cgraphunit.c (handle_alias_pairs): Also handle wekref with destination declared.
[official-gcc.git] / gcc / rtlanal.c
blobd6e84a22221f9af0542c87b97434a410d0e1df62
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28 #include "rtl.h"
29 #include "hard-reg-set.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "target.h"
33 #include "output.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "regs.h"
37 #include "function.h"
38 #include "df.h"
39 #include "tree.h"
40 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
42 /* Forward declarations */
43 static void set_of_1 (rtx, const_rtx, void *);
44 static bool covers_regno_p (const_rtx, unsigned int);
45 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
46 static int rtx_referenced_p_1 (rtx *, void *);
47 static int computed_jump_p_1 (const_rtx);
48 static void parms_set (rtx, const_rtx, void *);
50 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
51 const_rtx, enum machine_mode,
52 unsigned HOST_WIDE_INT);
53 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
54 const_rtx, enum machine_mode,
55 unsigned HOST_WIDE_INT);
56 static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
57 enum machine_mode,
58 unsigned int);
59 static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
60 enum machine_mode, unsigned int);
62 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
63 -1 if a code has no such operand. */
64 static int non_rtx_starting_operands[NUM_RTX_CODE];
66 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
67 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
68 SIGN_EXTEND then while narrowing we also have to enforce the
69 representation and sign-extend the value to mode DESTINATION_REP.
71 If the value is already sign-extended to DESTINATION_REP mode we
72 can just switch to DESTINATION mode on it. For each pair of
73 integral modes SOURCE and DESTINATION, when truncating from SOURCE
74 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
75 contains the number of high-order bits in SOURCE that have to be
76 copies of the sign-bit so that we can do this mode-switch to
77 DESTINATION. */
79 static unsigned int
80 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
82 /* Return 1 if the value of X is unstable
83 (would be different at a different point in the program).
84 The frame pointer, arg pointer, etc. are considered stable
85 (within one function) and so is anything marked `unchanging'. */
87 int
88 rtx_unstable_p (const_rtx x)
90 const RTX_CODE code = GET_CODE (x);
91 int i;
92 const char *fmt;
94 switch (code)
96 case MEM:
97 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
99 case CONST:
100 case CONST_INT:
101 case CONST_DOUBLE:
102 case CONST_FIXED:
103 case CONST_VECTOR:
104 case SYMBOL_REF:
105 case LABEL_REF:
106 return 0;
108 case REG:
109 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
110 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
111 /* The arg pointer varies if it is not a fixed register. */
112 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
113 return 0;
114 /* ??? When call-clobbered, the value is stable modulo the restore
115 that must happen after a call. This currently screws up local-alloc
116 into believing that the restore is not needed. */
117 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
118 return 0;
119 return 1;
121 case ASM_OPERANDS:
122 if (MEM_VOLATILE_P (x))
123 return 1;
125 /* Fall through. */
127 default:
128 break;
131 fmt = GET_RTX_FORMAT (code);
132 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
133 if (fmt[i] == 'e')
135 if (rtx_unstable_p (XEXP (x, i)))
136 return 1;
138 else if (fmt[i] == 'E')
140 int j;
141 for (j = 0; j < XVECLEN (x, i); j++)
142 if (rtx_unstable_p (XVECEXP (x, i, j)))
143 return 1;
146 return 0;
149 /* Return 1 if X has a value that can vary even between two
150 executions of the program. 0 means X can be compared reliably
151 against certain constants or near-constants.
152 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
153 zero, we are slightly more conservative.
154 The frame pointer and the arg pointer are considered constant. */
156 bool
157 rtx_varies_p (const_rtx x, bool for_alias)
159 RTX_CODE code;
160 int i;
161 const char *fmt;
163 if (!x)
164 return 0;
166 code = GET_CODE (x);
167 switch (code)
169 case MEM:
170 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
172 case CONST:
173 case CONST_INT:
174 case CONST_DOUBLE:
175 case CONST_FIXED:
176 case CONST_VECTOR:
177 case SYMBOL_REF:
178 case LABEL_REF:
179 return 0;
181 case REG:
182 /* Note that we have to test for the actual rtx used for the frame
183 and arg pointers and not just the register number in case we have
184 eliminated the frame and/or arg pointer and are using it
185 for pseudos. */
186 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
187 /* The arg pointer varies if it is not a fixed register. */
188 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
189 return 0;
190 if (x == pic_offset_table_rtx
191 /* ??? When call-clobbered, the value is stable modulo the restore
192 that must happen after a call. This currently screws up
193 local-alloc into believing that the restore is not needed, so we
194 must return 0 only if we are called from alias analysis. */
195 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
196 return 0;
197 return 1;
199 case LO_SUM:
200 /* The operand 0 of a LO_SUM is considered constant
201 (in fact it is related specifically to operand 1)
202 during alias analysis. */
203 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
204 || rtx_varies_p (XEXP (x, 1), for_alias);
206 case ASM_OPERANDS:
207 if (MEM_VOLATILE_P (x))
208 return 1;
210 /* Fall through. */
212 default:
213 break;
216 fmt = GET_RTX_FORMAT (code);
217 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
218 if (fmt[i] == 'e')
220 if (rtx_varies_p (XEXP (x, i), for_alias))
221 return 1;
223 else if (fmt[i] == 'E')
225 int j;
226 for (j = 0; j < XVECLEN (x, i); j++)
227 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
228 return 1;
231 return 0;
234 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
235 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
236 whether nonzero is returned for unaligned memory accesses on strict
237 alignment machines. */
239 static int
240 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
241 enum machine_mode mode, bool unaligned_mems)
243 enum rtx_code code = GET_CODE (x);
245 if (STRICT_ALIGNMENT
246 && unaligned_mems
247 && GET_MODE_SIZE (mode) != 0)
249 HOST_WIDE_INT actual_offset = offset;
250 #ifdef SPARC_STACK_BOUNDARY_HACK
251 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
252 the real alignment of %sp. However, when it does this, the
253 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
254 if (SPARC_STACK_BOUNDARY_HACK
255 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
256 actual_offset -= STACK_POINTER_OFFSET;
257 #endif
259 if (actual_offset % GET_MODE_SIZE (mode) != 0)
260 return 1;
263 switch (code)
265 case SYMBOL_REF:
266 if (SYMBOL_REF_WEAK (x))
267 return 1;
268 if (!CONSTANT_POOL_ADDRESS_P (x))
270 tree decl;
271 HOST_WIDE_INT decl_size;
273 if (offset < 0)
274 return 1;
275 if (size == 0)
276 size = GET_MODE_SIZE (mode);
277 if (size == 0)
278 return offset != 0;
280 /* If the size of the access or of the symbol is unknown,
281 assume the worst. */
282 decl = SYMBOL_REF_DECL (x);
284 /* Else check that the access is in bounds. TODO: restructure
285 expr_size/tree_expr_size/int_expr_size and just use the latter. */
286 if (!decl)
287 decl_size = -1;
288 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
289 decl_size = (host_integerp (DECL_SIZE_UNIT (decl), 0)
290 ? tree_low_cst (DECL_SIZE_UNIT (decl), 0)
291 : -1);
292 else if (TREE_CODE (decl) == STRING_CST)
293 decl_size = TREE_STRING_LENGTH (decl);
294 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
295 decl_size = int_size_in_bytes (TREE_TYPE (decl));
296 else
297 decl_size = -1;
299 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
302 return 0;
304 case LABEL_REF:
305 return 0;
307 case REG:
308 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
309 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
310 || x == stack_pointer_rtx
311 /* The arg pointer varies if it is not a fixed register. */
312 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
313 return 0;
314 /* All of the virtual frame registers are stack references. */
315 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
316 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
317 return 0;
318 return 1;
320 case CONST:
321 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
322 mode, unaligned_mems);
324 case PLUS:
325 /* An address is assumed not to trap if:
326 - it is the pic register plus a constant. */
327 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
328 return 0;
330 /* - or it is an address that can't trap plus a constant integer,
331 with the proper remainder modulo the mode size if we are
332 considering unaligned memory references. */
333 if (CONST_INT_P (XEXP (x, 1))
334 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
335 size, mode, unaligned_mems))
336 return 0;
338 return 1;
340 case LO_SUM:
341 case PRE_MODIFY:
342 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
343 mode, unaligned_mems);
345 case PRE_DEC:
346 case PRE_INC:
347 case POST_DEC:
348 case POST_INC:
349 case POST_MODIFY:
350 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
351 mode, unaligned_mems);
353 default:
354 break;
357 /* If it isn't one of the case above, it can cause a trap. */
358 return 1;
361 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
364 rtx_addr_can_trap_p (const_rtx x)
366 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
369 /* Return true if X is an address that is known to not be zero. */
371 bool
372 nonzero_address_p (const_rtx x)
374 const enum rtx_code code = GET_CODE (x);
376 switch (code)
378 case SYMBOL_REF:
379 return !SYMBOL_REF_WEAK (x);
381 case LABEL_REF:
382 return true;
384 case REG:
385 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
386 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
387 || x == stack_pointer_rtx
388 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
389 return true;
390 /* All of the virtual frame registers are stack references. */
391 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
392 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
393 return true;
394 return false;
396 case CONST:
397 return nonzero_address_p (XEXP (x, 0));
399 case PLUS:
400 if (CONST_INT_P (XEXP (x, 1)))
401 return nonzero_address_p (XEXP (x, 0));
402 /* Handle PIC references. */
403 else if (XEXP (x, 0) == pic_offset_table_rtx
404 && CONSTANT_P (XEXP (x, 1)))
405 return true;
406 return false;
408 case PRE_MODIFY:
409 /* Similar to the above; allow positive offsets. Further, since
410 auto-inc is only allowed in memories, the register must be a
411 pointer. */
412 if (CONST_INT_P (XEXP (x, 1))
413 && INTVAL (XEXP (x, 1)) > 0)
414 return true;
415 return nonzero_address_p (XEXP (x, 0));
417 case PRE_INC:
418 /* Similarly. Further, the offset is always positive. */
419 return true;
421 case PRE_DEC:
422 case POST_DEC:
423 case POST_INC:
424 case POST_MODIFY:
425 return nonzero_address_p (XEXP (x, 0));
427 case LO_SUM:
428 return nonzero_address_p (XEXP (x, 1));
430 default:
431 break;
434 /* If it isn't one of the case above, might be zero. */
435 return false;
438 /* Return 1 if X refers to a memory location whose address
439 cannot be compared reliably with constant addresses,
440 or if X refers to a BLKmode memory object.
441 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
442 zero, we are slightly more conservative. */
444 bool
445 rtx_addr_varies_p (const_rtx x, bool for_alias)
447 enum rtx_code code;
448 int i;
449 const char *fmt;
451 if (x == 0)
452 return 0;
454 code = GET_CODE (x);
455 if (code == MEM)
456 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
458 fmt = GET_RTX_FORMAT (code);
459 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
460 if (fmt[i] == 'e')
462 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
463 return 1;
465 else if (fmt[i] == 'E')
467 int j;
468 for (j = 0; j < XVECLEN (x, i); j++)
469 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
470 return 1;
472 return 0;
475 /* Return the value of the integer term in X, if one is apparent;
476 otherwise return 0.
477 Only obvious integer terms are detected.
478 This is used in cse.c with the `related_value' field. */
480 HOST_WIDE_INT
481 get_integer_term (const_rtx x)
483 if (GET_CODE (x) == CONST)
484 x = XEXP (x, 0);
486 if (GET_CODE (x) == MINUS
487 && CONST_INT_P (XEXP (x, 1)))
488 return - INTVAL (XEXP (x, 1));
489 if (GET_CODE (x) == PLUS
490 && CONST_INT_P (XEXP (x, 1)))
491 return INTVAL (XEXP (x, 1));
492 return 0;
495 /* If X is a constant, return the value sans apparent integer term;
496 otherwise return 0.
497 Only obvious integer terms are detected. */
500 get_related_value (const_rtx x)
502 if (GET_CODE (x) != CONST)
503 return 0;
504 x = XEXP (x, 0);
505 if (GET_CODE (x) == PLUS
506 && CONST_INT_P (XEXP (x, 1)))
507 return XEXP (x, 0);
508 else if (GET_CODE (x) == MINUS
509 && CONST_INT_P (XEXP (x, 1)))
510 return XEXP (x, 0);
511 return 0;
514 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
515 to somewhere in the same object or object_block as SYMBOL. */
517 bool
518 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
520 tree decl;
522 if (GET_CODE (symbol) != SYMBOL_REF)
523 return false;
525 if (offset == 0)
526 return true;
528 if (offset > 0)
530 if (CONSTANT_POOL_ADDRESS_P (symbol)
531 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
532 return true;
534 decl = SYMBOL_REF_DECL (symbol);
535 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
536 return true;
539 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
540 && SYMBOL_REF_BLOCK (symbol)
541 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
542 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
543 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
544 return true;
546 return false;
549 /* Split X into a base and a constant offset, storing them in *BASE_OUT
550 and *OFFSET_OUT respectively. */
552 void
553 split_const (rtx x, rtx *base_out, rtx *offset_out)
555 if (GET_CODE (x) == CONST)
557 x = XEXP (x, 0);
558 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
560 *base_out = XEXP (x, 0);
561 *offset_out = XEXP (x, 1);
562 return;
565 *base_out = x;
566 *offset_out = const0_rtx;
569 /* Return the number of places FIND appears within X. If COUNT_DEST is
570 zero, we do not count occurrences inside the destination of a SET. */
573 count_occurrences (const_rtx x, const_rtx find, int count_dest)
575 int i, j;
576 enum rtx_code code;
577 const char *format_ptr;
578 int count;
580 if (x == find)
581 return 1;
583 code = GET_CODE (x);
585 switch (code)
587 case REG:
588 case CONST_INT:
589 case CONST_DOUBLE:
590 case CONST_FIXED:
591 case CONST_VECTOR:
592 case SYMBOL_REF:
593 case CODE_LABEL:
594 case PC:
595 case CC0:
596 return 0;
598 case EXPR_LIST:
599 count = count_occurrences (XEXP (x, 0), find, count_dest);
600 if (XEXP (x, 1))
601 count += count_occurrences (XEXP (x, 1), find, count_dest);
602 return count;
604 case MEM:
605 if (MEM_P (find) && rtx_equal_p (x, find))
606 return 1;
607 break;
609 case SET:
610 if (SET_DEST (x) == find && ! count_dest)
611 return count_occurrences (SET_SRC (x), find, count_dest);
612 break;
614 default:
615 break;
618 format_ptr = GET_RTX_FORMAT (code);
619 count = 0;
621 for (i = 0; i < GET_RTX_LENGTH (code); i++)
623 switch (*format_ptr++)
625 case 'e':
626 count += count_occurrences (XEXP (x, i), find, count_dest);
627 break;
629 case 'E':
630 for (j = 0; j < XVECLEN (x, i); j++)
631 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
632 break;
635 return count;
639 /* Nonzero if register REG appears somewhere within IN.
