623 Analyze_Expression (R);
3624 Set_Etype (N, Any_Type);
3626 if not Is_Overloaded (L) then
3627 if Root_Type (Etype (L)) = Standard_Boolean
3628 and then Has_Compatible_Type (R, Etype (L))
3629 then
3630 Add_One_Interp (N, Etype (L), Etype (L));
3631 end if;
3633 else
3634 Get_First_Interp (L, Ind, It);
3635 while Present (It.Typ) loop
3636 if Root_Type (It.Typ) = Standard_Boolean
3637 and then Has_Compatible_Type (R, It.Typ)
3638 then
3639 Add_One_Interp (N, It.Typ, It.Typ);
3640 end if;
3642 Get_Next_Interp (Ind, It);
3643 end loop;
3644 end if;
3646 -- Here we have failed to find an interpretation. Clearly we know that
3647 -- it is not the case that both operands can have an interpretation of
3648 -- Boolean, but this is by far the most likely intended interpretation.
3649 -- So we simply resolve both operands as Booleans, and at least one of
3650 -- these resolutions will generate an error message, and we do not need
3651 -- to give another error message on the short circuit operation itself.
3653 if Etype (N) = Any_Type then
3654 Resolve (L, Standard_Boolean);
3655 Resolve (R, Standard_Boolean);
3656 Set_Etype (N, Standard_Boolean);
3657 end if;
3658 end Analyze_Short_Circuit;
3660 -------------------
3661 -- Analyze_Slice --
3662 -------------------
3664 procedure Analyze_Slice (N : Node_Id) is
3665 P : constant Node_Id := Prefix (N);
3666 D : constant Node_Id := Discrete_Range (N);
3667 Array_Type : Entity_Id;
3669 procedure Analyze_Overloaded_Slice;
3670 -- If the prefix is overloaded, select those interpretations that
3671 -- yield a one-dimensional array type.
3673 ------------------------------
3674 -- Analyze_Overloaded_Slice --
3675 ------------------------------
3677 procedure Analyze_Overloaded_Slice is
3678 I : Interp_Index;
3679 It : Interp;
3680 Typ : Entity_Id;
3682 begin
3683 Set_Etype (N, Any_Type);
3685 Get_First_Interp (P, I, It);
3686 while Present (It.Nam) loop
3687 Typ := It.Typ;
3689 if Is_Access_Type (Typ) then
3690 Typ := Designated_Type (Typ);
3691 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
3692 end if;
3694 if Is_Array_Type (Typ)
3695 and then Number_Dimensions (Typ) = 1
3696 and then Has_Compatible_Type (D, Etype (First_Index (Typ)))
3697 then
3698 Add_One_Interp (N, Typ, Typ);
3699 end if;
3701 Get_Next_Interp (I, It);
3702 end loop;
3704 if Etype (N) = Any_Type then
3705 Error_Msg_N ("expect array type in prefix of slice", N);
3706 end if;
3707 end Analyze_Overloaded_Slice;
3709 -- Start of processing for Analyze_Slice
3711 begin
3712 Analyze (P);
3713 Analyze (D);
3715 if Is_Overloaded (P) then
3716 Analyze_Overloaded_Slice;
3718 else
3719 Array_Type := Etype (P);
3720 Set_Etype (N, Any_Type);
3722 if Is_Access_Type (Array_Type) then
3723 Array_Type := Designated_Type (Array_Type);
3724 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
3725 end if;
3727 if not Is_Array_Type (Array_Type) then
3728 Wrong_Type (P, Any_Array);
3730 elsif Number_Dimensions (Array_Type) > 1 then
3731 Error_Msg_N
3732 ("type is not one-dimensional array in slice prefix", N);
3734 elsif not
3735 Has_Compatible_Type (D, Etype (First_Index (Array_Type)))
3736 then
3737 Wrong_Type (D, Etype (First_Index (Array_Type)));
3739 else
3740 Set_Etype (N, Array_Type);
3741 end if;
3742 end if;
3743 end Analyze_Slice;
3745 -----------------------------
3746 -- Analyze_Type_Conversion --
3747 -----------------------------
3749 procedure Analyze_Type_Conversion (N : Node_Id) is
3750 Expr : constant Node_Id := Expression (N);
3751 T : Entity_Id;
3753 begin
3754 -- If Conversion_OK is set, then the Etype is already set, and the
3755 -- only processing required is to analyze the expression. This is
3756 -- used to construct certain "illegal" conversions which are not
3757 -- allowed by Ada semantics, but can be handled OK by Gigi, see
3758 -- Sinfo for further details.
3760 if Conversion_OK (N) then
3761 Analyze (Expr);
3762 return;
3763 end if;
3765 -- Otherwise full type analysis is required, as well as some semantic
3766 -- checks to make sure the argument of the conversion is appropriate.
3768 Find_Type (Subtype_Mark (N));
3769 T := Entity (Subtype_Mark (N));
3770 Set_Etype (N, T);
3771 Check_Fully_Declared (T, N);
3772 Analyze_Expression (Expr);
3773 Validate_Remote_Type_Type_Conversion (N);
3775 -- Only remaining step is validity checks on the argument. These
3776 -- are skipped if the conversion does not come from the source.
3778 if not Comes_From_Source (N) then
3779 return;
3781 -- If there was an error in a generic unit, no need to replicate the
3782 -- error message. Conversely, constant-folding in the generic may
3783 -- transform the argument of a conversion into a string literal, which
3784 -- is legal. Therefore the following tests are not performed in an
3785 -- instance.
3787 elsif In_Instance then
3788 return;
3790 elsif Nkind (Expr) = N_Null then
3791 Error_Msg_N ("argument of conversion cannot be null", N);
3792 Error_Msg_N ("\use qualified expression instead", N);
3793 Set_Etype (N, Any_Type);
3795 elsif Nkind (Expr) = N_Aggregate then
3796 Error_Msg_N ("argument of conversion cannot be aggregate", N);
3797 Error_Msg_N ("\use qualified expression instead", N);
3799 elsif Nkind (Expr) = N_Allocator then
3800 Error_Msg_N ("argument of conversion cannot be an allocator", N);
3801 Error_Msg_N ("\use qualified expression instead", N);
3803 elsif Nkind (Expr) = N_String_Literal then
3804 Error_Msg_N ("argument of conversion cannot be string literal", N);
3805 Error_Msg_N ("\use qualified expression instead", N);
3807 elsif Nkind (Expr) = N_Character_Literal then
3808 if Ada_Version = Ada_83 then
3809 Resolve (Expr, T);
3810 else
3811 Error_Msg_N ("argument of conversion cannot be character literal",
3813 Error_Msg_N ("\use qualified expression instead", N);
3814 end if;
3816 elsif Nkind (Expr) = N_Attribute_Reference
3817 and then
3818 (Attribute_Name (Expr) = Name_Access or else
3819 Attribute_Name (Expr) = Name_Unchecked_Access or else
3820 Attribute_Name (Expr) = Name_Unrestricted_Access)
3821 then
3822 Error_Msg_N ("argument of conversion cannot be access", N);
3823 Error_Msg_N ("\use qualified expression instead", N);
3824 end if;
3825 end Analyze_Type_Conversion;
3827 ----------------------
3828 -- Analyze_Unary_Op --
3829 ----------------------
3831 procedure Analyze_Unary_Op (N : Node_Id) is
3832 R : constant Node_Id := Right_Opnd (N);
3833 Op_Id : Entity_Id := Entity (N);
3835 begin
3836 Set_Etype (N, Any_Type);
3837 Candidate_Type := Empty;
3839 Analyze_Expression (R);
3841 if Present (Op_Id) then
3842 if Ekind (Op_Id) = E_Operator then
3843 Find_Unary_Types (R, Op_Id, N);
3844 else
3845 Add_One_Interp (N, Op_Id, Etype (Op_Id));
3846 end if;
3848 else
3849 Op_Id := Get_Name_Entity_Id (Chars (N));
3850 while Present (Op_Id) loop
3851 if Ekind (Op_Id) = E_Operator then
3852 if No (Next_Entity (First_Entity (Op_Id))) then
3853 Find_Unary_Types (R, Op_Id, N);
3854 end if;
3856 elsif Is_Overloadable (Op_Id) then
3857 Analyze_User_Defined_Unary_Op (N, Op_Id);
3858 end if;
3860 Op_Id := Homonym (Op_Id);
3861 end loop;
3862 end if;
3864 Operator_Check (N);
3865 end Analyze_Unary_Op;
3867 ----------------------------------
3868 -- Analyze_Unchecked_Expression --
3869 ----------------------------------
3871 procedure Analyze_Unchecked_Expression (N : Node_Id) is
3872 begin
3873 Analyze (Expression (N), Suppress => All_Checks);
3874 Set_Etype (N, Etype (Expression (N)));
3875 Save_Interps (Expression (N), N);
3876 end Analyze_Unchecked_Expression;
3878 ---------------------------------------
3879 -- Analyze_Unchecked_Type_Conversion --
3880 ---------------------------------------
3882 procedure Analyze_Unchecked_Type_Conversion (N : Node_Id) is
3883 begin
3884 Find_Type (Subtype_Mark (N));
3885 Analyze_Expression (Expression (N));
3886 Set_Etype (N, Entity (Subtype_Mark (N)));
3887 end Analyze_Unchecked_Type_Conversion;
3889 ------------------------------------
3890 -- Analyze_User_Defined_Binary_Op --
3891 ------------------------------------
3893 procedure Analyze_User_Defined_Binary_Op
3894 (N : Node_Id;
3895 Op_Id : Entity_Id)
3897 begin
3898 -- Only do analysis if the operator Comes_From_Source, since otherwise
3899 -- the operator was generated by the expander, and all such operators
3900 -- always refer to the operators in package Standard.
3902 if Comes_From_Source (N) then
3903 declare
3904 F1 : constant Entity_Id := First_Formal (Op_Id);
3905 F2 : constant Entity_Id := Next_Formal (F1);
3907 begin
3908 -- Verify that Op_Id is a visible binary function. Note that since
3909 -- we know Op_Id is overloaded, potentially use visible means use
3910 -- visible for sure (RM 9.4(11)).
3912 if Ekind (Op_Id) = E_Function
3913 and then Present (F2)
3914 and then (Is_Immediately_Visible (Op_Id)
3915 or else Is_Potentially_Use_Visible (Op_Id))
3916 and then Has_Compatible_Type (Left_Opnd (N), Etype (F1))
3917 and then Has_Compatible_Type (Right_Opnd (N), Etype (F2))
3918 then
3919 Add_One_Interp (N, Op_Id, Etype (Op_Id));
3921 -- If the left operand is overloaded, indicate that the
3922 -- current type is a viable candidate. This is redundant
3923 -- in most cases, but for equality and comparison operators
3924 -- where the context does not impose a type on the operands,
3925 -- setting the proper type is necessary to avoid subsequent
3926 -- ambiguities during resolution, when both user-defined and
3927 -- predefined operators may be candidates.
3929 if Is_Overloaded (Left_Opnd (N)) then
3930 Set_Etype (Left_Opnd (N), Etype (F1));
3931 end if;
3933 if Debug_Flag_E then
3934 Write_Str ("user defined operator ");
3935 Write_Name (Chars (Op_Id));
3936 Write_Str (" on node ");
3937 Write_Int (Int (N));
3938 Write_Eol;
3939 end if;
3940 end if;
3941 end;
3942 end if;
3943 end Analyze_User_Defined_Binary_Op;
3945 -----------------------------------
3946 -- Analyze_User_Defined_Unary_Op --
3947 -----------------------------------
3949 procedure Analyze_User_Defined_Unary_Op
3950 (N : Node_Id;
3951 Op_Id : Entity_Id)
3953 begin
3954 -- Only do analysis if the operator Comes_From_Source, since otherwise
3955 -- the operator was generated by the expander, and all such operators
3956 -- always refer to the operators in package Standard.
3958 if Comes_From_Source (N) then
3959 declare
3960 F : constant Entity_Id := First_Formal (Op_Id);
3962 begin
3963 -- Verify that Op_Id is a visible unary function. Note that since
3964 -- we know Op_Id is overloaded, potentially use visible means use
3965 -- visible for sure (RM 9.4(11)).
3967 if Ekind (Op_Id) = E_Function
3968 and then No (Next_Formal (F))
3969 and then (Is_Immediately_Visible (Op_Id)
3970 or else Is_Potentially_Use_Visible (Op_Id))
3971 and then Has_Compatible_Type (Right_Opnd (N), Etype (F))
3972 then
3973 Add_One_Interp (N, Op_Id, Etype (Op_Id));
3974 end if;
3975 end;
3976 end if;
3977 end Analyze_User_Defined_Unary_Op;
3979 ---------------------------
3980 -- Check_Arithmetic_Pair --
3981 ---------------------------
3983 procedure Check_Arithmetic_Pair
3984 (T1, T2 : Entity_Id;
3985 Op_Id : Entity_Id;
3986 N : Node_Id)
3988 Op_Name : constant Name_Id := Chars (Op_Id);
3990 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean;
3991 -- Check whether the fixed-point type Typ has a user-defined operator
3992 -- (multiplication or division) that should hide the corresponding
3993 -- predefined operator. Used to implement Ada 2005 AI-264, to make
3994 -- such operators more visible and therefore useful.
