PR target/19236
[official-gcc.git] / gcc / var-tracking.c
blobf1f36614509f85f55b3047143514a9391edb8520
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
21 /* This file contains the variable tracking pass. It computes where
22 variables are located (which registers or where in memory) at each position
23 in instruction stream and emits notes describing the locations.
24 Debug information (DWARF2 location lists) is finally generated from
25 these notes.
26 With this debug information, it is possible to show variables
27 even when debugging optimized code.
29 How does the variable tracking pass work?
31 First, it scans RTL code for uses, stores and clobbers (register/memory
32 references in instructions), for call insns and for stack adjustments
33 separately for each basic block and saves them to an array of micro
34 operations.
35 The micro operations of one instruction are ordered so that
36 pre-modifying stack adjustment < use < use with no var < call insn <
37 < set < clobber < post-modifying stack adjustment
39 Then, a forward dataflow analysis is performed to find out how locations
40 of variables change through code and to propagate the variable locations
41 along control flow graph.
42 The IN set for basic block BB is computed as a union of OUT sets of BB's
43 predecessors, the OUT set for BB is copied from the IN set for BB and
44 is changed according to micro operations in BB.
46 The IN and OUT sets for basic blocks consist of a current stack adjustment
47 (used for adjusting offset of variables addressed using stack pointer),
48 the table of structures describing the locations of parts of a variable
49 and for each physical register a linked list for each physical register.
50 The linked list is a list of variable parts stored in the register,
51 i.e. it is a list of triplets (reg, decl, offset) where decl is
52 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
53 effective deleting appropriate variable parts when we set or clobber the
54 register.
56 There may be more than one variable part in a register. The linked lists
57 should be pretty short so it is a good data structure here.
58 For example in the following code, register allocator may assign same
59 register to variables A and B, and both of them are stored in the same
60 register in CODE:
62 if (cond)
63 set A;
64 else
65 set B;
66 CODE;
67 if (cond)
68 use A;
69 else
70 use B;
72 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
73 are emitted to appropriate positions in RTL code. Each such a note describes
74 the location of one variable at the point in instruction stream where the
75 note is. There is no need to emit a note for each variable before each
76 instruction, we only emit these notes where the location of variable changes
77 (this means that we also emit notes for changes between the OUT set of the
78 previous block and the IN set of the current block).
80 The notes consist of two parts:
81 1. the declaration (from REG_EXPR or MEM_EXPR)
82 2. the location of a variable - it is either a simple register/memory
83 reference (for simple variables, for example int),
84 or a parallel of register/memory references (for a large variables
85 which consist of several parts, for example long long).
89 #include "config.h"
90 #include "system.h"
91 #include "coretypes.h"
92 #include "tm.h"
93 #include "rtl.h"
94 #include "tree.h"
95 #include "hard-reg-set.h"
96 #include "basic-block.h"
97 #include "flags.h"
98 #include "output.h"
99 #include "insn-config.h"
100 #include "reload.h"
101 #include "sbitmap.h"
102 #include "alloc-pool.h"
103 #include "fibheap.h"
104 #include "hashtab.h"
106 /* Type of micro operation. */
107 enum micro_operation_type
109 MO_USE, /* Use location (REG or MEM). */
110 MO_USE_NO_VAR,/* Use location which is not associated with a variable
111 or the variable is not trackable. */
112 MO_SET, /* Set location. */
113 MO_CLOBBER, /* Clobber location. */
114 MO_CALL, /* Call insn. */
115 MO_ADJUST /* Adjust stack pointer. */
118 /* Where shall the note be emitted? BEFORE or AFTER the instruction. */
119 enum emit_note_where
121 EMIT_NOTE_BEFORE_INSN,
122 EMIT_NOTE_AFTER_INSN
125 /* Structure holding information about micro operation. */
126 typedef struct micro_operation_def
128 /* Type of micro operation. */
129 enum micro_operation_type type;
131 union {
132 /* Location. */
133 rtx loc;
135 /* Stack adjustment. */
136 HOST_WIDE_INT adjust;
137 } u;
139 /* The instruction which the micro operation is in. */
140 rtx insn;
141 } micro_operation;
143 /* Structure for passing some other parameters to function
144 emit_note_insn_var_location. */
145 typedef struct emit_note_data_def
147 /* The instruction which the note will be emitted before/after. */
148 rtx insn;
150 /* Where the note will be emitted (before/after insn)? */
151 enum emit_note_where where;
152 } emit_note_data;
154 /* Description of location of a part of a variable. The content of a physical
155 register is described by a chain of these structures.
156 The chains are pretty short (usually 1 or 2 elements) and thus
157 chain is the best data structure. */
158 typedef struct attrs_def
160 /* Pointer to next member of the list. */
161 struct attrs_def *next;
163 /* The rtx of register. */
164 rtx loc;
166 /* The declaration corresponding to LOC. */
167 tree decl;
169 /* Offset from start of DECL. */
170 HOST_WIDE_INT offset;
171 } *attrs;
173 /* Structure holding the IN or OUT set for a basic block. */
174 typedef struct dataflow_set_def
176 /* Adjustment of stack offset. */
177 HOST_WIDE_INT stack_adjust;
179 /* Attributes for registers (lists of attrs). */
180 attrs regs[FIRST_PSEUDO_REGISTER];
182 /* Variable locations. */
183 htab_t vars;
184 } dataflow_set;
186 /* The structure (one for each basic block) containing the information
187 needed for variable tracking. */
188 typedef struct variable_tracking_info_def
190 /* Number of micro operations stored in the MOS array. */
191 int n_mos;
193 /* The array of micro operations. */
194 micro_operation *mos;
196 /* The IN and OUT set for dataflow analysis. */
197 dataflow_set in;
198 dataflow_set out;
200 /* Has the block been visited in DFS? */
201 bool visited;
202 } *variable_tracking_info;
204 /* Structure for chaining the locations. */
205 typedef struct location_chain_def
207 /* Next element in the chain. */
208 struct location_chain_def *next;
210 /* The location (REG or MEM). */
211 rtx loc;
212 } *location_chain;
214 /* Structure describing one part of variable. */
215 typedef struct variable_part_def
217 /* Chain of locations of the part. */
218 location_chain loc_chain;
220 /* Location which was last emitted to location list. */
221 rtx cur_loc;
223 /* The offset in the variable. */
224 HOST_WIDE_INT offset;
225 } variable_part;
227 /* Maximum number of location parts. */
228 #define MAX_VAR_PARTS 16
230 /* Structure describing where the variable is located. */
231 typedef struct variable_def
233 /* The declaration of the variable. */
234 tree decl;
236 /* Reference count. */
237 int refcount;
239 /* Number of variable parts. */
240 int n_var_parts;
242 /* The variable parts. */
243 variable_part var_part[MAX_VAR_PARTS];
244 } *variable;
246 /* Hash function for DECL for VARIABLE_HTAB. */
247 #define VARIABLE_HASH_VAL(decl) (DECL_UID (decl))
249 /* Pointer to the BB's information specific to variable tracking pass. */
250 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
252 /* Alloc pool for struct attrs_def. */
253 static alloc_pool attrs_pool;
255 /* Alloc pool for struct variable_def. */
256 static alloc_pool var_pool;
258 /* Alloc pool for struct location_chain_def. */
259 static alloc_pool loc_chain_pool;
261 /* Changed variables, notes will be emitted for them. */
262 static htab_t changed_variables;
264 /* Shall notes be emitted? */
265 static bool emit_notes;
267 /* Fake variable for stack pointer. */
268 tree frame_base_decl;
270 /* Stack adjust caused by function prologue. */
271 static HOST_WIDE_INT frame_stack_adjust;
273 /* Local function prototypes. */
274 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
275 HOST_WIDE_INT *);
276 static void insn_stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
277 HOST_WIDE_INT *);
278 static void bb_stack_adjust_offset (basic_block);
279 static HOST_WIDE_INT prologue_stack_adjust (void);
280 static bool vt_stack_adjustments (void);
281 static rtx adjust_stack_reference (rtx, HOST_WIDE_INT);
282 static hashval_t variable_htab_hash (const void *);
283 static int variable_htab_eq (const void *, const void *);
284 static void variable_htab_free (void *);
286 static void init_attrs_list_set (attrs *);
287 static void attrs_list_clear (attrs *);
288 static attrs attrs_list_member (attrs, tree, HOST_WIDE_INT);
289 static void attrs_list_insert (attrs *, tree, HOST_WIDE_INT, rtx);
290 static void attrs_list_copy (attrs *, attrs);
291 static void attrs_list_union (attrs *, attrs);
293 static void vars_clear (htab_t);
294 static variable unshare_variable (dataflow_set *set, variable var);
295 static int vars_copy_1 (void **, void *);
296 static void vars_copy (htab_t, htab_t);
297 static void var_reg_delete_and_set (dataflow_set *, rtx);
298 static void var_reg_delete (dataflow_set *, rtx);
299 static void var_regno_delete (dataflow_set *, int);
300 static void var_mem_delete_and_set (dataflow_set *, rtx);
301 static void var_mem_delete (dataflow_set *, rtx);
303 static void dataflow_set_init (dataflow_set *, int);
304 static void dataflow_set_clear (dataflow_set *);
305 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
306 static int variable_union_info_cmp_pos (const void *, const void *);
307 static int variable_union (void **, void *);
308 static void dataflow_set_union (dataflow_set *, dataflow_set *);
309 static bool variable_part_different_p (variable_part *, variable_part *);
310 static bool variable_different_p (variable, variable, bool);
311 static int dataflow_set_different_1 (void **, void *);
312 static int dataflow_set_different_2 (void **, void *);
313 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
314 static void dataflow_set_destroy (dataflow_set *);
316 static bool contains_symbol_ref (rtx);
317 static bool track_expr_p (tree);
318 static int count_uses (rtx *, void *);
319 static void count_uses_1 (rtx *, void *);
320 static void count_stores (rtx, rtx, void *);
321 static int add_uses (rtx *, void *);
322 static void add_uses_1 (rtx *, void *);
323 static void add_stores (rtx, rtx, void *);
324 static bool compute_bb_dataflow (basic_block);
325 static void vt_find_locations (void);
327 static void dump_attrs_list (attrs);
328 static int dump_variable (void **, void *);
329 static void dump_vars (htab_t);
330 static void dump_dataflow_set (dataflow_set *);
331 static void dump_dataflow_sets (void);
333 static void variable_was_changed (variable, htab_t);
334 static void set_frame_base_location (dataflow_set *, rtx);
335 static void set_variable_part (dataflow_set *, rtx, tree, HOST_WIDE_INT);
336 static void delete_variable_part (dataflow_set *, rtx, tree, HOST_WIDE_INT);
337 static int emit_note_insn_var_location (void **, void *);
338 static void emit_notes_for_changes (rtx, enum emit_note_where);
339 static int emit_notes_for_differences_1 (void **, void *);
340 static int emit_notes_for_differences_2 (void **, void *);
341 static void emit_notes_for_differences (rtx, dataflow_set *, dataflow_set *);
342 static void emit_notes_in_bb (basic_block);
343 static void vt_emit_notes (void);
345 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
346 static void vt_add_function_parameters (void);
347 static void vt_initialize (void);
348 static void vt_finalize (void);
