PR target/19236
[official-gcc.git] / gcc / df.c
blob07da6e5b1cc4a295d49df232595e43c5346f39d4
1 /* Dataflow support routines.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4 Contributed by Michael P. Hayes (m.hayes@elec.canterbury.ac.nz,
5 mhayes@redhat.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 02111-1307, USA.
25 OVERVIEW:
27 This file provides some dataflow routines for computing reaching defs,
28 upward exposed uses, live variables, def-use chains, and use-def
29 chains. The global dataflow is performed using simple iterative
30 methods with a worklist and could be sped up by ordering the blocks
31 with a depth first search order.
33 A `struct ref' data structure (ref) is allocated for every register
34 reference (def or use) and this records the insn and bb the ref is
35 found within. The refs are linked together in chains of uses and defs
36 for each insn and for each register. Each ref also has a chain field
37 that links all the use refs for a def or all the def refs for a use.
38 This is used to create use-def or def-use chains.
41 USAGE:
43 Here's an example of using the dataflow routines.
45 struct df *df;
47 df = df_init ();
49 df_analyze (df, 0, DF_ALL);
51 df_dump (df, DF_ALL, stderr);
53 df_finish (df);
56 df_init simply creates a poor man's object (df) that needs to be
57 passed to all the dataflow routines. df_finish destroys this
58 object and frees up any allocated memory. DF_ALL says to analyze
59 everything.
61 df_analyze performs the following:
63 1. Records defs and uses by scanning the insns in each basic block
64 or by scanning the insns queued by df_insn_modify.
65 2. Links defs and uses into insn-def and insn-use chains.
66 3. Links defs and uses into reg-def and reg-use chains.
67 4. Assigns LUIDs to each insn (for modified blocks).
68 5. Calculates local reaching definitions.
69 6. Calculates global reaching definitions.
70 7. Creates use-def chains.
71 8. Calculates local reaching uses (upwards exposed uses).
72 9. Calculates global reaching uses.
73 10. Creates def-use chains.
74 11. Calculates local live registers.
75 12. Calculates global live registers.
76 13. Calculates register lifetimes and determines local registers.
79 PHILOSOPHY:
81 Note that the dataflow information is not updated for every newly
82 deleted or created insn. If the dataflow information requires
83 updating then all the changed, new, or deleted insns needs to be
84 marked with df_insn_modify (or df_insns_modify) either directly or
85 indirectly (say through calling df_insn_delete). df_insn_modify
86 marks all the modified insns to get processed the next time df_analyze
87 is called.
89 Beware that tinkering with insns may invalidate the dataflow information.
90 The philosophy behind these routines is that once the dataflow
91 information has been gathered, the user should store what they require
92 before they tinker with any insn. Once a reg is replaced, for example,
93 then the reg-def/reg-use chains will point to the wrong place. Once a
94 whole lot of changes have been made, df_analyze can be called again
95 to update the dataflow information. Currently, this is not very smart
96 with regard to propagating changes to the dataflow so it should not
97 be called very often.
100 DATA STRUCTURES:
102 The basic object is a REF (reference) and this may either be a DEF
103 (definition) or a USE of a register.
105 These are linked into a variety of lists; namely reg-def, reg-use,
106 insn-def, insn-use, def-use, and use-def lists. For example,
107 the reg-def lists contain all the refs that define a given register
108 while the insn-use lists contain all the refs used by an insn.
110 Note that the reg-def and reg-use chains are generally short (except for the
111 hard registers) and thus it is much faster to search these chains
112 rather than searching the def or use bitmaps.
114 If the insns are in SSA form then the reg-def and use-def lists
115 should only contain the single defining ref.
118 TODO:
120 1) Incremental dataflow analysis.
122 Note that if a loop invariant insn is hoisted (or sunk), we do not
123 need to change the def-use or use-def chains. All we have to do is to
124 change the bb field for all the associated defs and uses and to
125 renumber the LUIDs for the original and new basic blocks of the insn.
127 When shadowing loop mems we create new uses and defs for new pseudos
128 so we do not affect the existing dataflow information.
130 My current strategy is to queue up all modified, created, or deleted
131 insns so when df_analyze is called we can easily determine all the new
132 or deleted refs. Currently the global dataflow information is
133 recomputed from scratch but this could be propagated more efficiently.
135 2) Reduced memory requirements.
137 We could operate a pool of ref structures. When a ref is deleted it
138 gets returned to the pool (say by linking on to a chain of free refs).
139 This will require a pair of bitmaps for defs and uses so that we can
140 tell which ones have been changed. Alternatively, we could
141 periodically squeeze the def and use tables and associated bitmaps and
142 renumber the def and use ids.
144 3) Ordering of reg-def and reg-use lists.
146 Should the first entry in the def list be the first def (within a BB)?
147 Similarly, should the first entry in the use list be the last use
148 (within a BB)?
150 4) Working with a sub-CFG.
152 Often the whole CFG does not need to be analyzed, for example,
153 when optimizing a loop, only certain registers are of interest.
154 Perhaps there should be a bitmap argument to df_analyze to specify
155 which registers should be analyzed?
158 NOTES:
160 Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
161 both a use and a def. These are both marked read/write to show that they
162 are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
163 will generate a use of reg 42 followed by a def of reg 42 (both marked
164 read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
165 generates a use of reg 41 then a def of reg 41 (both marked read/write),
166 even though reg 41 is decremented before it is used for the memory
167 address in this second example.
169 A set to a REG inside a ZERO_EXTRACT, SIGN_EXTRACT, or SUBREG invokes
170 a read-modify write operation. We generate both a use and a def
171 and again mark them read/write.
174 #include "config.h"
175 #include "system.h"
176 #include "coretypes.h"
177 #include "tm.h"
178 #include "rtl.h"
179 #include "tm_p.h"
180 #include "insn-config.h"
181 #include "recog.h"
182 #include "function.h"
183 #include "regs.h"
184 #include "alloc-pool.h"
185 #include "hard-reg-set.h"
186 #include "basic-block.h"
187 #include "sbitmap.h"
188 #include "bitmap.h"
189 #include "df.h"
191 #define FOR_EACH_BB_IN_BITMAP(BITMAP, MIN, BB, CODE) \
192 do \
194 unsigned int node_; \
195 bitmap_iterator bi; \
196 EXECUTE_IF_SET_IN_BITMAP (BITMAP, MIN, node_, bi) \
198 (BB) = BASIC_BLOCK (node_); \
199 CODE; \
202 while (0)
204 static alloc_pool df_ref_pool;
205 static alloc_pool df_link_pool;
206 static struct df *ddf;
208 static void df_reg_table_realloc (struct df *, int);
209 static void df_insn_table_realloc (struct df *, unsigned int);
210 static void df_bb_table_realloc (struct df *, unsigned int);
211 static void df_bitmaps_alloc (struct df *, bitmap, int);
212 static void df_bitmaps_free (struct df *, int);
213 static void df_free (struct df *);
214 static void df_alloc (struct df *, int);
216 static rtx df_reg_use_gen (unsigned int);
218 static inline struct df_link *df_link_create (struct ref *, struct df_link *);
219 static struct df_link *df_ref_unlink (struct df_link **, struct ref *);
220 static void df_def_unlink (struct df *, struct ref *);
221 static void df_use_unlink (struct df *, struct ref *);
222 static void df_insn_refs_unlink (struct df *, basic_block, rtx);
223 #if 0
224 static void df_bb_refs_unlink (struct df *, basic_block);
225 static void df_refs_unlink (struct df *, bitmap);
226 #endif
228 static struct ref *df_ref_create (struct df *, rtx, rtx *, rtx,
229 enum df_ref_type, enum df_ref_flags);
230 static void df_ref_record_1 (struct df *, rtx, rtx *, rtx, enum df_ref_type,
231 enum df_ref_flags);
232 static void df_ref_record (struct df *, rtx, rtx *, rtx, enum df_ref_type,
233 enum df_ref_flags);
234 static void df_def_record_1 (struct df *, rtx, basic_block, rtx);
235 static void df_defs_record (struct df *, rtx, basic_block, rtx);
236 static void df_uses_record (struct df *, rtx *, enum df_ref_type,
237 basic_block, rtx, enum df_ref_flags);
238 static void df_insn_refs_record (struct df *, basic_block, rtx);
239 static void df_bb_refs_record (struct df *, basic_block);
240 static void df_refs_record (struct df *, bitmap);
242 static void df_bb_reg_def_chain_create (struct df *, basic_block);
243 static void df_reg_def_chain_create (struct df *, bitmap, bool);
244 static void df_bb_reg_use_chain_create (struct df *, basic_block);
245 static void df_reg_use_chain_create (struct df *, bitmap, bool);
246 static void df_bb_du_chain_create (struct df *, basic_block, bitmap);
247 static void df_du_chain_create (struct df *, bitmap);
248 static void df_bb_ud_chain_create (struct df *, basic_block);
249 static void df_ud_chain_create (struct df *, bitmap);
250 static void df_bb_rd_local_compute (struct df *, basic_block, bitmap);
251 static void df_rd_local_compute (struct df *, bitmap);
252 static void df_bb_ru_local_compute (struct df *, basic_block);
253 static void df_ru_local_compute (struct df *, bitmap);
254 static void df_bb_lr_local_compute (struct df *, basic_block);
255 static void df_lr_local_compute (struct df *, bitmap);
256 static void df_bb_reg_info_compute (struct df *, basic_block, bitmap);
