gcc:
[official-gcc.git] / gcc / expr.c
blobd2aefd5d7637fef182f787cc0d3ca088dfeaa0a0
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "machmode.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "flags.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "except.h"
33 #include "function.h"
34 #include "insn-config.h"
35 #include "insn-attr.h"
36 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
37 #include "expr.h"
38 #include "optabs.h"
39 #include "libfuncs.h"
40 #include "recog.h"
41 #include "reload.h"
42 #include "output.h"
43 #include "typeclass.h"
44 #include "toplev.h"
45 #include "langhooks.h"
46 #include "intl.h"
47 #include "tm_p.h"
48 #include "tree-iterator.h"
49 #include "tree-pass.h"
50 #include "tree-flow.h"
51 #include "target.h"
52 #include "timevar.h"
53 #include "df.h"
54 #include "diagnostic.h"
55 #include "ssaexpand.h"
56 #include "target-globals.h"
58 /* Decide whether a function's arguments should be processed
59 from first to last or from last to first.
61 They should if the stack and args grow in opposite directions, but
62 only if we have push insns. */
64 #ifdef PUSH_ROUNDING
66 #ifndef PUSH_ARGS_REVERSED
67 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
68 #define PUSH_ARGS_REVERSED /* If it's last to first. */
69 #endif
70 #endif
72 #endif
74 #ifndef STACK_PUSH_CODE
75 #ifdef STACK_GROWS_DOWNWARD
76 #define STACK_PUSH_CODE PRE_DEC
77 #else
78 #define STACK_PUSH_CODE PRE_INC
79 #endif
80 #endif
83 /* If this is nonzero, we do not bother generating VOLATILE
84 around volatile memory references, and we are willing to
85 output indirect addresses. If cse is to follow, we reject
86 indirect addresses so a useful potential cse is generated;
87 if it is used only once, instruction combination will produce
88 the same indirect address eventually. */
89 int cse_not_expected;
91 /* This structure is used by move_by_pieces to describe the move to
92 be performed. */
93 struct move_by_pieces_d
95 rtx to;
96 rtx to_addr;
97 int autinc_to;
98 int explicit_inc_to;
99 rtx from;
100 rtx from_addr;
101 int autinc_from;
102 int explicit_inc_from;
103 unsigned HOST_WIDE_INT len;
104 HOST_WIDE_INT offset;
105 int reverse;
108 /* This structure is used by store_by_pieces to describe the clear to
109 be performed. */
111 struct store_by_pieces_d
113 rtx to;
114 rtx to_addr;
115 int autinc_to;
116 int explicit_inc_to;
117 unsigned HOST_WIDE_INT len;
118 HOST_WIDE_INT offset;
119 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
120 void *constfundata;
121 int reverse;
124 static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
125 unsigned int,
126 unsigned int);
127 static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
128 struct move_by_pieces_d *);
129 static bool block_move_libcall_safe_for_call_parm (void);
130 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT);
131 static tree emit_block_move_libcall_fn (int);
132 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
133 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
134 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
135 static void store_by_pieces_1 (struct store_by_pieces_d *, unsigned int);
136 static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
137 struct store_by_pieces_d *);
138 static tree clear_storage_libcall_fn (int);
139 static rtx compress_float_constant (rtx, rtx);
140 static rtx get_subtarget (rtx);
141 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
142 HOST_WIDE_INT, enum machine_mode,
143 tree, tree, int, alias_set_type);
144 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
145 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
146 tree, tree, alias_set_type, bool);
148 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
150 static int is_aligning_offset (const_tree, const_tree);
151 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
152 enum expand_modifier);
153 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
154 static rtx do_store_flag (sepops, rtx, enum machine_mode);
155 #ifdef PUSH_ROUNDING
156 static void emit_single_push_insn (enum machine_mode, rtx, tree);
157 #endif
158 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
159 static rtx const_vector_from_tree (tree);
160 static void write_complex_part (rtx, rtx, bool);
162 /* This macro is used to determine whether move_by_pieces should be called
163 to perform a structure copy. */
164 #ifndef MOVE_BY_PIECES_P
165 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
166 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
167 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
168 #endif
170 /* This macro is used to determine whether clear_by_pieces should be
171 called to clear storage. */
172 #ifndef CLEAR_BY_PIECES_P
173 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
174 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
175 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
176 #endif
178 /* This macro is used to determine whether store_by_pieces should be
179 called to "memset" storage with byte values other than zero. */
180 #ifndef SET_BY_PIECES_P
181 #define SET_BY_PIECES_P(SIZE, ALIGN) \
182 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
183 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
184 #endif
186 /* This macro is used to determine whether store_by_pieces should be
187 called to "memcpy" storage when the source is a constant string. */
188 #ifndef STORE_BY_PIECES_P
189 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
190 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
191 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
192 #endif
194 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
196 #ifndef SLOW_UNALIGNED_ACCESS
197 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
198 #endif
200 /* This is run to set up which modes can be used
201 directly in memory and to initialize the block move optab. It is run
202 at the beginning of compilation and when the target is reinitialized. */
204 void
205 init_expr_target (void)
207 rtx insn, pat;
208 enum machine_mode mode;
209 int num_clobbers;
210 rtx mem, mem1;
211 rtx reg;
213 /* Try indexing by frame ptr and try by stack ptr.
214 It is known that on the Convex the stack ptr isn't a valid index.
215 With luck, one or the other is valid on any machine. */
216 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
217 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
219 /* A scratch register we can modify in-place below to avoid
220 useless RTL allocations. */
221 reg = gen_rtx_REG (VOIDmode, -1);
223 insn = rtx_alloc (INSN);
224 pat = gen_rtx_SET (VOIDmode, NULL_RTX, NULL_RTX);
225 PATTERN (insn) = pat;
227 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
228 mode = (enum machine_mode) ((int) mode + 1))
230 int regno;
232 direct_load[(int) mode] = direct_store[(int) mode] = 0;
233 PUT_MODE (mem, mode);
234 PUT_MODE (mem1, mode);
235 PUT_MODE (reg, mode);
237 /* See if there is some register that can be used in this mode and
238 directly loaded or stored from memory. */
240 if (mode != VOIDmode && mode != BLKmode)
241 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
242 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
243 regno++)
245 if (! HARD_REGNO_MODE_OK (regno, mode))
246 continue;
248 SET_REGNO (reg, regno);
250 SET_SRC (pat) = mem;
251 SET_DEST (pat) = reg;
252 if (recog (pat, insn, &num_clobbers) >= 0)
253 direct_load[(int) mode] = 1;
255 SET_SRC (pat) = mem1;
256 SET_DEST (pat) = reg;
257 if (recog (pat, insn, &num_clobbers) >= 0)
258 direct_load[(int) mode] = 1;
260 SET_SRC (pat) = reg;
261 SET_DEST (pat) = mem;
262 if (recog (pat, insn, &num_clobbers) >= 0)
263 direct_store[(int) mode] = 1;
265 SET_SRC (pat) = reg;
266 SET_DEST (pat) = mem1;
267 if (recog (pat, insn, &num_clobbers) >= 0)
268 direct_store[(int) mode] = 1;
272 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
274 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
275 mode = GET_MODE_WIDER_MODE (mode))
277 enum machine_mode srcmode;
278 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
279 srcmode = GET_MODE_WIDER_MODE (srcmode))
281 enum insn_code ic;
283 ic = can_extend_p (mode, srcmode, 0);
284 if (ic == CODE_FOR_nothing)
285 continue;
287 PUT_MODE (mem, srcmode);
289 if ((*insn_data[ic].operand[1].predicate) (mem, srcmode))
290 float_extend_from_mem[mode][srcmode] = true;
295 /* This is run at the start of compiling a function. */
297 void
298 init_expr (void)
300 memset (&crtl->expr, 0, sizeof (crtl->expr));
303 /* Copy data from FROM to TO, where the machine modes are not the same.
304 Both modes may be integer, or both may be floating, or both may be
305 fixed-point.
306 UNSIGNEDP should be nonzero if FROM is an unsigned type.
307 This causes zero-extension instead of sign-extension. */
309 void
310 convert_move (rtx to, rtx from, int unsignedp)
312 enum machine_mode to_mode = GET_MODE (to);
313 enum machine_mode from_mode = GET_MODE (from);
314 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
315 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
316 enum insn_code code;
317 rtx libcall;
319 /* rtx code for making an equivalent value. */
320 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
321 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
324 gcc_assert (to_real == from_real);
325 gcc_assert (to_mode != BLKmode);
326 gcc_assert (from_mode != BLKmode);
328 /* If the source and destination are already the same, then there's
329 nothing to do. */
330 if (to == from)
331 return;
333 /* If FROM is a SUBREG that indicates that we have already done at least
334 the required extension, strip it. We don't handle such SUBREGs as
335 TO here. */
337 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
338 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
339 >= GET_MODE_SIZE (to_mode))
340 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
341 from = gen_lowpart (to_mode, from), from_mode = to_mode;
343 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
345 if (to_mode == from_mode
346 || (from_mode == VOIDmode && CONSTANT_P (from)))
348 emit_move_insn (to, from);
349 return;
352 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
354 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
356 if (VECTOR_MODE_P (to_mode))
357 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
358 else
359 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
361 emit_move_insn (to, from);
362 return;
365 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
367 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
368 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
369 return;
372 if (to_real)
374 rtx value, insns;
375 convert_optab tab;
377 gcc_assert ((GET_MODE_PRECISION (from_mode)
378 != GET_MODE_PRECISION (to_mode))
379 || (DECIMAL_FLOAT_MODE_P (from_mode)
380 != DECIMAL_FLOAT_MODE_P (to_mode)));
382 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
383 /* Conversion between decimal float and binary float, same size. */
384 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
385 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
386 tab = sext_optab;
387 else
388 tab = trunc_optab;
390 /* Try converting directly if the insn is supported. */
392 code = convert_optab_handler (tab, to_mode, from_mode);
393 if (code != CODE_FOR_nothing)
395 emit_unop_insn (code, to, from,
396 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
397 return;
400 /* Otherwise use a libcall. */
401 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
403 /* Is this conversion implemented yet? */
404 gcc_assert (libcall);
406 start_sequence ();
407 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
408 1, from, from_mode);
409 insns = get_insns ();
410 end_sequence ();
411 emit_libcall_block (insns, to, value,
412 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
413 from)
414 : gen_rtx_FLOAT_EXTEND (to_mode, from));
415 return;
418 /* Handle pointer conversion. */ /* SPEE 900220. */
419 /* Targets are expected to provide conversion insns between PxImode and
420 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
421 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
423 enum machine_mode full_mode
424 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
426 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
427 != CODE_FOR_nothing);
429 if (full_mode != from_mode)
430 from = convert_to_mode (full_mode, from, unsignedp);
431 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
432 to, from, UNKNOWN);
433 return;
435 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
437 rtx new_from;
438 enum machine_mode full_mode
439 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
441 gcc_assert (convert_optab_handler (sext_optab, full_mode, from_mode)
442 != CODE_FOR_nothing);
444 if (to_mode == full_mode)
446 emit_unop_insn (convert_optab_handler (sext_optab, full_mode,
447 from_mode),
448 to, from, UNKNOWN);
449 return;
452 new_from = gen_reg_rtx (full_mode);
453 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode),
454 new_from, from, UNKNOWN);
456 /* else proceed to integer conversions below. */
457 from_mode = full_mode;
458 from = new_from;
461 /* Make sure both are fixed-point modes or both are not. */
462 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
463 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
464 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
466 /* If we widen from_mode to to_mode and they are in the same class,
467 we won't saturate the result.
468 Otherwise, always saturate the result to play safe. */
469 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
470 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
471 expand_fixed_convert (to, from, 0, 0);
472 else
473 expand_fixed_convert (to, from, 0, 1);
474 return;
477 /* Now both modes are integers. */
479 /* Handle expanding beyond a word. */
480 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
481 && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
483 rtx insns;
484 rtx lowpart;
485 rtx fill_value;
486 rtx lowfrom;
487 int i;
488 enum machine_mode lowpart_mode;
489 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
491 /* Try converting directly if the insn is supported. */
492 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
493 != CODE_FOR_nothing)
495 /* If FROM is a SUBREG, put it into a register. Do this
496 so that we always generate the same set of insns for
497 better cse'ing; if an intermediate assignment occurred,
498 we won't be doing the operation directly on the SUBREG. */
499 if (optimize > 0 && GET_CODE (from) == SUBREG)
500 from = force_reg (from_mode, from);
501 emit_unop_insn (code, to, from, equiv_code);
502 return;
504 /* Next, try converting via full word. */
505 else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
506 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
507 != CODE_FOR_nothing))
509 rtx word_to = gen_reg_rtx (word_mode);
510 if (REG_P (to))
512 if (reg_overlap_mentioned_p (to, from))
513 from = force_reg (from_mode, from);
514 emit_clobber (to);
516 convert_move (word_to, from, unsignedp);
517 emit_unop_insn (code, to, word_to, equiv_code);
518 return;
521 /* No special multiword conversion insn; do it by hand. */
522 start_sequence ();
524 /* Since we will turn this into a no conflict block, we must ensure
525 that the source does not overlap the target. */
527 if (reg_overlap_mentioned_p (to, from))
528 from = force_reg (from_mode, from);
530 /* Get a copy of FROM widened to a word, if necessary. */
531 if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
532 lowpart_mode = word_mode;
533 else
534 lowpart_mode = from_mode;
536 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
538 lowpart = gen_lowpart (lowpart_mode, to);
539 emit_move_insn (lowpart, lowfrom);
541 /* Compute the value to put in each remaining word. */
542 if (unsignedp)
543 fill_value = const0_rtx;
544 else
545 fill_value = emit_store_flag (gen_reg_rtx (word_mode),
546 LT, lowfrom, const0_rtx,
547 VOIDmode, 0, -1);
549 /* Fill the remaining words. */
550 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
552 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
553 rtx subword = operand_subword (to, index, 1, to_mode);
555 gcc_assert (subword);
557 if (fill_value != subword)
558 emit_move_insn (subword, fill_value);
561 insns = get_insns ();
562 end_sequence ();
564 emit_insn (insns);
565 return;
568 /* Truncating multi-word to a word or less. */
569 if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
570 && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
572 if (!((MEM_P (from)
573 && ! MEM_VOLATILE_P (from)
574 && direct_load[(int) to_mode]
575 && ! mode_dependent_address_p (XEXP (from, 0)))
576 || REG_P (from)
577 || GET_CODE (from) == SUBREG))
578 from = force_reg (from_mode, from);
579 convert_move (to, gen_lowpart (word_mode, from), 0);
580 return;
583 /* Now follow all the conversions between integers
584 no more than a word long. */
586 /* For truncation, usually we can just refer to FROM in a narrower mode. */
587 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
588 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
589 GET_MODE_BITSIZE (from_mode)))
591 if (!((MEM_P (from)
592 && ! MEM_VOLATILE_P (from)
593 && direct_load[(int) to_mode]
594 && ! mode_dependent_address_p (XEXP (from, 0)))
595 || REG_P (from)
596 || GET_CODE (from) == SUBREG))
597 from = force_reg (from_mode, from);
598 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
599 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
600 from = copy_to_reg (from);
601 emit_move_insn (to, gen_lowpart (to_mode, from));
602 return;
605 /* Handle extension. */
606 if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
608 /* Convert directly if that works. */
609 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
610 != CODE_FOR_nothing)
612 emit_unop_insn (code, to, from, equiv_code);
613 return;
615 else
617 enum machine_mode intermediate;
618 rtx tmp;
619 tree shift_amount;
621 /* Search for a mode to convert via. */
622 for (intermediate = from_mode; intermediate != VOIDmode;
623 intermediate = GET_MODE_WIDER_MODE (intermediate))
624 if (((can_extend_p (to_mode, intermediate, unsignedp)
625 != CODE_FOR_nothing)
626 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
627 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
628 GET_MODE_BITSIZE (intermediate))))
629 && (can_extend_p (intermediate, from_mode, unsignedp)
630 != CODE_FOR_nothing))
632 convert_move (to, convert_to_mode (intermediate, from,
633 unsignedp), unsignedp);
634 return;
637 /* No suitable intermediate mode.
638 Generate what we need with shifts. */
639 shift_amount = build_int_cst (NULL_TREE,
640 GET_MODE_BITSIZE (to_mode)
641 - GET_MODE_BITSIZE (from_mode));
642 from = gen_lowpart (to_mode, force_reg (from_mode, from));
643 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
644 to, unsignedp);
645 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
646 to, unsignedp);
647 if (tmp != to)
648 emit_move_insn (to, tmp);
649 return;
653 /* Support special truncate insns for certain modes. */
654 if (convert_optab_handler (trunc_optab, to_mode,
655 from_mode) != CODE_FOR_nothing)
657 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
658 to, from, UNKNOWN);
659 return;
662 /* Handle truncation of volatile memrefs, and so on;
663 the things that couldn't be truncated directly,
664 and for which there was no special instruction.
666 ??? Code above formerly short-circuited this, for most integer
667 mode pairs, with a force_reg in from_mode followed by a recursive
668 call to this routine. Appears always to have been wrong. */
669 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
671 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
672 emit_move_insn (to, temp);
673 return;
676 /* Mode combination is not recognized. */
677 gcc_unreachable ();
680 /* Return an rtx for a value that would result
681 from converting X to mode MODE.
682 Both X and MODE may be floating, or both integer.
683 UNSIGNEDP is nonzero if X is an unsigned value.
684 This can be done by referring to a part of X in place
685 or by copying to a new temporary with conversion. */
688 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
690 return convert_modes (mode, VOIDmode, x, unsignedp);
693 /* Return an rtx for a value that would result
694 from converting X from mode OLDMODE to mode MODE.
695 Both modes may be floating, or both integer.
696 UNSIGNEDP is nonzero if X is an unsigned value.
698 This can be done by referring to a part of X in place
699 or by copying to a new temporary with conversion.
701 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
704 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
706 rtx temp;
708 /* If FROM is a SUBREG that indicates that we have already done at least
709 the required extension, strip it. */
711 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
712 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
713 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
714 x = gen_lowpart (mode, x);
716 if (GET_MODE (x) != VOIDmode)
717 oldmode = GET_MODE (x);
719 if (mode == oldmode)
720 return x;
722 /* There is one case that we must handle specially: If we are converting
723 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
724 we are to interpret the constant as unsigned, gen_lowpart will do
725 the wrong if the constant appears negative. What we want to do is
726 make the high-order word of the constant zero, not all ones. */
728 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
729 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
730 && CONST_INT_P (x) && INTVAL (x) < 0)
732 double_int val = uhwi_to_double_int (INTVAL (x));
734 /* We need to zero extend VAL. */
735 if (oldmode != VOIDmode)
736 val = double_int_zext (val, GET_MODE_BITSIZE (oldmode));
738 return immed_double_int_const (val, mode);
741 /* We can do this with a gen_lowpart if both desired and current modes
742 are integer, and this is either a constant integer, a register, or a
743 non-volatile MEM. Except for the constant case where MODE is no
744 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
746 if ((CONST_INT_P (x)
747 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
748 || (GET_MODE_CLASS (mode) == MODE_INT
749 && GET_MODE_CLASS (oldmode) == MODE_INT
750 && (GET_CODE (x) == CONST_DOUBLE
751 || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
752 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
753 && direct_load[(int) mode])
754 || (REG_P (x)
755 && (! HARD_REGISTER_P (x)
756 || HARD_REGNO_MODE_OK (REGNO (x), mode))
757 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
758 GET_MODE_BITSIZE (GET_MODE (x)))))))))
760 /* ?? If we don't know OLDMODE, we have to assume here that
761 X does not need sign- or zero-extension. This may not be
762 the case, but it's the best we can do. */
763 if (CONST_INT_P (x) && oldmode != VOIDmode
764 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
766 HOST_WIDE_INT val = INTVAL (x);
767 int width = GET_MODE_BITSIZE (oldmode);
769 /* We must sign or zero-extend in this case. Start by
770 zero-extending, then sign extend if we need to. */
771 val &= ((HOST_WIDE_INT) 1 << width) - 1;
772 if (! unsignedp
773 && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
774 val |= (HOST_WIDE_INT) (-1) << width;
776 return gen_int_mode (val, mode);
779 return gen_lowpart (mode, x);
782 /* Converting from integer constant into mode is always equivalent to an
783 subreg operation. */
784 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
786 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
787 return simplify_gen_subreg (mode, x, oldmode, 0);
790 temp = gen_reg_rtx (mode);
791 convert_move (temp, x, unsignedp);
792 return temp;
795 /* STORE_MAX_PIECES is the number of bytes at a time that we can
796 store efficiently. Due to internal GCC limitations, this is
797 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
798 for an immediate constant. */
800 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
802 /* Determine whether the LEN bytes can be moved by using several move
803 instructions. Return nonzero if a call to move_by_pieces should
804 succeed. */
807 can_move_by_pieces (unsigned HOST_WIDE_INT len,
808 unsigned int align ATTRIBUTE_UNUSED)
810 return MOVE_BY_PIECES_P (len, align);
813 /* Generate several move instructions to copy LEN bytes from block FROM to
814 block TO. (These are MEM rtx's with BLKmode).
816 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
817 used to push FROM to the stack.
819 ALIGN is maximum stack alignment we can assume.
821 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
822 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
823 stpcpy. */
826 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
827 unsigned int align, int endp)
829 struct move_by_pieces_d data;
830 enum machine_mode to_addr_mode, from_addr_mode
831 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (from));
832 rtx to_addr, from_addr = XEXP (from, 0);
833 unsigned int max_size = MOVE_MAX_PIECES + 1;
834 enum machine_mode mode = VOIDmode, tmode;
835 enum insn_code icode;
837 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
839 data.offset = 0;
840 data.from_addr = from_addr;
841 if (to)
843 to_addr_mode = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
844 to_addr = XEXP (to, 0);
845 data.to = to;
846 data.autinc_to
847 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
848 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
849 data.reverse
850 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
852 else
854 to_addr_mode = VOIDmode;
855 to_addr = NULL_RTX;
856 data.to = NULL_RTX;
857 data.autinc_to = 1;
858 #ifdef STACK_GROWS_DOWNWARD
859 data.reverse = 1;
860 #else
861 data.reverse = 0;
862 #endif
864 data.to_addr = to_addr;
865 data.from = from;
866 data.autinc_from
867 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
868 || GET_CODE (from_addr) == POST_INC
869 || GET_CODE (from_addr) == POST_DEC);
871 data.explicit_inc_from = 0;
872 data.explicit_inc_to = 0;
873 if (data.reverse) data.offset = len;
874 data.len = len;
876 /* If copying requires more than two move insns,
877 copy addresses to registers (to make displacements shorter)
878 and use post-increment if available. */
879 if (!(data.autinc_from && data.autinc_to)
880 && move_by_pieces_ninsns (len, align, max_size) > 2)
882 /* Find the mode of the largest move... */
883 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
884 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
885 if (GET_MODE_SIZE (tmode) < max_size)
886 mode = tmode;
888 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
890 data.from_addr = copy_to_mode_reg (from_addr_mode,
891 plus_constant (from_addr, len));
892 data.autinc_from = 1;
893 data.explicit_inc_from = -1;
895 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
897 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
898 data.autinc_from = 1;
899 data.explicit_inc_from = 1;
901 if (!data.autinc_from && CONSTANT_P (from_addr))
902 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
903 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
905 data.to_addr = copy_to_mode_reg (to_addr_mode,
906 plus_constant (to_addr, len));
907 data.autinc_to = 1;
908 data.explicit_inc_to = -1;
910 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
912 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
913 data.autinc_to = 1;
914 data.explicit_inc_to = 1;
916 if (!data.autinc_to && CONSTANT_P (to_addr))
917 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
920 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
921 if (align >= GET_MODE_ALIGNMENT (tmode))
922 align = GET_MODE_ALIGNMENT (tmode);
923 else
925 enum machine_mode xmode;
927 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
928 tmode != VOIDmode;
929 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
930 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
931 || SLOW_UNALIGNED_ACCESS (tmode, align))
932 break;
934 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
937 /* First move what we can in the largest integer mode, then go to
938 successively smaller modes. */
940 while (max_size > 1)
942 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
943 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
944 if (GET_MODE_SIZE (tmode) < max_size)
945 mode = tmode;
947 if (mode == VOIDmode)
948 break;
950 icode = optab_handler (mov_optab, mode);
951 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
952 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
954 max_size = GET_MODE_SIZE (mode);
957 /* The code above should have handled everything. */
958 gcc_assert (!data.len);
960 if (endp)
962 rtx to1;
964 gcc_assert (!data.reverse);
965 if (data.autinc_to)
967 if (endp == 2)
969 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
970 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
971 else
972 data.to_addr = copy_to_mode_reg (to_addr_mode,
973 plus_constant (data.to_addr,
974 -1));
976 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
977 data.offset);
979 else
981 if (endp == 2)
982 --data.offset;
983 to1 = adjust_address (data.to, QImode, data.offset);
985 return to1;
987 else
988 return data.to;
991 /* Return number of insns required to move L bytes by pieces.
992 ALIGN (in bits) is maximum alignment we can assume. */
994 static unsigned HOST_WIDE_INT
995 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
996 unsigned int max_size)
998 unsigned HOST_WIDE_INT n_insns = 0;
999 enum machine_mode tmode;
1001 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
1002 if (align >= GET_MODE_ALIGNMENT (tmode))
1003 align = GET_MODE_ALIGNMENT (tmode);
1004 else
1006 enum machine_mode tmode, xmode;
1008 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
1009 tmode != VOIDmode;
1010 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
1011 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
1012 || SLOW_UNALIGNED_ACCESS (tmode, align))
1013 break;
1015 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
1018 while (max_size > 1)
1020 enum machine_mode mode = VOIDmode;
1021 enum insn_code icode;
1023 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1024 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1025 if (GET_MODE_SIZE (tmode) < max_size)
1026 mode = tmode;
1028 if (mode == VOIDmode)
1029 break;
1031 icode = optab_handler (mov_optab, mode);
1032 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1033 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1035 max_size = GET_MODE_SIZE (mode);
1038 gcc_assert (!l);
1039 return n_insns;
1042 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1043 with move instructions for mode MODE. GENFUN is the gen_... function
1044 to make a move insn for that mode. DATA has all the other info. */
1046 static void
1047 move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1048 struct move_by_pieces_d *data)
1050 unsigned int size = GET_MODE_SIZE (mode);
1051 rtx to1 = NULL_RTX, from1;
1053 while (data->len >= size)
1055 if (data->reverse)
1056 data->offset -= size;
1058 if (data->to)
1060 if (data->autinc_to)
1061 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1062 data->offset);
1063 else
1064 to1 = adjust_address (data->to, mode, data->offset);
1067 if (data->autinc_from)
1068 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1069 data->offset);
1070 else
1071 from1 = adjust_address (data->from, mode, data->offset);
1073 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1074 emit_insn (gen_add2_insn (data->to_addr,
1075 GEN_INT (-(HOST_WIDE_INT)size)));
1076 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1077 emit_insn (gen_add2_insn (data->from_addr,
1078 GEN_INT (-(HOST_WIDE_INT)size)));
1080 if (data->to)
1081 emit_insn ((*genfun) (to1, from1));
1082 else
1084 #ifdef PUSH_ROUNDING
1085 emit_single_push_insn (mode, from1, NULL);
1086 #else
1087 gcc_unreachable ();
1088 #endif
1091 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1092 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1093 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1094 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1096 if (! data->reverse)
1097 data->offset += size;
1099 data->len -= size;
1103 /* Emit code to move a block Y to a block X. This may be done with
1104 string-move instructions, with multiple scalar move instructions,
1105 or with a library call.
1107 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1108 SIZE is an rtx that says how long they are.
1109 ALIGN is the maximum alignment we can assume they have.
1110 METHOD describes what kind of copy this is, and what mechanisms may be used.
1112 Return the address of the new block, if memcpy is called and returns it,
1113 0 otherwise. */
1116 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1117 unsigned int expected_align, HOST_WIDE_INT expected_size)
1119 bool may_use_call;
1120 rtx retval = 0;
1121 unsigned int align;
1123 gcc_assert (size);
1124 if (CONST_INT_P (size)
1125 && INTVAL (size) == 0)
1126 return 0;
1128 switch (method)
1130 case BLOCK_OP_NORMAL:
1131 case BLOCK_OP_TAILCALL:
1132 may_use_call = true;
1133 break;
1135 case BLOCK_OP_CALL_PARM:
1136 may_use_call = block_move_libcall_safe_for_call_parm ();
1138 /* Make inhibit_defer_pop nonzero around the library call
1139 to force it to pop the arguments right away. */
1140 NO_DEFER_POP;
1141 break;
1143 case BLOCK_OP_NO_LIBCALL:
1144 may_use_call = false;
1145 break;
1147 default:
1148 gcc_unreachable ();
1151 gcc_assert (MEM_P (x) && MEM_P (y));
1152 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1153 gcc_assert (align >= BITS_PER_UNIT);
1155 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1156 block copy is more efficient for other large modes, e.g. DCmode. */
1157 x = adjust_address (x, BLKmode, 0);
1158 y = adjust_address (y, BLKmode, 0);
1160 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1161 can be incorrect is coming from __builtin_memcpy. */
1162 if (CONST_INT_P (size))
1164 x = shallow_copy_rtx (x);
1165 y = shallow_copy_rtx (y);
1166 set_mem_size (x, size);
1167 set_mem_size (y, size);
1170 if (CONST_INT_P (size) && MOVE_BY_PIECES_P (INTVAL (size), align))
1171 move_by_pieces (x, y, INTVAL (size), align, 0);
1172 else if (emit_block_move_via_movmem (x, y, size, align,
1173 expected_align, expected_size))
1175 else if (may_use_call
1176 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1177 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1178 retval = emit_block_move_via_libcall (x, y, size,
1179 method == BLOCK_OP_TAILCALL);
1180 else
1181 emit_block_move_via_loop (x, y, size, align);
1183 if (method == BLOCK_OP_CALL_PARM)
1184 OK_DEFER_POP;
1186 return retval;
1190 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1192 return emit_block_move_hints (x, y, size, method, 0, -1);
1195 /* A subroutine of emit_block_move. Returns true if calling the
1196 block move libcall will not clobber any parameters which may have
1197 already been placed on the stack. */
1199 static bool
1200 block_move_libcall_safe_for_call_parm (void)
1202 #if defined (REG_PARM_STACK_SPACE)
1203 tree fn;
1204 #endif
1206 /* If arguments are pushed on the stack, then they're safe. */
1207 if (PUSH_ARGS)
1208 return true;
1210 /* If registers go on the stack anyway, any argument is sure to clobber
1211 an outgoing argument. */
1212 #if defined (REG_PARM_STACK_SPACE)
1213 fn = emit_block_move_libcall_fn (false);
1214 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1215 depend on its argument. */
1216 (void) fn;
1217 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1218 && REG_PARM_STACK_SPACE (fn) != 0)
1219 return false;
1220 #endif
1222 /* If any argument goes in memory, then it might clobber an outgoing
1223 argument. */
1225 CUMULATIVE_ARGS args_so_far;
1226 tree fn, arg;
1228 fn = emit_block_move_libcall_fn (false);
1229 INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
1231 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1232 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1234 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1235 rtx tmp = targetm.calls.function_arg (&args_so_far, mode,
1236 NULL_TREE, true);
1237 if (!tmp || !REG_P (tmp))
1238 return false;
1239 if (targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL, 1))
1240 return false;
1241 targetm.calls.function_arg_advance (&args_so_far, mode,
1242 NULL_TREE, true);
1245 return true;
1248 /* A subroutine of emit_block_move. Expand a movmem pattern;
1249 return true if successful. */
1251 static bool
1252 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1253 unsigned int expected_align, HOST_WIDE_INT expected_size)
1255 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
1256 int save_volatile_ok = volatile_ok;
1257 enum machine_mode mode;
1259 if (expected_align < align)
1260 expected_align = align;
1262 /* Since this is a move insn, we don't care about volatility. */
1263 volatile_ok = 1;
1265 /* Try the most limited insn first, because there's no point
1266 including more than one in the machine description unless
1267 the more limited one has some advantage. */
1269 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1270 mode = GET_MODE_WIDER_MODE (mode))
1272 enum insn_code code = direct_optab_handler (movmem_optab, mode);
1273 insn_operand_predicate_fn pred;
1275 if (code != CODE_FOR_nothing
1276 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1277 here because if SIZE is less than the mode mask, as it is
1278 returned by the macro, it will definitely be less than the
1279 actual mode mask. */
1280 && ((CONST_INT_P (size)
1281 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1282 <= (GET_MODE_MASK (mode) >> 1)))
1283 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
1284 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
1285 || (*pred) (x, BLKmode))
1286 && ((pred = insn_data[(int) code].operand[1].predicate) == 0
1287 || (*pred) (y, BLKmode))
1288 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
1289 || (*pred) (opalign, VOIDmode)))
1291 rtx op2;
1292 rtx last = get_last_insn ();
1293 rtx pat;
1295 op2 = convert_to_mode (mode, size, 1);
1296 pred = insn_data[(int) code].operand[2].predicate;
1297 if (pred != 0 && ! (*pred) (op2, mode))
1298 op2 = copy_to_mode_reg (mode, op2);
1300 /* ??? When called via emit_block_move_for_call, it'd be
1301 nice if there were some way to inform the backend, so
1302 that it doesn't fail the expansion because it thinks
1303 emitting the libcall would be more efficient. */
1305 if (insn_data[(int) code].n_operands == 4)
1306 pat = GEN_FCN ((int) code) (x, y, op2, opalign);
1307 else
1308 pat = GEN_FCN ((int) code) (x, y, op2, opalign,
1309 GEN_INT (expected_align
1310 / BITS_PER_UNIT),
1311 GEN_INT (expected_size));
1312 if (pat)
1314 emit_insn (pat);
1315 volatile_ok = save_volatile_ok;
1316 return true;
1318 else
1319 delete_insns_since (last);
1323 volatile_ok = save_volatile_ok;
1324 return false;
1327 /* A subroutine of emit_block_move. Expand a call to memcpy.
1328 Return the return value from memcpy, 0 otherwise. */
1331 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1333 rtx dst_addr, src_addr;
1334 tree call_expr, fn, src_tree, dst_tree, size_tree;
1335 enum machine_mode size_mode;
1336 rtx retval;
1338 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1339 pseudos. We can then place those new pseudos into a VAR_DECL and
1340 use them later. */
1342 dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
1343 src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
1345 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1346 src_addr = convert_memory_address (ptr_mode, src_addr);
1348 dst_tree = make_tree (ptr_type_node, dst_addr);
1349 src_tree = make_tree (ptr_type_node, src_addr);
1351 size_mode = TYPE_MODE (sizetype);
1353 size = convert_to_mode (size_mode, size, 1);
1354 size = copy_to_mode_reg (size_mode, size);
1356 /* It is incorrect to use the libcall calling conventions to call
1357 memcpy in this context. This could be a user call to memcpy and
1358 the user may wish to examine the return value from memcpy. For
1359 targets where libcalls and normal calls have different conventions
1360 for returning pointers, we could end up generating incorrect code. */
1362 size_tree = make_tree (sizetype, size);
1364 fn = emit_block_move_libcall_fn (true);
1365 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1366 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1368 retval = expand_normal (call_expr);
1370 return retval;
1373 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1374 for the function we use for block copies. The first time FOR_CALL
1375 is true, we call assemble_external. */
1377 static GTY(()) tree block_move_fn;
1379 void
1380 init_block_move_fn (const char *asmspec)
1382 if (!block_move_fn)
1384 tree args, fn;
1386 fn = get_identifier ("memcpy");
1387 args = build_function_type_list (ptr_type_node, ptr_type_node,
1388 const_ptr_type_node, sizetype,
1389 NULL_TREE);
1391 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
1392 DECL_EXTERNAL (fn) = 1;
1393 TREE_PUBLIC (fn) = 1;
1394 DECL_ARTIFICIAL (fn) = 1;
1395 TREE_NOTHROW (fn) = 1;
1396 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1397 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1399 block_move_fn = fn;
1402 if (asmspec)
1403 set_user_assembler_name (block_move_fn, asmspec);
1406 static tree
1407 emit_block_move_libcall_fn (int for_call)
1409 static bool emitted_extern;
1411 if (!block_move_fn)
1412 init_block_move_fn (NULL);
1414 if (for_call && !emitted_extern)
1416 emitted_extern = true;
1417 make_decl_rtl (block_move_fn);
1418 assemble_external (block_move_fn);
1421 return block_move_fn;
1424 /* A subroutine of emit_block_move. Copy the data via an explicit
1425 loop. This is used only when libcalls are forbidden. */
1426 /* ??? It'd be nice to copy in hunks larger than QImode. */
1428 static void
1429 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1430 unsigned int align ATTRIBUTE_UNUSED)
1432 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1433 enum machine_mode x_addr_mode
1434 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (x));
1435 enum machine_mode y_addr_mode
1436 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (y));
1437 enum machine_mode iter_mode;
1439 iter_mode = GET_MODE (size);
1440 if (iter_mode == VOIDmode)
1441 iter_mode = word_mode;
1443 top_label = gen_label_rtx ();
1444 cmp_label = gen_label_rtx ();
1445 iter = gen_reg_rtx (iter_mode);
1447 emit_move_insn (iter, const0_rtx);
1449 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1450 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1451 do_pending_stack_adjust ();
1453 emit_jump (cmp_label);
1454 emit_label (top_label);
1456 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1457 x_addr = gen_rtx_PLUS (x_addr_mode, x_addr, tmp);
1459 if (x_addr_mode != y_addr_mode)
1460 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1461 y_addr = gen_rtx_PLUS (y_addr_mode, y_addr, tmp);
1463 x = change_address (x, QImode, x_addr);
1464 y = change_address (y, QImode, y_addr);
1466 emit_move_insn (x, y);
1468 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1469 true, OPTAB_LIB_WIDEN);
1470 if (tmp != iter)
1471 emit_move_insn (iter, tmp);
1473 emit_label (cmp_label);
1475 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1476 true, top_label);
1479 /* Copy all or part of a value X into registers starting at REGNO.