350 /* Given a SET, calculate the amount of stack adjustment it contains
351 PRE- and POST-modifying stack pointer.
352 This function is similar to stack_adjust_offset. */
354 static void
355 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
356 HOST_WIDE_INT *post)
358 rtx src = SET_SRC (pattern);
359 rtx dest = SET_DEST (pattern);
360 enum rtx_code code;
362 if (dest == stack_pointer_rtx)
364 /* (set (reg sp) (plus (reg sp) (const_int))) */
365 code = GET_CODE (src);
366 if (! (code == PLUS || code == MINUS)
367 || XEXP (src, 0) != stack_pointer_rtx
368 || GET_CODE (XEXP (src, 1)) != CONST_INT)
369 return;
371 if (code == MINUS)
372 *post += INTVAL (XEXP (src, 1));
373 else
374 *post -= INTVAL (XEXP (src, 1));
376 else if (MEM_P (dest))
378 /* (set (mem (pre_dec (reg sp))) (foo)) */
379 src = XEXP (dest, 0);
380 code = GET_CODE (src);
382 switch (code)
384 case PRE_MODIFY:
385 case POST_MODIFY:
386 if (XEXP (src, 0) == stack_pointer_rtx)
388 rtx val = XEXP (XEXP (src, 1), 1);
389 /* We handle only adjustments by constant amount. */
390 if (GET_CODE (XEXP (src, 1)) != PLUS ||
391 GET_CODE (val) != CONST_INT)
392 abort ();
393 if (code == PRE_MODIFY)
394 *pre -= INTVAL (val);
395 else
396 *post -= INTVAL (val);
397 break;
399 return;
401 case PRE_DEC:
402 if (XEXP (src, 0) == stack_pointer_rtx)
404 *pre += GET_MODE_SIZE (GET_MODE (dest));
405 break;
407 return;
409 case POST_DEC:
410 if (XEXP (src, 0) == stack_pointer_rtx)
412 *post += GET_MODE_SIZE (GET_MODE (dest));
413 break;
415 return;
417 case PRE_INC:
418 if (XEXP (src, 0) == stack_pointer_rtx)
420 *pre -= GET_MODE_SIZE (GET_MODE (dest));
421 break;
423 return;
425 case POST_INC:
426 if (XEXP (src, 0) == stack_pointer_rtx)
428 *post -= GET_MODE_SIZE (GET_MODE (dest));
429 break;
431 return;
433 default:
434 return;
439 /* Given an INSN, calculate the amount of stack adjustment it contains
440 PRE- and POST-modifying stack pointer. */
442 static void
443 insn_stack_adjust_offset_pre_post (rtx insn, HOST_WIDE_INT *pre,
444 HOST_WIDE_INT *post)
446 *pre = 0;
447 *post = 0;
449 if (GET_CODE (PATTERN (insn)) == SET)
450 stack_adjust_offset_pre_post (PATTERN (insn), pre, post);
451 else if (GET_CODE (PATTERN (insn)) == PARALLEL
452 || GET_CODE (PATTERN (insn)) == SEQUENCE)
454 int i;
456 /* There may be stack adjustments inside compound insns. Search
457 for them. */
458 for ( i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
459 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
460 stack_adjust_offset_pre_post (XVECEXP (PATTERN (insn), 0, i),
461 pre, post);
465 /* Compute stack adjustment in basic block BB. */
467 static void
468 bb_stack_adjust_offset (basic_block bb)
470 HOST_WIDE_INT offset;
471 int i;
473 offset = VTI (bb)->in.stack_adjust;
474 for (i = 0; i < VTI (bb)->n_mos; i++)
476 if (VTI (bb)->mos[i].type == MO_ADJUST)
477 offset += VTI (bb)->mos[i].u.adjust;
478 else if (VTI (bb)->mos[i].type != MO_CALL)
480 if (MEM_P (VTI (bb)->mos[i].u.loc))
482 VTI (bb)->mos[i].u.loc
483 = adjust_stack_reference (VTI (bb)->mos[i].u.loc, -offset);
487 VTI (bb)->out.stack_adjust = offset;
490 /* Compute stack adjustment caused by function prologue. */
492 static HOST_WIDE_INT
493 prologue_stack_adjust (void)
495 HOST_WIDE_INT offset = 0;
496 basic_block bb = ENTRY_BLOCK_PTR->next_bb;
497 rtx insn;
498 rtx end;
500 if (!BB_END (bb))
501 return 0;
503 end = NEXT_INSN (BB_END (bb));
504 for (insn = BB_HEAD (bb); insn != end; insn = NEXT_INSN (insn))
506 if (NOTE_P (insn)
507 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
508 break;
510 if (INSN_P (insn))
512 HOST_WIDE_INT tmp;
514 insn_stack_adjust_offset_pre_post (insn, &tmp, &tmp);
515 offset += tmp;
519 return offset;
522 /* Compute stack adjustments for all blocks by traversing DFS tree.
523 Return true when the adjustments on all incoming edges are consistent.
524 Heavily borrowed from flow_depth_first_order_compute. */
526 static bool
527 vt_stack_adjustments (void)
529 edge_iterator *stack;
530 int sp;
532 /* Initialize entry block. */
533 VTI (ENTRY_BLOCK_PTR)->visited = true;
534 VTI (ENTRY_BLOCK_PTR)->out.stack_adjust = frame_stack_adjust;
536 /* Allocate stack for back-tracking up CFG. */
537 stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge_iterator));
538 sp = 0;
540 /* Push the first edge on to the stack. */
541 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
543 while (sp)
545 edge_iterator ei;
546 basic_block src;
547 basic_block dest;
549 /* Look at the edge on the top of the stack. */
550 ei = stack[sp - 1];
551 src = ei_edge (ei)->src;
552 dest = ei_edge (ei)->dest;
554 /* Check if the edge destination has been visited yet. */
555 if (!VTI (dest)->visited)
557 VTI (dest)->visited = true;
558 VTI (dest)->in.stack_adjust = VTI (src)->out.stack_adjust;
559 bb_stack_adjust_offset (dest);
561 if (EDGE_COUNT (dest->succs) > 0)
562 /* Since the DEST node has been visited for the first
563 time, check its successors. */
564 stack[sp++] = ei_start (dest->succs);
566 else
568 /* Check whether the adjustments on the edges are the same. */
569 if (VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
571 free (stack);
572 return false;
575 if (! ei_one_before_end_p (ei))
576 /* Go to the next edge. */
577 ei_next (&stack[sp - 1]);
578 else
579 /* Return to previous level if there are no more edges. */
580 sp--;
584 free (stack);
585 return true;
588 /* Adjust stack reference MEM by ADJUSTMENT bytes and return the new rtx. */
590 static rtx
591 adjust_stack_reference (rtx mem, HOST_WIDE_INT adjustment)
593 rtx adjusted_mem;
594 rtx tmp;
596 if (adjustment == 0)
597 return mem;
599 adjusted_mem = copy_rtx (mem);
600 XEXP (adjusted_mem, 0) = replace_rtx (XEXP (adjusted_mem, 0),
601 stack_pointer_rtx,
602 gen_rtx_PLUS (Pmode, stack_pointer_rtx,
603 GEN_INT (adjustment)));
604 tmp = simplify_rtx (XEXP (adjusted_mem, 0));
605 if (tmp)
606 XEXP (adjusted_mem, 0) = tmp;
608 return adjusted_mem;
611 /* The hash function for variable_htab, computes the hash value
612 from the declaration of variable X. */
614 static hashval_t
615 variable_htab_hash (const void *x)
617 const variable v = (const variable) x;
619 return (VARIABLE_HASH_VAL (v->decl));
622 /* Compare the declaration of variable X with declaration Y. */
624 static int
625 variable_htab_eq (const void *x, const void *y)
627 const variable v = (const variable) x;
628 const tree decl = (const tree) y;
630 return (VARIABLE_HASH_VAL (v->decl) == VARIABLE_HASH_VAL (decl));
633 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
635 static void
636 variable_htab_free (void *elem)
638 int i;
639 variable var = (variable) elem;
640 location_chain node, next;
642 #ifdef ENABLE_CHECKING
643 if (var->refcount <= 0)
644 abort ();
645 #endif
647 var->refcount--;
648 if (var->refcount > 0)
649 return;
651 for (i = 0; i < var->n_var_parts; i++)
653 for (node = var->var_part[i].loc_chain; node; node = next)
655 next = node->next;
656 pool_free (loc_chain_pool, node);
658 var->var_part[i].loc_chain = NULL;
660 pool_free (var_pool, var);
663 /* Initialize the set (array) SET of attrs to empty lists. */
665 static void
666 init_attrs_list_set (attrs *set)
668 int i;
670 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
671 set[i] = NULL;
674 /* Make the list *LISTP empty. */
676 static void
677 attrs_list_clear (attrs *listp)
679 attrs list, next;
681 for (list = *listp; list; list = next)
683 next = list->next;
684 pool_free (attrs_pool, list);
686 *listp = NULL;
689 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