257 static void df_reg_info_compute (struct df *, bitmap);
259 static int df_bb_luids_set (struct df *df, basic_block);
260 static int df_luids_set (struct df *df, bitmap);
262 static int df_modified_p (struct df *, bitmap);
263 static int df_refs_queue (struct df *);
264 static int df_refs_process (struct df *);
265 static int df_bb_refs_update (struct df *, basic_block);
266 static int df_refs_update (struct df *, bitmap);
267 static void df_analyze_1 (struct df *, bitmap, int, int);
269 static void df_insns_modify (struct df *, basic_block, rtx, rtx);
270 static int df_rtx_mem_replace (rtx *, void *);
271 static int df_rtx_reg_replace (rtx *, void *);
272 void df_refs_reg_replace (struct df *, bitmap, struct df_link *, rtx, rtx);
274 static int df_def_dominates_all_uses_p (struct df *, struct ref *def);
275 static int df_def_dominates_uses_p (struct df *, struct ref *def, bitmap);
276 static struct ref *df_bb_insn_regno_last_use_find (struct df *, basic_block,
277 rtx, unsigned int);
278 static struct ref *df_bb_insn_regno_first_def_find (struct df *, basic_block,
279 rtx, unsigned int);
281 static void df_chain_dump (struct df_link *, FILE *file);
282 static void df_chain_dump_regno (struct df_link *, FILE *file);
283 static void df_regno_debug (struct df *, unsigned int, FILE *);
284 static void df_ref_debug (struct df *, struct ref *, FILE *);
285 static void df_rd_transfer_function (int, int *, void *, void *, void *,
286 void *, void *);
287 static void df_ru_transfer_function (int, int *, void *, void *, void *,
288 void *, void *);
289 static void df_lr_transfer_function (int, int *, void *, void *, void *,
290 void *, void *);
291 static void hybrid_search (basic_block, struct dataflow *,
292 sbitmap, sbitmap, sbitmap);
295 /* Local memory allocation/deallocation routines. */
298 /* Increase the insn info table to have space for at least SIZE + 1
299 elements. */
300 static void
301 df_insn_table_realloc (struct df *df, unsigned int size)
303 size++;
304 if (size <= df->insn_size)
305 return;
307 /* Make the table a little larger than requested, so we do not need
308 to enlarge it so often. */
309 size += df->insn_size / 4;
311 df->insns = xrealloc (df->insns, size * sizeof (struct insn_info));
313 memset (df->insns + df->insn_size, 0,
314 (size - df->insn_size) * sizeof (struct insn_info));
316 df->insn_size = size;
318 if (! df->insns_modified)
320 df->insns_modified = BITMAP_XMALLOC ();
321 bitmap_zero (df->insns_modified);
325 /* Increase the bb info table to have space for at least SIZE + 1
326 elements. */
328 static void
329 df_bb_table_realloc (struct df *df, unsigned int size)
331 size++;
332 if (size <= df->n_bbs)
333 return;
335 /* Make the table a little larger than requested, so we do not need
336 to enlarge it so often. */
337 size += df->n_bbs / 4;
339 df->bbs = xrealloc (df->bbs, size * sizeof (struct bb_info));
341 memset (df->bbs + df->n_bbs, 0, (size - df->n_bbs) * sizeof (struct bb_info));
343 df->n_bbs = size;
346 /* Increase the reg info table by SIZE more elements. */
347 static void
348 df_reg_table_realloc (struct df *df, int size)
350 /* Make table 25 percent larger by default. */
351 if (! size)
352 size = df->reg_size / 4;
354 size += df->reg_size;
355 if (size < max_reg_num ())
356 size = max_reg_num ();
358 df->regs = xrealloc (df->regs, size * sizeof (struct reg_info));
359 df->reg_def_last = xrealloc (df->reg_def_last,
360 size * sizeof (struct ref *));
362 /* Zero the new entries. */
363 memset (df->regs + df->reg_size, 0,
364 (size - df->reg_size) * sizeof (struct reg_info));
366 df->reg_size = size;
370 /* Allocate bitmaps for each basic block. */
372 static void
373 df_bitmaps_alloc (struct df *df, bitmap blocks, int flags)
375 basic_block bb;
377 df->n_defs = df->def_id;
378 df->n_uses = df->use_id;
380 if (!blocks)
381 blocks = df->all_blocks;
383 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
385 struct bb_info *bb_info = DF_BB_INFO (df, bb);
387 if (flags & DF_RD)
389 if (!bb_info->rd_in)
391 /* Allocate bitmaps for reaching definitions. */
392 bb_info->rd_kill = BITMAP_XMALLOC ();
393 bb_info->rd_gen = BITMAP_XMALLOC ();
394 bb_info->rd_in = BITMAP_XMALLOC ();
395 bb_info->rd_out = BITMAP_XMALLOC ();
397 else
399 bitmap_clear (bb_info->rd_kill);
400 bitmap_clear (bb_info->rd_gen);
401 bitmap_clear (bb_info->rd_in);
402 bitmap_clear (bb_info->rd_out);
406 if (flags & DF_RU)
408 if (!bb_info->ru_in)
410 /* Allocate bitmaps for upward exposed uses. */
411 bb_info->ru_kill = BITMAP_XMALLOC ();
412 bb_info->ru_gen = BITMAP_XMALLOC ();
413 bb_info->ru_in = BITMAP_XMALLOC ();
414 bb_info->ru_out = BITMAP_XMALLOC ();
416 else
418 bitmap_clear (bb_info->ru_kill);
419 bitmap_clear (bb_info->ru_gen);
420 bitmap_clear (bb_info->ru_in);
421 bitmap_clear (bb_info->ru_out);
425 if (flags & DF_LR)
427 if (!bb_info->lr_in)
429 /* Allocate bitmaps for live variables. */
430 bb_info->lr_def = BITMAP_XMALLOC ();
431 bb_info->lr_use = BITMAP_XMALLOC ();
432 bb_info->lr_in = BITMAP_XMALLOC ();
433 bb_info->lr_out = BITMAP_XMALLOC ();
435 else
437 bitmap_clear (bb_info->lr_def);
438 bitmap_clear (bb_info->lr_use);
439 bitmap_clear (bb_info->lr_in);
440 bitmap_clear (bb_info->lr_out);
447 /* Free bitmaps for each basic block. */
448 static void
449 df_bitmaps_free (struct df *df, int flags)
451 basic_block bb;
453 FOR_EACH_BB (bb)
455 struct bb_info *bb_info = DF_BB_INFO (df, bb);
457 if (!bb_info)
458 continue;
460 if ((flags & DF_RD) && bb_info->rd_in)
462 /* Free bitmaps for reaching definitions. */
463 BITMAP_XFREE (bb_info->rd_kill);
464 bb_info->rd_kill = NULL;
465 BITMAP_XFREE (bb_info->rd_gen);
466 bb_info->rd_gen = NULL;
467 BITMAP_XFREE (bb_info->rd_in);
468 bb_info->rd_in = NULL;
469 BITMAP_XFREE (bb_info->rd_out);
470 bb_info->rd_out = NULL;
473 if ((flags & DF_RU) && bb_info->ru_in)
475 /* Free bitmaps for upward exposed uses. */
476 BITMAP_XFREE (bb_info->ru_kill);
477 bb_info->ru_kill = NULL;
478 BITMAP_XFREE (bb_info->ru_gen);
479 bb_info->ru_gen = NULL;
480 BITMAP_XFREE (bb_info->ru_in);
481 bb_info->ru_in = NULL;
482 BITMAP_XFREE (bb_info->ru_out);
483 bb_info->ru_out = NULL;
486 if ((flags & DF_LR) && bb_info->lr_in)
488 /* Free bitmaps for live variables. */
489 BITMAP_XFREE (bb_info->lr_def);
490 bb_info->lr_def = NULL;
491 BITMAP_XFREE (bb_info->lr_use);
492 bb_info->lr_use = NULL;
493 BITMAP_XFREE (bb_info->lr_in);
494 bb_info->lr_in = NULL;
495 BITMAP_XFREE (bb_info->lr_out);
496 bb_info->lr_out = NULL;
499 df->flags &= ~(flags & (DF_RD | DF_RU | DF_LR));
503 /* Allocate and initialize dataflow memory. */
504 static void
505 df_alloc (struct df *df, int n_regs)
507 int n_insns;
508 basic_block bb;
510 df_link_pool = create_alloc_pool ("df_link pool", sizeof (struct df_link),
511 100);
512 df_ref_pool = create_alloc_pool ("df_ref pool", sizeof (struct ref), 100);
514 /* Perhaps we should use LUIDs to save memory for the insn_refs
515 table. This is only a small saving; a few pointers. */
516 n_insns = get_max_uid () + 1;
518 df->def_id = 0;
519 df->n_defs = 0;
520 /* Approximate number of defs by number of insns. */
521 df->def_size = n_insns;
522 df->defs = xmalloc (df->def_size * sizeof (*df->defs));
524 df->use_id = 0;
525 df->n_uses = 0;
526 /* Approximate number of uses by twice number of insns. */
527 df->use_size = n_insns * 2;
528 df->uses = xmalloc (df->use_size * sizeof (*df->uses));
530 df->n_regs = n_regs;
531 df->n_bbs = last_basic_block;
533 /* Allocate temporary working array used during local dataflow analysis. */
534 df_insn_table_realloc (df, n_insns);
536 df_reg_table_realloc (df, df->n_regs);
538 df->bbs_modified = BITMAP_XMALLOC ();
539 bitmap_zero (df->bbs_modified);
541 df->flags = 0;
543 df->bbs = xcalloc (last_basic_block, sizeof (struct bb_info));
545 df->all_blocks = BITMAP_XMALLOC ();
546 FOR_EACH_BB (bb)
547 bitmap_set_bit (df->all_blocks, bb->index);
551 /* Free all the dataflow info. */
552 static void
553 df_free (struct df *df)
555 df_bitmaps_free (df, DF_ALL);
557 if (df->bbs)
558 free (df->bbs);
559 df->bbs = 0;
561 if (df->insns)
562 free (df->insns);
563 df->insns = 0;
564 df->insn_size = 0;
566 if (df->defs)
567 free (df->defs);
568 df->defs = 0;
569 df->def_size = 0;
570 df->def_id = 0;
572 if (df->uses)
573 free (df->uses);
574 df->uses = 0;
575 df->use_size = 0;
576 df->use_id = 0;
578 if (df->regs)
579 free (df->regs);
580 df->regs = 0;
581 df->reg_size = 0;
583 BITMAP_XFREE (df->bbs_modified);
584 df->bbs_modified = 0;
586 BITMAP_XFREE (df->insns_modified);
587 df->insns_modified = 0;
589 BITMAP_XFREE (df->all_blocks);
590 df->all_blocks = 0;
592 free_alloc_pool (df_ref_pool);
593 free_alloc_pool (df_link_pool);
596 /* Local miscellaneous routines. */
598 /* Return a USE for register REGNO. */
599 static rtx df_reg_use_gen (unsigned int regno)
601 rtx reg;
602 rtx use;
604 reg = regno_reg_rtx[regno];
606 use = gen_rtx_USE (GET_MODE (reg), reg);
607 return use;
610 /* Local chain manipulation routines. */
612 /* Create a link in a def-use or use-def chain. */
613 static inline struct df_link *
614 df_link_create (struct ref *ref, struct df_link *next)
616 struct df_link *link;
618 link = pool_alloc (df_link_pool);
619 link->next = next;
620 link->ref = ref;
621 return link;
624 /* Releases members of the CHAIN. */
626 static void
627 free_reg_ref_chain (struct df_link **chain)
629 struct df_link *act, *next;
631 for (act = *chain; act; act = next)
633 next = act->next;
634 pool_free (df_link_pool, act);
637 *chain = NULL;
640 /* Add REF to chain head pointed to by PHEAD. */
641 static struct df_link *
642 df_ref_unlink (struct df_link **phead, struct ref *ref)
644 struct df_link *link = *phead;
646 if (link)
648 if (! link->next)
650 /* Only a single ref. It must be the one we want.