3996 -- If the name of the operation is an expanded name with prefix
3997 -- Standard, the predefined universal fixed operator is available,
3998 -- as specified by AI-420 (RM 4.5.5 (19.1/2)).
4000 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id;
4001 -- Get specific type (i.e. non-universal type if there is one)
4003 ------------------
4004 -- Has_Fixed_Op --
4005 ------------------
4007 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean is
4008 Bas : constant Entity_Id := Base_Type (Typ);
4009 Ent : Entity_Id;
4010 F1 : Entity_Id;
4011 F2 : Entity_Id;
4013 begin
4014 -- If the universal_fixed operation is given explicitly the rule
4015 -- concerning primitive operations of the type do not apply.
4017 if Nkind (N) = N_Function_Call
4018 and then Nkind (Name (N)) = N_Expanded_Name
4019 and then Entity (Prefix (Name (N))) = Standard_Standard
4020 then
4021 return False;
4022 end if;
4024 -- The operation is treated as primitive if it is declared in the
4025 -- same scope as the type, and therefore on the same entity chain.
4027 Ent := Next_Entity (Typ);
4028 while Present (Ent) loop
4029 if Chars (Ent) = Chars (Op) then
4030 F1 := First_Formal (Ent);
4031 F2 := Next_Formal (F1);
4033 -- The operation counts as primitive if either operand or
4034 -- result are of the given base type, and both operands are
4035 -- fixed point types.
4037 if (Base_Type (Etype (F1)) = Bas
4038 and then Is_Fixed_Point_Type (Etype (F2)))
4040 or else
4041 (Base_Type (Etype (F2)) = Bas
4042 and then Is_Fixed_Point_Type (Etype (F1)))
4044 or else
4045 (Base_Type (Etype (Ent)) = Bas
4046 and then Is_Fixed_Point_Type (Etype (F1))
4047 and then Is_Fixed_Point_Type (Etype (F2)))
4048 then
4049 return True;
4050 end if;
4051 end if;
4053 Next_Entity (Ent);
4054 end loop;
4056 return False;
4057 end Has_Fixed_Op;
4059 -------------------
4060 -- Specific_Type --
4061 -------------------
4063 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id is
4064 begin
4065 if T1 = Universal_Integer or else T1 = Universal_Real then
4066 return Base_Type (T2);
4067 else
4068 return Base_Type (T1);
4069 end if;
4070 end Specific_Type;
4072 -- Start of processing for Check_Arithmetic_Pair
4074 begin
4075 if Op_Name = Name_Op_Add or else Op_Name = Name_Op_Subtract then
4077 if Is_Numeric_Type (T1)
4078 and then Is_Numeric_Type (T2)
4079 and then (Covers (T1 => T1, T2 => T2)
4080 or else
4081 Covers (T1 => T2, T2 => T1))
4082 then
4083 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
4084 end if;
4086 elsif Op_Name = Name_Op_Multiply or else Op_Name = Name_Op_Divide then
4088 if Is_Fixed_Point_Type (T1)
4089 and then (Is_Fixed_Point_Type (T2)
4090 or else T2 = Universal_Real)
4091 then
4092 -- If Treat_Fixed_As_Integer is set then the Etype is already set
4093 -- and no further processing is required (this is the case of an
4094 -- operator constructed by Exp_Fixd for a fixed point operation)
4095 -- Otherwise add one interpretation with universal fixed result
4096 -- If the operator is given in functional notation, it comes
4097 -- from source and Fixed_As_Integer cannot apply.
4099 if (Nkind (N) not in N_Op
4100 or else not Treat_Fixed_As_Integer (N))
4101 and then
4102 (not Has_Fixed_Op (T1, Op_Id)
4103 or else Nkind (Parent (N)) = N_Type_Conversion)
4104 then
4105 Add_One_Interp (N, Op_Id, Universal_Fixed);
4106 end if;
4108 elsif Is_Fixed_Point_Type (T2)
4109 and then (Nkind (N) not in N_Op
4110 or else not Treat_Fixed_As_Integer (N))
4111 and then T1 = Universal_Real
4112 and then
4113 (not Has_Fixed_Op (T1, Op_Id)
4114 or else Nkind (Parent (N)) = N_Type_Conversion)
4115 then
4116 Add_One_Interp (N, Op_Id, Universal_Fixed);
4118 elsif Is_Numeric_Type (T1)
4119 and then Is_Numeric_Type (T2)
4120 and then (Covers (T1 => T1, T2 => T2)
4121 or else
4122 Covers (T1 => T2, T2 => T1))
4123 then
4124 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
4126 elsif Is_Fixed_Point_Type (T1)
4127 and then (Base_Type (T2) = Base_Type (Standard_Integer)
4128 or else T2 = Universal_Integer)
4129 then
4130 Add_One_Interp (N, Op_Id, T1);
4132 elsif T2 = Universal_Real
4133 and then Base_Type (T1) = Base_Type (Standard_Integer)
4134 and then Op_Name = Name_Op_Multiply
4135 then
4136 Add_One_Interp (N, Op_Id, Any_Fixed);
4138 elsif T1 = Universal_Real
4139 and then Base_Type (T2) = Base_Type (Standard_Integer)
4140 then
4141 Add_One_Interp (N, Op_Id, Any_Fixed);
4143 elsif Is_Fixed_Point_Type (T2)
4144 and then (Base_Type (T1) = Base_Type (Standard_Integer)
4145 or else T1 = Universal_Integer)
4146 and then Op_Name = Name_Op_Multiply
4147 then
4148 Add_One_Interp (N, Op_Id, T2);
4150 elsif T1 = Universal_Real and then T2 = Universal_Integer then
4151 Add_One_Interp (N, Op_Id, T1);
4153 elsif T2 = Universal_Real
4154 and then T1 = Universal_Integer
4155 and then Op_Name = Name_Op_Multiply
4156 then
4157 Add_One_Interp (N, Op_Id, T2);
4158 end if;
4160 elsif Op_Name = Name_Op_Mod or else Op_Name = Name_Op_Rem then
4162 -- Note: The fixed-point operands case with Treat_Fixed_As_Integer
4163 -- set does not require any special processing, since the Etype is
4164 -- already set (case of operation constructed by Exp_Fixed).
4166 if Is_Integer_Type (T1)
4167 and then (Covers (T1 => T1, T2 => T2)
4168 or else
4169 Covers (T1 => T2, T2 => T1))
4170 then
4171 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
4172 end if;
4174 elsif Op_Name = Name_Op_Expon then
4175 if Is_Numeric_Type (T1)
4176 and then not Is_Fixed_Point_Type (T1)
4177 and then (Base_Type (T2) = Base_Type (Standard_Integer)
4178 or else T2 = Universal_Integer)
4179 then
4180 Add_One_Interp (N, Op_Id, Base_Type (T1));
4181 end if;
4183 else pragma Assert (Nkind (N) in N_Op_Shift);
4185 -- If not one of the predefined operators, the node may be one
4186 -- of the intrinsic functions. Its kind is always specific, and
4187 -- we can use it directly, rather than the name of the operation.
4189 if Is_Integer_Type (T1)
4190 and then (Base_Type (T2) = Base_Type (Standard_Integer)
4191 or else T2 = Universal_Integer)
4192 then
4193 Add_One_Interp (N, Op_Id, Base_Type (T1));
4194 end if;
4195 end if;
4196 end Check_Arithmetic_Pair;
4198 -------------------------------
4199 -- Check_Misspelled_Selector --
4200 -------------------------------
4202 procedure Check_Misspelled_Selector
4203 (Prefix : Entity_Id;
4204 Sel : Node_Id)
4206 Max_Suggestions : constant := 2;
4207 Nr_Of_Suggestions : Natural := 0;
4209 Suggestion_1 : Entity_Id := Empty;
4210 Suggestion_2 : Entity_Id := Empty;
4212 Comp : Entity_Id;
4214 begin
4215 -- All the components of the prefix of selector Sel are matched
4216 -- against Sel and a count is maintained of possible misspellings.
4217 -- When at the end of the analysis there are one or two (not more!)
4218 -- possible misspellings, these misspellings will be suggested as
4219 -- possible correction.
4221 if not (Is_Private_Type (Prefix) or else Is_Record_Type (Prefix)) then
4223 -- Concurrent types should be handled as well ???
4225 return;
4226 end if;
4228 Comp := First_Entity (Prefix);
4229 while Nr_Of_Suggestions <= Max_Suggestions and then Present (Comp) loop
4230 if Is_Visible_Component (Comp) then
4231 if Is_Bad_Spelling_Of (Chars (Comp), Chars (Sel)) then
4232 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
4234 case Nr_Of_Suggestions is
4235 when 1 => Suggestion_1 := Comp;
4236 when 2 => Suggestion_2 := Comp;
4237 when others => exit;
4238 end case;
4239 end if;
4240 end if;
4242 Comp := Next_Entity (Comp);
4243 end loop;
4245 -- Report at most two suggestions
4247 if Nr_Of_Suggestions = 1 then
4248 Error_Msg_NE -- CODEFIX
4249 ("\possible misspelling of&", Sel, Suggestion_1);
4251 elsif Nr_Of_Suggestions = 2 then
4252 Error_Msg_Node_2 := Suggestion_2;
4253 Error_Msg_NE -- CODEFIX
4254 ("\possible misspelling of& or&", Sel, Suggestion_1);
4255 end if;
4256 end Check_Misspelled_Selector;
4258 ----------------------
4259 -- Defined_In_Scope --
4260 ----------------------
4262 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean
4264 S1 : constant Entity_Id := Scope (Base_Type (T));
4265 begin
4266 return S1 = S
4267 or else (S1 = System_Aux_Id and then S = Scope (S1));
4268 end Defined_In_Scope;
4270 -------------------
4271 -- Diagnose_Call --
4272 -------------------
4274 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id) is
4275 Actual : Node_Id;
4276 X : Interp_Index;
4277 It : Interp;
4278 Err_Mode : Boolean;
4279 New_Nam : Node_Id;
4280 Void_Interp_Seen : Boolean := False;
4282 Success : Boolean;
4283 pragma Warnings (Off, Boolean);
4285 begin
4286 if Ada_Version >= Ada_05 then
4287 Actual := First_Actual (N);
4288 while Present (Actual) loop
4290 -- Ada 2005 (AI-50217): Post an error in case of premature
4291 -- usage of an entity from the limited view.
4293 if not Analyzed (Etype (Actual))
4294 and then From_With_Type (Etype (Actual))
4295 then
4296 Error_Msg_Qual_Level := 1;
4297 Error_Msg_NE
4298 ("missing with_clause for scope of imported type&",
4299 Actual, Etype (Actual));
4300 Error_Msg_Qual_Level := 0;
4301 end if;
4303 Next_Actual (Actual);
4304 end loop;
4305 end if;
4307 -- Analyze each candidate call again, with full error reporting
4308 -- for each.
4310 Error_Msg_N
4311 ("no candidate interpretations match the actuals:!", Nam);
4312 Err_Mode := All_Errors_Mode;
4313 All_Errors_Mode := True;
4315 -- If this is a call to an operation of a concurrent type,
4316 -- the failed interpretations have been removed from the
4317 -- name. Recover them to provide full diagnostics.
4319 if Nkind (Parent (Nam)) = N_Selected_Component then
4320 Set_Entity (Nam, Empty);
4321 New_Nam := New_Copy_Tree (Parent (Nam));
4322 Set_Is_Overloaded (New_Nam, False);
4323 Set_Is_Overloaded (Selector_Name (New_Nam), False);
4324 Set_Parent (New_Nam, Parent (Parent (Nam)));
4325 Analyze_Selected_Component (New_Nam);
4326 Get_First_Interp (Selector_Name (New_Nam), X, It);
4327 else
4328 Get_First_Interp (Nam, X, It);
4329 end if;
4331 while Present (It.Nam) loop
4332 if Etype (It.Nam) = Standard_Void_Type then
4333 Void_Interp_Seen := True;
4334 end if;
4336 Analyze_One_Call (N, It.Nam, True, Success);
4337 Get_Next_Interp (X, It);
4338 end loop;
4340 if Nkind (N) = N_Function_Call then
4341 Get_First_Interp (Nam, X, It);
4342 while Present (It.Nam) loop
4343 if Ekind (It.Nam) = E_Function
4344 or else Ekind (It.Nam) = E_Operator
4345 then
4346 return;
4347 else
4348 Get_Next_Interp (X, It);
4349 end if;
4350 end loop;
4352 -- If all interpretations are procedures, this deserves a
4353 -- more precise message. Ditto if this appears as the prefix
4354 -- of a selected component, which may be a lexical error.