640 Also works if REG is not a register; in this case it checks
641 for a subexpression of IN that is Lisp "equal" to REG. */
644 reg_mentioned_p (const_rtx reg, const_rtx in)
646 const char *fmt;
647 int i;
648 enum rtx_code code;
650 if (in == 0)
651 return 0;
653 if (reg == in)
654 return 1;
656 if (GET_CODE (in) == LABEL_REF)
657 return reg == XEXP (in, 0);
659 code = GET_CODE (in);
661 switch (code)
663 /* Compare registers by number. */
664 case REG:
665 return REG_P (reg) && REGNO (in) == REGNO (reg);
667 /* These codes have no constituent expressions
668 and are unique. */
669 case SCRATCH:
670 case CC0:
671 case PC:
672 return 0;
674 case CONST_INT:
675 case CONST_VECTOR:
676 case CONST_DOUBLE:
677 case CONST_FIXED:
678 /* These are kept unique for a given value. */
679 return 0;
681 default:
682 break;
685 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
686 return 1;
688 fmt = GET_RTX_FORMAT (code);
690 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
692 if (fmt[i] == 'E')
694 int j;
695 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
696 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
697 return 1;
699 else if (fmt[i] == 'e'
700 && reg_mentioned_p (reg, XEXP (in, i)))
701 return 1;
703 return 0;
706 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
707 no CODE_LABEL insn. */
710 no_labels_between_p (const_rtx beg, const_rtx end)
712 rtx p;
713 if (beg == end)
714 return 0;
715 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
716 if (LABEL_P (p))
717 return 0;
718 return 1;
721 /* Nonzero if register REG is used in an insn between
722 FROM_INSN and TO_INSN (exclusive of those two). */
725 reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
727 rtx insn;
729 if (from_insn == to_insn)
730 return 0;
732 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
733 if (NONDEBUG_INSN_P (insn)
734 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
735 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
736 return 1;
737 return 0;
740 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
741 is entirely replaced by a new value and the only use is as a SET_DEST,
742 we do not consider it a reference. */
745 reg_referenced_p (const_rtx x, const_rtx body)
747 int i;
749 switch (GET_CODE (body))
751 case SET:
752 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
753 return 1;
755 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
756 of a REG that occupies all of the REG, the insn references X if
757 it is mentioned in the destination. */
758 if (GET_CODE (SET_DEST (body)) != CC0
759 && GET_CODE (SET_DEST (body)) != PC
760 && !REG_P (SET_DEST (body))
761 && ! (GET_CODE (SET_DEST (body)) == SUBREG
762 && REG_P (SUBREG_REG (SET_DEST (body)))
763 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
764 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
765 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
766 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
767 && reg_overlap_mentioned_p (x, SET_DEST (body)))
768 return 1;
769 return 0;
771 case ASM_OPERANDS:
772 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
773 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
774 return 1;
775 return 0;
777 case CALL:
778 case USE:
779 case IF_THEN_ELSE:
780 return reg_overlap_mentioned_p (x, body);
782 case TRAP_IF:
783 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
785 case PREFETCH:
786 return reg_overlap_mentioned_p (x, XEXP (body, 0));
788 case UNSPEC:
789 case UNSPEC_VOLATILE:
790 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
791 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
792 return 1;
793 return 0;
795 case PARALLEL:
796 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
797 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
798 return 1;
799 return 0;
801 case CLOBBER:
802 if (MEM_P (XEXP (body, 0)))
803 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
804 return 1;
805 return 0;
807 case COND_EXEC:
808 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
809 return 1;
810 return reg_referenced_p (x, COND_EXEC_CODE (body));
812 default:
813 return 0;
817 /* Nonzero if register REG is set or clobbered in an insn between
818 FROM_INSN and TO_INSN (exclusive of those two). */
821 reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
823 const_rtx insn;
825 if (from_insn == to_insn)
826 return 0;
828 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
829 if (INSN_P (insn) && reg_set_p (reg, insn))
830 return 1;
831 return 0;
834 /* Internals of reg_set_between_p. */
836 reg_set_p (const_rtx reg, const_rtx insn)
838 /* We can be passed an insn or part of one. If we are passed an insn,
839 check if a side-effect of the insn clobbers REG. */
840 if (INSN_P (insn)
841 && (FIND_REG_INC_NOTE (insn, reg)
842 || (CALL_P (insn)
843 && ((REG_P (reg)
844 && REGNO (reg) < FIRST_PSEUDO_REGISTER
845 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
846 GET_MODE (reg), REGNO (reg)))
847 || MEM_P (reg)
848 || find_reg_fusage (insn, CLOBBER, reg)))))
849 return 1;
851 return set_of (reg, insn) != NULL_RTX;
854 /* Similar to reg_set_between_p, but check all registers in X. Return 0
855 only if none of them are modified between START and END. Return 1 if
856 X contains a MEM; this routine does use memory aliasing. */
859 modified_between_p (const_rtx x, const_rtx start, const_rtx end)
861 const enum rtx_code code = GET_CODE (x);
862 const char *fmt;
863 int i, j;
864 rtx insn;
866 if (start == end)
867 return 0;
869 switch (code)
871 case CONST_INT:
872 case CONST_DOUBLE:
873 case CONST_FIXED:
874 case CONST_VECTOR:
875 case CONST:
876 case SYMBOL_REF:
877 case LABEL_REF:
878 return 0;
880 case PC:
881 case CC0:
882 return 1;
884 case MEM:
885 if (modified_between_p (XEXP (x, 0), start, end))
886 return 1;
887 if (MEM_READONLY_P (x))
888 return 0;
889 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
890 if (memory_modified_in_insn_p (x, insn))
891 return 1;
892 return 0;
893 break;
895 case REG:
896 return reg_set_between_p (x, start, end);
898 default:
899 break;
902 fmt = GET_RTX_FORMAT (code);
903 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
905 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
906 return 1;
908 else if (fmt[i] == 'E')
909 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
910 if (modified_between_p (XVECEXP (x, i, j), start, end))
911 return 1;
914 return 0;
917 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
918 of them are modified in INSN. Return 1 if X contains a MEM; this routine
919 does use memory aliasing. */
922 modified_in_p (const_rtx x, const_rtx insn)
924 const enum rtx_code code = GET_CODE (x);
925 const char *fmt;
926 int i, j;
928 switch (code)
930 case CONST_INT:
931 case CONST_DOUBLE:
932 case CONST_FIXED:
933 case CONST_VECTOR:
934 case CONST:
935 case SYMBOL_REF:
936 case LABEL_REF:
937 return 0;
939 case PC:
940 case CC0:
941 return 1;
943 case MEM:
944 if (modified_in_p (XEXP (x, 0), insn))
945 return 1;
946 if (MEM_READONLY_P (x))
947 return 0;
948 if (memory_modified_in_insn_p (x, insn))
949 return 1;
950 return 0;
951 break;
953 case REG:
954 return reg_set_p (x, insn);
956 default:
957 break;
960 fmt = GET_RTX_FORMAT (code);
961 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
963 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
964 return 1;
966 else if (fmt[i] == 'E')
967 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
968 if (modified_in_p (XVECEXP (x, i, j), insn))
969 return 1;
972 return 0;
975 /* Helper function for set_of. */
976 struct set_of_data
978 const_rtx found;
979 const_rtx pat;
982 static void
983 set_of_1 (rtx x, const_rtx pat, void *data1)
985 struct set_of_data *const data = (struct set_of_data *) (data1);
986 if (rtx_equal_p (x, data->pat)
987 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
988 data->found = pat;
991 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
992 (either directly or via STRICT_LOW_PART and similar modifiers). */
993 const_rtx
994 set_of (const_rtx pat, const_rtx insn)
996 struct set_of_data data;
997 data.found = NULL_RTX;
998 data.pat = pat;
999 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1000 return data.found;
1003 /* Given an INSN, return a SET expression if this insn has only a single SET.
1004 It may also have CLOBBERs, USEs, or SET whose output
1005 will not be used, which we ignore. */
1008 single_set_2 (const_rtx insn, const_rtx pat)
1010 rtx set = NULL;
1011 int set_verified = 1;
1012 int i;
1014 if (GET_CODE (pat) == PARALLEL)
1016 for (i = 0; i < XVECLEN (pat, 0); i++)
1018 rtx sub = XVECEXP (pat, 0, i);
1019 switch (GET_CODE (sub))
1021 case USE:
1022 case CLOBBER:
1023 break;
1025 case SET:
1026 /* We can consider insns having multiple sets, where all
1027 but one are dead as single set insns. In common case
1028 only single set is present in the pattern so we want
1029 to avoid checking for REG_UNUSED notes unless necessary.
1031 When we reach set first time, we just expect this is
1032 the single set we are looking for and only when more
1033 sets are found in the insn, we check them. */
1034 if (!set_verified)
1036 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1037 && !side_effects_p (set))
1038 set = NULL;
1039 else
1040 set_verified = 1;
1042 if (!set)
1043 set = sub, set_verified = 0;
1044 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1045 || side_effects_p (sub))
1046 return NULL_RTX;
1047 break;
1049 default:
1050 return NULL_RTX;
1054 return set;
1057 /* Given an INSN, return nonzero if it has more than one SET, else return
1058 zero. */
1061 multiple_sets (const_rtx insn)
1063 int found;
1064 int i;
1066 /* INSN must be an insn. */
1067 if (! INSN_P (insn))
1068 return 0;
1070 /* Only a PARALLEL can have multiple SETs. */
1071 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1073 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1074 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1076 /* If we have already found a SET, then return now. */
1077 if (found)
1078 return 1;
1079 else
1080 found = 1;
1084 /* Either zero or one SET. */
1085 return 0;
1088 /* Return nonzero if the destination of SET equals the source
1089 and there are no side effects. */
1092 set_noop_p (const_rtx set)
1094 rtx src = SET_SRC (set);
1095 rtx dst = SET_DEST (set);
1097 if (dst == pc_rtx && src == pc_rtx)
1098 return 1;
1100 if (MEM_P (dst) && MEM_P (src))
1101 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1103 if (GET_CODE (dst) == ZERO_EXTRACT)
1104 return rtx_equal_p (XEXP (dst, 0), src)
1105 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1106 && !side_effects_p (src);
1108 if (GET_CODE (dst) == STRICT_LOW_PART)
1109 dst = XEXP (dst, 0);
1111 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1113 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1114 return 0;
1115 src = SUBREG_REG (src);
1116 dst = SUBREG_REG (dst);
1119 return (REG_P (src) && REG_P (dst)
1120 && REGNO (src) == REGNO (dst));
1123 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1124 value to itself. */
1127 noop_move_p (const_rtx insn)
1129 rtx pat = PATTERN (insn);
1131 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1132 return 1;
1134 /* Insns carrying these notes are useful later on. */
1135 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1136 return 0;
1138 if (GET_CODE (pat) == SET && set_noop_p (pat))
1139 return 1;
1141 if (GET_CODE (pat) == PARALLEL)
1143 int i;
1144 /* If nothing but SETs of registers to themselves,
1145 this insn can also be deleted. */
1146 for (i = 0; i < XVECLEN (pat, 0); i++)
1148 rtx tem = XVECEXP (pat, 0, i);
1150 if (GET_CODE (tem) == USE
1151 || GET_CODE (tem) == CLOBBER)
1152 continue;
1154 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1155 return 0;
1158 return 1;
1160 return 0;
1164 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1165 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1166 If the object was modified, if we hit a partial assignment to X, or hit a
1167 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1168 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1169 be the src. */
1172 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1174 rtx p;
1176 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1177 p = PREV_INSN (p))
1178 if (INSN_P (p))
1180 rtx set = single_set (p);
1181 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1183 if (set && rtx_equal_p (x, SET_DEST (set)))
1185 rtx src = SET_SRC (set);
1187 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1188 src = XEXP (note, 0);
1190 if ((valid_to == NULL_RTX
1191 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1192 /* Reject hard registers because we don't usually want
1193 to use them; we'd rather use a pseudo. */
1194 && (! (REG_P (src)
1195 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1197 *pinsn = p;
1198 return src;
1202 /* If set in non-simple way, we don't have a value. */
1203 if (reg_set_p (x, p))
1204 break;
1207 return x;
1210 /* Return nonzero if register in range [REGNO, ENDREGNO)
1211 appears either explicitly or implicitly in X
1212 other than being stored into.
1214 References contained within the substructure at LOC do not count.
1215 LOC may be zero, meaning don't ignore anything. */
1218 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1219 rtx *loc)
1221 int i;
1222 unsigned int x_regno;
1223 RTX_CODE code;
1224 const char *fmt;
1226 repeat:
1227 /* The contents of a REG_NONNEG note is always zero, so we must come here
1228 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1229 if (x == 0)
1230 return 0;
1232 code = GET_CODE (x);
1234 switch (code)
1236 case REG:
1237 x_regno = REGNO (x);
1239 /* If we modifying the stack, frame, or argument pointer, it will
1240 clobber a virtual register. In fact, we could be more precise,
1241 but it isn't worth it. */
1242 if ((x_regno == STACK_POINTER_REGNUM
1243 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1244 || x_regno == ARG_POINTER_REGNUM
1245 #endif
1246 || x_regno == FRAME_POINTER_REGNUM)
1247 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1248 return 1;
1250 return endregno > x_regno && regno < END_REGNO (x);
1252 case SUBREG:
1253 /* If this is a SUBREG of a hard reg, we can see exactly which
1254 registers are being modified. Otherwise, handle normally. */
1255 if (REG_P (SUBREG_REG (x))
1256 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1258 unsigned int inner_regno = subreg_regno (x);
1259 unsigned int inner_endregno
1260 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1261 ? subreg_nregs (x) : 1);
1263 return endregno > inner_regno && regno < inner_endregno;
1265 break;
1267 case CLOBBER:
1268 case SET:
1269 if (&SET_DEST (x) != loc
1270 /* Note setting a SUBREG counts as referring to the REG it is in for
1271 a pseudo but not for hard registers since we can
1272 treat each word individually. */
1273 && ((GET_CODE (SET_DEST (x)) == SUBREG
1274 && loc != &SUBREG_REG (SET_DEST (x))
1275 && REG_P (SUBREG_REG (SET_DEST (x)))
1276 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1277 && refers_to_regno_p (regno, endregno,
1278 SUBREG_REG (SET_DEST (x)), loc))
1279 || (!REG_P (SET_DEST (x))
1280 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1281 return 1;
1283 if (code == CLOBBER || loc == &SET_SRC (x))
1284 return 0;
1285 x = SET_SRC (x);
1286 goto repeat;
1288 default:
1289 break;
1292 /* X does not match, so try its subexpressions. */
1294 fmt = GET_RTX_FORMAT (code);
1295 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1297 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1299 if (i == 0)
1301 x = XEXP (x, 0);
1302 goto repeat;
1304 else
1305 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1306 return 1;
1308 else if (fmt[i] == 'E')
1310 int j;
1311 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1312 if (loc != &XVECEXP (x, i, j)
1313 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1314 return 1;
1317 return 0;
1320 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1321 we check if any register number in X conflicts with the relevant register
1322 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1323 contains a MEM (we don't bother checking for memory addresses that can't
1324 conflict because we expect this to be a rare case. */
1327 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1329 unsigned int regno, endregno;
1331 /* If either argument is a constant, then modifying X can not
1332 affect IN. Here we look at IN, we can profitably combine
1333 CONSTANT_P (x) with the switch statement below. */
1334 if (CONSTANT_P (in))
1335 return 0;
1337 recurse:
1338 switch (GET_CODE (x))
1340 case STRICT_LOW_PART:
1341 case ZERO_EXTRACT:
1342 case SIGN_EXTRACT:
1343 /* Overly conservative. */
1344 x = XEXP (x, 0);
1345 goto recurse;
1347 case SUBREG:
1348 regno = REGNO (SUBREG_REG (x));
1349 if (regno < FIRST_PSEUDO_REGISTER)
1350 regno = subreg_regno (x);
1351 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1352 ? subreg_nregs (x) : 1);
1353 goto do_reg;
1355 case REG:
1356 regno = REGNO (x);
1357 endregno = END_REGNO (x);
1358 do_reg:
1359 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1361 case MEM:
1363 const char *fmt;
1364 int i;
1366 if (MEM_P (in))
1367 return 1;
1369 fmt = GET_RTX_FORMAT (GET_CODE (in));
1370 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1371 if (fmt[i] == 'e')
1373 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1374 return 1;
1376 else if (fmt[i] == 'E')
1378 int j;
1379 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1380 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1381 return 1;
1384 return 0;
1387 case SCRATCH:
1388 case PC:
1389 case CC0:
1390 return reg_mentioned_p (x, in);
1392 case PARALLEL:
1394 int i;
1396 /* If any register in here refers to it we return true. */
1397 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1398 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1399 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1400 return 1;
1401 return 0;
1404 default:
1405 gcc_assert (CONSTANT_P (x));
1406 return 0;
1410 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1411 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1412 ignored by note_stores, but passed to FUN.
1414 FUN receives three arguments:
1415 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1416 2. the SET or CLOBBER rtx that does the store,
1417 3. the pointer DATA provided to note_stores.
1419 If the item being stored in or clobbered is a SUBREG of a hard register,
1420 the SUBREG will be passed. */
1422 void
1423 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1425 int i;
1427 if (GET_CODE (x) == COND_EXEC)
1428 x = COND_EXEC_CODE (x);
1430 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1432 rtx dest = SET_DEST (x);
1434 while ((GET_CODE (dest) == SUBREG
1435 && (!REG_P (SUBREG_REG (dest))
1436 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1437 || GET_CODE (dest) == ZERO_EXTRACT
1438 || GET_CODE (dest) == STRICT_LOW_PART)
1439 dest = XEXP (dest, 0);
1441 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1442 each of whose first operand is a register. */
1443 if (GET_CODE (dest) == PARALLEL)
1445 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1446 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1447 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1449 else
1450 (*fun) (dest, x, data);
1453 else if (GET_CODE (x) == PARALLEL)
1454 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1455 note_stores (XVECEXP (x, 0, i), fun, data);
1458 /* Like notes_stores, but call FUN for each expression that is being
1459 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1460 FUN for each expression, not any interior subexpressions. FUN receives a
1461 pointer to the expression and the DATA passed to this function.