651 If not, the def-use and use-def chains are likely to
652 be inconsistent. */
653 gcc_assert (link->ref == ref);
655 /* Now have an empty chain. */
656 *phead = NULL;
658 else
660 /* Multiple refs. One of them must be us. */
661 if (link->ref == ref)
662 *phead = link->next;
663 else
665 /* Follow chain. */
666 for (; link->next; link = link->next)
668 if (link->next->ref == ref)
670 /* Unlink from list. */
671 link->next = link->next->next;
672 return link->next;
678 return link;
682 /* Unlink REF from all def-use/use-def chains, etc. */
684 df_ref_remove (struct df *df, struct ref *ref)
686 if (DF_REF_REG_DEF_P (ref))
688 df_def_unlink (df, ref);
689 df_ref_unlink (&df->insns[DF_REF_INSN_UID (ref)].defs, ref);
691 else
693 df_use_unlink (df, ref);
694 df_ref_unlink (&df->insns[DF_REF_INSN_UID (ref)].uses, ref);
696 return 1;
700 /* Unlink DEF from use-def and reg-def chains. */
701 static void
702 df_def_unlink (struct df *df ATTRIBUTE_UNUSED, struct ref *def)
704 struct df_link *du_link;
705 unsigned int dregno = DF_REF_REGNO (def);
707 /* Follow def-use chain to find all the uses of this def. */
708 for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
710 struct ref *use = du_link->ref;
712 /* Unlink this def from the use-def chain. */
713 df_ref_unlink (&DF_REF_CHAIN (use), def);
715 DF_REF_CHAIN (def) = 0;
717 /* Unlink def from reg-def chain. */
718 df_ref_unlink (&df->regs[dregno].defs, def);
720 df->defs[DF_REF_ID (def)] = 0;
724 /* Unlink use from def-use and reg-use chains. */
725 static void
726 df_use_unlink (struct df *df ATTRIBUTE_UNUSED, struct ref *use)
728 struct df_link *ud_link;
729 unsigned int uregno = DF_REF_REGNO (use);
731 /* Follow use-def chain to find all the defs of this use. */
732 for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
734 struct ref *def = ud_link->ref;
736 /* Unlink this use from the def-use chain. */
737 df_ref_unlink (&DF_REF_CHAIN (def), use);
739 DF_REF_CHAIN (use) = 0;
741 /* Unlink use from reg-use chain. */
742 df_ref_unlink (&df->regs[uregno].uses, use);
744 df->uses[DF_REF_ID (use)] = 0;
747 /* Local routines for recording refs. */
750 /* Create a new ref of type DF_REF_TYPE for register REG at address
751 LOC within INSN of BB. */
752 static struct ref *
753 df_ref_create (struct df *df, rtx reg, rtx *loc, rtx insn,
754 enum df_ref_type ref_type, enum df_ref_flags ref_flags)
756 struct ref *this_ref;
758 this_ref = pool_alloc (df_ref_pool);
759 DF_REF_REG (this_ref) = reg;
760 DF_REF_LOC (this_ref) = loc;
761 DF_REF_INSN (this_ref) = insn;
762 DF_REF_CHAIN (this_ref) = 0;
763 DF_REF_TYPE (this_ref) = ref_type;
764 DF_REF_FLAGS (this_ref) = ref_flags;
765 DF_REF_DATA (this_ref) = NULL;
767 if (ref_type == DF_REF_REG_DEF)
769 if (df->def_id >= df->def_size)
771 /* Make table 25 percent larger. */
772 df->def_size += (df->def_size / 4);
773 df->defs = xrealloc (df->defs,
774 df->def_size * sizeof (*df->defs));
776 DF_REF_ID (this_ref) = df->def_id;
777 df->defs[df->def_id++] = this_ref;
779 else
781 if (df->use_id >= df->use_size)
783 /* Make table 25 percent larger. */
784 df->use_size += (df->use_size / 4);
785 df->uses = xrealloc (df->uses,
786 df->use_size * sizeof (*df->uses));
788 DF_REF_ID (this_ref) = df->use_id;
789 df->uses[df->use_id++] = this_ref;
791 return this_ref;
795 /* Create a new reference of type DF_REF_TYPE for a single register REG,
796 used inside the LOC rtx of INSN. */
797 static void
798 df_ref_record_1 (struct df *df, rtx reg, rtx *loc, rtx insn,
799 enum df_ref_type ref_type, enum df_ref_flags ref_flags)
801 df_ref_create (df, reg, loc, insn, ref_type, ref_flags);
805 /* Create new references of type DF_REF_TYPE for each part of register REG
806 at address LOC within INSN of BB. */
807 static void
808 df_ref_record (struct df *df, rtx reg, rtx *loc, rtx insn,
809 enum df_ref_type ref_type, enum df_ref_flags ref_flags)
811 unsigned int regno;
813 gcc_assert (REG_P (reg) || GET_CODE (reg) == SUBREG);
815 /* For the reg allocator we are interested in some SUBREG rtx's, but not
816 all. Notably only those representing a word extraction from a multi-word
817 reg. As written in the docu those should have the form
818 (subreg:SI (reg:M A) N), with size(SImode) > size(Mmode).