1480 The number of registers to be filled is NREGS. */
1482 void
1483 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1485 int i;
1486 #ifdef HAVE_load_multiple
1487 rtx pat;
1488 rtx last;
1489 #endif
1491 if (nregs == 0)
1492 return;
1494 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
1495 x = validize_mem (force_const_mem (mode, x));
1497 /* See if the machine can do this with a load multiple insn. */
1498 #ifdef HAVE_load_multiple
1499 if (HAVE_load_multiple)
1501 last = get_last_insn ();
1502 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1503 GEN_INT (nregs));
1504 if (pat)
1506 emit_insn (pat);
1507 return;
1509 else
1510 delete_insns_since (last);
1512 #endif
1514 for (i = 0; i < nregs; i++)
1515 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1516 operand_subword_force (x, i, mode));
1519 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1520 The number of registers to be filled is NREGS. */
1522 void
1523 move_block_from_reg (int regno, rtx x, int nregs)
1525 int i;
1527 if (nregs == 0)
1528 return;
1530 /* See if the machine can do this with a store multiple insn. */
1531 #ifdef HAVE_store_multiple
1532 if (HAVE_store_multiple)
1534 rtx last = get_last_insn ();
1535 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1536 GEN_INT (nregs));
1537 if (pat)
1539 emit_insn (pat);
1540 return;
1542 else
1543 delete_insns_since (last);
1545 #endif
1547 for (i = 0; i < nregs; i++)
1549 rtx tem = operand_subword (x, i, 1, BLKmode);
1551 gcc_assert (tem);
1553 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1557 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1558 ORIG, where ORIG is a non-consecutive group of registers represented by
1559 a PARALLEL. The clone is identical to the original except in that the
1560 original set of registers is replaced by a new set of pseudo registers.
1561 The new set has the same modes as the original set. */
1564 gen_group_rtx (rtx orig)
1566 int i, length;
1567 rtx *tmps;
1569 gcc_assert (GET_CODE (orig) == PARALLEL);
1571 length = XVECLEN (orig, 0);
1572 tmps = XALLOCAVEC (rtx, length);
1574 /* Skip a NULL entry in first slot. */
1575 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1577 if (i)
1578 tmps[0] = 0;
1580 for (; i < length; i++)
1582 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1583 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1585 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1588 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1591 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1592 except that values are placed in TMPS[i], and must later be moved
1593 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1595 static void
1596 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1598 rtx src;
1599 int start, i;
1600 enum machine_mode m = GET_MODE (orig_src);
1602 gcc_assert (GET_CODE (dst) == PARALLEL);
1604 if (m != VOIDmode
1605 && !SCALAR_INT_MODE_P (m)
1606 && !MEM_P (orig_src)
1607 && GET_CODE (orig_src) != CONCAT)
1609 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1610 if (imode == BLKmode)
1611 src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
1612 else
1613 src = gen_reg_rtx (imode);
1614 if (imode != BLKmode)
1615 src = gen_lowpart (GET_MODE (orig_src), src);
1616 emit_move_insn (src, orig_src);
1617 /* ...and back again. */
1618 if (imode != BLKmode)
1619 src = gen_lowpart (imode, src);
1620 emit_group_load_1 (tmps, dst, src, type, ssize);
1621 return;
1624 /* Check for a NULL entry, used to indicate that the parameter goes
1625 both on the stack and in registers. */
1626 if (XEXP (XVECEXP (dst, 0, 0), 0))
1627 start = 0;
1628 else
1629 start = 1;
1631 /* Process the pieces. */
1632 for (i = start; i < XVECLEN (dst, 0); i++)
1634 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1635 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1636 unsigned int bytelen = GET_MODE_SIZE (mode);
1637 int shift = 0;
1639 /* Handle trailing fragments that run over the size of the struct. */
1640 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1642 /* Arrange to shift the fragment to where it belongs.
1643 extract_bit_field loads to the lsb of the reg. */
1644 if (
1645 #ifdef BLOCK_REG_PADDING
1646 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1647 == (BYTES_BIG_ENDIAN ? upward : downward)
1648 #else
1649 BYTES_BIG_ENDIAN
1650 #endif
1652 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1653 bytelen = ssize - bytepos;
1654 gcc_assert (bytelen > 0);
1657 /* If we won't be loading directly from memory, protect the real source
1658 from strange tricks we might play; but make sure that the source can
1659 be loaded directly into the destination. */
1660 src = orig_src;
1661 if (!MEM_P (orig_src)
1662 && (!CONSTANT_P (orig_src)
1663 || (GET_MODE (orig_src) != mode
1664 && GET_MODE (orig_src) != VOIDmode)))
1666 if (GET_MODE (orig_src) == VOIDmode)
1667 src = gen_reg_rtx (mode);
1668 else
1669 src = gen_reg_rtx (GET_MODE (orig_src));
1671 emit_move_insn (src, orig_src);
1674 /* Optimize the access just a bit. */
1675 if (MEM_P (src)
1676 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1677 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1678 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1679 && bytelen == GET_MODE_SIZE (mode))
1681 tmps[i] = gen_reg_rtx (mode);
1682 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1684 else if (COMPLEX_MODE_P (mode)
1685 && GET_MODE (src) == mode
1686 && bytelen == GET_MODE_SIZE (mode))
1687 /* Let emit_move_complex do the bulk of the work. */
1688 tmps[i] = src;
1689 else if (GET_CODE (src) == CONCAT)
1691 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1692 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1694 if ((bytepos == 0 && bytelen == slen0)
1695 || (bytepos != 0 && bytepos + bytelen <= slen))
1697 /* The following assumes that the concatenated objects all
1698 have the same size. In this case, a simple calculation
1699 can be used to determine the object and the bit field
1700 to be extracted. */
1701 tmps[i] = XEXP (src, bytepos / slen0);
1702 if (! CONSTANT_P (tmps[i])
1703 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1704 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1705 (bytepos % slen0) * BITS_PER_UNIT,
1706 1, false, NULL_RTX, mode, mode);
1708 else
1710 rtx mem;
1712 gcc_assert (!bytepos);
1713 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1714 emit_move_insn (mem, src);
1715 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1716 0, 1, false, NULL_RTX, mode, mode);
1719 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1720 SIMD register, which is currently broken. While we get GCC
1721 to emit proper RTL for these cases, let's dump to memory. */
1722 else if (VECTOR_MODE_P (GET_MODE (dst))
1723 && REG_P (src))
1725 int slen = GET_MODE_SIZE (GET_MODE (src));
1726 rtx mem;
1728 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1729 emit_move_insn (mem, src);
1730 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1732 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1733 && XVECLEN (dst, 0) > 1)
1734 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1735 else if (CONSTANT_P (src))
1737 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
1739 if (len == ssize)
1740 tmps[i] = src;
1741 else
1743 rtx first, second;
1745 gcc_assert (2 * len == ssize);
1746 split_double (src, &first, &second);
1747 if (i)
1748 tmps[i] = second;
1749 else
1750 tmps[i] = first;
1753 else if (REG_P (src) && GET_MODE (src) == mode)
1754 tmps[i] = src;
1755 else
1756 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1757 bytepos * BITS_PER_UNIT, 1, false, NULL_RTX,
1758 mode, mode);
1760 if (shift)
1761 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1762 build_int_cst (NULL_TREE, shift), tmps[i], 0);
1766 /* Emit code to move a block SRC of type TYPE to a block DST,
1767 where DST is non-consecutive registers represented by a PARALLEL.
1768 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1769 if not known. */
1771 void
1772 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1774 rtx *tmps;
1775 int i;
1777 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
1778 emit_group_load_1 (tmps, dst, src, type, ssize);
1780 /* Copy the extracted pieces into the proper (probable) hard regs. */
1781 for (i = 0; i < XVECLEN (dst, 0); i++)
1783 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1784 if (d == NULL)
1785 continue;
1786 emit_move_insn (d, tmps[i]);
1790 /* Similar, but load SRC into new pseudos in a format that looks like
1791 PARALLEL. This can later be fed to emit_group_move to get things
1792 in the right place. */
1795 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1797 rtvec vec;
1798 int i;
1800 vec = rtvec_alloc (XVECLEN (parallel, 0));
1801 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1803 /* Convert the vector to look just like the original PARALLEL, except
1804 with the computed values. */
1805 for (i = 0; i < XVECLEN (parallel, 0); i++)
1807 rtx e = XVECEXP (parallel, 0, i);
1808 rtx d = XEXP (e, 0);
1810 if (d)
1812 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1813 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1815 RTVEC_ELT (vec, i) = e;
1818 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1821 /* Emit code to move a block SRC to block DST, where SRC and DST are
1822 non-consecutive groups of registers, each represented by a PARALLEL. */
1824 void
1825 emit_group_move (rtx dst, rtx src)
1827 int i;
1829 gcc_assert (GET_CODE (src) == PARALLEL
1830 && GET_CODE (dst) == PARALLEL
1831 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1833 /* Skip first entry if NULL. */
1834 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1835 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1836 XEXP (XVECEXP (src, 0, i), 0));
1839 /* Move a group of registers represented by a PARALLEL into pseudos. */
1842 emit_group_move_into_temps (rtx src)
1844 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1845 int i;
1847 for (i = 0; i < XVECLEN (src, 0); i++)
1849 rtx e = XVECEXP (src, 0, i);
1850 rtx d = XEXP (e, 0);
1852 if (d)
1853 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1854 RTVEC_ELT (vec, i) = e;
1857 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1860 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1861 where SRC is non-consecutive registers represented by a PARALLEL.
1862 SSIZE represents the total size of block ORIG_DST, or -1 if not
1863 known. */
1865 void
1866 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1868 rtx *tmps, dst;
1869 int start, finish, i;
1870 enum machine_mode m = GET_MODE (orig_dst);
1872 gcc_assert (GET_CODE (src) == PARALLEL);
1874 if (!SCALAR_INT_MODE_P (m)
1875 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1877 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1878 if (imode == BLKmode)
1879 dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
1880 else
1881 dst = gen_reg_rtx (imode);
1882 emit_group_store (dst, src, type, ssize);
1883 if (imode != BLKmode)
1884 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1885 emit_move_insn (orig_dst, dst);
1886 return;
1889 /* Check for a NULL entry, used to indicate that the parameter goes
1890 both on the stack and in registers. */
1891 if (XEXP (XVECEXP (src, 0, 0), 0))
1892 start = 0;
1893 else
1894 start = 1;
1895 finish = XVECLEN (src, 0);
1897 tmps = XALLOCAVEC (rtx, finish);
1899 /* Copy the (probable) hard regs into pseudos. */
1900 for (i = start; i < finish; i++)
1902 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1903 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1905 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1906 emit_move_insn (tmps[i], reg);
1908 else
1909 tmps[i] = reg;
1912 /* If we won't be storing directly into memory, protect the real destination
1913 from strange tricks we might play. */
1914 dst = orig_dst;
1915 if (GET_CODE (dst) == PARALLEL)
1917 rtx temp;
1919 /* We can get a PARALLEL dst if there is a conditional expression in
1920 a return statement. In that case, the dst and src are the same,
1921 so no action is necessary. */
1922 if (rtx_equal_p (dst, src))
1923 return;
1925 /* It is unclear if we can ever reach here, but we may as well handle
1926 it. Allocate a temporary, and split this into a store/load to/from
1927 the temporary. */
1929 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
1930 emit_group_store (temp, src, type, ssize);
1931 emit_group_load (dst, temp, type, ssize);
1932 return;
1934 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1936 enum machine_mode outer = GET_MODE (dst);
1937 enum machine_mode inner;
1938 HOST_WIDE_INT bytepos;
1939 bool done = false;
1940 rtx temp;
1942 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1943 dst = gen_reg_rtx (outer);
1945 /* Make life a bit easier for combine. */
1946 /* If the first element of the vector is the low part
1947 of the destination mode, use a paradoxical subreg to
1948 initialize the destination. */
1949 if (start < finish)
1951 inner = GET_MODE (tmps[start]);
1952 bytepos = subreg_lowpart_offset (inner, outer);
1953 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
1955 temp = simplify_gen_subreg (outer, tmps[start],
1956 inner, 0);
1957 if (temp)
1959 emit_move_insn (dst, temp);
1960 done = true;
1961 start++;
1966 /* If the first element wasn't the low part, try the last. */
1967 if (!done
1968 && start < finish - 1)
1970 inner = GET_MODE (tmps[finish - 1]);
1971 bytepos = subreg_lowpart_offset (inner, outer);
1972 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
1974 temp = simplify_gen_subreg (outer, tmps[finish - 1],
1975 inner, 0);
1976 if (temp)
1978 emit_move_insn (dst, temp);
1979 done = true;
1980 finish--;
1985 /* Otherwise, simply initialize the result to zero. */
1986 if (!done)
1987 emit_move_insn (dst, CONST0_RTX (outer));
1990 /* Process the pieces. */
1991 for (i = start; i < finish; i++)
1993 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
1994 enum machine_mode mode = GET_MODE (tmps[i]);
1995 unsigned int bytelen = GET_MODE_SIZE (mode);
1996 unsigned int adj_bytelen = bytelen;
1997 rtx dest = dst;
1999 /* Handle trailing fragments that run over the size of the struct. */
2000 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2001 adj_bytelen = ssize - bytepos;
2003 if (GET_CODE (dst) == CONCAT)
2005 if (bytepos + adj_bytelen
2006 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2007 dest = XEXP (dst, 0);
2008 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2010 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2011 dest = XEXP (dst, 1);
2013 else
2015 enum machine_mode dest_mode = GET_MODE (dest);
2016 enum machine_mode tmp_mode = GET_MODE (tmps[i]);
2018 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2020 if (GET_MODE_ALIGNMENT (dest_mode)
2021 >= GET_MODE_ALIGNMENT (tmp_mode))
2023 dest = assign_stack_temp (dest_mode,
2024 GET_MODE_SIZE (dest_mode),
2026 emit_move_insn (adjust_address (dest,
2027 tmp_mode,
2028 bytepos),
2029 tmps[i]);
2030 dst = dest;
2032 else
2034 dest = assign_stack_temp (tmp_mode,
2035 GET_MODE_SIZE (tmp_mode),
2037 emit_move_insn (dest, tmps[i]);
2038 dst = adjust_address (dest, dest_mode, bytepos);
2040 break;
2044 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2046 /* store_bit_field always takes its value from the lsb.
2047 Move the fragment to the lsb if it's not already there. */
2048 if (
2049 #ifdef BLOCK_REG_PADDING
2050 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2051 == (BYTES_BIG_ENDIAN ? upward : downward)
2052 #else
2053 BYTES_BIG_ENDIAN
2054 #endif
2057 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2058 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2059 build_int_cst (NULL_TREE, shift),
2060 tmps[i], 0);
2062 bytelen = adj_bytelen;
2065 /* Optimize the access just a bit. */
2066 if (MEM_P (dest)
2067 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2068 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2069 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2070 && bytelen == GET_MODE_SIZE (mode))
2071 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2072 else
2073 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2074 mode, tmps[i]);
2077 /* Copy from the pseudo into the (probable) hard reg. */
2078 if (orig_dst != dst)
2079 emit_move_insn (orig_dst, dst);
2082 /* Generate code to copy a BLKmode object of TYPE out of a
2083 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2084 is null, a stack temporary is created. TGTBLK is returned.
2086 The purpose of this routine is to handle functions that return
2087 BLKmode structures in registers. Some machines (the PA for example)
2088 want to return all small structures in registers regardless of the
2089 structure's alignment. */
2092 copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
2094 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2095 rtx src = NULL, dst = NULL;
2096 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2097 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2098 enum machine_mode copy_mode;
2100 if (tgtblk == 0)
2102 tgtblk = assign_temp (build_qualified_type (type,
2103 (TYPE_QUALS (type)
2104 | TYPE_QUAL_CONST)),
2105 0, 1, 1);
2106 preserve_temp_slots (tgtblk);
2109 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2110 into a new pseudo which is a full word. */
2112 if (GET_MODE (srcreg) != BLKmode
2113 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2114 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2116 /* If the structure doesn't take up a whole number of words, see whether
2117 SRCREG is padded on the left or on the right. If it's on the left,
2118 set PADDING_CORRECTION to the number of bits to skip.
2120 In most ABIs, the structure will be returned at the least end of
2121 the register, which translates to right padding on little-endian
2122 targets and left padding on big-endian targets. The opposite
2123 holds if the structure is returned at the most significant
2124 end of the register. */
2125 if (bytes % UNITS_PER_WORD != 0
2126 && (targetm.calls.return_in_msb (type)
2127 ? !BYTES_BIG_ENDIAN
2128 : BYTES_BIG_ENDIAN))
2129 padding_correction
2130 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2132 /* Copy the structure BITSIZE bits at a time. If the target lives in
2133 memory, take care of not reading/writing past its end by selecting
2134 a copy mode suited to BITSIZE. This should always be possible given
2135 how it is computed.
2137 We could probably emit more efficient code for machines which do not use
2138 strict alignment, but it doesn't seem worth the effort at the current
2139 time. */
2141 copy_mode = word_mode;
2142 if (MEM_P (tgtblk))
2144 enum machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
2145 if (mem_mode != BLKmode)
2146 copy_mode = mem_mode;
2149 for (bitpos = 0, xbitpos = padding_correction;
2150 bitpos < bytes * BITS_PER_UNIT;
2151 bitpos += bitsize, xbitpos += bitsize)
2153 /* We need a new source operand each time xbitpos is on a
2154 word boundary and when xbitpos == padding_correction
2155 (the first time through). */
2156 if (xbitpos % BITS_PER_WORD == 0
2157 || xbitpos == padding_correction)
2158 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2159 GET_MODE (srcreg));
2161 /* We need a new destination operand each time bitpos is on
2162 a word boundary. */
2163 if (bitpos % BITS_PER_WORD == 0)
2164 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2166 /* Use xbitpos for the source extraction (right justified) and
2167 bitpos for the destination store (left justified). */
2168 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, copy_mode,
2169 extract_bit_field (src, bitsize,
2170 xbitpos % BITS_PER_WORD, 1, false,
2171 NULL_RTX, copy_mode, copy_mode));
2174 return tgtblk;
2177 /* Add a USE expression for REG to the (possibly empty) list pointed
2178 to by CALL_FUSAGE. REG must denote a hard register. */
2180 void
2181 use_reg (rtx *call_fusage, rtx reg)
2183 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2185 *call_fusage
2186 = gen_rtx_EXPR_LIST (VOIDmode,
2187 gen_rtx_USE (VOIDmode, reg), *call_fusage);
2190 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2191 starting at REGNO. All of these registers must be hard registers. */
2193 void
2194 use_regs (rtx *call_fusage, int regno, int nregs)
2196 int i;
2198 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2200 for (i = 0; i < nregs; i++)
2201 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2204 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2205 PARALLEL REGS. This is for calls that pass values in multiple
2206 non-contiguous locations. The Irix 6 ABI has examples of this. */
2208 void
2209 use_group_regs (rtx *call_fusage, rtx regs)
2211 int i;
2213 for (i = 0; i < XVECLEN (regs, 0); i++)
2215 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2217 /* A NULL entry means the parameter goes both on the stack and in
2218 registers. This can also be a MEM for targets that pass values
2219 partially on the stack and partially in registers. */
2220 if (reg != 0 && REG_P (reg))
2221 use_reg (call_fusage, reg);
2225 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2226 assigment and the code of the expresion on the RHS is CODE. Return
2227 NULL otherwise. */
2229 static gimple
2230 get_def_for_expr (tree name, enum tree_code code)
2232 gimple def_stmt;
2234 if (TREE_CODE (name) != SSA_NAME)
2235 return NULL;
2237 def_stmt = get_gimple_for_ssa_name (name);
2238 if (!def_stmt
2239 || gimple_assign_rhs_code (def_stmt) != code)
2240 return NULL;
2242 return def_stmt;
2246 /* Determine whether the LEN bytes generated by CONSTFUN can be
2247 stored to memory using several move instructions. CONSTFUNDATA is
2248 a pointer which will be passed as argument in every CONSTFUN call.
2249 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2250 a memset operation and false if it's a copy of a constant string.
2251 Return nonzero if a call to store_by_pieces should succeed. */
2254 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2255 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2256 void *constfundata, unsigned int align, bool memsetp)
2258 unsigned HOST_WIDE_INT l;
2259 unsigned int max_size;
2260 HOST_WIDE_INT offset = 0;
2261 enum machine_mode mode, tmode;
2262 enum insn_code icode;
2263 int reverse;
2264 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
2265 rtx cst ATTRIBUTE_UNUSED;
2267 if (len == 0)
2268 return 1;
2270 if (! (memsetp
2271 ? SET_BY_PIECES_P (len, align)
2272 : STORE_BY_PIECES_P (len, align)))
2273 return 0;
2275 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2276 if (align >= GET_MODE_ALIGNMENT (tmode))
2277 align = GET_MODE_ALIGNMENT (tmode);
2278 else
2280 enum machine_mode xmode;
2282 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2283 tmode != VOIDmode;
2284 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2285 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2286 || SLOW_UNALIGNED_ACCESS (tmode, align))
2287 break;
2289 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2292 /* We would first store what we can in the largest integer mode, then go to
2293 successively smaller modes. */
2295 for (reverse = 0;
2296 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2297 reverse++)
2299 l = len;
2300 mode = VOIDmode;
2301 max_size = STORE_MAX_PIECES + 1;
2302 while (max_size > 1)
2304 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2305 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2306 if (GET_MODE_SIZE (tmode) < max_size)
2307 mode = tmode;
2309 if (mode == VOIDmode)
2310 break;
2312 icode = optab_handler (mov_optab, mode);
2313 if (icode != CODE_FOR_nothing
2314 && align >= GET_MODE_ALIGNMENT (mode))
2316 unsigned int size = GET_MODE_SIZE (mode);
2318 while (l >= size)
2320 if (reverse)
2321 offset -= size;
2323 cst = (*constfun) (constfundata, offset, mode);
2324 if (!LEGITIMATE_CONSTANT_P (cst))
2325 return 0;
2327 if (!reverse)
2328 offset += size;
2330 l -= size;
2334 max_size = GET_MODE_SIZE (mode);
2337 /* The code above should have handled everything. */
2338 gcc_assert (!l);
2341 return 1;
2344 /* Generate several move instructions to store LEN bytes generated by
2345 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2346 pointer which will be passed as argument in every CONSTFUN call.
2347 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2348 a memset operation and false if it's a copy of a constant string.
2349 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2350 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2351 stpcpy. */
2354 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2355 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2356 void *constfundata, unsigned int align, bool memsetp, int endp)
2358 enum machine_mode to_addr_mode
2359 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
2360 struct store_by_pieces_d data;
2362 if (len == 0)
2364 gcc_assert (endp != 2);
2365 return to;
2368 gcc_assert (memsetp
2369 ? SET_BY_PIECES_P (len, align)
2370 : STORE_BY_PIECES_P (len, align));
2371 data.constfun = constfun;
2372 data.constfundata = constfundata;
2373 data.len = len;
2374 data.to = to;
2375 store_by_pieces_1 (&data, align);
2376 if (endp)
2378 rtx to1;
2380 gcc_assert (!data.reverse);
2381 if (data.autinc_to)
2383 if (endp == 2)
2385 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2386 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2387 else
2388 data.to_addr = copy_to_mode_reg (to_addr_mode,
2389 plus_constant (data.to_addr,
2390 -1));
2392 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2393 data.offset);
2395 else
2397 if (endp == 2)
2398 --data.offset;
2399 to1 = adjust_address (data.to, QImode, data.offset);
2401 return to1;
2403 else
2404 return data.to;
2407 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2408 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2410 static void
2411 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2413 struct store_by_pieces_d data;
2415 if (len == 0)
2416 return;
2418 data.constfun = clear_by_pieces_1;
2419 data.constfundata = NULL;
2420 data.len = len;
2421 data.to = to;
2422 store_by_pieces_1 (&data, align);
2425 /* Callback routine for clear_by_pieces.
2426 Return const0_rtx unconditionally. */
2428 static rtx
2429 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2430 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2431 enum machine_mode mode ATTRIBUTE_UNUSED)
2433 return const0_rtx;
2436 /* Subroutine of clear_by_pieces and store_by_pieces.
2437 Generate several move instructions to store LEN bytes of block TO. (A MEM
2438 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2440 static void
2441 store_by_pieces_1 (struct store_by_pieces_d *data ATTRIBUTE_UNUSED,
2442 unsigned int align ATTRIBUTE_UNUSED)
2444 enum machine_mode to_addr_mode
2445 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (data->to));
2446 rtx to_addr = XEXP (data->to, 0);
2447 unsigned int max_size = STORE_MAX_PIECES + 1;
2448 enum machine_mode mode = VOIDmode, tmode;
2449 enum insn_code icode;
2451 data->offset = 0;
2452 data->to_addr = to_addr;
2453 data->autinc_to
2454 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2455 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2457 data->explicit_inc_to = 0;
2458 data->reverse
2459 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2460 if (data->reverse)
2461 data->offset = data->len;
2463 /* If storing requires more than two move insns,
2464 copy addresses to registers (to make displacements shorter)
2465 and use post-increment if available. */
2466 if (!data->autinc_to
2467 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2469 /* Determine the main mode we'll be using. */
2470 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2471 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2472 if (GET_MODE_SIZE (tmode) < max_size)
2473 mode = tmode;
2475 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2477 data->to_addr = copy_to_mode_reg (to_addr_mode,
2478 plus_constant (to_addr, data->len));
2479 data->autinc_to = 1;
2480 data->explicit_inc_to = -1;
2483 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2484 && ! data->autinc_to)
2486 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2487 data->autinc_to = 1;
2488 data->explicit_inc_to = 1;
2491 if ( !data->autinc_to && CONSTANT_P (to_addr))
2492 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2495 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2496 if (align >= GET_MODE_ALIGNMENT (tmode))
2497 align = GET_MODE_ALIGNMENT (tmode);
2498 else
2500 enum machine_mode xmode;
2502 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2503 tmode != VOIDmode;
2504 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2505 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2506 || SLOW_UNALIGNED_ACCESS (tmode, align))
2507 break;
2509 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2512 /* First store what we can in the largest integer mode, then go to
2513 successively smaller modes. */
2515 while (max_size > 1)
2517 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2518 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2519 if (GET_MODE_SIZE (tmode) < max_size)
2520 mode = tmode;
2522 if (mode == VOIDmode)
2523 break;
2525 icode = optab_handler (mov_optab, mode);
2526 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2527 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2529 max_size = GET_MODE_SIZE (mode);
2532 /* The code above should have handled everything. */
2533 gcc_assert (!data->len);
2536 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2537 with move instructions for mode MODE. GENFUN is the gen_... function
2538 to make a move insn for that mode. DATA has all the other info. */
2540 static void
2541 store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2542 struct store_by_pieces_d *data)
2544 unsigned int size = GET_MODE_SIZE (mode);
2545 rtx to1, cst;
2547 while (data->len >= size)
2549 if (data->reverse)
2550 data->offset -= size;
2552 if (data->autinc_to)
2553 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2554 data->offset);
2555 else
2556 to1 = adjust_address (data->to, mode, data->offset);
2558 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2559 emit_insn (gen_add2_insn (data->to_addr,
2560 GEN_INT (-(HOST_WIDE_INT) size)));
2562 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2563 emit_insn ((*genfun) (to1, cst));
2565 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2566 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2568 if (! data->reverse)
2569 data->offset += size;
2571 data->len -= size;
2575 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2576 its length in bytes. */
2579 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2580 unsigned int expected_align, HOST_WIDE_INT expected_size)
2582 enum machine_mode mode = GET_MODE (object);
2583 unsigned int align;
2585 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2587 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2588 just move a zero. Otherwise, do this a piece at a time. */
2589 if (mode != BLKmode
2590 && CONST_INT_P (size)
2591 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2593 rtx zero = CONST0_RTX (mode);
2594 if (zero != NULL)
2596 emit_move_insn (object, zero);
2597 return NULL;
2600 if (COMPLEX_MODE_P (mode))
2602 zero = CONST0_RTX (GET_MODE_INNER (mode));
2603 if (zero != NULL)
2605 write_complex_part (object, zero, 0);
2606 write_complex_part (object, zero, 1);
2607 return NULL;
2612 if (size == const0_rtx)
2613 return NULL;
2615 align = MEM_ALIGN (object);
2617 if (CONST_INT_P (size)
2618 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2619 clear_by_pieces (object, INTVAL (size), align);
2620 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2621 expected_align, expected_size))
2623 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
2624 return set_storage_via_libcall (object, size, const0_rtx,
2625 method == BLOCK_OP_TAILCALL);
2626 else
2627 gcc_unreachable ();
2629 return NULL;
2633 clear_storage (rtx object, rtx size, enum block_op_methods method)
2635 return clear_storage_hints (object, size, method, 0, -1);
2639 /* A subroutine of clear_storage. Expand a call to memset.
2640 Return the return value of memset, 0 otherwise. */
2643 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
2645 tree call_expr, fn, object_tree, size_tree, val_tree;
2646 enum machine_mode size_mode;
2647 rtx retval;
2649 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2650 place those into new pseudos into a VAR_DECL and use them later. */
2652 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2654 size_mode = TYPE_MODE (sizetype);
2655 size = convert_to_mode (size_mode, size, 1);
2656 size = copy_to_mode_reg (size_mode, size);
2658 /* It is incorrect to use the libcall calling conventions to call
2659 memset in this context. This could be a user call to memset and
2660 the user may wish to examine the return value from memset. For
2661 targets where libcalls and normal calls have different conventions
2662 for returning pointers, we could end up generating incorrect code. */
2664 object_tree = make_tree (ptr_type_node, object);
2665 if (!CONST_INT_P (val))
2666 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
2667 size_tree = make_tree (sizetype, size);
2668 val_tree = make_tree (integer_type_node, val);
2670 fn = clear_storage_libcall_fn (true);
2671 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
2672 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2674 retval = expand_normal (call_expr);
2676 return retval;
2679 /* A subroutine of set_storage_via_libcall. Create the tree node
2680 for the function we use for block clears. The first time FOR_CALL
2681 is true, we call assemble_external. */
2683 tree block_clear_fn;
2685 void
2686 init_block_clear_fn (const char *asmspec)
2688 if (!block_clear_fn)
2690 tree fn, args;
2692 fn = get_identifier ("memset");
2693 args = build_function_type_list (ptr_type_node, ptr_type_node,
2694 integer_type_node, sizetype,
2695 NULL_TREE);
2697 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
2698 DECL_EXTERNAL (fn) = 1;
2699 TREE_PUBLIC (fn) = 1;
2700 DECL_ARTIFICIAL (fn) = 1;
2701 TREE_NOTHROW (fn) = 1;
2702 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2703 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2705 block_clear_fn = fn;
2708 if (asmspec)
2709 set_user_assembler_name (block_clear_fn, asmspec);
2712 static tree
2713 clear_storage_libcall_fn (int for_call)
2715 static bool emitted_extern;
2717 if (!block_clear_fn)
2718 init_block_clear_fn (NULL);
2720 if (for_call && !emitted_extern)
2722 emitted_extern = true;
2723 make_decl_rtl (block_clear_fn);
2724 assemble_external (block_clear_fn);
2727 return block_clear_fn;
2730 /* Expand a setmem pattern; return true if successful. */
2732 bool
2733 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
2734 unsigned int expected_align, HOST_WIDE_INT expected_size)
2736 /* Try the most limited insn first, because there's no point
2737 including more than one in the machine description unless
2738 the more limited one has some advantage. */
2740 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
2741 enum machine_mode mode;
2743 if (expected_align < align)
2744 expected_align = align;
2746 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2747 mode = GET_MODE_WIDER_MODE (mode))
2749 enum insn_code code = direct_optab_handler (setmem_optab, mode);
2750 insn_operand_predicate_fn pred;
2752 if (code != CODE_FOR_nothing
2753 /* We don't need MODE to be narrower than
2754 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2755 the mode mask, as it is returned by the macro, it will
2756 definitely be less than the actual mode mask. */
2757 && ((CONST_INT_P (size)
2758 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2759 <= (GET_MODE_MASK (mode) >> 1)))
2760 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
2761 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
2762 || (*pred) (object, BLKmode))
2763 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
2764 || (*pred) (opalign, VOIDmode)))
2766 rtx opsize, opchar;
2767 enum machine_mode char_mode;
2768 rtx last = get_last_insn ();
2769 rtx pat;
2771 opsize = convert_to_mode (mode, size, 1);
2772 pred = insn_data[(int) code].operand[1].predicate;
2773 if (pred != 0 && ! (*pred) (opsize, mode))
2774 opsize = copy_to_mode_reg (mode, opsize);
2776 opchar = val;
2777 char_mode = insn_data[(int) code].operand[2].mode;
2778 if (char_mode != VOIDmode)
2780 opchar = convert_to_mode (char_mode, opchar, 1);
2781 pred = insn_data[(int) code].operand[2].predicate;
2782 if (pred != 0 && ! (*pred) (opchar, char_mode))
2783 opchar = copy_to_mode_reg (char_mode, opchar);
2786 if (insn_data[(int) code].n_operands == 4)
2787 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign);
2788 else
2789 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign,
2790 GEN_INT (expected_align
2791 / BITS_PER_UNIT),
2792 GEN_INT (expected_size));
2793 if (pat)
2795 emit_insn (pat);
2796 return true;
2798 else
2799 delete_insns_since (last);
2803 return false;
2807 /* Write to one of the components of the complex value CPLX. Write VAL to
2808 the real part if IMAG_P is false, and the imaginary part if its true. */
2810 static void
2811 write_complex_part (rtx cplx, rtx val, bool imag_p)
2813 enum machine_mode cmode;
2814 enum machine_mode imode;
2815 unsigned ibitsize;
2817 if (GET_CODE (cplx) == CONCAT)
2819 emit_move_insn (XEXP (cplx, imag_p), val);
2820 return;
2823 cmode = GET_MODE (cplx);
2824 imode = GET_MODE_INNER (cmode);
2825 ibitsize = GET_MODE_BITSIZE (imode);
2827 /* For MEMs simplify_gen_subreg may generate an invalid new address
2828 because, e.g., the original address is considered mode-dependent
2829 by the target, which restricts simplify_subreg from invoking
2830 adjust_address_nv. Instead of preparing fallback support for an
2831 invalid address, we call adjust_address_nv directly. */
2832 if (MEM_P (cplx))
2834 emit_move_insn (adjust_address_nv (cplx, imode,
2835 imag_p ? GET_MODE_SIZE (imode) : 0),
2836 val);
2837 return;
2840 /* If the sub-object is at least word sized, then we know that subregging
2841 will work. This special case is important, since store_bit_field
2842 wants to operate on integer modes, and there's rarely an OImode to
2843 correspond to TCmode. */
2844 if (ibitsize >= BITS_PER_WORD
2845 /* For hard regs we have exact predicates. Assume we can split
2846 the original object if it spans an even number of hard regs.
2847 This special case is important for SCmode on 64-bit platforms
2848 where the natural size of floating-point regs is 32-bit. */
2849 || (REG_P (cplx)
2850 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2851 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2853 rtx part = simplify_gen_subreg (imode, cplx, cmode,
2854 imag_p ? GET_MODE_SIZE (imode) : 0);
2855 if (part)
2857 emit_move_insn (part, val);
2858 return;
2860 else
2861 /* simplify_gen_subreg may fail for sub-word MEMs. */
2862 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2865 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, imode, val);
2868 /* Extract one of the components of the complex value CPLX. Extract the
2869 real part if IMAG_P is false, and the imaginary part if it's true. */
2871 static rtx
2872 read_complex_part (rtx cplx, bool imag_p)
2874 enum machine_mode cmode, imode;
2875 unsigned ibitsize;
2877 if (GET_CODE (cplx) == CONCAT)
2878 return XEXP (cplx, imag_p);
2880 cmode = GET_MODE (cplx);
2881 imode = GET_MODE_INNER (cmode);
2882 ibitsize = GET_MODE_BITSIZE (imode);
2884 /* Special case reads from complex constants that got spilled to memory. */
2885 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
2887 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
2888 if (decl && TREE_CODE (decl) == COMPLEX_CST)
2890 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
2891 if (CONSTANT_CLASS_P (part))
2892 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
2896 /* For MEMs simplify_gen_subreg may generate an invalid new address
2897 because, e.g., the original address is considered mode-dependent
2898 by the target, which restricts simplify_subreg from invoking
2899 adjust_address_nv. Instead of preparing fallback support for an
2900 invalid address, we call adjust_address_nv directly. */
2901 if (MEM_P (cplx))
2902 return adjust_address_nv (cplx, imode,
2903 imag_p ? GET_MODE_SIZE (imode) : 0);
2905 /* If the sub-object is at least word sized, then we know that subregging
2906 will work. This special case is important, since extract_bit_field
2907 wants to operate on integer modes, and there's rarely an OImode to
2908 correspond to TCmode. */
2909 if (ibitsize >= BITS_PER_WORD
2910 /* For hard regs we have exact predicates. Assume we can split
2911 the original object if it spans an even number of hard regs.