691 static attrs
692 attrs_list_member (attrs list, tree decl, HOST_WIDE_INT offset)
694 for (; list; list = list->next)
695 if (list->decl == decl && list->offset == offset)
696 return list;
697 return NULL;
700 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
702 static void
703 attrs_list_insert (attrs *listp, tree decl, HOST_WIDE_INT offset, rtx loc)
705 attrs list;
707 list = pool_alloc (attrs_pool);
708 list->loc = loc;
709 list->decl = decl;
710 list->offset = offset;
711 list->next = *listp;
712 *listp = list;
715 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
717 static void
718 attrs_list_copy (attrs *dstp, attrs src)
720 attrs n;
722 attrs_list_clear (dstp);
723 for (; src; src = src->next)
725 n = pool_alloc (attrs_pool);
726 n->loc = src->loc;
727 n->decl = src->decl;
728 n->offset = src->offset;
729 n->next = *dstp;
730 *dstp = n;
734 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
736 static void
737 attrs_list_union (attrs *dstp, attrs src)
739 for (; src; src = src->next)
741 if (!attrs_list_member (*dstp, src->decl, src->offset))
742 attrs_list_insert (dstp, src->decl, src->offset, src->loc);
746 /* Delete all variables from hash table VARS. */
748 static void
749 vars_clear (htab_t vars)
751 htab_empty (vars);
754 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
756 static variable
757 unshare_variable (dataflow_set *set, variable var)
759 void **slot;
760 variable new_var;
761 int i;
763 new_var = pool_alloc (var_pool);
764 new_var->decl = var->decl;
765 new_var->refcount = 1;
766 var->refcount--;
767 new_var->n_var_parts = var->n_var_parts;
769 for (i = 0; i < var->n_var_parts; i++)
771 location_chain node;
772 location_chain *nextp;
774 new_var->var_part[i].offset = var->var_part[i].offset;
775 nextp = &new_var->var_part[i].loc_chain;
776 for (node = var->var_part[i].loc_chain; node; node = node->next)
778 location_chain new_lc;
780 new_lc = pool_alloc (loc_chain_pool);
781 new_lc->next = NULL;
782 new_lc->loc = node->loc;
784 *nextp = new_lc;
785 nextp = &new_lc->next;
788 /* We are at the basic block boundary when copying variable description
789 so set the CUR_LOC to be the first element of the chain. */
790 if (new_var->var_part[i].loc_chain)
791 new_var->var_part[i].cur_loc = new_var->var_part[i].loc_chain->loc;
792 else
793 new_var->var_part[i].cur_loc = NULL;
796 slot = htab_find_slot_with_hash (set->vars, new_var->decl,
797 VARIABLE_HASH_VAL (new_var->decl),
798 INSERT);
799 *slot = new_var;
800 return new_var;
803 /* Add a variable from *SLOT to hash table DATA and increase its reference
804 count. */
806 static int
807 vars_copy_1 (void **slot, void *data)
809 htab_t dst = (htab_t) data;
810 variable src, *dstp;
812 src = *(variable *) slot;
813 src->refcount++;
815 dstp = (variable *) htab_find_slot_with_hash (dst, src->decl,
816 VARIABLE_HASH_VAL (src->decl),
817 INSERT);
818 *dstp = src;
820 /* Continue traversing the hash table. */
821 return 1;
824 /* Copy all variables from hash table SRC to hash table DST. */
826 static void
827 vars_copy (htab_t dst, htab_t src)
829 vars_clear (dst);
830 htab_traverse (src, vars_copy_1, dst);
833 /* Delete current content of register LOC in dataflow set SET
834 and set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
836 static void
837 var_reg_delete_and_set (dataflow_set *set, rtx loc)
839 tree decl = REG_EXPR (loc);
840 HOST_WIDE_INT offset = REG_OFFSET (loc);
841 attrs node, next;
842 attrs *nextp;
844 nextp = &set->regs[REGNO (loc)];
845 for (node = *nextp; node; node = next)
847 next = node->next;
848 if (node->decl != decl || node->offset != offset)
850 delete_variable_part (set, node->loc, node->decl, node->offset);
851 pool_free (attrs_pool, node);
852 *nextp = next;
854 else
856 node->loc = loc;
857 nextp = &node->next;
860 if (set->regs[REGNO (loc)] == NULL)
861 attrs_list_insert (&set->regs[REGNO (loc)], decl, offset, loc);
862 set_variable_part (set, loc, decl, offset);
865 /* Delete current content of register LOC in dataflow set SET. */
867 static void
868 var_reg_delete (dataflow_set *set, rtx loc)
870 attrs *reg = &set->regs[REGNO (loc)];
871 attrs node, next;
873 for (node = *reg; node; node = next)
875 next = node->next;
876 delete_variable_part (set, node->loc, node->decl, node->offset);
877 pool_free (attrs_pool, node);
879 *reg = NULL;
882 /* Delete content of register with number REGNO in dataflow set SET. */
884 static void
885 var_regno_delete (dataflow_set *set, int regno)
887 attrs *reg = &set->regs[regno];
888 attrs node, next;
890 for (node = *reg; node; node = next)
892 next = node->next;
893 delete_variable_part (set, node->loc, node->decl, node->offset);
894 pool_free (attrs_pool, node);
896 *reg = NULL;
899 /* Delete and set the location part of variable MEM_EXPR (LOC)
900 in dataflow set SET to LOC.
901 Adjust the address first if it is stack pointer based. */
903 static void
904 var_mem_delete_and_set (dataflow_set *set, rtx loc)
906 tree decl = MEM_EXPR (loc);
907 HOST_WIDE_INT offset = MEM_OFFSET (loc) ? INTVAL (MEM_OFFSET (loc)) : 0;
909 set_variable_part (set, loc, decl, offset);
912 /* Delete the location part LOC from dataflow set SET.
913 Adjust the address first if it is stack pointer based. */
915 static void
916 var_mem_delete (dataflow_set *set, rtx loc)
918 tree decl = MEM_EXPR (loc);
919 HOST_WIDE_INT offset = MEM_OFFSET (loc) ? INTVAL (MEM_OFFSET (loc)) : 0;
921 delete_variable_part (set, loc, decl, offset);
924 /* Initialize dataflow set SET to be empty.
925 VARS_SIZE is the initial size of hash table VARS. */
927 static void
928 dataflow_set_init (dataflow_set *set, int vars_size)
930 init_attrs_list_set (set->regs);
931 set->vars = htab_create (vars_size, variable_htab_hash, variable_htab_eq,
932 variable_htab_free);
933 set->stack_adjust = 0;
936 /* Delete the contents of dataflow set SET. */
938 static void
939 dataflow_set_clear (dataflow_set *set)
941 int i;
943 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
944 attrs_list_clear (&set->regs[i]);
946 vars_clear (set->vars);
949 /* Copy the contents of dataflow set SRC to DST. */
951 static void
952 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
954 int i;
956 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
957 attrs_list_copy (&dst->regs[i], src->regs[i]);
959 vars_copy (dst->vars, src->vars);
960 dst->stack_adjust = src->stack_adjust;
963 /* Information for merging lists of locations for a given offset of variable.
965 struct variable_union_info
967 /* Node of the location chain. */
968 location_chain lc;
970 /* The sum of positions in the input chains. */
971 int pos;
973 /* The position in the chains of SRC and DST dataflow sets. */
974 int pos_src;
975 int pos_dst;
978 /* Compare function for qsort, order the structures by POS element. */
980 static int
981 variable_union_info_cmp_pos (const void *n1, const void *n2)
983 const struct variable_union_info *i1 = n1;
984 const struct variable_union_info *i2 = n2;
986 if (i1->pos != i2->pos)
987 return i1->pos - i2->pos;
989 return (i1->pos_dst - i2->pos_dst);
992 /* Compute union of location parts of variable *SLOT and the same variable
993 from hash table DATA. Compute "sorted" union of the location chains
994 for common offsets, i.e. the locations of a variable part are sorted by
995 a priority where the priority is the sum of the positions in the 2 chains
996 (if a location is only in one list the position in the second list is
997 defined to be larger than the length of the chains).