819 XXX Is that true? We could also use the global word_mode variable. */
820 if (GET_CODE (reg) == SUBREG
821 && (GET_MODE_SIZE (GET_MODE (reg)) < GET_MODE_SIZE (word_mode)
822 || GET_MODE_SIZE (GET_MODE (reg))
823 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (reg)))))
825 loc = &SUBREG_REG (reg);
826 reg = *loc;
827 ref_flags |= DF_REF_STRIPPED;
830 regno = REGNO (GET_CODE (reg) == SUBREG ? SUBREG_REG (reg) : reg);
831 if (regno < FIRST_PSEUDO_REGISTER)
833 int i;
834 int endregno;
836 if (! (df->flags & DF_HARD_REGS))
837 return;
839 /* GET_MODE (reg) is correct here. We do not want to go into a SUBREG
840 for the mode, because we only want to add references to regs, which
841 are really referenced. E.g., a (subreg:SI (reg:DI 0) 0) does _not_
842 reference the whole reg 0 in DI mode (which would also include
843 reg 1, at least, if 0 and 1 are SImode registers). */
844 endregno = hard_regno_nregs[regno][GET_MODE (reg)];
845 if (GET_CODE (reg) == SUBREG)
846 regno += subreg_regno_offset (regno, GET_MODE (SUBREG_REG (reg)),
847 SUBREG_BYTE (reg), GET_MODE (reg));
848 endregno += regno;
850 for (i = regno; i < endregno; i++)
851 df_ref_record_1 (df, regno_reg_rtx[i],
852 loc, insn, ref_type, ref_flags);
854 else
856 df_ref_record_1 (df, reg, loc, insn, ref_type, ref_flags);
861 /* Return nonzero if writes to paradoxical SUBREGs, or SUBREGs which
862 are too narrow, are read-modify-write. */
863 bool
864 read_modify_subreg_p (rtx x)
866 unsigned int isize, osize;
867 if (GET_CODE (x) != SUBREG)
868 return false;
869 isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
870 osize = GET_MODE_SIZE (GET_MODE (x));
871 /* Paradoxical subreg writes don't leave a trace of the old content. */
872 return (isize > osize && isize > UNITS_PER_WORD);
876 /* Process all the registers defined in the rtx, X. */
877 static void
878 df_def_record_1 (struct df *df, rtx x, basic_block bb, rtx insn)
880 rtx *loc;
881 rtx dst;
882 enum df_ref_flags flags = 0;
884 /* We may recursively call ourselves on EXPR_LIST when dealing with PARALLEL
885 construct. */
886 if (GET_CODE (x) == EXPR_LIST || GET_CODE (x) == CLOBBER)
887 loc = &XEXP (x, 0);
888 else
889 loc = &SET_DEST (x);
890 dst = *loc;
892 /* Some targets place small structures in registers for
893 return values of functions. */
894 if (GET_CODE (dst) == PARALLEL && GET_MODE (dst) == BLKmode)
896 int i;
898 for (i = XVECLEN (dst, 0) - 1; i >= 0; i--)
900 rtx temp = XVECEXP (dst, 0, i);
901 if (GET_CODE (temp) == EXPR_LIST || GET_CODE (temp) == CLOBBER
902 || GET_CODE (temp) == SET)
903 df_def_record_1 (df, temp, bb, insn);
905 return;
908 /* Maybe, we should flag the use of STRICT_LOW_PART somehow. It might
909 be handy for the reg allocator. */
910 while (GET_CODE (dst) == STRICT_LOW_PART
911 || GET_CODE (dst) == ZERO_EXTRACT
912 || GET_CODE (dst) == SIGN_EXTRACT
913 || ((df->flags & DF_FOR_REGALLOC) == 0
914 && read_modify_subreg_p (dst)))
916 /* Strict low part always contains SUBREG, but we do not want to make
917 it appear outside, as whole register is always considered. */
918 if (GET_CODE (dst) == STRICT_LOW_PART)
920 loc = &XEXP (dst, 0);
921 dst = *loc;
923 loc = &XEXP (dst, 0);
924 dst = *loc;
925 flags |= DF_REF_READ_WRITE;
928 if (REG_P (dst)
929 || (GET_CODE (dst) == SUBREG && REG_P (SUBREG_REG (dst))))
930 df_ref_record (df, dst, loc, insn, DF_REF_REG_DEF, flags);
934 /* Process all the registers defined in the pattern rtx, X. */
935 static void
936 df_defs_record (struct df *df, rtx x, basic_block bb, rtx insn)
938 RTX_CODE code = GET_CODE (x);
940 if (code == SET || code == CLOBBER)
942 /* Mark the single def within the pattern. */
943 df_def_record_1 (df, x, bb, insn);
945 else if (code == PARALLEL)
947 int i;
949 /* Mark the multiple defs within the pattern. */
950 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
952 code = GET_CODE (XVECEXP (x, 0, i));
953 if (code == SET || code == CLOBBER)
954 df_def_record_1 (df, XVECEXP (x, 0, i), bb, insn);
960 /* Process all the registers used in the rtx at address LOC. */
961 static void
962 df_uses_record (struct df *df, rtx *loc, enum df_ref_type ref_type,
963 basic_block bb, rtx insn, enum df_ref_flags flags)
965 RTX_CODE code;
966 rtx x;
967 retry:
968 x = *loc;
969 if (!x)
970 return;
971 code = GET_CODE (x);
972 switch (code)
974 case LABEL_REF:
975 case SYMBOL_REF:
976 case CONST_INT:
977 case CONST:
978 case CONST_DOUBLE:
979 case CONST_VECTOR:
980 case PC:
981 case CC0:
982 case ADDR_VEC:
983 case ADDR_DIFF_VEC:
984 return;
986 case CLOBBER:
987 /* If we are clobbering a MEM, mark any registers inside the address
988 as being used. */
989 if (MEM_P (XEXP (x, 0)))
990 df_uses_record (df, &XEXP (XEXP (x, 0), 0),
991 DF_REF_REG_MEM_STORE, bb, insn, flags);
993 /* If we're clobbering a REG then we have a def so ignore. */
994 return;
996 case MEM:
997 df_uses_record (df, &XEXP (x, 0), DF_REF_REG_MEM_LOAD, bb, insn, 0);
998 return;
1000 case SUBREG:
1001 /* While we're here, optimize this case. */
1003 /* In case the SUBREG is not of a REG, do not optimize. */
1004 if (!REG_P (SUBREG_REG (x)))
1006 loc = &SUBREG_REG (x);
1007 df_uses_record (df, loc, ref_type, bb, insn, flags);
1008 return;
1010 /* ... Fall through ... */
1012 case REG:
1013 df_ref_record (df, x, loc, insn, ref_type, flags);
1014 return;
1016 case SET:
1018 rtx dst = SET_DEST (x);
1020 df_uses_record (df, &SET_SRC (x), DF_REF_REG_USE, bb, insn, 0);
1022 switch (GET_CODE (dst))
1024 case SUBREG:
1025 if ((df->flags & DF_FOR_REGALLOC) == 0
1026 && read_modify_subreg_p (dst))
1028 df_uses_record (df, &SUBREG_REG (dst), DF_REF_REG_USE, bb,
1029 insn, DF_REF_READ_WRITE);
1030 break;
1032 /* Fall through. */
1033 case REG:
1034 case PARALLEL:
1035 case PC:
1036 case CC0:
1037 break;
1038 case MEM:
1039 df_uses_record (df, &XEXP (dst, 0),
1040 DF_REF_REG_MEM_STORE,
1041 bb, insn, 0);
1042 break;
1043 case STRICT_LOW_PART:
1044 /* A strict_low_part uses the whole REG and not just the
1045 SUBREG. */
1046 dst = XEXP (dst, 0);
1047 gcc_assert (GET_CODE (dst) == SUBREG);
1048 df_uses_record (df, &SUBREG_REG (dst), DF_REF_REG_USE, bb,
1049 insn, DF_REF_READ_WRITE);
1050 break;
1051 case ZERO_EXTRACT:
1052 case SIGN_EXTRACT:
1053 df_uses_record (df, &XEXP (dst, 0), DF_REF_REG_USE, bb, insn,
1054 DF_REF_READ_WRITE);
1055 df_uses_record (df, &XEXP (dst, 1), DF_REF_REG_USE, bb, insn, 0);
1056 df_uses_record (df, &XEXP (dst, 2), DF_REF_REG_USE, bb, insn, 0);
1057 dst = XEXP (dst, 0);
1058 break;
1059 default:
1060 gcc_unreachable ();
1062 return;
1065 case RETURN:
1066 break;
1068 case ASM_OPERANDS:
1069 case UNSPEC_VOLATILE:
1070 case TRAP_IF:
1071 case ASM_INPUT:
1073 /* Traditional and volatile asm instructions must be considered to use
1074 and clobber all hard registers, all pseudo-registers and all of
1075 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
1077 Consider for instance a volatile asm that changes the fpu rounding
1078 mode. An insn should not be moved across this even if it only uses
1079 pseudo-regs because it might give an incorrectly rounded result.
1081 For now, just mark any regs we can find in ASM_OPERANDS as
1082 used. */
1084 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
1085 We can not just fall through here since then we would be confused
1086 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
1087 traditional asms unlike their normal usage. */
1088 if (code == ASM_OPERANDS)
1090 int j;
1092 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
1093 df_uses_record (df, &ASM_OPERANDS_INPUT (x, j),
1094 DF_REF_REG_USE, bb, insn, 0);
1095 return;
1097 break;
1100 case PRE_DEC:
1101 case POST_DEC:
1102 case PRE_INC:
1103 case POST_INC:
1104 case PRE_MODIFY:
1105 case POST_MODIFY:
1106 /* Catch the def of the register being modified. */
1107 df_ref_record (df, XEXP (x, 0), &XEXP (x, 0), insn, DF_REF_REG_DEF, DF_REF_READ_WRITE);
1109 /* ... Fall through to handle uses ... */
1111 default:
1112 break;
1115 /* Recursively scan the operands of this expression. */
1117 const char *fmt = GET_RTX_FORMAT (code);
1118 int i;
1120 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1122 if (fmt[i] == 'e')
1124 /* Tail recursive case: save a function call level. */
1125 if (i == 0)
1127 loc = &XEXP (x, 0);
1128 goto retry;
1130 df_uses_record (df, &XEXP (x, i), ref_type, bb, insn, flags);
1132 else if (fmt[i] == 'E')
1134 int j;
1135 for (j = 0; j < XVECLEN (x, i); j++)
1136 df_uses_record (df, &XVECEXP (x, i, j), ref_type,
1137 bb, insn, flags);
1144 /* Record all the df within INSN of basic block BB. */
1145 static void
1146 df_insn_refs_record (struct df *df, basic_block bb, rtx insn)