1463 Note that this is not quite the same test as that done in reg_referenced_p
1464 since that considers something as being referenced if it is being
1465 partially set, while we do not. */
1467 void
1468 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1470 rtx body = *pbody;
1471 int i;
1473 switch (GET_CODE (body))
1475 case COND_EXEC:
1476 (*fun) (&COND_EXEC_TEST (body), data);
1477 note_uses (&COND_EXEC_CODE (body), fun, data);
1478 return;
1480 case PARALLEL:
1481 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1482 note_uses (&XVECEXP (body, 0, i), fun, data);
1483 return;
1485 case SEQUENCE:
1486 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1487 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1488 return;
1490 case USE:
1491 (*fun) (&XEXP (body, 0), data);
1492 return;
1494 case ASM_OPERANDS:
1495 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1496 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1497 return;
1499 case TRAP_IF:
1500 (*fun) (&TRAP_CONDITION (body), data);
1501 return;
1503 case PREFETCH:
1504 (*fun) (&XEXP (body, 0), data);
1505 return;
1507 case UNSPEC:
1508 case UNSPEC_VOLATILE:
1509 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1510 (*fun) (&XVECEXP (body, 0, i), data);
1511 return;
1513 case CLOBBER:
1514 if (MEM_P (XEXP (body, 0)))
1515 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1516 return;
1518 case SET:
1520 rtx dest = SET_DEST (body);
1522 /* For sets we replace everything in source plus registers in memory
1523 expression in store and operands of a ZERO_EXTRACT. */
1524 (*fun) (&SET_SRC (body), data);
1526 if (GET_CODE (dest) == ZERO_EXTRACT)
1528 (*fun) (&XEXP (dest, 1), data);
1529 (*fun) (&XEXP (dest, 2), data);
1532 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1533 dest = XEXP (dest, 0);
1535 if (MEM_P (dest))
1536 (*fun) (&XEXP (dest, 0), data);
1538 return;
1540 default:
1541 /* All the other possibilities never store. */
1542 (*fun) (pbody, data);
1543 return;
1547 /* Return nonzero if X's old contents don't survive after INSN.
1548 This will be true if X is (cc0) or if X is a register and
1549 X dies in INSN or because INSN entirely sets X.
1551 "Entirely set" means set directly and not through a SUBREG, or
1552 ZERO_EXTRACT, so no trace of the old contents remains.
1553 Likewise, REG_INC does not count.
1555 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1556 but for this use that makes no difference, since regs don't overlap
1557 during their lifetimes. Therefore, this function may be used
1558 at any time after deaths have been computed.
1560 If REG is a hard reg that occupies multiple machine registers, this
1561 function will only return 1 if each of those registers will be replaced
1562 by INSN. */
1565 dead_or_set_p (const_rtx insn, const_rtx x)
1567 unsigned int regno, end_regno;
1568 unsigned int i;
1570 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1571 if (GET_CODE (x) == CC0)
1572 return 1;
1574 gcc_assert (REG_P (x));
1576 regno = REGNO (x);
1577 end_regno = END_REGNO (x);
1578 for (i = regno; i < end_regno; i++)
1579 if (! dead_or_set_regno_p (insn, i))
1580 return 0;
1582 return 1;
1585 /* Return TRUE iff DEST is a register or subreg of a register and
1586 doesn't change the number of words of the inner register, and any
1587 part of the register is TEST_REGNO. */
1589 static bool
1590 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1592 unsigned int regno, endregno;
1594 if (GET_CODE (dest) == SUBREG
1595 && (((GET_MODE_SIZE (GET_MODE (dest))
1596 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1597 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1598 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1599 dest = SUBREG_REG (dest);
1601 if (!REG_P (dest))
1602 return false;
1604 regno = REGNO (dest);
1605 endregno = END_REGNO (dest);
1606 return (test_regno >= regno && test_regno < endregno);
1609 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1610 any member matches the covers_regno_no_parallel_p criteria. */
1612 static bool
1613 covers_regno_p (const_rtx dest, unsigned int test_regno)
1615 if (GET_CODE (dest) == PARALLEL)
1617 /* Some targets place small structures in registers for return
1618 values of functions, and those registers are wrapped in
1619 PARALLELs that we may see as the destination of a SET. */
1620 int i;
1622 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1624 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1625 if (inner != NULL_RTX
1626 && covers_regno_no_parallel_p (inner, test_regno))
1627 return true;
1630 return false;
1632 else
1633 return covers_regno_no_parallel_p (dest, test_regno);
1636 /* Utility function for dead_or_set_p to check an individual register. */
1639 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1641 const_rtx pattern;
1643 /* See if there is a death note for something that includes TEST_REGNO. */
1644 if (find_regno_note (insn, REG_DEAD, test_regno))
1645 return 1;
1647 if (CALL_P (insn)
1648 && find_regno_fusage (insn, CLOBBER, test_regno))
1649 return 1;
1651 pattern = PATTERN (insn);
1653 if (GET_CODE (pattern) == COND_EXEC)
1654 pattern = COND_EXEC_CODE (pattern);
1656 if (GET_CODE (pattern) == SET)
1657 return covers_regno_p (SET_DEST (pattern), test_regno);
1658 else if (GET_CODE (pattern) == PARALLEL)
1660 int i;
1662 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1664 rtx body = XVECEXP (pattern, 0, i);
1666 if (GET_CODE (body) == COND_EXEC)
1667 body = COND_EXEC_CODE (body);
1669 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1670 && covers_regno_p (SET_DEST (body), test_regno))
1671 return 1;
1675 return 0;
1678 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1679 If DATUM is nonzero, look for one whose datum is DATUM. */
1682 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1684 rtx link;
1686 gcc_checking_assert (insn);
1688 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1689 if (! INSN_P (insn))
1690 return 0;
1691 if (datum == 0)
1693 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1694 if (REG_NOTE_KIND (link) == kind)
1695 return link;
1696 return 0;
1699 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1700 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1701 return link;
1702 return 0;
1705 /* Return the reg-note of kind KIND in insn INSN which applies to register
1706 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1707 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1708 it might be the case that the note overlaps REGNO. */
1711 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1713 rtx link;
1715 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1716 if (! INSN_P (insn))
1717 return 0;
1719 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1720 if (REG_NOTE_KIND (link) == kind
1721 /* Verify that it is a register, so that scratch and MEM won't cause a
1722 problem here. */
1723 && REG_P (XEXP (link, 0))
1724 && REGNO (XEXP (link, 0)) <= regno
1725 && END_REGNO (XEXP (link, 0)) > regno)
1726 return link;
1727 return 0;
1730 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1731 has such a note. */
1734 find_reg_equal_equiv_note (const_rtx insn)
1736 rtx link;
1738 if (!INSN_P (insn))
1739 return 0;
1741 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1742 if (REG_NOTE_KIND (link) == REG_EQUAL
1743 || REG_NOTE_KIND (link) == REG_EQUIV)
1745 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1746 insns that have multiple sets. Checking single_set to
1747 make sure of this is not the proper check, as explained
1748 in the comment in set_unique_reg_note.
1750 This should be changed into an assert. */
1751 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1752 return 0;
1753 return link;
1755 return NULL;
1758 /* Check whether INSN is a single_set whose source is known to be
1759 equivalent to a constant. Return that constant if so, otherwise
1760 return null. */
1763 find_constant_src (const_rtx insn)
1765 rtx note, set, x;
1767 set = single_set (insn);
1768 if (set)
1770 x = avoid_constant_pool_reference (SET_SRC (set));
1771 if (CONSTANT_P (x))
1772 return x;
1775 note = find_reg_equal_equiv_note (insn);
1776 if (note && CONSTANT_P (XEXP (note, 0)))
1777 return XEXP (note, 0);
1779 return NULL_RTX;
1782 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1783 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1786 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1788 /* If it's not a CALL_INSN, it can't possibly have a
1789 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1790 if (!CALL_P (insn))
1791 return 0;
1793 gcc_assert (datum);
1795 if (!REG_P (datum))
1797 rtx link;
1799 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1800 link;
1801 link = XEXP (link, 1))
1802 if (GET_CODE (XEXP (link, 0)) == code
1803 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1804 return 1;
1806 else
1808 unsigned int regno = REGNO (datum);
1810 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1811 to pseudo registers, so don't bother checking. */
1813 if (regno < FIRST_PSEUDO_REGISTER)
1815 unsigned int end_regno = END_HARD_REGNO (datum);
1816 unsigned int i;
1818 for (i = regno; i < end_regno; i++)
1819 if (find_regno_fusage (insn, code, i))
1820 return 1;
1824 return 0;
1827 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1828 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1831 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
1833 rtx link;
1835 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1836 to pseudo registers, so don't bother checking. */
1838 if (regno >= FIRST_PSEUDO_REGISTER
1839 || !CALL_P (insn) )
1840 return 0;
1842 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1844 rtx op, reg;
1846 if (GET_CODE (op = XEXP (link, 0)) == code
1847 && REG_P (reg = XEXP (op, 0))
1848 && REGNO (reg) <= regno
1849 && END_HARD_REGNO (reg) > regno)
1850 return 1;
1853 return 0;
1857 /* Allocate a register note with kind KIND and datum DATUM. LIST is
1858 stored as the pointer to the next register note. */
1861 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
1863 rtx note;
1865 switch (kind)
1867 case REG_CC_SETTER:
1868 case REG_CC_USER:
1869 case REG_LABEL_TARGET:
1870 case REG_LABEL_OPERAND:
1871 /* These types of register notes use an INSN_LIST rather than an
1872 EXPR_LIST, so that copying is done right and dumps look
1873 better. */
1874 note = alloc_INSN_LIST (datum, list);
1875 PUT_REG_NOTE_KIND (note, kind);
1876 break;
1878 default:
1879 note = alloc_EXPR_LIST (kind, datum, list);
1880 break;
1883 return note;
1886 /* Add register note with kind KIND and datum DATUM to INSN. */
1888 void
1889 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
1891 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
1894 /* Remove register note NOTE from the REG_NOTES of INSN. */
1896 void
1897 remove_note (rtx insn, const_rtx note)
1899 rtx link;
1901 if (note == NULL_RTX)
1902 return;
1904 if (REG_NOTES (insn) == note)
1905 REG_NOTES (insn) = XEXP (note, 1);
1906 else
1907 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1908 if (XEXP (link, 1) == note)
1910 XEXP (link, 1) = XEXP (note, 1);
1911 break;
1914 switch (REG_NOTE_KIND (note))
1916 case REG_EQUAL:
1917 case REG_EQUIV:
1918 df_notes_rescan (insn);
1919 break;
1920 default:
1921 break;
1925 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1927 void
1928 remove_reg_equal_equiv_notes (rtx insn)
1930 rtx *loc;
1932 loc = &REG_NOTES (insn);
1933 while (*loc)
1935 enum reg_note kind = REG_NOTE_KIND (*loc);
1936 if (kind == REG_EQUAL || kind == REG_EQUIV)
1937 *loc = XEXP (*loc, 1);
1938 else
1939 loc = &XEXP (*loc, 1);
1943 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
1945 void
1946 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
1948 df_ref eq_use;
1950 if (!df)
1951 return;
1953 /* This loop is a little tricky. We cannot just go down the chain because
1954 it is being modified by some actions in the loop. So we just iterate
1955 over the head. We plan to drain the list anyway. */
1956 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
1958 rtx insn = DF_REF_INSN (eq_use);
1959 rtx note = find_reg_equal_equiv_note (insn);
1961 /* This assert is generally triggered when someone deletes a REG_EQUAL
1962 or REG_EQUIV note by hacking the list manually rather than calling
1963 remove_note. */
1964 gcc_assert (note);
1966 remove_note (insn, note);
1970 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1971 return 1 if it is found. A simple equality test is used to determine if
1972 NODE matches. */
1975 in_expr_list_p (const_rtx listp, const_rtx node)
1977 const_rtx x;
1979 for (x = listp; x; x = XEXP (x, 1))
1980 if (node == XEXP (x, 0))
1981 return 1;
1983 return 0;
1986 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1987 remove that entry from the list if it is found.
1989 A simple equality test is used to determine if NODE matches. */
1991 void
1992 remove_node_from_expr_list (const_rtx node, rtx *listp)
1994 rtx temp = *listp;
1995 rtx prev = NULL_RTX;
1997 while (temp)
1999 if (node == XEXP (temp, 0))
2001 /* Splice the node out of the list. */
2002 if (prev)
2003 XEXP (prev, 1) = XEXP (temp, 1);
2004 else
2005 *listp = XEXP (temp, 1);
2007 return;
2010 prev = temp;
2011 temp = XEXP (temp, 1);
2015 /* Nonzero if X contains any volatile instructions. These are instructions
2016 which may cause unpredictable machine state instructions, and thus no
2017 instructions should be moved or combined across them. This includes
2018 only volatile asms and UNSPEC_VOLATILE instructions. */
2021 volatile_insn_p (const_rtx x)
2023 const RTX_CODE code = GET_CODE (x);
2024 switch (code)
2026 case LABEL_REF:
2027 case SYMBOL_REF:
2028 case CONST_INT:
2029 case CONST:
2030 case CONST_DOUBLE:
2031 case CONST_FIXED:
2032 case CONST_VECTOR:
2033 case CC0:
2034 case PC:
2035 case REG:
2036 case SCRATCH:
2037 case CLOBBER:
2038 case ADDR_VEC:
2039 case ADDR_DIFF_VEC:
2040 case CALL:
2041 case MEM:
2042 return 0;
2044 case UNSPEC_VOLATILE:
2045 /* case TRAP_IF: This isn't clear yet. */
2046 return 1;
2048 case ASM_INPUT:
2049 case ASM_OPERANDS:
2050 if (MEM_VOLATILE_P (x))
2051 return 1;
2053 default:
2054 break;
2057 /* Recursively scan the operands of this expression. */
2060 const char *const fmt = GET_RTX_FORMAT (code);
2061 int i;
2063 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2065 if (fmt[i] == 'e')
2067 if (volatile_insn_p (XEXP (x, i)))
2068 return 1;
2070 else if (fmt[i] == 'E')
2072 int j;
2073 for (j = 0; j < XVECLEN (x, i); j++)
2074 if (volatile_insn_p (XVECEXP (x, i, j)))
2075 return 1;
2079 return 0;
2082 /* Nonzero if X contains any volatile memory references
2083 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2086 volatile_refs_p (const_rtx x)
2088 const RTX_CODE code = GET_CODE (x);
2089 switch (code)
2091 case LABEL_REF:
2092 case SYMBOL_REF:
2093 case CONST_INT:
2094 case CONST:
2095 case CONST_DOUBLE:
2096 case CONST_FIXED:
2097 case CONST_VECTOR:
2098 case CC0:
2099 case PC:
2100 case REG:
2101 case SCRATCH:
2102 case CLOBBER:
2103 case ADDR_VEC:
2104 case ADDR_DIFF_VEC:
2105 return 0;
2107 case UNSPEC_VOLATILE:
2108 return 1;
2110 case MEM:
2111 case ASM_INPUT:
2112 case ASM_OPERANDS:
2113 if (MEM_VOLATILE_P (x))
2114 return 1;
2116 default:
2117 break;
2120 /* Recursively scan the operands of this expression. */
2123 const char *const fmt = GET_RTX_FORMAT (code);
2124 int i;
2126 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2128 if (fmt[i] == 'e')
2130 if (volatile_refs_p (XEXP (x, i)))
2131 return 1;
2133 else if (fmt[i] == 'E')
2135 int j;
2136 for (j = 0; j < XVECLEN (x, i); j++)
2137 if (volatile_refs_p (XVECEXP (x, i, j)))
2138 return 1;
2142 return 0;
2145 /* Similar to above, except that it also rejects register pre- and post-
2146 incrementing. */
2149 side_effects_p (const_rtx x)
2151 const RTX_CODE code = GET_CODE (x);
2152 switch (code)
2154 case LABEL_REF:
2155 case SYMBOL_REF:
2156 case CONST_INT:
2157 case CONST:
2158 case CONST_DOUBLE:
2159 case CONST_FIXED:
2160 case CONST_VECTOR:
2161 case CC0:
2162 case PC:
2163 case REG:
2164 case SCRATCH:
2165 case ADDR_VEC:
2166 case ADDR_DIFF_VEC:
2167 case VAR_LOCATION:
2168 return 0;
2170 case CLOBBER:
2171 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2172 when some combination can't be done. If we see one, don't think
2173 that we can simplify the expression. */
2174 return (GET_MODE (x) != VOIDmode);
2176 case PRE_INC:
2177 case PRE_DEC:
2178 case POST_INC:
2179 case POST_DEC:
2180 case PRE_MODIFY:
2181 case POST_MODIFY:
2182 case CALL:
2183 case UNSPEC_VOLATILE:
2184 /* case TRAP_IF: This isn't clear yet. */
2185 return 1;
2187 case MEM:
2188 case ASM_INPUT:
2189 case ASM_OPERANDS:
2190 if (MEM_VOLATILE_P (x))
2191 return 1;
2193 default:
2194 break;
2197 /* Recursively scan the operands of this expression. */
2200 const char *fmt = GET_RTX_FORMAT (code);
2201 int i;
2203 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2205 if (fmt[i] == 'e')
2207 if (side_effects_p (XEXP (x, i)))
2208 return 1;
2210 else if (fmt[i] == 'E')
2212 int j;
2213 for (j = 0; j < XVECLEN (x, i); j++)
2214 if (side_effects_p (XVECEXP (x, i, j)))
2215 return 1;
2219 return 0;
2222 /* Return nonzero if evaluating rtx X might cause a trap.