998 When we are updating the location parts the newest location is in the
999 beginning of the chain, so when we do the described "sorted" union
1000 we keep the newest locations in the beginning. */
1002 static int
1003 variable_union (void **slot, void *data)
1005 variable src, dst, *dstp;
1006 dataflow_set *set = (dataflow_set *) data;
1007 int i, j, k;
1009 src = *(variable *) slot;
1010 dstp = (variable *) htab_find_slot_with_hash (set->vars, src->decl,
1011 VARIABLE_HASH_VAL (src->decl),
1012 INSERT);
1013 if (!*dstp)
1015 src->refcount++;
1017 /* If CUR_LOC of some variable part is not the first element of
1018 the location chain we are going to change it so we have to make
1019 a copy of the variable. */
1020 for (k = 0; k < src->n_var_parts; k++)
1022 if (src->var_part[k].loc_chain)
1024 #ifdef ENABLE_CHECKING
1025 if (src->var_part[k].cur_loc == NULL)
1026 abort ();
1027 #endif
1028 if (src->var_part[k].cur_loc != src->var_part[k].loc_chain->loc)
1029 break;
1031 #ifdef ENABLE_CHECKING
1032 else
1034 if (src->var_part[k].cur_loc != NULL)
1035 abort ();
1037 #endif
1039 if (k < src->n_var_parts)
1040 unshare_variable (set, src);
1041 else
1042 *dstp = src;
1044 /* Continue traversing the hash table. */
1045 return 1;
1047 else
1048 dst = *dstp;
1050 #ifdef ENABLE_CHECKING
1051 if (src->n_var_parts == 0)
1052 abort ();
1053 #endif
1055 /* Count the number of location parts, result is K. */
1056 for (i = 0, j = 0, k = 0;
1057 i < src->n_var_parts && j < dst->n_var_parts; k++)
1059 if (src->var_part[i].offset == dst->var_part[j].offset)
1061 i++;
1062 j++;
1064 else if (src->var_part[i].offset < dst->var_part[j].offset)
1065 i++;
1066 else
1067 j++;
1069 k += src->n_var_parts - i;
1070 k += dst->n_var_parts - j;
1071 #ifdef ENABLE_CHECKING
1072 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
1073 thus there are at most MAX_VAR_PARTS different offsets. */
1074 if (k > MAX_VAR_PARTS)
1075 abort ();
1076 #endif
1078 if (dst->refcount > 1 && dst->n_var_parts != k)
1079 dst = unshare_variable (set, dst);
1081 i = src->n_var_parts - 1;
1082 j = dst->n_var_parts - 1;
1083 dst->n_var_parts = k;
1085 for (k--; k >= 0; k--)
1087 location_chain node, node2;
1089 if (i >= 0 && j >= 0
1090 && src->var_part[i].offset == dst->var_part[j].offset)
1092 /* Compute the "sorted" union of the chains, i.e. the locations which
1093 are in both chains go first, they are sorted by the sum of
1094 positions in the chains. */
1095 int dst_l, src_l;
1096 int ii, jj, n;
1097 struct variable_union_info *vui;
1099 /* If DST is shared compare the location chains.
1100 If they are different we will modify the chain in DST with
1101 high probability so make a copy of DST. */
1102 if (dst->refcount > 1)
1104 for (node = src->var_part[i].loc_chain,
1105 node2 = dst->var_part[j].loc_chain; node && node2;
1106 node = node->next, node2 = node2->next)
1108 if (!((REG_P (node2->loc)
1109 && REG_P (node->loc)
1110 && REGNO (node2->loc) == REGNO (node->loc))
1111 || rtx_equal_p (node2->loc, node->loc)))
1112 break;
1114 if (node || node2)
1115 dst = unshare_variable (set, dst);
1118 src_l = 0;
1119 for (node = src->var_part[i].loc_chain; node; node = node->next)
1120 src_l++;
1121 dst_l = 0;
1122 for (node = dst->var_part[j].loc_chain; node; node = node->next)
1123 dst_l++;
1124 vui = xcalloc (src_l + dst_l, sizeof (struct variable_union_info));
1126 /* Fill in the locations from DST. */
1127 for (node = dst->var_part[j].loc_chain, jj = 0; node;
1128 node = node->next, jj++)
1130 vui[jj].lc = node;
1131 vui[jj].pos_dst = jj;
1133 /* Value larger than a sum of 2 valid positions. */
1134 vui[jj].pos_src = src_l + dst_l;
1137 /* Fill in the locations from SRC. */
1138 n = dst_l;
1139 for (node = src->var_part[i].loc_chain, ii = 0; node;
1140 node = node->next, ii++)
1142 /* Find location from NODE. */
1143 for (jj = 0; jj < dst_l; jj++)
1145 if ((REG_P (vui[jj].lc->loc)
1146 && REG_P (node->loc)
1147 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
1148 || rtx_equal_p (vui[jj].lc->loc, node->loc))
1150 vui[jj].pos_src = ii;
1151 break;
1154 if (jj >= dst_l) /* The location has not been found. */
1156 location_chain new_node;
1158 /* Copy the location from SRC. */
1159 new_node = pool_alloc (loc_chain_pool);
1160 new_node->loc = node->loc;
1161 vui[n].lc = new_node;
1162 vui[n].pos_src = ii;
1163 vui[n].pos_dst = src_l + dst_l;
1164 n++;
1168 for (ii = 0; ii < src_l + dst_l; ii++)
1169 vui[ii].pos = vui[ii].pos_src + vui[ii].pos_dst;
1171 qsort (vui, n, sizeof (struct variable_union_info),
1172 variable_union_info_cmp_pos);
1174 /* Reconnect the nodes in sorted order. */
1175 for (ii = 1; ii < n; ii++)
1176 vui[ii - 1].lc->next = vui[ii].lc;
1177 vui[n - 1].lc->next = NULL;
1179 dst->var_part[k].loc_chain = vui[0].lc;
1180 dst->var_part[k].offset = dst->var_part[j].offset;
1182 free (vui);
1183 i--;
1184 j--;
1186 else if ((i >= 0 && j >= 0
1187 && src->var_part[i].offset < dst->var_part[j].offset)
1188 || i < 0)
1190 dst->var_part[k] = dst->var_part[j];
1191 j--;
1193 else if ((i >= 0 && j >= 0
1194 && src->var_part[i].offset > dst->var_part[j].offset)
1195 || j < 0)
1197 location_chain *nextp;
1199 /* Copy the chain from SRC. */
1200 nextp = &dst->var_part[k].loc_chain;
1201 for (node = src->var_part[i].loc_chain; node; node = node->next)
1203 location_chain new_lc;
1205 new_lc = pool_alloc (loc_chain_pool);
1206 new_lc->next = NULL;
1207 new_lc->loc = node->loc;
1209 *nextp = new_lc;
1210 nextp = &new_lc->next;
1213 dst->var_part[k].offset = src->var_part[i].offset;
1214 i--;
1217 /* We are at the basic block boundary when computing union
1218 so set the CUR_LOC to be the first element of the chain. */
1219 if (dst->var_part[k].loc_chain)
1220 dst->var_part[k].cur_loc = dst->var_part[k].loc_chain->loc;
1221 else
1222 dst->var_part[k].cur_loc = NULL;
1225 /* Continue traversing the hash table. */
1226 return 1;
1229 /* Compute union of dataflow sets SRC and DST and store it to DST. */
1231 static void
1232 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
1234 int i;
1236 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1237 attrs_list_union (&dst->regs[i], src->regs[i]);
1239 htab_traverse (src->vars, variable_union, dst);
1242 /* Flag whether two dataflow sets being compared contain different data. */
1243 static bool
1244 dataflow_set_different_value;
1246 static bool
1247 variable_part_different_p (variable_part *vp1, variable_part *vp2)
1249 location_chain lc1, lc2;
1251 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
1253 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
1255 if (REG_P (lc1->loc) && REG_P (lc2->loc))
1257 if (REGNO (lc1->loc) == REGNO (lc2->loc))
1258 break;
1260 if (rtx_equal_p (lc1->loc, lc2->loc))
1261 break;
1263 if (!lc2)
1264 return true;
1266 return false;
1269 /* Return true if variables VAR1 and VAR2 are different.