1148 int i;
1150 if (INSN_P (insn))
1152 rtx note;
1154 /* Record register defs. */
1155 df_defs_record (df, PATTERN (insn), bb, insn);
1157 if (df->flags & DF_EQUIV_NOTES)
1158 for (note = REG_NOTES (insn); note;
1159 note = XEXP (note, 1))
1161 switch (REG_NOTE_KIND (note))
1163 case REG_EQUIV:
1164 case REG_EQUAL:
1165 df_uses_record (df, &XEXP (note, 0), DF_REF_REG_USE,
1166 bb, insn, 0);
1167 default:
1168 break;
1172 if (CALL_P (insn))
1174 rtx note;
1175 rtx x;
1177 /* Record the registers used to pass arguments. */
1178 for (note = CALL_INSN_FUNCTION_USAGE (insn); note;
1179 note = XEXP (note, 1))
1181 if (GET_CODE (XEXP (note, 0)) == USE)
1182 df_uses_record (df, &XEXP (XEXP (note, 0), 0), DF_REF_REG_USE,
1183 bb, insn, 0);
1186 /* The stack ptr is used (honorarily) by a CALL insn. */
1187 x = df_reg_use_gen (STACK_POINTER_REGNUM);
1188 df_uses_record (df, &XEXP (x, 0), DF_REF_REG_USE, bb, insn, 0);
1190 if (df->flags & DF_HARD_REGS)
1192 /* Calls may also reference any of the global registers,
1193 so they are recorded as used. */
1194 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1195 if (global_regs[i])
1197 x = df_reg_use_gen (i);
1198 df_uses_record (df, &SET_DEST (x),
1199 DF_REF_REG_USE, bb, insn, 0);
1204 /* Record the register uses. */
1205 df_uses_record (df, &PATTERN (insn),
1206 DF_REF_REG_USE, bb, insn, 0);
1208 if (CALL_P (insn))
1210 rtx note;
1212 /* We do not record hard registers clobbered by the call,
1213 since there are awfully many of them and "defs" created
1214 through them are not interesting (since no use can be legally
1215 reached by them). So we must just make sure we include them when
1216 computing kill bitmaps. */
1218 /* There may be extra registers to be clobbered. */
1219 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1220 note;
1221 note = XEXP (note, 1))
1222 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1223 df_defs_record (df, XEXP (note, 0), bb, insn);
1229 /* Record all the refs within the basic block BB. */
1230 static void
1231 df_bb_refs_record (struct df *df, basic_block bb)
1233 rtx insn;
1235 /* Scan the block an insn at a time from beginning to end. */
1236 FOR_BB_INSNS (bb, insn)
1238 if (INSN_P (insn))
1240 /* Record defs within INSN. */
1241 df_insn_refs_record (df, bb, insn);
1247 /* Record all the refs in the basic blocks specified by BLOCKS. */
1248 static void
1249 df_refs_record (struct df *df, bitmap blocks)
1251 basic_block bb;
1253 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1255 df_bb_refs_record (df, bb);
1259 /* Dataflow analysis routines. */
1261 /* Create reg-def chains for basic block BB. These are a list of
1262 definitions for each register. */
1264 static void
1265 df_bb_reg_def_chain_create (struct df *df, basic_block bb)
1267 rtx insn;
1269 /* Perhaps the defs should be sorted using a depth first search
1270 of the CFG (or possibly a breadth first search). */
1272 FOR_BB_INSNS_REVERSE (bb, insn)
1274 struct df_link *link;
1275 unsigned int uid = INSN_UID (insn);
1277 if (! INSN_P (insn))
1278 continue;
1280 for (link = df->insns[uid].defs; link; link = link->next)
1282 struct ref *def = link->ref;
1283 unsigned int dregno = DF_REF_REGNO (def);
1285 /* Do not add ref's to the chain twice, i.e., only add new
1286 refs. XXX the same could be done by testing if the
1287 current insn is a modified (or a new) one. This would be
1288 faster. */
1289 if (DF_REF_ID (def) < df->def_id_save)
1290 continue;
1292 df->regs[dregno].defs = df_link_create (def, df->regs[dregno].defs);
1298 /* Create reg-def chains for each basic block within BLOCKS. These
1299 are a list of definitions for each register. If REDO is true, add
1300 all defs, otherwise just add the new defs. */
1302 static void
1303 df_reg_def_chain_create (struct df *df, bitmap blocks, bool redo)
1305 basic_block bb;
1306 #ifdef ENABLE_CHECKING
1307 unsigned regno;
1308 #endif
1309 unsigned old_def_id_save = df->def_id_save;
1311 if (redo)
1313 #ifdef ENABLE_CHECKING
1314 for (regno = 0; regno < df->n_regs; regno++)
1315 gcc_assert (!df->regs[regno].defs);
1316 #endif
1318 /* Pretend that all defs are new. */
1319 df->def_id_save = 0;
1322 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1324 df_bb_reg_def_chain_create (df, bb);
1327 df->def_id_save = old_def_id_save;
1330 /* Remove all reg-def chains stored in the dataflow object DF. */
1332 static void
1333 df_reg_def_chain_clean (struct df *df)
1335 unsigned regno;
1337 for (regno = 0; regno < df->n_regs; regno++)
1338 free_reg_ref_chain (&df->regs[regno].defs);
1341 /* Create reg-use chains for basic block BB. These are a list of uses
1342 for each register. */
1344 static void
1345 df_bb_reg_use_chain_create (struct df *df, basic_block bb)
1347 rtx insn;
1349 /* Scan in forward order so that the last uses appear at the start
1350 of the chain. */
1352 FOR_BB_INSNS (bb, insn)
1354 struct df_link *link;
1355 unsigned int uid = INSN_UID (insn);
1357 if (! INSN_P (insn))
1358 continue;
1360 for (link = df->insns[uid].uses; link; link = link->next)
1362 struct ref *use = link->ref;
1363 unsigned int uregno = DF_REF_REGNO (use);
1365 /* Do not add ref's to the chain twice, i.e., only add new
1366 refs. XXX the same could be done by testing if the
1367 current insn is a modified (or a new) one. This would be
1368 faster. */
1369 if (DF_REF_ID (use) < df->use_id_save)
1370 continue;
1372 df->regs[uregno].uses
1373 = df_link_create (use, df->regs[uregno].uses);
1379 /* Create reg-use chains for each basic block within BLOCKS. These
1380 are a list of uses for each register. If REDO is true, remove the
1381 old reg-use chains first, otherwise just add new uses to them. */
1383 static void
1384 df_reg_use_chain_create (struct df *df, bitmap blocks, bool redo)
1386 basic_block bb;
1387 #ifdef ENABLE_CHECKING
1388 unsigned regno;
1389 #endif
1390 unsigned old_use_id_save = df->use_id_save;
1392 if (redo)
1394 #ifdef ENABLE_CHECKING
1395 for (regno = 0; regno < df->n_regs; regno++)
1396 gcc_assert (!df->regs[regno].uses);
1397 #endif
1399 /* Pretend that all uses are new. */
1400 df->use_id_save = 0;
1403 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1405 df_bb_reg_use_chain_create (df, bb);
1408 df->use_id_save = old_use_id_save;
1411 /* Remove all reg-use chains stored in the dataflow object DF. */
1413 static void
1414 df_reg_use_chain_clean (struct df *df)
1416 unsigned regno;
1418 for (regno = 0; regno < df->n_regs; regno++)
1419 free_reg_ref_chain (&df->regs[regno].uses);
1422 /* Create def-use chains from reaching use bitmaps for basic block BB. */
1423 static void
1424 df_bb_du_chain_create (struct df *df, basic_block bb, bitmap ru)
1426 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1427 rtx insn;
1429 bitmap_copy (ru, bb_info->ru_out);
1431 /* For each def in BB create a linked list (chain) of uses
1432 reached from the def. */
1433 FOR_BB_INSNS_REVERSE (bb, insn)
1435 struct df_link *def_link;
1436 struct df_link *use_link;
1437 unsigned int uid = INSN_UID (insn);
1439 if (! INSN_P (insn))
1440 continue;
1442 /* For each def in insn... */
1443 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1445 struct ref *def = def_link->ref;
1446 unsigned int dregno = DF_REF_REGNO (def);
1448 DF_REF_CHAIN (def) = 0;
1450 /* While the reg-use chains are not essential, it
1451 is _much_ faster to search these short lists rather
1452 than all the reaching uses, especially for large functions. */
1453 for (use_link = df->regs[dregno].uses; use_link;
1454 use_link = use_link->next)
1456 struct ref *use = use_link->ref;
1458 if (bitmap_bit_p (ru, DF_REF_ID (use)))
1460 DF_REF_CHAIN (def)
1461 = df_link_create (use, DF_REF_CHAIN (def));
1463 bitmap_clear_bit (ru, DF_REF_ID (use));
1468 /* For each use in insn... */
1469 for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
1471 struct ref *use = use_link->ref;
1472 bitmap_set_bit (ru, DF_REF_ID (use));
1478 /* Create def-use chains from reaching use bitmaps for basic blocks
1479 in BLOCKS. */
1480 static void
1481 df_du_chain_create (struct df *df, bitmap blocks)
1483 bitmap ru;
1484 basic_block bb;
1486 ru = BITMAP_XMALLOC ();
1488 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1490 df_bb_du_chain_create (df, bb, ru);
1493 BITMAP_XFREE (ru);
1497 /* Create use-def chains from reaching def bitmaps for basic block BB. */
1498 static void
1499 df_bb_ud_chain_create (struct df *df, basic_block bb)
1501 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1502 struct ref **reg_def_last = df->reg_def_last;
1503 rtx insn;
1505 memset (reg_def_last, 0, df->n_regs * sizeof (struct ref *));