4356 Error_Msg_N
4357 ("\context requires function call, found procedure name", Nam);
4359 if Nkind (Parent (N)) = N_Selected_Component
4360 and then N = Prefix (Parent (N))
4361 then
4362 Error_Msg_N -- CODEFIX
4363 ("\period should probably be semicolon", Parent (N));
4364 end if;
4366 elsif Nkind (N) = N_Procedure_Call_Statement
4367 and then not Void_Interp_Seen
4368 then
4369 Error_Msg_N (
4370 "\function name found in procedure call", Nam);
4371 end if;
4373 All_Errors_Mode := Err_Mode;
4374 end Diagnose_Call;
4376 ---------------------------
4377 -- Find_Arithmetic_Types --
4378 ---------------------------
4380 procedure Find_Arithmetic_Types
4381 (L, R : Node_Id;
4382 Op_Id : Entity_Id;
4383 N : Node_Id)
4385 Index1 : Interp_Index;
4386 Index2 : Interp_Index;
4387 It1 : Interp;
4388 It2 : Interp;
4390 procedure Check_Right_Argument (T : Entity_Id);
4391 -- Check right operand of operator
4393 --------------------------
4394 -- Check_Right_Argument --
4395 --------------------------
4397 procedure Check_Right_Argument (T : Entity_Id) is
4398 begin
4399 if not Is_Overloaded (R) then
4400 Check_Arithmetic_Pair (T, Etype (R), Op_Id, N);
4401 else
4402 Get_First_Interp (R, Index2, It2);
4403 while Present (It2.Typ) loop
4404 Check_Arithmetic_Pair (T, It2.Typ, Op_Id, N);
4405 Get_Next_Interp (Index2, It2);
4406 end loop;
4407 end if;
4408 end Check_Right_Argument;
4410 -- Start of processing for Find_Arithmetic_Types
4412 begin
4413 if not Is_Overloaded (L) then
4414 Check_Right_Argument (Etype (L));
4416 else
4417 Get_First_Interp (L, Index1, It1);
4418 while Present (It1.Typ) loop
4419 Check_Right_Argument (It1.Typ);
4420 Get_Next_Interp (Index1, It1);
4421 end loop;
4422 end if;
4424 end Find_Arithmetic_Types;
4426 ------------------------
4427 -- Find_Boolean_Types --
4428 ------------------------
4430 procedure Find_Boolean_Types
4431 (L, R : Node_Id;
4432 Op_Id : Entity_Id;
4433 N : Node_Id)
4435 Index : Interp_Index;
4436 It : Interp;
4438 procedure Check_Numeric_Argument (T : Entity_Id);
4439 -- Special case for logical operations one of whose operands is an
4440 -- integer literal. If both are literal the result is any modular type.
4442 ----------------------------
4443 -- Check_Numeric_Argument --
4444 ----------------------------
4446 procedure Check_Numeric_Argument (T : Entity_Id) is
4447 begin
4448 if T = Universal_Integer then
4449 Add_One_Interp (N, Op_Id, Any_Modular);
4451 elsif Is_Modular_Integer_Type (T) then
4452 Add_One_Interp (N, Op_Id, T);
4453 end if;
4454 end Check_Numeric_Argument;
4456 -- Start of processing for Find_Boolean_Types
4458 begin
4459 if not Is_Overloaded (L) then
4460 if Etype (L) = Universal_Integer
4461 or else Etype (L) = Any_Modular
4462 then
4463 if not Is_Overloaded (R) then
4464 Check_Numeric_Argument (Etype (R));
4466 else
4467 Get_First_Interp (R, Index, It);
4468 while Present (It.Typ) loop
4469 Check_Numeric_Argument (It.Typ);
4470 Get_Next_Interp (Index, It);
4471 end loop;
4472 end if;
4474 -- If operands are aggregates, we must assume that they may be
4475 -- boolean arrays, and leave disambiguation for the second pass.
4476 -- If only one is an aggregate, verify that the other one has an
4477 -- interpretation as a boolean array
4479 elsif Nkind (L) = N_Aggregate then
4480 if Nkind (R) = N_Aggregate then
4481 Add_One_Interp (N, Op_Id, Etype (L));
4483 elsif not Is_Overloaded (R) then
4484 if Valid_Boolean_Arg (Etype (R)) then
4485 Add_One_Interp (N, Op_Id, Etype (R));
4486 end if;
4488 else
4489 Get_First_Interp (R, Index, It);
4490 while Present (It.Typ) loop
4491 if Valid_Boolean_Arg (It.Typ) then
4492 Add_One_Interp (N, Op_Id, It.Typ);
4493 end if;
4495 Get_Next_Interp (Index, It);
4496 end loop;
4497 end if;
4499 elsif Valid_Boolean_Arg (Etype (L))
4500 and then Has_Compatible_Type (R, Etype (L))
4501 then
4502 Add_One_Interp (N, Op_Id, Etype (L));
4503 end if;
4505 else
4506 Get_First_Interp (L, Index, It);
4507 while Present (It.Typ) loop
4508 if Valid_Boolean_Arg (It.Typ)
4509 and then Has_Compatible_Type (R, It.Typ)
4510 then
4511 Add_One_Interp (N, Op_Id, It.Typ);
4512 end if;
4514 Get_Next_Interp (Index, It);
4515 end loop;
4516 end if;
4517 end Find_Boolean_Types;
4519 ---------------------------
4520 -- Find_Comparison_Types --
4521 ---------------------------
4523 procedure Find_Comparison_Types
4524 (L, R : Node_Id;
4525 Op_Id : Entity_Id;
4526 N : Node_Id)
4528 Index : Interp_Index;
4529 It : Interp;
4530 Found : Boolean := False;
4531 I_F : Interp_Index;
4532 T_F : Entity_Id;
4533 Scop : Entity_Id := Empty;
4535 procedure Try_One_Interp (T1 : Entity_Id);
4536 -- Routine to try one proposed interpretation. Note that the context
4537 -- of the operator plays no role in resolving the arguments, so that
4538 -- if there is more than one interpretation of the operands that is
4539 -- compatible with comparison, the operation is ambiguous.
4541 --------------------
4542 -- Try_One_Interp --
4543 --------------------
4545 procedure Try_One_Interp (T1 : Entity_Id) is
4546 begin
4548 -- If the operator is an expanded name, then the type of the operand
4549 -- must be defined in the corresponding scope. If the type is
4550 -- universal, the context will impose the correct type.
4552 if Present (Scop)
4553 and then not Defined_In_Scope (T1, Scop)
4554 and then T1 /= Universal_Integer
4555 and then T1 /= Universal_Real
4556 and then T1 /= Any_String
4557 and then T1 /= Any_Composite
4558 then
4559 return;
4560 end if;
4562 if Valid_Comparison_Arg (T1)
4563 and then Has_Compatible_Type (R, T1)
4564 then
4565 if Found
4566 and then Base_Type (T1) /= Base_Type (T_F)
4567 then
4568 It := Disambiguate (L, I_F, Index, Any_Type);
4570 if It = No_Interp then
4571 Ambiguous_Operands (N);
4572 Set_Etype (L, Any_Type);
4573 return;
4575 else
4576 T_F := It.Typ;
4577 end if;
4579 else
4580 Found := True;
4581 T_F := T1;
4582 I_F := Index;
4583 end if;
4585 Set_Etype (L, T_F);
4586 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
4588 end if;
4589 end Try_One_Interp;
4591 -- Start of processing for Find_Comparison_Types
4593 begin
4594 -- If left operand is aggregate, the right operand has to
4595 -- provide a usable type for it.
4597 if Nkind (L) = N_Aggregate
4598 and then Nkind (R) /= N_Aggregate
4599 then
4600 Find_Comparison_Types (L => R, R => L, Op_Id => Op_Id, N => N);
4601 return;
4602 end if;
4604 if Nkind (N) = N_Function_Call
4605 and then Nkind (Name (N)) = N_Expanded_Name
4606 then
4607 Scop := Entity (Prefix (Name (N)));
4609 -- The prefix may be a package renaming, and the subsequent test
4610 -- requires the original package.
4612 if Ekind (Scop) = E_Package
4613 and then Present (Renamed_Entity (Scop))
4614 then
4615 Scop := Renamed_Entity (Scop);
4616 Set_Entity (Prefix (Name (N)), Scop);
4617 end if;
4618 end if;
4620 if not Is_Overloaded (L) then
4621 Try_One_Interp (Etype (L));
4623 else
4624 Get_First_Interp (L, Index, It);
4625 while Present (It.Typ) loop
4626 Try_One_Interp (It.Typ);
4627 Get_Next_Interp (Index, It);
4628 end loop;
4629 end if;
4630 end Find_Comparison_Types;
4632 ----------------------------------------
4633 -- Find_Non_Universal_Interpretations --
4634 ----------------------------------------
4636 procedure Find_Non_Universal_Interpretations
4637 (N : Node_Id;
4638 R : Node_Id;
4639 Op_Id : Entity_Id;
4640 T1 : Entity_Id)
4642 Index : Interp_Index;
4643 It : Interp;
4645 begin
4646 if T1 = Universal_Integer
4647 or else T1 = Universal_Real
4648 then
4649 if not Is_Overloaded (R) then
4650 Add_One_Interp
4651 (N, Op_Id, Standard_Boolean, Base_Type (Etype (R)));
4652 else
4653 Get_First_Interp (R, Index, It);
4654 while Present (It.Typ) loop
4655 if Covers (It.Typ, T1) then
4656 Add_One_Interp
4657 (N, Op_Id, Standard_Boolean, Base_Type (It.Typ));
4658 end if;
4660 Get_Next_Interp (Index, It);
4661 end loop;
4662 end if;
4663 else
4664 Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (T1));
4665 end if;
4666 end Find_Non_Universal_Interpretations;
4668 ------------------------------
4669 -- Find_Concatenation_Types --
4670 ------------------------------
4672 procedure Find_Concatenation_Types
4673 (L, R : Node_Id;
4674 Op_Id : Entity_Id;
4675 N : Node_Id)
4677 Op_Type : constant Entity_Id := Etype (Op_Id);
4679 begin
4680 if Is_Array_Type (Op_Type)
4681 and then not Is_Limited_Type (Op_Type)
4683 and then (Has_Compatible_Type (L, Op_Type)
4684 or else
4685 Has_Compatible_Type (L, Component_Type (Op_Type)))
4687 and then (Has_Compatible_Type (R, Op_Type)
4688 or else
4689 Has_Compatible_Type (R, Component_Type (Op_Type)))
4690 then
4691 Add_One_Interp (N, Op_Id, Op_Type);
4692 end if;
4693 end Find_Concatenation_Types;
4695 -------------------------
4696 -- Find_Equality_Types --
4697 -------------------------
4699 procedure Find_Equality_Types
4700 (L, R : Node_Id;
4701 Op_Id : Entity_Id;
4702 N : Node_Id)
4704 Index : Interp_Index;
4705 It : Interp;
4706 Found : Boolean := False;
4707 I_F : Interp_Index;
4708 T_F : Entity_Id;
4709 Scop : Entity_Id := Empty;
4711 procedure Try_One_Interp (T1 : Entity_Id);
4712 -- The context of the equality operator plays no role in resolving the
4713 -- arguments, so that if there is more than one interpretation of the
4714 -- operands that is compatible with equality, the construct is ambiguous
4715 -- and an error can be emitted now, after trying to disambiguate, i.e.
4716 -- applying preference rules.
4718 --------------------
4719 -- Try_One_Interp --
4720 --------------------
4722 procedure Try_One_Interp (T1 : Entity_Id) is
4723 Bas : constant Entity_Id := Base_Type (T1);
4725 begin
4726 -- If the operator is an expanded name, then the type of the operand
4727 -- must be defined in the corresponding scope. If the type is
4728 -- universal, the context will impose the correct type. An anonymous
4729 -- type for a 'Access reference is also universal in this sense, as
4730 -- the actual type is obtained from context.
4731 -- In Ada 2005, the equality operator for anonymous access types
4732 -- is declared in Standard, and preference rules apply to it.
4734 if Present (Scop) then
4735 if Defined_In_Scope (T1, Scop)
4736 or else T1 = Universal_Integer
4737 or else T1 = Universal_Real
4738 or else T1 = Any_Access
4739 or else T1 = Any_String
4740 or else T1 = Any_Composite
4741 or else (Ekind (T1) = E_Access_Subprogram_Type
4742 and then not Comes_From_Source (T1))
4743 then
4744 null;
4746 elsif Ekind (T1) = E_Anonymous_Access_Type
4747 and then Scop = Standard_Standard
4748 then
4749 null;
4751 else
4752 -- The scope does not contain an operator for the type
4754 return;
4755 end if;
4757 -- If we have infix notation, the operator must be usable.
4758 -- Within an instance, if the type is already established we
4759 -- know it is correct.
4760 -- In Ada 2005, the equality on anonymous access types is declared
4761 -- in Standard, and is always visible.
4763 elsif In_Open_Scopes (Scope (Bas))
4764 or else Is_Potentially_Use_Visible (Bas)
4765 or else In_Use (Bas)
4766 or else (In_Use (Scope (Bas))
4767 and then not Is_Hidden (Bas))
4768 or else (In_Instance
4769 and then First_Subtype (T1) = First_Subtype (Etype (R)))
4770 or else Ekind (T1) = E_Anonymous_Access_Type
4771 then
4772 null;
4774 else
4775 -- Save candidate type for subsquent error message, if any
4777 if not Is_Limited_Type (T1) then
4778 Candidate_Type := T1;
4779 end if;
4781 return;
4782 end if;
4784 -- Ada 2005 (AI-230): Keep restriction imposed by Ada 83 and 95:
4785 -- Do not allow anonymous access types in equality operators.