2912 This special case is important for SCmode on 64-bit platforms
2913 where the natural size of floating-point regs is 32-bit. */
2914 || (REG_P (cplx)
2915 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2916 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2918 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
2919 imag_p ? GET_MODE_SIZE (imode) : 0);
2920 if (ret)
2921 return ret;
2922 else
2923 /* simplify_gen_subreg may fail for sub-word MEMs. */
2924 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2927 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
2928 true, false, NULL_RTX, imode, imode);
2931 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2932 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2933 represented in NEW_MODE. If FORCE is true, this will never happen, as
2934 we'll force-create a SUBREG if needed. */
2936 static rtx
2937 emit_move_change_mode (enum machine_mode new_mode,
2938 enum machine_mode old_mode, rtx x, bool force)
2940 rtx ret;
2942 if (push_operand (x, GET_MODE (x)))
2944 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
2945 MEM_COPY_ATTRIBUTES (ret, x);
2947 else if (MEM_P (x))
2949 /* We don't have to worry about changing the address since the
2950 size in bytes is supposed to be the same. */
2951 if (reload_in_progress)
2953 /* Copy the MEM to change the mode and move any
2954 substitutions from the old MEM to the new one. */
2955 ret = adjust_address_nv (x, new_mode, 0);
2956 copy_replacements (x, ret);
2958 else
2959 ret = adjust_address (x, new_mode, 0);
2961 else
2963 /* Note that we do want simplify_subreg's behavior of validating
2964 that the new mode is ok for a hard register. If we were to use
2965 simplify_gen_subreg, we would create the subreg, but would
2966 probably run into the target not being able to implement it. */
2967 /* Except, of course, when FORCE is true, when this is exactly what
2968 we want. Which is needed for CCmodes on some targets. */
2969 if (force)
2970 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
2971 else
2972 ret = simplify_subreg (new_mode, x, old_mode, 0);
2975 return ret;
2978 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2979 an integer mode of the same size as MODE. Returns the instruction
2980 emitted, or NULL if such a move could not be generated. */
2982 static rtx
2983 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
2985 enum machine_mode imode;
2986 enum insn_code code;
2988 /* There must exist a mode of the exact size we require. */
2989 imode = int_mode_for_mode (mode);
2990 if (imode == BLKmode)
2991 return NULL_RTX;
2993 /* The target must support moves in this mode. */
2994 code = optab_handler (mov_optab, imode);
2995 if (code == CODE_FOR_nothing)
2996 return NULL_RTX;
2998 x = emit_move_change_mode (imode, mode, x, force);
2999 if (x == NULL_RTX)
3000 return NULL_RTX;
3001 y = emit_move_change_mode (imode, mode, y, force);
3002 if (y == NULL_RTX)
3003 return NULL_RTX;
3004 return emit_insn (GEN_FCN (code) (x, y));
3007 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3008 Return an equivalent MEM that does not use an auto-increment. */
3010 static rtx
3011 emit_move_resolve_push (enum machine_mode mode, rtx x)
3013 enum rtx_code code = GET_CODE (XEXP (x, 0));
3014 HOST_WIDE_INT adjust;
3015 rtx temp;
3017 adjust = GET_MODE_SIZE (mode);
3018 #ifdef PUSH_ROUNDING
3019 adjust = PUSH_ROUNDING (adjust);
3020 #endif
3021 if (code == PRE_DEC || code == POST_DEC)
3022 adjust = -adjust;
3023 else if (code == PRE_MODIFY || code == POST_MODIFY)
3025 rtx expr = XEXP (XEXP (x, 0), 1);
3026 HOST_WIDE_INT val;
3028 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3029 gcc_assert (CONST_INT_P (XEXP (expr, 1)));
3030 val = INTVAL (XEXP (expr, 1));
3031 if (GET_CODE (expr) == MINUS)
3032 val = -val;
3033 gcc_assert (adjust == val || adjust == -val);
3034 adjust = val;
3037 /* Do not use anti_adjust_stack, since we don't want to update
3038 stack_pointer_delta. */
3039 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3040 GEN_INT (adjust), stack_pointer_rtx,
3041 0, OPTAB_LIB_WIDEN);
3042 if (temp != stack_pointer_rtx)
3043 emit_move_insn (stack_pointer_rtx, temp);
3045 switch (code)
3047 case PRE_INC:
3048 case PRE_DEC:
3049 case PRE_MODIFY:
3050 temp = stack_pointer_rtx;
3051 break;
3052 case POST_INC:
3053 case POST_DEC:
3054 case POST_MODIFY:
3055 temp = plus_constant (stack_pointer_rtx, -adjust);
3056 break;
3057 default:
3058 gcc_unreachable ();
3061 return replace_equiv_address (x, temp);
3064 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3065 X is known to satisfy push_operand, and MODE is known to be complex.
3066 Returns the last instruction emitted. */
3069 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
3071 enum machine_mode submode = GET_MODE_INNER (mode);
3072 bool imag_first;
3074 #ifdef PUSH_ROUNDING
3075 unsigned int submodesize = GET_MODE_SIZE (submode);
3077 /* In case we output to the stack, but the size is smaller than the
3078 machine can push exactly, we need to use move instructions. */
3079 if (PUSH_ROUNDING (submodesize) != submodesize)
3081 x = emit_move_resolve_push (mode, x);
3082 return emit_move_insn (x, y);
3084 #endif
3086 /* Note that the real part always precedes the imag part in memory
3087 regardless of machine's endianness. */
3088 switch (GET_CODE (XEXP (x, 0)))
3090 case PRE_DEC:
3091 case POST_DEC:
3092 imag_first = true;
3093 break;
3094 case PRE_INC:
3095 case POST_INC:
3096 imag_first = false;
3097 break;
3098 default:
3099 gcc_unreachable ();
3102 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3103 read_complex_part (y, imag_first));
3104 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3105 read_complex_part (y, !imag_first));
3108 /* A subroutine of emit_move_complex. Perform the move from Y to X
3109 via two moves of the parts. Returns the last instruction emitted. */
3112 emit_move_complex_parts (rtx x, rtx y)
3114 /* Show the output dies here. This is necessary for SUBREGs
3115 of pseudos since we cannot track their lifetimes correctly;
3116 hard regs shouldn't appear here except as return values. */
3117 if (!reload_completed && !reload_in_progress
3118 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3119 emit_clobber (x);
3121 write_complex_part (x, read_complex_part (y, false), false);
3122 write_complex_part (x, read_complex_part (y, true), true);
3124 return get_last_insn ();
3127 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3128 MODE is known to be complex. Returns the last instruction emitted. */
3130 static rtx
3131 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
3133 bool try_int;
3135 /* Need to take special care for pushes, to maintain proper ordering
3136 of the data, and possibly extra padding. */
3137 if (push_operand (x, mode))
3138 return emit_move_complex_push (mode, x, y);
3140 /* See if we can coerce the target into moving both values at once. */
3142 /* Move floating point as parts. */
3143 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3144 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing)
3145 try_int = false;
3146 /* Not possible if the values are inherently not adjacent. */
3147 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3148 try_int = false;
3149 /* Is possible if both are registers (or subregs of registers). */
3150 else if (register_operand (x, mode) && register_operand (y, mode))
3151 try_int = true;
3152 /* If one of the operands is a memory, and alignment constraints
3153 are friendly enough, we may be able to do combined memory operations.
3154 We do not attempt this if Y is a constant because that combination is
3155 usually better with the by-parts thing below. */
3156 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3157 && (!STRICT_ALIGNMENT
3158 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3159 try_int = true;
3160 else
3161 try_int = false;
3163 if (try_int)
3165 rtx ret;
3167 /* For memory to memory moves, optimal behavior can be had with the
3168 existing block move logic. */
3169 if (MEM_P (x) && MEM_P (y))
3171 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3172 BLOCK_OP_NO_LIBCALL);
3173 return get_last_insn ();
3176 ret = emit_move_via_integer (mode, x, y, true);
3177 if (ret)
3178 return ret;
3181 return emit_move_complex_parts (x, y);
3184 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3185 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3187 static rtx
3188 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3190 rtx ret;
3192 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3193 if (mode != CCmode)
3195 enum insn_code code = optab_handler (mov_optab, CCmode);
3196 if (code != CODE_FOR_nothing)
3198 x = emit_move_change_mode (CCmode, mode, x, true);
3199 y = emit_move_change_mode (CCmode, mode, y, true);
3200 return emit_insn (GEN_FCN (code) (x, y));
3204 /* Otherwise, find the MODE_INT mode of the same width. */
3205 ret = emit_move_via_integer (mode, x, y, false);
3206 gcc_assert (ret != NULL);
3207 return ret;
3210 /* Return true if word I of OP lies entirely in the
3211 undefined bits of a paradoxical subreg. */
3213 static bool
3214 undefined_operand_subword_p (const_rtx op, int i)
3216 enum machine_mode innermode, innermostmode;
3217 int offset;
3218 if (GET_CODE (op) != SUBREG)
3219 return false;
3220 innermode = GET_MODE (op);
3221 innermostmode = GET_MODE (SUBREG_REG (op));
3222 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3223 /* The SUBREG_BYTE represents offset, as if the value were stored in
3224 memory, except for a paradoxical subreg where we define
3225 SUBREG_BYTE to be 0; undo this exception as in
3226 simplify_subreg. */
3227 if (SUBREG_BYTE (op) == 0
3228 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3230 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3231 if (WORDS_BIG_ENDIAN)
3232 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3233 if (BYTES_BIG_ENDIAN)
3234 offset += difference % UNITS_PER_WORD;
3236 if (offset >= GET_MODE_SIZE (innermostmode)
3237 || offset <= -GET_MODE_SIZE (word_mode))
3238 return true;
3239 return false;
3242 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3243 MODE is any multi-word or full-word mode that lacks a move_insn
3244 pattern. Note that you will get better code if you define such
3245 patterns, even if they must turn into multiple assembler instructions. */
3247 static rtx
3248 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3250 rtx last_insn = 0;
3251 rtx seq, inner;
3252 bool need_clobber;
3253 int i;
3255 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3257 /* If X is a push on the stack, do the push now and replace
3258 X with a reference to the stack pointer. */
3259 if (push_operand (x, mode))
3260 x = emit_move_resolve_push (mode, x);
3262 /* If we are in reload, see if either operand is a MEM whose address
3263 is scheduled for replacement. */
3264 if (reload_in_progress && MEM_P (x)
3265 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3266 x = replace_equiv_address_nv (x, inner);
3267 if (reload_in_progress && MEM_P (y)
3268 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3269 y = replace_equiv_address_nv (y, inner);
3271 start_sequence ();
3273 need_clobber = false;
3274 for (i = 0;
3275 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3276 i++)
3278 rtx xpart = operand_subword (x, i, 1, mode);
3279 rtx ypart;
3281 /* Do not generate code for a move if it would come entirely
3282 from the undefined bits of a paradoxical subreg. */
3283 if (undefined_operand_subword_p (y, i))
3284 continue;
3286 ypart = operand_subword (y, i, 1, mode);
3288 /* If we can't get a part of Y, put Y into memory if it is a
3289 constant. Otherwise, force it into a register. Then we must
3290 be able to get a part of Y. */
3291 if (ypart == 0 && CONSTANT_P (y))
3293 y = use_anchored_address (force_const_mem (mode, y));
3294 ypart = operand_subword (y, i, 1, mode);
3296 else if (ypart == 0)
3297 ypart = operand_subword_force (y, i, mode);
3299 gcc_assert (xpart && ypart);
3301 need_clobber |= (GET_CODE (xpart) == SUBREG);
3303 last_insn = emit_move_insn (xpart, ypart);
3306 seq = get_insns ();
3307 end_sequence ();
3309 /* Show the output dies here. This is necessary for SUBREGs
3310 of pseudos since we cannot track their lifetimes correctly;
3311 hard regs shouldn't appear here except as return values.
3312 We never want to emit such a clobber after reload. */
3313 if (x != y
3314 && ! (reload_in_progress || reload_completed)
3315 && need_clobber != 0)
3316 emit_clobber (x);
3318 emit_insn (seq);
3320 return last_insn;
3323 /* Low level part of emit_move_insn.
3324 Called just like emit_move_insn, but assumes X and Y
3325 are basically valid. */
3328 emit_move_insn_1 (rtx x, rtx y)
3330 enum machine_mode mode = GET_MODE (x);
3331 enum insn_code code;
3333 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3335 code = optab_handler (mov_optab, mode);
3336 if (code != CODE_FOR_nothing)
3337 return emit_insn (GEN_FCN (code) (x, y));
3339 /* Expand complex moves by moving real part and imag part. */
3340 if (COMPLEX_MODE_P (mode))
3341 return emit_move_complex (mode, x, y);
3343 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3344 || ALL_FIXED_POINT_MODE_P (mode))
3346 rtx result = emit_move_via_integer (mode, x, y, true);
3348 /* If we can't find an integer mode, use multi words. */
3349 if (result)
3350 return result;
3351 else
3352 return emit_move_multi_word (mode, x, y);
3355 if (GET_MODE_CLASS (mode) == MODE_CC)
3356 return emit_move_ccmode (mode, x, y);
3358 /* Try using a move pattern for the corresponding integer mode. This is
3359 only safe when simplify_subreg can convert MODE constants into integer
3360 constants. At present, it can only do this reliably if the value
3361 fits within a HOST_WIDE_INT. */
3362 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3364 rtx ret = emit_move_via_integer (mode, x, y, false);
3365 if (ret)
3366 return ret;
3369 return emit_move_multi_word (mode, x, y);
3372 /* Generate code to copy Y into X.
3373 Both Y and X must have the same mode, except that
3374 Y can be a constant with VOIDmode.
3375 This mode cannot be BLKmode; use emit_block_move for that.
3377 Return the last instruction emitted. */
3380 emit_move_insn (rtx x, rtx y)
3382 enum machine_mode mode = GET_MODE (x);
3383 rtx y_cst = NULL_RTX;
3384 rtx last_insn, set;
3386 gcc_assert (mode != BLKmode
3387 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3389 if (CONSTANT_P (y))
3391 if (optimize
3392 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3393 && (last_insn = compress_float_constant (x, y)))
3394 return last_insn;
3396 y_cst = y;
3398 if (!LEGITIMATE_CONSTANT_P (y))
3400 y = force_const_mem (mode, y);
3402 /* If the target's cannot_force_const_mem prevented the spill,
3403 assume that the target's move expanders will also take care
3404 of the non-legitimate constant. */
3405 if (!y)
3406 y = y_cst;
3407 else
3408 y = use_anchored_address (y);
3412 /* If X or Y are memory references, verify that their addresses are valid
3413 for the machine. */
3414 if (MEM_P (x)
3415 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3416 MEM_ADDR_SPACE (x))
3417 && ! push_operand (x, GET_MODE (x))))
3418 x = validize_mem (x);
3420 if (MEM_P (y)
3421 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3422 MEM_ADDR_SPACE (y)))
3423 y = validize_mem (y);
3425 gcc_assert (mode != BLKmode);
3427 last_insn = emit_move_insn_1 (x, y);
3429 if (y_cst && REG_P (x)
3430 && (set = single_set (last_insn)) != NULL_RTX
3431 && SET_DEST (set) == x
3432 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3433 set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
3435 return last_insn;
3438 /* If Y is representable exactly in a narrower mode, and the target can
3439 perform the extension directly from constant or memory, then emit the
3440 move as an extension. */
3442 static rtx
3443 compress_float_constant (rtx x, rtx y)
3445 enum machine_mode dstmode = GET_MODE (x);
3446 enum machine_mode orig_srcmode = GET_MODE (y);
3447 enum machine_mode srcmode;
3448 REAL_VALUE_TYPE r;
3449 int oldcost, newcost;
3450 bool speed = optimize_insn_for_speed_p ();
3452 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3454 if (LEGITIMATE_CONSTANT_P (y))
3455 oldcost = rtx_cost (y, SET, speed);
3456 else
3457 oldcost = rtx_cost (force_const_mem (dstmode, y), SET, speed);
3459 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3460 srcmode != orig_srcmode;
3461 srcmode = GET_MODE_WIDER_MODE (srcmode))
3463 enum insn_code ic;
3464 rtx trunc_y, last_insn;
3466 /* Skip if the target can't extend this way. */
3467 ic = can_extend_p (dstmode, srcmode, 0);
3468 if (ic == CODE_FOR_nothing)
3469 continue;
3471 /* Skip if the narrowed value isn't exact. */
3472 if (! exact_real_truncate (srcmode, &r))
3473 continue;
3475 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3477 if (LEGITIMATE_CONSTANT_P (trunc_y))
3479 /* Skip if the target needs extra instructions to perform
3480 the extension. */
3481 if (! (*insn_data[ic].operand[1].predicate) (trunc_y, srcmode))
3482 continue;
3483 /* This is valid, but may not be cheaper than the original. */
3484 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3485 if (oldcost < newcost)
3486 continue;
3488 else if (float_extend_from_mem[dstmode][srcmode])
3490 trunc_y = force_const_mem (srcmode, trunc_y);
3491 /* This is valid, but may not be cheaper than the original. */
3492 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3493 if (oldcost < newcost)
3494 continue;
3495 trunc_y = validize_mem (trunc_y);
3497 else
3498 continue;
3500 /* For CSE's benefit, force the compressed constant pool entry
3501 into a new pseudo. This constant may be used in different modes,
3502 and if not, combine will put things back together for us. */
3503 trunc_y = force_reg (srcmode, trunc_y);
3504 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3505 last_insn = get_last_insn ();
3507 if (REG_P (x))
3508 set_unique_reg_note (last_insn, REG_EQUAL, y);
3510 return last_insn;
3513 return NULL_RTX;
3516 /* Pushing data onto the stack. */
3518 /* Push a block of length SIZE (perhaps variable)
3519 and return an rtx to address the beginning of the block.
3520 The value may be virtual_outgoing_args_rtx.
3522 EXTRA is the number of bytes of padding to push in addition to SIZE.
3523 BELOW nonzero means this padding comes at low addresses;
3524 otherwise, the padding comes at high addresses. */
3527 push_block (rtx size, int extra, int below)
3529 rtx temp;
3531 size = convert_modes (Pmode, ptr_mode, size, 1);
3532 if (CONSTANT_P (size))
3533 anti_adjust_stack (plus_constant (size, extra));
3534 else if (REG_P (size) && extra == 0)
3535 anti_adjust_stack (size);
3536 else
3538 temp = copy_to_mode_reg (Pmode, size);
3539 if (extra != 0)
3540 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3541 temp, 0, OPTAB_LIB_WIDEN);
3542 anti_adjust_stack (temp);
3545 #ifndef STACK_GROWS_DOWNWARD
3546 if (0)
3547 #else
3548 if (1)
3549 #endif
3551 temp = virtual_outgoing_args_rtx;
3552 if (extra != 0 && below)
3553 temp = plus_constant (temp, extra);
3555 else
3557 if (CONST_INT_P (size))
3558 temp = plus_constant (virtual_outgoing_args_rtx,
3559 -INTVAL (size) - (below ? 0 : extra));
3560 else if (extra != 0 && !below)
3561 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3562 negate_rtx (Pmode, plus_constant (size, extra)));
3563 else
3564 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3565 negate_rtx (Pmode, size));
3568 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3571 #ifdef PUSH_ROUNDING
3573 /* Emit single push insn. */
3575 static void
3576 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3578 rtx dest_addr;
3579 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3580 rtx dest;
3581 enum insn_code icode;
3582 insn_operand_predicate_fn pred;
3584 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3585 /* If there is push pattern, use it. Otherwise try old way of throwing
3586 MEM representing push operation to move expander. */
3587 icode = optab_handler (push_optab, mode);
3588 if (icode != CODE_FOR_nothing)
3590 if (((pred = insn_data[(int) icode].operand[0].predicate)
3591 && !((*pred) (x, mode))))
3592 x = force_reg (mode, x);
3593 emit_insn (GEN_FCN (icode) (x));
3594 return;
3596 if (GET_MODE_SIZE (mode) == rounded_size)
3597 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3598 /* If we are to pad downward, adjust the stack pointer first and
3599 then store X into the stack location using an offset. This is
3600 because emit_move_insn does not know how to pad; it does not have
3601 access to type. */
3602 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3604 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3605 HOST_WIDE_INT offset;
3607 emit_move_insn (stack_pointer_rtx,
3608 expand_binop (Pmode,
3609 #ifdef STACK_GROWS_DOWNWARD
3610 sub_optab,
3611 #else
3612 add_optab,
3613 #endif
3614 stack_pointer_rtx,
3615 GEN_INT (rounded_size),
3616 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3618 offset = (HOST_WIDE_INT) padding_size;
3619 #ifdef STACK_GROWS_DOWNWARD
3620 if (STACK_PUSH_CODE == POST_DEC)
3621 /* We have already decremented the stack pointer, so get the
3622 previous value. */
3623 offset += (HOST_WIDE_INT) rounded_size;
3624 #else
3625 if (STACK_PUSH_CODE == POST_INC)
3626 /* We have already incremented the stack pointer, so get the
3627 previous value. */
3628 offset -= (HOST_WIDE_INT) rounded_size;
3629 #endif
3630 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3632 else
3634 #ifdef STACK_GROWS_DOWNWARD
3635 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3636 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3637 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3638 #else
3639 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3640 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3641 GEN_INT (rounded_size));
3642 #endif
3643 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3646 dest = gen_rtx_MEM (mode, dest_addr);
3648 if (type != 0)
3650 set_mem_attributes (dest, type, 1);
3652 if (flag_optimize_sibling_calls)
3653 /* Function incoming arguments may overlap with sibling call
3654 outgoing arguments and we cannot allow reordering of reads
3655 from function arguments with stores to outgoing arguments
3656 of sibling calls. */
3657 set_mem_alias_set (dest, 0);
3659 emit_move_insn (dest, x);
3661 #endif
3663 /* Generate code to push X onto the stack, assuming it has mode MODE and
3664 type TYPE.
3665 MODE is redundant except when X is a CONST_INT (since they don't
3666 carry mode info).
3667 SIZE is an rtx for the size of data to be copied (in bytes),
3668 needed only if X is BLKmode.
3670 ALIGN (in bits) is maximum alignment we can assume.
3672 If PARTIAL and REG are both nonzero, then copy that many of the first
3673 bytes of X into registers starting with REG, and push the rest of X.
3674 The amount of space pushed is decreased by PARTIAL bytes.
3675 REG must be a hard register in this case.
3676 If REG is zero but PARTIAL is not, take any all others actions for an
3677 argument partially in registers, but do not actually load any
3678 registers.
3680 EXTRA is the amount in bytes of extra space to leave next to this arg.
3681 This is ignored if an argument block has already been allocated.
3683 On a machine that lacks real push insns, ARGS_ADDR is the address of
3684 the bottom of the argument block for this call. We use indexing off there
3685 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3686 argument block has not been preallocated.
3688 ARGS_SO_FAR is the size of args previously pushed for this call.
3690 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3691 for arguments passed in registers. If nonzero, it will be the number
3692 of bytes required. */
3694 void
3695 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3696 unsigned int align, int partial, rtx reg, int extra,
3697 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3698 rtx alignment_pad)
3700 rtx xinner;
3701 enum direction stack_direction
3702 #ifdef STACK_GROWS_DOWNWARD
3703 = downward;
3704 #else
3705 = upward;
3706 #endif
3708 /* Decide where to pad the argument: `downward' for below,
3709 `upward' for above, or `none' for don't pad it.
3710 Default is below for small data on big-endian machines; else above. */
3711 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3713 /* Invert direction if stack is post-decrement.
3714 FIXME: why? */
3715 if (STACK_PUSH_CODE == POST_DEC)
3716 if (where_pad != none)
3717 where_pad = (where_pad == downward ? upward : downward);
3719 xinner = x;
3721 if (mode == BLKmode
3722 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
3724 /* Copy a block into the stack, entirely or partially. */
3726 rtx temp;
3727 int used;
3728 int offset;
3729 int skip;
3731 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3732 used = partial - offset;
3734 if (mode != BLKmode)
3736 /* A value is to be stored in an insufficiently aligned
3737 stack slot; copy via a suitably aligned slot if
3738 necessary. */
3739 size = GEN_INT (GET_MODE_SIZE (mode));
3740 if (!MEM_P (xinner))
3742 temp = assign_temp (type, 0, 1, 1);
3743 emit_move_insn (temp, xinner);
3744 xinner = temp;
3748 gcc_assert (size);
3750 /* USED is now the # of bytes we need not copy to the stack
3751 because registers will take care of them. */
3753 if (partial != 0)
3754 xinner = adjust_address (xinner, BLKmode, used);
3756 /* If the partial register-part of the arg counts in its stack size,
3757 skip the part of stack space corresponding to the registers.
3758 Otherwise, start copying to the beginning of the stack space,
3759 by setting SKIP to 0. */
3760 skip = (reg_parm_stack_space == 0) ? 0 : used;
3762 #ifdef PUSH_ROUNDING
3763 /* Do it with several push insns if that doesn't take lots of insns
3764 and if there is no difficulty with push insns that skip bytes
3765 on the stack for alignment purposes. */
3766 if (args_addr == 0
3767 && PUSH_ARGS
3768 && CONST_INT_P (size)
3769 && skip == 0
3770 && MEM_ALIGN (xinner) >= align
3771 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
3772 /* Here we avoid the case of a structure whose weak alignment
3773 forces many pushes of a small amount of data,
3774 and such small pushes do rounding that causes trouble. */
3775 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
3776 || align >= BIGGEST_ALIGNMENT
3777 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
3778 == (align / BITS_PER_UNIT)))
3779 && (HOST_WIDE_INT) PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
3781 /* Push padding now if padding above and stack grows down,
3782 or if padding below and stack grows up.
3783 But if space already allocated, this has already been done. */
3784 if (extra && args_addr == 0
3785 && where_pad != none && where_pad != stack_direction)
3786 anti_adjust_stack (GEN_INT (extra));
3788 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
3790 else
3791 #endif /* PUSH_ROUNDING */
3793 rtx target;
3795 /* Otherwise make space on the stack and copy the data
3796 to the address of that space. */
3798 /* Deduct words put into registers from the size we must copy. */
3799 if (partial != 0)
3801 if (CONST_INT_P (size))
3802 size = GEN_INT (INTVAL (size) - used);
3803 else
3804 size = expand_binop (GET_MODE (size), sub_optab, size,
3805 GEN_INT (used), NULL_RTX, 0,
3806 OPTAB_LIB_WIDEN);
3809 /* Get the address of the stack space.
3810 In this case, we do not deal with EXTRA separately.
3811 A single stack adjust will do. */
3812 if (! args_addr)
3814 temp = push_block (size, extra, where_pad == downward);
3815 extra = 0;
3817 else if (CONST_INT_P (args_so_far))
3818 temp = memory_address (BLKmode,
3819 plus_constant (args_addr,
3820 skip + INTVAL (args_so_far)));
3821 else
3822 temp = memory_address (BLKmode,
3823 plus_constant (gen_rtx_PLUS (Pmode,
3824 args_addr,
3825 args_so_far),
3826 skip));
3828 if (!ACCUMULATE_OUTGOING_ARGS)
3830 /* If the source is referenced relative to the stack pointer,
3831 copy it to another register to stabilize it. We do not need
3832 to do this if we know that we won't be changing sp. */
3834 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3835 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3836 temp = copy_to_reg (temp);
3839 target = gen_rtx_MEM (BLKmode, temp);
3841 /* We do *not* set_mem_attributes here, because incoming arguments
3842 may overlap with sibling call outgoing arguments and we cannot
3843 allow reordering of reads from function arguments with stores
3844 to outgoing arguments of sibling calls. We do, however, want
3845 to record the alignment of the stack slot. */
3846 /* ALIGN may well be better aligned than TYPE, e.g. due to
3847 PARM_BOUNDARY. Assume the caller isn't lying. */
3848 set_mem_align (target, align);
3850 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
3853 else if (partial > 0)
3855 /* Scalar partly in registers. */
3857 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
3858 int i;
3859 int not_stack;
3860 /* # bytes of start of argument
3861 that we must make space for but need not store. */
3862 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3863 int args_offset = INTVAL (args_so_far);
3864 int skip;
3866 /* Push padding now if padding above and stack grows down,
3867 or if padding below and stack grows up.
3868 But if space already allocated, this has already been done. */
3869 if (extra && args_addr == 0
3870 && where_pad != none && where_pad != stack_direction)
3871 anti_adjust_stack (GEN_INT (extra));
3873 /* If we make space by pushing it, we might as well push
3874 the real data. Otherwise, we can leave OFFSET nonzero
3875 and leave the space uninitialized. */
3876 if (args_addr == 0)
3877 offset = 0;
3879 /* Now NOT_STACK gets the number of words that we don't need to
3880 allocate on the stack. Convert OFFSET to words too. */
3881 not_stack = (partial - offset) / UNITS_PER_WORD;
3882 offset /= UNITS_PER_WORD;
3884 /* If the partial register-part of the arg counts in its stack size,
3885 skip the part of stack space corresponding to the registers.
3886 Otherwise, start copying to the beginning of the stack space,
3887 by setting SKIP to 0. */
3888 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
3890 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
3891 x = validize_mem (force_const_mem (mode, x));
3893 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3894 SUBREGs of such registers are not allowed. */
3895 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3896 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
3897 x = copy_to_reg (x);
3899 /* Loop over all the words allocated on the stack for this arg. */
3900 /* We can do it by words, because any scalar bigger than a word
3901 has a size a multiple of a word. */
3902 #ifndef PUSH_ARGS_REVERSED
3903 for (i = not_stack; i < size; i++)
3904 #else
3905 for (i = size - 1; i >= not_stack; i--)
3906 #endif
3907 if (i >= not_stack + offset)
3908 emit_push_insn (operand_subword_force (x, i, mode),
3909 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
3910 0, args_addr,
3911 GEN_INT (args_offset + ((i - not_stack + skip)
3912 * UNITS_PER_WORD)),
3913 reg_parm_stack_space, alignment_pad);
3915 else
3917 rtx addr;
3918 rtx dest;
3920 /* Push padding now if padding above and stack grows down,
3921 or if padding below and stack grows up.
3922 But if space already allocated, this has already been done. */
3923 if (extra && args_addr == 0
3924 && where_pad != none && where_pad != stack_direction)
3925 anti_adjust_stack (GEN_INT (extra));
3927 #ifdef PUSH_ROUNDING
3928 if (args_addr == 0 && PUSH_ARGS)
3929 emit_single_push_insn (mode, x, type);
3930 else
3931 #endif
3933 if (CONST_INT_P (args_so_far))
3934 addr
3935 = memory_address (mode,
3936 plus_constant (args_addr,
3937 INTVAL (args_so_far)));
3938 else
3939 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
3940 args_so_far));
3941 dest = gen_rtx_MEM (mode, addr);
3943 /* We do *not* set_mem_attributes here, because incoming arguments
3944 may overlap with sibling call outgoing arguments and we cannot
3945 allow reordering of reads from function arguments with stores
3946 to outgoing arguments of sibling calls. We do, however, want
3947 to record the alignment of the stack slot. */
3948 /* ALIGN may well be better aligned than TYPE, e.g. due to
3949 PARM_BOUNDARY. Assume the caller isn't lying. */
3950 set_mem_align (dest, align);
3952 emit_move_insn (dest, x);
3956 /* If part should go in registers, copy that part
3957 into the appropriate registers. Do this now, at the end,
3958 since mem-to-mem copies above may do function calls. */
3959 if (partial > 0 && reg != 0)
3961 /* Handle calls that pass values in multiple non-contiguous locations.
3962 The Irix 6 ABI has examples of this. */
3963 if (GET_CODE (reg) == PARALLEL)
3964 emit_group_load (reg, x, type, -1);
3965 else
3967 gcc_assert (partial % UNITS_PER_WORD == 0);
3968 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
3972 if (extra && args_addr == 0 && where_pad == stack_direction)
3973 anti_adjust_stack (GEN_INT (extra));
3975 if (alignment_pad && args_addr == 0)
3976 anti_adjust_stack (alignment_pad);
3979 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3980 operations. */
3982 static rtx
3983 get_subtarget (rtx x)
3985 return (optimize
3986 || x == 0
3987 /* Only registers can be subtargets. */
3988 || !REG_P (x)
3989 /* Don't use hard regs to avoid extending their life. */
3990 || REGNO (x) < FIRST_PSEUDO_REGISTER
3991 ? 0 : x);
3994 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
3995 FIELD is a bitfield. Returns true if the optimization was successful,
3996 and there's nothing else to do. */
3998 static bool
3999 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
4000 unsigned HOST_WIDE_INT bitpos,
4001 enum machine_mode mode1, rtx str_rtx,
4002 tree to, tree src)
4004 enum machine_mode str_mode = GET_MODE (str_rtx);
4005 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
4006 tree op0, op1;
4007 rtx value, result;
4008 optab binop;
4010 if (mode1 != VOIDmode
4011 || bitsize >= BITS_PER_WORD
4012 || str_bitsize > BITS_PER_WORD
4013 || TREE_SIDE_EFFECTS (to)
4014 || TREE_THIS_VOLATILE (to))
4015 return false;
4017 STRIP_NOPS (src);
4018 if (!BINARY_CLASS_P (src)
4019 || TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4020 return false;
4022 op0 = TREE_OPERAND (src, 0);
4023 op1 = TREE_OPERAND (src, 1);
4024 STRIP_NOPS (op0);
4026 if (!operand_equal_p (to, op0, 0))
4027 return false;
4029 if (MEM_P (str_rtx))
4031 unsigned HOST_WIDE_INT offset1;
4033 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4034 str_mode = word_mode;
4035 str_mode = get_best_mode (bitsize, bitpos,
4036 MEM_ALIGN (str_rtx), str_mode, 0);
4037 if (str_mode == VOIDmode)
4038 return false;
4039 str_bitsize = GET_MODE_BITSIZE (str_mode);
4041 offset1 = bitpos;
4042 bitpos %= str_bitsize;
4043 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4044 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4046 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4047 return false;
4049 /* If the bit field covers the whole REG/MEM, store_field
4050 will likely generate better code. */
4051 if (bitsize >= str_bitsize)
4052 return false;
4054 /* We can't handle fields split across multiple entities. */
4055 if (bitpos + bitsize > str_bitsize)
4056 return false;
4058 if (BYTES_BIG_ENDIAN)
4059 bitpos = str_bitsize - bitpos - bitsize;
4061 switch (TREE_CODE (src))
4063 case PLUS_EXPR:
4064 case MINUS_EXPR:
4065 /* For now, just optimize the case of the topmost bitfield
4066 where we don't need to do any masking and also
4067 1 bit bitfields where xor can be used.
4068 We might win by one instruction for the other bitfields
4069 too if insv/extv instructions aren't used, so that
4070 can be added later. */
4071 if (bitpos + bitsize != str_bitsize
4072 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4073 break;
4075 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4076 value = convert_modes (str_mode,
4077 TYPE_MODE (TREE_TYPE (op1)), value,
4078 TYPE_UNSIGNED (TREE_TYPE (op1)));
4080 /* We may be accessing data outside the field, which means
4081 we can alias adjacent data. */
4082 if (MEM_P (str_rtx))
4084 str_rtx = shallow_copy_rtx (str_rtx);
4085 set_mem_alias_set (str_rtx, 0);
4086 set_mem_expr (str_rtx, 0);
4089 binop = TREE_CODE (src) == PLUS_EXPR ? add_optab : sub_optab;
4090 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
4092 value = expand_and (str_mode, value, const1_rtx, NULL);
4093 binop = xor_optab;
4095 value = expand_shift (LSHIFT_EXPR, str_mode, value,
4096 build_int_cst (NULL_TREE, bitpos),
4097 NULL_RTX, 1);
4098 result = expand_binop (str_mode, binop, str_rtx,
4099 value, str_rtx, 1, OPTAB_WIDEN);
4100 if (result != str_rtx)
4101 emit_move_insn (str_rtx, result);
4102 return true;
4104 case BIT_IOR_EXPR:
4105 case BIT_XOR_EXPR:
4106 if (TREE_CODE (op1) != INTEGER_CST)
4107 break;
4108 value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), EXPAND_NORMAL);
4109 value = convert_modes (GET_MODE (str_rtx),
4110 TYPE_MODE (TREE_TYPE (op1)), value,
4111 TYPE_UNSIGNED (TREE_TYPE (op1)));
4113 /* We may be accessing data outside the field, which means
4114 we can alias adjacent data. */
4115 if (MEM_P (str_rtx))
4117 str_rtx = shallow_copy_rtx (str_rtx);
4118 set_mem_alias_set (str_rtx, 0);
4119 set_mem_expr (str_rtx, 0);
4122 binop = TREE_CODE (src) == BIT_IOR_EXPR ? ior_optab : xor_optab;
4123 if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
4125 rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
4126 - 1);
4127 value = expand_and (GET_MODE (str_rtx), value, mask,
4128 NULL_RTX);
4130 value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
4131 build_int_cst (NULL_TREE, bitpos),
4132 NULL_RTX, 1);
4133 result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
4134 value, str_rtx, 1, OPTAB_WIDEN);
4135 if (result != str_rtx)
4136 emit_move_insn (str_rtx, result);
4137 return true;
4139 default:
4140 break;
4143 return false;
4147 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4148 is true, try generating a nontemporal store. */
4150 void
4151 expand_assignment (tree to, tree from, bool nontemporal)
4153 rtx to_rtx = 0;
4154 rtx result;
4155 enum machine_mode mode;
4156 int align, icode;
4158 /* Don't crash if the lhs of the assignment was erroneous. */
4159 if (TREE_CODE (to) == ERROR_MARK)
4161 result = expand_normal (from);
4162 return;
4165 /* Optimize away no-op moves without side-effects. */
4166 if (operand_equal_p (to, from, 0))
4167 return;
4169 mode = TYPE_MODE (TREE_TYPE (to));
4170 if ((TREE_CODE (to) == MEM_REF
4171 || TREE_CODE (to) == TARGET_MEM_REF)
4172 && mode != BLKmode
4173 && ((align = MAX (TYPE_ALIGN (TREE_TYPE (to)),
4174 get_object_alignment (to, BIGGEST_ALIGNMENT)))
4175 < (signed) GET_MODE_ALIGNMENT (mode))
4176 && ((icode = optab_handler (movmisalign_optab, mode))
4177 != CODE_FOR_nothing))
4179 enum machine_mode address_mode, op_mode1;
4180 rtx insn, reg, op0, mem;
4182 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4183 reg = force_not_mem (reg);
4185 if (TREE_CODE (to) == MEM_REF)
4187 addr_space_t as
4188 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (to, 1))));
4189 tree base = TREE_OPERAND (to, 0);
4190 address_mode = targetm.addr_space.address_mode (as);
4191 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4192 op0 = convert_memory_address_addr_space (address_mode, op0, as);
4193 if (!integer_zerop (TREE_OPERAND (to, 1)))
4195 rtx off
4196 = immed_double_int_const (mem_ref_offset (to), address_mode);
4197 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
4199 op0 = memory_address_addr_space (mode, op0, as);
4200 mem = gen_rtx_MEM (mode, op0);
4201 set_mem_attributes (mem, to, 0);
4202 set_mem_addr_space (mem, as);
4204 else if (TREE_CODE (to) == TARGET_MEM_REF)
4206 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (to));
4207 struct mem_address addr;
4209 get_address_description (to, &addr);
4210 op0 = addr_for_mem_ref (&addr, as, true);
4211 op0 = memory_address_addr_space (mode, op0, as);
4212 mem = gen_rtx_MEM (mode, op0);
4213 set_mem_attributes (mem, to, 0);
4214 set_mem_addr_space (mem, as);
4216 else
4217 gcc_unreachable ();
4218 if (TREE_THIS_VOLATILE (to))
4219 MEM_VOLATILE_P (mem) = 1;
4221 op_mode1 = insn_data[icode].operand[1].mode;
4222 if (! (*insn_data[icode].operand[1].predicate) (reg, op_mode1)
4223 && op_mode1 != VOIDmode)
4224 reg = copy_to_mode_reg (op_mode1, reg);
4226 insn = GEN_FCN (icode) (mem, reg);
4227 /* The movmisalign<mode> pattern cannot fail, else the assignment would
4228 silently be omitted. */
4229 gcc_assert (insn != NULL_RTX);
4230 emit_insn (insn);
4231 return;
4234 /* Assignment of a structure component needs special treatment
4235 if the structure component's rtx is not simply a MEM.