1507 /* For each use in BB create a linked list (chain) of defs
1508 that reach the use. */
1509 FOR_BB_INSNS (bb, insn)
1511 unsigned int uid = INSN_UID (insn);
1512 struct df_link *use_link;
1513 struct df_link *def_link;
1515 if (! INSN_P (insn))
1516 continue;
1518 /* For each use in insn... */
1519 for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
1521 struct ref *use = use_link->ref;
1522 unsigned int regno = DF_REF_REGNO (use);
1524 DF_REF_CHAIN (use) = 0;
1526 /* Has regno been defined in this BB yet? If so, use
1527 the last def as the single entry for the use-def
1528 chain for this use. Otherwise, we need to add all
1529 the defs using this regno that reach the start of
1530 this BB. */
1531 if (reg_def_last[regno])
1533 DF_REF_CHAIN (use)
1534 = df_link_create (reg_def_last[regno], 0);
1536 else
1538 /* While the reg-def chains are not essential, it is
1539 _much_ faster to search these short lists rather than
1540 all the reaching defs, especially for large
1541 functions. */
1542 for (def_link = df->regs[regno].defs; def_link;
1543 def_link = def_link->next)
1545 struct ref *def = def_link->ref;
1547 if (bitmap_bit_p (bb_info->rd_in, DF_REF_ID (def)))
1549 DF_REF_CHAIN (use)
1550 = df_link_create (def, DF_REF_CHAIN (use));
1557 /* For each def in insn... record the last def of each reg. */
1558 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1560 struct ref *def = def_link->ref;
1561 int dregno = DF_REF_REGNO (def);
1563 reg_def_last[dregno] = def;
1569 /* Create use-def chains from reaching def bitmaps for basic blocks
1570 within BLOCKS. */
1571 static void
1572 df_ud_chain_create (struct df *df, bitmap blocks)
1574 basic_block bb;
1576 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1578 df_bb_ud_chain_create (df, bb);
1584 static void
1585 df_rd_transfer_function (int bb ATTRIBUTE_UNUSED, int *changed, void *in,
1586 void *out, void *gen, void *kill,
1587 void *data ATTRIBUTE_UNUSED)
1589 *changed = bitmap_ior_and_compl (out, gen, in, kill);
1593 static void
1594 df_ru_transfer_function (int bb ATTRIBUTE_UNUSED, int *changed, void *in,
1595 void *out, void *gen, void *kill,
1596 void *data ATTRIBUTE_UNUSED)
1598 *changed = bitmap_ior_and_compl (in, gen, out, kill);
1602 static void
1603 df_lr_transfer_function (int bb ATTRIBUTE_UNUSED, int *changed, void *in,
1604 void *out, void *use, void *def,
1605 void *data ATTRIBUTE_UNUSED)
1607 *changed = bitmap_ior_and_compl (in, use, out, def);
1611 /* Compute local reaching def info for basic block BB. */
1612 static void
1613 df_bb_rd_local_compute (struct df *df, basic_block bb, bitmap call_killed_defs)
1615 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1616 rtx insn;
1617 bitmap seen = BITMAP_XMALLOC ();
1618 bool call_seen = false;
1620 FOR_BB_INSNS_REVERSE (bb, insn)
1622 unsigned int uid = INSN_UID (insn);
1623 struct df_link *def_link;
1625 if (! INSN_P (insn))
1626 continue;
1628 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1630 struct ref *def = def_link->ref;
1631 unsigned int regno = DF_REF_REGNO (def);
1632 struct df_link *def2_link;
1634 if (bitmap_bit_p (seen, regno)
1635 || (call_seen
1636 && regno < FIRST_PSEUDO_REGISTER
1637 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)))
1638 continue;
1640 for (def2_link = df->regs[regno].defs; def2_link;
1641 def2_link = def2_link->next)
1643 struct ref *def2 = def2_link->ref;
1645 /* Add all defs of this reg to the set of kills. This
1646 is greedy since many of these defs will not actually
1647 be killed by this BB but it keeps things a lot
1648 simpler. */
1649 bitmap_set_bit (bb_info->rd_kill, DF_REF_ID (def2));
1652 bitmap_set_bit (bb_info->rd_gen, DF_REF_ID (def));
1653 bitmap_set_bit (seen, regno);
1656 if (CALL_P (insn) && (df->flags & DF_HARD_REGS))
1658 bitmap_ior_into (bb_info->rd_kill, call_killed_defs);
1659 call_seen = 1;
1663 BITMAP_XFREE (seen);
1667 /* Compute local reaching def info for each basic block within BLOCKS. */
1668 static void
1669 df_rd_local_compute (struct df *df, bitmap blocks)
1671 basic_block bb;
1672 bitmap killed_by_call = NULL;
1673 unsigned regno;
1674 struct df_link *def_link;
1676 if (df->flags & DF_HARD_REGS)
1678 killed_by_call = BITMAP_XMALLOC ();
1679 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1681 if (!TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
1682 continue;
1684 for (def_link = df->regs[regno].defs;
1685 def_link;
1686 def_link = def_link->next)
1687 bitmap_set_bit (killed_by_call, DF_REF_ID (def_link->ref));
1691 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1693 df_bb_rd_local_compute (df, bb, killed_by_call);
1696 if (df->flags & DF_HARD_REGS)
1697 BITMAP_XFREE (killed_by_call);
1701 /* Compute local reaching use (upward exposed use) info for basic
1702 block BB. */
1703 static void
1704 df_bb_ru_local_compute (struct df *df, basic_block bb)
1706 /* This is much more tricky than computing reaching defs. With
1707 reaching defs, defs get killed by other defs. With upwards
1708 exposed uses, these get killed by defs with the same regno. */
1710 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1711 rtx insn;
1714 FOR_BB_INSNS_REVERSE (bb, insn)
1716 unsigned int uid = INSN_UID (insn);
1717 struct df_link *def_link;
1718 struct df_link *use_link;
1720 if (! INSN_P (insn))
1721 continue;
1723 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1725 struct ref *def = def_link->ref;
1726 unsigned int dregno = DF_REF_REGNO (def);
1728 for (use_link = df->regs[dregno].uses; use_link;
1729 use_link = use_link->next)
1731 struct ref *use = use_link->ref;
1733 /* Add all uses of this reg to the set of kills. This
1734 is greedy since many of these uses will not actually
1735 be killed by this BB but it keeps things a lot
1736 simpler. */
1737 bitmap_set_bit (bb_info->ru_kill, DF_REF_ID (use));
1739 /* Zap from the set of gens for this BB. */
1740 bitmap_clear_bit (bb_info->ru_gen, DF_REF_ID (use));
1744 for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
1746 struct ref *use = use_link->ref;
1747 /* Add use to set of gens in this BB. */
1748 bitmap_set_bit (bb_info->ru_gen, DF_REF_ID (use));
1754 /* Compute local reaching use (upward exposed use) info for each basic
1755 block within BLOCKS. */
1756 static void
1757 df_ru_local_compute (struct df *df, bitmap blocks)
1759 basic_block bb;
1761 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1763 df_bb_ru_local_compute (df, bb);
1768 /* Compute local live variable info for basic block BB. */
1769 static void
1770 df_bb_lr_local_compute (struct df *df, basic_block bb)
1772 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1773 rtx insn;
1775 FOR_BB_INSNS_REVERSE (bb, insn)
1777 unsigned int uid = INSN_UID (insn);
1778 struct df_link *link;
1780 if (! INSN_P (insn))
1781 continue;
1783 for (link = df->insns[uid].defs; link; link = link->next)
1785 struct ref *def = link->ref;
1786 unsigned int dregno = DF_REF_REGNO (def);
1788 /* Add def to set of defs in this BB. */
1789 bitmap_set_bit (bb_info->lr_def, dregno);
1791 bitmap_clear_bit (bb_info->lr_use, dregno);
1794 for (link = df->insns[uid].uses; link; link = link->next)
1796 struct ref *use = link->ref;
1797 /* Add use to set of uses in this BB. */
1798 bitmap_set_bit (bb_info->lr_use, DF_REF_REGNO (use));
1804 /* Compute local live variable info for each basic block within BLOCKS. */
1805 static void
1806 df_lr_local_compute (struct df *df, bitmap blocks)
1808 basic_block bb;
1810 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1812 df_bb_lr_local_compute (df, bb);
1817 /* Compute register info: lifetime, bb, and number of defs and uses
1818 for basic block BB. */
1819 static void
1820 df_bb_reg_info_compute (struct df *df, basic_block bb, bitmap live)
1822 struct reg_info *reg_info = df->regs;
1823 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1824 rtx insn;
1826 bitmap_copy (live, bb_info->lr_out);
1828 FOR_BB_INSNS_REVERSE (bb, insn)
1830 unsigned int uid = INSN_UID (insn);
1831 unsigned int regno;
1832 struct df_link *link;
1833 bitmap_iterator bi;
1835 if (! INSN_P (insn))
1836 continue;
1838 for (link = df->insns[uid].defs; link; link = link->next)
1840 struct ref *def = link->ref;
1841 unsigned int dregno = DF_REF_REGNO (def);
1843 /* Kill this register. */
1844 bitmap_clear_bit (live, dregno);
1845 reg_info[dregno].n_defs++;
1848 for (link = df->insns[uid].uses; link; link = link->next)
1850 struct ref *use = link->ref;
1851 unsigned int uregno = DF_REF_REGNO (use);
1853 /* This register is now live. */
1854 bitmap_set_bit (live, uregno);
1855 reg_info[uregno].n_uses++;
1858 /* Increment lifetimes of all live registers. */