4787 if Ada_Version < Ada_05
4788 and then Ekind (T1) = E_Anonymous_Access_Type
4789 then
4790 return;
4791 end if;
4793 if T1 /= Standard_Void_Type
4794 and then not Is_Limited_Type (T1)
4795 and then not Is_Limited_Composite (T1)
4796 and then Has_Compatible_Type (R, T1)
4797 then
4798 if Found
4799 and then Base_Type (T1) /= Base_Type (T_F)
4800 then
4801 It := Disambiguate (L, I_F, Index, Any_Type);
4803 if It = No_Interp then
4804 Ambiguous_Operands (N);
4805 Set_Etype (L, Any_Type);
4806 return;
4808 else
4809 T_F := It.Typ;
4810 end if;
4812 else
4813 Found := True;
4814 T_F := T1;
4815 I_F := Index;
4816 end if;
4818 if not Analyzed (L) then
4819 Set_Etype (L, T_F);
4820 end if;
4822 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
4824 -- Case of operator was not visible, Etype still set to Any_Type
4826 if Etype (N) = Any_Type then
4827 Found := False;
4828 end if;
4830 elsif Scop = Standard_Standard
4831 and then Ekind (T1) = E_Anonymous_Access_Type
4832 then
4833 Found := True;
4834 end if;
4835 end Try_One_Interp;
4837 -- Start of processing for Find_Equality_Types
4839 begin
4840 -- If left operand is aggregate, the right operand has to
4841 -- provide a usable type for it.
4843 if Nkind (L) = N_Aggregate
4844 and then Nkind (R) /= N_Aggregate
4845 then
4846 Find_Equality_Types (L => R, R => L, Op_Id => Op_Id, N => N);
4847 return;
4848 end if;
4850 if Nkind (N) = N_Function_Call
4851 and then Nkind (Name (N)) = N_Expanded_Name
4852 then
4853 Scop := Entity (Prefix (Name (N)));
4855 -- The prefix may be a package renaming, and the subsequent test
4856 -- requires the original package.
4858 if Ekind (Scop) = E_Package
4859 and then Present (Renamed_Entity (Scop))
4860 then
4861 Scop := Renamed_Entity (Scop);
4862 Set_Entity (Prefix (Name (N)), Scop);
4863 end if;
4864 end if;
4866 if not Is_Overloaded (L) then
4867 Try_One_Interp (Etype (L));
4869 else
4870 Get_First_Interp (L, Index, It);
4871 while Present (It.Typ) loop
4872 Try_One_Interp (It.Typ);
4873 Get_Next_Interp (Index, It);
4874 end loop;
4875 end if;
4876 end Find_Equality_Types;
4878 -------------------------
4879 -- Find_Negation_Types --
4880 -------------------------
4882 procedure Find_Negation_Types
4883 (R : Node_Id;
4884 Op_Id : Entity_Id;
4885 N : Node_Id)
4887 Index : Interp_Index;
4888 It : Interp;
4890 begin
4891 if not Is_Overloaded (R) then
4892 if Etype (R) = Universal_Integer then
4893 Add_One_Interp (N, Op_Id, Any_Modular);
4894 elsif Valid_Boolean_Arg (Etype (R)) then
4895 Add_One_Interp (N, Op_Id, Etype (R));
4896 end if;
4898 else
4899 Get_First_Interp (R, Index, It);
4900 while Present (It.Typ) loop
4901 if Valid_Boolean_Arg (It.Typ) then
4902 Add_One_Interp (N, Op_Id, It.Typ);
4903 end if;
4905 Get_Next_Interp (Index, It);
4906 end loop;
4907 end if;
4908 end Find_Negation_Types;
4910 ------------------------------
4911 -- Find_Primitive_Operation --
4912 ------------------------------
4914 function Find_Primitive_Operation (N : Node_Id) return Boolean is
4915 Obj : constant Node_Id := Prefix (N);
4916 Op : constant Node_Id := Selector_Name (N);
4918 Prim : Elmt_Id;
4919 Prims : Elist_Id;
4920 Typ : Entity_Id;
4922 begin
4923 Set_Etype (Op, Any_Type);
4925 if Is_Access_Type (Etype (Obj)) then
4926 Typ := Designated_Type (Etype (Obj));
4927 else
4928 Typ := Etype (Obj);
4929 end if;
4931 if Is_Class_Wide_Type (Typ) then
4932 Typ := Root_Type (Typ);
4933 end if;
4935 Prims := Primitive_Operations (Typ);
4937 Prim := First_Elmt (Prims);
4938 while Present (Prim) loop
4939 if Chars (Node (Prim)) = Chars (Op) then
4940 Add_One_Interp (Op, Node (Prim), Etype (Node (Prim)));
4941 Set_Etype (N, Etype (Node (Prim)));
4942 end if;
4944 Next_Elmt (Prim);
4945 end loop;
4947 -- Now look for class-wide operations of the type or any of its
4948 -- ancestors by iterating over the homonyms of the selector.
4950 declare
4951 Cls_Type : constant Entity_Id := Class_Wide_Type (Typ);
4952 Hom : Entity_Id;
4954 begin
4955 Hom := Current_Entity (Op);
4956 while Present (Hom) loop
4957 if (Ekind (Hom) = E_Procedure
4958 or else
4959 Ekind (Hom) = E_Function)
4960 and then Scope (Hom) = Scope (Typ)
4961 and then Present (First_Formal (Hom))
4962 and then
4963 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
4964 or else
4965 (Is_Access_Type (Etype (First_Formal (Hom)))
4966 and then
4967 Ekind (Etype (First_Formal (Hom))) =
4968 E_Anonymous_Access_Type
4969 and then
4970 Base_Type
4971 (Designated_Type (Etype (First_Formal (Hom)))) =
4972 Cls_Type))
4973 then
4974 Add_One_Interp (Op, Hom, Etype (Hom));
4975 Set_Etype (N, Etype (Hom));
4976 end if;
4978 Hom := Homonym (Hom);
4979 end loop;
4980 end;
4982 return Etype (Op) /= Any_Type;
4983 end Find_Primitive_Operation;
4985 ----------------------
4986 -- Find_Unary_Types --
4987 ----------------------
4989 procedure Find_Unary_Types
4990 (R : Node_Id;
4991 Op_Id : Entity_Id;
4992 N : Node_Id)
4994 Index : Interp_Index;
4995 It : Interp;
4997 begin
4998 if not Is_Overloaded (R) then
4999 if Is_Numeric_Type (Etype (R)) then
5000 Add_One_Interp (N, Op_Id, Base_Type (Etype (R)));
5001 end if;
5003 else
5004 Get_First_Interp (R, Index, It);
5005 while Present (It.Typ) loop
5006 if Is_Numeric_Type (It.Typ) then
5007 Add_One_Interp (N, Op_Id, Base_Type (It.Typ));
5008 end if;
5010 Get_Next_Interp (Index, It);
5011 end loop;
5012 end if;
5013 end Find_Unary_Types;
5015 ------------------
5016 -- Junk_Operand --
5017 ------------------
5019 function Junk_Operand (N : Node_Id) return Boolean is
5020 Enode : Node_Id;
5022 begin
5023 if Error_Posted (N) then
5024 return False;
5025 end if;
5027 -- Get entity to be tested
5029 if Is_Entity_Name (N)
5030 and then Present (Entity (N))
5031 then
5032 Enode := N;
5034 -- An odd case, a procedure name gets converted to a very peculiar
5035 -- function call, and here is where we detect this happening.
5037 elsif Nkind (N) = N_Function_Call
5038 and then Is_Entity_Name (Name (N))
5039 and then Present (Entity (Name (N)))
5040 then
5041 Enode := Name (N);
5043 -- Another odd case, there are at least some cases of selected
5044 -- components where the selected component is not marked as having
5045 -- an entity, even though the selector does have an entity
5047 elsif Nkind (N) = N_Selected_Component
5048 and then Present (Entity (Selector_Name (N)))
5049 then
5050 Enode := Selector_Name (N);
5052 else
5053 return False;
5054 end if;
5056 -- Now test the entity we got to see if it is a bad case
5058 case Ekind (Entity (Enode)) is
5060 when E_Package =>
5061 Error_Msg_N
5062 ("package name cannot be used as operand", Enode);
5064 when Generic_Unit_Kind =>
5065 Error_Msg_N
5066 ("generic unit name cannot be used as operand", Enode);
5068 when Type_Kind =>
5069 Error_Msg_N
5070 ("subtype name cannot be used as operand", Enode);
5072 when Entry_Kind =>
5073 Error_Msg_N
5074 ("entry name cannot be used as operand", Enode);
5076 when E_Procedure =>
5077 Error_Msg_N
5078 ("procedure name cannot be used as operand", Enode);
5080 when E_Exception =>
5081 Error_Msg_N
5082 ("exception name cannot be used as operand", Enode);
5084 when E_Block | E_Label | E_Loop =>
5085 Error_Msg_N
5086 ("label name cannot be used as operand", Enode);
5088 when others =>
5089 return False;
5091 end case;
5093 return True;
5094 end Junk_Operand;
5096 --------------------
5097 -- Operator_Check --
5098 --------------------
5100 procedure Operator_Check (N : Node_Id) is
5101 begin
5102 Remove_Abstract_Operations (N);
5104 -- Test for case of no interpretation found for operator
5106 if Etype (N) = Any_Type then
5107 declare
5108 L : Node_Id;
5109 R : Node_Id;
5110 Op_Id : Entity_Id := Empty;
5112 begin
5113 R := Right_Opnd (N);
5115 if Nkind (N) in N_Binary_Op then
5116 L := Left_Opnd (N);
5117 else
5118 L := Empty;
5119 end if;
5121 -- If either operand has no type, then don't complain further,
5122 -- since this simply means that we have a propagated error.
5124 if R = Error
5125 or else Etype (R) = Any_Type
5126 or else (Nkind (N) in N_Binary_Op and then Etype (L) = Any_Type)
5127 then
5128 return;
5130 -- We explicitly check for the case of concatenation of component
5131 -- with component to avoid reporting spurious matching array types
5132 -- that might happen to be lurking in distant packages (such as
5133 -- run-time packages). This also prevents inconsistencies in the
5134 -- messages for certain ACVC B tests, which can vary depending on
5135 -- types declared in run-time interfaces. Another improvement when
5136 -- aggregates are present is to look for a well-typed operand.
5138 elsif Present (Candidate_Type)
5139 and then (Nkind (N) /= N_Op_Concat
5140 or else Is_Array_Type (Etype (L))
5141 or else Is_Array_Type (Etype (R)))
5142 then
5144 if Nkind (N) = N_Op_Concat then
5145 if Etype (L) /= Any_Composite
5146 and then Is_Array_Type (Etype (L))
5147 then
5148 Candidate_Type := Etype (L);
5150 elsif Etype (R) /= Any_Composite
5151 and then Is_Array_Type (Etype (R))
5152 then
5153 Candidate_Type := Etype (R);
5154 end if;
5155 end if;
5157 Error_Msg_NE
5158 ("operator for} is not directly visible!",
5159 N, First_Subtype (Candidate_Type));
5160 Error_Msg_N ("use clause would make operation legal!", N);
5161 return;
5163 -- If either operand is a junk operand (e.g. package name), then
5164 -- post appropriate error messages, but do not complain further.
5166 -- Note that the use of OR in this test instead of OR ELSE is
5167 -- quite deliberate, we may as well check both operands in the
5168 -- binary operator case.
5170 elsif Junk_Operand (R)
5171 or (Nkind (N) in N_Binary_Op and then Junk_Operand (L))
5172 then
5173 return;
5175 -- If we have a logical operator, one of whose operands is
5176 -- Boolean, then we know that the other operand cannot resolve to
5177 -- Boolean (since we got no interpretations), but in that case we
5178 -- pretty much know that the other operand should be Boolean, so
5179 -- resolve it that way (generating an error)
5181 elsif Nkind_In (N, N_Op_And, N_Op_Or, N_Op_Xor) then
5182 if Etype (L) = Standard_Boolean then
5183 Resolve (R, Standard_Boolean);
5184 return;
5185 elsif Etype (R) = Standard_Boolean then
5186 Resolve (L, Standard_Boolean);
5187 return;
5188 end if;
5190 -- For an arithmetic operator or comparison operator, if one
5191 -- of the operands is numeric, then we know the other operand
5192 -- is not the same numeric type. If it is a non-numeric type,
5193 -- then probably it is intended to match the other operand.
5195 elsif Nkind_In (N, N_Op_Add,
5196 N_Op_Divide,
5197 N_Op_Ge,
5198 N_Op_Gt,
5199 N_Op_Le)
5200 or else
5201 Nkind_In (N, N_Op_Lt,
5202 N_Op_Mod,
5203 N_Op_Multiply,
5204 N_Op_Rem,
5205 N_Op_Subtract)
5206 then
5207 if Is_Numeric_Type (Etype (L))
5208 and then not Is_Numeric_Type (Etype (R))
5209 then
5210 Resolve (R, Etype (L));
5211 return;
5213 elsif Is_Numeric_Type (Etype (R))
5214 and then not Is_Numeric_Type (Etype (L))
5215 then
5216 Resolve (L, Etype (R));
5217 return;
5218 end if;
5220 -- Comparisons on A'Access are common enough to deserve a
5221 -- special message.