4236 Assignment of an array element at a constant index, and assignment of
4237 an array element in an unaligned packed structure field, has the same
4238 problem. */
4239 if (handled_component_p (to)
4240 /* ??? We only need to handle MEM_REF here if the access is not
4241 a full access of the base object. */
4242 || (TREE_CODE (to) == MEM_REF
4243 && TREE_CODE (TREE_OPERAND (to, 0)) == ADDR_EXPR)
4244 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4246 enum machine_mode mode1;
4247 HOST_WIDE_INT bitsize, bitpos;
4248 tree offset;
4249 int unsignedp;
4250 int volatilep = 0;
4251 tree tem;
4253 push_temp_slots ();
4254 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4255 &unsignedp, &volatilep, true);
4257 /* If we are going to use store_bit_field and extract_bit_field,
4258 make sure to_rtx will be safe for multiple use. */
4260 to_rtx = expand_normal (tem);
4262 /* If the bitfield is volatile, we want to access it in the
4263 field's mode, not the computed mode.
4264 If a MEM has VOIDmode (external with incomplete type),
4265 use BLKmode for it instead. */
4266 if (MEM_P (to_rtx))
4268 if (volatilep && flag_strict_volatile_bitfields > 0)
4269 to_rtx = adjust_address (to_rtx, mode1, 0);
4270 else if (GET_MODE (to_rtx) == VOIDmode)
4271 to_rtx = adjust_address (to_rtx, BLKmode, 0);
4274 if (offset != 0)
4276 enum machine_mode address_mode;
4277 rtx offset_rtx;
4279 if (!MEM_P (to_rtx))
4281 /* We can get constant negative offsets into arrays with broken
4282 user code. Translate this to a trap instead of ICEing. */
4283 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4284 expand_builtin_trap ();
4285 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4288 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4289 address_mode
4290 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
4291 if (GET_MODE (offset_rtx) != address_mode)
4292 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
4294 /* A constant address in TO_RTX can have VOIDmode, we must not try
4295 to call force_reg for that case. Avoid that case. */
4296 if (MEM_P (to_rtx)
4297 && GET_MODE (to_rtx) == BLKmode
4298 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
4299 && bitsize > 0
4300 && (bitpos % bitsize) == 0
4301 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4302 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
4304 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4305 bitpos = 0;
4308 to_rtx = offset_address (to_rtx, offset_rtx,
4309 highest_pow2_factor_for_target (to,
4310 offset));
4313 /* No action is needed if the target is not a memory and the field
4314 lies completely outside that target. This can occur if the source
4315 code contains an out-of-bounds access to a small array. */
4316 if (!MEM_P (to_rtx)
4317 && GET_MODE (to_rtx) != BLKmode
4318 && (unsigned HOST_WIDE_INT) bitpos
4319 >= GET_MODE_BITSIZE (GET_MODE (to_rtx)))
4321 expand_normal (from);
4322 result = NULL;
4324 /* Handle expand_expr of a complex value returning a CONCAT. */
4325 else if (GET_CODE (to_rtx) == CONCAT)
4327 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from))))
4329 gcc_assert (bitpos == 0);
4330 result = store_expr (from, to_rtx, false, nontemporal);
4332 else
4334 gcc_assert (bitpos == 0 || bitpos == GET_MODE_BITSIZE (mode1));
4335 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
4336 nontemporal);
4339 else
4341 if (MEM_P (to_rtx))
4343 /* If the field is at offset zero, we could have been given the
4344 DECL_RTX of the parent struct. Don't munge it. */
4345 to_rtx = shallow_copy_rtx (to_rtx);
4347 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4349 /* Deal with volatile and readonly fields. The former is only
4350 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4351 if (volatilep)
4352 MEM_VOLATILE_P (to_rtx) = 1;
4353 if (component_uses_parent_alias_set (to))
4354 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4357 if (optimize_bitfield_assignment_op (bitsize, bitpos, mode1,
4358 to_rtx, to, from))
4359 result = NULL;
4360 else
4361 result = store_field (to_rtx, bitsize, bitpos, mode1, from,
4362 TREE_TYPE (tem), get_alias_set (to),
4363 nontemporal);
4366 if (result)
4367 preserve_temp_slots (result);
4368 free_temp_slots ();
4369 pop_temp_slots ();
4370 return;
4373 /* If the rhs is a function call and its value is not an aggregate,
4374 call the function before we start to compute the lhs.
4375 This is needed for correct code for cases such as
4376 val = setjmp (buf) on machines where reference to val
4377 requires loading up part of an address in a separate insn.
4379 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4380 since it might be a promoted variable where the zero- or sign- extension
4381 needs to be done. Handling this in the normal way is safe because no
4382 computation is done before the call. The same is true for SSA names. */
4383 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
4384 && COMPLETE_TYPE_P (TREE_TYPE (from))
4385 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
4386 && ! (((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
4387 && REG_P (DECL_RTL (to)))
4388 || TREE_CODE (to) == SSA_NAME))
4390 rtx value;
4392 push_temp_slots ();
4393 value = expand_normal (from);
4394 if (to_rtx == 0)
4395 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4397 /* Handle calls that return values in multiple non-contiguous locations.
4398 The Irix 6 ABI has examples of this. */
4399 if (GET_CODE (to_rtx) == PARALLEL)
4400 emit_group_load (to_rtx, value, TREE_TYPE (from),
4401 int_size_in_bytes (TREE_TYPE (from)));
4402 else if (GET_MODE (to_rtx) == BLKmode)
4403 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
4404 else
4406 if (POINTER_TYPE_P (TREE_TYPE (to)))
4407 value = convert_memory_address_addr_space
4408 (GET_MODE (to_rtx), value,
4409 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
4411 emit_move_insn (to_rtx, value);
4413 preserve_temp_slots (to_rtx);
4414 free_temp_slots ();
4415 pop_temp_slots ();
4416 return;
4419 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4420 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4422 if (to_rtx == 0)
4423 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4425 /* Don't move directly into a return register. */
4426 if (TREE_CODE (to) == RESULT_DECL
4427 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
4429 rtx temp;
4431 push_temp_slots ();
4432 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
4434 if (GET_CODE (to_rtx) == PARALLEL)
4435 emit_group_load (to_rtx, temp, TREE_TYPE (from),
4436 int_size_in_bytes (TREE_TYPE (from)));
4437 else
4438 emit_move_insn (to_rtx, temp);
4440 preserve_temp_slots (to_rtx);
4441 free_temp_slots ();
4442 pop_temp_slots ();
4443 return;
4446 /* In case we are returning the contents of an object which overlaps
4447 the place the value is being stored, use a safe function when copying
4448 a value through a pointer into a structure value return block. */
4449 if (TREE_CODE (to) == RESULT_DECL
4450 && TREE_CODE (from) == INDIRECT_REF
4451 && ADDR_SPACE_GENERIC_P
4452 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
4453 && refs_may_alias_p (to, from)
4454 && cfun->returns_struct
4455 && !cfun->returns_pcc_struct)
4457 rtx from_rtx, size;
4459 push_temp_slots ();
4460 size = expr_size (from);
4461 from_rtx = expand_normal (from);
4463 emit_library_call (memmove_libfunc, LCT_NORMAL,
4464 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
4465 XEXP (from_rtx, 0), Pmode,
4466 convert_to_mode (TYPE_MODE (sizetype),
4467 size, TYPE_UNSIGNED (sizetype)),
4468 TYPE_MODE (sizetype));
4470 preserve_temp_slots (to_rtx);
4471 free_temp_slots ();
4472 pop_temp_slots ();
4473 return;
4476 /* Compute FROM and store the value in the rtx we got. */
4478 push_temp_slots ();
4479 result = store_expr (from, to_rtx, 0, nontemporal);
4480 preserve_temp_slots (result);
4481 free_temp_slots ();
4482 pop_temp_slots ();
4483 return;
4486 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
4487 succeeded, false otherwise. */
4489 bool
4490 emit_storent_insn (rtx to, rtx from)
4492 enum machine_mode mode = GET_MODE (to), imode;
4493 enum insn_code code = optab_handler (storent_optab, mode);
4494 rtx pattern;
4496 if (code == CODE_FOR_nothing)
4497 return false;
4499 imode = insn_data[code].operand[0].mode;
4500 if (!insn_data[code].operand[0].predicate (to, imode))
4501 return false;
4503 imode = insn_data[code].operand[1].mode;
4504 if (!insn_data[code].operand[1].predicate (from, imode))
4506 from = copy_to_mode_reg (imode, from);
4507 if (!insn_data[code].operand[1].predicate (from, imode))
4508 return false;
4511 pattern = GEN_FCN (code) (to, from);
4512 if (pattern == NULL_RTX)
4513 return false;
4515 emit_insn (pattern);
4516 return true;
4519 /* Generate code for computing expression EXP,
4520 and storing the value into TARGET.
4522 If the mode is BLKmode then we may return TARGET itself.
4523 It turns out that in BLKmode it doesn't cause a problem.
4524 because C has no operators that could combine two different
4525 assignments into the same BLKmode object with different values
4526 with no sequence point. Will other languages need this to
4527 be more thorough?
4529 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4530 stack, and block moves may need to be treated specially.
4532 If NONTEMPORAL is true, try using a nontemporal store instruction. */
4535 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal)
4537 rtx temp;
4538 rtx alt_rtl = NULL_RTX;
4539 location_t loc = EXPR_LOCATION (exp);
4541 if (VOID_TYPE_P (TREE_TYPE (exp)))
4543 /* C++ can generate ?: expressions with a throw expression in one
4544 branch and an rvalue in the other. Here, we resolve attempts to
4545 store the throw expression's nonexistent result. */
4546 gcc_assert (!call_param_p);
4547 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
4548 return NULL_RTX;
4550 if (TREE_CODE (exp) == COMPOUND_EXPR)
4552 /* Perform first part of compound expression, then assign from second
4553 part. */
4554 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
4555 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4556 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4557 nontemporal);
4559 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
4561 /* For conditional expression, get safe form of the target. Then
4562 test the condition, doing the appropriate assignment on either
4563 side. This avoids the creation of unnecessary temporaries.
4564 For non-BLKmode, it is more efficient not to do this. */
4566 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
4568 do_pending_stack_adjust ();
4569 NO_DEFER_POP;
4570 jumpifnot (TREE_OPERAND (exp, 0), lab1, -1);
4571 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4572 nontemporal);
4573 emit_jump_insn (gen_jump (lab2));
4574 emit_barrier ();
4575 emit_label (lab1);
4576 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
4577 nontemporal);
4578 emit_label (lab2);
4579 OK_DEFER_POP;
4581 return NULL_RTX;
4583 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
4584 /* If this is a scalar in a register that is stored in a wider mode
4585 than the declared mode, compute the result into its declared mode
4586 and then convert to the wider mode. Our value is the computed
4587 expression. */
4589 rtx inner_target = 0;
4591 /* We can do the conversion inside EXP, which will often result
4592 in some optimizations. Do the conversion in two steps: first
4593 change the signedness, if needed, then the extend. But don't
4594 do this if the type of EXP is a subtype of something else
4595 since then the conversion might involve more than just
4596 converting modes. */
4597 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
4598 && TREE_TYPE (TREE_TYPE (exp)) == 0
4599 && GET_MODE_PRECISION (GET_MODE (target))
4600 == TYPE_PRECISION (TREE_TYPE (exp)))
4602 if (TYPE_UNSIGNED (TREE_TYPE (exp))
4603 != SUBREG_PROMOTED_UNSIGNED_P (target))
4605 /* Some types, e.g. Fortran's logical*4, won't have a signed
4606 version, so use the mode instead. */
4607 tree ntype
4608 = (signed_or_unsigned_type_for
4609 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)));
4610 if (ntype == NULL)
4611 ntype = lang_hooks.types.type_for_mode
4612 (TYPE_MODE (TREE_TYPE (exp)),
4613 SUBREG_PROMOTED_UNSIGNED_P (target));
4615 exp = fold_convert_loc (loc, ntype, exp);
4618 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
4619 (GET_MODE (SUBREG_REG (target)),
4620 SUBREG_PROMOTED_UNSIGNED_P (target)),
4621 exp);
4623 inner_target = SUBREG_REG (target);
4626 temp = expand_expr (exp, inner_target, VOIDmode,
4627 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4629 /* If TEMP is a VOIDmode constant, use convert_modes to make
4630 sure that we properly convert it. */
4631 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
4633 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4634 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
4635 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
4636 GET_MODE (target), temp,
4637 SUBREG_PROMOTED_UNSIGNED_P (target));
4640 convert_move (SUBREG_REG (target), temp,
4641 SUBREG_PROMOTED_UNSIGNED_P (target));
4643 return NULL_RTX;
4645 else if ((TREE_CODE (exp) == STRING_CST
4646 || (TREE_CODE (exp) == MEM_REF
4647 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
4648 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
4649 == STRING_CST
4650 && integer_zerop (TREE_OPERAND (exp, 1))))
4651 && !nontemporal && !call_param_p
4652 && MEM_P (target))
4654 /* Optimize initialization of an array with a STRING_CST. */
4655 HOST_WIDE_INT exp_len, str_copy_len;
4656 rtx dest_mem;
4657 tree str = TREE_CODE (exp) == STRING_CST
4658 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
4660 exp_len = int_expr_size (exp);
4661 if (exp_len <= 0)
4662 goto normal_expr;
4664 if (TREE_STRING_LENGTH (str) <= 0)
4665 goto normal_expr;
4667 str_copy_len = strlen (TREE_STRING_POINTER (str));
4668 if (str_copy_len < TREE_STRING_LENGTH (str) - 1)
4669 goto normal_expr;
4671 str_copy_len = TREE_STRING_LENGTH (str);
4672 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0
4673 && TREE_STRING_POINTER (str)[TREE_STRING_LENGTH (str) - 1] == '\0')
4675 str_copy_len += STORE_MAX_PIECES - 1;
4676 str_copy_len &= ~(STORE_MAX_PIECES - 1);
4678 str_copy_len = MIN (str_copy_len, exp_len);
4679 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
4680 CONST_CAST (char *, TREE_STRING_POINTER (str)),
4681 MEM_ALIGN (target), false))
4682 goto normal_expr;
4684 dest_mem = target;
4686 dest_mem = store_by_pieces (dest_mem,
4687 str_copy_len, builtin_strncpy_read_str,
4688 CONST_CAST (char *,
4689 TREE_STRING_POINTER (str)),
4690 MEM_ALIGN (target), false,
4691 exp_len > str_copy_len ? 1 : 0);
4692 if (exp_len > str_copy_len)
4693 clear_storage (adjust_address (dest_mem, BLKmode, 0),
4694 GEN_INT (exp_len - str_copy_len),
4695 BLOCK_OP_NORMAL);
4696 return NULL_RTX;
4698 else
4700 rtx tmp_target;
4702 normal_expr:
4703 /* If we want to use a nontemporal store, force the value to
4704 register first. */
4705 tmp_target = nontemporal ? NULL_RTX : target;
4706 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
4707 (call_param_p
4708 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
4709 &alt_rtl);
4712 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4713 the same as that of TARGET, adjust the constant. This is needed, for
4714 example, in case it is a CONST_DOUBLE and we want only a word-sized
4715 value. */
4716 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
4717 && TREE_CODE (exp) != ERROR_MARK
4718 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
4719 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4720 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
4722 /* If value was not generated in the target, store it there.
4723 Convert the value to TARGET's type first if necessary and emit the
4724 pending incrementations that have been queued when expanding EXP.
4725 Note that we cannot emit the whole queue blindly because this will
4726 effectively disable the POST_INC optimization later.
4728 If TEMP and TARGET compare equal according to rtx_equal_p, but
4729 one or both of them are volatile memory refs, we have to distinguish
4730 two cases:
4731 - expand_expr has used TARGET. In this case, we must not generate
4732 another copy. This can be detected by TARGET being equal according
4733 to == .
4734 - expand_expr has not used TARGET - that means that the source just
4735 happens to have the same RTX form. Since temp will have been created
4736 by expand_expr, it will compare unequal according to == .
4737 We must generate a copy in this case, to reach the correct number
4738 of volatile memory references. */
4740 if ((! rtx_equal_p (temp, target)
4741 || (temp != target && (side_effects_p (temp)
4742 || side_effects_p (target))))
4743 && TREE_CODE (exp) != ERROR_MARK
4744 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4745 but TARGET is not valid memory reference, TEMP will differ
4746 from TARGET although it is really the same location. */
4747 && !(alt_rtl && rtx_equal_p (alt_rtl, target))
4748 /* If there's nothing to copy, don't bother. Don't call
4749 expr_size unless necessary, because some front-ends (C++)
4750 expr_size-hook must not be given objects that are not
4751 supposed to be bit-copied or bit-initialized. */
4752 && expr_size (exp) != const0_rtx)
4754 if (GET_MODE (temp) != GET_MODE (target)
4755 && GET_MODE (temp) != VOIDmode)
4757 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
4758 if (GET_MODE (target) == BLKmode
4759 && GET_MODE (temp) == BLKmode)
4760 emit_block_move (target, temp, expr_size (exp),
4761 (call_param_p
4762 ? BLOCK_OP_CALL_PARM
4763 : BLOCK_OP_NORMAL));
4764 else if (GET_MODE (target) == BLKmode)
4765 store_bit_field (target, INTVAL (expr_size (exp)) * BITS_PER_UNIT,
4766 0, GET_MODE (temp), temp);
4767 else
4768 convert_move (target, temp, unsignedp);
4771 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
4773 /* Handle copying a string constant into an array. The string
4774 constant may be shorter than the array. So copy just the string's
4775 actual length, and clear the rest. First get the size of the data
4776 type of the string, which is actually the size of the target. */
4777 rtx size = expr_size (exp);
4779 if (CONST_INT_P (size)
4780 && INTVAL (size) < TREE_STRING_LENGTH (exp))
4781 emit_block_move (target, temp, size,
4782 (call_param_p
4783 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4784 else
4786 enum machine_mode pointer_mode
4787 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
4788 enum machine_mode address_mode
4789 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (target));
4791 /* Compute the size of the data to copy from the string. */
4792 tree copy_size
4793 = size_binop_loc (loc, MIN_EXPR,
4794 make_tree (sizetype, size),
4795 size_int (TREE_STRING_LENGTH (exp)));
4796 rtx copy_size_rtx
4797 = expand_expr (copy_size, NULL_RTX, VOIDmode,
4798 (call_param_p
4799 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
4800 rtx label = 0;
4802 /* Copy that much. */
4803 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
4804 TYPE_UNSIGNED (sizetype));
4805 emit_block_move (target, temp, copy_size_rtx,
4806 (call_param_p
4807 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4809 /* Figure out how much is left in TARGET that we have to clear.
4810 Do all calculations in pointer_mode. */
4811 if (CONST_INT_P (copy_size_rtx))
4813 size = plus_constant (size, -INTVAL (copy_size_rtx));
4814 target = adjust_address (target, BLKmode,
4815 INTVAL (copy_size_rtx));
4817 else
4819 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
4820 copy_size_rtx, NULL_RTX, 0,
4821 OPTAB_LIB_WIDEN);
4823 if (GET_MODE (copy_size_rtx) != address_mode)
4824 copy_size_rtx = convert_to_mode (address_mode,
4825 copy_size_rtx,
4826 TYPE_UNSIGNED (sizetype));
4828 target = offset_address (target, copy_size_rtx,
4829 highest_pow2_factor (copy_size));
4830 label = gen_label_rtx ();
4831 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
4832 GET_MODE (size), 0, label);
4835 if (size != const0_rtx)
4836 clear_storage (target, size, BLOCK_OP_NORMAL);
4838 if (label)
4839 emit_label (label);
4842 /* Handle calls that return values in multiple non-contiguous locations.
4843 The Irix 6 ABI has examples of this. */
4844 else if (GET_CODE (target) == PARALLEL)
4845 emit_group_load (target, temp, TREE_TYPE (exp),
4846 int_size_in_bytes (TREE_TYPE (exp)));
4847 else if (GET_MODE (temp) == BLKmode)
4848 emit_block_move (target, temp, expr_size (exp),
4849 (call_param_p
4850 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4851 else if (nontemporal
4852 && emit_storent_insn (target, temp))
4853 /* If we managed to emit a nontemporal store, there is nothing else to
4854 do. */
4856 else
4858 temp = force_operand (temp, target);
4859 if (temp != target)
4860 emit_move_insn (target, temp);
4864 return NULL_RTX;
4867 /* Helper for categorize_ctor_elements. Identical interface. */
4869 static bool
4870 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4871 HOST_WIDE_INT *p_elt_count,
4872 bool *p_must_clear)
4874 unsigned HOST_WIDE_INT idx;
4875 HOST_WIDE_INT nz_elts, elt_count;
4876 tree value, purpose;
4878 /* Whether CTOR is a valid constant initializer, in accordance with what
4879 initializer_constant_valid_p does. If inferred from the constructor
4880 elements, true until proven otherwise. */
4881 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
4882 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
4884 nz_elts = 0;
4885 elt_count = 0;
4887 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
4889 HOST_WIDE_INT mult = 1;
4891 if (TREE_CODE (purpose) == RANGE_EXPR)
4893 tree lo_index = TREE_OPERAND (purpose, 0);
4894 tree hi_index = TREE_OPERAND (purpose, 1);
4896 if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
4897 mult = (tree_low_cst (hi_index, 1)
4898 - tree_low_cst (lo_index, 1) + 1);
4901 switch (TREE_CODE (value))
4903 case CONSTRUCTOR:
4905 HOST_WIDE_INT nz = 0, ic = 0;
4907 bool const_elt_p
4908 = categorize_ctor_elements_1 (value, &nz, &ic, p_must_clear);
4910 nz_elts += mult * nz;
4911 elt_count += mult * ic;
4913 if (const_from_elts_p && const_p)
4914 const_p = const_elt_p;
4916 break;
4918 case INTEGER_CST:
4919 case REAL_CST:
4920 case FIXED_CST:
4921 if (!initializer_zerop (value))
4922 nz_elts += mult;
4923 elt_count += mult;
4924 break;
4926 case STRING_CST:
4927 nz_elts += mult * TREE_STRING_LENGTH (value);
4928 elt_count += mult * TREE_STRING_LENGTH (value);
4929 break;
4931 case COMPLEX_CST:
4932 if (!initializer_zerop (TREE_REALPART (value)))
4933 nz_elts += mult;
4934 if (!initializer_zerop (TREE_IMAGPART (value)))
4935 nz_elts += mult;
4936 elt_count += mult;
4937 break;
4939 case VECTOR_CST:
4941 tree v;
4942 for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
4944 if (!initializer_zerop (TREE_VALUE (v)))
4945 nz_elts += mult;
4946 elt_count += mult;
4949 break;
4951 default:
4953 HOST_WIDE_INT tc = count_type_elements (TREE_TYPE (value), true);
4954 if (tc < 1)
4955 tc = 1;
4956 nz_elts += mult * tc;
4957 elt_count += mult * tc;
4959 if (const_from_elts_p && const_p)
4960 const_p = initializer_constant_valid_p (value, TREE_TYPE (value))
4961 != NULL_TREE;
4963 break;
4967 if (!*p_must_clear
4968 && (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE
4969 || TREE_CODE (TREE_TYPE (ctor)) == QUAL_UNION_TYPE))
4971 tree init_sub_type;
4972 bool clear_this = true;
4974 if (!VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (ctor)))
4976 /* We don't expect more than one element of the union to be
4977 initialized. Not sure what we should do otherwise... */
4978 gcc_assert (VEC_length (constructor_elt, CONSTRUCTOR_ELTS (ctor))
4979 == 1);
4981 init_sub_type = TREE_TYPE (VEC_index (constructor_elt,
4982 CONSTRUCTOR_ELTS (ctor),
4983 0)->value);
4985 /* ??? We could look at each element of the union, and find the
4986 largest element. Which would avoid comparing the size of the
4987 initialized element against any tail padding in the union.
4988 Doesn't seem worth the effort... */
4989 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor)),
4990 TYPE_SIZE (init_sub_type)) == 1)
4992 /* And now we have to find out if the element itself is fully
4993 constructed. E.g. for union { struct { int a, b; } s; } u
4994 = { .s = { .a = 1 } }. */
4995 if (elt_count == count_type_elements (init_sub_type, false))
4996 clear_this = false;
5000 *p_must_clear = clear_this;
5003 *p_nz_elts += nz_elts;
5004 *p_elt_count += elt_count;
5006 return const_p;
5009 /* Examine CTOR to discover:
5010 * how many scalar fields are set to nonzero values,
5011 and place it in *P_NZ_ELTS;
5012 * how many scalar fields in total are in CTOR,
5013 and place it in *P_ELT_COUNT.
5014 * if a type is a union, and the initializer from the constructor
5015 is not the largest element in the union, then set *p_must_clear.
5017 Return whether or not CTOR is a valid static constant initializer, the same
5018 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
5020 bool
5021 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5022 HOST_WIDE_INT *p_elt_count,
5023 bool *p_must_clear)
5025 *p_nz_elts = 0;
5026 *p_elt_count = 0;
5027 *p_must_clear = false;
5029 return
5030 categorize_ctor_elements_1 (ctor, p_nz_elts, p_elt_count, p_must_clear);
5033 /* Count the number of scalars in TYPE. Return -1 on overflow or
5034 variable-sized. If ALLOW_FLEXARR is true, don't count flexible
5035 array member at the end of the structure. */
5037 HOST_WIDE_INT
5038 count_type_elements (const_tree type, bool allow_flexarr)
5040 const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
5041 switch (TREE_CODE (type))
5043 case ARRAY_TYPE:
5045 tree telts = array_type_nelts (type);
5046 if (telts && host_integerp (telts, 1))
5048 HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
5049 HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type), false);
5050 if (n == 0)
5051 return 0;
5052 else if (max / n > m)
5053 return n * m;
5055 return -1;
5058 case RECORD_TYPE:
5060 HOST_WIDE_INT n = 0, t;
5061 tree f;
5063 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5064 if (TREE_CODE (f) == FIELD_DECL)
5066 t = count_type_elements (TREE_TYPE (f), false);
5067 if (t < 0)
5069 /* Check for structures with flexible array member. */
5070 tree tf = TREE_TYPE (f);
5071 if (allow_flexarr
5072 && DECL_CHAIN (f) == NULL
5073 && TREE_CODE (tf) == ARRAY_TYPE
5074 && TYPE_DOMAIN (tf)
5075 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5076 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5077 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5078 && int_size_in_bytes (type) >= 0)
5079 break;
5081 return -1;
5083 n += t;
5086 return n;
5089 case UNION_TYPE:
5090 case QUAL_UNION_TYPE:
5091 return -1;
5093 case COMPLEX_TYPE:
5094 return 2;
5096 case VECTOR_TYPE:
5097 return TYPE_VECTOR_SUBPARTS (type);
5099 case INTEGER_TYPE:
5100 case REAL_TYPE:
5101 case FIXED_POINT_TYPE:
5102 case ENUMERAL_TYPE:
5103 case BOOLEAN_TYPE:
5104 case POINTER_TYPE:
5105 case OFFSET_TYPE:
5106 case REFERENCE_TYPE:
5107 return 1;
5109 case ERROR_MARK:
5110 return 0;
5112 case VOID_TYPE:
5113 case METHOD_TYPE:
5114 case FUNCTION_TYPE:
5115 case LANG_TYPE:
5116 default:
5117 gcc_unreachable ();
5121 /* Return 1 if EXP contains mostly (3/4) zeros. */
5123 static int
5124 mostly_zeros_p (const_tree exp)
5126 if (TREE_CODE (exp) == CONSTRUCTOR)
5129 HOST_WIDE_INT nz_elts, count, elts;
5130 bool must_clear;
5132 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5133 if (must_clear)
5134 return 1;
5136 elts = count_type_elements (TREE_TYPE (exp), false);
5138 return nz_elts < elts / 4;
5141 return initializer_zerop (exp);
5144 /* Return 1 if EXP contains all zeros. */
5146 static int
5147 all_zeros_p (const_tree exp)
5149 if (TREE_CODE (exp) == CONSTRUCTOR)
5152 HOST_WIDE_INT nz_elts, count;
5153 bool must_clear;
5155 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5156 return nz_elts == 0;
5159 return initializer_zerop (exp);
5162 /* Helper function for store_constructor.
5163 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5164 TYPE is the type of the CONSTRUCTOR, not the element type.
5165 CLEARED is as for store_constructor.
5166 ALIAS_SET is the alias set to use for any stores.
5168 This provides a recursive shortcut back to store_constructor when it isn't
5169 necessary to go through store_field. This is so that we can pass through
5170 the cleared field to let store_constructor know that we may not have to
5171 clear a substructure if the outer structure has already been cleared. */
5173 static void
5174 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
5175 HOST_WIDE_INT bitpos, enum machine_mode mode,
5176 tree exp, tree type, int cleared,
5177 alias_set_type alias_set)
5179 if (TREE_CODE (exp) == CONSTRUCTOR
5180 /* We can only call store_constructor recursively if the size and
5181 bit position are on a byte boundary. */
5182 && bitpos % BITS_PER_UNIT == 0
5183 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
5184 /* If we have a nonzero bitpos for a register target, then we just
5185 let store_field do the bitfield handling. This is unlikely to
5186 generate unnecessary clear instructions anyways. */
5187 && (bitpos == 0 || MEM_P (target)))
5189 if (MEM_P (target))
5190 target
5191 = adjust_address (target,
5192 GET_MODE (target) == BLKmode
5193 || 0 != (bitpos
5194 % GET_MODE_ALIGNMENT (GET_MODE (target)))
5195 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
5198 /* Update the alias set, if required. */
5199 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
5200 && MEM_ALIAS_SET (target) != 0)
5202 target = copy_rtx (target);
5203 set_mem_alias_set (target, alias_set);
5206 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
5208 else
5209 store_field (target, bitsize, bitpos, mode, exp, type, alias_set, false);
5212 /* Store the value of constructor EXP into the rtx TARGET.
5213 TARGET is either a REG or a MEM; we know it cannot conflict, since
5214 safe_from_p has been called.