1270 If COMPARE_CURRENT_LOCATION is true compare also the cur_loc of each
1271 variable part. */
1273 static bool
1274 variable_different_p (variable var1, variable var2,
1275 bool compare_current_location)
1277 int i;
1279 if (var1 == var2)
1280 return false;
1282 if (var1->n_var_parts != var2->n_var_parts)
1283 return true;
1285 for (i = 0; i < var1->n_var_parts; i++)
1287 if (var1->var_part[i].offset != var2->var_part[i].offset)
1288 return true;
1289 if (compare_current_location)
1291 if (!((REG_P (var1->var_part[i].cur_loc)
1292 && REG_P (var2->var_part[i].cur_loc)
1293 && (REGNO (var1->var_part[i].cur_loc)
1294 == REGNO (var2->var_part[i].cur_loc)))
1295 || rtx_equal_p (var1->var_part[i].cur_loc,
1296 var2->var_part[i].cur_loc)))
1297 return true;
1299 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
1300 return true;
1301 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
1302 return true;
1304 return false;
1307 /* Compare variable *SLOT with the same variable in hash table DATA
1308 and set DATAFLOW_SET_DIFFERENT_VALUE if they are different. */
1310 static int
1311 dataflow_set_different_1 (void **slot, void *data)
1313 htab_t htab = (htab_t) data;
1314 variable var1, var2;
1316 var1 = *(variable *) slot;
1317 var2 = htab_find_with_hash (htab, var1->decl,
1318 VARIABLE_HASH_VAL (var1->decl));
1319 if (!var2)
1321 dataflow_set_different_value = true;
1323 /* Stop traversing the hash table. */
1324 return 0;
1327 if (variable_different_p (var1, var2, false))
1329 dataflow_set_different_value = true;
1331 /* Stop traversing the hash table. */
1332 return 0;
1335 /* Continue traversing the hash table. */
1336 return 1;
1339 /* Compare variable *SLOT with the same variable in hash table DATA
1340 and set DATAFLOW_SET_DIFFERENT_VALUE if they are different. */
1342 static int
1343 dataflow_set_different_2 (void **slot, void *data)
1345 htab_t htab = (htab_t) data;
1346 variable var1, var2;
1348 var1 = *(variable *) slot;
1349 var2 = htab_find_with_hash (htab, var1->decl,
1350 VARIABLE_HASH_VAL (var1->decl));
1351 if (!var2)
1353 dataflow_set_different_value = true;
1355 /* Stop traversing the hash table. */
1356 return 0;
1359 #ifdef ENABLE_CHECKING
1360 /* If both variables are defined they have been already checked for
1361 equivalence. */
1362 if (variable_different_p (var1, var2, false))
1363 abort ();
1364 #endif
1366 /* Continue traversing the hash table. */
1367 return 1;
1370 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
1372 static bool
1373 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
1375 dataflow_set_different_value = false;
1377 htab_traverse (old_set->vars, dataflow_set_different_1, new_set->vars);
1378 if (!dataflow_set_different_value)
1380 /* We have compared the variables which are in both hash tables
1381 so now only check whether there are some variables in NEW_SET->VARS
1382 which are not in OLD_SET->VARS. */
1383 htab_traverse (new_set->vars, dataflow_set_different_2, old_set->vars);
1385 return dataflow_set_different_value;
1388 /* Free the contents of dataflow set SET. */
1390 static void
1391 dataflow_set_destroy (dataflow_set *set)
1393 int i;
1395 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1396 attrs_list_clear (&set->regs[i]);
1398 htab_delete (set->vars);
1399 set->vars = NULL;
1402 /* Return true if RTL X contains a SYMBOL_REF. */
1404 static bool
1405 contains_symbol_ref (rtx x)
1407 const char *fmt;
1408 RTX_CODE code;
1409 int i;
1411 if (!x)
1412 return false;
1414 code = GET_CODE (x);
1415 if (code == SYMBOL_REF)
1416 return true;
1418 fmt = GET_RTX_FORMAT (code);
1419 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1421 if (fmt[i] == 'e')
1423 if (contains_symbol_ref (XEXP (x, i)))
1424 return true;
1426 else if (fmt[i] == 'E')
1428 int j;
1429 for (j = 0; j < XVECLEN (x, i); j++)
1430 if (contains_symbol_ref (XVECEXP (x, i, j)))
1431 return true;
1435 return false;
1438 /* Shall EXPR be tracked? */
1440 static bool
1441 track_expr_p (tree expr)
1443 rtx decl_rtl;
1444 tree realdecl;
1446 /* If EXPR is not a parameter or a variable do not track it. */
1447 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
1448 return 0;
1450 /* It also must have a name... */
1451 if (!DECL_NAME (expr))
1452 return 0;
1454 /* ... and a RTL assigned to it. */
1455 decl_rtl = DECL_RTL_IF_SET (expr);
1456 if (!decl_rtl)
1457 return 0;
1459 /* If this expression is really a debug alias of some other declaration, we
1460 don't need to track this expression if the ultimate declaration is
1461 ignored. */
1462 realdecl = expr;
1463 if (DECL_DEBUG_ALIAS_OF (realdecl))
1464 realdecl = DECL_DEBUG_ALIAS_OF (realdecl);
1466 /* Do not track EXPR if REALDECL it should be ignored for debugging
1467 purposes. */
1468 if (DECL_IGNORED_P (realdecl))
1469 return 0;
1471 /* Do not track global variables until we are able to emit correct location
1472 list for them. */
1473 if (TREE_STATIC (realdecl))
1474 return 0;
1476 /* When the EXPR is a DECL for alias of some variable (see example)
1477 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
1478 DECL_RTL contains SYMBOL_REF.
1480 Example:
1481 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
1482 char **_dl_argv;
1484 if (MEM_P (decl_rtl)
1485 && contains_symbol_ref (XEXP (decl_rtl, 0)))
1486 return 0;
1488 /* If RTX is a memory it should not be very large (because it would be
1489 an array or struct). */
1490 if (MEM_P (decl_rtl))
1492 /* Do not track structures and arrays. */
1493 if (GET_MODE (decl_rtl) == BLKmode)
1494 return 0;
1495 if (MEM_SIZE (decl_rtl)
1496 && INTVAL (MEM_SIZE (decl_rtl)) > MAX_VAR_PARTS)
1497 return 0;
1500 return 1;
1503 /* Count uses (register and memory references) LOC which will be tracked.
1504 INSN is instruction which the LOC is part of. */
1506 static int
1507 count_uses (rtx *loc, void *insn)
1509 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1511 if (REG_P (*loc))
1513 #ifdef ENABLE_CHECKING
1514 if (REGNO (*loc) >= FIRST_PSEUDO_REGISTER)
1515 abort ();
1516 #endif
1517 VTI (bb)->n_mos++;
1519 else if (MEM_P (*loc)
1520 && MEM_EXPR (*loc)
1521 && track_expr_p (MEM_EXPR (*loc)))
1523 VTI (bb)->n_mos++;
1526 return 0;
1529 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
1531 static void
1532 count_uses_1 (rtx *x, void *insn)
1534 for_each_rtx (x, count_uses, insn);
1537 /* Count stores (register and memory references) LOC which will be tracked.
1538 INSN is instruction which the LOC is part of. */
1540 static void
1541 count_stores (rtx loc, rtx expr ATTRIBUTE_UNUSED, void *insn)
1543 count_uses (&loc, insn);
1546 /* Add uses (register and memory references) LOC which will be tracked
1547 to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
1549 static int
1550 add_uses (rtx *loc, void *insn)
1552 if (REG_P (*loc))
1554 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1555 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
1557 mo->type = ((REG_EXPR (*loc) && track_expr_p (REG_EXPR (*loc)))
1558 ? MO_USE : MO_USE_NO_VAR);
1559 mo->u.loc = *loc;
1560 mo->insn = (rtx) insn;
1562 else if (MEM_P (*loc)
1563 && MEM_EXPR (*loc)
1564 && track_expr_p (MEM_EXPR (*loc)))
1566 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1567 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
1569 mo->type = MO_USE;
1570 mo->u.loc = *loc;
1571 mo->insn = (rtx) insn;
1574 return 0;
1577 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
1579 static void
1580 add_uses_1 (rtx *x, void *insn)
1582 for_each_rtx (x, add_uses, insn);
1585 /* Add stores (register and memory references) LOC which will be tracked
1586 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
1587 INSN is instruction which the LOC is part of. */
1589 static void
1590 add_stores (rtx loc, rtx expr, void *insn)
1592 if (REG_P (loc))
1594 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1595 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
1597 mo->type = ((GET_CODE (expr) != CLOBBER && REG_EXPR (loc)
1598 && track_expr_p (REG_EXPR (loc)))
1599 ? MO_SET : MO_CLOBBER);
1600 mo->u.loc = loc;
1601 mo->insn = (rtx) insn;
1603 else if (MEM_P (loc)
1604 && MEM_EXPR (loc)
1605 && track_expr_p (MEM_EXPR (loc)))
1607 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1608 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
1610 mo->type = GET_CODE (expr) == CLOBBER ? MO_CLOBBER : MO_SET;
1611 mo->u.loc = loc;
1612 mo->insn = (rtx) insn;
1616 /* Compute the changes of variable locations in the basic block BB. */
1618 static bool
1619 compute_bb_dataflow (basic_block bb)
1621 int i, n, r;
1622 bool changed;
1623 dataflow_set old_out;
1624 dataflow_set *in = &VTI (bb)->in;
1625 dataflow_set *out = &VTI (bb)->out;
1627 dataflow_set_init (&old_out, htab_elements (VTI (bb)->out.vars) + 3);
1628 dataflow_set_copy (&old_out, out);
1629 dataflow_set_copy (out, in);
1631 n = VTI (bb)->n_mos;
1632 for (i = 0; i < n; i++)
1634 switch (VTI (bb)->mos[i].type)
1636 case MO_CALL:
1637 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1638 if (TEST_HARD_REG_BIT (call_used_reg_set, r))
1639 var_regno_delete (out, r);
1640 break;
1642 case MO_USE:
1643 case MO_SET:
1645 rtx loc = VTI (bb)->mos[i].u.loc;
1647 if (REG_P (loc))
1648 var_reg_delete_and_set (out, loc);
1649 else if (MEM_P (loc))
1650 var_mem_delete_and_set (out, loc);
1652 break;
1654 case MO_USE_NO_VAR:
1655 case MO_CLOBBER:
1657 rtx loc = VTI (bb)->mos[i].u.loc;
1659 if (REG_P (loc))
1660 var_reg_delete (out, loc);
1661 else if (MEM_P (loc))
1662 var_mem_delete (out, loc);
1664 break;
1666 case MO_ADJUST:
1668 rtx base;
1670 out->stack_adjust += VTI (bb)->mos[i].u.adjust;
1671 base = gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx,
1672 out->stack_adjust));
1673 set_frame_base_location (out, base);
1675 break;
1679 changed = dataflow_set_different (&old_out, out);
1680 dataflow_set_destroy (&old_out);
1681 return changed;
1684 /* Find the locations of variables in the whole function. */
1686 static void
1687 vt_find_locations (void)
1689 fibheap_t worklist, pending, fibheap_swap;
1690 sbitmap visited, in_worklist, in_pending, sbitmap_swap;
1691 basic_block bb;
1692 edge e;
1693 int *bb_order;
1694 int *rc_order;
1695 int i;
1697 /* Compute reverse completion order of depth first search of the CFG
1698 so that the data-flow runs faster. */
1699 rc_order = xmalloc (n_basic_blocks * sizeof (int));
1700 bb_order = xmalloc (last_basic_block * sizeof (int));
1701 flow_depth_first_order_compute (NULL, rc_order);
1702 for (i = 0; i < n_basic_blocks; i++)
1703 bb_order[rc_order[i]] = i;
1704 free (rc_order);
1706 worklist = fibheap_new ();
1707 pending = fibheap_new ();
1708 visited = sbitmap_alloc (last_basic_block);
1709 in_worklist = sbitmap_alloc (last_basic_block);
1710 in_pending = sbitmap_alloc (last_basic_block);
1711 sbitmap_zero (in_worklist);
1713 FOR_EACH_BB (bb)
1714 fibheap_insert (pending, bb_order[bb->index], bb);
1715 sbitmap_ones (in_pending);
1717 while (!fibheap_empty (pending))
1719 fibheap_swap = pending;
1720 pending = worklist;
1721 worklist = fibheap_swap;
1722 sbitmap_swap = in_pending;
1723 in_pending = in_worklist;
1724 in_worklist = sbitmap_swap;
1726 sbitmap_zero (visited);
1728 while (!fibheap_empty (worklist))
1730 bb = fibheap_extract_min (worklist);
1731 RESET_BIT (in_worklist, bb->index);
1732 if (!TEST_BIT (visited, bb->index))
1734 bool changed;
1735 edge_iterator ei;
1737 SET_BIT (visited, bb->index);
1739 /* Calculate the IN set as union of predecessor OUT sets. */
1740 dataflow_set_clear (&VTI (bb)->in);
1741 FOR_EACH_EDGE (e, ei, bb->preds)
1743 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
1746 changed = compute_bb_dataflow (bb);
1747 if (changed)
1749 FOR_EACH_EDGE (e, ei, bb->succs)
1751 if (e->dest == EXIT_BLOCK_PTR)
1752 continue;
1754 if (e->dest == bb)
1755 continue;
1757 if (TEST_BIT (visited, e->dest->index))
1759 if (!TEST_BIT (in_pending, e->dest->index))
1761 /* Send E->DEST to next round. */
1762 SET_BIT (in_pending, e->dest->index);
1763 fibheap_insert (pending,
1764 bb_order[e->dest->index],
1765 e->dest);
1768 else if (!TEST_BIT (in_worklist, e->dest->index))
1770 /* Add E->DEST to current round. */
1771 SET_BIT (in_worklist, e->dest->index);
1772 fibheap_insert (worklist, bb_order[e->dest->index],
1773 e->dest);
1781 free (bb_order);
1782 fibheap_delete (worklist);
1783 fibheap_delete (pending);
1784 sbitmap_free (visited);
1785 sbitmap_free (in_worklist);
1786 sbitmap_free (in_pending);
1789 /* Print the content of the LIST to dump file. */
1791 static void
1792 dump_attrs_list (attrs list)
1794 for (; list; list = list->next)
1796 print_mem_expr (dump_file, list->decl);
1797 fprintf (dump_file, "+");
1798 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC, list->offset);
1800 fprintf (dump_file, "\n");
1803 /* Print the information about variable *SLOT to dump file. */
1805 static int
1806 dump_variable (void **slot, void *data ATTRIBUTE_UNUSED)
1808 variable var = *(variable *) slot;
1809 int i;
1810 location_chain node;
1812 fprintf (dump_file, " name: %s\n",
1813 IDENTIFIER_POINTER (DECL_NAME (var->decl)));
1814 for (i = 0; i < var->n_var_parts; i++)
1816 fprintf (dump_file, " offset %ld\n",
1817 (long) var->var_part[i].offset);
1818 for (node = var->var_part[i].loc_chain; node; node = node->next)
1820 fprintf (dump_file, " ");
1821 print_rtl_single (dump_file, node->loc);
1825 /* Continue traversing the hash table. */
1826 return 1;
1829 /* Print the information about variables from hash table VARS to dump file. */
1831 static void
1832 dump_vars (htab_t vars)
1834 if (htab_elements (vars) > 0)
1836 fprintf (dump_file, "Variables:\n");
1837 htab_traverse (vars, dump_variable, NULL);
1841 /* Print the dataflow set SET to dump file. */
1843 static void
1844 dump_dataflow_set (dataflow_set *set)
1846 int i;
1848 fprintf (dump_file, "Stack adjustment: ");
1849 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC, set->stack_adjust);
1850 fprintf (dump_file, "\n");
1851 for (i = 1; i < FIRST_PSEUDO_REGISTER; i++)
1853 if (set->regs[i])
1855 fprintf (dump_file, "Reg %d:", i);
1856 dump_attrs_list (set->regs[i]);
1859 dump_vars (set->vars);
1860 fprintf (dump_file, "\n");
1863 /* Print the IN and OUT sets for each basic block to dump file. */
1865 static void
1866 dump_dataflow_sets (void)
1868 basic_block bb;
1870 FOR_EACH_BB (bb)
1872 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
1873 fprintf (dump_file, "IN:\n");
1874 dump_dataflow_set (&VTI (bb)->in);
1875 fprintf (dump_file, "OUT:\n");
1876 dump_dataflow_set (&VTI (bb)->out);
1880 /* Add variable VAR to the hash table of changed variables and
1881 if it has no locations delete it from hash table HTAB. */
1883 static void
1884 variable_was_changed (variable var, htab_t htab)
1886 hashval_t hash = VARIABLE_HASH_VAL (var->decl);
1888 if (emit_notes)
1890 variable *slot;
1892 slot = (variable *) htab_find_slot_with_hash (changed_variables,
1893 var->decl, hash, INSERT);
1895 if (htab && var->n_var_parts == 0)
1897 variable empty_var;
1898 void **old;
1900 empty_var = pool_alloc (var_pool);
1901 empty_var->decl = var->decl;
1902 empty_var->refcount = 1;
1903 empty_var->n_var_parts = 0;
1904 *slot = empty_var;
1906 old = htab_find_slot_with_hash (htab, var->decl, hash,
1907 NO_INSERT);
1908 if (old)
1909 htab_clear_slot (htab, old);
1911 else
1913 *slot = var;
1916 else
1918 #ifdef ENABLE_CHECKING
1919 if (!htab)
1920 abort ();
1921 #endif
1922 if (var->n_var_parts == 0)
1924 void **slot = htab_find_slot_with_hash (htab, var->decl, hash,
1925 NO_INSERT);
1926 if (slot)
1927 htab_clear_slot (htab, slot);
1932 /* Set the location of frame_base_decl to LOC in dataflow set SET. This
1933 function expects that frame_base_decl has already one location for offset 0
1934 in the variable table. */
1936 static void
1937 set_frame_base_location (dataflow_set *set, rtx loc)
1939 variable var;
1941 var = htab_find_with_hash (set->vars, frame_base_decl,
1942 VARIABLE_HASH_VAL (frame_base_decl));
1943 #ifdef ENABLE_CHECKING
1944 if (!var)
1945 abort ();
1946 if (var->n_var_parts != 1)
1947 abort ();
1948 if (var->var_part[0].offset != 0)
1949 abort ();
1950 if (!var->var_part[0].loc_chain)
1951 abort ();
1952 #endif
1954 /* If frame_base_decl is shared unshare it first. */
1955 if (var->refcount > 1)
1956 var = unshare_variable (set, var);
1958 var->var_part[0].loc_chain->loc = loc;
1959 var->var_part[0].cur_loc = loc;
1960 variable_was_changed (var, set->vars);
1963 /* Set the part of variable's location in the dataflow set SET. The variable
1964 part is specified by variable's declaration DECL and offset OFFSET and the
1965 part's location by LOC. */
1967 static void
1968 set_variable_part (dataflow_set *set, rtx loc, tree decl, HOST_WIDE_INT offset)
1970 int pos, low, high;
1971 location_chain node, next;
1972 location_chain *nextp;
1973 variable var;
1974 void **slot;
1976 slot = htab_find_slot_with_hash (set->vars, decl,
1977 VARIABLE_HASH_VAL (decl), INSERT);
1978 if (!*slot)
1980 /* Create new variable information. */
1981 var = pool_alloc (var_pool);
1982 var->decl = decl;
1983 var->refcount = 1;
1984 var->n_var_parts = 1;
1985 var->var_part[0].offset = offset;
1986 var->var_part[0].loc_chain = NULL;
1987 var->var_part[0].cur_loc = NULL;
1988 *slot = var;
1989 pos = 0;
1991 else
1993 var = (variable) *slot;
1995 /* Find the location part. */
1996 low = 0;
1997 high = var->n_var_parts;
1998 while (low != high)
2000 pos = (low + high) / 2;
2001 if (var->var_part[pos].offset < offset)
2002 low = pos + 1;
2003 else
2004 high = pos;
2006 pos = low;
2008 if (pos < var->n_var_parts && var->var_part[pos].offset == offset)
2010 node = var->var_part[pos].loc_chain;
2012 if (node
2013 && ((REG_P (node->loc) && REG_P (loc)
2014 && REGNO (node->loc) == REGNO (loc))
2015 || rtx_equal_p (node->loc, loc)))
2017 /* LOC is in the beginning of the chain so we have nothing
2018 to do. */
2019 return;