5223 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne)
5224 and then Ekind (Etype (L)) = E_Access_Attribute_Type
5225 and then Ekind (Etype (R)) = E_Access_Attribute_Type
5226 then
5227 Error_Msg_N
5228 ("two access attributes cannot be compared directly", N);
5229 Error_Msg_N
5230 ("\use qualified expression for one of the operands",
5232 return;
5234 -- Another one for C programmers
5236 elsif Nkind (N) = N_Op_Concat
5237 and then Valid_Boolean_Arg (Etype (L))
5238 and then Valid_Boolean_Arg (Etype (R))
5239 then
5240 Error_Msg_N ("invalid operands for concatenation", N);
5241 Error_Msg_N -- CODEFIX
5242 ("\maybe AND was meant", N);
5243 return;
5245 -- A special case for comparison of access parameter with null
5247 elsif Nkind (N) = N_Op_Eq
5248 and then Is_Entity_Name (L)
5249 and then Nkind (Parent (Entity (L))) = N_Parameter_Specification
5250 and then Nkind (Parameter_Type (Parent (Entity (L)))) =
5251 N_Access_Definition
5252 and then Nkind (R) = N_Null
5253 then
5254 Error_Msg_N ("access parameter is not allowed to be null", L);
5255 Error_Msg_N ("\(call would raise Constraint_Error)", L);
5256 return;
5258 -- Another special case for exponentiation, where the right
5259 -- operand must be Natural, independently of the base.
5261 elsif Nkind (N) = N_Op_Expon
5262 and then Is_Numeric_Type (Etype (L))
5263 and then not Is_Overloaded (R)
5264 and then
5265 First_Subtype (Base_Type (Etype (R))) /= Standard_Integer
5266 and then Base_Type (Etype (R)) /= Universal_Integer
5267 then
5268 Error_Msg_NE
5269 ("exponent must be of type Natural, found}", R, Etype (R));
5270 return;
5271 end if;
5273 -- If we fall through then just give general message. Note that in
5274 -- the following messages, if the operand is overloaded we choose
5275 -- an arbitrary type to complain about, but that is probably more
5276 -- useful than not giving a type at all.
5278 if Nkind (N) in N_Unary_Op then
5279 Error_Msg_Node_2 := Etype (R);
5280 Error_Msg_N ("operator& not defined for}", N);
5281 return;
5283 else
5284 if Nkind (N) in N_Binary_Op then
5285 if not Is_Overloaded (L)
5286 and then not Is_Overloaded (R)
5287 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
5288 then
5289 Error_Msg_Node_2 := First_Subtype (Etype (R));
5290 Error_Msg_N ("there is no applicable operator& for}", N);
5292 else
5293 -- Another attempt to find a fix: one of the candidate
5294 -- interpretations may not be use-visible. This has
5295 -- already been checked for predefined operators, so
5296 -- we examine only user-defined functions.
5298 Op_Id := Get_Name_Entity_Id (Chars (N));
5300 while Present (Op_Id) loop
5301 if Ekind (Op_Id) /= E_Operator
5302 and then Is_Overloadable (Op_Id)
5303 then
5304 if not Is_Immediately_Visible (Op_Id)
5305 and then not In_Use (Scope (Op_Id))
5306 and then not Is_Abstract_Subprogram (Op_Id)
5307 and then not Is_Hidden (Op_Id)
5308 and then Ekind (Scope (Op_Id)) = E_Package
5309 and then
5310 Has_Compatible_Type
5311 (L, Etype (First_Formal (Op_Id)))
5312 and then Present
5313 (Next_Formal (First_Formal (Op_Id)))
5314 and then
5315 Has_Compatible_Type
5317 Etype (Next_Formal (First_Formal (Op_Id))))
5318 then
5319 Error_Msg_N
5320 ("No legal interpretation for operator&", N);
5321 Error_Msg_NE
5322 ("\use clause on& would make operation legal",
5323 N, Scope (Op_Id));
5324 exit;
5325 end if;
5326 end if;
5328 Op_Id := Homonym (Op_Id);
5329 end loop;
5331 if No (Op_Id) then
5332 Error_Msg_N ("invalid operand types for operator&", N);
5334 if Nkind (N) /= N_Op_Concat then
5335 Error_Msg_NE ("\left operand has}!", N, Etype (L));
5336 Error_Msg_NE ("\right operand has}!", N, Etype (R));
5337 end if;
5338 end if;
5339 end if;
5340 end if;
5341 end if;
5342 end;
5343 end if;
5344 end Operator_Check;
5346 -----------------------------------------
5347 -- Process_Implicit_Dereference_Prefix --
5348 -----------------------------------------
5350 function Process_Implicit_Dereference_Prefix
5351 (E : Entity_Id;
5352 P : Entity_Id) return Entity_Id
5354 Ref : Node_Id;
5355 Typ : constant Entity_Id := Designated_Type (Etype (P));
5357 begin
5358 if Present (E)
5359 and then (Operating_Mode = Check_Semantics or else not Expander_Active)
5360 then
5361 -- We create a dummy reference to E to ensure that the reference
5362 -- is not considered as part of an assignment (an implicit
5363 -- dereference can never assign to its prefix). The Comes_From_Source
5364 -- attribute needs to be propagated for accurate warnings.
5366 Ref := New_Reference_To (E, Sloc (P));
5367 Set_Comes_From_Source (Ref, Comes_From_Source (P));
5368 Generate_Reference (E, Ref);
5369 end if;
5371 -- An implicit dereference is a legal occurrence of an
5372 -- incomplete type imported through a limited_with clause,
5373 -- if the full view is visible.
5375 if From_With_Type (Typ)
5376 and then not From_With_Type (Scope (Typ))
5377 and then
5378 (Is_Immediately_Visible (Scope (Typ))
5379 or else
5380 (Is_Child_Unit (Scope (Typ))
5381 and then Is_Visible_Child_Unit (Scope (Typ))))
5382 then
5383 return Available_View (Typ);
5384 else
5385 return Typ;
5386 end if;
5388 end Process_Implicit_Dereference_Prefix;
5390 --------------------------------
5391 -- Remove_Abstract_Operations --
5392 --------------------------------
5394 procedure Remove_Abstract_Operations (N : Node_Id) is
5395 Abstract_Op : Entity_Id := Empty;
5396 Address_Kludge : Boolean := False;
5397 I : Interp_Index;
5398 It : Interp;
5400 -- AI-310: If overloaded, remove abstract non-dispatching operations. We
5401 -- activate this if either extensions are enabled, or if the abstract
5402 -- operation in question comes from a predefined file. This latter test
5403 -- allows us to use abstract to make operations invisible to users. In
5404 -- particular, if type Address is non-private and abstract subprograms
5405 -- are used to hide its operators, they will be truly hidden.
5407 type Operand_Position is (First_Op, Second_Op);
5408 Univ_Type : constant Entity_Id := Universal_Interpretation (N);
5410 procedure Remove_Address_Interpretations (Op : Operand_Position);
5411 -- Ambiguities may arise when the operands are literal and the address
5412 -- operations in s-auxdec are visible. In that case, remove the
5413 -- interpretation of a literal as Address, to retain the semantics of
5414 -- Address as a private type.
5416 ------------------------------------
5417 -- Remove_Address_Interpretations --
5418 ------------------------------------
5420 procedure Remove_Address_Interpretations (Op : Operand_Position) is
5421 Formal : Entity_Id;
5423 begin
5424 if Is_Overloaded (N) then
5425 Get_First_Interp (N, I, It);
5426 while Present (It.Nam) loop
5427 Formal := First_Entity (It.Nam);
5429 if Op = Second_Op then
5430 Formal := Next_Entity (Formal);
5431 end if;
5433 if Is_Descendent_Of_Address (Etype (Formal)) then
5434 Address_Kludge := True;
5435 Remove_Interp (I);
5436 end if;
5438 Get_Next_Interp (I, It);
5439 end loop;
5440 end if;
5441 end Remove_Address_Interpretations;
5443 -- Start of processing for Remove_Abstract_Operations
5445 begin
5446 if Is_Overloaded (N) then
5447 Get_First_Interp (N, I, It);
5449 while Present (It.Nam) loop
5450 if Is_Overloadable (It.Nam)
5451 and then Is_Abstract_Subprogram (It.Nam)
5452 and then not Is_Dispatching_Operation (It.Nam)
5453 then
5454 Abstract_Op := It.Nam;
5456 if Is_Descendent_Of_Address (It.Typ) then
5457 Address_Kludge := True;
5458 Remove_Interp (I);
5459 exit;
5461 -- In Ada 2005, this operation does not participate in Overload
5462 -- resolution. If the operation is defined in a predefined
5463 -- unit, it is one of the operations declared abstract in some
5464 -- variants of System, and it must be removed as well.
5466 elsif Ada_Version >= Ada_05
5467 or else Is_Predefined_File_Name
5468 (Unit_File_Name (Get_Source_Unit (It.Nam)))
5469 then
5470 Remove_Interp (I);
5471 exit;
5472 end if;
5473 end if;
5475 Get_Next_Interp (I, It);
5476 end loop;
5478 if No (Abstract_Op) then
5480 -- If some interpretation yields an integer type, it is still
5481 -- possible that there are address interpretations. Remove them
5482 -- if one operand is a literal, to avoid spurious ambiguities
5483 -- on systems where Address is a visible integer type.
5485 if Is_Overloaded (N)
5486 and then Nkind (N) in N_Op
5487 and then Is_Integer_Type (Etype (N))
5488 then
5489 if Nkind (N) in N_Binary_Op then
5490 if Nkind (Right_Opnd (N)) = N_Integer_Literal then
5491 Remove_Address_Interpretations (Second_Op);
5493 elsif Nkind (Right_Opnd (N)) = N_Integer_Literal then
5494 Remove_Address_Interpretations (First_Op);
5495 end if;
5496 end if;
5497 end if;
5499 elsif Nkind (N) in N_Op then
5501 -- Remove interpretations that treat literals as addresses. This
5502 -- is never appropriate, even when Address is defined as a visible
5503 -- Integer type. The reason is that we would really prefer Address
5504 -- to behave as a private type, even in this case, which is there
5505 -- only to accommodate oddities of VMS address sizes. If Address
5506 -- is a visible integer type, we get lots of overload ambiguities.
5508 if Nkind (N) in N_Binary_Op then
5509 declare
5510 U1 : constant Boolean :=
5511 Present (Universal_Interpretation (Right_Opnd (N)));
5512 U2 : constant Boolean :=
5513 Present (Universal_Interpretation (Left_Opnd (N)));
5515 begin
5516 if U1 then
5517 Remove_Address_Interpretations (Second_Op);
5518 end if;
5520 if U2 then
5521 Remove_Address_Interpretations (First_Op);
5522 end if;
5524 if not (U1 and U2) then
5526 -- Remove corresponding predefined operator, which is
5527 -- always added to the overload set.
5529 Get_First_Interp (N, I, It);
5530 while Present (It.Nam) loop
5531 if Scope (It.Nam) = Standard_Standard
5532 and then Base_Type (It.Typ) =
5533 Base_Type (Etype (Abstract_Op))
5534 then
5535 Remove_Interp (I);
5536 end if;
5538 Get_Next_Interp (I, It);
5539 end loop;
5541 elsif Is_Overloaded (N)
5542 and then Present (Univ_Type)
5543 then
5544 -- If both operands have a universal interpretation,
5545 -- it is still necessary to remove interpretations that
5546 -- yield Address. Any remaining ambiguities will be
5547 -- removed in Disambiguate.
5549 Get_First_Interp (N, I, It);
5550 while Present (It.Nam) loop
5551 if Is_Descendent_Of_Address (It.Typ) then
5552 Remove_Interp (I);
5554 elsif not Is_Type (It.Nam) then
5555 Set_Entity (N, It.Nam);
5556 end if;
5558 Get_Next_Interp (I, It);
5559 end loop;
5560 end if;
5561 end;
5562 end if;
5564 elsif Nkind (N) = N_Function_Call
5565 and then
5566 (Nkind (Name (N)) = N_Operator_Symbol
5567 or else
5568 (Nkind (Name (N)) = N_Expanded_Name
5569 and then
5570 Nkind (Selector_Name (Name (N))) = N_Operator_Symbol))
5571 then
5573 declare
5574 Arg1 : constant Node_Id := First (Parameter_Associations (N));
5575 U1 : constant Boolean :=
5576 Present (Universal_Interpretation (Arg1));
5577 U2 : constant Boolean :=
5578 Present (Next (Arg1)) and then
5579 Present (Universal_Interpretation (Next (Arg1)));
5581 begin
5582 if U1 then
5583 Remove_Address_Interpretations (First_Op);
5584 end if;
5586 if U2 then
5587 Remove_Address_Interpretations (Second_Op);
5588 end if;
5590 if not (U1 and U2) then
5591 Get_First_Interp (N, I, It);
5592 while Present (It.Nam) loop
5593 if Scope (It.Nam) = Standard_Standard
5594 and then It.Typ = Base_Type (Etype (Abstract_Op))
5595 then
5596 Remove_Interp (I);
5597 end if;
5599 Get_Next_Interp (I, It);
5600 end loop;
5601 end if;
5602 end;
5603 end if;
5605 -- If the removal has left no valid interpretations, emit an error
5606 -- message now and label node as illegal.