2223 FLAGS controls how to consider MEMs. A nonzero means the context
2224 of the access may have changed from the original, such that the
2225 address may have become invalid. */
2228 may_trap_p_1 (const_rtx x, unsigned flags)
2230 int i;
2231 enum rtx_code code;
2232 const char *fmt;
2234 /* We make no distinction currently, but this function is part of
2235 the internal target-hooks ABI so we keep the parameter as
2236 "unsigned flags". */
2237 bool code_changed = flags != 0;
2239 if (x == 0)
2240 return 0;
2241 code = GET_CODE (x);
2242 switch (code)
2244 /* Handle these cases quickly. */
2245 case CONST_INT:
2246 case CONST_DOUBLE:
2247 case CONST_FIXED:
2248 case CONST_VECTOR:
2249 case SYMBOL_REF:
2250 case LABEL_REF:
2251 case CONST:
2252 case PC:
2253 case CC0:
2254 case REG:
2255 case SCRATCH:
2256 return 0;
2258 case UNSPEC:
2259 case UNSPEC_VOLATILE:
2260 return targetm.unspec_may_trap_p (x, flags);
2262 case ASM_INPUT:
2263 case TRAP_IF:
2264 return 1;
2266 case ASM_OPERANDS:
2267 return MEM_VOLATILE_P (x);
2269 /* Memory ref can trap unless it's a static var or a stack slot. */
2270 case MEM:
2271 /* Recognize specific pattern of stack checking probes. */
2272 if (flag_stack_check
2273 && MEM_VOLATILE_P (x)
2274 && XEXP (x, 0) == stack_pointer_rtx)
2275 return 1;
2276 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2277 reference; moving it out of context such as when moving code
2278 when optimizing, might cause its address to become invalid. */
2279 code_changed
2280 || !MEM_NOTRAP_P (x))
2282 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
2283 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2284 GET_MODE (x), code_changed);
2287 return 0;
2289 /* Division by a non-constant might trap. */
2290 case DIV:
2291 case MOD:
2292 case UDIV:
2293 case UMOD:
2294 if (HONOR_SNANS (GET_MODE (x)))
2295 return 1;
2296 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2297 return flag_trapping_math;
2298 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2299 return 1;
2300 break;
2302 case EXPR_LIST:
2303 /* An EXPR_LIST is used to represent a function call. This
2304 certainly may trap. */
2305 return 1;
2307 case GE:
2308 case GT:
2309 case LE:
2310 case LT:
2311 case LTGT:
2312 case COMPARE:
2313 /* Some floating point comparisons may trap. */
2314 if (!flag_trapping_math)
2315 break;
2316 /* ??? There is no machine independent way to check for tests that trap
2317 when COMPARE is used, though many targets do make this distinction.
2318 For instance, sparc uses CCFPE for compares which generate exceptions
2319 and CCFP for compares which do not generate exceptions. */
2320 if (HONOR_NANS (GET_MODE (x)))
2321 return 1;
2322 /* But often the compare has some CC mode, so check operand
2323 modes as well. */
2324 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2325 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2326 return 1;
2327 break;
2329 case EQ:
2330 case NE:
2331 if (HONOR_SNANS (GET_MODE (x)))
2332 return 1;
2333 /* Often comparison is CC mode, so check operand modes. */
2334 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2335 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2336 return 1;
2337 break;
2339 case FIX:
2340 /* Conversion of floating point might trap. */
2341 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2342 return 1;
2343 break;
2345 case NEG:
2346 case ABS:
2347 case SUBREG:
2348 /* These operations don't trap even with floating point. */
2349 break;
2351 default:
2352 /* Any floating arithmetic may trap. */
2353 if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2354 && flag_trapping_math)
2355 return 1;
2358 fmt = GET_RTX_FORMAT (code);
2359 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2361 if (fmt[i] == 'e')
2363 if (may_trap_p_1 (XEXP (x, i), flags))
2364 return 1;
2366 else if (fmt[i] == 'E')
2368 int j;
2369 for (j = 0; j < XVECLEN (x, i); j++)
2370 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2371 return 1;
2374 return 0;
2377 /* Return nonzero if evaluating rtx X might cause a trap. */
2380 may_trap_p (const_rtx x)
2382 return may_trap_p_1 (x, 0);
2385 /* Same as above, but additionally return nonzero if evaluating rtx X might
2386 cause a fault. We define a fault for the purpose of this function as a
2387 erroneous execution condition that cannot be encountered during the normal
2388 execution of a valid program; the typical example is an unaligned memory
2389 access on a strict alignment machine. The compiler guarantees that it
2390 doesn't generate code that will fault from a valid program, but this
2391 guarantee doesn't mean anything for individual instructions. Consider
2392 the following example:
2394 struct S { int d; union { char *cp; int *ip; }; };
2396 int foo(struct S *s)
2398 if (s->d == 1)
2399 return *s->ip;
2400 else
2401 return *s->cp;
2404 on a strict alignment machine. In a valid program, foo will never be
2405 invoked on a structure for which d is equal to 1 and the underlying
2406 unique field of the union not aligned on a 4-byte boundary, but the
2407 expression *s->ip might cause a fault if considered individually.
2409 At the RTL level, potentially problematic expressions will almost always
2410 verify may_trap_p; for example, the above dereference can be emitted as
2411 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2412 However, suppose that foo is inlined in a caller that causes s->cp to
2413 point to a local character variable and guarantees that s->d is not set
2414 to 1; foo may have been effectively translated into pseudo-RTL as:
2416 if ((reg:SI) == 1)
2417 (set (reg:SI) (mem:SI (%fp - 7)))
2418 else
2419 (set (reg:QI) (mem:QI (%fp - 7)))
2421 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2422 memory reference to a stack slot, but it will certainly cause a fault
2423 on a strict alignment machine. */
2426 may_trap_or_fault_p (const_rtx x)
2428 return may_trap_p_1 (x, 1);
2431 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2432 i.e., an inequality. */
2435 inequality_comparisons_p (const_rtx x)
2437 const char *fmt;
2438 int len, i;
2439 const enum rtx_code code = GET_CODE (x);
2441 switch (code)
2443 case REG:
2444 case SCRATCH:
2445 case PC:
2446 case CC0:
2447 case CONST_INT:
2448 case CONST_DOUBLE:
2449 case CONST_FIXED:
2450 case CONST_VECTOR:
2451 case CONST:
2452 case LABEL_REF:
2453 case SYMBOL_REF:
2454 return 0;
2456 case LT:
2457 case LTU:
2458 case GT:
2459 case GTU:
2460 case LE:
2461 case LEU:
2462 case GE:
2463 case GEU:
2464 return 1;
2466 default:
2467 break;
2470 len = GET_RTX_LENGTH (code);
2471 fmt = GET_RTX_FORMAT (code);
2473 for (i = 0; i < len; i++)
2475 if (fmt[i] == 'e')
2477 if (inequality_comparisons_p (XEXP (x, i)))
2478 return 1;
2480 else if (fmt[i] == 'E')
2482 int j;
2483 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2484 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2485 return 1;
2489 return 0;
2492 /* Replace any occurrence of FROM in X with TO. The function does
2493 not enter into CONST_DOUBLE for the replace.
2495 Note that copying is not done so X must not be shared unless all copies
2496 are to be modified. */
2499 replace_rtx (rtx x, rtx from, rtx to)
2501 int i, j;
2502 const char *fmt;
2504 /* The following prevents loops occurrence when we change MEM in
2505 CONST_DOUBLE onto the same CONST_DOUBLE. */
2506 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2507 return x;
2509 if (x == from)
2510 return to;
2512 /* Allow this function to make replacements in EXPR_LISTs. */
2513 if (x == 0)
2514 return 0;
2516 if (GET_CODE (x) == SUBREG)
2518 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
2520 if (CONST_INT_P (new_rtx))
2522 x = simplify_subreg (GET_MODE (x), new_rtx,
2523 GET_MODE (SUBREG_REG (x)),
2524 SUBREG_BYTE (x));
2525 gcc_assert (x);
2527 else
2528 SUBREG_REG (x) = new_rtx;
2530 return x;
2532 else if (GET_CODE (x) == ZERO_EXTEND)
2534 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
2536 if (CONST_INT_P (new_rtx))
2538 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2539 new_rtx, GET_MODE (XEXP (x, 0)));
2540 gcc_assert (x);
2542 else
2543 XEXP (x, 0) = new_rtx;
2545 return x;
2548 fmt = GET_RTX_FORMAT (GET_CODE (x));
2549 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2551 if (fmt[i] == 'e')
2552 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2553 else if (fmt[i] == 'E')
2554 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2555 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2558 return x;
2561 /* Replace occurrences of the old label in *X with the new one.
2562 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2565 replace_label (rtx *x, void *data)
2567 rtx l = *x;
2568 rtx old_label = ((replace_label_data *) data)->r1;
2569 rtx new_label = ((replace_label_data *) data)->r2;
2570 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2572 if (l == NULL_RTX)
2573 return 0;
2575 if (GET_CODE (l) == SYMBOL_REF
2576 && CONSTANT_POOL_ADDRESS_P (l))
2578 rtx c = get_pool_constant (l);
2579 if (rtx_referenced_p (old_label, c))
2581 rtx new_c, new_l;
2582 replace_label_data *d = (replace_label_data *) data;
2584 /* Create a copy of constant C; replace the label inside
2585 but do not update LABEL_NUSES because uses in constant pool
2586 are not counted. */
2587 new_c = copy_rtx (c);
2588 d->update_label_nuses = false;
2589 for_each_rtx (&new_c, replace_label, data);
2590 d->update_label_nuses = update_label_nuses;
2592 /* Add the new constant NEW_C to constant pool and replace
2593 the old reference to constant by new reference. */
2594 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2595 *x = replace_rtx (l, l, new_l);
2597 return 0;
2600 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2601 field. This is not handled by for_each_rtx because it doesn't
2602 handle unprinted ('0') fields. */
2603 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2604 JUMP_LABEL (l) = new_label;
2606 if ((GET_CODE (l) == LABEL_REF
2607 || GET_CODE (l) == INSN_LIST)
2608 && XEXP (l, 0) == old_label)
2610 XEXP (l, 0) = new_label;
2611 if (update_label_nuses)
2613 ++LABEL_NUSES (new_label);
2614 --LABEL_NUSES (old_label);
2616 return 0;
2619 return 0;
2622 /* When *BODY is equal to X or X is directly referenced by *BODY
2623 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2624 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2626 static int
2627 rtx_referenced_p_1 (rtx *body, void *x)
2629 rtx y = (rtx) x;
2631 if (*body == NULL_RTX)
2632 return y == NULL_RTX;
2634 /* Return true if a label_ref *BODY refers to label Y. */
2635 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2636 return XEXP (*body, 0) == y;
2638 /* If *BODY is a reference to pool constant traverse the constant. */
2639 if (GET_CODE (*body) == SYMBOL_REF
2640 && CONSTANT_POOL_ADDRESS_P (*body))
2641 return rtx_referenced_p (y, get_pool_constant (*body));
2643 /* By default, compare the RTL expressions. */
2644 return rtx_equal_p (*body, y);
2647 /* Return true if X is referenced in BODY. */
2650 rtx_referenced_p (rtx x, rtx body)
2652 return for_each_rtx (&body, rtx_referenced_p_1, x);
2655 /* If INSN is a tablejump return true and store the label (before jump table) to
2656 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2658 bool
2659 tablejump_p (const_rtx insn, rtx *labelp, rtx *tablep)
2661 rtx label, table;
2663 if (!JUMP_P (insn))
2664 return false;
2666 label = JUMP_LABEL (insn);
2667 if (label != NULL_RTX && !ANY_RETURN_P (label)
2668 && (table = next_active_insn (label)) != NULL_RTX
2669 && JUMP_TABLE_DATA_P (table))
2671 if (labelp)
2672 *labelp = label;
2673 if (tablep)
2674 *tablep = table;
2675 return true;
2677 return false;
2680 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2681 constant that is not in the constant pool and not in the condition
2682 of an IF_THEN_ELSE. */
2684 static int
2685 computed_jump_p_1 (const_rtx x)
2687 const enum rtx_code code = GET_CODE (x);
2688 int i, j;
2689 const char *fmt;
2691 switch (code)
2693 case LABEL_REF:
2694 case PC:
2695 return 0;
2697 case CONST:
2698 case CONST_INT:
2699 case CONST_DOUBLE:
2700 case CONST_FIXED:
2701 case CONST_VECTOR:
2702 case SYMBOL_REF:
2703 case REG:
2704 return 1;
2706 case MEM:
2707 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2708 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2710 case IF_THEN_ELSE:
2711 return (computed_jump_p_1 (XEXP (x, 1))
2712 || computed_jump_p_1 (XEXP (x, 2)));
2714 default:
2715 break;
2718 fmt = GET_RTX_FORMAT (code);
2719 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2721 if (fmt[i] == 'e'
2722 && computed_jump_p_1 (XEXP (x, i)))
2723 return 1;
2725 else if (fmt[i] == 'E')
2726 for (j = 0; j < XVECLEN (x, i); j++)
2727 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2728 return 1;
2731 return 0;
2734 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2736 Tablejumps and casesi insns are not considered indirect jumps;
2737 we can recognize them by a (use (label_ref)). */
2740 computed_jump_p (const_rtx insn)
2742 int i;
2743 if (JUMP_P (insn))
2745 rtx pat = PATTERN (insn);
2747 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2748 if (JUMP_LABEL (insn) != NULL)
2749 return 0;
2751 if (GET_CODE (pat) == PARALLEL)
2753 int len = XVECLEN (pat, 0);
2754 int has_use_labelref = 0;
2756 for (i = len - 1; i >= 0; i--)
2757 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2758 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2759 == LABEL_REF))
2760 has_use_labelref = 1;
2762 if (! has_use_labelref)
2763 for (i = len - 1; i >= 0; i--)
2764 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2765 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2766 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2767 return 1;
2769 else if (GET_CODE (pat) == SET
2770 && SET_DEST (pat) == pc_rtx
2771 && computed_jump_p_1 (SET_SRC (pat)))
2772 return 1;
2774 return 0;
2777 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2778 calls. Processes the subexpressions of EXP and passes them to F. */
2779 static int
2780 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2782 int result, i, j;
2783 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2784 rtx *x;
2786 for (; format[n] != '\0'; n++)
2788 switch (format[n])
2790 case 'e':
2791 /* Call F on X. */
2792 x = &XEXP (exp, n);
2793 result = (*f) (x, data);
2794 if (result == -1)
2795 /* Do not traverse sub-expressions. */
2796 continue;
2797 else if (result != 0)
2798 /* Stop the traversal. */
2799 return result;
2801 if (*x == NULL_RTX)
2802 /* There are no sub-expressions. */
2803 continue;
2805 i = non_rtx_starting_operands[GET_CODE (*x)];
2806 if (i >= 0)
2808 result = for_each_rtx_1 (*x, i, f, data);
2809 if (result != 0)
2810 return result;
2812 break;
2814 case 'V':
2815 case 'E':
2816 if (XVEC (exp, n) == 0)
2817 continue;
2818 for (j = 0; j < XVECLEN (exp, n); ++j)
2820 /* Call F on X. */
2821 x = &XVECEXP (exp, n, j);
2822 result = (*f) (x, data);
2823 if (result == -1)
2824 /* Do not traverse sub-expressions. */
2825 continue;
2826 else if (result != 0)
2827 /* Stop the traversal. */
2828 return result;
2830 if (*x == NULL_RTX)
2831 /* There are no sub-expressions. */
2832 continue;
2834 i = non_rtx_starting_operands[GET_CODE (*x)];
2835 if (i >= 0)
2837 result = for_each_rtx_1 (*x, i, f, data);
2838 if (result != 0)
2839 return result;
2842 break;
2844 default:
2845 /* Nothing to do. */
2846 break;
2850 return 0;
2853 /* Traverse X via depth-first search, calling F for each
2854 sub-expression (including X itself). F is also passed the DATA.
2855 If F returns -1, do not traverse sub-expressions, but continue
2856 traversing the rest of the tree. If F ever returns any other
2857 nonzero value, stop the traversal, and return the value returned
2858 by F. Otherwise, return 0. This function does not traverse inside
2859 tree structure that contains RTX_EXPRs, or into sub-expressions
2860 whose format code is `0' since it is not known whether or not those
2861 codes are actually RTL.