2021 else
2023 /* We have to make a copy of a shared variable. */
2024 if (var->refcount > 1)
2025 var = unshare_variable (set, var);
2028 else
2030 /* We have not found the location part, new one will be created. */
2032 /* We have to make a copy of the shared variable. */
2033 if (var->refcount > 1)
2034 var = unshare_variable (set, var);
2036 #ifdef ENABLE_CHECKING
2037 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2038 thus there are at most MAX_VAR_PARTS different offsets. */
2039 if (var->n_var_parts >= MAX_VAR_PARTS)
2040 abort ();
2041 #endif
2043 /* We have to move the elements of array starting at index low to the
2044 next position. */
2045 for (high = var->n_var_parts; high > low; high--)
2046 var->var_part[high] = var->var_part[high - 1];
2048 var->n_var_parts++;
2049 var->var_part[pos].offset = offset;
2050 var->var_part[pos].loc_chain = NULL;
2051 var->var_part[pos].cur_loc = NULL;
2055 /* Delete the location from the list. */
2056 nextp = &var->var_part[pos].loc_chain;
2057 for (node = var->var_part[pos].loc_chain; node; node = next)
2059 next = node->next;
2060 if ((REG_P (node->loc) && REG_P (loc)
2061 && REGNO (node->loc) == REGNO (loc))
2062 || rtx_equal_p (node->loc, loc))
2064 pool_free (loc_chain_pool, node);
2065 *nextp = next;
2066 break;
2068 else
2069 nextp = &node->next;
2072 /* Add the location to the beginning. */
2073 node = pool_alloc (loc_chain_pool);
2074 node->loc = loc;
2075 node->next = var->var_part[pos].loc_chain;
2076 var->var_part[pos].loc_chain = node;
2078 /* If no location was emitted do so. */
2079 if (var->var_part[pos].cur_loc == NULL)
2081 var->var_part[pos].cur_loc = loc;
2082 variable_was_changed (var, set->vars);
2086 /* Delete the part of variable's location from dataflow set SET. The variable
2087 part is specified by variable's declaration DECL and offset OFFSET and the
2088 part's location by LOC. */
2090 static void
2091 delete_variable_part (dataflow_set *set, rtx loc, tree decl,
2092 HOST_WIDE_INT offset)
2094 int pos, low, high;
2095 void **slot;
2097 slot = htab_find_slot_with_hash (set->vars, decl, VARIABLE_HASH_VAL (decl),
2098 NO_INSERT);
2099 if (slot)
2101 variable var = (variable) *slot;
2103 /* Find the location part. */
2104 low = 0;
2105 high = var->n_var_parts;
2106 while (low != high)
2108 pos = (low + high) / 2;
2109 if (var->var_part[pos].offset < offset)
2110 low = pos + 1;
2111 else
2112 high = pos;
2114 pos = low;
2116 if (pos < var->n_var_parts && var->var_part[pos].offset == offset)
2118 location_chain node, next;
2119 location_chain *nextp;
2120 bool changed;
2122 if (var->refcount > 1)
2124 /* If the variable contains the location part we have to
2125 make a copy of the variable. */
2126 for (node = var->var_part[pos].loc_chain; node;
2127 node = node->next)
2129 if ((REG_P (node->loc) && REG_P (loc)
2130 && REGNO (node->loc) == REGNO (loc))
2131 || rtx_equal_p (node->loc, loc))
2133 var = unshare_variable (set, var);
2134 break;
2139 /* Delete the location part. */
2140 nextp = &var->var_part[pos].loc_chain;
2141 for (node = *nextp; node; node = next)
2143 next = node->next;
2144 if ((REG_P (node->loc) && REG_P (loc)
2145 && REGNO (node->loc) == REGNO (loc))
2146 || rtx_equal_p (node->loc, loc))
2148 pool_free (loc_chain_pool, node);
2149 *nextp = next;
2150 break;
2152 else
2153 nextp = &node->next;
2156 /* If we have deleted the location which was last emitted
2157 we have to emit new location so add the variable to set
2158 of changed variables. */
2159 if (var->var_part[pos].cur_loc
2160 && ((REG_P (loc)
2161 && REG_P (var->var_part[pos].cur_loc)
2162 && REGNO (loc) == REGNO (var->var_part[pos].cur_loc))
2163 || rtx_equal_p (loc, var->var_part[pos].cur_loc)))
2165 changed = true;
2166 if (var->var_part[pos].loc_chain)
2167 var->var_part[pos].cur_loc = var->var_part[pos].loc_chain->loc;
2169 else
2170 changed = false;
2172 if (var->var_part[pos].loc_chain == NULL)
2174 var->n_var_parts--;
2175 while (pos < var->n_var_parts)
2177 var->var_part[pos] = var->var_part[pos + 1];
2178 pos++;
2181 if (changed)
2182 variable_was_changed (var, set->vars);
2187 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
2188 additional parameters: WHERE specifies whether the note shall be emitted
2189 before of after instruction INSN. */
2191 static int
2192 emit_note_insn_var_location (void **varp, void *data)
2194 variable var = *(variable *) varp;
2195 rtx insn = ((emit_note_data *)data)->insn;
2196 enum emit_note_where where = ((emit_note_data *)data)->where;
2197 rtx note;
2198 int i;
2199 bool complete;
2200 HOST_WIDE_INT last_limit;
2201 tree type_size_unit;
2203 #ifdef ENABLE_CHECKING
2204 if (!var->decl)
2205 abort ();
2206 #endif
2208 complete = true;
2209 last_limit = 0;
2210 for (i = 0; i < var->n_var_parts; i++)
2212 if (last_limit < var->var_part[i].offset)
2214 complete = false;
2215 break;
2217 last_limit
2218 = (var->var_part[i].offset
2219 + GET_MODE_SIZE (GET_MODE (var->var_part[i].loc_chain->loc)));
2221 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (var->decl));
2222 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
2223 complete = false;
2225 if (where == EMIT_NOTE_AFTER_INSN)
2226 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
2227 else
2228 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
2230 if (!complete)
2232 NOTE_VAR_LOCATION (note) = gen_rtx_VAR_LOCATION (VOIDmode, var->decl,
2233 NULL_RTX);
2235 else if (var->n_var_parts == 1)
2237 rtx expr_list
2238 = gen_rtx_EXPR_LIST (VOIDmode,
2239 var->var_part[0].loc_chain->loc,
2240 GEN_INT (var->var_part[0].offset));
2242 NOTE_VAR_LOCATION (note) = gen_rtx_VAR_LOCATION (VOIDmode, var->decl,
2243 expr_list);
2245 else if (var->n_var_parts)
2247 rtx argp[MAX_VAR_PARTS];
2248 rtx parallel;
2250 for (i = 0; i < var->n_var_parts; i++)
2251 argp[i] = gen_rtx_EXPR_LIST (VOIDmode, var->var_part[i].loc_chain->loc,
2252 GEN_INT (var->var_part[i].offset));
2253 parallel = gen_rtx_PARALLEL (VOIDmode,
2254 gen_rtvec_v (var->n_var_parts, argp));
2255 NOTE_VAR_LOCATION (note) = gen_rtx_VAR_LOCATION (VOIDmode, var->decl,
2256 parallel);
2259 htab_clear_slot (changed_variables, varp);
2261 /* When there are no location parts the variable has been already
2262 removed from hash table and a new empty variable was created.
2263 Free the empty variable. */
2264 if (var->n_var_parts == 0)
2266 pool_free (var_pool, var);
2269 /* Continue traversing the hash table. */
2270 return 1;
2273 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
2274 CHANGED_VARIABLES and delete this chain. WHERE specifies whether the notes
2275 shall be emitted before of after instruction INSN. */
2277 static void
2278 emit_notes_for_changes (rtx insn, enum emit_note_where where)
2280 emit_note_data data;
2282 data.insn = insn;
2283 data.where = where;
2284 htab_traverse (changed_variables, emit_note_insn_var_location, &data);
2287 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
2288 same variable in hash table DATA or is not there at all. */
2290 static int
2291 emit_notes_for_differences_1 (void **slot, void *data)
2293 htab_t new_vars = (htab_t) data;
2294 variable old_var, new_var;
2296 old_var = *(variable *) slot;
2297 new_var = htab_find_with_hash (new_vars, old_var->decl,
2298 VARIABLE_HASH_VAL (old_var->decl));
2300 if (!new_var)
2302 /* Variable has disappeared. */
2303 variable empty_var;
2305 empty_var = pool_alloc (var_pool);
2306 empty_var->decl = old_var->decl;
2307 empty_var->refcount = 1;
2308 empty_var->n_var_parts = 0;
2309 variable_was_changed (empty_var, NULL);
2311 else if (variable_different_p (old_var, new_var, true))
2313 variable_was_changed (new_var, NULL);
2316 /* Continue traversing the hash table. */
2317 return 1;
2320 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
2321 table DATA. */
2323 static int
2324 emit_notes_for_differences_2 (void **slot, void *data)
2326 htab_t old_vars = (htab_t) data;
2327 variable old_var, new_var;
2329 new_var = *(variable *) slot;
2330 old_var = htab_find_with_hash (old_vars, new_var->decl,
2331 VARIABLE_HASH_VAL (new_var->decl));
2332 if (!old_var)
2334 /* Variable has appeared. */
2335 variable_was_changed (new_var, NULL);
2338 /* Continue traversing the hash table. */
2339 return 1;
2342 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
2343 NEW_SET. */
2345 static void
2346 emit_notes_for_differences (rtx insn, dataflow_set *old_set,
2347 dataflow_set *new_set)
2349 htab_traverse (old_set->vars, emit_notes_for_differences_1, new_set->vars);
2350 htab_traverse (new_set->vars, emit_notes_for_differences_2, old_set->vars);
2351 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN);
2354 /* Emit the notes for changes of location parts in the basic block BB. */
2356 static void
2357 emit_notes_in_bb (basic_block bb)
2359 int i;
2360 dataflow_set set;
2362 dataflow_set_init (&set, htab_elements (VTI (bb)->in.vars) + 3);
2363 dataflow_set_copy (&set, &VTI (bb)->in);
2365 for (i = 0; i < VTI (bb)->n_mos; i++)