5608 if Present (Abstract_Op) then
5609 Get_First_Interp (N, I, It);
5611 if No (It.Nam) then
5613 -- Removal of abstract operation left no viable candidate
5615 Set_Etype (N, Any_Type);
5616 Error_Msg_Sloc := Sloc (Abstract_Op);
5617 Error_Msg_NE
5618 ("cannot call abstract operation& declared#", N, Abstract_Op);
5620 -- In Ada 2005, an abstract operation may disable predefined
5621 -- operators. Since the context is not yet known, we mark the
5622 -- predefined operators as potentially hidden. Do not include
5623 -- predefined operators when addresses are involved since this
5624 -- case is handled separately.
5626 elsif Ada_Version >= Ada_05
5627 and then not Address_Kludge
5628 then
5629 while Present (It.Nam) loop
5630 if Is_Numeric_Type (It.Typ)
5631 and then Scope (It.Typ) = Standard_Standard
5632 then
5633 Set_Abstract_Op (I, Abstract_Op);
5634 end if;
5636 Get_Next_Interp (I, It);
5637 end loop;
5638 end if;
5639 end if;
5640 end if;
5641 end Remove_Abstract_Operations;
5643 -----------------------
5644 -- Try_Indirect_Call --
5645 -----------------------
5647 function Try_Indirect_Call
5648 (N : Node_Id;
5649 Nam : Entity_Id;
5650 Typ : Entity_Id) return Boolean
5652 Actual : Node_Id;
5653 Formal : Entity_Id;
5655 Call_OK : Boolean;
5656 pragma Warnings (Off, Call_OK);
5658 begin
5659 Normalize_Actuals (N, Designated_Type (Typ), False, Call_OK);
5661 Actual := First_Actual (N);
5662 Formal := First_Formal (Designated_Type (Typ));
5663 while Present (Actual) and then Present (Formal) loop
5664 if not Has_Compatible_Type (Actual, Etype (Formal)) then
5665 return False;
5666 end if;
5668 Next (Actual);
5669 Next_Formal (Formal);
5670 end loop;
5672 if No (Actual) and then No (Formal) then
5673 Add_One_Interp (N, Nam, Etype (Designated_Type (Typ)));
5675 -- Nam is a candidate interpretation for the name in the call,
5676 -- if it is not an indirect call.
5678 if not Is_Type (Nam)
5679 and then Is_Entity_Name (Name (N))
5680 then
5681 Set_Entity (Name (N), Nam);
5682 end if;
5684 return True;
5685 else
5686 return False;
5687 end if;
5688 end Try_Indirect_Call;
5690 ----------------------
5691 -- Try_Indexed_Call --
5692 ----------------------
5694 function Try_Indexed_Call
5695 (N : Node_Id;
5696 Nam : Entity_Id;
5697 Typ : Entity_Id;
5698 Skip_First : Boolean) return Boolean
5700 Loc : constant Source_Ptr := Sloc (N);
5701 Actuals : constant List_Id := Parameter_Associations (N);
5702 Actual : Node_Id;
5703 Index : Entity_Id;
5705 begin
5706 Actual := First (Actuals);
5708 -- If the call was originally written in prefix form, skip the first
5709 -- actual, which is obviously not defaulted.
5711 if Skip_First then
5712 Next (Actual);
5713 end if;
5715 Index := First_Index (Typ);
5716 while Present (Actual) and then Present (Index) loop
5718 -- If the parameter list has a named association, the expression
5719 -- is definitely a call and not an indexed component.
5721 if Nkind (Actual) = N_Parameter_Association then
5722 return False;
5723 end if;
5725 if Is_Entity_Name (Actual)
5726 and then Is_Type (Entity (Actual))
5727 and then No (Next (Actual))
5728 then
5729 Rewrite (N,
5730 Make_Slice (Loc,
5731 Prefix => Make_Function_Call (Loc,
5732 Name => Relocate_Node (Name (N))),
5733 Discrete_Range =>
5734 New_Occurrence_Of (Entity (Actual), Sloc (Actual))));
5736 Analyze (N);
5737 return True;
5739 elsif not Has_Compatible_Type (Actual, Etype (Index)) then
5740 return False;
5741 end if;
5743 Next (Actual);
5744 Next_Index (Index);
5745 end loop;
5747 if No (Actual) and then No (Index) then
5748 Add_One_Interp (N, Nam, Component_Type (Typ));
5750 -- Nam is a candidate interpretation for the name in the call,
5751 -- if it is not an indirect call.
5753 if not Is_Type (Nam)
5754 and then Is_Entity_Name (Name (N))
5755 then
5756 Set_Entity (Name (N), Nam);
5757 end if;
5759 return True;
5760 else
5761 return False;
5762 end if;
5763 end Try_Indexed_Call;
5765 --------------------------
5766 -- Try_Object_Operation --
5767 --------------------------
5769 function Try_Object_Operation (N : Node_Id) return Boolean is
5770 K : constant Node_Kind := Nkind (Parent (N));
5771 Is_Subprg_Call : constant Boolean := Nkind_In
5772 (K, N_Procedure_Call_Statement,
5773 N_Function_Call);
5774 Loc : constant Source_Ptr := Sloc (N);
5775 Obj : constant Node_Id := Prefix (N);
5776 Subprog : constant Node_Id :=
5777 Make_Identifier (Sloc (Selector_Name (N)),
5778 Chars => Chars (Selector_Name (N)));
5779 -- Identifier on which possible interpretations will be collected
5781 Report_Error : Boolean := False;
5782 -- If no candidate interpretation matches the context, redo the
5783 -- analysis with error enabled to provide additional information.
5785 Actual : Node_Id;
5786 Candidate : Entity_Id := Empty;
5787 New_Call_Node : Node_Id := Empty;
5788 Node_To_Replace : Node_Id;
5789 Obj_Type : Entity_Id := Etype (Obj);
5790 Success : Boolean := False;
5792 function Valid_Candidate
5793 (Success : Boolean;
5794 Call : Node_Id;
5795 Subp : Entity_Id) return Entity_Id;
5796 -- If the subprogram is a valid interpretation, record it, and add
5797 -- to the list of interpretations of Subprog.
5799 procedure Complete_Object_Operation
5800 (Call_Node : Node_Id;
5801 Node_To_Replace : Node_Id);
5802 -- Make Subprog the name of Call_Node, replace Node_To_Replace with
5803 -- Call_Node, insert the object (or its dereference) as the first actual
5804 -- in the call, and complete the analysis of the call.
5806 procedure Report_Ambiguity (Op : Entity_Id);
5807 -- If a prefixed procedure call is ambiguous, indicate whether the
5808 -- call includes an implicit dereference or an implicit 'Access.
5810 procedure Transform_Object_Operation
5811 (Call_Node : out Node_Id;
5812 Node_To_Replace : out Node_Id);
5813 -- Transform Obj.Operation (X, Y,,) into Operation (Obj, X, Y ..)
5814 -- Call_Node is the resulting subprogram call, Node_To_Replace is
5815 -- either N or the parent of N, and Subprog is a reference to the
5816 -- subprogram we are trying to match.
5818 function Try_Class_Wide_Operation
5819 (Call_Node : Node_Id;
5820 Node_To_Replace : Node_Id) return Boolean;
5821 -- Traverse all ancestor types looking for a class-wide subprogram
5822 -- for which the current operation is a valid non-dispatching call.
5824 procedure Try_One_Prefix_Interpretation (T : Entity_Id);
5825 -- If prefix is overloaded, its interpretation may include different
5826 -- tagged types, and we must examine the primitive operations and
5827 -- the class-wide operations of each in order to find candidate
5828 -- interpretations for the call as a whole.
5830 function Try_Primitive_Operation
5831 (Call_Node : Node_Id;
5832 Node_To_Replace : Node_Id) return Boolean;
5833 -- Traverse the list of primitive subprograms looking for a dispatching
5834 -- operation for which the current node is a valid call .
5836 ---------------------
5837 -- Valid_Candidate --
5838 ---------------------
5840 function Valid_Candidate
5841 (Success : Boolean;
5842 Call : Node_Id;
5843 Subp : Entity_Id) return Entity_Id
5845 Arr_Type : Entity_Id;
5846 Comp_Type : Entity_Id;
5848 begin
5849 -- If the subprogram is a valid interpretation, record it in global
5850 -- variable Subprog, to collect all possible overloadings.
5852 if Success then
5853 if Subp /= Entity (Subprog) then
5854 Add_One_Interp (Subprog, Subp, Etype (Subp));
5855 end if;
5856 end if;
5858 -- If the call may be an indexed call, retrieve component type of
5859 -- resulting expression, and add possible interpretation.
5861 Arr_Type := Empty;
5862 Comp_Type := Empty;
5864 if Nkind (Call) = N_Function_Call
5865 and then Nkind (Parent (N)) = N_Indexed_Component
5866 and then Needs_One_Actual (Subp)
5867 then
5868 if Is_Array_Type (Etype (Subp)) then
5869 Arr_Type := Etype (Subp);
5871 elsif Is_Access_Type (Etype (Subp))
5872 and then Is_Array_Type (Designated_Type (Etype (Subp)))
5873 then
5874 Arr_Type := Designated_Type (Etype (Subp));
5875 end if;
5876 end if;
5878 if Present (Arr_Type) then
5880 -- Verify that the actuals (excluding the object)
5881 -- match the types of the indices.
5883 declare
5884 Actual : Node_Id;
5885 Index : Node_Id;
5887 begin
5888 Actual := Next (First_Actual (Call));
5889 Index := First_Index (Arr_Type);
5890 while Present (Actual) and then Present (Index) loop
5891 if not Has_Compatible_Type (Actual, Etype (Index)) then
5892 Arr_Type := Empty;
5893 exit;
5894 end if;
5896 Next_Actual (Actual);
5897 Next_Index (Index);
5898 end loop;
5900 if No (Actual)
5901 and then No (Index)
5902 and then Present (Arr_Type)
5903 then
5904 Comp_Type := Component_Type (Arr_Type);
5905 end if;
5906 end;
5908 if Present (Comp_Type)
5909 and then Etype (Subprog) /= Comp_Type
5910 then
5911 Add_One_Interp (Subprog, Subp, Comp_Type);
5912 end if;
5913 end if;
5915 if Etype (Call) /= Any_Type then
5916 return Subp;
5917 else
5918 return Empty;
5919 end if;
5920 end Valid_Candidate;
5922 -------------------------------
5923 -- Complete_Object_Operation --
5924 -------------------------------
5926 procedure Complete_Object_Operation
5927 (Call_Node : Node_Id;
5928 Node_To_Replace : Node_Id)
5930 Control : constant Entity_Id := First_Formal (Entity (Subprog));
5931 Formal_Type : constant Entity_Id := Etype (Control);
5932 First_Actual : Node_Id;
5934 begin
5935 -- Place the name of the operation, with its interpretations,
5936 -- on the rewritten call.
5938 Set_Name (Call_Node, Subprog);
5940 First_Actual := First (Parameter_Associations (Call_Node));
5942 -- For cross-reference purposes, treat the new node as being in
5943 -- the source if the original one is.
5945 Set_Comes_From_Source (Subprog, Comes_From_Source (N));
5946 Set_Comes_From_Source (Call_Node, Comes_From_Source (N));
5948 if Nkind (N) = N_Selected_Component
5949 and then not Inside_A_Generic
5950 then
5951 Set_Entity (Selector_Name (N), Entity (Subprog));
5952 end if;
5954 -- If need be, rewrite first actual as an explicit dereference
5955 -- If the call is overloaded, the rewriting can only be done
5956 -- once the primitive operation is identified.
5958 if Is_Overloaded (Subprog) then
5960 -- The prefix itself may be overloaded, and its interpretations
5961 -- must be propagated to the new actual in the call.
5963 if Is_Overloaded (Obj) then
5964 Save_Interps (Obj, First_Actual);
5965 end if;
5967 Rewrite (First_Actual, Obj);
5969 elsif not Is_Access_Type (Formal_Type)
5970 and then Is_Access_Type (Etype (Obj))
5971 then
5972 Rewrite (First_Actual,
5973 Make_Explicit_Dereference (Sloc (Obj), Obj));
5974 Analyze (First_Actual);
5976 -- If we need to introduce an explicit dereference, verify that
5977 -- the resulting actual is compatible with the mode of the formal.
5979 if Ekind (First_Formal (Entity (Subprog))) /= E_In_Parameter
5980 and then Is_Access_Constant (Etype (Obj))
5981 then
5982 Error_Msg_NE
5983 ("expect variable in call to&", Prefix (N), Entity (Subprog));
5984 end if;
5986 -- Conversely, if the formal is an access parameter and the object
5987 -- is not, replace the actual with a 'Access reference. Its analysis
5988 -- will check that the object is aliased.