2863 This routine is very general, and could (should?) be used to
2864 implement many of the other routines in this file. */
2867 for_each_rtx (rtx *x, rtx_function f, void *data)
2869 int result;
2870 int i;
2872 /* Call F on X. */
2873 result = (*f) (x, data);
2874 if (result == -1)
2875 /* Do not traverse sub-expressions. */
2876 return 0;
2877 else if (result != 0)
2878 /* Stop the traversal. */
2879 return result;
2881 if (*x == NULL_RTX)
2882 /* There are no sub-expressions. */
2883 return 0;
2885 i = non_rtx_starting_operands[GET_CODE (*x)];
2886 if (i < 0)
2887 return 0;
2889 return for_each_rtx_1 (*x, i, f, data);
2894 /* Data structure that holds the internal state communicated between
2895 for_each_inc_dec, for_each_inc_dec_find_mem and
2896 for_each_inc_dec_find_inc_dec. */
2898 struct for_each_inc_dec_ops {
2899 /* The function to be called for each autoinc operation found. */
2900 for_each_inc_dec_fn fn;
2901 /* The opaque argument to be passed to it. */
2902 void *arg;
2903 /* The MEM we're visiting, if any. */
2904 rtx mem;
2907 static int for_each_inc_dec_find_mem (rtx *r, void *d);
2909 /* Find PRE/POST-INC/DEC/MODIFY operations within *R, extract the
2910 operands of the equivalent add insn and pass the result to the
2911 operator specified by *D. */
2913 static int
2914 for_each_inc_dec_find_inc_dec (rtx *r, void *d)
2916 rtx x = *r;
2917 struct for_each_inc_dec_ops *data = (struct for_each_inc_dec_ops *)d;
2919 switch (GET_CODE (x))
2921 case PRE_INC:
2922 case POST_INC:
2924 int size = GET_MODE_SIZE (GET_MODE (data->mem));
2925 rtx r1 = XEXP (x, 0);
2926 rtx c = gen_int_mode (size, GET_MODE (r1));
2927 return data->fn (data->mem, x, r1, r1, c, data->arg);
2930 case PRE_DEC:
2931 case POST_DEC:
2933 int size = GET_MODE_SIZE (GET_MODE (data->mem));
2934 rtx r1 = XEXP (x, 0);
2935 rtx c = gen_int_mode (-size, GET_MODE (r1));
2936 return data->fn (data->mem, x, r1, r1, c, data->arg);
2939 case PRE_MODIFY:
2940 case POST_MODIFY:
2942 rtx r1 = XEXP (x, 0);
2943 rtx add = XEXP (x, 1);
2944 return data->fn (data->mem, x, r1, add, NULL, data->arg);
2947 case MEM:
2949 rtx save = data->mem;
2950 int ret = for_each_inc_dec_find_mem (r, d);
2951 data->mem = save;
2952 return ret;
2955 default:
2956 return 0;
2960 /* If *R is a MEM, find PRE/POST-INC/DEC/MODIFY operations within its
2961 address, extract the operands of the equivalent add insn and pass
2962 the result to the operator specified by *D. */
2964 static int
2965 for_each_inc_dec_find_mem (rtx *r, void *d)
2967 rtx x = *r;
2968 if (x != NULL_RTX && MEM_P (x))
2970 struct for_each_inc_dec_ops *data = (struct for_each_inc_dec_ops *) d;
2971 int result;
2973 data->mem = x;
2975 result = for_each_rtx (&XEXP (x, 0), for_each_inc_dec_find_inc_dec,
2976 data);
2977 if (result)
2978 return result;
2980 return -1;
2982 return 0;
2985 /* Traverse *X looking for MEMs, and for autoinc operations within
2986 them. For each such autoinc operation found, call FN, passing it
2987 the innermost enclosing MEM, the operation itself, the RTX modified
2988 by the operation, two RTXs (the second may be NULL) that, once
2989 added, represent the value to be held by the modified RTX
2990 afterwards, and ARG. FN is to return -1 to skip looking for other
2991 autoinc operations within the visited operation, 0 to continue the
2992 traversal, or any other value to have it returned to the caller of
2993 for_each_inc_dec. */
2996 for_each_inc_dec (rtx *x,
2997 for_each_inc_dec_fn fn,
2998 void *arg)
3000 struct for_each_inc_dec_ops data;
3002 data.fn = fn;
3003 data.arg = arg;
3004 data.mem = NULL;
3006 return for_each_rtx (x, for_each_inc_dec_find_mem, &data);
3010 /* Searches X for any reference to REGNO, returning the rtx of the
3011 reference found if any. Otherwise, returns NULL_RTX. */
3014 regno_use_in (unsigned int regno, rtx x)
3016 const char *fmt;
3017 int i, j;
3018 rtx tem;
3020 if (REG_P (x) && REGNO (x) == regno)
3021 return x;
3023 fmt = GET_RTX_FORMAT (GET_CODE (x));
3024 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3026 if (fmt[i] == 'e')
3028 if ((tem = regno_use_in (regno, XEXP (x, i))))
3029 return tem;
3031 else if (fmt[i] == 'E')
3032 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3033 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3034 return tem;
3037 return NULL_RTX;
3040 /* Return a value indicating whether OP, an operand of a commutative
3041 operation, is preferred as the first or second operand. The higher
3042 the value, the stronger the preference for being the first operand.
3043 We use negative values to indicate a preference for the first operand
3044 and positive values for the second operand. */
3047 commutative_operand_precedence (rtx op)
3049 enum rtx_code code = GET_CODE (op);
3051 /* Constants always come the second operand. Prefer "nice" constants. */
3052 if (code == CONST_INT)
3053 return -8;
3054 if (code == CONST_DOUBLE)
3055 return -7;
3056 if (code == CONST_FIXED)
3057 return -7;
3058 op = avoid_constant_pool_reference (op);
3059 code = GET_CODE (op);
3061 switch (GET_RTX_CLASS (code))
3063 case RTX_CONST_OBJ:
3064 if (code == CONST_INT)
3065 return -6;
3066 if (code == CONST_DOUBLE)
3067 return -5;
3068 if (code == CONST_FIXED)
3069 return -5;
3070 return -4;
3072 case RTX_EXTRA:
3073 /* SUBREGs of objects should come second. */
3074 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3075 return -3;
3076 return 0;
3078 case RTX_OBJ:
3079 /* Complex expressions should be the first, so decrease priority
3080 of objects. Prefer pointer objects over non pointer objects. */
3081 if ((REG_P (op) && REG_POINTER (op))
3082 || (MEM_P (op) && MEM_POINTER (op)))
3083 return -1;
3084 return -2;
3086 case RTX_COMM_ARITH:
3087 /* Prefer operands that are themselves commutative to be first.
3088 This helps to make things linear. In particular,
3089 (and (and (reg) (reg)) (not (reg))) is canonical. */
3090 return 4;
3092 case RTX_BIN_ARITH:
3093 /* If only one operand is a binary expression, it will be the first
3094 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3095 is canonical, although it will usually be further simplified. */
3096 return 2;
3098 case RTX_UNARY:
3099 /* Then prefer NEG and NOT. */
3100 if (code == NEG || code == NOT)
3101 return 1;
3103 default:
3104 return 0;
3108 /* Return 1 iff it is necessary to swap operands of commutative operation
3109 in order to canonicalize expression. */
3111 bool
3112 swap_commutative_operands_p (rtx x, rtx y)
3114 return (commutative_operand_precedence (x)
3115 < commutative_operand_precedence (y));
3118 /* Return 1 if X is an autoincrement side effect and the register is
3119 not the stack pointer. */
3121 auto_inc_p (const_rtx x)
3123 switch (GET_CODE (x))
3125 case PRE_INC:
3126 case POST_INC:
3127 case PRE_DEC:
3128 case POST_DEC:
3129 case PRE_MODIFY:
3130 case POST_MODIFY:
3131 /* There are no REG_INC notes for SP. */
3132 if (XEXP (x, 0) != stack_pointer_rtx)
3133 return 1;
3134 default:
3135 break;
3137 return 0;
3140 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3142 loc_mentioned_in_p (rtx *loc, const_rtx in)
3144 enum rtx_code code;
3145 const char *fmt;
3146 int i, j;
3148 if (!in)
3149 return 0;
3151 code = GET_CODE (in);
3152 fmt = GET_RTX_FORMAT (code);
3153 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3155 if (fmt[i] == 'e')
3157 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3158 return 1;
3160 else if (fmt[i] == 'E')
3161 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3162 if (loc == &XVECEXP (in, i, j)
3163 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3164 return 1;
3166 return 0;
3169 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3170 and SUBREG_BYTE, return the bit offset where the subreg begins
3171 (counting from the least significant bit of the operand). */
3173 unsigned int
3174 subreg_lsb_1 (enum machine_mode outer_mode,
3175 enum machine_mode inner_mode,
3176 unsigned int subreg_byte)
3178 unsigned int bitpos;
3179 unsigned int byte;
3180 unsigned int word;
3182 /* A paradoxical subreg begins at bit position 0. */
3183 if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
3184 return 0;
3186 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3187 /* If the subreg crosses a word boundary ensure that
3188 it also begins and ends on a word boundary. */
3189 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3190 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3191 && (subreg_byte % UNITS_PER_WORD
3192 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3194 if (WORDS_BIG_ENDIAN)
3195 word = (GET_MODE_SIZE (inner_mode)
3196 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3197 else
3198 word = subreg_byte / UNITS_PER_WORD;
3199 bitpos = word * BITS_PER_WORD;
3201 if (BYTES_BIG_ENDIAN)
3202 byte = (GET_MODE_SIZE (inner_mode)
3203 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3204 else
3205 byte = subreg_byte % UNITS_PER_WORD;
3206 bitpos += byte * BITS_PER_UNIT;
3208 return bitpos;
3211 /* Given a subreg X, return the bit offset where the subreg begins
3212 (counting from the least significant bit of the reg). */
3214 unsigned int
3215 subreg_lsb (const_rtx x)
3217 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3218 SUBREG_BYTE (x));
3221 /* Fill in information about a subreg of a hard register.
3222 xregno - A regno of an inner hard subreg_reg (or what will become one).
3223 xmode - The mode of xregno.
3224 offset - The byte offset.
3225 ymode - The mode of a top level SUBREG (or what may become one).
3226 info - Pointer to structure to fill in. */
3227 void
3228 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3229 unsigned int offset, enum machine_mode ymode,
3230 struct subreg_info *info)
3232 int nregs_xmode, nregs_ymode;
3233 int mode_multiple, nregs_multiple;
3234 int offset_adj, y_offset, y_offset_adj;
3235 int regsize_xmode, regsize_ymode;
3236 bool rknown;
3238 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3240 rknown = false;
3242 /* If there are holes in a non-scalar mode in registers, we expect
3243 that it is made up of its units concatenated together. */
3244 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3246 enum machine_mode xmode_unit;
3248 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3249 if (GET_MODE_INNER (xmode) == VOIDmode)
3250 xmode_unit = xmode;
3251 else
3252 xmode_unit = GET_MODE_INNER (xmode);
3253 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3254 gcc_assert (nregs_xmode
3255 == (GET_MODE_NUNITS (xmode)
3256 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3257 gcc_assert (hard_regno_nregs[xregno][xmode]
3258 == (hard_regno_nregs[xregno][xmode_unit]
3259 * GET_MODE_NUNITS (xmode)));
3261 /* You can only ask for a SUBREG of a value with holes in the middle
3262 if you don't cross the holes. (Such a SUBREG should be done by
3263 picking a different register class, or doing it in memory if
3264 necessary.) An example of a value with holes is XCmode on 32-bit
3265 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3266 3 for each part, but in memory it's two 128-bit parts.
3267 Padding is assumed to be at the end (not necessarily the 'high part')
3268 of each unit. */
3269 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3270 < GET_MODE_NUNITS (xmode))
3271 && (offset / GET_MODE_SIZE (xmode_unit)
3272 != ((offset + GET_MODE_SIZE (ymode) - 1)
3273 / GET_MODE_SIZE (xmode_unit))))
3275 info->representable_p = false;
3276 rknown = true;
3279 else
3280 nregs_xmode = hard_regno_nregs[xregno][xmode];
3282 nregs_ymode = hard_regno_nregs[xregno][ymode];
3284 /* Paradoxical subregs are otherwise valid. */
3285 if (!rknown
3286 && offset == 0
3287 && GET_MODE_PRECISION (ymode) > GET_MODE_PRECISION (xmode))
3289 info->representable_p = true;
3290 /* If this is a big endian paradoxical subreg, which uses more
3291 actual hard registers than the original register, we must
3292 return a negative offset so that we find the proper highpart
3293 of the register. */
3294 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3295 ? REG_WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3296 info->offset = nregs_xmode - nregs_ymode;
3297 else
3298 info->offset = 0;
3299 info->nregs = nregs_ymode;
3300 return;
3303 /* If registers store different numbers of bits in the different
3304 modes, we cannot generally form this subreg. */
3305 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3306 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3307 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3308 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3310 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3311 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3312 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3314 info->representable_p = false;
3315 info->nregs
3316 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3317 info->offset = offset / regsize_xmode;
3318 return;
3320 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3322 info->representable_p = false;
3323 info->nregs
3324 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3325 info->offset = offset / regsize_xmode;
3326 return;
3330 /* Lowpart subregs are otherwise valid. */
3331 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3333 info->representable_p = true;
3334 rknown = true;
3336 if (offset == 0 || nregs_xmode == nregs_ymode)
3338 info->offset = 0;
3339 info->nregs = nregs_ymode;
3340 return;
3344 /* This should always pass, otherwise we don't know how to verify
3345 the constraint. These conditions may be relaxed but
3346 subreg_regno_offset would need to be redesigned. */
3347 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3348 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3350 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN
3351 && GET_MODE_SIZE (xmode) > UNITS_PER_WORD)
3353 HOST_WIDE_INT xsize = GET_MODE_SIZE (xmode);
3354 HOST_WIDE_INT ysize = GET_MODE_SIZE (ymode);
3355 HOST_WIDE_INT off_low = offset & (ysize - 1);
3356 HOST_WIDE_INT off_high = offset & ~(ysize - 1);
3357 offset = (xsize - ysize - off_high) | off_low;
3359 /* The XMODE value can be seen as a vector of NREGS_XMODE
3360 values. The subreg must represent a lowpart of given field.
3361 Compute what field it is. */
3362 offset_adj = offset;
3363 offset_adj -= subreg_lowpart_offset (ymode,
3364 mode_for_size (GET_MODE_BITSIZE (xmode)
3365 / nregs_xmode,
3366 MODE_INT, 0));
3368 /* Size of ymode must not be greater than the size of xmode. */
3369 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3370 gcc_assert (mode_multiple != 0);
3372 y_offset = offset / GET_MODE_SIZE (ymode);
3373 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3374 nregs_multiple = nregs_xmode / nregs_ymode;
3376 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3377 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3379 if (!rknown)
3381 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3382 rknown = true;
3384 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3385 info->nregs = nregs_ymode;
3388 /* This function returns the regno offset of a subreg expression.
3389 xregno - A regno of an inner hard subreg_reg (or what will become one).
3390 xmode - The mode of xregno.
3391 offset - The byte offset.
3392 ymode - The mode of a top level SUBREG (or what may become one).
3393 RETURN - The regno offset which would be used. */
3394 unsigned int
3395 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3396 unsigned int offset, enum machine_mode ymode)
3398 struct subreg_info info;
3399 subreg_get_info (xregno, xmode, offset, ymode, &info);
3400 return info.offset;
3403 /* This function returns true when the offset is representable via
3404 subreg_offset in the given regno.
3405 xregno - A regno of an inner hard subreg_reg (or what will become one).
3406 xmode - The mode of xregno.
3407 offset - The byte offset.
3408 ymode - The mode of a top level SUBREG (or what may become one).
3409 RETURN - Whether the offset is representable. */
3410 bool
3411 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3412 unsigned int offset, enum machine_mode ymode)
3414 struct subreg_info info;
3415 subreg_get_info (xregno, xmode, offset, ymode, &info);
3416 return info.representable_p;
3419 /* Return the number of a YMODE register to which
3421 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3423 can be simplified. Return -1 if the subreg can't be simplified.
3425 XREGNO is a hard register number. */
3428 simplify_subreg_regno (unsigned int xregno, enum machine_mode xmode,
3429 unsigned int offset, enum machine_mode ymode)
3431 struct subreg_info info;
3432 unsigned int yregno;
3434 #ifdef CANNOT_CHANGE_MODE_CLASS
3435 /* Give the backend a chance to disallow the mode change. */
3436 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3437 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3438 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode))
3439 return -1;
3440 #endif
3442 /* We shouldn't simplify stack-related registers. */
3443 if ((!reload_completed || frame_pointer_needed)
3444 && xregno == FRAME_POINTER_REGNUM)
3445 return -1;
3447 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3448 && xregno == ARG_POINTER_REGNUM)
3449 return -1;
3451 if (xregno == STACK_POINTER_REGNUM)
3452 return -1;
3454 /* Try to get the register offset. */
3455 subreg_get_info (xregno, xmode, offset, ymode, &info);
3456 if (!info.representable_p)
3457 return -1;
3459 /* Make sure that the offsetted register value is in range. */
3460 yregno = xregno + info.offset;
3461 if (!HARD_REGISTER_NUM_P (yregno))
3462 return -1;
3464 /* See whether (reg:YMODE YREGNO) is valid.