5215 CLEARED is true if TARGET is known to have been zero'd.
5216 SIZE is the number of bytes of TARGET we are allowed to modify: this
5217 may not be the same as the size of EXP if we are assigning to a field
5218 which has been packed to exclude padding bits. */
5220 static void
5221 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
5223 tree type = TREE_TYPE (exp);
5224 #ifdef WORD_REGISTER_OPERATIONS
5225 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
5226 #endif
5228 switch (TREE_CODE (type))
5230 case RECORD_TYPE:
5231 case UNION_TYPE:
5232 case QUAL_UNION_TYPE:
5234 unsigned HOST_WIDE_INT idx;
5235 tree field, value;
5237 /* If size is zero or the target is already cleared, do nothing. */
5238 if (size == 0 || cleared)
5239 cleared = 1;
5240 /* We either clear the aggregate or indicate the value is dead. */
5241 else if ((TREE_CODE (type) == UNION_TYPE
5242 || TREE_CODE (type) == QUAL_UNION_TYPE)
5243 && ! CONSTRUCTOR_ELTS (exp))
5244 /* If the constructor is empty, clear the union. */
5246 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
5247 cleared = 1;
5250 /* If we are building a static constructor into a register,
5251 set the initial value as zero so we can fold the value into
5252 a constant. But if more than one register is involved,
5253 this probably loses. */
5254 else if (REG_P (target) && TREE_STATIC (exp)
5255 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
5257 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5258 cleared = 1;
5261 /* If the constructor has fewer fields than the structure or
5262 if we are initializing the structure to mostly zeros, clear
5263 the whole structure first. Don't do this if TARGET is a
5264 register whose mode size isn't equal to SIZE since
5265 clear_storage can't handle this case. */
5266 else if (size > 0
5267 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
5268 != fields_length (type))
5269 || mostly_zeros_p (exp))
5270 && (!REG_P (target)
5271 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
5272 == size)))
5274 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5275 cleared = 1;
5278 if (REG_P (target) && !cleared)
5279 emit_clobber (target);
5281 /* Store each element of the constructor into the
5282 corresponding field of TARGET. */
5283 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
5285 enum machine_mode mode;
5286 HOST_WIDE_INT bitsize;
5287 HOST_WIDE_INT bitpos = 0;
5288 tree offset;
5289 rtx to_rtx = target;
5291 /* Just ignore missing fields. We cleared the whole
5292 structure, above, if any fields are missing. */
5293 if (field == 0)
5294 continue;
5296 if (cleared && initializer_zerop (value))
5297 continue;
5299 if (host_integerp (DECL_SIZE (field), 1))
5300 bitsize = tree_low_cst (DECL_SIZE (field), 1);
5301 else
5302 bitsize = -1;
5304 mode = DECL_MODE (field);
5305 if (DECL_BIT_FIELD (field))
5306 mode = VOIDmode;
5308 offset = DECL_FIELD_OFFSET (field);
5309 if (host_integerp (offset, 0)
5310 && host_integerp (bit_position (field), 0))
5312 bitpos = int_bit_position (field);
5313 offset = 0;
5315 else
5316 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
5318 if (offset)
5320 enum machine_mode address_mode;
5321 rtx offset_rtx;
5323 offset
5324 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
5325 make_tree (TREE_TYPE (exp),
5326 target));
5328 offset_rtx = expand_normal (offset);
5329 gcc_assert (MEM_P (to_rtx));
5331 address_mode
5332 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
5333 if (GET_MODE (offset_rtx) != address_mode)
5334 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5336 to_rtx = offset_address (to_rtx, offset_rtx,
5337 highest_pow2_factor (offset));
5340 #ifdef WORD_REGISTER_OPERATIONS
5341 /* If this initializes a field that is smaller than a
5342 word, at the start of a word, try to widen it to a full
5343 word. This special case allows us to output C++ member
5344 function initializations in a form that the optimizers
5345 can understand. */
5346 if (REG_P (target)
5347 && bitsize < BITS_PER_WORD
5348 && bitpos % BITS_PER_WORD == 0
5349 && GET_MODE_CLASS (mode) == MODE_INT
5350 && TREE_CODE (value) == INTEGER_CST
5351 && exp_size >= 0
5352 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
5354 tree type = TREE_TYPE (value);
5356 if (TYPE_PRECISION (type) < BITS_PER_WORD)
5358 type = lang_hooks.types.type_for_size
5359 (BITS_PER_WORD, TYPE_UNSIGNED (type));
5360 value = fold_convert (type, value);
5363 if (BYTES_BIG_ENDIAN)
5364 value
5365 = fold_build2 (LSHIFT_EXPR, type, value,
5366 build_int_cst (type,
5367 BITS_PER_WORD - bitsize));
5368 bitsize = BITS_PER_WORD;
5369 mode = word_mode;
5371 #endif
5373 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
5374 && DECL_NONADDRESSABLE_P (field))
5376 to_rtx = copy_rtx (to_rtx);
5377 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
5380 store_constructor_field (to_rtx, bitsize, bitpos, mode,
5381 value, type, cleared,
5382 get_alias_set (TREE_TYPE (field)));
5384 break;
5386 case ARRAY_TYPE:
5388 tree value, index;
5389 unsigned HOST_WIDE_INT i;
5390 int need_to_clear;
5391 tree domain;
5392 tree elttype = TREE_TYPE (type);
5393 int const_bounds_p;
5394 HOST_WIDE_INT minelt = 0;
5395 HOST_WIDE_INT maxelt = 0;
5397 domain = TYPE_DOMAIN (type);
5398 const_bounds_p = (TYPE_MIN_VALUE (domain)
5399 && TYPE_MAX_VALUE (domain)
5400 && host_integerp (TYPE_MIN_VALUE (domain), 0)
5401 && host_integerp (TYPE_MAX_VALUE (domain), 0));
5403 /* If we have constant bounds for the range of the type, get them. */
5404 if (const_bounds_p)
5406 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
5407 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
5410 /* If the constructor has fewer elements than the array, clear
5411 the whole array first. Similarly if this is static
5412 constructor of a non-BLKmode object. */
5413 if (cleared)
5414 need_to_clear = 0;
5415 else if (REG_P (target) && TREE_STATIC (exp))
5416 need_to_clear = 1;
5417 else
5419 unsigned HOST_WIDE_INT idx;
5420 tree index, value;
5421 HOST_WIDE_INT count = 0, zero_count = 0;
5422 need_to_clear = ! const_bounds_p;
5424 /* This loop is a more accurate version of the loop in
5425 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5426 is also needed to check for missing elements. */
5427 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
5429 HOST_WIDE_INT this_node_count;
5431 if (need_to_clear)
5432 break;
5434 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5436 tree lo_index = TREE_OPERAND (index, 0);
5437 tree hi_index = TREE_OPERAND (index, 1);
5439 if (! host_integerp (lo_index, 1)
5440 || ! host_integerp (hi_index, 1))
5442 need_to_clear = 1;
5443 break;
5446 this_node_count = (tree_low_cst (hi_index, 1)
5447 - tree_low_cst (lo_index, 1) + 1);
5449 else
5450 this_node_count = 1;
5452 count += this_node_count;
5453 if (mostly_zeros_p (value))
5454 zero_count += this_node_count;
5457 /* Clear the entire array first if there are any missing
5458 elements, or if the incidence of zero elements is >=
5459 75%. */
5460 if (! need_to_clear
5461 && (count < maxelt - minelt + 1
5462 || 4 * zero_count >= 3 * count))
5463 need_to_clear = 1;
5466 if (need_to_clear && size > 0)
5468 if (REG_P (target))
5469 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5470 else
5471 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5472 cleared = 1;
5475 if (!cleared && REG_P (target))
5476 /* Inform later passes that the old value is dead. */
5477 emit_clobber (target);
5479 /* Store each element of the constructor into the
5480 corresponding element of TARGET, determined by counting the
5481 elements. */
5482 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
5484 enum machine_mode mode;
5485 HOST_WIDE_INT bitsize;
5486 HOST_WIDE_INT bitpos;
5487 rtx xtarget = target;
5489 if (cleared && initializer_zerop (value))
5490 continue;
5492 mode = TYPE_MODE (elttype);
5493 if (mode == BLKmode)
5494 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
5495 ? tree_low_cst (TYPE_SIZE (elttype), 1)
5496 : -1);
5497 else
5498 bitsize = GET_MODE_BITSIZE (mode);
5500 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5502 tree lo_index = TREE_OPERAND (index, 0);
5503 tree hi_index = TREE_OPERAND (index, 1);
5504 rtx index_r, pos_rtx;
5505 HOST_WIDE_INT lo, hi, count;
5506 tree position;
5508 /* If the range is constant and "small", unroll the loop. */
5509 if (const_bounds_p
5510 && host_integerp (lo_index, 0)
5511 && host_integerp (hi_index, 0)
5512 && (lo = tree_low_cst (lo_index, 0),
5513 hi = tree_low_cst (hi_index, 0),
5514 count = hi - lo + 1,
5515 (!MEM_P (target)
5516 || count <= 2
5517 || (host_integerp (TYPE_SIZE (elttype), 1)
5518 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
5519 <= 40 * 8)))))
5521 lo -= minelt; hi -= minelt;
5522 for (; lo <= hi; lo++)
5524 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
5526 if (MEM_P (target)
5527 && !MEM_KEEP_ALIAS_SET_P (target)
5528 && TREE_CODE (type) == ARRAY_TYPE
5529 && TYPE_NONALIASED_COMPONENT (type))
5531 target = copy_rtx (target);
5532 MEM_KEEP_ALIAS_SET_P (target) = 1;
5535 store_constructor_field
5536 (target, bitsize, bitpos, mode, value, type, cleared,
5537 get_alias_set (elttype));
5540 else
5542 rtx loop_start = gen_label_rtx ();
5543 rtx loop_end = gen_label_rtx ();
5544 tree exit_cond;
5546 expand_normal (hi_index);
5548 index = build_decl (EXPR_LOCATION (exp),
5549 VAR_DECL, NULL_TREE, domain);
5550 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
5551 SET_DECL_RTL (index, index_r);
5552 store_expr (lo_index, index_r, 0, false);
5554 /* Build the head of the loop. */
5555 do_pending_stack_adjust ();
5556 emit_label (loop_start);
5558 /* Assign value to element index. */
5559 position =
5560 fold_convert (ssizetype,
5561 fold_build2 (MINUS_EXPR,
5562 TREE_TYPE (index),
5563 index,
5564 TYPE_MIN_VALUE (domain)));
5566 position =
5567 size_binop (MULT_EXPR, position,
5568 fold_convert (ssizetype,
5569 TYPE_SIZE_UNIT (elttype)));
5571 pos_rtx = expand_normal (position);
5572 xtarget = offset_address (target, pos_rtx,
5573 highest_pow2_factor (position));
5574 xtarget = adjust_address (xtarget, mode, 0);
5575 if (TREE_CODE (value) == CONSTRUCTOR)
5576 store_constructor (value, xtarget, cleared,
5577 bitsize / BITS_PER_UNIT);
5578 else
5579 store_expr (value, xtarget, 0, false);
5581 /* Generate a conditional jump to exit the loop. */
5582 exit_cond = build2 (LT_EXPR, integer_type_node,
5583 index, hi_index);
5584 jumpif (exit_cond, loop_end, -1);
5586 /* Update the loop counter, and jump to the head of
5587 the loop. */
5588 expand_assignment (index,
5589 build2 (PLUS_EXPR, TREE_TYPE (index),
5590 index, integer_one_node),
5591 false);
5593 emit_jump (loop_start);
5595 /* Build the end of the loop. */
5596 emit_label (loop_end);
5599 else if ((index != 0 && ! host_integerp (index, 0))
5600 || ! host_integerp (TYPE_SIZE (elttype), 1))
5602 tree position;
5604 if (index == 0)
5605 index = ssize_int (1);
5607 if (minelt)
5608 index = fold_convert (ssizetype,
5609 fold_build2 (MINUS_EXPR,
5610 TREE_TYPE (index),
5611 index,
5612 TYPE_MIN_VALUE (domain)));
5614 position =
5615 size_binop (MULT_EXPR, index,
5616 fold_convert (ssizetype,
5617 TYPE_SIZE_UNIT (elttype)));
5618 xtarget = offset_address (target,
5619 expand_normal (position),
5620 highest_pow2_factor (position));
5621 xtarget = adjust_address (xtarget, mode, 0);
5622 store_expr (value, xtarget, 0, false);
5624 else
5626 if (index != 0)
5627 bitpos = ((tree_low_cst (index, 0) - minelt)
5628 * tree_low_cst (TYPE_SIZE (elttype), 1));
5629 else
5630 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
5632 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
5633 && TREE_CODE (type) == ARRAY_TYPE
5634 && TYPE_NONALIASED_COMPONENT (type))
5636 target = copy_rtx (target);
5637 MEM_KEEP_ALIAS_SET_P (target) = 1;
5639 store_constructor_field (target, bitsize, bitpos, mode, value,
5640 type, cleared, get_alias_set (elttype));
5643 break;
5646 case VECTOR_TYPE:
5648 unsigned HOST_WIDE_INT idx;
5649 constructor_elt *ce;
5650 int i;
5651 int need_to_clear;
5652 int icode = 0;
5653 tree elttype = TREE_TYPE (type);
5654 int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
5655 enum machine_mode eltmode = TYPE_MODE (elttype);
5656 HOST_WIDE_INT bitsize;
5657 HOST_WIDE_INT bitpos;
5658 rtvec vector = NULL;
5659 unsigned n_elts;
5660 alias_set_type alias;
5662 gcc_assert (eltmode != BLKmode);
5664 n_elts = TYPE_VECTOR_SUBPARTS (type);
5665 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
5667 enum machine_mode mode = GET_MODE (target);
5669 icode = (int) optab_handler (vec_init_optab, mode);
5670 if (icode != CODE_FOR_nothing)
5672 unsigned int i;
5674 vector = rtvec_alloc (n_elts);
5675 for (i = 0; i < n_elts; i++)
5676 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
5680 /* If the constructor has fewer elements than the vector,
5681 clear the whole array first. Similarly if this is static
5682 constructor of a non-BLKmode object. */
5683 if (cleared)
5684 need_to_clear = 0;
5685 else if (REG_P (target) && TREE_STATIC (exp))
5686 need_to_clear = 1;
5687 else
5689 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
5690 tree value;
5692 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
5694 int n_elts_here = tree_low_cst
5695 (int_const_binop (TRUNC_DIV_EXPR,
5696 TYPE_SIZE (TREE_TYPE (value)),
5697 TYPE_SIZE (elttype), 0), 1);
5699 count += n_elts_here;
5700 if (mostly_zeros_p (value))
5701 zero_count += n_elts_here;
5704 /* Clear the entire vector first if there are any missing elements,
5705 or if the incidence of zero elements is >= 75%. */
5706 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
5709 if (need_to_clear && size > 0 && !vector)
5711 if (REG_P (target))
5712 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5713 else
5714 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5715 cleared = 1;
5718 /* Inform later passes that the old value is dead. */
5719 if (!cleared && !vector && REG_P (target))
5720 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5722 if (MEM_P (target))
5723 alias = MEM_ALIAS_SET (target);
5724 else
5725 alias = get_alias_set (elttype);
5727 /* Store each element of the constructor into the corresponding
5728 element of TARGET, determined by counting the elements. */
5729 for (idx = 0, i = 0;
5730 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
5731 idx++, i += bitsize / elt_size)
5733 HOST_WIDE_INT eltpos;
5734 tree value = ce->value;
5736 bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
5737 if (cleared && initializer_zerop (value))
5738 continue;
5740 if (ce->index)
5741 eltpos = tree_low_cst (ce->index, 1);
5742 else
5743 eltpos = i;
5745 if (vector)
5747 /* Vector CONSTRUCTORs should only be built from smaller
5748 vectors in the case of BLKmode vectors. */
5749 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
5750 RTVEC_ELT (vector, eltpos)
5751 = expand_normal (value);
5753 else
5755 enum machine_mode value_mode =
5756 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
5757 ? TYPE_MODE (TREE_TYPE (value))
5758 : eltmode;
5759 bitpos = eltpos * elt_size;
5760 store_constructor_field (target, bitsize, bitpos,
5761 value_mode, value, type,
5762 cleared, alias);
5766 if (vector)
5767 emit_insn (GEN_FCN (icode)
5768 (target,
5769 gen_rtx_PARALLEL (GET_MODE (target), vector)));
5770 break;
5773 default:
5774 gcc_unreachable ();
5778 /* Store the value of EXP (an expression tree)
5779 into a subfield of TARGET which has mode MODE and occupies
5780 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5781 If MODE is VOIDmode, it means that we are storing into a bit-field.
5783 Always return const0_rtx unless we have something particular to
5784 return.
5786 TYPE is the type of the underlying object,
5788 ALIAS_SET is the alias set for the destination. This value will
5789 (in general) be different from that for TARGET, since TARGET is a
5790 reference to the containing structure.
5792 If NONTEMPORAL is true, try generating a nontemporal store. */
5794 static rtx
5795 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
5796 enum machine_mode mode, tree exp, tree type,
5797 alias_set_type alias_set, bool nontemporal)
5799 if (TREE_CODE (exp) == ERROR_MARK)
5800 return const0_rtx;
5802 /* If we have nothing to store, do nothing unless the expression has
5803 side-effects. */
5804 if (bitsize == 0)
5805 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5807 /* If we are storing into an unaligned field of an aligned union that is
5808 in a register, we may have the mode of TARGET being an integer mode but
5809 MODE == BLKmode. In that case, get an aligned object whose size and
5810 alignment are the same as TARGET and store TARGET into it (we can avoid
5811 the store if the field being stored is the entire width of TARGET). Then
5812 call ourselves recursively to store the field into a BLKmode version of
5813 that object. Finally, load from the object into TARGET. This is not
5814 very efficient in general, but should only be slightly more expensive
5815 than the otherwise-required unaligned accesses. Perhaps this can be
5816 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5817 twice, once with emit_move_insn and once via store_field. */
5819 if (mode == BLKmode
5820 && (REG_P (target) || GET_CODE (target) == SUBREG))
5822 rtx object = assign_temp (type, 0, 1, 1);
5823 rtx blk_object = adjust_address (object, BLKmode, 0);
5825 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
5826 emit_move_insn (object, target);
5828 store_field (blk_object, bitsize, bitpos, mode, exp, type, alias_set,
5829 nontemporal);
5831 emit_move_insn (target, object);
5833 /* We want to return the BLKmode version of the data. */
5834 return blk_object;
5837 if (GET_CODE (target) == CONCAT)
5839 /* We're storing into a struct containing a single __complex. */
5841 gcc_assert (!bitpos);
5842 return store_expr (exp, target, 0, nontemporal);
5845 /* If the structure is in a register or if the component
5846 is a bit field, we cannot use addressing to access it.
5847 Use bit-field techniques or SUBREG to store in it. */
5849 if (mode == VOIDmode
5850 || (mode != BLKmode && ! direct_store[(int) mode]
5851 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
5852 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
5853 || REG_P (target)
5854 || GET_CODE (target) == SUBREG
5855 /* If the field isn't aligned enough to store as an ordinary memref,
5856 store it as a bit field. */
5857 || (mode != BLKmode
5858 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
5859 || bitpos % GET_MODE_ALIGNMENT (mode))
5860 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
5861 || (bitpos % BITS_PER_UNIT != 0)))
5862 /* If the RHS and field are a constant size and the size of the
5863 RHS isn't the same size as the bitfield, we must use bitfield
5864 operations. */
5865 || (bitsize >= 0
5866 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
5867 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0)
5868 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
5869 decl we must use bitfield operations. */
5870 || (bitsize >= 0
5871 && TREE_CODE (exp) == MEM_REF
5872 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
5873 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
5874 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0),0 ))
5875 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
5877 rtx temp;
5878 gimple nop_def;
5880 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5881 implies a mask operation. If the precision is the same size as
5882 the field we're storing into, that mask is redundant. This is
5883 particularly common with bit field assignments generated by the
5884 C front end. */
5885 nop_def = get_def_for_expr (exp, NOP_EXPR);
5886 if (nop_def)
5888 tree type = TREE_TYPE (exp);
5889 if (INTEGRAL_TYPE_P (type)
5890 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
5891 && bitsize == TYPE_PRECISION (type))
5893 tree op = gimple_assign_rhs1 (nop_def);
5894 type = TREE_TYPE (op);
5895 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
5896 exp = op;
5900 temp = expand_normal (exp);
5902 /* If BITSIZE is narrower than the size of the type of EXP
5903 we will be narrowing TEMP. Normally, what's wanted are the
5904 low-order bits. However, if EXP's type is a record and this is
5905 big-endian machine, we want the upper BITSIZE bits. */
5906 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
5907 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
5908 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
5909 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
5910 size_int (GET_MODE_BITSIZE (GET_MODE (temp))
5911 - bitsize),
5912 NULL_RTX, 1);
5914 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5915 MODE. */
5916 if (mode != VOIDmode && mode != BLKmode
5917 && mode != TYPE_MODE (TREE_TYPE (exp)))
5918 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
5920 /* If the modes of TEMP and TARGET are both BLKmode, both
5921 must be in memory and BITPOS must be aligned on a byte
5922 boundary. If so, we simply do a block copy. Likewise
5923 for a BLKmode-like TARGET. */
5924 if (GET_MODE (temp) == BLKmode
5925 && (GET_MODE (target) == BLKmode
5926 || (MEM_P (target)
5927 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
5928 && (bitpos % BITS_PER_UNIT) == 0
5929 && (bitsize % BITS_PER_UNIT) == 0)))
5931 gcc_assert (MEM_P (target) && MEM_P (temp)
5932 && (bitpos % BITS_PER_UNIT) == 0);
5934 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
5935 emit_block_move (target, temp,
5936 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
5937 / BITS_PER_UNIT),
5938 BLOCK_OP_NORMAL);
5940 return const0_rtx;
5943 /* Store the value in the bitfield. */
5944 store_bit_field (target, bitsize, bitpos, mode, temp);
5946 return const0_rtx;
5948 else
5950 /* Now build a reference to just the desired component. */
5951 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
5953 if (to_rtx == target)
5954 to_rtx = copy_rtx (to_rtx);
5956 MEM_SET_IN_STRUCT_P (to_rtx, 1);
5957 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
5958 set_mem_alias_set (to_rtx, alias_set);
5960 return store_expr (exp, to_rtx, 0, nontemporal);
5964 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5965 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5966 codes and find the ultimate containing object, which we return.
5968 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5969 bit position, and *PUNSIGNEDP to the signedness of the field.
5970 If the position of the field is variable, we store a tree
5971 giving the variable offset (in units) in *POFFSET.
5972 This offset is in addition to the bit position.
5973 If the position is not variable, we store 0 in *POFFSET.
5975 If any of the extraction expressions is volatile,
5976 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5978 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
5979 Otherwise, it is a mode that can be used to access the field.
5981 If the field describes a variable-sized object, *PMODE is set to
5982 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
5983 this case, but the address of the object can be found.
5985 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5986 look through nodes that serve as markers of a greater alignment than
5987 the one that can be deduced from the expression. These nodes make it
5988 possible for front-ends to prevent temporaries from being created by
5989 the middle-end on alignment considerations. For that purpose, the
5990 normal operating mode at high-level is to always pass FALSE so that
5991 the ultimate containing object is really returned; moreover, the
5992 associated predicate handled_component_p will always return TRUE
5993 on these nodes, thus indicating that they are essentially handled
5994 by get_inner_reference. TRUE should only be passed when the caller
5995 is scanning the expression in order to build another representation
5996 and specifically knows how to handle these nodes; as such, this is
5997 the normal operating mode in the RTL expanders. */
5999 tree
6000 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
6001 HOST_WIDE_INT *pbitpos, tree *poffset,
6002 enum machine_mode *pmode, int *punsignedp,
6003 int *pvolatilep, bool keep_aligning)
6005 tree size_tree = 0;
6006 enum machine_mode mode = VOIDmode;
6007 bool blkmode_bitfield = false;
6008 tree offset = size_zero_node;
6009 double_int bit_offset = double_int_zero;
6011 /* First get the mode, signedness, and size. We do this from just the
6012 outermost expression. */
6013 *pbitsize = -1;
6014 if (TREE_CODE (exp) == COMPONENT_REF)
6016 tree field = TREE_OPERAND (exp, 1);
6017 size_tree = DECL_SIZE (field);
6018 if (!DECL_BIT_FIELD (field))
6019 mode = DECL_MODE (field);
6020 else if (DECL_MODE (field) == BLKmode)
6021 blkmode_bitfield = true;
6022 else if (TREE_THIS_VOLATILE (exp)
6023 && flag_strict_volatile_bitfields > 0)
6024 /* Volatile bitfields should be accessed in the mode of the
6025 field's type, not the mode computed based on the bit
6026 size. */
6027 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
6029 *punsignedp = DECL_UNSIGNED (field);
6031 else if (TREE_CODE (exp) == BIT_FIELD_REF)
6033 size_tree = TREE_OPERAND (exp, 1);
6034 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
6035 || TYPE_UNSIGNED (TREE_TYPE (exp)));
6037 /* For vector types, with the correct size of access, use the mode of
6038 inner type. */
6039 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
6040 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
6041 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
6042 mode = TYPE_MODE (TREE_TYPE (exp));
6044 else
6046 mode = TYPE_MODE (TREE_TYPE (exp));
6047 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
6049 if (mode == BLKmode)
6050 size_tree = TYPE_SIZE (TREE_TYPE (exp));
6051 else
6052 *pbitsize = GET_MODE_BITSIZE (mode);
6055 if (size_tree != 0)
6057 if (! host_integerp (size_tree, 1))
6058 mode = BLKmode, *pbitsize = -1;
6059 else
6060 *pbitsize = tree_low_cst (size_tree, 1);
6063 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6064 and find the ultimate containing object. */
6065 while (1)
6067 switch (TREE_CODE (exp))
6069 case BIT_FIELD_REF:
6070 bit_offset
6071 = double_int_add (bit_offset,
6072 tree_to_double_int (TREE_OPERAND (exp, 2)));
6073 break;
6075 case COMPONENT_REF:
6077 tree field = TREE_OPERAND (exp, 1);
6078 tree this_offset = component_ref_field_offset (exp);
6080 /* If this field hasn't been filled in yet, don't go past it.
6081 This should only happen when folding expressions made during
6082 type construction. */
6083 if (this_offset == 0)
6084 break;
6086 offset = size_binop (PLUS_EXPR, offset, this_offset);
6087 bit_offset = double_int_add (bit_offset,
6088 tree_to_double_int
6089 (DECL_FIELD_BIT_OFFSET (field)));
6091 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6093 break;
6095 case ARRAY_REF:
6096 case ARRAY_RANGE_REF:
6098 tree index = TREE_OPERAND (exp, 1);
6099 tree low_bound = array_ref_low_bound (exp);
6100 tree unit_size = array_ref_element_size (exp);
6102 /* We assume all arrays have sizes that are a multiple of a byte.
6103 First subtract the lower bound, if any, in the type of the
6104 index, then convert to sizetype and multiply by the size of
6105 the array element. */
6106 if (! integer_zerop (low_bound))
6107 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
6108 index, low_bound);
6110 offset = size_binop (PLUS_EXPR, offset,
6111 size_binop (MULT_EXPR,
6112 fold_convert (sizetype, index),
6113 unit_size));
6115 break;
6117 case REALPART_EXPR:
6118 break;
6120 case IMAGPART_EXPR:
6121 bit_offset = double_int_add (bit_offset,
6122 uhwi_to_double_int (*pbitsize));
6123 break;
6125 case VIEW_CONVERT_EXPR:
6126 if (keep_aligning && STRICT_ALIGNMENT
6127 && (TYPE_ALIGN (TREE_TYPE (exp))
6128 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
6129 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
6130 < BIGGEST_ALIGNMENT)
6131 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
6132 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
6133 goto done;
6134 break;
6136 case MEM_REF:
6137 /* Hand back the decl for MEM[&decl, off]. */
6138 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
6140 tree off = TREE_OPERAND (exp, 1);
6141 if (!integer_zerop (off))
6143 double_int boff, coff = mem_ref_offset (exp);
6144 boff = double_int_lshift (coff,
6145 BITS_PER_UNIT == 8
6146 ? 3 : exact_log2 (BITS_PER_UNIT),
6147 HOST_BITS_PER_DOUBLE_INT, true);
6148 bit_offset = double_int_add (bit_offset, boff);
6150 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
6152 goto done;
6154 default:
6155 goto done;
6158 /* If any reference in the chain is volatile, the effect is volatile. */
6159 if (TREE_THIS_VOLATILE (exp))
6160 *pvolatilep = 1;
6162 exp = TREE_OPERAND (exp, 0);
6164 done:
6166 /* If OFFSET is constant, see if we can return the whole thing as a
6167 constant bit position. Make sure to handle overflow during
6168 this conversion. */
6169 if (host_integerp (offset, 0))
6171 double_int tem = double_int_lshift (tree_to_double_int (offset),
6172 BITS_PER_UNIT == 8
6173 ? 3 : exact_log2 (BITS_PER_UNIT),
6174 HOST_BITS_PER_DOUBLE_INT, true);
6175 tem = double_int_add (tem, bit_offset);
6176 if (double_int_fits_in_shwi_p (tem))
6178 *pbitpos = double_int_to_shwi (tem);
6179 *poffset = offset = NULL_TREE;
6183 /* Otherwise, split it up. */
6184 if (offset)
6186 *pbitpos = double_int_to_shwi (bit_offset);
6187 *poffset = offset;
6190 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6191 if (mode == VOIDmode
6192 && blkmode_bitfield
6193 && (*pbitpos % BITS_PER_UNIT) == 0
6194 && (*pbitsize % BITS_PER_UNIT) == 0)
6195 *pmode = BLKmode;
6196 else
6197 *pmode = mode;
6199 return exp;
6202 /* Given an expression EXP that may be a COMPONENT_REF, an ARRAY_REF or an
6203 ARRAY_RANGE_REF, look for whether EXP or any nested component-refs within
6204 EXP is marked as PACKED. */
6206 bool
6207 contains_packed_reference (const_tree exp)
6209 bool packed_p = false;
6211 while (1)
6213 switch (TREE_CODE (exp))
6215 case COMPONENT_REF:
6217 tree field = TREE_OPERAND (exp, 1);
6218 packed_p = DECL_PACKED (field)
6219 || TYPE_PACKED (TREE_TYPE (field))
6220 || TYPE_PACKED (TREE_TYPE (exp));
6221 if (packed_p)
6222 goto done;
6224 break;
6226 case BIT_FIELD_REF:
6227 case ARRAY_REF:
6228 case ARRAY_RANGE_REF:
6229 case REALPART_EXPR:
6230 case IMAGPART_EXPR:
6231 case VIEW_CONVERT_EXPR:
6232 break;
6234 default:
6235 goto done;
6237 exp = TREE_OPERAND (exp, 0);
6239 done:
6240 return packed_p;
6243 /* Return a tree of sizetype representing the size, in bytes, of the element
6244 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6246 tree
6247 array_ref_element_size (tree exp)
6249 tree aligned_size = TREE_OPERAND (exp, 3);
6250 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
6251 location_t loc = EXPR_LOCATION (exp);
6253 /* If a size was specified in the ARRAY_REF, it's the size measured
6254 in alignment units of the element type. So multiply by that value. */
6255 if (aligned_size)
6257 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6258 sizetype from another type of the same width and signedness. */
6259 if (TREE_TYPE (aligned_size) != sizetype)
6260 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
6261 return size_binop_loc (loc, MULT_EXPR, aligned_size,
6262 size_int (TYPE_ALIGN_UNIT (elmt_type)));
6265 /* Otherwise, take the size from that of the element type. Substitute
6266 any PLACEHOLDER_EXPR that we have. */
6267 else
6268 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
6271 /* Return a tree representing the lower bound of the array mentioned in
6272 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6274 tree
6275 array_ref_low_bound (tree exp)
6277 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6279 /* If a lower bound is specified in EXP, use it. */
6280 if (TREE_OPERAND (exp, 2))
6281 return TREE_OPERAND (exp, 2);
6283 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6284 substituting for a PLACEHOLDER_EXPR as needed. */
6285 if (domain_type && TYPE_MIN_VALUE (domain_type))
6286 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
6288 /* Otherwise, return a zero of the appropriate type. */
6289 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
6292 /* Return a tree representing the upper bound of the array mentioned in
6293 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6295 tree
6296 array_ref_up_bound (tree exp)
6298 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6300 /* If there is a domain type and it has an upper bound, use it, substituting
6301 for a PLACEHOLDER_EXPR as needed. */
6302 if (domain_type && TYPE_MAX_VALUE (domain_type))
6303 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
6305 /* Otherwise fail. */
6306 return NULL_TREE;
6309 /* Return a tree representing the offset, in bytes, of the field referenced
6310 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
6312 tree
6313 component_ref_field_offset (tree exp)
6315 tree aligned_offset = TREE_OPERAND (exp, 2);
6316 tree field = TREE_OPERAND (exp, 1);
6317 location_t loc = EXPR_LOCATION (exp);
6319 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
6320 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
6321 value. */
6322 if (aligned_offset)
6324 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6325 sizetype from another type of the same width and signedness. */
6326 if (TREE_TYPE (aligned_offset) != sizetype)
6327 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
6328 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
6329 size_int (DECL_OFFSET_ALIGN (field)
6330 / BITS_PER_UNIT));
6333 /* Otherwise, take the offset from that of the field. Substitute
6334 any PLACEHOLDER_EXPR that we have. */
6335 else
6336 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
6339 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
6341 static unsigned HOST_WIDE_INT
6342 target_align (const_tree target)
6344 /* We might have a chain of nested references with intermediate misaligning
6345 bitfields components, so need to recurse to find out. */
6347 unsigned HOST_WIDE_INT this_align, outer_align;
6349 switch (TREE_CODE (target))
6351 case BIT_FIELD_REF:
6352 return 1;
6354 case COMPONENT_REF:
6355 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
6356 outer_align = target_align (TREE_OPERAND (target, 0));
6357 return MIN (this_align, outer_align);
6359 case ARRAY_REF:
6360 case ARRAY_RANGE_REF:
6361 this_align = TYPE_ALIGN (TREE_TYPE (target));
6362 outer_align = target_align (TREE_OPERAND (target, 0));
6363 return MIN (this_align, outer_align);
6365 CASE_CONVERT:
6366 case NON_LVALUE_EXPR:
6367 case VIEW_CONVERT_EXPR:
6368 this_align = TYPE_ALIGN (TREE_TYPE (target));
6369 outer_align = target_align (TREE_OPERAND (target, 0));
6370 return MAX (this_align, outer_align);
6372 default:
6373 return TYPE_ALIGN (TREE_TYPE (target));
6378 /* Given an rtx VALUE that may contain additions and multiplications, return
6379 an equivalent value that just refers to a register, memory, or constant.
6380 This is done by generating instructions to perform the arithmetic and
6381 returning a pseudo-register containing the value.
6383 The returned value may be a REG, SUBREG, MEM or constant. */
6386 force_operand (rtx value, rtx target)
6388 rtx op1, op2;
6389 /* Use subtarget as the target for operand 0 of a binary operation. */
6390 rtx subtarget = get_subtarget (target);
6391 enum rtx_code code = GET_CODE (value);
6393 /* Check for subreg applied to an expression produced by loop optimizer. */
6394 if (code == SUBREG
6395 && !REG_P (SUBREG_REG (value))
6396 && !MEM_P (SUBREG_REG (value)))
6398 value
6399 = simplify_gen_subreg (GET_MODE (value),
6400 force_reg (GET_MODE (SUBREG_REG (value)),
6401 force_operand (SUBREG_REG (value),
6402 NULL_RTX)),
6403 GET_MODE (SUBREG_REG (value)),
6404 SUBREG_BYTE (value));
6405 code = GET_CODE (value);
6408 /* Check for a PIC address load. */
6409 if ((code == PLUS || code == MINUS)
6410 && XEXP (value, 0) == pic_offset_table_rtx
6411 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
6412 || GET_CODE (XEXP (value, 1)) == LABEL_REF
6413 || GET_CODE (XEXP (value, 1)) == CONST))
6415 if (!subtarget)
6416 subtarget = gen_reg_rtx (GET_MODE (value));
6417 emit_move_insn (subtarget, value);
6418 return subtarget;
6421 if (ARITHMETIC_P (value))
6423 op2 = XEXP (value, 1);
6424 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
6425 subtarget = 0;
6426 if (code == MINUS && CONST_INT_P (op2))
6428 code = PLUS;
6429 op2 = negate_rtx (GET_MODE (value), op2);
6432 /* Check for an addition with OP2 a constant integer and our first
6433 operand a PLUS of a virtual register and something else. In that
6434 case, we want to emit the sum of the virtual register and the
6435 constant first and then add the other value. This allows virtual
6436 register instantiation to simply modify the constant rather than
6437 creating another one around this addition. */
6438 if (code == PLUS && CONST_INT_P (op2)
6439 && GET_CODE (XEXP (value, 0)) == PLUS
6440 && REG_P (XEXP (XEXP (value, 0), 0))
6441 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
6442 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
6444 rtx temp = expand_simple_binop (GET_MODE (value), code,
6445 XEXP (XEXP (value, 0), 0), op2,
6446 subtarget, 0, OPTAB_LIB_WIDEN);
6447 return expand_simple_binop (GET_MODE (value), code, temp,
6448 force_operand (XEXP (XEXP (value,
6449 0), 1), 0),
6450 target, 0, OPTAB_LIB_WIDEN);
6453 op1 = force_operand (XEXP (value, 0), subtarget);
6454 op2 = force_operand (op2, NULL_RTX);
6455 switch (code)
6457 case MULT:
6458 return expand_mult (GET_MODE (value), op1, op2, target, 1);
6459 case DIV:
6460 if (!INTEGRAL_MODE_P (GET_MODE (value)))
6461 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6462 target, 1, OPTAB_LIB_WIDEN);
6463 else
6464 return expand_divmod (0,
6465 FLOAT_MODE_P (GET_MODE (value))
6466 ? RDIV_EXPR : TRUNC_DIV_EXPR,
6467 GET_MODE (value), op1, op2, target, 0);
6468 case MOD:
6469 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6470 target, 0);
6471 case UDIV:
6472 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
6473 target, 1);
6474 case UMOD:
6475 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6476 target, 1);
6477 case ASHIFTRT:
6478 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6479 target, 0, OPTAB_LIB_WIDEN);
6480 default:
6481 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6482 target, 1, OPTAB_LIB_WIDEN);
6485 if (UNARY_P (value))
6487 if (!target)
6488 target = gen_reg_rtx (GET_MODE (value));
6489 op1 = force_operand (XEXP (value, 0), NULL_RTX);
6490 switch (code)
6492 case ZERO_EXTEND:
6493 case SIGN_EXTEND:
6494 case TRUNCATE:
6495 case FLOAT_EXTEND:
6496 case FLOAT_TRUNCATE:
6497 convert_move (target, op1, code == ZERO_EXTEND);
6498 return target;
6500 case FIX:
6501 case UNSIGNED_FIX:
6502 expand_fix (target, op1, code == UNSIGNED_FIX);
6503 return target;
6505 case FLOAT:
6506 case UNSIGNED_FLOAT:
6507 expand_float (target, op1, code == UNSIGNED_FLOAT);
6508 return target;
6510 default:
6511 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
6515 #ifdef INSN_SCHEDULING
6516 /* On machines that have insn scheduling, we want all memory reference to be
6517 explicit, so we need to deal with such paradoxical SUBREGs. */
6518 if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
6519 && (GET_MODE_SIZE (GET_MODE (value))
6520 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
6521 value
6522 = simplify_gen_subreg (GET_MODE (value),
6523 force_reg (GET_MODE (SUBREG_REG (value)),
6524 force_operand (SUBREG_REG (value),
6525 NULL_RTX)),
6526 GET_MODE (SUBREG_REG (value)),
6527 SUBREG_BYTE (value));
6528 #endif
6530 return value;
6533 /* Subroutine of expand_expr: return nonzero iff there is no way that
6534 EXP can reference X, which is being modified. TOP_P is nonzero if this
6535 call is going to be used to determine whether we need a temporary
6536 for EXP, as opposed to a recursive call to this function.
6538 It is always safe for this routine to return zero since it merely
6539 searches for optimization opportunities. */
6542 safe_from_p (const_rtx x, tree exp, int top_p)
6544 rtx exp_rtl = 0;
6545 int i, nops;
6547 if (x == 0
6548 /* If EXP has varying size, we MUST use a target since we currently
6549 have no way of allocating temporaries of variable size
6550 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
6551 So we assume here that something at a higher level has prevented a
6552 clash. This is somewhat bogus, but the best we can do. Only
6553 do this when X is BLKmode and when we are at the top level. */
6554 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
6555 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
6556 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
6557 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
6558 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
6559 != INTEGER_CST)
6560 && GET_MODE (x) == BLKmode)
6561 /* If X is in the outgoing argument area, it is always safe. */
6562 || (MEM_P (x)
6563 && (XEXP (x, 0) == virtual_outgoing_args_rtx
6564 || (GET_CODE (XEXP (x, 0)) == PLUS
6565 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
6566 return 1;
6568 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
6569 find the underlying pseudo. */
6570 if (GET_CODE (x) == SUBREG)
6572 x = SUBREG_REG (x);
6573 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6574 return 0;
6577 /* Now look at our tree code and possibly recurse. */
6578 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
6580 case tcc_declaration:
6581 exp_rtl = DECL_RTL_IF_SET (exp);
6582 break;
6584 case tcc_constant:
6585 return 1;
6587 case tcc_exceptional:
6588 if (TREE_CODE (exp) == TREE_LIST)
6590 while (1)
6592 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
6593 return 0;
6594 exp = TREE_CHAIN (exp);
6595 if (!exp)
6596 return 1;
6597 if (TREE_CODE (exp) != TREE_LIST)
6598 return safe_from_p (x, exp, 0);
6601 else if (TREE_CODE (exp) == CONSTRUCTOR)
6603 constructor_elt *ce;
6604 unsigned HOST_WIDE_INT idx;
6606 FOR_EACH_VEC_ELT (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce)
6607 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
6608 || !safe_from_p (x, ce->value, 0))
6609 return 0;
6610 return 1;
6612 else if (TREE_CODE (exp) == ERROR_MARK)
6613 return 1; /* An already-visited SAVE_EXPR? */
6614 else
6615 return 0;
6617 case tcc_statement:
6618 /* The only case we look at here is the DECL_INITIAL inside a
6619 DECL_EXPR. */
6620 return (TREE_CODE (exp) != DECL_EXPR
6621 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
6622 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
6623 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
6625 case tcc_binary:
6626 case tcc_comparison:
6627 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
6628 return 0;
6629 /* Fall through. */
6631 case tcc_unary:
6632 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6634 case tcc_expression:
6635 case tcc_reference:
6636 case tcc_vl_exp:
6637 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6638 the expression. If it is set, we conflict iff we are that rtx or
6639 both are in memory. Otherwise, we check all operands of the
6640 expression recursively. */
6642 switch (TREE_CODE (exp))
6644 case ADDR_EXPR:
6645 /* If the operand is static or we are static, we can't conflict.
6646 Likewise if we don't conflict with the operand at all. */
6647 if (staticp (TREE_OPERAND (exp, 0))
6648 || TREE_STATIC (exp)
6649 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
6650 return 1;
6652 /* Otherwise, the only way this can conflict is if we are taking
6653 the address of a DECL a that address if part of X, which is
6654 very rare. */
6655 exp = TREE_OPERAND (exp, 0);
6656 if (DECL_P (exp))
6658 if (!DECL_RTL_SET_P (exp)
6659 || !MEM_P (DECL_RTL (exp)))
6660 return 0;
6661 else
6662 exp_rtl = XEXP (DECL_RTL (exp), 0);
6664 break;
6666 case MEM_REF:
6667 if (MEM_P (x)
6668 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
6669 get_alias_set (exp)))
6670 return 0;
6671 break;
6673 case CALL_EXPR:
6674 /* Assume that the call will clobber all hard registers and
6675 all of memory. */
6676 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6677 || MEM_P (x))
6678 return 0;
6679 break;
6681 case WITH_CLEANUP_EXPR:
6682 case CLEANUP_POINT_EXPR:
6683 /* Lowered by gimplify.c. */
6684 gcc_unreachable ();
6686 case SAVE_EXPR:
6687 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6689 default:
6690 break;
6693 /* If we have an rtx, we do not need to scan our operands. */
6694 if (exp_rtl)
6695 break;
6697 nops = TREE_OPERAND_LENGTH (exp);
6698 for (i = 0; i < nops; i++)
6699 if (TREE_OPERAND (exp, i) != 0
6700 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
6701 return 0;
6703 break;
6705 case tcc_type:
6706 /* Should never get a type here. */
6707 gcc_unreachable ();
6710 /* If we have an rtl, find any enclosed object. Then see if we conflict
6711 with it. */
6712 if (exp_rtl)
6714 if (GET_CODE (exp_rtl) == SUBREG)
6716 exp_rtl = SUBREG_REG (exp_rtl);
6717 if (REG_P (exp_rtl)
6718 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
6719 return 0;
6722 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
6723 are memory and they conflict. */
6724 return ! (rtx_equal_p (x, exp_rtl)
6725 || (MEM_P (x) && MEM_P (exp_rtl)
6726 && true_dependence (exp_rtl, VOIDmode, x,
6727 rtx_addr_varies_p)));
6730 /* If we reach here, it is safe. */
6731 return 1;
6735 /* Return the highest power of two that EXP is known to be a multiple of.