5990 elsif Is_Access_Type (Formal_Type)
5991 and then not Is_Access_Type (Etype (Obj))
5992 then
5993 -- A special case: A.all'access is illegal if A is an access to a
5994 -- constant and the context requires an access to a variable.
5996 if not Is_Access_Constant (Formal_Type) then
5997 if (Nkind (Obj) = N_Explicit_Dereference
5998 and then Is_Access_Constant (Etype (Prefix (Obj))))
5999 or else not Is_Variable (Obj)
6000 then
6001 Error_Msg_NE
6002 ("actual for& must be a variable", Obj, Control);
6003 end if;
6004 end if;
6006 Rewrite (First_Actual,
6007 Make_Attribute_Reference (Loc,
6008 Attribute_Name => Name_Access,
6009 Prefix => Relocate_Node (Obj)));
6011 if not Is_Aliased_View (Obj) then
6012 Error_Msg_NE
6013 ("object in prefixed call to& must be aliased"
6014 & " (RM-2005 4.3.1 (13))",
6015 Prefix (First_Actual), Subprog);
6016 end if;
6018 Analyze (First_Actual);
6020 else
6021 if Is_Overloaded (Obj) then
6022 Save_Interps (Obj, First_Actual);
6023 end if;
6025 Rewrite (First_Actual, Obj);
6026 end if;
6028 Rewrite (Node_To_Replace, Call_Node);
6030 -- Propagate the interpretations collected in subprog to the new
6031 -- function call node, to be resolved from context.
6033 if Is_Overloaded (Subprog) then
6034 Save_Interps (Subprog, Node_To_Replace);
6035 else
6036 Analyze (Node_To_Replace);
6037 end if;
6038 end Complete_Object_Operation;
6040 ----------------------
6041 -- Report_Ambiguity --
6042 ----------------------
6044 procedure Report_Ambiguity (Op : Entity_Id) is
6045 Access_Formal : constant Boolean :=
6046 Is_Access_Type (Etype (First_Formal (Op)));
6047 Access_Actual : constant Boolean :=
6048 Is_Access_Type (Etype (Prefix (N)));
6050 begin
6051 Error_Msg_Sloc := Sloc (Op);
6053 if Access_Formal and then not Access_Actual then
6054 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
6055 Error_Msg_N
6056 ("\possible interpretation"
6057 & " (inherited, with implicit 'Access) #", N);
6058 else
6059 Error_Msg_N
6060 ("\possible interpretation (with implicit 'Access) #", N);
6061 end if;
6063 elsif not Access_Formal and then Access_Actual then
6064 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
6065 Error_Msg_N
6066 ("\possible interpretation"
6067 & " ( inherited, with implicit dereference) #", N);
6068 else
6069 Error_Msg_N
6070 ("\possible interpretation (with implicit dereference) #", N);
6071 end if;
6073 else
6074 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
6075 Error_Msg_N ("\possible interpretation (inherited)#", N);
6076 else
6077 Error_Msg_N -- CODEFIX
6078 ("\possible interpretation#", N);
6079 end if;
6080 end if;
6081 end Report_Ambiguity;
6083 --------------------------------
6084 -- Transform_Object_Operation --
6085 --------------------------------
6087 procedure Transform_Object_Operation
6088 (Call_Node : out Node_Id;
6089 Node_To_Replace : out Node_Id)
6091 Dummy : constant Node_Id := New_Copy (Obj);
6092 -- Placeholder used as a first parameter in the call, replaced
6093 -- eventually by the proper object.
6095 Parent_Node : constant Node_Id := Parent (N);
6097 Actual : Node_Id;
6098 Actuals : List_Id;
6100 begin
6101 -- Common case covering 1) Call to a procedure and 2) Call to a
6102 -- function that has some additional actuals.
6104 if Nkind_In (Parent_Node, N_Function_Call,
6105 N_Procedure_Call_Statement)
6107 -- N is a selected component node containing the name of the
6108 -- subprogram. If N is not the name of the parent node we must
6109 -- not replace the parent node by the new construct. This case
6110 -- occurs when N is a parameterless call to a subprogram that
6111 -- is an actual parameter of a call to another subprogram. For
6112 -- example:
6113 -- Some_Subprogram (..., Obj.Operation, ...)
6115 and then Name (Parent_Node) = N
6116 then
6117 Node_To_Replace := Parent_Node;
6119 Actuals := Parameter_Associations (Parent_Node);
6121 if Present (Actuals) then
6122 Prepend (Dummy, Actuals);
6123 else
6124 Actuals := New_List (Dummy);
6125 end if;
6127 if Nkind (Parent_Node) = N_Procedure_Call_Statement then
6128 Call_Node :=
6129 Make_Procedure_Call_Statement (Loc,
6130 Name => New_Copy (Subprog),
6131 Parameter_Associations => Actuals);
6133 else
6134 Call_Node :=
6135 Make_Function_Call (Loc,
6136 Name => New_Copy (Subprog),
6137 Parameter_Associations => Actuals);
6139 end if;
6141 -- Before analysis, a function call appears as an indexed component
6142 -- if there are no named associations.
6144 elsif Nkind (Parent_Node) = N_Indexed_Component
6145 and then N = Prefix (Parent_Node)
6146 then
6147 Node_To_Replace := Parent_Node;
6149 Actuals := Expressions (Parent_Node);
6151 Actual := First (Actuals);
6152 while Present (Actual) loop
6153 Analyze (Actual);
6154 Next (Actual);
6155 end loop;
6157 Prepend (Dummy, Actuals);
6159 Call_Node :=
6160 Make_Function_Call (Loc,
6161 Name => New_Copy (Subprog),
6162 Parameter_Associations => Actuals);
6164 -- Parameterless call: Obj.F is rewritten as F (Obj)
6166 else
6167 Node_To_Replace := N;
6169 Call_Node :=
6170 Make_Function_Call (Loc,
6171 Name => New_Copy (Subprog),
6172 Parameter_Associations => New_List (Dummy));
6173 end if;
6174 end Transform_Object_Operation;
6176 ------------------------------
6177 -- Try_Class_Wide_Operation --
6178 ------------------------------
6180 function Try_Class_Wide_Operation
6181 (Call_Node : Node_Id;
6182 Node_To_Replace : Node_Id) return Boolean
6184 Anc_Type : Entity_Id;
6185 Matching_Op : Entity_Id := Empty;
6186 Error : Boolean;
6188 procedure Traverse_Homonyms
6189 (Anc_Type : Entity_Id;
6190 Error : out Boolean);
6191 -- Traverse the homonym chain of the subprogram searching for those
6192 -- homonyms whose first formal has the Anc_Type's class-wide type,
6193 -- or an anonymous access type designating the class-wide type. If
6194 -- an ambiguity is detected, then Error is set to True.
6196 procedure Traverse_Interfaces
6197 (Anc_Type : Entity_Id;
6198 Error : out Boolean);
6199 -- Traverse the list of interfaces, if any, associated with Anc_Type
6200 -- and search for acceptable class-wide homonyms associated with each
6201 -- interface. If an ambiguity is detected, then Error is set to True.
6203 -----------------------
6204 -- Traverse_Homonyms --
6205 -----------------------
6207 procedure Traverse_Homonyms
6208 (Anc_Type : Entity_Id;
6209 Error : out Boolean)
6211 Cls_Type : Entity_Id;
6212 Hom : Entity_Id;
6213 Hom_Ref : Node_Id;
6214 Success : Boolean;
6216 begin
6217 Error := False;
6219 Cls_Type := Class_Wide_Type (Anc_Type);
6221 Hom := Current_Entity (Subprog);
6223 -- Find operation whose first parameter is of the class-wide
6224 -- type, a subtype thereof, or an anonymous access to same.
6226 while Present (Hom) loop
6227 if (Ekind (Hom) = E_Procedure
6228 or else
6229 Ekind (Hom) = E_Function)
6230 and then Scope (Hom) = Scope (Anc_Type)
6231 and then Present (First_Formal (Hom))
6232 and then
6233 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
6234 or else
6235 (Is_Access_Type (Etype (First_Formal (Hom)))
6236 and then
6237 Ekind (Etype (First_Formal (Hom))) =
6238 E_Anonymous_Access_Type
6239 and then
6240 Base_Type
6241 (Designated_Type (Etype (First_Formal (Hom)))) =
6242 Cls_Type))
6243 then
6244 Set_Etype (Call_Node, Any_Type);
6245 Set_Is_Overloaded (Call_Node, False);
6246 Success := False;
6248 if No (Matching_Op) then
6249 Hom_Ref := New_Reference_To (Hom, Sloc (Subprog));
6250 Set_Etype (Call_Node, Any_Type);
6251 Set_Parent (Call_Node, Parent (Node_To_Replace));
6253 Set_Name (Call_Node, Hom_Ref);
6255 Analyze_One_Call
6256 (N => Call_Node,
6257 Nam => Hom,
6258 Report => Report_Error,
6259 Success => Success,
6260 Skip_First => True);
6262 Matching_Op :=
6263 Valid_Candidate (Success, Call_Node, Hom);
6265 else
6266 Analyze_One_Call
6267 (N => Call_Node,
6268 Nam => Hom,
6269 Report => Report_Error,
6270 Success => Success,
6271 Skip_First => True);
6273 if Present (Valid_Candidate (Success, Call_Node, Hom))
6274 and then Nkind (Call_Node) /= N_Function_Call
6275 then
6276 Error_Msg_NE ("ambiguous call to&", N, Hom);
6277 Report_Ambiguity (Matching_Op);
6278 Report_Ambiguity (Hom);
6279 Error := True;
6280 return;
6281 end if;
6282 end if;
6283 end if;
6285 Hom := Homonym (Hom);
6286 end loop;
6287 end Traverse_Homonyms;
6289 -------------------------
6290 -- Traverse_Interfaces --
6291 -------------------------
6293 procedure Traverse_Interfaces
6294 (Anc_Type : Entity_Id;
6295 Error : out Boolean)
6297 Intface_List : constant List_Id :=
6298 Abstract_Interface_List (Anc_Type);
6299 Intface : Node_Id;
6301 begin
6302 Error := False;
6304 if Is_Non_Empty_List (Intface_List) then
6305 Intface := First (Intface_List);
6306 while Present (Intface) loop
6308 -- Look for acceptable class-wide homonyms associated with
6309 -- the interface.
6311 Traverse_Homonyms (Etype (Intface), Error);
6313 if Error then
6314 return;
6315 end if;
6317 -- Continue the search by looking at each of the interface's
6318 -- associated interface ancestors.
6320 Traverse_Interfaces (Etype (Intface), Error);
6322 if Error then
6323 return;
6324 end if;
6326 Next (Intface);
6327 end loop;
6328 end if;
6329 end Traverse_Interfaces;
6331 -- Start of processing for Try_Class_Wide_Operation
6333 begin
6334 -- Loop through ancestor types (including interfaces), traversing
6335 -- the homonym chain of the subprogram, trying out those homonyms
6336 -- whose first formal has the class-wide type of the ancestor, or
6337 -- an anonymous access type designating the class-wide type.
6339 Anc_Type := Obj_Type;
6340 loop
6341 -- Look for a match among homonyms associated with the ancestor
6343 Traverse_Homonyms (Anc_Type, Error);
6345 if Error then
6346 return True;
6347 end if;
6349 -- Continue the search for matches among homonyms associated with
6350 -- any interfaces implemented by the ancestor.
6352 Traverse_Interfaces (Anc_Type, Error);
6354 if Error then
6355 return True;
6356 end if;
6358 exit when Etype (Anc_Type) = Anc_Type;
6359 Anc_Type := Etype (Anc_Type);
6360 end loop;
6362 if Present (Matching_Op) then
6363 Set_Etype (Call_Node, Etype (Matching_Op));
6364 end if;
6366 return Present (Matching_Op);
6367 end Try_Class_Wide_Operation;
6369 -----------------------------------
6370 -- Try_One_Prefix_Interpretation --
6371 -----------------------------------
6373 procedure Try_One_Prefix_Interpretation (T : Entity_Id) is
6374 begin
6375 Obj_Type := T;
6377 if Is_Access_Type (Obj_Type) then
6378 Obj_Type := Designated_Type (Obj_Type);
6379 end if;
6381 if Ekind (Obj_Type) = E_Private_Subtype then
6382 Obj_Type := Base_Type (Obj_Type);
6383 end if;
6385 if Is_Class_Wide_Type (Obj_Type) then
6386 Obj_Type := Etype (Class_Wide_Type (Obj_Type));
6387 end if;
6389 -- The type may have be obtained through a limited_with clause,
6390 -- in which case the primitive operations are available on its
6391 -- non-limited view. If still incomplete, retrieve full view.
6393 if Ekind (Obj_Type) = E_Incomplete_Type
6394 and then From_With_Type (Obj_Type)
6395 then
6396 Obj_Type := Get_Full_View (Non_Limited_View (Obj_Type));
6397 end if;
6399 -- If the object is not tagged, or the type is still an incomplete
6400 -- type, this is not a prefixed call.