1859 EXECUTE_IF_SET_IN_BITMAP (live, 0, regno, bi)
1861 reg_info[regno].lifetime++;
1867 /* Compute register info: lifetime, bb, and number of defs and uses. */
1868 static void
1869 df_reg_info_compute (struct df *df, bitmap blocks)
1871 basic_block bb;
1872 bitmap live;
1874 live = BITMAP_XMALLOC ();
1876 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1878 df_bb_reg_info_compute (df, bb, live);
1881 BITMAP_XFREE (live);
1885 /* Assign LUIDs for BB. */
1886 static int
1887 df_bb_luids_set (struct df *df, basic_block bb)
1889 rtx insn;
1890 int luid = 0;
1892 /* The LUIDs are monotonically increasing for each basic block. */
1894 FOR_BB_INSNS (bb, insn)
1896 if (INSN_P (insn))
1897 DF_INSN_LUID (df, insn) = luid++;
1898 DF_INSN_LUID (df, insn) = luid;
1900 return luid;
1904 /* Assign LUIDs for each basic block within BLOCKS. */
1905 static int
1906 df_luids_set (struct df *df, bitmap blocks)
1908 basic_block bb;
1909 int total = 0;
1911 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1913 total += df_bb_luids_set (df, bb);
1915 return total;
1919 /* Perform dataflow analysis using existing DF structure for blocks
1920 within BLOCKS. If BLOCKS is zero, use all basic blocks in the CFG. */
1921 static void
1922 df_analyze_1 (struct df *df, bitmap blocks, int flags, int update)
1924 int aflags;
1925 int dflags;
1926 int i;
1927 basic_block bb;
1928 struct dataflow dflow;
1930 dflags = 0;
1931 aflags = flags;
1932 if (flags & DF_UD_CHAIN)
1933 aflags |= DF_RD | DF_RD_CHAIN;
1935 if (flags & DF_DU_CHAIN)
1936 aflags |= DF_RU;
1938 if (flags & DF_RU)
1939 aflags |= DF_RU_CHAIN;
1941 if (flags & DF_REG_INFO)
1942 aflags |= DF_LR;
1944 if (! blocks)
1945 blocks = df->all_blocks;
1947 df->flags = flags;
1948 if (update)
1950 df_refs_update (df, NULL);
1951 /* More fine grained incremental dataflow analysis would be
1952 nice. For now recompute the whole shebang for the
1953 modified blocks. */
1954 #if 0
1955 df_refs_unlink (df, blocks);
1956 #endif
1957 /* All the def-use, use-def chains can be potentially
1958 modified by changes in one block. The size of the
1959 bitmaps can also change. */
1961 else
1963 /* Scan the function for all register defs and uses. */
1964 df_refs_queue (df);
1965 df_refs_record (df, blocks);
1967 /* Link all the new defs and uses to the insns. */
1968 df_refs_process (df);
1971 /* Allocate the bitmaps now the total number of defs and uses are
1972 known. If the number of defs or uses have changed, then
1973 these bitmaps need to be reallocated. */
1974 df_bitmaps_alloc (df, NULL, aflags);
1976 /* Set the LUIDs for each specified basic block. */
1977 df_luids_set (df, blocks);
1979 /* Recreate reg-def and reg-use chains from scratch so that first
1980 def is at the head of the reg-def chain and the last use is at
1981 the head of the reg-use chain. This is only important for
1982 regs local to a basic block as it speeds up searching. */
1983 if (aflags & DF_RD_CHAIN)
1985 df_reg_def_chain_create (df, blocks, false);
1988 if (aflags & DF_RU_CHAIN)
1990 df_reg_use_chain_create (df, blocks, false);
1993 df->dfs_order = xmalloc (sizeof (int) * n_basic_blocks);
1994 df->rc_order = xmalloc (sizeof (int) * n_basic_blocks);
1995 df->rts_order = xmalloc (sizeof (int) * n_basic_blocks);
1996 df->inverse_dfs_map = xmalloc (sizeof (int) * last_basic_block);
1997 df->inverse_rc_map = xmalloc (sizeof (int) * last_basic_block);
1998 df->inverse_rts_map = xmalloc (sizeof (int) * last_basic_block);
2000 flow_depth_first_order_compute (df->dfs_order, df->rc_order);
2001 flow_reverse_top_sort_order_compute (df->rts_order);
2002 for (i = 0; i < n_basic_blocks; i++)
2004 df->inverse_dfs_map[df->dfs_order[i]] = i;
2005 df->inverse_rc_map[df->rc_order[i]] = i;
2006 df->inverse_rts_map[df->rts_order[i]] = i;
2008 if (aflags & DF_RD)
2010 /* Compute the sets of gens and kills for the defs of each bb. */
2011 dflow.in = xmalloc (sizeof (bitmap) * last_basic_block);
2012 dflow.out = xmalloc (sizeof (bitmap) * last_basic_block);
2013 dflow.gen = xmalloc (sizeof (bitmap) * last_basic_block);
2014 dflow.kill = xmalloc (sizeof (bitmap) * last_basic_block);
2016 df_rd_local_compute (df, df->flags & DF_RD ? blocks : df->all_blocks);
2017 FOR_EACH_BB (bb)
2019 dflow.in[bb->index] = DF_BB_INFO (df, bb)->rd_in;
2020 dflow.out[bb->index] = DF_BB_INFO (df, bb)->rd_out;
2021 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->rd_gen;
2022 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->rd_kill;
2025 dflow.repr = SR_BITMAP;
2026 dflow.dir = DF_FORWARD;
2027 dflow.conf_op = DF_UNION;
2028 dflow.transfun = df_rd_transfer_function;
2029 dflow.n_blocks = n_basic_blocks;
2030 dflow.order = df->rc_order;
2031 dflow.data = NULL;
2033 iterative_dataflow (&dflow);
2034 free (dflow.in);
2035 free (dflow.out);
2036 free (dflow.gen);
2037 free (dflow.kill);
2040 if (aflags & DF_UD_CHAIN)
2042 /* Create use-def chains. */
2043 df_ud_chain_create (df, df->all_blocks);
2045 if (! (flags & DF_RD))
2046 dflags |= DF_RD;
2049 if (aflags & DF_RU)
2051 /* Compute the sets of gens and kills for the upwards exposed
2052 uses in each bb. */
2053 dflow.in = xmalloc (sizeof (bitmap) * last_basic_block);
2054 dflow.out = xmalloc (sizeof (bitmap) * last_basic_block);
2055 dflow.gen = xmalloc (sizeof (bitmap) * last_basic_block);
2056 dflow.kill = xmalloc (sizeof (bitmap) * last_basic_block);
2058 df_ru_local_compute (df, df->flags & DF_RU ? blocks : df->all_blocks);
2060 FOR_EACH_BB (bb)
2062 dflow.in[bb->index] = DF_BB_INFO (df, bb)->ru_in;
2063 dflow.out[bb->index] = DF_BB_INFO (df, bb)->ru_out;
2064 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->ru_gen;
2065 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->ru_kill;
2068 dflow.repr = SR_BITMAP;
2069 dflow.dir = DF_BACKWARD;
2070 dflow.conf_op = DF_UNION;
2071 dflow.transfun = df_ru_transfer_function;
2072 dflow.n_blocks = n_basic_blocks;
2073 dflow.order = df->rts_order;
2074 dflow.data = NULL;
2076 iterative_dataflow (&dflow);
2077 free (dflow.in);
2078 free (dflow.out);
2079 free (dflow.gen);
2080 free (dflow.kill);
2083 if (aflags & DF_DU_CHAIN)
2085 /* Create def-use chains. */
2086 df_du_chain_create (df, df->all_blocks);
2088 if (! (flags & DF_RU))
2089 dflags |= DF_RU;
2092 /* Free up bitmaps that are no longer required. */
2093 if (dflags)
2094 df_bitmaps_free (df, dflags);
2096 if (aflags & DF_LR)
2098 /* Compute the sets of defs and uses of live variables. */
2099 dflow.in = xmalloc (sizeof (bitmap) * last_basic_block);
2100 dflow.out = xmalloc (sizeof (bitmap) * last_basic_block);
2101 dflow.gen = xmalloc (sizeof (bitmap) * last_basic_block);
2102 dflow.kill = xmalloc (sizeof (bitmap) * last_basic_block);
2104 df_lr_local_compute (df, df->flags & DF_LR ? blocks : df->all_blocks);
2106 FOR_EACH_BB (bb)
2108 dflow.in[bb->index] = DF_BB_INFO (df, bb)->lr_in;
2109 dflow.out[bb->index] = DF_BB_INFO (df, bb)->lr_out;
2110 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->lr_use;
2111 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->lr_def;
2114 dflow.repr = SR_BITMAP;
2115 dflow.dir = DF_BACKWARD;
2116 dflow.conf_op = DF_UNION;
2117 dflow.transfun = df_lr_transfer_function;
2118 dflow.n_blocks = n_basic_blocks;
2119 dflow.order = df->rts_order;
2120 dflow.data = NULL;
2122 iterative_dataflow (&dflow);
2123 free (dflow.in);
2124 free (dflow.out);
2125 free (dflow.gen);
2126 free (dflow.kill);
2129 if (aflags & DF_REG_INFO)
2131 df_reg_info_compute (df, df->all_blocks);
2134 free (df->dfs_order);
2135 free (df->rc_order);
2136 free (df->rts_order);
2137 free (df->inverse_rc_map);
2138 free (df->inverse_dfs_map);
2139 free (df->inverse_rts_map);
2143 /* Initialize dataflow analysis. */
2144 struct df *
2145 df_init (void)
2147 struct df *df;
2149 df = xcalloc (1, sizeof (struct df));
2151 /* Squirrel away a global for debugging. */
2152 ddf = df;
2154 return df;
2158 /* Start queuing refs. */
2159 static int
2160 df_refs_queue (struct df *df)
2162 df->def_id_save = df->def_id;
2163 df->use_id_save = df->use_id;
2164 /* ???? Perhaps we should save current obstack state so that we can
2165 unwind it. */
2166 return 0;
2170 /* Process queued refs. */
2171 static int
2172 df_refs_process (struct df *df)
2174 unsigned int i;
2176 /* Build new insn-def chains. */
2177 for (i = df->def_id_save; i != df->def_id; i++)
2179 struct ref *def = df->defs[i];
2180 unsigned int uid = DF_REF_INSN_UID (def);
2182 /* Add def to head of def list for INSN. */
2183 df->insns[uid].defs
2184 = df_link_create (def, df->insns[uid].defs);
2187 /* Build new insn-use chains. */
2188 for (i = df->use_id_save; i != df->use_id; i++)