6736 This is used in updating alignment of MEMs in array references. */
6738 unsigned HOST_WIDE_INT
6739 highest_pow2_factor (const_tree exp)
6741 unsigned HOST_WIDE_INT c0, c1;
6743 switch (TREE_CODE (exp))
6745 case INTEGER_CST:
6746 /* We can find the lowest bit that's a one. If the low
6747 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6748 We need to handle this case since we can find it in a COND_EXPR,
6749 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6750 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6751 later ICE. */
6752 if (TREE_OVERFLOW (exp))
6753 return BIGGEST_ALIGNMENT;
6754 else
6756 /* Note: tree_low_cst is intentionally not used here,
6757 we don't care about the upper bits. */
6758 c0 = TREE_INT_CST_LOW (exp);
6759 c0 &= -c0;
6760 return c0 ? c0 : BIGGEST_ALIGNMENT;
6762 break;
6764 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
6765 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6766 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6767 return MIN (c0, c1);
6769 case MULT_EXPR:
6770 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6771 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6772 return c0 * c1;
6774 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
6775 case CEIL_DIV_EXPR:
6776 if (integer_pow2p (TREE_OPERAND (exp, 1))
6777 && host_integerp (TREE_OPERAND (exp, 1), 1))
6779 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6780 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
6781 return MAX (1, c0 / c1);
6783 break;
6785 case BIT_AND_EXPR:
6786 /* The highest power of two of a bit-and expression is the maximum of
6787 that of its operands. We typically get here for a complex LHS and
6788 a constant negative power of two on the RHS to force an explicit
6789 alignment, so don't bother looking at the LHS. */
6790 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6792 CASE_CONVERT:
6793 case SAVE_EXPR:
6794 return highest_pow2_factor (TREE_OPERAND (exp, 0));
6796 case COMPOUND_EXPR:
6797 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6799 case COND_EXPR:
6800 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6801 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
6802 return MIN (c0, c1);
6804 default:
6805 break;
6808 return 1;
6811 /* Similar, except that the alignment requirements of TARGET are
6812 taken into account. Assume it is at least as aligned as its
6813 type, unless it is a COMPONENT_REF in which case the layout of
6814 the structure gives the alignment. */
6816 static unsigned HOST_WIDE_INT
6817 highest_pow2_factor_for_target (const_tree target, const_tree exp)
6819 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
6820 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
6822 return MAX (factor, talign);
6825 /* Subroutine of expand_expr. Expand the two operands of a binary
6826 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6827 The value may be stored in TARGET if TARGET is nonzero. The
6828 MODIFIER argument is as documented by expand_expr. */
6830 static void
6831 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
6832 enum expand_modifier modifier)
6834 if (! safe_from_p (target, exp1, 1))
6835 target = 0;
6836 if (operand_equal_p (exp0, exp1, 0))
6838 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6839 *op1 = copy_rtx (*op0);
6841 else
6843 /* If we need to preserve evaluation order, copy exp0 into its own
6844 temporary variable so that it can't be clobbered by exp1. */
6845 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
6846 exp0 = save_expr (exp0);
6847 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6848 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
6853 /* Return a MEM that contains constant EXP. DEFER is as for
6854 output_constant_def and MODIFIER is as for expand_expr. */
6856 static rtx
6857 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
6859 rtx mem;
6861 mem = output_constant_def (exp, defer);
6862 if (modifier != EXPAND_INITIALIZER)
6863 mem = use_anchored_address (mem);
6864 return mem;
6867 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6868 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6870 static rtx
6871 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
6872 enum expand_modifier modifier, addr_space_t as)
6874 rtx result, subtarget;
6875 tree inner, offset;
6876 HOST_WIDE_INT bitsize, bitpos;
6877 int volatilep, unsignedp;
6878 enum machine_mode mode1;
6880 /* If we are taking the address of a constant and are at the top level,
6881 we have to use output_constant_def since we can't call force_const_mem
6882 at top level. */
6883 /* ??? This should be considered a front-end bug. We should not be
6884 generating ADDR_EXPR of something that isn't an LVALUE. The only
6885 exception here is STRING_CST. */
6886 if (CONSTANT_CLASS_P (exp))
6887 return XEXP (expand_expr_constant (exp, 0, modifier), 0);
6889 /* Everything must be something allowed by is_gimple_addressable. */
6890 switch (TREE_CODE (exp))
6892 case INDIRECT_REF:
6893 /* This case will happen via recursion for &a->b. */
6894 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
6896 case MEM_REF:
6898 tree tem = TREE_OPERAND (exp, 0);
6899 if (!integer_zerop (TREE_OPERAND (exp, 1)))
6900 tem = build2 (POINTER_PLUS_EXPR, TREE_TYPE (TREE_OPERAND (exp, 1)),
6901 tem,
6902 double_int_to_tree (sizetype, mem_ref_offset (exp)));
6903 return expand_expr (tem, target, tmode, modifier);
6906 case CONST_DECL:
6907 /* Expand the initializer like constants above. */
6908 return XEXP (expand_expr_constant (DECL_INITIAL (exp), 0, modifier), 0);
6910 case REALPART_EXPR:
6911 /* The real part of the complex number is always first, therefore
6912 the address is the same as the address of the parent object. */
6913 offset = 0;
6914 bitpos = 0;
6915 inner = TREE_OPERAND (exp, 0);
6916 break;
6918 case IMAGPART_EXPR:
6919 /* The imaginary part of the complex number is always second.
6920 The expression is therefore always offset by the size of the
6921 scalar type. */
6922 offset = 0;
6923 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
6924 inner = TREE_OPERAND (exp, 0);
6925 break;
6927 default:
6928 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6929 expand_expr, as that can have various side effects; LABEL_DECLs for
6930 example, may not have their DECL_RTL set yet. Expand the rtl of
6931 CONSTRUCTORs too, which should yield a memory reference for the
6932 constructor's contents. Assume language specific tree nodes can
6933 be expanded in some interesting way. */
6934 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
6935 if (DECL_P (exp)
6936 || TREE_CODE (exp) == CONSTRUCTOR
6937 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
6939 result = expand_expr (exp, target, tmode,
6940 modifier == EXPAND_INITIALIZER
6941 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
6943 /* If the DECL isn't in memory, then the DECL wasn't properly
6944 marked TREE_ADDRESSABLE, which will be either a front-end
6945 or a tree optimizer bug. */
6946 gcc_assert (MEM_P (result));
6947 result = XEXP (result, 0);
6949 /* ??? Is this needed anymore? */
6950 if (DECL_P (exp) && !TREE_USED (exp) == 0)
6952 assemble_external (exp);
6953 TREE_USED (exp) = 1;
6956 if (modifier != EXPAND_INITIALIZER
6957 && modifier != EXPAND_CONST_ADDRESS)
6958 result = force_operand (result, target);
6959 return result;
6962 /* Pass FALSE as the last argument to get_inner_reference although
6963 we are expanding to RTL. The rationale is that we know how to
6964 handle "aligning nodes" here: we can just bypass them because
6965 they won't change the final object whose address will be returned
6966 (they actually exist only for that purpose). */
6967 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6968 &mode1, &unsignedp, &volatilep, false);
6969 break;
6972 /* We must have made progress. */
6973 gcc_assert (inner != exp);
6975 subtarget = offset || bitpos ? NULL_RTX : target;
6976 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
6977 inner alignment, force the inner to be sufficiently aligned. */
6978 if (CONSTANT_CLASS_P (inner)
6979 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
6981 inner = copy_node (inner);
6982 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
6983 TYPE_ALIGN (TREE_TYPE (inner)) = TYPE_ALIGN (TREE_TYPE (exp));
6984 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
6986 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
6988 if (offset)
6990 rtx tmp;
6992 if (modifier != EXPAND_NORMAL)
6993 result = force_operand (result, NULL);
6994 tmp = expand_expr (offset, NULL_RTX, tmode,
6995 modifier == EXPAND_INITIALIZER
6996 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
6998 result = convert_memory_address_addr_space (tmode, result, as);
6999 tmp = convert_memory_address_addr_space (tmode, tmp, as);
7001 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7002 result = gen_rtx_PLUS (tmode, result, tmp);
7003 else
7005 subtarget = bitpos ? NULL_RTX : target;
7006 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
7007 1, OPTAB_LIB_WIDEN);
7011 if (bitpos)
7013 /* Someone beforehand should have rejected taking the address
7014 of such an object. */
7015 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
7017 result = plus_constant (result, bitpos / BITS_PER_UNIT);
7018 if (modifier < EXPAND_SUM)
7019 result = force_operand (result, target);
7022 return result;
7025 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7026 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7028 static rtx
7029 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
7030 enum expand_modifier modifier)
7032 addr_space_t as = ADDR_SPACE_GENERIC;
7033 enum machine_mode address_mode = Pmode;
7034 enum machine_mode pointer_mode = ptr_mode;
7035 enum machine_mode rmode;
7036 rtx result;
7038 /* Target mode of VOIDmode says "whatever's natural". */
7039 if (tmode == VOIDmode)
7040 tmode = TYPE_MODE (TREE_TYPE (exp));
7042 if (POINTER_TYPE_P (TREE_TYPE (exp)))
7044 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
7045 address_mode = targetm.addr_space.address_mode (as);
7046 pointer_mode = targetm.addr_space.pointer_mode (as);
7049 /* We can get called with some Weird Things if the user does silliness
7050 like "(short) &a". In that case, convert_memory_address won't do
7051 the right thing, so ignore the given target mode. */
7052 if (tmode != address_mode && tmode != pointer_mode)
7053 tmode = address_mode;
7055 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
7056 tmode, modifier, as);
7058 /* Despite expand_expr claims concerning ignoring TMODE when not
7059 strictly convenient, stuff breaks if we don't honor it. Note
7060 that combined with the above, we only do this for pointer modes. */
7061 rmode = GET_MODE (result);
7062 if (rmode == VOIDmode)
7063 rmode = tmode;
7064 if (rmode != tmode)
7065 result = convert_memory_address_addr_space (tmode, result, as);
7067 return result;
7070 /* Generate code for computing CONSTRUCTOR EXP.
7071 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7072 is TRUE, instead of creating a temporary variable in memory
7073 NULL is returned and the caller needs to handle it differently. */
7075 static rtx
7076 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
7077 bool avoid_temp_mem)
7079 tree type = TREE_TYPE (exp);
7080 enum machine_mode mode = TYPE_MODE (type);
7082 /* Try to avoid creating a temporary at all. This is possible
7083 if all of the initializer is zero.
7084 FIXME: try to handle all [0..255] initializers we can handle
7085 with memset. */
7086 if (TREE_STATIC (exp)
7087 && !TREE_ADDRESSABLE (exp)
7088 && target != 0 && mode == BLKmode
7089 && all_zeros_p (exp))
7091 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7092 return target;
7095 /* All elts simple constants => refer to a constant in memory. But
7096 if this is a non-BLKmode mode, let it store a field at a time
7097 since that should make a CONST_INT or CONST_DOUBLE when we
7098 fold. Likewise, if we have a target we can use, it is best to
7099 store directly into the target unless the type is large enough
7100 that memcpy will be used. If we are making an initializer and
7101 all operands are constant, put it in memory as well.
7103 FIXME: Avoid trying to fill vector constructors piece-meal.
7104 Output them with output_constant_def below unless we're sure
7105 they're zeros. This should go away when vector initializers
7106 are treated like VECTOR_CST instead of arrays. */
7107 if ((TREE_STATIC (exp)
7108 && ((mode == BLKmode
7109 && ! (target != 0 && safe_from_p (target, exp, 1)))
7110 || TREE_ADDRESSABLE (exp)
7111 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
7112 && (! MOVE_BY_PIECES_P
7113 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
7114 TYPE_ALIGN (type)))
7115 && ! mostly_zeros_p (exp))))
7116 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
7117 && TREE_CONSTANT (exp)))
7119 rtx constructor;
7121 if (avoid_temp_mem)
7122 return NULL_RTX;
7124 constructor = expand_expr_constant (exp, 1, modifier);
7126 if (modifier != EXPAND_CONST_ADDRESS
7127 && modifier != EXPAND_INITIALIZER
7128 && modifier != EXPAND_SUM)
7129 constructor = validize_mem (constructor);
7131 return constructor;
7134 /* Handle calls that pass values in multiple non-contiguous
7135 locations. The Irix 6 ABI has examples of this. */
7136 if (target == 0 || ! safe_from_p (target, exp, 1)
7137 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
7139 if (avoid_temp_mem)
7140 return NULL_RTX;
7142 target
7143 = assign_temp (build_qualified_type (type, (TYPE_QUALS (type)
7144 | (TREE_READONLY (exp)
7145 * TYPE_QUAL_CONST))),
7146 0, TREE_ADDRESSABLE (exp), 1);
7149 store_constructor (exp, target, 0, int_expr_size (exp));
7150 return target;
7154 /* expand_expr: generate code for computing expression EXP.
7155 An rtx for the computed value is returned. The value is never null.
7156 In the case of a void EXP, const0_rtx is returned.
7158 The value may be stored in TARGET if TARGET is nonzero.
7159 TARGET is just a suggestion; callers must assume that
7160 the rtx returned may not be the same as TARGET.
7162 If TARGET is CONST0_RTX, it means that the value will be ignored.
7164 If TMODE is not VOIDmode, it suggests generating the
7165 result in mode TMODE. But this is done only when convenient.
7166 Otherwise, TMODE is ignored and the value generated in its natural mode.
7167 TMODE is just a suggestion; callers must assume that
7168 the rtx returned may not have mode TMODE.
7170 Note that TARGET may have neither TMODE nor MODE. In that case, it
7171 probably will not be used.
7173 If MODIFIER is EXPAND_SUM then when EXP is an addition
7174 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7175 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7176 products as above, or REG or MEM, or constant.
7177 Ordinarily in such cases we would output mul or add instructions
7178 and then return a pseudo reg containing the sum.
7180 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7181 it also marks a label as absolutely required (it can't be dead).
7182 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7183 This is used for outputting expressions used in initializers.
7185 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7186 with a constant address even if that address is not normally legitimate.
7187 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7189 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7190 a call parameter. Such targets require special care as we haven't yet
7191 marked TARGET so that it's safe from being trashed by libcalls. We
7192 don't want to use TARGET for anything but the final result;
7193 Intermediate values must go elsewhere. Additionally, calls to
7194 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7196 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7197 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7198 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7199 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7200 recursively. */
7203 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
7204 enum expand_modifier modifier, rtx *alt_rtl)
7206 rtx ret;
7208 /* Handle ERROR_MARK before anybody tries to access its type. */
7209 if (TREE_CODE (exp) == ERROR_MARK
7210 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
7212 ret = CONST0_RTX (tmode);
7213 return ret ? ret : const0_rtx;
7216 /* If this is an expression of some kind and it has an associated line
7217 number, then emit the line number before expanding the expression.
7219 We need to save and restore the file and line information so that
7220 errors discovered during expansion are emitted with the right
7221 information. It would be better of the diagnostic routines
7222 used the file/line information embedded in the tree nodes rather
7223 than globals. */
7224 if (cfun && EXPR_HAS_LOCATION (exp))
7226 location_t saved_location = input_location;
7227 location_t saved_curr_loc = get_curr_insn_source_location ();
7228 tree saved_block = get_curr_insn_block ();
7229 input_location = EXPR_LOCATION (exp);
7230 set_curr_insn_source_location (input_location);
7232 /* Record where the insns produced belong. */
7233 set_curr_insn_block (TREE_BLOCK (exp));
7235 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7237 input_location = saved_location;
7238 set_curr_insn_block (saved_block);
7239 set_curr_insn_source_location (saved_curr_loc);
7241 else
7243 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7246 return ret;
7250 expand_expr_real_2 (sepops ops, rtx target, enum machine_mode tmode,
7251 enum expand_modifier modifier)
7253 rtx op0, op1, op2, temp;
7254 tree type;
7255 int unsignedp;
7256 enum machine_mode mode;
7257 enum tree_code code = ops->code;
7258 optab this_optab;
7259 rtx subtarget, original_target;
7260 int ignore;
7261 bool reduce_bit_field;
7262 location_t loc = ops->location;
7263 tree treeop0, treeop1, treeop2;
7264 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
7265 ? reduce_to_bit_field_precision ((expr), \
7266 target, \
7267 type) \
7268 : (expr))
7270 type = ops->type;
7271 mode = TYPE_MODE (type);
7272 unsignedp = TYPE_UNSIGNED (type);
7274 treeop0 = ops->op0;
7275 treeop1 = ops->op1;
7276 treeop2 = ops->op2;
7278 /* We should be called only on simple (binary or unary) expressions,
7279 exactly those that are valid in gimple expressions that aren't
7280 GIMPLE_SINGLE_RHS (or invalid). */
7281 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
7282 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
7283 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
7285 ignore = (target == const0_rtx
7286 || ((CONVERT_EXPR_CODE_P (code)
7287 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
7288 && TREE_CODE (type) == VOID_TYPE));
7290 /* We should be called only if we need the result. */
7291 gcc_assert (!ignore);
7293 /* An operation in what may be a bit-field type needs the
7294 result to be reduced to the precision of the bit-field type,
7295 which is narrower than that of the type's mode. */
7296 reduce_bit_field = (TREE_CODE (type) == INTEGER_TYPE
7297 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
7299 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
7300 target = 0;
7302 /* Use subtarget as the target for operand 0 of a binary operation. */
7303 subtarget = get_subtarget (target);
7304 original_target = target;
7306 switch (code)
7308 case NON_LVALUE_EXPR:
7309 case PAREN_EXPR:
7310 CASE_CONVERT:
7311 if (treeop0 == error_mark_node)
7312 return const0_rtx;
7314 if (TREE_CODE (type) == UNION_TYPE)
7316 tree valtype = TREE_TYPE (treeop0);
7318 /* If both input and output are BLKmode, this conversion isn't doing
7319 anything except possibly changing memory attribute. */
7320 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
7322 rtx result = expand_expr (treeop0, target, tmode,
7323 modifier);
7325 result = copy_rtx (result);
7326 set_mem_attributes (result, type, 0);
7327 return result;
7330 if (target == 0)
7332 if (TYPE_MODE (type) != BLKmode)
7333 target = gen_reg_rtx (TYPE_MODE (type));
7334 else
7335 target = assign_temp (type, 0, 1, 1);
7338 if (MEM_P (target))
7339 /* Store data into beginning of memory target. */
7340 store_expr (treeop0,
7341 adjust_address (target, TYPE_MODE (valtype), 0),
7342 modifier == EXPAND_STACK_PARM,
7343 false);
7345 else
7347 gcc_assert (REG_P (target));
7349 /* Store this field into a union of the proper type. */
7350 store_field (target,
7351 MIN ((int_size_in_bytes (TREE_TYPE
7352 (treeop0))
7353 * BITS_PER_UNIT),
7354 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
7355 0, TYPE_MODE (valtype), treeop0,
7356 type, 0, false);
7359 /* Return the entire union. */
7360 return target;
7363 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
7365 op0 = expand_expr (treeop0, target, VOIDmode,
7366 modifier);
7368 /* If the signedness of the conversion differs and OP0 is
7369 a promoted SUBREG, clear that indication since we now
7370 have to do the proper extension. */
7371 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
7372 && GET_CODE (op0) == SUBREG)
7373 SUBREG_PROMOTED_VAR_P (op0) = 0;
7375 return REDUCE_BIT_FIELD (op0);
7378 op0 = expand_expr (treeop0, NULL_RTX, mode,
7379 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
7380 if (GET_MODE (op0) == mode)
7383 /* If OP0 is a constant, just convert it into the proper mode. */
7384 else if (CONSTANT_P (op0))
7386 tree inner_type = TREE_TYPE (treeop0);
7387 enum machine_mode inner_mode = TYPE_MODE (inner_type);
7389 if (modifier == EXPAND_INITIALIZER)
7390 op0 = simplify_gen_subreg (mode, op0, inner_mode,
7391 subreg_lowpart_offset (mode,
7392 inner_mode));
7393 else
7394 op0= convert_modes (mode, inner_mode, op0,
7395 TYPE_UNSIGNED (inner_type));
7398 else if (modifier == EXPAND_INITIALIZER)
7399 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
7401 else if (target == 0)
7402 op0 = convert_to_mode (mode, op0,
7403 TYPE_UNSIGNED (TREE_TYPE
7404 (treeop0)));
7405 else
7407 convert_move (target, op0,
7408 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
7409 op0 = target;
7412 return REDUCE_BIT_FIELD (op0);
7414 case ADDR_SPACE_CONVERT_EXPR:
7416 tree treeop0_type = TREE_TYPE (treeop0);
7417 addr_space_t as_to;
7418 addr_space_t as_from;
7420 gcc_assert (POINTER_TYPE_P (type));
7421 gcc_assert (POINTER_TYPE_P (treeop0_type));
7423 as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
7424 as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
7426 /* Conversions between pointers to the same address space should
7427 have been implemented via CONVERT_EXPR / NOP_EXPR. */
7428 gcc_assert (as_to != as_from);
7430 /* Ask target code to handle conversion between pointers
7431 to overlapping address spaces. */
7432 if (targetm.addr_space.subset_p (as_to, as_from)
7433 || targetm.addr_space.subset_p (as_from, as_to))
7435 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
7436 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
7437 gcc_assert (op0);
7438 return op0;
7441 /* For disjoint address spaces, converting anything but
7442 a null pointer invokes undefined behaviour. We simply
7443 always return a null pointer here. */
7444 return CONST0_RTX (mode);
7447 case POINTER_PLUS_EXPR:
7448 /* Even though the sizetype mode and the pointer's mode can be different
7449 expand is able to handle this correctly and get the correct result out
7450 of the PLUS_EXPR code. */
7451 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
7452 if sizetype precision is smaller than pointer precision. */
7453 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
7454 treeop1 = fold_convert_loc (loc, type,
7455 fold_convert_loc (loc, ssizetype,
7456 treeop1));
7457 case PLUS_EXPR:
7458 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7459 something else, make sure we add the register to the constant and
7460 then to the other thing. This case can occur during strength
7461 reduction and doing it this way will produce better code if the
7462 frame pointer or argument pointer is eliminated.
7464 fold-const.c will ensure that the constant is always in the inner
7465 PLUS_EXPR, so the only case we need to do anything about is if
7466 sp, ap, or fp is our second argument, in which case we must swap
7467 the innermost first argument and our second argument. */
7469 if (TREE_CODE (treeop0) == PLUS_EXPR
7470 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
7471 && TREE_CODE (treeop1) == VAR_DECL
7472 && (DECL_RTL (treeop1) == frame_pointer_rtx
7473 || DECL_RTL (treeop1) == stack_pointer_rtx
7474 || DECL_RTL (treeop1) == arg_pointer_rtx))
7476 tree t = treeop1;
7478 treeop1 = TREE_OPERAND (treeop0, 0);
7479 TREE_OPERAND (treeop0, 0) = t;
7482 /* If the result is to be ptr_mode and we are adding an integer to
7483 something, we might be forming a constant. So try to use
7484 plus_constant. If it produces a sum and we can't accept it,
7485 use force_operand. This allows P = &ARR[const] to generate
7486 efficient code on machines where a SYMBOL_REF is not a valid
7487 address.
7489 If this is an EXPAND_SUM call, always return the sum. */
7490 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
7491 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
7493 if (modifier == EXPAND_STACK_PARM)
7494 target = 0;
7495 if (TREE_CODE (treeop0) == INTEGER_CST
7496 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7497 && TREE_CONSTANT (treeop1))
7499 rtx constant_part;
7501 op1 = expand_expr (treeop1, subtarget, VOIDmode,
7502 EXPAND_SUM);
7503 /* Use immed_double_const to ensure that the constant is
7504 truncated according to the mode of OP1, then sign extended
7505 to a HOST_WIDE_INT. Using the constant directly can result
7506 in non-canonical RTL in a 64x32 cross compile. */
7507 constant_part
7508 = immed_double_const (TREE_INT_CST_LOW (treeop0),
7509 (HOST_WIDE_INT) 0,
7510 TYPE_MODE (TREE_TYPE (treeop1)));
7511 op1 = plus_constant (op1, INTVAL (constant_part));
7512 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7513 op1 = force_operand (op1, target);
7514 return REDUCE_BIT_FIELD (op1);
7517 else if (TREE_CODE (treeop1) == INTEGER_CST
7518 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7519 && TREE_CONSTANT (treeop0))
7521 rtx constant_part;
7523 op0 = expand_expr (treeop0, subtarget, VOIDmode,
7524 (modifier == EXPAND_INITIALIZER
7525 ? EXPAND_INITIALIZER : EXPAND_SUM));
7526 if (! CONSTANT_P (op0))
7528 op1 = expand_expr (treeop1, NULL_RTX,
7529 VOIDmode, modifier);
7530 /* Return a PLUS if modifier says it's OK. */
7531 if (modifier == EXPAND_SUM
7532 || modifier == EXPAND_INITIALIZER)
7533 return simplify_gen_binary (PLUS, mode, op0, op1);
7534 goto binop2;
7536 /* Use immed_double_const to ensure that the constant is
7537 truncated according to the mode of OP1, then sign extended
7538 to a HOST_WIDE_INT. Using the constant directly can result
7539 in non-canonical RTL in a 64x32 cross compile. */
7540 constant_part
7541 = immed_double_const (TREE_INT_CST_LOW (treeop1),
7542 (HOST_WIDE_INT) 0,
7543 TYPE_MODE (TREE_TYPE (treeop0)));
7544 op0 = plus_constant (op0, INTVAL (constant_part));
7545 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7546 op0 = force_operand (op0, target);
7547 return REDUCE_BIT_FIELD (op0);
7551 /* Use TER to expand pointer addition of a negated value
7552 as pointer subtraction. */
7553 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
7554 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
7555 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
7556 && TREE_CODE (treeop1) == SSA_NAME
7557 && TYPE_MODE (TREE_TYPE (treeop0))
7558 == TYPE_MODE (TREE_TYPE (treeop1)))
7560 gimple def = get_def_for_expr (treeop1, NEGATE_EXPR);
7561 if (def)
7563 treeop1 = gimple_assign_rhs1 (def);
7564 code = MINUS_EXPR;
7565 goto do_minus;
7569 /* No sense saving up arithmetic to be done
7570 if it's all in the wrong mode to form part of an address.
7571 And force_operand won't know whether to sign-extend or
7572 zero-extend. */
7573 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7574 || mode != ptr_mode)
7576 expand_operands (treeop0, treeop1,
7577 subtarget, &op0, &op1, EXPAND_NORMAL);
7578 if (op0 == const0_rtx)
7579 return op1;
7580 if (op1 == const0_rtx)
7581 return op0;
7582 goto binop2;
7585 expand_operands (treeop0, treeop1,
7586 subtarget, &op0, &op1, modifier);
7587 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7589 case MINUS_EXPR:
7590 do_minus:
7591 /* For initializers, we are allowed to return a MINUS of two
7592 symbolic constants. Here we handle all cases when both operands
7593 are constant. */
7594 /* Handle difference of two symbolic constants,
7595 for the sake of an initializer. */
7596 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7597 && really_constant_p (treeop0)
7598 && really_constant_p (treeop1))
7600 expand_operands (treeop0, treeop1,
7601 NULL_RTX, &op0, &op1, modifier);
7603 /* If the last operand is a CONST_INT, use plus_constant of
7604 the negated constant. Else make the MINUS. */
7605 if (CONST_INT_P (op1))
7606 return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
7607 else
7608 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
7611 /* No sense saving up arithmetic to be done
7612 if it's all in the wrong mode to form part of an address.
7613 And force_operand won't know whether to sign-extend or
7614 zero-extend. */
7615 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7616 || mode != ptr_mode)
7617 goto binop;
7619 expand_operands (treeop0, treeop1,
7620 subtarget, &op0, &op1, modifier);
7622 /* Convert A - const to A + (-const). */
7623 if (CONST_INT_P (op1))
7625 op1 = negate_rtx (mode, op1);
7626 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7629 goto binop2;
7631 case WIDEN_MULT_PLUS_EXPR:
7632 case WIDEN_MULT_MINUS_EXPR:
7633 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
7634 op2 = expand_normal (treeop2);
7635 target = expand_widen_pattern_expr (ops, op0, op1, op2,
7636 target, unsignedp);
7637 return target;
7639 case WIDEN_MULT_EXPR:
7640 /* If first operand is constant, swap them.
7641 Thus the following special case checks need only
7642 check the second operand. */
7643 if (TREE_CODE (treeop0) == INTEGER_CST)
7645 tree t1 = treeop0;
7646 treeop0 = treeop1;
7647 treeop1 = t1;
7650 /* First, check if we have a multiplication of one signed and one
7651 unsigned operand. */
7652 if (TREE_CODE (treeop1) != INTEGER_CST
7653 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
7654 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
7656 enum machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
7657 this_optab = usmul_widen_optab;
7658 if (mode == GET_MODE_2XWIDER_MODE (innermode))
7660 if (optab_handler (this_optab, mode) != CODE_FOR_nothing)
7662 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
7663 expand_operands (treeop0, treeop1, subtarget, &op0, &op1,
7664 EXPAND_NORMAL);
7665 else
7666 expand_operands (treeop0, treeop1, subtarget, &op1, &op0,
7667 EXPAND_NORMAL);
7668 goto binop3;
7672 /* Check for a multiplication with matching signedness. */
7673 else if ((TREE_CODE (treeop1) == INTEGER_CST
7674 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
7675 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
7676 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
7678 tree op0type = TREE_TYPE (treeop0);
7679 enum machine_mode innermode = TYPE_MODE (op0type);
7680 bool zextend_p = TYPE_UNSIGNED (op0type);
7681 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
7682 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
7684 if (mode == GET_MODE_2XWIDER_MODE (innermode))
7686 if (optab_handler (this_optab, mode) != CODE_FOR_nothing)
7688 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
7689 EXPAND_NORMAL);
7690 temp = expand_widening_mult (mode, op0, op1, target,
7691 unsignedp, this_optab);
7692 return REDUCE_BIT_FIELD (temp);
7694 if (optab_handler (other_optab, mode) != CODE_FOR_nothing
7695 && innermode == word_mode)
7697 rtx htem, hipart;
7698 op0 = expand_normal (treeop0);
7699 if (TREE_CODE (treeop1) == INTEGER_CST)
7700 op1 = convert_modes (innermode, mode,
7701 expand_normal (treeop1), unsignedp);
7702 else
7703 op1 = expand_normal (treeop1);
7704 temp = expand_binop (mode, other_optab, op0, op1, target,
7705 unsignedp, OPTAB_LIB_WIDEN);
7706 hipart = gen_highpart (innermode, temp);
7707 htem = expand_mult_highpart_adjust (innermode, hipart,
7708 op0, op1, hipart,
7709 zextend_p);
7710 if (htem != hipart)
7711 emit_move_insn (hipart, htem);
7712 return REDUCE_BIT_FIELD (temp);
7716 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
7717 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
7718 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
7719 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
7721 case FMA_EXPR:
7723 optab opt = fma_optab;
7724 gimple def0, def2;
7726 def0 = get_def_for_expr (treeop0, NEGATE_EXPR);
7727 def2 = get_def_for_expr (treeop2, NEGATE_EXPR);
7729 op0 = op2 = NULL;
7731 if (def0 && def2
7732 && optab_handler (fnms_optab, mode) != CODE_FOR_nothing)
7734 opt = fnms_optab;
7735 op0 = expand_normal (gimple_assign_rhs1 (def0));
7736 op2 = expand_normal (gimple_assign_rhs1 (def2));
7738 else if (def0
7739 && optab_handler (fnma_optab, mode) != CODE_FOR_nothing)
7741 opt = fnma_optab;
7742 op0 = expand_normal (gimple_assign_rhs1 (def0));
7744 else if (def2
7745 && optab_handler (fms_optab, mode) != CODE_FOR_nothing)
7747 opt = fms_optab;
7748 op2 = expand_normal (gimple_assign_rhs1 (def2));
7751 if (op0 == NULL)
7752 op0 = expand_expr (treeop0, subtarget, VOIDmode, EXPAND_NORMAL);
7753 if (op2 == NULL)
7754 op2 = expand_normal (treeop2);
7755 op1 = expand_normal (treeop1);
7757 return expand_ternary_op (TYPE_MODE (type), opt,
7758 op0, op1, op2, target, 0);
7761 case MULT_EXPR:
7762 /* If this is a fixed-point operation, then we cannot use the code
7763 below because "expand_mult" doesn't support sat/no-sat fixed-point
7764 multiplications. */
7765 if (ALL_FIXED_POINT_MODE_P (mode))
7766 goto binop;
7768 /* If first operand is constant, swap them.
7769 Thus the following special case checks need only
7770 check the second operand. */
7771 if (TREE_CODE (treeop0) == INTEGER_CST)
7773 tree t1 = treeop0;
7774 treeop0 = treeop1;
7775 treeop1 = t1;
7778 /* Attempt to return something suitable for generating an
7779 indexed address, for machines that support that. */
7781 if (modifier == EXPAND_SUM && mode == ptr_mode
7782 && host_integerp (treeop1, 0))
7784 tree exp1 = treeop1;
7786 op0 = expand_expr (treeop0, subtarget, VOIDmode,
7787 EXPAND_SUM);
7789 if (!REG_P (op0))
7790 op0 = force_operand (op0, NULL_RTX);
7791 if (!REG_P (op0))
7792 op0 = copy_to_mode_reg (mode, op0);
7794 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
7795 gen_int_mode (tree_low_cst (exp1, 0),
7796 TYPE_MODE (TREE_TYPE (exp1)))));
7799 if (modifier == EXPAND_STACK_PARM)
7800 target = 0;
7802 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
7803 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
7805 case TRUNC_DIV_EXPR:
7806 case FLOOR_DIV_EXPR:
7807 case CEIL_DIV_EXPR:
7808 case ROUND_DIV_EXPR:
7809 case EXACT_DIV_EXPR:
7810 /* If this is a fixed-point operation, then we cannot use the code
7811 below because "expand_divmod" doesn't support sat/no-sat fixed-point
7812 divisions. */
7813 if (ALL_FIXED_POINT_MODE_P (mode))
7814 goto binop;
7816 if (modifier == EXPAND_STACK_PARM)
7817 target = 0;
7818 /* Possible optimization: compute the dividend with EXPAND_SUM
7819 then if the divisor is constant can optimize the case
7820 where some terms of the dividend have coeffs divisible by it. */
7821 expand_operands (treeop0, treeop1,
7822 subtarget, &op0, &op1, EXPAND_NORMAL);
7823 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
7825 case RDIV_EXPR:
7826 goto binop;
7828 case TRUNC_MOD_EXPR:
7829 case FLOOR_MOD_EXPR:
7830 case CEIL_MOD_EXPR:
7831 case ROUND_MOD_EXPR:
7832 if (modifier == EXPAND_STACK_PARM)
7833 target = 0;
7834 expand_operands (treeop0, treeop1,
7835 subtarget, &op0, &op1, EXPAND_NORMAL);
7836 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
7838 case FIXED_CONVERT_EXPR:
7839 op0 = expand_normal (treeop0);
7840 if (target == 0 || modifier == EXPAND_STACK_PARM)
7841 target = gen_reg_rtx (mode);
7843 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
7844 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
7845 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
7846 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
7847 else
7848 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
7849 return target;
7851 case FIX_TRUNC_EXPR:
7852 op0 = expand_normal (treeop0);
7853 if (target == 0 || modifier == EXPAND_STACK_PARM)
7854 target = gen_reg_rtx (mode);
7855 expand_fix (target, op0, unsignedp);
7856 return target;
7858 case FLOAT_EXPR:
7859 op0 = expand_normal (treeop0);
7860 if (target == 0 || modifier == EXPAND_STACK_PARM)
7861 target = gen_reg_rtx (mode);
7862 /* expand_float can't figure out what to do if FROM has VOIDmode.
7863 So give it the correct mode. With -O, cse will optimize this. */
7864 if (GET_MODE (op0) == VOIDmode)
7865 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
7866 op0);
7867 expand_float (target, op0,
7868 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
7869 return target;
7871 case NEGATE_EXPR:
7872 op0 = expand_expr (treeop0, subtarget,
7873 VOIDmode, EXPAND_NORMAL);
7874 if (modifier == EXPAND_STACK_PARM)
7875 target = 0;
7876 temp = expand_unop (mode,
7877 optab_for_tree_code (NEGATE_EXPR, type,
7878 optab_default),
7879 op0, target, 0);
7880 gcc_assert (temp);
7881 return REDUCE_BIT_FIELD (temp);
7883 case ABS_EXPR:
7884 op0 = expand_expr (treeop0, subtarget,
7885 VOIDmode, EXPAND_NORMAL);
7886 if (modifier == EXPAND_STACK_PARM)
7887 target = 0;
7889 /* ABS_EXPR is not valid for complex arguments. */
7890 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7891 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
7893 /* Unsigned abs is simply the operand. Testing here means we don't
7894 risk generating incorrect code below. */
7895 if (TYPE_UNSIGNED (type))
7896 return op0;
7898 return expand_abs (mode, op0, target, unsignedp,
7899 safe_from_p (target, treeop0, 1));
7901 case MAX_EXPR:
7902 case MIN_EXPR:
7903 target = original_target;
7904 if (target == 0
7905 || modifier == EXPAND_STACK_PARM
7906 || (MEM_P (target) && MEM_VOLATILE_P (target))
7907 || GET_MODE (target) != mode
7908 || (REG_P (target)
7909 && REGNO (target) < FIRST_PSEUDO_REGISTER))
7910 target = gen_reg_rtx (mode);
7911 expand_operands (treeop0, treeop1,
7912 target, &op0, &op1, EXPAND_NORMAL);
7914 /* First try to do it with a special MIN or MAX instruction.
7915 If that does not win, use a conditional jump to select the proper
7916 value. */
7917 this_optab = optab_for_tree_code (code, type, optab_default);
7918 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
7919 OPTAB_WIDEN);
7920 if (temp != 0)
7921 return temp;
7923 /* At this point, a MEM target is no longer useful; we will get better
7924 code without it. */
7926 if (! REG_P (target))
7927 target = gen_reg_rtx (mode);
7929 /* If op1 was placed in target, swap op0 and op1. */
7930 if (target != op0 && target == op1)
7932 temp = op0;
7933 op0 = op1;
7934 op1 = temp;
7937 /* We generate better code and avoid problems with op1 mentioning
7938 target by forcing op1 into a pseudo if it isn't a constant. */
7939 if (! CONSTANT_P (op1))
7940 op1 = force_reg (mode, op1);
7943 enum rtx_code comparison_code;
7944 rtx cmpop1 = op1;
7946 if (code == MAX_EXPR)
7947 comparison_code = unsignedp ? GEU : GE;
7948 else
7949 comparison_code = unsignedp ? LEU : LE;
7951 /* Canonicalize to comparisons against 0. */
7952 if (op1 == const1_rtx)
7954 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
7955 or (a != 0 ? a : 1) for unsigned.