6402 if not Is_Tagged_Type (Obj_Type)
6403 or else Is_Incomplete_Type (Obj_Type)
6404 then
6405 return;
6406 end if;
6408 if Try_Primitive_Operation
6409 (Call_Node => New_Call_Node,
6410 Node_To_Replace => Node_To_Replace)
6411 or else
6412 Try_Class_Wide_Operation
6413 (Call_Node => New_Call_Node,
6414 Node_To_Replace => Node_To_Replace)
6415 then
6416 null;
6417 end if;
6418 end Try_One_Prefix_Interpretation;
6420 -----------------------------
6421 -- Try_Primitive_Operation --
6422 -----------------------------
6424 function Try_Primitive_Operation
6425 (Call_Node : Node_Id;
6426 Node_To_Replace : Node_Id) return Boolean
6428 Elmt : Elmt_Id;
6429 Prim_Op : Entity_Id;
6430 Matching_Op : Entity_Id := Empty;
6431 Prim_Op_Ref : Node_Id := Empty;
6433 Corr_Type : Entity_Id := Empty;
6434 -- If the prefix is a synchronized type, the controlling type of
6435 -- the primitive operation is the corresponding record type, else
6436 -- this is the object type itself.
6438 Success : Boolean := False;
6440 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id;
6441 -- For tagged types the candidate interpretations are found in
6442 -- the list of primitive operations of the type and its ancestors.
6443 -- For formal tagged types we have to find the operations declared
6444 -- in the same scope as the type (including in the generic formal
6445 -- part) because the type itself carries no primitive operations,
6446 -- except for formal derived types that inherit the operations of
6447 -- the parent and progenitors.
6448 -- If the context is a generic subprogram body, the generic formals
6449 -- are visible by name, but are not in the entity list of the
6450 -- subprogram because that list starts with the subprogram formals.
6451 -- We retrieve the candidate operations from the generic declaration.
6453 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean;
6454 -- Verify that the prefix, dereferenced if need be, is a valid
6455 -- controlling argument in a call to Op. The remaining actuals
6456 -- are checked in the subsequent call to Analyze_One_Call.
6458 ------------------------------
6459 -- Collect_Generic_Type_Ops --
6460 ------------------------------
6462 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id is
6463 Bas : constant Entity_Id := Base_Type (T);
6464 Candidates : constant Elist_Id := New_Elmt_List;
6465 Subp : Entity_Id;
6466 Formal : Entity_Id;
6468 procedure Check_Candidate;
6469 -- The operation is a candidate if its first parameter is a
6470 -- controlling operand of the desired type.
6472 -----------------------
6473 -- Check_Candidate; --
6474 -----------------------
6476 procedure Check_Candidate is
6477 begin
6478 Formal := First_Formal (Subp);
6480 if Present (Formal)
6481 and then Is_Controlling_Formal (Formal)
6482 and then
6483 (Base_Type (Etype (Formal)) = Bas
6484 or else
6485 (Is_Access_Type (Etype (Formal))
6486 and then Designated_Type (Etype (Formal)) = Bas))
6487 then
6488 Append_Elmt (Subp, Candidates);
6489 end if;
6490 end Check_Candidate;
6492 -- Start of processing for Collect_Generic_Type_Ops
6494 begin
6495 if Is_Derived_Type (T) then
6496 return Primitive_Operations (T);
6498 elsif Ekind (Scope (T)) = E_Procedure
6499 or else Ekind (Scope (T)) = E_Function
6500 then
6501 -- Scan the list of generic formals to find subprograms
6502 -- that may have a first controlling formal of the type.
6504 declare
6505 Decl : Node_Id;
6507 begin
6508 Decl :=
6509 First (Generic_Formal_Declarations
6510 (Unit_Declaration_Node (Scope (T))));
6511 while Present (Decl) loop
6512 if Nkind (Decl) in N_Formal_Subprogram_Declaration then
6513 Subp := Defining_Entity (Decl);
6514 Check_Candidate;
6515 end if;
6517 Next (Decl);
6518 end loop;
6519 end;
6521 return Candidates;
6523 else
6524 -- Scan the list of entities declared in the same scope as
6525 -- the type. In general this will be an open scope, given that
6526 -- the call we are analyzing can only appear within a generic
6527 -- declaration or body (either the one that declares T, or a
6528 -- child unit).
6530 Subp := First_Entity (Scope (T));
6531 while Present (Subp) loop
6532 if Is_Overloadable (Subp) then
6533 Check_Candidate;
6534 end if;
6536 Next_Entity (Subp);
6537 end loop;
6539 return Candidates;
6540 end if;
6541 end Collect_Generic_Type_Ops;
6543 -----------------------------
6544 -- Valid_First_Argument_Of --
6545 -----------------------------
6547 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean is
6548 Typ : Entity_Id := Etype (First_Formal (Op));
6550 begin
6551 if Is_Concurrent_Type (Typ)
6552 and then Present (Corresponding_Record_Type (Typ))
6553 then
6554 Typ := Corresponding_Record_Type (Typ);
6555 end if;
6557 -- Simple case. Object may be a subtype of the tagged type or
6558 -- may be the corresponding record of a synchronized type.
6560 return Obj_Type = Typ
6561 or else Base_Type (Obj_Type) = Typ
6562 or else Corr_Type = Typ
6564 -- Prefix can be dereferenced
6566 or else
6567 (Is_Access_Type (Corr_Type)
6568 and then Designated_Type (Corr_Type) = Typ)
6570 -- Formal is an access parameter, for which the object
6571 -- can provide an access.
6573 or else
6574 (Ekind (Typ) = E_Anonymous_Access_Type
6575 and then Designated_Type (Typ) = Base_Type (Corr_Type));
6576 end Valid_First_Argument_Of;
6578 -- Start of processing for Try_Primitive_Operation
6580 begin
6581 -- Look for subprograms in the list of primitive operations. The name
6582 -- must be identical, and the kind of call indicates the expected
6583 -- kind of operation (function or procedure). If the type is a
6584 -- (tagged) synchronized type, the primitive ops are attached to the
6585 -- corresponding record (base) type.
6587 if Is_Concurrent_Type (Obj_Type) then
6588 if not Present (Corresponding_Record_Type (Obj_Type)) then
6589 return False;
6590 end if;
6592 Corr_Type := Base_Type (Corresponding_Record_Type (Obj_Type));
6593 Elmt := First_Elmt (Primitive_Operations (Corr_Type));
6595 elsif not Is_Generic_Type (Obj_Type) then
6596 Corr_Type := Obj_Type;
6597 Elmt := First_Elmt (Primitive_Operations (Obj_Type));
6599 else
6600 Corr_Type := Obj_Type;
6601 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
6602 end if;
6604 while Present (Elmt) loop
6605 Prim_Op := Node (Elmt);
6607 if Chars (Prim_Op) = Chars (Subprog)
6608 and then Present (First_Formal (Prim_Op))
6609 and then Valid_First_Argument_Of (Prim_Op)
6610 and then
6611 (Nkind (Call_Node) = N_Function_Call)
6612 = (Ekind (Prim_Op) = E_Function)
6613 then
6614 -- Ada 2005 (AI-251): If this primitive operation corresponds
6615 -- with an immediate ancestor interface there is no need to add
6616 -- it to the list of interpretations; the corresponding aliased
6617 -- primitive is also in this list of primitive operations and
6618 -- will be used instead.
6620 if (Present (Interface_Alias (Prim_Op))
6621 and then Is_Ancestor (Find_Dispatching_Type
6622 (Alias (Prim_Op)), Corr_Type))
6623 or else
6625 -- Do not consider hidden primitives unless the type is
6626 -- in an open scope or we are within an instance, where
6627 -- visibility is known to be correct.
6629 (Is_Hidden (Prim_Op)
6630 and then not Is_Immediately_Visible (Obj_Type)
6631 and then not In_Instance)
6632 then
6633 goto Continue;
6634 end if;
6636 Set_Etype (Call_Node, Any_Type);
6637 Set_Is_Overloaded (Call_Node, False);
6639 if No (Matching_Op) then
6640 Prim_Op_Ref := New_Reference_To (Prim_Op, Sloc (Subprog));
6641 Candidate := Prim_Op;
6643 Set_Parent (Call_Node, Parent (Node_To_Replace));
6645 Set_Name (Call_Node, Prim_Op_Ref);
6646 Success := False;
6648 Analyze_One_Call
6649 (N => Call_Node,
6650 Nam => Prim_Op,
6651 Report => Report_Error,
6652 Success => Success,
6653 Skip_First => True);
6655 Matching_Op := Valid_Candidate (Success, Call_Node, Prim_Op);
6657 -- More than one interpretation, collect for subsequent
6658 -- disambiguation. If this is a procedure call and there
6659 -- is another match, report ambiguity now.
6661 else
6662 Analyze_One_Call
6663 (N => Call_Node,
6664 Nam => Prim_Op,
6665 Report => Report_Error,
6666 Success => Success,
6667 Skip_First => True);
6669 if Present (Valid_Candidate (Success, Call_Node, Prim_Op))
6670 and then Nkind (Call_Node) /= N_Function_Call
6671 then
6672 Error_Msg_NE ("ambiguous call to&", N, Prim_Op);
6673 Report_Ambiguity (Matching_Op);
6674 Report_Ambiguity (Prim_Op);
6675 return True;
6676 end if;
6677 end if;
6678 end if;
6680 <<Continue>>
6681 Next_Elmt (Elmt);
6682 end loop;
6684 if Present (Matching_Op) then
6685 Set_Etype (Call_Node, Etype (Matching_Op));
6686 end if;
6688 return Present (Matching_Op);
6689 end Try_Primitive_Operation;
6691 -- Start of processing for Try_Object_Operation
6693 begin
6694 Analyze_Expression (Obj);
6696 -- Analyze the actuals if node is known to be a subprogram call
6698 if Is_Subprg_Call and then N = Name (Parent (N)) then
6699 Actual := First (Parameter_Associations (Parent (N)));
6700 while Present (Actual) loop
6701 Analyze_Expression (Actual);
6702 Next (Actual);
6703 end loop;
6704 end if;
6706 -- Build a subprogram call node, using a copy of Obj as its first
6707 -- actual. This is a placeholder, to be replaced by an explicit
6708 -- dereference when needed.
6710 Transform_Object_Operation
6711 (Call_Node => New_Call_Node,
6712 Node_To_Replace => Node_To_Replace);
6714 Set_Etype (New_Call_Node, Any_Type);
6715 Set_Etype (Subprog, Any_Type);
6716 Set_Parent (New_Call_Node, Parent (Node_To_Replace));
6718 if not Is_Overloaded (Obj) then
6719 Try_One_Prefix_Interpretation (Obj_Type);
6721 else
6722 declare
6723 I : Interp_Index;
6724 It : Interp;
6725 begin
6726 Get_First_Interp (Obj, I, It);
6727 while Present (It.Nam) loop
6728 Try_One_Prefix_Interpretation (It.Typ);
6729 Get_Next_Interp (I, It);
6730 end loop;
6731 end;
6732 end if;
6734 if Etype (New_Call_Node) /= Any_Type then
6735 Complete_Object_Operation
6736 (Call_Node => New_Call_Node,
6737 Node_To_Replace => Node_To_Replace);
6738 return True;
6740 elsif Present (Candidate) then
6742 -- The argument list is not type correct. Re-analyze with error
6743 -- reporting enabled, and use one of the possible candidates.
6744 -- In All_Errors_Mode, re-analyze all failed interpretations.
6746 if All_Errors_Mode then
6747 Report_Error := True;
6748 if Try_Primitive_Operation
6749 (Call_Node => New_Call_Node,
6750 Node_To_Replace => Node_To_Replace)
6752 or else
6753 Try_Class_Wide_Operation
6754 (Call_Node => New_Call_Node,
6755 Node_To_Replace => Node_To_Replace)
6756 then
6757 null;
6758 end if;
6760 else
6761 Analyze_One_Call
6762 (N => New_Call_Node,
6763 Nam => Candidate,
6764 Report => True,
6765 Success => Success,
6766 Skip_First => True);
6767 end if;
6769 -- No need for further errors
6771 return True;
6773 else
6774 -- There was no candidate operation, so report it as an error
6775 -- in the caller: Analyze_Selected_Component.
6777 return False;
6778 end if;
6779 end Try_Object_Operation;
6781 ---------
6782 -- wpo --
6783 ---------
6785 procedure wpo (T : Entity_Id) is
6786 Op : Entity_Id;
6787 E : Elmt_Id;
6789 begin
6790 if not Is_Tagged_Type (T) then
6791 return;
6792 end if;
6794 E := First_Elmt (Primitive_Operations (Base_Type (T)));
6795 while Present (E) loop
6796 Op := Node (E);
6797 Write_Int (Int (Op));
6798 Write_Str (" === ");
6799 Write_Name (Chars (Op));
6800 Write_Str (" in ");
6801 Write_Name (Chars (Scope (Op)));
6802 Next_Elmt (E);
6803 Write_Eol;
6804 end loop;
6805 end wpo;
6807 end Sem_Ch4;