3466 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3467 This is a kludge to work around how complex FP arguments are passed
3468 on IA-64 and should be fixed. See PR target/49226. */
3469 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3470 && HARD_REGNO_MODE_OK (xregno, xmode))
3471 return -1;
3473 return (int) yregno;
3476 /* Return the final regno that a subreg expression refers to. */
3477 unsigned int
3478 subreg_regno (const_rtx x)
3480 unsigned int ret;
3481 rtx subreg = SUBREG_REG (x);
3482 int regno = REGNO (subreg);
3484 ret = regno + subreg_regno_offset (regno,
3485 GET_MODE (subreg),
3486 SUBREG_BYTE (x),
3487 GET_MODE (x));
3488 return ret;
3492 /* Return the number of registers that a subreg expression refers
3493 to. */
3494 unsigned int
3495 subreg_nregs (const_rtx x)
3497 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3500 /* Return the number of registers that a subreg REG with REGNO
3501 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3502 changed so that the regno can be passed in. */
3504 unsigned int
3505 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3507 struct subreg_info info;
3508 rtx subreg = SUBREG_REG (x);
3510 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3511 &info);
3512 return info.nregs;
3516 struct parms_set_data
3518 int nregs;
3519 HARD_REG_SET regs;
3522 /* Helper function for noticing stores to parameter registers. */
3523 static void
3524 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3526 struct parms_set_data *const d = (struct parms_set_data *) data;
3527 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3528 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3530 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3531 d->nregs--;
3535 /* Look backward for first parameter to be loaded.
3536 Note that loads of all parameters will not necessarily be
3537 found if CSE has eliminated some of them (e.g., an argument
3538 to the outer function is passed down as a parameter).
3539 Do not skip BOUNDARY. */
3541 find_first_parameter_load (rtx call_insn, rtx boundary)
3543 struct parms_set_data parm;
3544 rtx p, before, first_set;
3546 /* Since different machines initialize their parameter registers
3547 in different orders, assume nothing. Collect the set of all
3548 parameter registers. */
3549 CLEAR_HARD_REG_SET (parm.regs);
3550 parm.nregs = 0;
3551 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3552 if (GET_CODE (XEXP (p, 0)) == USE
3553 && REG_P (XEXP (XEXP (p, 0), 0)))
3555 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3557 /* We only care about registers which can hold function
3558 arguments. */
3559 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3560 continue;
3562 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3563 parm.nregs++;
3565 before = call_insn;
3566 first_set = call_insn;
3568 /* Search backward for the first set of a register in this set. */
3569 while (parm.nregs && before != boundary)
3571 before = PREV_INSN (before);
3573 /* It is possible that some loads got CSEed from one call to
3574 another. Stop in that case. */
3575 if (CALL_P (before))
3576 break;
3578 /* Our caller needs either ensure that we will find all sets
3579 (in case code has not been optimized yet), or take care
3580 for possible labels in a way by setting boundary to preceding
3581 CODE_LABEL. */
3582 if (LABEL_P (before))
3584 gcc_assert (before == boundary);
3585 break;
3588 if (INSN_P (before))
3590 int nregs_old = parm.nregs;
3591 note_stores (PATTERN (before), parms_set, &parm);
3592 /* If we found something that did not set a parameter reg,
3593 we're done. Do not keep going, as that might result
3594 in hoisting an insn before the setting of a pseudo
3595 that is used by the hoisted insn. */
3596 if (nregs_old != parm.nregs)
3597 first_set = before;
3598 else
3599 break;
3602 return first_set;
3605 /* Return true if we should avoid inserting code between INSN and preceding
3606 call instruction. */
3608 bool
3609 keep_with_call_p (const_rtx insn)
3611 rtx set;
3613 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3615 if (REG_P (SET_DEST (set))
3616 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3617 && fixed_regs[REGNO (SET_DEST (set))]
3618 && general_operand (SET_SRC (set), VOIDmode))
3619 return true;
3620 if (REG_P (SET_SRC (set))
3621 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
3622 && REG_P (SET_DEST (set))
3623 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3624 return true;
3625 /* There may be a stack pop just after the call and before the store
3626 of the return register. Search for the actual store when deciding
3627 if we can break or not. */
3628 if (SET_DEST (set) == stack_pointer_rtx)
3630 /* This CONST_CAST is okay because next_nonnote_insn just
3631 returns its argument and we assign it to a const_rtx
3632 variable. */
3633 const_rtx i2 = next_nonnote_insn (CONST_CAST_RTX(insn));
3634 if (i2 && keep_with_call_p (i2))
3635 return true;
3638 return false;
3641 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3642 to non-complex jumps. That is, direct unconditional, conditional,
3643 and tablejumps, but not computed jumps or returns. It also does
3644 not apply to the fallthru case of a conditional jump. */
3646 bool
3647 label_is_jump_target_p (const_rtx label, const_rtx jump_insn)
3649 rtx tmp = JUMP_LABEL (jump_insn);
3651 if (label == tmp)
3652 return true;
3654 if (tablejump_p (jump_insn, NULL, &tmp))
3656 rtvec vec = XVEC (PATTERN (tmp),
3657 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3658 int i, veclen = GET_NUM_ELEM (vec);
3660 for (i = 0; i < veclen; ++i)
3661 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3662 return true;
3665 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3666 return true;
3668 return false;
3672 /* Return an estimate of the cost of computing rtx X.
3673 One use is in cse, to decide which expression to keep in the hash table.
3674 Another is in rtl generation, to pick the cheapest way to multiply.
3675 Other uses like the latter are expected in the future.
3677 X appears as operand OPNO in an expression with code OUTER_CODE.
3678 SPEED specifies whether costs optimized for speed or size should
3679 be returned. */
3682 rtx_cost (rtx x, enum rtx_code outer_code, int opno, bool speed)
3684 int i, j;
3685 enum rtx_code code;
3686 const char *fmt;
3687 int total;
3689 if (x == 0)
3690 return 0;
3692 /* Compute the default costs of certain things.
3693 Note that targetm.rtx_costs can override the defaults. */
3695 code = GET_CODE (x);
3696 switch (code)
3698 case MULT:
3699 total = COSTS_N_INSNS (5);
3700 break;
3701 case DIV:
3702 case UDIV:
3703 case MOD:
3704 case UMOD:
3705 total = COSTS_N_INSNS (7);
3706 break;
3707 case USE:
3708 /* Used in combine.c as a marker. */
3709 total = 0;
3710 break;
3711 default:
3712 total = COSTS_N_INSNS (1);
3715 switch (code)
3717 case REG:
3718 return 0;
3720 case SUBREG:
3721 total = 0;
3722 /* If we can't tie these modes, make this expensive. The larger
3723 the mode, the more expensive it is. */
3724 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3725 return COSTS_N_INSNS (2
3726 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3727 break;
3729 default:
3730 if (targetm.rtx_costs (x, code, outer_code, opno, &total, speed))
3731 return total;
3732 break;
3735 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3736 which is already in total. */
3738 fmt = GET_RTX_FORMAT (code);
3739 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3740 if (fmt[i] == 'e')
3741 total += rtx_cost (XEXP (x, i), code, i, speed);
3742 else if (fmt[i] == 'E')
3743 for (j = 0; j < XVECLEN (x, i); j++)
3744 total += rtx_cost (XVECEXP (x, i, j), code, i, speed);
3746 return total;
3749 /* Fill in the structure C with information about both speed and size rtx
3750 costs for X, which is operand OPNO in an expression with code OUTER. */
3752 void
3753 get_full_rtx_cost (rtx x, enum rtx_code outer, int opno,
3754 struct full_rtx_costs *c)
3756 c->speed = rtx_cost (x, outer, opno, true);
3757 c->size = rtx_cost (x, outer, opno, false);
3761 /* Return cost of address expression X.
3762 Expect that X is properly formed address reference.
3764 SPEED parameter specify whether costs optimized for speed or size should
3765 be returned. */
3768 address_cost (rtx x, enum machine_mode mode, addr_space_t as, bool speed)
3770 /* We may be asked for cost of various unusual addresses, such as operands
3771 of push instruction. It is not worthwhile to complicate writing
3772 of the target hook by such cases. */
3774 if (!memory_address_addr_space_p (mode, x, as))
3775 return 1000;
3777 return targetm.address_cost (x, speed);
3780 /* If the target doesn't override, compute the cost as with arithmetic. */
3783 default_address_cost (rtx x, bool speed)
3785 return rtx_cost (x, MEM, 0, speed);
3789 unsigned HOST_WIDE_INT
3790 nonzero_bits (const_rtx x, enum machine_mode mode)
3792 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3795 unsigned int
3796 num_sign_bit_copies (const_rtx x, enum machine_mode mode)
3798 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3801 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3802 It avoids exponential behavior in nonzero_bits1 when X has
3803 identical subexpressions on the first or the second level. */
3805 static unsigned HOST_WIDE_INT
3806 cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
3807 enum machine_mode known_mode,
3808 unsigned HOST_WIDE_INT known_ret)
3810 if (x == known_x && mode == known_mode)
3811 return known_ret;
3813 /* Try to find identical subexpressions. If found call
3814 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3815 precomputed value for the subexpression as KNOWN_RET. */
3817 if (ARITHMETIC_P (x))
3819 rtx x0 = XEXP (x, 0);
3820 rtx x1 = XEXP (x, 1);
3822 /* Check the first level. */
3823 if (x0 == x1)
3824 return nonzero_bits1 (x, mode, x0, mode,
3825 cached_nonzero_bits (x0, mode, known_x,
3826 known_mode, known_ret));
3828 /* Check the second level. */
3829 if (ARITHMETIC_P (x0)
3830 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3831 return nonzero_bits1 (x, mode, x1, mode,
3832 cached_nonzero_bits (x1, mode, known_x,
3833 known_mode, known_ret));
3835 if (ARITHMETIC_P (x1)
3836 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3837 return nonzero_bits1 (x, mode, x0, mode,
3838 cached_nonzero_bits (x0, mode, known_x,
3839 known_mode, known_ret));
3842 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3845 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3846 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3847 is less useful. We can't allow both, because that results in exponential
3848 run time recursion. There is a nullstone testcase that triggered
3849 this. This macro avoids accidental uses of num_sign_bit_copies. */
3850 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3852 /* Given an expression, X, compute which bits in X can be nonzero.
3853 We don't care about bits outside of those defined in MODE.
3855 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3856 an arithmetic operation, we can do better. */
3858 static unsigned HOST_WIDE_INT
3859 nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
3860 enum machine_mode known_mode,
3861 unsigned HOST_WIDE_INT known_ret)
3863 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3864 unsigned HOST_WIDE_INT inner_nz;
3865 enum rtx_code code;
3866 enum machine_mode inner_mode;
3867 unsigned int mode_width = GET_MODE_PRECISION (mode);
3869 /* For floating-point and vector values, assume all bits are needed. */
3870 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
3871 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
3872 return nonzero;
3874 /* If X is wider than MODE, use its mode instead. */
3875 if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
3877 mode = GET_MODE (x);
3878 nonzero = GET_MODE_MASK (mode);
3879 mode_width = GET_MODE_PRECISION (mode);
3882 if (mode_width > HOST_BITS_PER_WIDE_INT)
3883 /* Our only callers in this case look for single bit values. So
3884 just return the mode mask. Those tests will then be false. */
3885 return nonzero;
3887 #ifndef WORD_REGISTER_OPERATIONS
3888 /* If MODE is wider than X, but both are a single word for both the host
3889 and target machines, we can compute this from which bits of the
3890 object might be nonzero in its own mode, taking into account the fact
3891 that on many CISC machines, accessing an object in a wider mode
3892 causes the high-order bits to become undefined. So they are
3893 not known to be zero. */
3895 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3896 && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
3897 && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3898 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
3900 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3901 known_x, known_mode, known_ret);
3902 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3903 return nonzero;
3905 #endif
3907 code = GET_CODE (x);
3908 switch (code)
3910 case REG:
3911 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3912 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3913 all the bits above ptr_mode are known to be zero. */
3914 /* As we do not know which address space the pointer is refering to,
3915 we can do this only if the target does not support different pointer
3916 or address modes depending on the address space. */
3917 if (target_default_pointer_address_modes_p ()
3918 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3919 && REG_POINTER (x))
3920 nonzero &= GET_MODE_MASK (ptr_mode);
3921 #endif
3923 /* Include declared information about alignment of pointers. */
3924 /* ??? We don't properly preserve REG_POINTER changes across
3925 pointer-to-integer casts, so we can't trust it except for
3926 things that we know must be pointers. See execute/960116-1.c. */
3927 if ((x == stack_pointer_rtx
3928 || x == frame_pointer_rtx
3929 || x == arg_pointer_rtx)
3930 && REGNO_POINTER_ALIGN (REGNO (x)))
3932 unsigned HOST_WIDE_INT alignment
3933 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3935 #ifdef PUSH_ROUNDING
3936 /* If PUSH_ROUNDING is defined, it is possible for the
3937 stack to be momentarily aligned only to that amount,
3938 so we pick the least alignment. */
3939 if (x == stack_pointer_rtx && PUSH_ARGS)
3940 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3941 alignment);
3942 #endif
3944 nonzero &= ~(alignment - 1);
3948 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3949 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3950 known_mode, known_ret,
3951 &nonzero_for_hook);
3953 if (new_rtx)
3954 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
3955 known_mode, known_ret);
3957 return nonzero_for_hook;
3960 case CONST_INT:
3961 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3962 /* If X is negative in MODE, sign-extend the value. */
3963 if (INTVAL (x) > 0
3964 && mode_width < BITS_PER_WORD
3965 && (UINTVAL (x) & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
3966 != 0)
3967 return UINTVAL (x) | ((unsigned HOST_WIDE_INT) (-1) << mode_width);
3968 #endif
3970 return UINTVAL (x);
3972 case MEM:
3973 #ifdef LOAD_EXTEND_OP
3974 /* In many, if not most, RISC machines, reading a byte from memory
3975 zeros the rest of the register. Noticing that fact saves a lot
3976 of extra zero-extends. */
3977 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3978 nonzero &= GET_MODE_MASK (GET_MODE (x));
3979 #endif
3980 break;
3982 case EQ: case NE:
3983 case UNEQ: case LTGT:
3984 case GT: case GTU: case UNGT:
3985 case LT: case LTU: case UNLT:
3986 case GE: case GEU: case UNGE:
3987 case LE: case LEU: case UNLE:
3988 case UNORDERED: case ORDERED:
3989 /* If this produces an integer result, we know which bits are set.