7956 For MIN we are safe converting (a <= 1 ? a : 1)
7957 into (a <= 0 ? a : 1) */
7958 cmpop1 = const0_rtx;
7959 if (code == MAX_EXPR)
7960 comparison_code = unsignedp ? NE : GT;
7962 if (op1 == constm1_rtx && !unsignedp)
7964 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
7965 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
7966 cmpop1 = const0_rtx;
7967 if (code == MIN_EXPR)
7968 comparison_code = LT;
7970 #ifdef HAVE_conditional_move
7971 /* Use a conditional move if possible. */
7972 if (can_conditionally_move_p (mode))
7974 rtx insn;
7976 /* ??? Same problem as in expmed.c: emit_conditional_move
7977 forces a stack adjustment via compare_from_rtx, and we
7978 lose the stack adjustment if the sequence we are about
7979 to create is discarded. */
7980 do_pending_stack_adjust ();
7982 start_sequence ();
7984 /* Try to emit the conditional move. */
7985 insn = emit_conditional_move (target, comparison_code,
7986 op0, cmpop1, mode,
7987 op0, op1, mode,
7988 unsignedp);
7990 /* If we could do the conditional move, emit the sequence,
7991 and return. */
7992 if (insn)
7994 rtx seq = get_insns ();
7995 end_sequence ();
7996 emit_insn (seq);
7997 return target;
8000 /* Otherwise discard the sequence and fall back to code with
8001 branches. */
8002 end_sequence ();
8004 #endif
8005 if (target != op0)
8006 emit_move_insn (target, op0);
8008 temp = gen_label_rtx ();
8009 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
8010 unsignedp, mode, NULL_RTX, NULL_RTX, temp,
8011 -1);
8013 emit_move_insn (target, op1);
8014 emit_label (temp);
8015 return target;
8017 case BIT_NOT_EXPR:
8018 op0 = expand_expr (treeop0, subtarget,
8019 VOIDmode, EXPAND_NORMAL);
8020 if (modifier == EXPAND_STACK_PARM)
8021 target = 0;
8022 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
8023 gcc_assert (temp);
8024 return temp;
8026 /* ??? Can optimize bitwise operations with one arg constant.
8027 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8028 and (a bitwise1 b) bitwise2 b (etc)
8029 but that is probably not worth while. */
8031 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
8032 boolean values when we want in all cases to compute both of them. In
8033 general it is fastest to do TRUTH_AND_EXPR by computing both operands
8034 as actual zero-or-1 values and then bitwise anding. In cases where
8035 there cannot be any side effects, better code would be made by
8036 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
8037 how to recognize those cases. */
8039 case TRUTH_AND_EXPR:
8040 code = BIT_AND_EXPR;
8041 case BIT_AND_EXPR:
8042 goto binop;
8044 case TRUTH_OR_EXPR:
8045 code = BIT_IOR_EXPR;
8046 case BIT_IOR_EXPR:
8047 goto binop;
8049 case TRUTH_XOR_EXPR:
8050 code = BIT_XOR_EXPR;
8051 case BIT_XOR_EXPR:
8052 goto binop;
8054 case LROTATE_EXPR:
8055 case RROTATE_EXPR:
8056 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
8057 || (GET_MODE_PRECISION (TYPE_MODE (type))
8058 == TYPE_PRECISION (type)));
8059 /* fall through */
8061 case LSHIFT_EXPR:
8062 case RSHIFT_EXPR:
8063 /* If this is a fixed-point operation, then we cannot use the code
8064 below because "expand_shift" doesn't support sat/no-sat fixed-point
8065 shifts. */
8066 if (ALL_FIXED_POINT_MODE_P (mode))
8067 goto binop;
8069 if (! safe_from_p (subtarget, treeop1, 1))
8070 subtarget = 0;
8071 if (modifier == EXPAND_STACK_PARM)
8072 target = 0;
8073 op0 = expand_expr (treeop0, subtarget,
8074 VOIDmode, EXPAND_NORMAL);
8075 temp = expand_shift (code, mode, op0, treeop1, target,
8076 unsignedp);
8077 if (code == LSHIFT_EXPR)
8078 temp = REDUCE_BIT_FIELD (temp);
8079 return temp;
8081 /* Could determine the answer when only additive constants differ. Also,
8082 the addition of one can be handled by changing the condition. */
8083 case LT_EXPR:
8084 case LE_EXPR:
8085 case GT_EXPR:
8086 case GE_EXPR:
8087 case EQ_EXPR:
8088 case NE_EXPR:
8089 case UNORDERED_EXPR:
8090 case ORDERED_EXPR:
8091 case UNLT_EXPR:
8092 case UNLE_EXPR:
8093 case UNGT_EXPR:
8094 case UNGE_EXPR:
8095 case UNEQ_EXPR:
8096 case LTGT_EXPR:
8097 temp = do_store_flag (ops,
8098 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
8099 tmode != VOIDmode ? tmode : mode);
8100 if (temp)
8101 return temp;
8103 /* Use a compare and a jump for BLKmode comparisons, or for function
8104 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
8106 if ((target == 0
8107 || modifier == EXPAND_STACK_PARM
8108 || ! safe_from_p (target, treeop0, 1)
8109 || ! safe_from_p (target, treeop1, 1)
8110 /* Make sure we don't have a hard reg (such as function's return
8111 value) live across basic blocks, if not optimizing. */
8112 || (!optimize && REG_P (target)
8113 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
8114 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8116 emit_move_insn (target, const0_rtx);
8118 op1 = gen_label_rtx ();
8119 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
8121 emit_move_insn (target, const1_rtx);
8123 emit_label (op1);
8124 return target;
8126 case TRUTH_NOT_EXPR:
8127 if (modifier == EXPAND_STACK_PARM)
8128 target = 0;
8129 op0 = expand_expr (treeop0, target,
8130 VOIDmode, EXPAND_NORMAL);
8131 /* The parser is careful to generate TRUTH_NOT_EXPR
8132 only with operands that are always zero or one. */
8133 temp = expand_binop (mode, xor_optab, op0, const1_rtx,
8134 target, 1, OPTAB_LIB_WIDEN);
8135 gcc_assert (temp);
8136 return temp;
8138 case COMPLEX_EXPR:
8139 /* Get the rtx code of the operands. */
8140 op0 = expand_normal (treeop0);
8141 op1 = expand_normal (treeop1);
8143 if (!target)
8144 target = gen_reg_rtx (TYPE_MODE (type));
8146 /* Move the real (op0) and imaginary (op1) parts to their location. */
8147 write_complex_part (target, op0, false);
8148 write_complex_part (target, op1, true);
8150 return target;
8152 case WIDEN_SUM_EXPR:
8154 tree oprnd0 = treeop0;
8155 tree oprnd1 = treeop1;
8157 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8158 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
8159 target, unsignedp);
8160 return target;
8163 case REDUC_MAX_EXPR:
8164 case REDUC_MIN_EXPR:
8165 case REDUC_PLUS_EXPR:
8167 op0 = expand_normal (treeop0);
8168 this_optab = optab_for_tree_code (code, type, optab_default);
8169 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
8170 gcc_assert (temp);
8171 return temp;
8174 case VEC_EXTRACT_EVEN_EXPR:
8175 case VEC_EXTRACT_ODD_EXPR:
8177 expand_operands (treeop0, treeop1,
8178 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8179 this_optab = optab_for_tree_code (code, type, optab_default);
8180 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8181 OPTAB_WIDEN);
8182 gcc_assert (temp);
8183 return temp;
8186 case VEC_INTERLEAVE_HIGH_EXPR:
8187 case VEC_INTERLEAVE_LOW_EXPR:
8189 expand_operands (treeop0, treeop1,
8190 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8191 this_optab = optab_for_tree_code (code, type, optab_default);
8192 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8193 OPTAB_WIDEN);
8194 gcc_assert (temp);
8195 return temp;
8198 case VEC_LSHIFT_EXPR:
8199 case VEC_RSHIFT_EXPR:
8201 target = expand_vec_shift_expr (ops, target);
8202 return target;
8205 case VEC_UNPACK_HI_EXPR:
8206 case VEC_UNPACK_LO_EXPR:
8208 op0 = expand_normal (treeop0);
8209 this_optab = optab_for_tree_code (code, type, optab_default);
8210 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
8211 target, unsignedp);
8212 gcc_assert (temp);
8213 return temp;
8216 case VEC_UNPACK_FLOAT_HI_EXPR:
8217 case VEC_UNPACK_FLOAT_LO_EXPR:
8219 op0 = expand_normal (treeop0);
8220 /* The signedness is determined from input operand. */
8221 this_optab = optab_for_tree_code (code,
8222 TREE_TYPE (treeop0),
8223 optab_default);
8224 temp = expand_widen_pattern_expr
8225 (ops, op0, NULL_RTX, NULL_RTX,
8226 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8228 gcc_assert (temp);
8229 return temp;
8232 case VEC_WIDEN_MULT_HI_EXPR:
8233 case VEC_WIDEN_MULT_LO_EXPR:
8235 tree oprnd0 = treeop0;
8236 tree oprnd1 = treeop1;
8238 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8239 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
8240 target, unsignedp);
8241 gcc_assert (target);
8242 return target;
8245 case VEC_PACK_TRUNC_EXPR:
8246 case VEC_PACK_SAT_EXPR:
8247 case VEC_PACK_FIX_TRUNC_EXPR:
8248 mode = TYPE_MODE (TREE_TYPE (treeop0));
8249 goto binop;
8251 default:
8252 gcc_unreachable ();
8255 /* Here to do an ordinary binary operator. */
8256 binop:
8257 expand_operands (treeop0, treeop1,
8258 subtarget, &op0, &op1, EXPAND_NORMAL);
8259 binop2:
8260 this_optab = optab_for_tree_code (code, type, optab_default);
8261 binop3:
8262 if (modifier == EXPAND_STACK_PARM)
8263 target = 0;
8264 temp = expand_binop (mode, this_optab, op0, op1, target,
8265 unsignedp, OPTAB_LIB_WIDEN);
8266 gcc_assert (temp);
8267 return REDUCE_BIT_FIELD (temp);
8269 #undef REDUCE_BIT_FIELD
8272 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
8273 enum expand_modifier modifier, rtx *alt_rtl)
8275 rtx op0, op1, temp, decl_rtl;
8276 tree type;
8277 int unsignedp;
8278 enum machine_mode mode;
8279 enum tree_code code = TREE_CODE (exp);
8280 optab this_optab;
8281 rtx subtarget, original_target;
8282 int ignore;
8283 tree context;
8284 bool reduce_bit_field;
8285 location_t loc = EXPR_LOCATION (exp);
8286 struct separate_ops ops;
8287 tree treeop0, treeop1, treeop2;
8288 tree ssa_name = NULL_TREE;
8289 gimple g;
8291 type = TREE_TYPE (exp);
8292 mode = TYPE_MODE (type);
8293 unsignedp = TYPE_UNSIGNED (type);
8295 treeop0 = treeop1 = treeop2 = NULL_TREE;
8296 if (!VL_EXP_CLASS_P (exp))
8297 switch (TREE_CODE_LENGTH (code))
8299 default:
8300 case 3: treeop2 = TREE_OPERAND (exp, 2);
8301 case 2: treeop1 = TREE_OPERAND (exp, 1);
8302 case 1: treeop0 = TREE_OPERAND (exp, 0);
8303 case 0: break;
8305 ops.code = code;
8306 ops.type = type;
8307 ops.op0 = treeop0;
8308 ops.op1 = treeop1;
8309 ops.op2 = treeop2;
8310 ops.location = loc;
8312 ignore = (target == const0_rtx
8313 || ((CONVERT_EXPR_CODE_P (code)
8314 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8315 && TREE_CODE (type) == VOID_TYPE));
8317 /* An operation in what may be a bit-field type needs the
8318 result to be reduced to the precision of the bit-field type,
8319 which is narrower than that of the type's mode. */
8320 reduce_bit_field = (!ignore
8321 && TREE_CODE (type) == INTEGER_TYPE
8322 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
8324 /* If we are going to ignore this result, we need only do something
8325 if there is a side-effect somewhere in the expression. If there
8326 is, short-circuit the most common cases here. Note that we must
8327 not call expand_expr with anything but const0_rtx in case this
8328 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
8330 if (ignore)
8332 if (! TREE_SIDE_EFFECTS (exp))
8333 return const0_rtx;
8335 /* Ensure we reference a volatile object even if value is ignored, but
8336 don't do this if all we are doing is taking its address. */
8337 if (TREE_THIS_VOLATILE (exp)
8338 && TREE_CODE (exp) != FUNCTION_DECL
8339 && mode != VOIDmode && mode != BLKmode
8340 && modifier != EXPAND_CONST_ADDRESS)
8342 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
8343 if (MEM_P (temp))
8344 temp = copy_to_reg (temp);
8345 return const0_rtx;
8348 if (TREE_CODE_CLASS (code) == tcc_unary
8349 || code == COMPONENT_REF || code == INDIRECT_REF)
8350 return expand_expr (treeop0, const0_rtx, VOIDmode,
8351 modifier);
8353 else if (TREE_CODE_CLASS (code) == tcc_binary
8354 || TREE_CODE_CLASS (code) == tcc_comparison
8355 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
8357 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8358 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8359 return const0_rtx;
8361 else if (code == BIT_FIELD_REF)
8363 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8364 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8365 expand_expr (treeop2, const0_rtx, VOIDmode, modifier);
8366 return const0_rtx;
8369 target = 0;
8372 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8373 target = 0;
8375 /* Use subtarget as the target for operand 0 of a binary operation. */
8376 subtarget = get_subtarget (target);
8377 original_target = target;
8379 switch (code)
8381 case LABEL_DECL:
8383 tree function = decl_function_context (exp);
8385 temp = label_rtx (exp);
8386 temp = gen_rtx_LABEL_REF (Pmode, temp);
8388 if (function != current_function_decl
8389 && function != 0)
8390 LABEL_REF_NONLOCAL_P (temp) = 1;
8392 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
8393 return temp;
8396 case SSA_NAME:
8397 /* ??? ivopts calls expander, without any preparation from
8398 out-of-ssa. So fake instructions as if this was an access to the
8399 base variable. This unnecessarily allocates a pseudo, see how we can
8400 reuse it, if partition base vars have it set already. */
8401 if (!currently_expanding_to_rtl)
8402 return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
8403 NULL);
8405 g = get_gimple_for_ssa_name (exp);
8406 if (g)
8407 return expand_expr_real (gimple_assign_rhs_to_tree (g), target, tmode,
8408 modifier, NULL);
8410 ssa_name = exp;
8411 decl_rtl = get_rtx_for_ssa_name (ssa_name);
8412 exp = SSA_NAME_VAR (ssa_name);
8413 goto expand_decl_rtl;
8415 case PARM_DECL:
8416 case VAR_DECL:
8417 /* If a static var's type was incomplete when the decl was written,
8418 but the type is complete now, lay out the decl now. */
8419 if (DECL_SIZE (exp) == 0
8420 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
8421 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
8422 layout_decl (exp, 0);
8424 /* ... fall through ... */
8426 case FUNCTION_DECL:
8427 case RESULT_DECL:
8428 decl_rtl = DECL_RTL (exp);
8429 expand_decl_rtl:
8430 gcc_assert (decl_rtl);
8431 decl_rtl = copy_rtx (decl_rtl);
8432 /* Record writes to register variables. */
8433 if (modifier == EXPAND_WRITE && REG_P (decl_rtl)
8434 && REGNO (decl_rtl) < FIRST_PSEUDO_REGISTER)
8436 int i = REGNO (decl_rtl);
8437 int nregs = hard_regno_nregs[i][GET_MODE (decl_rtl)];
8438 while (nregs)
8440 SET_HARD_REG_BIT (crtl->asm_clobbers, i);
8441 i++;
8442 nregs--;
8446 /* Ensure variable marked as used even if it doesn't go through
8447 a parser. If it hasn't be used yet, write out an external
8448 definition. */
8449 if (! TREE_USED (exp))
8451 assemble_external (exp);
8452 TREE_USED (exp) = 1;
8455 /* Show we haven't gotten RTL for this yet. */
8456 temp = 0;
8458 /* Variables inherited from containing functions should have
8459 been lowered by this point. */
8460 context = decl_function_context (exp);
8461 gcc_assert (!context
8462 || context == current_function_decl
8463 || TREE_STATIC (exp)
8464 || DECL_EXTERNAL (exp)
8465 /* ??? C++ creates functions that are not TREE_STATIC. */
8466 || TREE_CODE (exp) == FUNCTION_DECL);
8468 /* This is the case of an array whose size is to be determined
8469 from its initializer, while the initializer is still being parsed.
8470 See expand_decl. */
8472 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
8473 temp = validize_mem (decl_rtl);
8475 /* If DECL_RTL is memory, we are in the normal case and the
8476 address is not valid, get the address into a register. */
8478 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
8480 if (alt_rtl)
8481 *alt_rtl = decl_rtl;
8482 decl_rtl = use_anchored_address (decl_rtl);
8483 if (modifier != EXPAND_CONST_ADDRESS
8484 && modifier != EXPAND_SUM
8485 && !memory_address_addr_space_p (DECL_MODE (exp),
8486 XEXP (decl_rtl, 0),
8487 MEM_ADDR_SPACE (decl_rtl)))
8488 temp = replace_equiv_address (decl_rtl,
8489 copy_rtx (XEXP (decl_rtl, 0)));
8492 /* If we got something, return it. But first, set the alignment
8493 if the address is a register. */
8494 if (temp != 0)
8496 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
8497 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
8499 return temp;
8502 /* If the mode of DECL_RTL does not match that of the decl, it
8503 must be a promoted value. We return a SUBREG of the wanted mode,
8504 but mark it so that we know that it was already extended. */
8505 if (REG_P (decl_rtl) && GET_MODE (decl_rtl) != DECL_MODE (exp))
8507 enum machine_mode pmode;
8509 /* Get the signedness to be used for this variable. Ensure we get
8510 the same mode we got when the variable was declared. */
8511 if (code == SSA_NAME
8512 && (g = SSA_NAME_DEF_STMT (ssa_name))
8513 && gimple_code (g) == GIMPLE_CALL)
8514 pmode = promote_function_mode (type, mode, &unsignedp,
8515 TREE_TYPE
8516 (TREE_TYPE (gimple_call_fn (g))),
8518 else
8519 pmode = promote_decl_mode (exp, &unsignedp);
8520 gcc_assert (GET_MODE (decl_rtl) == pmode);
8522 temp = gen_lowpart_SUBREG (mode, decl_rtl);
8523 SUBREG_PROMOTED_VAR_P (temp) = 1;
8524 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
8525 return temp;
8528 return decl_rtl;
8530 case INTEGER_CST:
8531 temp = immed_double_const (TREE_INT_CST_LOW (exp),
8532 TREE_INT_CST_HIGH (exp), mode);
8534 return temp;
8536 case VECTOR_CST:
8538 tree tmp = NULL_TREE;
8539 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
8540 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
8541 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
8542 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
8543 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
8544 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
8545 return const_vector_from_tree (exp);
8546 if (GET_MODE_CLASS (mode) == MODE_INT)
8548 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
8549 if (type_for_mode)
8550 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR, type_for_mode, exp);
8552 if (!tmp)
8553 tmp = build_constructor_from_list (type,
8554 TREE_VECTOR_CST_ELTS (exp));
8555 return expand_expr (tmp, ignore ? const0_rtx : target,
8556 tmode, modifier);
8559 case CONST_DECL:
8560 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
8562 case REAL_CST:
8563 /* If optimized, generate immediate CONST_DOUBLE
8564 which will be turned into memory by reload if necessary.
8566 We used to force a register so that loop.c could see it. But
8567 this does not allow gen_* patterns to perform optimizations with
8568 the constants. It also produces two insns in cases like "x = 1.0;".
8569 On most machines, floating-point constants are not permitted in
8570 many insns, so we'd end up copying it to a register in any case.
8572 Now, we do the copying in expand_binop, if appropriate. */
8573 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
8574 TYPE_MODE (TREE_TYPE (exp)));
8576 case FIXED_CST:
8577 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
8578 TYPE_MODE (TREE_TYPE (exp)));
8580 case COMPLEX_CST:
8581 /* Handle evaluating a complex constant in a CONCAT target. */
8582 if (original_target && GET_CODE (original_target) == CONCAT)
8584 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
8585 rtx rtarg, itarg;
8587 rtarg = XEXP (original_target, 0);
8588 itarg = XEXP (original_target, 1);
8590 /* Move the real and imaginary parts separately. */
8591 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
8592 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
8594 if (op0 != rtarg)
8595 emit_move_insn (rtarg, op0);
8596 if (op1 != itarg)
8597 emit_move_insn (itarg, op1);
8599 return original_target;
8602 /* ... fall through ... */
8604 case STRING_CST:
8605 temp = expand_expr_constant (exp, 1, modifier);
8607 /* temp contains a constant address.
8608 On RISC machines where a constant address isn't valid,
8609 make some insns to get that address into a register. */
8610 if (modifier != EXPAND_CONST_ADDRESS
8611 && modifier != EXPAND_INITIALIZER
8612 && modifier != EXPAND_SUM
8613 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
8614 MEM_ADDR_SPACE (temp)))
8615 return replace_equiv_address (temp,
8616 copy_rtx (XEXP (temp, 0)));
8617 return temp;
8619 case SAVE_EXPR:
8621 tree val = treeop0;
8622 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
8624 if (!SAVE_EXPR_RESOLVED_P (exp))
8626 /* We can indeed still hit this case, typically via builtin
8627 expanders calling save_expr immediately before expanding
8628 something. Assume this means that we only have to deal
8629 with non-BLKmode values. */
8630 gcc_assert (GET_MODE (ret) != BLKmode);
8632 val = build_decl (EXPR_LOCATION (exp),
8633 VAR_DECL, NULL, TREE_TYPE (exp));
8634 DECL_ARTIFICIAL (val) = 1;
8635 DECL_IGNORED_P (val) = 1;
8636 treeop0 = val;
8637 TREE_OPERAND (exp, 0) = treeop0;
8638 SAVE_EXPR_RESOLVED_P (exp) = 1;
8640 if (!CONSTANT_P (ret))
8641 ret = copy_to_reg (ret);
8642 SET_DECL_RTL (val, ret);
8645 return ret;
8649 case CONSTRUCTOR:
8650 /* If we don't need the result, just ensure we evaluate any
8651 subexpressions. */
8652 if (ignore)
8654 unsigned HOST_WIDE_INT idx;
8655 tree value;
8657 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
8658 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
8660 return const0_rtx;
8663 return expand_constructor (exp, target, modifier, false);
8665 case TARGET_MEM_REF:
8667 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
8668 struct mem_address addr;
8669 int icode, align;
8671 get_address_description (exp, &addr);
8672 op0 = addr_for_mem_ref (&addr, as, true);
8673 op0 = memory_address_addr_space (mode, op0, as);
8674 temp = gen_rtx_MEM (mode, op0);
8675 set_mem_attributes (temp, exp, 0);
8676 set_mem_addr_space (temp, as);
8677 align = MAX (TYPE_ALIGN (TREE_TYPE (exp)),
8678 get_object_alignment (exp, BIGGEST_ALIGNMENT));
8679 if (mode != BLKmode
8680 && (unsigned) align < GET_MODE_ALIGNMENT (mode)
8681 /* If the target does not have special handling for unaligned
8682 loads of mode then it can use regular moves for them. */
8683 && ((icode = optab_handler (movmisalign_optab, mode))
8684 != CODE_FOR_nothing))
8686 rtx reg, insn;
8688 /* We've already validated the memory, and we're creating a
8689 new pseudo destination. The predicates really can't fail. */
8690 reg = gen_reg_rtx (mode);
8692 /* Nor can the insn generator. */
8693 insn = GEN_FCN (icode) (reg, temp);
8694 gcc_assert (insn != NULL_RTX);
8695 emit_insn (insn);
8697 return reg;
8699 return temp;
8702 case MEM_REF:
8704 addr_space_t as
8705 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))));
8706 enum machine_mode address_mode;
8707 tree base = TREE_OPERAND (exp, 0);
8708 gimple def_stmt;
8709 int icode, align;
8710 /* Handle expansion of non-aliased memory with non-BLKmode. That
8711 might end up in a register. */
8712 if (TREE_CODE (base) == ADDR_EXPR)
8714 HOST_WIDE_INT offset = mem_ref_offset (exp).low;
8715 tree bit_offset;
8716 base = TREE_OPERAND (base, 0);
8717 if (!DECL_P (base))
8719 HOST_WIDE_INT off;
8720 base = get_addr_base_and_unit_offset (base, &off);
8721 gcc_assert (base);
8722 offset += off;
8724 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
8725 decl we must use bitfield operations. */
8726 if (DECL_P (base)
8727 && !TREE_ADDRESSABLE (base)
8728 && DECL_MODE (base) != BLKmode
8729 && DECL_RTL_SET_P (base)
8730 && !MEM_P (DECL_RTL (base)))
8732 tree bftype;
8733 if (offset == 0
8734 && host_integerp (TYPE_SIZE (TREE_TYPE (exp)), 1)
8735 && (GET_MODE_BITSIZE (DECL_MODE (base))
8736 == TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (exp)))))
8737 return expand_expr (build1 (VIEW_CONVERT_EXPR,
8738 TREE_TYPE (exp), base),
8739 target, tmode, modifier);
8740 bit_offset = bitsize_int (offset * BITS_PER_UNIT);
8741 bftype = TREE_TYPE (base);
8742 if (TYPE_MODE (TREE_TYPE (exp)) != BLKmode)
8743 bftype = TREE_TYPE (exp);
8744 return expand_expr (build3 (BIT_FIELD_REF, bftype,
8745 base,
8746 TYPE_SIZE (TREE_TYPE (exp)),
8747 bit_offset),
8748 target, tmode, modifier);
8751 address_mode = targetm.addr_space.address_mode (as);
8752 base = TREE_OPERAND (exp, 0);
8753 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
8755 tree mask = gimple_assign_rhs2 (def_stmt);
8756 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
8757 gimple_assign_rhs1 (def_stmt), mask);
8758 TREE_OPERAND (exp, 0) = base;
8760 align = MAX (TYPE_ALIGN (TREE_TYPE (exp)),
8761 get_object_alignment (exp, BIGGEST_ALIGNMENT));
8762 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
8763 op0 = convert_memory_address_addr_space (address_mode, op0, as);
8764 if (!integer_zerop (TREE_OPERAND (exp, 1)))
8766 rtx off
8767 = immed_double_int_const (mem_ref_offset (exp), address_mode);
8768 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
8770 op0 = memory_address_addr_space (mode, op0, as);
8771 temp = gen_rtx_MEM (mode, op0);
8772 set_mem_attributes (temp, exp, 0);
8773 set_mem_addr_space (temp, as);
8774 if (TREE_THIS_VOLATILE (exp))
8775 MEM_VOLATILE_P (temp) = 1;
8776 if (mode != BLKmode
8777 && (unsigned) align < GET_MODE_ALIGNMENT (mode)
8778 /* If the target does not have special handling for unaligned
8779 loads of mode then it can use regular moves for them. */
8780 && ((icode = optab_handler (movmisalign_optab, mode))
8781 != CODE_FOR_nothing))
8783 rtx reg, insn;
8785 /* We've already validated the memory, and we're creating a
8786 new pseudo destination. The predicates really can't fail. */
8787 reg = gen_reg_rtx (mode);
8789 /* Nor can the insn generator. */
8790 insn = GEN_FCN (icode) (reg, temp);
8791 emit_insn (insn);
8793 return reg;
8795 return temp;
8798 case ARRAY_REF:
8801 tree array = treeop0;
8802 tree index = treeop1;
8804 /* Fold an expression like: "foo"[2].
8805 This is not done in fold so it won't happen inside &.
8806 Don't fold if this is for wide characters since it's too
8807 difficult to do correctly and this is a very rare case. */
8809 if (modifier != EXPAND_CONST_ADDRESS
8810 && modifier != EXPAND_INITIALIZER
8811 && modifier != EXPAND_MEMORY)
8813 tree t = fold_read_from_constant_string (exp);
8815 if (t)
8816 return expand_expr (t, target, tmode, modifier);
8819 /* If this is a constant index into a constant array,
8820 just get the value from the array. Handle both the cases when
8821 we have an explicit constructor and when our operand is a variable
8822 that was declared const. */
8824 if (modifier != EXPAND_CONST_ADDRESS
8825 && modifier != EXPAND_INITIALIZER
8826 && modifier != EXPAND_MEMORY
8827 && TREE_CODE (array) == CONSTRUCTOR
8828 && ! TREE_SIDE_EFFECTS (array)
8829 && TREE_CODE (index) == INTEGER_CST)
8831 unsigned HOST_WIDE_INT ix;
8832 tree field, value;
8834 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
8835 field, value)
8836 if (tree_int_cst_equal (field, index))
8838 if (!TREE_SIDE_EFFECTS (value))
8839 return expand_expr (fold (value), target, tmode, modifier);
8840 break;
8844 else if (optimize >= 1
8845 && modifier != EXPAND_CONST_ADDRESS
8846 && modifier != EXPAND_INITIALIZER
8847 && modifier != EXPAND_MEMORY
8848 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
8849 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
8850 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
8851 && const_value_known_p (array))
8853 if (TREE_CODE (index) == INTEGER_CST)
8855 tree init = DECL_INITIAL (array);
8857 if (TREE_CODE (init) == CONSTRUCTOR)
8859 unsigned HOST_WIDE_INT ix;
8860 tree field, value;
8862 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
8863 field, value)
8864 if (tree_int_cst_equal (field, index))
8866 if (TREE_SIDE_EFFECTS (value))
8867 break;
8869 if (TREE_CODE (value) == CONSTRUCTOR)
8871 /* If VALUE is a CONSTRUCTOR, this
8872 optimization is only useful if
8873 this doesn't store the CONSTRUCTOR
8874 into memory. If it does, it is more
8875 efficient to just load the data from
8876 the array directly. */
8877 rtx ret = expand_constructor (value, target,
8878 modifier, true);
8879 if (ret == NULL_RTX)
8880 break;
8883 return expand_expr (fold (value), target, tmode,
8884 modifier);
8887 else if(TREE_CODE (init) == STRING_CST)
8889 tree index1 = index;
8890 tree low_bound = array_ref_low_bound (exp);
8891 index1 = fold_convert_loc (loc, sizetype,
8892 treeop1);
8894 /* Optimize the special-case of a zero lower bound.
8896 We convert the low_bound to sizetype to avoid some problems
8897 with constant folding. (E.g. suppose the lower bound is 1,
8898 and its mode is QI. Without the conversion,l (ARRAY
8899 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
8900 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
8902 if (! integer_zerop (low_bound))
8903 index1 = size_diffop_loc (loc, index1,
8904 fold_convert_loc (loc, sizetype,
8905 low_bound));
8907 if (0 > compare_tree_int (index1,
8908 TREE_STRING_LENGTH (init)))
8910 tree type = TREE_TYPE (TREE_TYPE (init));
8911 enum machine_mode mode = TYPE_MODE (type);
8913 if (GET_MODE_CLASS (mode) == MODE_INT
8914 && GET_MODE_SIZE (mode) == 1)
8915 return gen_int_mode (TREE_STRING_POINTER (init)
8916 [TREE_INT_CST_LOW (index1)],
8917 mode);
8923 goto normal_inner_ref;
8925 case COMPONENT_REF:
8926 /* If the operand is a CONSTRUCTOR, we can just extract the
8927 appropriate field if it is present. */
8928 if (TREE_CODE (treeop0) == CONSTRUCTOR)
8930 unsigned HOST_WIDE_INT idx;
8931 tree field, value;
8933 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
8934 idx, field, value)
8935 if (field == treeop1
8936 /* We can normally use the value of the field in the
8937 CONSTRUCTOR. However, if this is a bitfield in
8938 an integral mode that we can fit in a HOST_WIDE_INT,
8939 we must mask only the number of bits in the bitfield,
8940 since this is done implicitly by the constructor. If
8941 the bitfield does not meet either of those conditions,
8942 we can't do this optimization. */
8943 && (! DECL_BIT_FIELD (field)
8944 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
8945 && (GET_MODE_BITSIZE (DECL_MODE (field))
8946 <= HOST_BITS_PER_WIDE_INT))))
8948 if (DECL_BIT_FIELD (field)
8949 && modifier == EXPAND_STACK_PARM)
8950 target = 0;
8951 op0 = expand_expr (value, target, tmode, modifier);
8952 if (DECL_BIT_FIELD (field))
8954 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
8955 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
8957 if (TYPE_UNSIGNED (TREE_TYPE (field)))
8959 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
8960 op0 = expand_and (imode, op0, op1, target);
8962 else
8964 tree count
8965 = build_int_cst (NULL_TREE,
8966 GET_MODE_BITSIZE (imode) - bitsize);
8968 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
8969 target, 0);
8970 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
8971 target, 0);
8975 return op0;
8978 goto normal_inner_ref;
8980 case BIT_FIELD_REF:
8981 case ARRAY_RANGE_REF:
8982 normal_inner_ref:
8984 enum machine_mode mode1, mode2;
8985 HOST_WIDE_INT bitsize, bitpos;
8986 tree offset;
8987 int volatilep = 0, must_force_mem;
8988 bool packedp = false;
8989 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
8990 &mode1, &unsignedp, &volatilep, true);
8991 rtx orig_op0, memloc;
8993 /* If we got back the original object, something is wrong. Perhaps
8994 we are evaluating an expression too early. In any event, don't
8995 infinitely recurse. */
8996 gcc_assert (tem != exp);
8998 if (TYPE_PACKED (TREE_TYPE (TREE_OPERAND (exp, 0)))
8999 || (TREE_CODE (TREE_OPERAND (exp, 1)) == FIELD_DECL
9000 && DECL_PACKED (TREE_OPERAND (exp, 1))))
9001 packedp = true;
9003 /* If TEM's type is a union of variable size, pass TARGET to the inner
9004 computation, since it will need a temporary and TARGET is known
9005 to have to do. This occurs in unchecked conversion in Ada. */
9006 orig_op0 = op0
9007 = expand_expr (tem,
9008 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
9009 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
9010 != INTEGER_CST)
9011 && modifier != EXPAND_STACK_PARM
9012 ? target : NULL_RTX),
9013 VOIDmode,
9014 (modifier == EXPAND_INITIALIZER
9015 || modifier == EXPAND_CONST_ADDRESS
9016 || modifier == EXPAND_STACK_PARM)
9017 ? modifier : EXPAND_NORMAL);
9020 /* If the bitfield is volatile, we want to access it in the
9021 field's mode, not the computed mode.
9022 If a MEM has VOIDmode (external with incomplete type),
9023 use BLKmode for it instead. */
9024 if (MEM_P (op0))
9026 if (volatilep && flag_strict_volatile_bitfields > 0)
9027 op0 = adjust_address (op0, mode1, 0);
9028 else if (GET_MODE (op0) == VOIDmode)
9029 op0 = adjust_address (op0, BLKmode, 0);
9032 mode2
9033 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
9035 /* If we have either an offset, a BLKmode result, or a reference
9036 outside the underlying object, we must force it to memory.