2367 rtx insn = VTI (bb)->mos[i].insn;
2369 switch (VTI (bb)->mos[i].type)
2371 case MO_CALL:
2373 int r;
2375 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
2376 if (TEST_HARD_REG_BIT (call_used_reg_set, r))
2378 var_regno_delete (&set, r);
2380 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN);
2382 break;
2384 case MO_USE:
2385 case MO_SET:
2387 rtx loc = VTI (bb)->mos[i].u.loc;
2389 if (REG_P (loc))
2390 var_reg_delete_and_set (&set, loc);
2391 else
2392 var_mem_delete_and_set (&set, loc);
2394 if (VTI (bb)->mos[i].type == MO_USE)
2395 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN);
2396 else
2397 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN);
2399 break;
2401 case MO_USE_NO_VAR:
2402 case MO_CLOBBER:
2404 rtx loc = VTI (bb)->mos[i].u.loc;
2406 if (REG_P (loc))
2407 var_reg_delete (&set, loc);
2408 else
2409 var_mem_delete (&set, loc);
2411 if (VTI (bb)->mos[i].type == MO_USE_NO_VAR)
2412 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN);
2413 else
2414 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN);
2416 break;
2418 case MO_ADJUST:
2420 rtx base;
2422 set.stack_adjust += VTI (bb)->mos[i].u.adjust;
2423 base = gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx,
2424 set.stack_adjust));
2425 set_frame_base_location (&set, base);
2426 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN);
2428 break;
2431 dataflow_set_destroy (&set);
2434 /* Emit notes for the whole function. */
2436 static void
2437 vt_emit_notes (void)
2439 basic_block bb;
2440 dataflow_set *last_out;
2441 dataflow_set empty;
2443 #ifdef ENABLE_CHECKING
2444 if (htab_elements (changed_variables))
2445 abort ();
2446 #endif
2448 /* Enable emitting notes by functions (mainly by set_variable_part and
2449 delete_variable_part). */
2450 emit_notes = true;
2452 dataflow_set_init (&empty, 7);
2453 last_out = &empty;
2455 FOR_EACH_BB (bb)
2457 /* Emit the notes for changes of variable locations between two
2458 subsequent basic blocks. */
2459 emit_notes_for_differences (BB_HEAD (bb), last_out, &VTI (bb)->in);
2461 /* Emit the notes for the changes in the basic block itself. */
2462 emit_notes_in_bb (bb);
2464 last_out = &VTI (bb)->out;
2466 dataflow_set_destroy (&empty);
2467 emit_notes = false;
2470 /* If there is a declaration and offset associated with register/memory RTL
2471 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
2473 static bool
2474 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
2476 if (REG_P (rtl))
2478 if (REG_ATTRS (rtl))
2480 *declp = REG_EXPR (rtl);
2481 *offsetp = REG_OFFSET (rtl);
2482 return true;
2485 else if (MEM_P (rtl))
2487 if (MEM_ATTRS (rtl))
2489 *declp = MEM_EXPR (rtl);
2490 *offsetp = MEM_OFFSET (rtl) ? INTVAL (MEM_OFFSET (rtl)) : 0;
2491 return true;
2494 return false;
2497 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
2499 static void
2500 vt_add_function_parameters (void)
2502 tree parm;
2504 for (parm = DECL_ARGUMENTS (current_function_decl);
2505 parm; parm = TREE_CHAIN (parm))
2507 rtx decl_rtl = DECL_RTL_IF_SET (parm);
2508 rtx incoming = DECL_INCOMING_RTL (parm);
2509 tree decl;
2510 HOST_WIDE_INT offset;
2511 dataflow_set *out;
2513 if (TREE_CODE (parm) != PARM_DECL)
2514 continue;
2516 if (!DECL_NAME (parm))
2517 continue;
2519 if (!decl_rtl || !incoming)
2520 continue;
2522 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
2523 continue;
2525 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
2526 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
2527 continue;
2529 if (!decl)
2530 continue;
2532 #ifdef ENABLE_CHECKING
2533 if (parm != decl)
2534 abort ();
2535 #endif
2537 incoming = eliminate_regs (incoming, 0, NULL_RTX);
2538 out = &VTI (ENTRY_BLOCK_PTR)->out;
2540 if (REG_P (incoming))
2542 #ifdef ENABLE_CHECKING
2543 if (REGNO (incoming) >= FIRST_PSEUDO_REGISTER)
2544 abort ();
2545 #endif
2546 attrs_list_insert (&out->regs[REGNO (incoming)],
2547 parm, offset, incoming);
2548 set_variable_part (out, incoming, parm, offset);
2550 else if (MEM_P (incoming))
2552 set_variable_part (out, incoming, parm, offset);
2557 /* Allocate and initialize the data structures for variable tracking
2558 and parse the RTL to get the micro operations. */
2560 static void
2561 vt_initialize (void)
2563 basic_block bb;
2565 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
2567 FOR_EACH_BB (bb)
2569 rtx insn;
2570 HOST_WIDE_INT pre, post;
2572 /* Count the number of micro operations. */
2573 VTI (bb)->n_mos = 0;
2574 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
2575 insn = NEXT_INSN (insn))
2577 if (INSN_P (insn))
2579 if (!frame_pointer_needed)
2581 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
2582 if (pre)
2583 VTI (bb)->n_mos++;
2584 if (post)
2585 VTI (bb)->n_mos++;
2587 note_uses (&PATTERN (insn), count_uses_1, insn);
2588 note_stores (PATTERN (insn), count_stores, insn);
2589 if (CALL_P (insn))
2590 VTI (bb)->n_mos++;
2594 /* Add the micro-operations to the array. */
2595 VTI (bb)->mos = xmalloc (VTI (bb)->n_mos
2596 * sizeof (struct micro_operation_def));
2597 VTI (bb)->n_mos = 0;
2598 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
2599 insn = NEXT_INSN (insn))
2601 if (INSN_P (insn))
2603 int n1, n2;
2605 if (!frame_pointer_needed)
2607 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
2608 if (pre)
2610 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
2612 mo->type = MO_ADJUST;
2613 mo->u.adjust = pre;
2614 mo->insn = insn;
2618 n1 = VTI (bb)->n_mos;
2619 note_uses (&PATTERN (insn), add_uses_1, insn);
2620 n2 = VTI (bb)->n_mos - 1;
2622 /* Order the MO_USEs to be before MO_USE_NO_VARs. */
2623 while (n1 < n2)
2625 while (n1 < n2 && VTI (bb)->mos[n1].type == MO_USE)
2626 n1++;
2627 while (n1 < n2 && VTI (bb)->mos[n2].type == MO_USE_NO_VAR)
2628 n2--;
2629 if (n1 < n2)
2631 micro_operation sw;
2633 sw = VTI (bb)->mos[n1];
2634 VTI (bb)->mos[n1] = VTI (bb)->mos[n2];
2635 VTI (bb)->mos[n2] = sw;
2639 if (CALL_P (insn))
2641 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
2643 mo->type = MO_CALL;
2644 mo->insn = insn;
2647 n1 = VTI (bb)->n_mos;
2648 note_stores (PATTERN (insn), add_stores, insn);
2649 n2 = VTI (bb)->n_mos - 1;
2651 /* Order the MO_SETs to be before MO_CLOBBERs. */
2652 while (n1 < n2)
2654 while (n1 < n2 && VTI (bb)->mos[n1].type == MO_SET)
2655 n1++;
2656 while (n1 < n2 && VTI (bb)->mos[n2].type == MO_CLOBBER)
2657 n2--;
2658 if (n1 < n2)
2660 micro_operation sw;
2662 sw = VTI (bb)->mos[n1];
2663 VTI (bb)->mos[n1] = VTI (bb)->mos[n2];
2664 VTI (bb)->mos[n2] = sw;
2668 if (!frame_pointer_needed && post)
2670 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
2672 mo->type = MO_ADJUST;
2673 mo->u.adjust = post;
2674 mo->insn = insn;
2680 /* Init the IN and OUT sets. */
2681 FOR_ALL_BB (bb)
2683 VTI (bb)->visited = false;
2684 dataflow_set_init (&VTI (bb)->in, 7);
2685 dataflow_set_init (&VTI (bb)->out, 7);
2688 attrs_pool = create_alloc_pool ("attrs_def pool",
2689 sizeof (struct attrs_def), 1024);
2690 var_pool = create_alloc_pool ("variable_def pool",
2691 sizeof (struct variable_def), 64);
2692 loc_chain_pool = create_alloc_pool ("location_chain_def pool",
2693 sizeof (struct location_chain_def),
2694 1024);
2695 changed_variables = htab_create (10, variable_htab_hash, variable_htab_eq,
2696 NULL);
2697 vt_add_function_parameters ();
2699 if (!frame_pointer_needed)
2701 rtx base;
2703 /* Create fake variable for tracking stack pointer changes. */
2704 frame_base_decl = make_node (VAR_DECL);
2705 DECL_NAME (frame_base_decl) = get_identifier ("___frame_base_decl");
2706 TREE_TYPE (frame_base_decl) = char_type_node;
2707 DECL_ARTIFICIAL (frame_base_decl) = 1;
2708 DECL_IGNORED_P (frame_base_decl) = 1;
2710 /* Set its initial "location". */
2711 frame_stack_adjust = -prologue_stack_adjust ();
2712 base = gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx,
2713 frame_stack_adjust));
2714 set_variable_part (&VTI (ENTRY_BLOCK_PTR)->out, base, frame_base_decl, 0);
2716 else
2718 frame_base_decl = NULL;
2722 /* Free the data structures needed for variable tracking. */
2724 static void
2725 vt_finalize (void)
2727 basic_block bb;
2729 FOR_EACH_BB (bb)
2731 free (VTI (bb)->mos);
2734 FOR_ALL_BB (bb)
2736 dataflow_set_destroy (&VTI (bb)->in);
2737 dataflow_set_destroy (&VTI (bb)->out);
2739 free_aux_for_blocks ();
2740 free_alloc_pool (attrs_pool);
2741 free_alloc_pool (var_pool);
2742 free_alloc_pool (loc_chain_pool);
2743 htab_delete (changed_variables);
2746 /* The entry point to variable tracking pass. */
2748 void
2749 variable_tracking_main (void)
2751 if (n_basic_blocks > 500 && n_edges / n_basic_blocks >= 20)
2752 return;
2754 mark_dfs_back_edges ();
2755 vt_initialize ();
2756 if (!frame_pointer_needed)
2758 if (!vt_stack_adjustments ())
2760 vt_finalize ();
2761 return;
2765 vt_find_locations ();
2766 vt_emit_notes ();
2768 if (dump_file)
2770 dump_dataflow_sets ();
2771 dump_flow_info (dump_file);
2774 vt_finalize ();