3990 Code here used to clear bits outside the mode of X, but that is
3991 now done above. */
3992 /* Mind that MODE is the mode the caller wants to look at this
3993 operation in, and not the actual operation mode. We can wind
3994 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3995 that describes the results of a vector compare. */
3996 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
3997 && mode_width <= HOST_BITS_PER_WIDE_INT)
3998 nonzero = STORE_FLAG_VALUE;
3999 break;
4001 case NEG:
4002 #if 0
4003 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4004 and num_sign_bit_copies. */
4005 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4006 == GET_MODE_PRECISION (GET_MODE (x)))
4007 nonzero = 1;
4008 #endif
4010 if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
4011 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4012 break;
4014 case ABS:
4015 #if 0
4016 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4017 and num_sign_bit_copies. */
4018 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4019 == GET_MODE_PRECISION (GET_MODE (x)))
4020 nonzero = 1;
4021 #endif
4022 break;
4024 case TRUNCATE:
4025 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4026 known_x, known_mode, known_ret)
4027 & GET_MODE_MASK (mode));
4028 break;
4030 case ZERO_EXTEND:
4031 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4032 known_x, known_mode, known_ret);
4033 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4034 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4035 break;
4037 case SIGN_EXTEND:
4038 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4039 Otherwise, show all the bits in the outer mode but not the inner
4040 may be nonzero. */
4041 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4042 known_x, known_mode, known_ret);
4043 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4045 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4046 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4047 inner_nz |= (GET_MODE_MASK (mode)
4048 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4051 nonzero &= inner_nz;
4052 break;
4054 case AND:
4055 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4056 known_x, known_mode, known_ret)
4057 & cached_nonzero_bits (XEXP (x, 1), mode,
4058 known_x, known_mode, known_ret);
4059 break;
4061 case XOR: case IOR:
4062 case UMIN: case UMAX: case SMIN: case SMAX:
4064 unsigned HOST_WIDE_INT nonzero0
4065 = cached_nonzero_bits (XEXP (x, 0), mode,
4066 known_x, known_mode, known_ret);
4068 /* Don't call nonzero_bits for the second time if it cannot change
4069 anything. */
4070 if ((nonzero & nonzero0) != nonzero)
4071 nonzero &= nonzero0
4072 | cached_nonzero_bits (XEXP (x, 1), mode,
4073 known_x, known_mode, known_ret);
4075 break;
4077 case PLUS: case MINUS:
4078 case MULT:
4079 case DIV: case UDIV:
4080 case MOD: case UMOD:
4081 /* We can apply the rules of arithmetic to compute the number of
4082 high- and low-order zero bits of these operations. We start by
4083 computing the width (position of the highest-order nonzero bit)
4084 and the number of low-order zero bits for each value. */
4086 unsigned HOST_WIDE_INT nz0
4087 = cached_nonzero_bits (XEXP (x, 0), mode,
4088 known_x, known_mode, known_ret);
4089 unsigned HOST_WIDE_INT nz1
4090 = cached_nonzero_bits (XEXP (x, 1), mode,
4091 known_x, known_mode, known_ret);
4092 int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
4093 int width0 = floor_log2 (nz0) + 1;
4094 int width1 = floor_log2 (nz1) + 1;
4095 int low0 = floor_log2 (nz0 & -nz0);
4096 int low1 = floor_log2 (nz1 & -nz1);
4097 unsigned HOST_WIDE_INT op0_maybe_minusp
4098 = nz0 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4099 unsigned HOST_WIDE_INT op1_maybe_minusp
4100 = nz1 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4101 unsigned int result_width = mode_width;
4102 int result_low = 0;
4104 switch (code)
4106 case PLUS:
4107 result_width = MAX (width0, width1) + 1;
4108 result_low = MIN (low0, low1);
4109 break;
4110 case MINUS:
4111 result_low = MIN (low0, low1);
4112 break;
4113 case MULT:
4114 result_width = width0 + width1;
4115 result_low = low0 + low1;
4116 break;
4117 case DIV:
4118 if (width1 == 0)
4119 break;
4120 if (!op0_maybe_minusp && !op1_maybe_minusp)
4121 result_width = width0;
4122 break;
4123 case UDIV:
4124 if (width1 == 0)
4125 break;
4126 result_width = width0;
4127 break;
4128 case MOD:
4129 if (width1 == 0)
4130 break;
4131 if (!op0_maybe_minusp && !op1_maybe_minusp)
4132 result_width = MIN (width0, width1);
4133 result_low = MIN (low0, low1);
4134 break;
4135 case UMOD:
4136 if (width1 == 0)
4137 break;
4138 result_width = MIN (width0, width1);
4139 result_low = MIN (low0, low1);
4140 break;
4141 default:
4142 gcc_unreachable ();
4145 if (result_width < mode_width)
4146 nonzero &= ((unsigned HOST_WIDE_INT) 1 << result_width) - 1;
4148 if (result_low > 0)
4149 nonzero &= ~(((unsigned HOST_WIDE_INT) 1 << result_low) - 1);
4151 break;
4153 case ZERO_EXTRACT:
4154 if (CONST_INT_P (XEXP (x, 1))
4155 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4156 nonzero &= ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4157 break;
4159 case SUBREG:
4160 /* If this is a SUBREG formed for a promoted variable that has
4161 been zero-extended, we know that at least the high-order bits
4162 are zero, though others might be too. */
4164 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
4165 nonzero = GET_MODE_MASK (GET_MODE (x))
4166 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4167 known_x, known_mode, known_ret);
4169 inner_mode = GET_MODE (SUBREG_REG (x));
4170 /* If the inner mode is a single word for both the host and target
4171 machines, we can compute this from which bits of the inner
4172 object might be nonzero. */
4173 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4174 && (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT))
4176 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4177 known_x, known_mode, known_ret);
4179 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4180 /* If this is a typical RISC machine, we only have to worry
4181 about the way loads are extended. */
4182 if ((LOAD_EXTEND_OP (inner_mode) == SIGN_EXTEND
4183 ? val_signbit_known_set_p (inner_mode, nonzero)
4184 : LOAD_EXTEND_OP (inner_mode) != ZERO_EXTEND)
4185 || !MEM_P (SUBREG_REG (x)))
4186 #endif
4188 /* On many CISC machines, accessing an object in a wider mode
4189 causes the high-order bits to become undefined. So they are
4190 not known to be zero. */
4191 if (GET_MODE_PRECISION (GET_MODE (x))
4192 > GET_MODE_PRECISION (inner_mode))
4193 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4194 & ~GET_MODE_MASK (inner_mode));
4197 break;
4199 case ASHIFTRT:
4200 case LSHIFTRT:
4201 case ASHIFT:
4202 case ROTATE:
4203 /* The nonzero bits are in two classes: any bits within MODE
4204 that aren't in GET_MODE (x) are always significant. The rest of the
4205 nonzero bits are those that are significant in the operand of
4206 the shift when shifted the appropriate number of bits. This
4207 shows that high-order bits are cleared by the right shift and
4208 low-order bits by left shifts. */
4209 if (CONST_INT_P (XEXP (x, 1))
4210 && INTVAL (XEXP (x, 1)) >= 0
4211 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4212 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4214 enum machine_mode inner_mode = GET_MODE (x);
4215 unsigned int width = GET_MODE_PRECISION (inner_mode);
4216 int count = INTVAL (XEXP (x, 1));
4217 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4218 unsigned HOST_WIDE_INT op_nonzero
4219 = cached_nonzero_bits (XEXP (x, 0), mode,
4220 known_x, known_mode, known_ret);
4221 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4222 unsigned HOST_WIDE_INT outer = 0;
4224 if (mode_width > width)
4225 outer = (op_nonzero & nonzero & ~mode_mask);
4227 if (code == LSHIFTRT)
4228 inner >>= count;
4229 else if (code == ASHIFTRT)
4231 inner >>= count;
4233 /* If the sign bit may have been nonzero before the shift, we
4234 need to mark all the places it could have been copied to
4235 by the shift as possibly nonzero. */
4236 if (inner & ((unsigned HOST_WIDE_INT) 1 << (width - 1 - count)))
4237 inner |= (((unsigned HOST_WIDE_INT) 1 << count) - 1)
4238 << (width - count);
4240 else if (code == ASHIFT)
4241 inner <<= count;
4242 else
4243 inner = ((inner << (count % width)
4244 | (inner >> (width - (count % width)))) & mode_mask);
4246 nonzero &= (outer | inner);
4248 break;
4250 case FFS:
4251 case POPCOUNT:
4252 /* This is at most the number of bits in the mode. */
4253 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4254 break;
4256 case CLZ:
4257 /* If CLZ has a known value at zero, then the nonzero bits are
4258 that value, plus the number of bits in the mode minus one. */
4259 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4260 nonzero
4261 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4262 else
4263 nonzero = -1;
4264 break;
4266 case CTZ:
4267 /* If CTZ has a known value at zero, then the nonzero bits are
4268 that value, plus the number of bits in the mode minus one. */
4269 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4270 nonzero
4271 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4272 else
4273 nonzero = -1;
4274 break;
4276 case CLRSB:
4277 /* This is at most the number of bits in the mode minus 1. */
4278 nonzero = ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4279 break;
4281 case PARITY:
4282 nonzero = 1;
4283 break;
4285 case IF_THEN_ELSE:
4287 unsigned HOST_WIDE_INT nonzero_true
4288 = cached_nonzero_bits (XEXP (x, 1), mode,
4289 known_x, known_mode, known_ret);
4291 /* Don't call nonzero_bits for the second time if it cannot change
4292 anything. */
4293 if ((nonzero & nonzero_true) != nonzero)
4294 nonzero &= nonzero_true
4295 | cached_nonzero_bits (XEXP (x, 2), mode,
4296 known_x, known_mode, known_ret);
4298 break;
4300 default:
4301 break;
4304 return nonzero;
4307 /* See the macro definition above. */
4308 #undef cached_num_sign_bit_copies
4311 /* The function cached_num_sign_bit_copies is a wrapper around
4312 num_sign_bit_copies1. It avoids exponential behavior in
4313 num_sign_bit_copies1 when X has identical subexpressions on the
4314 first or the second level. */
4316 static unsigned int
4317 cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
4318 enum machine_mode known_mode,
4319 unsigned int known_ret)
4321 if (x == known_x && mode == known_mode)
4322 return known_ret;
4324 /* Try to find identical subexpressions. If found call
4325 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4326 the precomputed value for the subexpression as KNOWN_RET. */
4328 if (ARITHMETIC_P (x))
4330 rtx x0 = XEXP (x, 0);
4331 rtx x1 = XEXP (x, 1);
4333 /* Check the first level. */
4334 if (x0 == x1)
4335 return
4336 num_sign_bit_copies1 (x, mode, x0, mode,
4337 cached_num_sign_bit_copies (x0, mode, known_x,
4338 known_mode,
4339 known_ret));
4341 /* Check the second level. */
4342 if (ARITHMETIC_P (x0)
4343 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4344 return
4345 num_sign_bit_copies1 (x, mode, x1, mode,
4346 cached_num_sign_bit_copies (x1, mode, known_x,
4347 known_mode,
4348 known_ret));
4350 if (ARITHMETIC_P (x1)
4351 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4352 return
4353 num_sign_bit_copies1 (x, mode, x0, mode,
4354 cached_num_sign_bit_copies (x0, mode, known_x,
4355 known_mode,
4356 known_ret));
4359 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4362 /* Return the number of bits at the high-order end of X that are known to
4363 be equal to the sign bit. X will be used in mode MODE; if MODE is
4364 VOIDmode, X will be used in its own mode. The returned value will always
4365 be between 1 and the number of bits in MODE. */
4367 static unsigned int
4368 num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4369 enum machine_mode known_mode,
4370 unsigned int known_ret)
4372 enum rtx_code code = GET_CODE (x);
4373 unsigned int bitwidth = GET_MODE_PRECISION (mode);
4374 int num0, num1, result;
4375 unsigned HOST_WIDE_INT nonzero;
4377 /* If we weren't given a mode, use the mode of X. If the mode is still
4378 VOIDmode, we don't know anything. Likewise if one of the modes is
4379 floating-point. */
4381 if (mode == VOIDmode)
4382 mode = GET_MODE (x);
4384 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4385 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4386 return 1;
4388 /* For a smaller object, just ignore the high bits. */
4389 if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
4391 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4392 known_x, known_mode, known_ret);
4393 return MAX (1,
4394 num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
4397 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
4399 #ifndef WORD_REGISTER_OPERATIONS
4400 /* If this machine does not do all register operations on the entire
4401 register and MODE is wider than the mode of X, we can say nothing
4402 at all about the high-order bits. */
4403 return 1;
4404 #else
4405 /* Likewise on machines that do, if the mode of the object is smaller
4406 than a word and loads of that size don't sign extend, we can say
4407 nothing about the high order bits. */
4408 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
4409 #ifdef LOAD_EXTEND_OP
4410 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4411 #endif
4413 return 1;
4414 #endif
4417 switch (code)
4419 case REG:
4421 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4422 /* If pointers extend signed and this is a pointer in Pmode, say that
4423 all the bits above ptr_mode are known to be sign bit copies. */
4424 /* As we do not know which address space the pointer is refering to,
4425 we can do this only if the target does not support different pointer
4426 or address modes depending on the address space. */
4427 if (target_default_pointer_address_modes_p ()
4428 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4429 && mode == Pmode && REG_POINTER (x))
4430 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
4431 #endif
4434 unsigned int copies_for_hook = 1, copies = 1;
4435 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4436 known_mode, known_ret,
4437 &copies_for_hook);
4439 if (new_rtx)
4440 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4441 known_mode, known_ret);
4443 if (copies > 1 || copies_for_hook > 1)
4444 return MAX (copies, copies_for_hook);
4446 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4448 break;
4450 case MEM:
4451 #ifdef LOAD_EXTEND_OP
4452 /* Some RISC machines sign-extend all loads of smaller than a word. */
4453 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4454 return MAX (1, ((int) bitwidth
4455 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
4456 #endif
4457 break;
4459 case CONST_INT:
4460 /* If the constant is negative, take its 1's complement and remask.
4461 Then see how many zero bits we have. */
4462 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4463 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4464 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4465 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4467 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4469 case SUBREG:
4470 /* If this is a SUBREG for a promoted object that is sign-extended
4471 and we are looking at it in a wider mode, we know that at least the
4472 high-order bits are known to be sign bit copies. */
4474 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4476 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4477 known_x, known_mode, known_ret);
4478 return MAX ((int) bitwidth
4479 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
4480 num0);
4483 /* For a smaller object, just ignore the high bits. */
4484 if (bitwidth <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))))
4486 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4487 known_x, known_mode, known_ret);
4488 return MAX (1, (num0
4489 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))
4490 - bitwidth)));
4493 #ifdef WORD_REGISTER_OPERATIONS
4494 #ifdef LOAD_EXTEND_OP
4495 /* For paradoxical SUBREGs on machines where all register operations
4496 affect the entire register, just look inside. Note that we are
4497 passing MODE to the recursive call, so the number of sign bit copies
4498 will remain relative to that mode, not the inner mode. */
4500 /* This works only if loads sign extend. Otherwise, if we get a
4501 reload for the inner part, it may be loaded from the stack, and
4502 then we lose all sign bit copies that existed before the store
4503 to the stack. */
4505 if (paradoxical_subreg_p (x)
4506 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4507 && MEM_P (SUBREG_REG (x)))
4508 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4509 known_x, known_mode, known_ret);
4510 #endif
4511 #endif
4512 break;
4514 case SIGN_EXTRACT:
4515 if (CONST_INT_P (XEXP (x, 1)))
4516 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4517 break;
4519 case SIGN_EXTEND:
4520 return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4521 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4522 known_x, known_mode, known_ret));
4524 case TRUNCATE:
4525 /* For a smaller object, just ignore the high bits. */
4526 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4527 known_x, known_mode, known_ret);
4528 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4529 - bitwidth)));
4531 case NOT:
4532 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4533 known_x, known_mode, known_ret);
4535 case ROTATE: case ROTATERT:
4536 /* If we are rotating left by a number of bits less than the number
4537 of sign bit copies, we can just subtract that amount from the
4538 number. */
4539 if (CONST_INT_P (XEXP (x, 1))
4540 && INTVAL (XEXP (x, 1)) >= 0
4541 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4543 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4544 known_x, known_mode, known_ret);
4545 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4546 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4548 break;
4550 case NEG:
4551 /* In general, this subtracts one sign bit copy. But if the value
4552 is known to be positive, the number of sign bit copies is the
4553 same as that of the input. Finally, if the input has just one bit
4554 that might be nonzero, all the bits are copies of the sign bit. */
4555 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4556 known_x, known_mode, known_ret);
4557 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4558 return num0 > 1 ? num0 - 1 : 1;
4560 nonzero = nonzero_bits (XEXP (x, 0), mode);
4561 if (nonzero == 1)
4562 return bitwidth;
4564 if (num0 > 1
4565 && (((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4566 num0--;
4568 return num0;
4570 case IOR: case AND: case XOR:
4571 case SMIN: case SMAX: case UMIN: case UMAX:
4572 /* Logical operations will preserve the number of sign-bit copies.