9037 Such a case can occur in Ada if we have unchecked conversion
9038 of an expression from a scalar type to an aggregate type or
9039 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
9040 passed a partially uninitialized object or a view-conversion
9041 to a larger size. */
9042 must_force_mem = (offset
9043 || mode1 == BLKmode
9044 || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
9046 /* Handle CONCAT first. */
9047 if (GET_CODE (op0) == CONCAT && !must_force_mem)
9049 if (bitpos == 0
9050 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
9051 return op0;
9052 if (bitpos == 0
9053 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9054 && bitsize)
9056 op0 = XEXP (op0, 0);
9057 mode2 = GET_MODE (op0);
9059 else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9060 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))
9061 && bitpos
9062 && bitsize)
9064 op0 = XEXP (op0, 1);
9065 bitpos = 0;
9066 mode2 = GET_MODE (op0);
9068 else
9069 /* Otherwise force into memory. */
9070 must_force_mem = 1;
9073 /* If this is a constant, put it in a register if it is a legitimate
9074 constant and we don't need a memory reference. */
9075 if (CONSTANT_P (op0)
9076 && mode2 != BLKmode
9077 && LEGITIMATE_CONSTANT_P (op0)
9078 && !must_force_mem)
9079 op0 = force_reg (mode2, op0);
9081 /* Otherwise, if this is a constant, try to force it to the constant
9082 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
9083 is a legitimate constant. */
9084 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
9085 op0 = validize_mem (memloc);
9087 /* Otherwise, if this is a constant or the object is not in memory
9088 and need be, put it there. */
9089 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
9091 tree nt = build_qualified_type (TREE_TYPE (tem),
9092 (TYPE_QUALS (TREE_TYPE (tem))
9093 | TYPE_QUAL_CONST));
9094 memloc = assign_temp (nt, 1, 1, 1);
9095 emit_move_insn (memloc, op0);
9096 op0 = memloc;
9099 if (offset)
9101 enum machine_mode address_mode;
9102 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
9103 EXPAND_SUM);
9105 gcc_assert (MEM_P (op0));
9107 address_mode
9108 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (op0));
9109 if (GET_MODE (offset_rtx) != address_mode)
9110 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
9112 if (GET_MODE (op0) == BLKmode
9113 /* A constant address in OP0 can have VOIDmode, we must
9114 not try to call force_reg in that case. */
9115 && GET_MODE (XEXP (op0, 0)) != VOIDmode
9116 && bitsize != 0
9117 && (bitpos % bitsize) == 0
9118 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
9119 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
9121 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9122 bitpos = 0;
9125 op0 = offset_address (op0, offset_rtx,
9126 highest_pow2_factor (offset));
9129 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
9130 record its alignment as BIGGEST_ALIGNMENT. */
9131 if (MEM_P (op0) && bitpos == 0 && offset != 0
9132 && is_aligning_offset (offset, tem))
9133 set_mem_align (op0, BIGGEST_ALIGNMENT);
9135 /* Don't forget about volatility even if this is a bitfield. */
9136 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
9138 if (op0 == orig_op0)
9139 op0 = copy_rtx (op0);
9141 MEM_VOLATILE_P (op0) = 1;
9144 /* In cases where an aligned union has an unaligned object
9145 as a field, we might be extracting a BLKmode value from
9146 an integer-mode (e.g., SImode) object. Handle this case
9147 by doing the extract into an object as wide as the field
9148 (which we know to be the width of a basic mode), then
9149 storing into memory, and changing the mode to BLKmode. */
9150 if (mode1 == VOIDmode
9151 || REG_P (op0) || GET_CODE (op0) == SUBREG
9152 || (mode1 != BLKmode && ! direct_load[(int) mode1]
9153 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
9154 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
9155 && modifier != EXPAND_CONST_ADDRESS
9156 && modifier != EXPAND_INITIALIZER)
9157 /* If the field is volatile, we always want an aligned
9158 access. */
9159 || (volatilep && flag_strict_volatile_bitfields > 0)
9160 /* If the field isn't aligned enough to fetch as a memref,
9161 fetch it as a bit field. */
9162 || (mode1 != BLKmode
9163 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
9164 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
9165 || (MEM_P (op0)
9166 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
9167 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
9168 && ((modifier == EXPAND_CONST_ADDRESS
9169 || modifier == EXPAND_INITIALIZER)
9170 ? STRICT_ALIGNMENT
9171 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
9172 || (bitpos % BITS_PER_UNIT != 0)))
9173 /* If the type and the field are a constant size and the
9174 size of the type isn't the same size as the bitfield,
9175 we must use bitfield operations. */
9176 || (bitsize >= 0
9177 && TYPE_SIZE (TREE_TYPE (exp))
9178 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9179 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
9180 bitsize)))
9182 enum machine_mode ext_mode = mode;
9184 if (ext_mode == BLKmode
9185 && ! (target != 0 && MEM_P (op0)
9186 && MEM_P (target)
9187 && bitpos % BITS_PER_UNIT == 0))
9188 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
9190 if (ext_mode == BLKmode)
9192 if (target == 0)
9193 target = assign_temp (type, 0, 1, 1);
9195 if (bitsize == 0)
9196 return target;
9198 /* In this case, BITPOS must start at a byte boundary and
9199 TARGET, if specified, must be a MEM. */
9200 gcc_assert (MEM_P (op0)
9201 && (!target || MEM_P (target))
9202 && !(bitpos % BITS_PER_UNIT));
9204 emit_block_move (target,
9205 adjust_address (op0, VOIDmode,
9206 bitpos / BITS_PER_UNIT),
9207 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
9208 / BITS_PER_UNIT),
9209 (modifier == EXPAND_STACK_PARM
9210 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9212 return target;
9215 op0 = validize_mem (op0);
9217 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
9218 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9220 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp, packedp,
9221 (modifier == EXPAND_STACK_PARM
9222 ? NULL_RTX : target),
9223 ext_mode, ext_mode);
9225 /* If the result is a record type and BITSIZE is narrower than
9226 the mode of OP0, an integral mode, and this is a big endian
9227 machine, we must put the field into the high-order bits. */
9228 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
9229 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
9230 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
9231 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
9232 size_int (GET_MODE_BITSIZE (GET_MODE (op0))
9233 - bitsize),
9234 op0, 1);
9236 /* If the result type is BLKmode, store the data into a temporary
9237 of the appropriate type, but with the mode corresponding to the
9238 mode for the data we have (op0's mode). It's tempting to make
9239 this a constant type, since we know it's only being stored once,
9240 but that can cause problems if we are taking the address of this
9241 COMPONENT_REF because the MEM of any reference via that address
9242 will have flags corresponding to the type, which will not
9243 necessarily be constant. */
9244 if (mode == BLKmode)
9246 HOST_WIDE_INT size = GET_MODE_BITSIZE (ext_mode);
9247 rtx new_rtx;
9249 /* If the reference doesn't use the alias set of its type,
9250 we cannot create the temporary using that type. */
9251 if (component_uses_parent_alias_set (exp))
9253 new_rtx = assign_stack_local (ext_mode, size, 0);
9254 set_mem_alias_set (new_rtx, get_alias_set (exp));
9256 else
9257 new_rtx = assign_stack_temp_for_type (ext_mode, size, 0, type);
9259 emit_move_insn (new_rtx, op0);
9260 op0 = copy_rtx (new_rtx);
9261 PUT_MODE (op0, BLKmode);
9262 set_mem_attributes (op0, exp, 1);
9265 return op0;
9268 /* If the result is BLKmode, use that to access the object
9269 now as well. */
9270 if (mode == BLKmode)
9271 mode1 = BLKmode;
9273 /* Get a reference to just this component. */
9274 if (modifier == EXPAND_CONST_ADDRESS
9275 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
9276 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
9277 else
9278 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9280 if (op0 == orig_op0)
9281 op0 = copy_rtx (op0);
9283 set_mem_attributes (op0, exp, 0);
9284 if (REG_P (XEXP (op0, 0)))
9285 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9287 MEM_VOLATILE_P (op0) |= volatilep;
9288 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
9289 || modifier == EXPAND_CONST_ADDRESS
9290 || modifier == EXPAND_INITIALIZER)
9291 return op0;
9292 else if (target == 0)
9293 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9295 convert_move (target, op0, unsignedp);
9296 return target;
9299 case OBJ_TYPE_REF:
9300 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
9302 case CALL_EXPR:
9303 /* All valid uses of __builtin_va_arg_pack () are removed during
9304 inlining. */
9305 if (CALL_EXPR_VA_ARG_PACK (exp))
9306 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
9308 tree fndecl = get_callee_fndecl (exp), attr;
9310 if (fndecl
9311 && (attr = lookup_attribute ("error",
9312 DECL_ATTRIBUTES (fndecl))) != NULL)
9313 error ("%Kcall to %qs declared with attribute error: %s",
9314 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9315 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9316 if (fndecl
9317 && (attr = lookup_attribute ("warning",
9318 DECL_ATTRIBUTES (fndecl))) != NULL)
9319 warning_at (tree_nonartificial_location (exp),
9320 0, "%Kcall to %qs declared with attribute warning: %s",
9321 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9322 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9324 /* Check for a built-in function. */
9325 if (fndecl && DECL_BUILT_IN (fndecl))
9327 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
9328 return expand_builtin (exp, target, subtarget, tmode, ignore);
9331 return expand_call (exp, target, ignore);
9333 case VIEW_CONVERT_EXPR:
9334 op0 = NULL_RTX;
9336 /* If we are converting to BLKmode, try to avoid an intermediate
9337 temporary by fetching an inner memory reference. */
9338 if (mode == BLKmode
9339 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9340 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
9341 && handled_component_p (treeop0))
9343 enum machine_mode mode1;
9344 HOST_WIDE_INT bitsize, bitpos;
9345 tree offset;
9346 int unsignedp;
9347 int volatilep = 0;
9348 tree tem
9349 = get_inner_reference (treeop0, &bitsize, &bitpos,
9350 &offset, &mode1, &unsignedp, &volatilep,
9351 true);
9352 rtx orig_op0;
9354 /* ??? We should work harder and deal with non-zero offsets. */
9355 if (!offset
9356 && (bitpos % BITS_PER_UNIT) == 0
9357 && bitsize >= 0
9358 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) == 0)
9360 /* See the normal_inner_ref case for the rationale. */
9361 orig_op0
9362 = expand_expr (tem,
9363 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
9364 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
9365 != INTEGER_CST)
9366 && modifier != EXPAND_STACK_PARM
9367 ? target : NULL_RTX),
9368 VOIDmode,
9369 (modifier == EXPAND_INITIALIZER
9370 || modifier == EXPAND_CONST_ADDRESS
9371 || modifier == EXPAND_STACK_PARM)
9372 ? modifier : EXPAND_NORMAL);
9374 if (MEM_P (orig_op0))
9376 op0 = orig_op0;
9378 /* Get a reference to just this component. */
9379 if (modifier == EXPAND_CONST_ADDRESS
9380 || modifier == EXPAND_SUM
9381 || modifier == EXPAND_INITIALIZER)
9382 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
9383 else
9384 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
9386 if (op0 == orig_op0)
9387 op0 = copy_rtx (op0);
9389 set_mem_attributes (op0, treeop0, 0);
9390 if (REG_P (XEXP (op0, 0)))
9391 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9393 MEM_VOLATILE_P (op0) |= volatilep;
9398 if (!op0)
9399 op0 = expand_expr (treeop0,
9400 NULL_RTX, VOIDmode, modifier);
9402 /* If the input and output modes are both the same, we are done. */
9403 if (mode == GET_MODE (op0))
9405 /* If neither mode is BLKmode, and both modes are the same size
9406 then we can use gen_lowpart. */
9407 else if (mode != BLKmode && GET_MODE (op0) != BLKmode
9408 && GET_MODE_SIZE (mode) == GET_MODE_SIZE (GET_MODE (op0))
9409 && !COMPLEX_MODE_P (GET_MODE (op0)))
9411 if (GET_CODE (op0) == SUBREG)
9412 op0 = force_reg (GET_MODE (op0), op0);
9413 temp = gen_lowpart_common (mode, op0);
9414 if (temp)
9415 op0 = temp;
9416 else
9418 if (!REG_P (op0) && !MEM_P (op0))
9419 op0 = force_reg (GET_MODE (op0), op0);
9420 op0 = gen_lowpart (mode, op0);
9423 /* If both types are integral, convert from one mode to the other. */
9424 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
9425 op0 = convert_modes (mode, GET_MODE (op0), op0,
9426 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9427 /* As a last resort, spill op0 to memory, and reload it in a
9428 different mode. */
9429 else if (!MEM_P (op0))
9431 /* If the operand is not a MEM, force it into memory. Since we
9432 are going to be changing the mode of the MEM, don't call
9433 force_const_mem for constants because we don't allow pool
9434 constants to change mode. */
9435 tree inner_type = TREE_TYPE (treeop0);
9437 gcc_assert (!TREE_ADDRESSABLE (exp));
9439 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
9440 target
9441 = assign_stack_temp_for_type
9442 (TYPE_MODE (inner_type),
9443 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
9445 emit_move_insn (target, op0);
9446 op0 = target;
9449 /* At this point, OP0 is in the correct mode. If the output type is
9450 such that the operand is known to be aligned, indicate that it is.
9451 Otherwise, we need only be concerned about alignment for non-BLKmode
9452 results. */
9453 if (MEM_P (op0))
9455 op0 = copy_rtx (op0);
9457 if (TYPE_ALIGN_OK (type))
9458 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
9459 else if (STRICT_ALIGNMENT
9460 && mode != BLKmode
9461 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
9463 tree inner_type = TREE_TYPE (treeop0);
9464 HOST_WIDE_INT temp_size
9465 = MAX (int_size_in_bytes (inner_type),
9466 (HOST_WIDE_INT) GET_MODE_SIZE (mode));
9467 rtx new_rtx
9468 = assign_stack_temp_for_type (mode, temp_size, 0, type);
9469 rtx new_with_op0_mode
9470 = adjust_address (new_rtx, GET_MODE (op0), 0);
9472 gcc_assert (!TREE_ADDRESSABLE (exp));
9474 if (GET_MODE (op0) == BLKmode)
9475 emit_block_move (new_with_op0_mode, op0,
9476 GEN_INT (GET_MODE_SIZE (mode)),
9477 (modifier == EXPAND_STACK_PARM
9478 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9479 else
9480 emit_move_insn (new_with_op0_mode, op0);
9482 op0 = new_rtx;
9485 op0 = adjust_address (op0, mode, 0);
9488 return op0;
9490 /* Use a compare and a jump for BLKmode comparisons, or for function
9491 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
9493 /* Although TRUTH_{AND,OR}IF_EXPR aren't present in GIMPLE, they
9494 are occassionally created by folding during expansion. */
9495 case TRUTH_ANDIF_EXPR:
9496 case TRUTH_ORIF_EXPR:
9497 if (! ignore
9498 && (target == 0
9499 || modifier == EXPAND_STACK_PARM
9500 || ! safe_from_p (target, treeop0, 1)
9501 || ! safe_from_p (target, treeop1, 1)
9502 /* Make sure we don't have a hard reg (such as function's return
9503 value) live across basic blocks, if not optimizing. */
9504 || (!optimize && REG_P (target)
9505 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9506 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9508 if (target)
9509 emit_move_insn (target, const0_rtx);
9511 op1 = gen_label_rtx ();
9512 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
9514 if (target)
9515 emit_move_insn (target, const1_rtx);
9517 emit_label (op1);
9518 return ignore ? const0_rtx : target;
9520 case STATEMENT_LIST:
9522 tree_stmt_iterator iter;
9524 gcc_assert (ignore);
9526 for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
9527 expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
9529 return const0_rtx;
9531 case COND_EXPR:
9532 /* A COND_EXPR with its type being VOID_TYPE represents a
9533 conditional jump and is handled in
9534 expand_gimple_cond_expr. */
9535 gcc_assert (!VOID_TYPE_P (type));
9537 /* Note that COND_EXPRs whose type is a structure or union
9538 are required to be constructed to contain assignments of
9539 a temporary variable, so that we can evaluate them here
9540 for side effect only. If type is void, we must do likewise. */
9542 gcc_assert (!TREE_ADDRESSABLE (type)
9543 && !ignore
9544 && TREE_TYPE (treeop1) != void_type_node
9545 && TREE_TYPE (treeop2) != void_type_node);
9547 /* If we are not to produce a result, we have no target. Otherwise,
9548 if a target was specified use it; it will not be used as an
9549 intermediate target unless it is safe. If no target, use a
9550 temporary. */
9552 if (modifier != EXPAND_STACK_PARM
9553 && original_target
9554 && safe_from_p (original_target, treeop0, 1)
9555 && GET_MODE (original_target) == mode
9556 #ifdef HAVE_conditional_move
9557 && (! can_conditionally_move_p (mode)
9558 || REG_P (original_target))
9559 #endif
9560 && !MEM_P (original_target))
9561 temp = original_target;
9562 else
9563 temp = assign_temp (type, 0, 0, 1);
9565 do_pending_stack_adjust ();
9566 NO_DEFER_POP;
9567 op0 = gen_label_rtx ();
9568 op1 = gen_label_rtx ();
9569 jumpifnot (treeop0, op0, -1);
9570 store_expr (treeop1, temp,
9571 modifier == EXPAND_STACK_PARM,
9572 false);
9574 emit_jump_insn (gen_jump (op1));
9575 emit_barrier ();
9576 emit_label (op0);
9577 store_expr (treeop2, temp,
9578 modifier == EXPAND_STACK_PARM,
9579 false);
9581 emit_label (op1);
9582 OK_DEFER_POP;
9583 return temp;
9585 case VEC_COND_EXPR:
9586 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9587 return target;
9589 case MODIFY_EXPR:
9591 tree lhs = treeop0;
9592 tree rhs = treeop1;
9593 gcc_assert (ignore);
9595 /* Check for |= or &= of a bitfield of size one into another bitfield
9596 of size 1. In this case, (unless we need the result of the
9597 assignment) we can do this more efficiently with a
9598 test followed by an assignment, if necessary.
9600 ??? At this point, we can't get a BIT_FIELD_REF here. But if
9601 things change so we do, this code should be enhanced to
9602 support it. */
9603 if (TREE_CODE (lhs) == COMPONENT_REF
9604 && (TREE_CODE (rhs) == BIT_IOR_EXPR
9605 || TREE_CODE (rhs) == BIT_AND_EXPR)
9606 && TREE_OPERAND (rhs, 0) == lhs
9607 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
9608 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
9609 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
9611 rtx label = gen_label_rtx ();
9612 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
9613 do_jump (TREE_OPERAND (rhs, 1),
9614 value ? label : 0,
9615 value ? 0 : label, -1);
9616 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
9617 MOVE_NONTEMPORAL (exp));
9618 do_pending_stack_adjust ();
9619 emit_label (label);
9620 return const0_rtx;
9623 expand_assignment (lhs, rhs, MOVE_NONTEMPORAL (exp));
9624 return const0_rtx;
9627 case ADDR_EXPR:
9628 return expand_expr_addr_expr (exp, target, tmode, modifier);
9630 case REALPART_EXPR:
9631 op0 = expand_normal (treeop0);
9632 return read_complex_part (op0, false);
9634 case IMAGPART_EXPR:
9635 op0 = expand_normal (treeop0);
9636 return read_complex_part (op0, true);
9638 case RETURN_EXPR:
9639 case LABEL_EXPR:
9640 case GOTO_EXPR:
9641 case SWITCH_EXPR:
9642 case ASM_EXPR:
9643 /* Expanded in cfgexpand.c. */
9644 gcc_unreachable ();
9646 case TRY_CATCH_EXPR:
9647 case CATCH_EXPR:
9648 case EH_FILTER_EXPR:
9649 case TRY_FINALLY_EXPR:
9650 /* Lowered by tree-eh.c. */
9651 gcc_unreachable ();
9653 case WITH_CLEANUP_EXPR:
9654 case CLEANUP_POINT_EXPR:
9655 case TARGET_EXPR:
9656 case CASE_LABEL_EXPR:
9657 case VA_ARG_EXPR:
9658 case BIND_EXPR:
9659 case INIT_EXPR:
9660 case CONJ_EXPR:
9661 case COMPOUND_EXPR:
9662 case PREINCREMENT_EXPR:
9663 case PREDECREMENT_EXPR:
9664 case POSTINCREMENT_EXPR:
9665 case POSTDECREMENT_EXPR:
9666 case LOOP_EXPR:
9667 case EXIT_EXPR:
9668 /* Lowered by gimplify.c. */
9669 gcc_unreachable ();
9671 case FDESC_EXPR:
9672 /* Function descriptors are not valid except for as
9673 initialization constants, and should not be expanded. */
9674 gcc_unreachable ();
9676 case WITH_SIZE_EXPR:
9677 /* WITH_SIZE_EXPR expands to its first argument. The caller should
9678 have pulled out the size to use in whatever context it needed. */
9679 return expand_expr_real (treeop0, original_target, tmode,
9680 modifier, alt_rtl);
9682 case REALIGN_LOAD_EXPR:
9684 tree oprnd0 = treeop0;
9685 tree oprnd1 = treeop1;
9686 tree oprnd2 = treeop2;
9687 rtx op2;
9689 this_optab = optab_for_tree_code (code, type, optab_default);
9690 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9691 op2 = expand_normal (oprnd2);
9692 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9693 target, unsignedp);
9694 gcc_assert (temp);
9695 return temp;
9698 case DOT_PROD_EXPR:
9700 tree oprnd0 = treeop0;
9701 tree oprnd1 = treeop1;
9702 tree oprnd2 = treeop2;
9703 rtx op2;
9705 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9706 op2 = expand_normal (oprnd2);
9707 target = expand_widen_pattern_expr (&ops, op0, op1, op2,
9708 target, unsignedp);
9709 return target;
9712 case COMPOUND_LITERAL_EXPR:
9714 /* Initialize the anonymous variable declared in the compound
9715 literal, then return the variable. */
9716 tree decl = COMPOUND_LITERAL_EXPR_DECL (exp);
9718 /* Create RTL for this variable. */
9719 if (!DECL_RTL_SET_P (decl))
9721 if (DECL_HARD_REGISTER (decl))
9722 /* The user specified an assembler name for this variable.
9723 Set that up now. */
9724 rest_of_decl_compilation (decl, 0, 0);
9725 else
9726 expand_decl (decl);
9729 return expand_expr_real (decl, original_target, tmode,
9730 modifier, alt_rtl);
9733 default:
9734 return expand_expr_real_2 (&ops, target, tmode, modifier);
9738 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
9739 signedness of TYPE), possibly returning the result in TARGET. */
9740 static rtx
9741 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
9743 HOST_WIDE_INT prec = TYPE_PRECISION (type);
9744 if (target && GET_MODE (target) != GET_MODE (exp))
9745 target = 0;
9746 /* For constant values, reduce using build_int_cst_type. */
9747 if (CONST_INT_P (exp))
9749 HOST_WIDE_INT value = INTVAL (exp);
9750 tree t = build_int_cst_type (type, value);
9751 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
9753 else if (TYPE_UNSIGNED (type))
9755 rtx mask = immed_double_int_const (double_int_mask (prec),
9756 GET_MODE (exp));
9757 return expand_and (GET_MODE (exp), exp, mask, target);
9759 else
9761 tree count = build_int_cst (NULL_TREE,
9762 GET_MODE_BITSIZE (GET_MODE (exp)) - prec);
9763 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9764 return expand_shift (RSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9768 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
9769 when applied to the address of EXP produces an address known to be
9770 aligned more than BIGGEST_ALIGNMENT. */
9772 static int
9773 is_aligning_offset (const_tree offset, const_tree exp)
9775 /* Strip off any conversions. */
9776 while (CONVERT_EXPR_P (offset))
9777 offset = TREE_OPERAND (offset, 0);
9779 /* We must now have a BIT_AND_EXPR with a constant that is one less than
9780 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
9781 if (TREE_CODE (offset) != BIT_AND_EXPR
9782 || !host_integerp (TREE_OPERAND (offset, 1), 1)
9783 || compare_tree_int (TREE_OPERAND (offset, 1),
9784 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
9785 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
9786 return 0;
9788 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
9789 It must be NEGATE_EXPR. Then strip any more conversions. */
9790 offset = TREE_OPERAND (offset, 0);
9791 while (CONVERT_EXPR_P (offset))
9792 offset = TREE_OPERAND (offset, 0);
9794 if (TREE_CODE (offset) != NEGATE_EXPR)
9795 return 0;
9797 offset = TREE_OPERAND (offset, 0);
9798 while (CONVERT_EXPR_P (offset))
9799 offset = TREE_OPERAND (offset, 0);
9801 /* This must now be the address of EXP. */
9802 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
9805 /* Return the tree node if an ARG corresponds to a string constant or zero
9806 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
9807 in bytes within the string that ARG is accessing. The type of the
9808 offset will be `sizetype'. */
9810 tree
9811 string_constant (tree arg, tree *ptr_offset)
9813 tree array, offset, lower_bound;
9814 STRIP_NOPS (arg);
9816 if (TREE_CODE (arg) == ADDR_EXPR)
9818 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
9820 *ptr_offset = size_zero_node;
9821 return TREE_OPERAND (arg, 0);
9823 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
9825 array = TREE_OPERAND (arg, 0);
9826 offset = size_zero_node;
9828 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
9830 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
9831 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
9832 if (TREE_CODE (array) != STRING_CST
9833 && TREE_CODE (array) != VAR_DECL)
9834 return 0;
9836 /* Check if the array has a nonzero lower bound. */
9837 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
9838 if (!integer_zerop (lower_bound))
9840 /* If the offset and base aren't both constants, return 0. */
9841 if (TREE_CODE (lower_bound) != INTEGER_CST)
9842 return 0;
9843 if (TREE_CODE (offset) != INTEGER_CST)
9844 return 0;
9845 /* Adjust offset by the lower bound. */
9846 offset = size_diffop (fold_convert (sizetype, offset),
9847 fold_convert (sizetype, lower_bound));
9850 else
9851 return 0;
9853 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
9855 tree arg0 = TREE_OPERAND (arg, 0);
9856 tree arg1 = TREE_OPERAND (arg, 1);
9858 STRIP_NOPS (arg0);
9859 STRIP_NOPS (arg1);
9861 if (TREE_CODE (arg0) == ADDR_EXPR
9862 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
9863 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
9865 array = TREE_OPERAND (arg0, 0);
9866 offset = arg1;
9868 else if (TREE_CODE (arg1) == ADDR_EXPR
9869 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
9870 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
9872 array = TREE_OPERAND (arg1, 0);
9873 offset = arg0;
9875 else
9876 return 0;
9878 else
9879 return 0;
9881 if (TREE_CODE (array) == STRING_CST)
9883 *ptr_offset = fold_convert (sizetype, offset);
9884 return array;
9886 else if (TREE_CODE (array) == VAR_DECL
9887 || TREE_CODE (array) == CONST_DECL)
9889 int length;
9891 /* Variables initialized to string literals can be handled too. */
9892 if (!const_value_known_p (array)
9893 || !DECL_INITIAL (array)
9894 || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
9895 return 0;
9897 /* Avoid const char foo[4] = "abcde"; */
9898 if (DECL_SIZE_UNIT (array) == NULL_TREE
9899 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
9900 || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
9901 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
9902 return 0;
9904 /* If variable is bigger than the string literal, OFFSET must be constant
9905 and inside of the bounds of the string literal. */
9906 offset = fold_convert (sizetype, offset);
9907 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
9908 && (! host_integerp (offset, 1)
9909 || compare_tree_int (offset, length) >= 0))
9910 return 0;
9912 *ptr_offset = offset;
9913 return DECL_INITIAL (array);
9916 return 0;
9919 /* Generate code to calculate OPS, and exploded expression
9920 using a store-flag instruction and return an rtx for the result.
9921 OPS reflects a comparison.
9923 If TARGET is nonzero, store the result there if convenient.
9925 Return zero if there is no suitable set-flag instruction
9926 available on this machine.
9928 Once expand_expr has been called on the arguments of the comparison,
9929 we are committed to doing the store flag, since it is not safe to
9930 re-evaluate the expression. We emit the store-flag insn by calling
9931 emit_store_flag, but only expand the arguments if we have a reason
9932 to believe that emit_store_flag will be successful. If we think that
9933 it will, but it isn't, we have to simulate the store-flag with a
9934 set/jump/set sequence. */
9936 static rtx
9937 do_store_flag (sepops ops, rtx target, enum machine_mode mode)
9939 enum rtx_code code;
9940 tree arg0, arg1, type;
9941 tree tem;
9942 enum machine_mode operand_mode;
9943 int unsignedp;
9944 rtx op0, op1;
9945 rtx subtarget = target;
9946 location_t loc = ops->location;
9948 arg0 = ops->op0;
9949 arg1 = ops->op1;
9951 /* Don't crash if the comparison was erroneous. */
9952 if (arg0 == error_mark_node || arg1 == error_mark_node)
9953 return const0_rtx;
9955 type = TREE_TYPE (arg0);
9956 operand_mode = TYPE_MODE (type);
9957 unsignedp = TYPE_UNSIGNED (type);
9959 /* We won't bother with BLKmode store-flag operations because it would mean
9960 passing a lot of information to emit_store_flag. */
9961 if (operand_mode == BLKmode)
9962 return 0;
9964 /* We won't bother with store-flag operations involving function pointers
9965 when function pointers must be canonicalized before comparisons. */
9966 #ifdef HAVE_canonicalize_funcptr_for_compare
9967 if (HAVE_canonicalize_funcptr_for_compare
9968 && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
9969 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
9970 == FUNCTION_TYPE))
9971 || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
9972 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
9973 == FUNCTION_TYPE))))
9974 return 0;
9975 #endif
9977 STRIP_NOPS (arg0);
9978 STRIP_NOPS (arg1);
9980 /* Get the rtx comparison code to use. We know that EXP is a comparison
9981 operation of some type. Some comparisons against 1 and -1 can be
9982 converted to comparisons with zero. Do so here so that the tests
9983 below will be aware that we have a comparison with zero. These
9984 tests will not catch constants in the first operand, but constants
9985 are rarely passed as the first operand. */
9987 switch (ops->code)
9989 case EQ_EXPR:
9990 code = EQ;
9991 break;
9992 case NE_EXPR:
9993 code = NE;
9994 break;
9995 case LT_EXPR:
9996 if (integer_onep (arg1))
9997 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
9998 else
9999 code = unsignedp ? LTU : LT;
10000 break;
10001 case LE_EXPR:
10002 if (! unsignedp && integer_all_onesp (arg1))
10003 arg1 = integer_zero_node, code = LT;
10004 else
10005 code = unsignedp ? LEU : LE;
10006 break;
10007 case GT_EXPR:
10008 if (! unsignedp && integer_all_onesp (arg1))
10009 arg1 = integer_zero_node, code = GE;
10010 else
10011 code = unsignedp ? GTU : GT;
10012 break;
10013 case GE_EXPR:
10014 if (integer_onep (arg1))
10015 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
10016 else
10017 code = unsignedp ? GEU : GE;
10018 break;
10020 case UNORDERED_EXPR:
10021 code = UNORDERED;
10022 break;
10023 case ORDERED_EXPR:
10024 code = ORDERED;
10025 break;
10026 case UNLT_EXPR:
10027 code = UNLT;
10028 break;
10029 case UNLE_EXPR:
10030 code = UNLE;
10031 break;
10032 case UNGT_EXPR:
10033 code = UNGT;
10034 break;
10035 case UNGE_EXPR:
10036 code = UNGE;
10037 break;
10038 case UNEQ_EXPR:
10039 code = UNEQ;
10040 break;
10041 case LTGT_EXPR:
10042 code = LTGT;
10043 break;
10045 default:
10046 gcc_unreachable ();
10049 /* Put a constant second. */
10050 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
10051 || TREE_CODE (arg0) == FIXED_CST)
10053 tem = arg0; arg0 = arg1; arg1 = tem;
10054 code = swap_condition (code);
10057 /* If this is an equality or inequality test of a single bit, we can
10058 do this by shifting the bit being tested to the low-order bit and
10059 masking the result with the constant 1. If the condition was EQ,
10060 we xor it with 1. This does not require an scc insn and is faster
10061 than an scc insn even if we have it.
10063 The code to make this transformation was moved into fold_single_bit_test,
10064 so we just call into the folder and expand its result. */
10066 if ((code == NE || code == EQ)
10067 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
10068 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10070 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
10071 return expand_expr (fold_single_bit_test (loc,
10072 code == NE ? NE_EXPR : EQ_EXPR,
10073 arg0, arg1, type),
10074 target, VOIDmode, EXPAND_NORMAL);
10077 if (! get_subtarget (target)
10078 || GET_MODE (subtarget) != operand_mode)
10079 subtarget = 0;
10081 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
10083 if (target == 0)
10084 target = gen_reg_rtx (mode);
10086 /* Try a cstore if possible. */
10087 return emit_store_flag_force (target, code, op0, op1,
10088 operand_mode, unsignedp, 1);
10092 /* Stubs in case we haven't got a casesi insn. */
10093 #ifndef HAVE_casesi
10094 # define HAVE_casesi 0
10095 # define gen_casesi(a, b, c, d, e) (0)
10096 # define CODE_FOR_casesi CODE_FOR_nothing
10097 #endif
10099 /* Attempt to generate a casesi instruction. Returns 1 if successful,
10100 0 otherwise (i.e. if there is no casesi instruction). */
10102 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
10103 rtx table_label ATTRIBUTE_UNUSED, rtx default_label,
10104 rtx fallback_label ATTRIBUTE_UNUSED)
10106 enum machine_mode index_mode = SImode;
10107 int index_bits = GET_MODE_BITSIZE (index_mode);
10108 rtx op1, op2, index;
10109 enum machine_mode op_mode;
10111 if (! HAVE_casesi)
10112 return 0;
10114 /* Convert the index to SImode. */
10115 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
10117 enum machine_mode omode = TYPE_MODE (index_type);
10118 rtx rangertx = expand_normal (range);
10120 /* We must handle the endpoints in the original mode. */
10121 index_expr = build2 (MINUS_EXPR, index_type,
10122 index_expr, minval);
10123 minval = integer_zero_node;
10124 index = expand_normal (index_expr);
10125 if (default_label)
10126 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
10127 omode, 1, default_label);
10128 /* Now we can safely truncate. */
10129 index = convert_to_mode (index_mode, index, 0);
10131 else
10133 if (TYPE_MODE (index_type) != index_mode)
10135 index_type = lang_hooks.types.type_for_size (index_bits, 0);
10136 index_expr = fold_convert (index_type, index_expr);
10139 index = expand_normal (index_expr);
10142 do_pending_stack_adjust ();
10144 op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
10145 if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
10146 (index, op_mode))
10147 index = copy_to_mode_reg (op_mode, index);
10149 op1 = expand_normal (minval);
10151 op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
10152 op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
10153 op1, TYPE_UNSIGNED (TREE_TYPE (minval)));
10154 if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
10155 (op1, op_mode))
10156 op1 = copy_to_mode_reg (op_mode, op1);
10158 op2 = expand_normal (range);
10160 op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
10161 op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
10162 op2, TYPE_UNSIGNED (TREE_TYPE (range)));
10163 if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
10164 (op2, op_mode))
10165 op2 = copy_to_mode_reg (op_mode, op2);
10167 emit_jump_insn (gen_casesi (index, op1, op2,
10168 table_label, !default_label
10169 ? fallback_label : default_label));
10170 return 1;
10173 /* Attempt to generate a tablejump instruction; same concept. */
10174 #ifndef HAVE_tablejump
10175 #define HAVE_tablejump 0
10176 #define gen_tablejump(x, y) (0)
10177 #endif
10179 /* Subroutine of the next function.
10181 INDEX is the value being switched on, with the lowest value
10182 in the table already subtracted.
10183 MODE is its expected mode (needed if INDEX is constant).
10184 RANGE is the length of the jump table.
10185 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
10187 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
10188 index value is out of range. */
10190 static void
10191 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
10192 rtx default_label)
10194 rtx temp, vector;
10196 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
10197 cfun->cfg->max_jumptable_ents = INTVAL (range);
10199 /* Do an unsigned comparison (in the proper mode) between the index
10200 expression and the value which represents the length of the range.
10201 Since we just finished subtracting the lower bound of the range
10202 from the index expression, this comparison allows us to simultaneously
10203 check that the original index expression value is both greater than
10204 or equal to the minimum value of the range and less than or equal to
10205 the maximum value of the range. */
10207 if (default_label)
10208 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
10209 default_label);
10211 /* If index is in range, it must fit in Pmode.
10212 Convert to Pmode so we can index with it. */
10213 if (mode != Pmode)
10214 index = convert_to_mode (Pmode, index, 1);
10216 /* Don't let a MEM slip through, because then INDEX that comes
10217 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
10218 and break_out_memory_refs will go to work on it and mess it up. */
10219 #ifdef PIC_CASE_VECTOR_ADDRESS
10220 if (flag_pic && !REG_P (index))
10221 index = copy_to_mode_reg (Pmode, index);
10222 #endif
10224 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
10225 GET_MODE_SIZE, because this indicates how large insns are. The other
10226 uses should all be Pmode, because they are addresses. This code
10227 could fail if addresses and insns are not the same size. */
10228 index = gen_rtx_PLUS (Pmode,
10229 gen_rtx_MULT (Pmode, index,
10230 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
10231 gen_rtx_LABEL_REF (Pmode, table_label));
10232 #ifdef PIC_CASE_VECTOR_ADDRESS
10233 if (flag_pic)
10234 index = PIC_CASE_VECTOR_ADDRESS (index);
10235 else
10236 #endif
10237 index = memory_address (CASE_VECTOR_MODE, index);
10238 temp = gen_reg_rtx (CASE_VECTOR_MODE);
10239 vector = gen_const_mem (CASE_VECTOR_MODE, index);
10240 convert_move (temp, vector, 0);
10242 emit_jump_insn (gen_tablejump (temp, table_label));
10244 /* If we are generating PIC code or if the table is PC-relative, the
10245 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
10246 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
10247 emit_barrier ();
10251 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
10252 rtx table_label, rtx default_label)
10254 rtx index;
10256 if (! HAVE_tablejump)
10257 return 0;
10259 index_expr = fold_build2 (MINUS_EXPR, index_type,
10260 fold_convert (index_type, index_expr),
10261 fold_convert (index_type, minval));
10262 index = expand_normal (index_expr);
10263 do_pending_stack_adjust ();
10265 do_tablejump (index, TYPE_MODE (index_type),
10266 convert_modes (TYPE_MODE (index_type),
10267 TYPE_MODE (TREE_TYPE (range)),
10268 expand_normal (range),
10269 TYPE_UNSIGNED (TREE_TYPE (range))),
10270 table_label, default_label);
10271 return 1;
10274 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
10275 static rtx
10276 const_vector_from_tree (tree exp)
10278 rtvec v;
10279 int units, i;
10280 tree link, elt;
10281 enum machine_mode inner, mode;
10283 mode = TYPE_MODE (TREE_TYPE (exp));
10285 if (initializer_zerop (exp))
10286 return CONST0_RTX (mode);
10288 units = GET_MODE_NUNITS (mode);
10289 inner = GET_MODE_INNER (mode);
10291 v = rtvec_alloc (units);
10293 link = TREE_VECTOR_CST_ELTS (exp);
10294 for (i = 0; link; link = TREE_CHAIN (link), ++i)
10296 elt = TREE_VALUE (link);
10298 if (TREE_CODE (elt) == REAL_CST)
10299 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
10300 inner);
10301 else if (TREE_CODE (elt) == FIXED_CST)
10302 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
10303 inner);
10304 else
10305 RTVEC_ELT (v, i) = immed_double_int_const (tree_to_double_int (elt),
10306 inner);
10309 /* Initialize remaining elements to 0. */
10310 for (; i < units; ++i)
10311 RTVEC_ELT (v, i) = CONST0_RTX (inner);
10313 return gen_rtx_CONST_VECTOR (mode, v);
10316 /* Build a decl for a personality function given a language prefix. */
10318 tree
10319 build_personality_function (const char *lang)
10321 const char *unwind_and_version;
10322 tree decl, type;
10323 char *name;
10325 switch (targetm.except_unwind_info ())
10327 case UI_NONE:
10328 return NULL;
10329 case UI_SJLJ:
10330 unwind_and_version = "_sj0";
10331 break;
10332 case UI_DWARF2:
10333 case UI_TARGET:
10334 unwind_and_version = "_v0";
10335 break;
10336 default:
10337 gcc_unreachable ();
10340 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
10342 type = build_function_type_list (integer_type_node, integer_type_node,
10343 long_long_unsigned_type_node,
10344 ptr_type_node, ptr_type_node, NULL_TREE);
10345 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
10346 get_identifier (name), type);
10347 DECL_ARTIFICIAL (decl) = 1;
10348 DECL_EXTERNAL (decl) = 1;
10349 TREE_PUBLIC (decl) = 1;
10351 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
10352 are the flags assigned by targetm.encode_section_info. */
10353 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
10355 return decl;
10358 /* Extracts the personality function of DECL and returns the corresponding
10359 libfunc. */
10362 get_personality_function (tree decl)
10364 tree personality = DECL_FUNCTION_PERSONALITY (decl);
10365 enum eh_personality_kind pk;
10367 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
10368 if (pk == eh_personality_none)
10369 return NULL;
10371 if (!personality
10372 && pk == eh_personality_any)
10373 personality = lang_hooks.eh_personality ();
10375 if (pk == eh_personality_lang)
10376 gcc_assert (personality != NULL_TREE);
10378 return XEXP (DECL_RTL (personality), 0);
10381 #include "gt-expr.h"