4573 MIN and MAX operations always return one of the operands. */
4574 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4575 known_x, known_mode, known_ret);
4576 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4577 known_x, known_mode, known_ret);
4579 /* If num1 is clearing some of the top bits then regardless of
4580 the other term, we are guaranteed to have at least that many
4581 high-order zero bits. */
4582 if (code == AND
4583 && num1 > 1
4584 && bitwidth <= HOST_BITS_PER_WIDE_INT
4585 && CONST_INT_P (XEXP (x, 1))
4586 && (UINTVAL (XEXP (x, 1))
4587 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) == 0)
4588 return num1;
4590 /* Similarly for IOR when setting high-order bits. */
4591 if (code == IOR
4592 && num1 > 1
4593 && bitwidth <= HOST_BITS_PER_WIDE_INT
4594 && CONST_INT_P (XEXP (x, 1))
4595 && (UINTVAL (XEXP (x, 1))
4596 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4597 return num1;
4599 return MIN (num0, num1);
4601 case PLUS: case MINUS:
4602 /* For addition and subtraction, we can have a 1-bit carry. However,
4603 if we are subtracting 1 from a positive number, there will not
4604 be such a carry. Furthermore, if the positive number is known to
4605 be 0 or 1, we know the result is either -1 or 0. */
4607 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4608 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4610 nonzero = nonzero_bits (XEXP (x, 0), mode);
4611 if ((((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4612 return (nonzero == 1 || nonzero == 0 ? bitwidth
4613 : bitwidth - floor_log2 (nonzero) - 1);
4616 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4617 known_x, known_mode, known_ret);
4618 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4619 known_x, known_mode, known_ret);
4620 result = MAX (1, MIN (num0, num1) - 1);
4622 return result;
4624 case MULT:
4625 /* The number of bits of the product is the sum of the number of
4626 bits of both terms. However, unless one of the terms if known
4627 to be positive, we must allow for an additional bit since negating
4628 a negative number can remove one sign bit copy. */
4630 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4631 known_x, known_mode, known_ret);
4632 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4633 known_x, known_mode, known_ret);
4635 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4636 if (result > 0
4637 && (bitwidth > HOST_BITS_PER_WIDE_INT
4638 || (((nonzero_bits (XEXP (x, 0), mode)
4639 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4640 && ((nonzero_bits (XEXP (x, 1), mode)
4641 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)))
4642 != 0))))
4643 result--;
4645 return MAX (1, result);
4647 case UDIV:
4648 /* The result must be <= the first operand. If the first operand
4649 has the high bit set, we know nothing about the number of sign
4650 bit copies. */
4651 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4652 return 1;
4653 else if ((nonzero_bits (XEXP (x, 0), mode)
4654 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4655 return 1;
4656 else
4657 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4658 known_x, known_mode, known_ret);
4660 case UMOD:
4661 /* The result must be <= the second operand. If the second operand
4662 has (or just might have) the high bit set, we know nothing about
4663 the number of sign bit copies. */
4664 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4665 return 1;
4666 else if ((nonzero_bits (XEXP (x, 1), mode)
4667 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4668 return 1;
4669 else
4670 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4671 known_x, known_mode, known_ret);
4673 case DIV:
4674 /* Similar to unsigned division, except that we have to worry about
4675 the case where the divisor is negative, in which case we have
4676 to add 1. */
4677 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4678 known_x, known_mode, known_ret);
4679 if (result > 1
4680 && (bitwidth > HOST_BITS_PER_WIDE_INT
4681 || (nonzero_bits (XEXP (x, 1), mode)
4682 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4683 result--;
4685 return result;
4687 case MOD:
4688 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4689 known_x, known_mode, known_ret);
4690 if (result > 1
4691 && (bitwidth > HOST_BITS_PER_WIDE_INT
4692 || (nonzero_bits (XEXP (x, 1), mode)
4693 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4694 result--;
4696 return result;
4698 case ASHIFTRT:
4699 /* Shifts by a constant add to the number of bits equal to the
4700 sign bit. */
4701 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4702 known_x, known_mode, known_ret);
4703 if (CONST_INT_P (XEXP (x, 1))
4704 && INTVAL (XEXP (x, 1)) > 0
4705 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4706 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4708 return num0;
4710 case ASHIFT:
4711 /* Left shifts destroy copies. */
4712 if (!CONST_INT_P (XEXP (x, 1))
4713 || INTVAL (XEXP (x, 1)) < 0
4714 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
4715 || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
4716 return 1;
4718 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4719 known_x, known_mode, known_ret);
4720 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4722 case IF_THEN_ELSE:
4723 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4724 known_x, known_mode, known_ret);
4725 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4726 known_x, known_mode, known_ret);
4727 return MIN (num0, num1);
4729 case EQ: case NE: case GE: case GT: case LE: case LT:
4730 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4731 case GEU: case GTU: case LEU: case LTU:
4732 case UNORDERED: case ORDERED:
4733 /* If the constant is negative, take its 1's complement and remask.
4734 Then see how many zero bits we have. */
4735 nonzero = STORE_FLAG_VALUE;
4736 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4737 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4738 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4740 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4742 default:
4743 break;
4746 /* If we haven't been able to figure it out by one of the above rules,
4747 see if some of the high-order bits are known to be zero. If so,
4748 count those bits and return one less than that amount. If we can't
4749 safely compute the mask for this mode, always return BITWIDTH. */
4751 bitwidth = GET_MODE_PRECISION (mode);
4752 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4753 return 1;
4755 nonzero = nonzero_bits (x, mode);
4756 return nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))
4757 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4760 /* Calculate the rtx_cost of a single instruction. A return value of
4761 zero indicates an instruction pattern without a known cost. */
4764 insn_rtx_cost (rtx pat, bool speed)
4766 int i, cost;
4767 rtx set;
4769 /* Extract the single set rtx from the instruction pattern.
4770 We can't use single_set since we only have the pattern. */
4771 if (GET_CODE (pat) == SET)
4772 set = pat;
4773 else if (GET_CODE (pat) == PARALLEL)
4775 set = NULL_RTX;
4776 for (i = 0; i < XVECLEN (pat, 0); i++)
4778 rtx x = XVECEXP (pat, 0, i);
4779 if (GET_CODE (x) == SET)
4781 if (set)
4782 return 0;
4783 set = x;
4786 if (!set)
4787 return 0;
4789 else
4790 return 0;
4792 cost = set_src_cost (SET_SRC (set), speed);
4793 return cost > 0 ? cost : COSTS_N_INSNS (1);
4796 /* Given an insn INSN and condition COND, return the condition in a
4797 canonical form to simplify testing by callers. Specifically:
4799 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4800 (2) Both operands will be machine operands; (cc0) will have been replaced.
4801 (3) If an operand is a constant, it will be the second operand.
4802 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4803 for GE, GEU, and LEU.
4805 If the condition cannot be understood, or is an inequality floating-point
4806 comparison which needs to be reversed, 0 will be returned.
4808 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4810 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4811 insn used in locating the condition was found. If a replacement test
4812 of the condition is desired, it should be placed in front of that
4813 insn and we will be sure that the inputs are still valid.
4815 If WANT_REG is nonzero, we wish the condition to be relative to that
4816 register, if possible. Therefore, do not canonicalize the condition
4817 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4818 to be a compare to a CC mode register.
4820 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4821 and at INSN. */
4824 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4825 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4827 enum rtx_code code;
4828 rtx prev = insn;
4829 const_rtx set;
4830 rtx tem;
4831 rtx op0, op1;
4832 int reverse_code = 0;
4833 enum machine_mode mode;
4834 basic_block bb = BLOCK_FOR_INSN (insn);
4836 code = GET_CODE (cond);
4837 mode = GET_MODE (cond);
4838 op0 = XEXP (cond, 0);
4839 op1 = XEXP (cond, 1);
4841 if (reverse)
4842 code = reversed_comparison_code (cond, insn);
4843 if (code == UNKNOWN)
4844 return 0;
4846 if (earliest)
4847 *earliest = insn;
4849 /* If we are comparing a register with zero, see if the register is set
4850 in the previous insn to a COMPARE or a comparison operation. Perform
4851 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4852 in cse.c */
4854 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4855 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4856 && op1 == CONST0_RTX (GET_MODE (op0))
4857 && op0 != want_reg)
4859 /* Set nonzero when we find something of interest. */
4860 rtx x = 0;
4862 #ifdef HAVE_cc0
4863 /* If comparison with cc0, import actual comparison from compare
4864 insn. */
4865 if (op0 == cc0_rtx)
4867 if ((prev = prev_nonnote_insn (prev)) == 0
4868 || !NONJUMP_INSN_P (prev)
4869 || (set = single_set (prev)) == 0
4870 || SET_DEST (set) != cc0_rtx)
4871 return 0;
4873 op0 = SET_SRC (set);
4874 op1 = CONST0_RTX (GET_MODE (op0));
4875 if (earliest)
4876 *earliest = prev;
4878 #endif
4880 /* If this is a COMPARE, pick up the two things being compared. */
4881 if (GET_CODE (op0) == COMPARE)
4883 op1 = XEXP (op0, 1);
4884 op0 = XEXP (op0, 0);
4885 continue;
4887 else if (!REG_P (op0))
4888 break;
4890 /* Go back to the previous insn. Stop if it is not an INSN. We also
4891 stop if it isn't a single set or if it has a REG_INC note because
4892 we don't want to bother dealing with it. */
4894 prev = prev_nonnote_nondebug_insn (prev);
4896 if (prev == 0
4897 || !NONJUMP_INSN_P (prev)
4898 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4899 /* In cfglayout mode, there do not have to be labels at the
4900 beginning of a block, or jumps at the end, so the previous
4901 conditions would not stop us when we reach bb boundary. */
4902 || BLOCK_FOR_INSN (prev) != bb)
4903 break;
4905 set = set_of (op0, prev);
4907 if (set
4908 && (GET_CODE (set) != SET
4909 || !rtx_equal_p (SET_DEST (set), op0)))
4910 break;
4912 /* If this is setting OP0, get what it sets it to if it looks
4913 relevant. */
4914 if (set)
4916 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4917 #ifdef FLOAT_STORE_FLAG_VALUE
4918 REAL_VALUE_TYPE fsfv;
4919 #endif
4921 /* ??? We may not combine comparisons done in a CCmode with
4922 comparisons not done in a CCmode. This is to aid targets
4923 like Alpha that have an IEEE compliant EQ instruction, and
4924 a non-IEEE compliant BEQ instruction. The use of CCmode is
4925 actually artificial, simply to prevent the combination, but
4926 should not affect other platforms.
4928 However, we must allow VOIDmode comparisons to match either
4929 CCmode or non-CCmode comparison, because some ports have
4930 modeless comparisons inside branch patterns.
4932 ??? This mode check should perhaps look more like the mode check
4933 in simplify_comparison in combine. */
4935 if ((GET_CODE (SET_SRC (set)) == COMPARE
4936 || (((code == NE
4937 || (code == LT
4938 && val_signbit_known_set_p (inner_mode,
4939 STORE_FLAG_VALUE))
4940 #ifdef FLOAT_STORE_FLAG_VALUE
4941 || (code == LT
4942 && SCALAR_FLOAT_MODE_P (inner_mode)
4943 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4944 REAL_VALUE_NEGATIVE (fsfv)))
4945 #endif
4947 && COMPARISON_P (SET_SRC (set))))
4948 && (((GET_MODE_CLASS (mode) == MODE_CC)
4949 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4950 || mode == VOIDmode || inner_mode == VOIDmode))
4951 x = SET_SRC (set);
4952 else if (((code == EQ
4953 || (code == GE
4954 && val_signbit_known_set_p (inner_mode,
4955 STORE_FLAG_VALUE))
4956 #ifdef FLOAT_STORE_FLAG_VALUE
4957 || (code == GE
4958 && SCALAR_FLOAT_MODE_P (inner_mode)
4959 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4960 REAL_VALUE_NEGATIVE (fsfv)))
4961 #endif
4963 && COMPARISON_P (SET_SRC (set))
4964 && (((GET_MODE_CLASS (mode) == MODE_CC)
4965 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4966 || mode == VOIDmode || inner_mode == VOIDmode))
4969 reverse_code = 1;
4970 x = SET_SRC (set);
4972 else
4973 break;
4976 else if (reg_set_p (op0, prev))
4977 /* If this sets OP0, but not directly, we have to give up. */
4978 break;
4980 if (x)
4982 /* If the caller is expecting the condition to be valid at INSN,
4983 make sure X doesn't change before INSN. */
4984 if (valid_at_insn_p)
4985 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
4986 break;
4987 if (COMPARISON_P (x))
4988 code = GET_CODE (x);
4989 if (reverse_code)
4991 code = reversed_comparison_code (x, prev);
4992 if (code == UNKNOWN)
4993 return 0;
4994 reverse_code = 0;
4997 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4998 if (earliest)
4999 *earliest = prev;
5003 /* If constant is first, put it last. */
5004 if (CONSTANT_P (op0))
5005 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5007 /* If OP0 is the result of a comparison, we weren't able to find what
5008 was really being compared, so fail. */
5009 if (!allow_cc_mode
5010 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5011 return 0;
5013 /* Canonicalize any ordered comparison with integers involving equality
5014 if we can do computations in the relevant mode and we do not
5015 overflow. */
5017 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
5018 && CONST_INT_P (op1)
5019 && GET_MODE (op0) != VOIDmode
5020 && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
5022 HOST_WIDE_INT const_val = INTVAL (op1);
5023 unsigned HOST_WIDE_INT uconst_val = const_val;
5024 unsigned HOST_WIDE_INT max_val
5025 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5027 switch (code)
5029 case LE:
5030 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5031 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5032 break;
5034 /* When cross-compiling, const_val might be sign-extended from
5035 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5036 case GE:
5037 if ((const_val & max_val)
5038 != ((unsigned HOST_WIDE_INT) 1
5039 << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
5040 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5041 break;
5043 case LEU:
5044 if (uconst_val < max_val)
5045 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5046 break;
5048 case GEU:
5049 if (uconst_val != 0)
5050 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5051 break;
5053 default:
5054 break;
5058 /* Never return CC0; return zero instead. */
5059 if (CC0_P (op0))
5060 return 0;
5062 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5065 /* Given a jump insn JUMP, return the condition that will cause it to branch
5066 to its JUMP_LABEL. If the condition cannot be understood, or is an
5067 inequality floating-point comparison which needs to be reversed, 0 will
5068 be returned.
5070 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5071 insn used in locating the condition was found. If a replacement test
5072 of the condition is desired, it should be placed in front of that
5073 insn and we will be sure that the inputs are still valid. If EARLIEST
5074 is null, the returned condition will be valid at INSN.
5076 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5077 compare CC mode register.
5079 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5082 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
5084 rtx cond;
5085 int reverse;
5086 rtx set;
5088 /* If this is not a standard conditional jump, we can't parse it. */
5089 if (!JUMP_P (jump)
5090 || ! any_condjump_p (jump))
5091 return 0;
5092 set = pc_set (jump);
5094 cond = XEXP (SET_SRC (set), 0);
5096 /* If this branches to JUMP_LABEL when the condition is false, reverse
5097 the condition. */
5098 reverse
5099 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5100 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
5102 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5103 allow_cc_mode, valid_at_insn_p);
5106 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5107 TARGET_MODE_REP_EXTENDED.
5109 Note that we assume that the property of
5110 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5111 narrower than mode B. I.e., if A is a mode narrower than B then in
5112 order to be able to operate on it in mode B, mode A needs to
5113 satisfy the requirements set by the representation of mode B. */
5115 static void
5116 init_num_sign_bit_copies_in_rep (void)
5118 enum machine_mode mode, in_mode;
5120 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5121 in_mode = GET_MODE_WIDER_MODE (mode))
5122 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5123 mode = GET_MODE_WIDER_MODE (mode))
5125 enum machine_mode i;
5127 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5128 extends to the next widest mode. */
5129 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5130 || GET_MODE_WIDER_MODE (mode) == in_mode);
5132 /* We are in in_mode. Count how many bits outside of mode
5133 have to be copies of the sign-bit. */
5134 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5136 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
5138 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5139 /* We can only check sign-bit copies starting from the
5140 top-bit. In order to be able to check the bits we
5141 have already seen we pretend that subsequent bits
5142 have to be sign-bit copies too. */
5143 || num_sign_bit_copies_in_rep [in_mode][mode])
5144 num_sign_bit_copies_in_rep [in_mode][mode]
5145 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5150 /* Suppose that truncation from the machine mode of X to MODE is not a
5151 no-op. See if there is anything special about X so that we can
5152 assume it already contains a truncated value of MODE. */
5154 bool
5155 truncated_to_mode (enum machine_mode mode, const_rtx x)
5157 /* This register has already been used in MODE without explicit
5158 truncation. */
5159 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5160 return true;
5162 /* See if we already satisfy the requirements of MODE. If yes we
5163 can just switch to MODE. */
5164 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5165 && (num_sign_bit_copies (x, GET_MODE (x))
5166 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5167 return true;
5169 return false;
5172 /* Initialize non_rtx_starting_operands, which is used to speed up
5173 for_each_rtx. */
5174 void
5175 init_rtlanal (void)
5177 int i;
5178 for (i = 0; i < NUM_RTX_CODE; i++)
5180 const char *format = GET_RTX_FORMAT (i);
5181 const char *first = strpbrk (format, "eEV");
5182 non_rtx_starting_operands[i] = first ? first - format : -1;
5185 init_num_sign_bit_copies_in_rep ();
5188 /* Check whether this is a constant pool constant. */
5189 bool
5190 constant_pool_constant_p (rtx x)
5192 x = avoid_constant_pool_reference (x);
5193 return GET_CODE (x) == CONST_DOUBLE;
5196 /* If M is a bitmask that selects a field of low-order bits within an item but
5197 not the entire word, return the length of the field. Return -1 otherwise.
5198 M is used in machine mode MODE. */
5201 low_bitmask_len (enum machine_mode mode, unsigned HOST_WIDE_INT m)
5203 if (mode != VOIDmode)
5205 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
5206 return -1;
5207 m &= GET_MODE_MASK (mode);
5210 return exact_log2 (m + 1);