2190 struct ref *use = df->uses[i];
2191 unsigned int uid = DF_REF_INSN_UID (use);
2193 /* Add use to head of use list for INSN. */
2194 df->insns[uid].uses
2195 = df_link_create (use, df->insns[uid].uses);
2197 return 0;
2201 /* Update refs for basic block BB. */
2202 static int
2203 df_bb_refs_update (struct df *df, basic_block bb)
2205 rtx insn;
2206 int count = 0;
2208 /* While we have to scan the chain of insns for this BB, we do not
2209 need to allocate and queue a long chain of BB/INSN pairs. Using
2210 a bitmap for insns_modified saves memory and avoids queuing
2211 duplicates. */
2213 FOR_BB_INSNS (bb, insn)
2215 unsigned int uid;
2217 uid = INSN_UID (insn);
2219 if (bitmap_bit_p (df->insns_modified, uid))
2221 /* Delete any allocated refs of this insn. MPH, FIXME. */
2222 df_insn_refs_unlink (df, bb, insn);
2224 /* Scan the insn for refs. */
2225 df_insn_refs_record (df, bb, insn);
2227 count++;
2230 return count;
2234 /* Process all the modified/deleted insns that were queued. */
2235 static int
2236 df_refs_update (struct df *df, bitmap blocks)
2238 basic_block bb;
2239 unsigned count = 0, bbno;
2241 df->n_regs = max_reg_num ();
2242 if (df->n_regs >= df->reg_size)
2243 df_reg_table_realloc (df, 0);
2245 df_refs_queue (df);
2247 if (!blocks)
2249 FOR_EACH_BB_IN_BITMAP (df->bbs_modified, 0, bb,
2251 count += df_bb_refs_update (df, bb);
2254 else
2256 bitmap_iterator bi;
2258 EXECUTE_IF_AND_IN_BITMAP (df->bbs_modified, blocks, 0, bbno, bi)
2260 count += df_bb_refs_update (df, BASIC_BLOCK (bbno));
2264 df_refs_process (df);
2265 return count;
2269 /* Return nonzero if any of the requested blocks in the bitmap
2270 BLOCKS have been modified. */
2271 static int
2272 df_modified_p (struct df *df, bitmap blocks)
2274 int update = 0;
2275 basic_block bb;
2277 if (!df->n_bbs)
2278 return 0;
2280 FOR_EACH_BB (bb)
2281 if (bitmap_bit_p (df->bbs_modified, bb->index)
2282 && (! blocks || (blocks == (bitmap) -1) || bitmap_bit_p (blocks, bb->index)))
2284 update = 1;
2285 break;
2288 return update;
2291 /* Analyze dataflow info for the basic blocks specified by the bitmap
2292 BLOCKS, or for the whole CFG if BLOCKS is zero, or just for the
2293 modified blocks if BLOCKS is -1. */
2296 df_analyze (struct df *df, bitmap blocks, int flags)
2298 int update;
2300 /* We could deal with additional basic blocks being created by
2301 rescanning everything again. */
2302 gcc_assert (!df->n_bbs || df->n_bbs == (unsigned int) last_basic_block);
2304 update = df_modified_p (df, blocks);
2305 if (update || (flags != df->flags))
2307 if (! blocks)
2309 if (df->n_bbs)
2311 /* Recompute everything from scratch. */
2312 df_free (df);
2314 /* Allocate and initialize data structures. */
2315 df_alloc (df, max_reg_num ());
2316 df_analyze_1 (df, 0, flags, 0);
2317 update = 1;
2319 else
2321 if (blocks == (bitmap) -1)
2322 blocks = df->bbs_modified;
2324 gcc_assert (df->n_bbs);
2326 df_analyze_1 (df, blocks, flags, 1);
2327 bitmap_zero (df->bbs_modified);
2328 bitmap_zero (df->insns_modified);
2331 return update;
2334 /* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
2335 the order of the remaining entries. Returns the length of the resulting
2336 list. */
2338 static unsigned
2339 prune_to_subcfg (int list[], unsigned len, bitmap blocks)
2341 unsigned act, last;
2343 for (act = 0, last = 0; act < len; act++)
2344 if (bitmap_bit_p (blocks, list[act]))
2345 list[last++] = list[act];
2347 return last;
2350 /* Alternative entry point to the analysis. Analyze just the part of the cfg
2351 graph induced by BLOCKS.
2353 TODO I am not quite sure how to avoid code duplication with df_analyze_1
2354 here, and simultaneously not make even greater chaos in it. We behave
2355 slightly differently in some details, especially in handling modified
2356 insns. */
2358 void
2359 df_analyze_subcfg (struct df *df, bitmap blocks, int flags)
2361 rtx insn;
2362 basic_block bb;
2363 struct dataflow dflow;
2364 unsigned n_blocks;
2366 if (flags & DF_UD_CHAIN)
2367 flags |= DF_RD | DF_RD_CHAIN;
2368 if (flags & DF_DU_CHAIN)
2369 flags |= DF_RU;
2370 if (flags & DF_RU)
2371 flags |= DF_RU_CHAIN;
2372 if (flags & DF_REG_INFO)
2373 flags |= DF_LR;
2375 if (!df->n_bbs)
2377 df_alloc (df, max_reg_num ());
2379 /* Mark all insns as modified. */
2381 FOR_EACH_BB (bb)
2383 FOR_BB_INSNS (bb, insn)
2385 df_insn_modify (df, bb, insn);
2390 df->flags = flags;
2392 df_reg_def_chain_clean (df);
2393 df_reg_use_chain_clean (df);
2395 df_refs_update (df, blocks);
2397 /* Clear the updated stuff from ``modified'' bitmaps. */
2398 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
2400 if (bitmap_bit_p (df->bbs_modified, bb->index))
2402 FOR_BB_INSNS (bb, insn)
2404 bitmap_clear_bit (df->insns_modified, INSN_UID (insn));
2407 bitmap_clear_bit (df->bbs_modified, bb->index);
2411 /* Allocate the bitmaps now the total number of defs and uses are
2412 known. If the number of defs or uses have changed, then
2413 these bitmaps need to be reallocated. */
2414 df_bitmaps_alloc (df, blocks, flags);
2416 /* Set the LUIDs for each specified basic block. */
2417 df_luids_set (df, blocks);
2419 /* Recreate reg-def and reg-use chains from scratch so that first
2420 def is at the head of the reg-def chain and the last use is at
2421 the head of the reg-use chain. This is only important for
2422 regs local to a basic block as it speeds up searching. */
2423 if (flags & DF_RD_CHAIN)
2425 df_reg_def_chain_create (df, blocks, true);
2428 if (flags & DF_RU_CHAIN)
2430 df_reg_use_chain_create (df, blocks, true);
2433 df->dfs_order = xmalloc (sizeof (int) * n_basic_blocks);
2434 df->rc_order = xmalloc (sizeof (int) * n_basic_blocks);
2435 df->rts_order = xmalloc (sizeof (int) * n_basic_blocks);
2437 flow_depth_first_order_compute (df->dfs_order, df->rc_order);
2438 flow_reverse_top_sort_order_compute (df->rts_order);
2440 n_blocks = prune_to_subcfg (df->dfs_order, n_basic_blocks, blocks);
2441 prune_to_subcfg (df->rc_order, n_basic_blocks, blocks);
2442 prune_to_subcfg (df->rts_order, n_basic_blocks, blocks);
2444 dflow.in = xmalloc (sizeof (bitmap) * last_basic_block);
2445 dflow.out = xmalloc (sizeof (bitmap) * last_basic_block);
2446 dflow.gen = xmalloc (sizeof (bitmap) * last_basic_block);
2447 dflow.kill = xmalloc (sizeof (bitmap) * last_basic_block);
2449 if (flags & DF_RD)
2451 /* Compute the sets of gens and kills for the defs of each bb. */
2452 df_rd_local_compute (df, blocks);
2454 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
2456 dflow.in[bb->index] = DF_BB_INFO (df, bb)->rd_in;
2457 dflow.out[bb->index] = DF_BB_INFO (df, bb)->rd_out;
2458 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->rd_gen;
2459 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->rd_kill;
2462 dflow.repr = SR_BITMAP;
2463 dflow.dir = DF_FORWARD;
2464 dflow.conf_op = DF_UNION;
2465 dflow.transfun = df_rd_transfer_function;
2466 dflow.n_blocks = n_blocks;
2467 dflow.order = df->rc_order;
2468 dflow.data = NULL;
2470 iterative_dataflow (&dflow);
2473 if (flags & DF_UD_CHAIN)
2475 /* Create use-def chains. */
2476 df_ud_chain_create (df, blocks);
2479 if (flags & DF_RU)
2481 /* Compute the sets of gens and kills for the upwards exposed
2482 uses in each bb. */
2483 df_ru_local_compute (df, blocks);
2485 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
2487 dflow.in[bb->index] = DF_BB_INFO (df, bb)->ru_in;
2488 dflow.out[bb->index] = DF_BB_INFO (df, bb)->ru_out;
2489 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->ru_gen;
2490 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->ru_kill;
2493 dflow.repr = SR_BITMAP;
2494 dflow.dir = DF_BACKWARD;
2495 dflow.conf_op = DF_UNION;
2496 dflow.transfun = df_ru_transfer_function;
2497 dflow.n_blocks = n_blocks;
2498 dflow.order = df->rts_order;
2499 dflow.data = NULL;
2501 iterative_dataflow (&dflow);
2504 if (flags & DF_DU_CHAIN)
2506 /* Create def-use chains. */
2507 df_du_chain_create (df, blocks);
2510 if (flags & DF_LR)
2512 /* Compute the sets of defs and uses of live variables. */
2513 df_lr_local_compute (df, blocks);
2515 FOR_EACH_BB (bb)
2517 dflow.in[bb->index] = DF_BB_INFO (df, bb)->lr_in;
2518 dflow.out[bb->index] = DF_BB_INFO (df, bb)->lr_out;
2519 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->lr_use;
2520 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->lr_def;
2523 dflow.repr = SR_BITMAP;
2524 dflow.dir = DF_BACKWARD;
2525 dflow.conf_op = DF_UNION;
2526 dflow.transfun = df_lr_transfer_function;
2527 dflow.n_blocks = n_blocks;
2528 dflow.order = df->rts_order;
2529 dflow.data = NULL;
2531 iterative_dataflow (&dflow);
2534 if (flags & DF_REG_INFO)
2536 df_reg_info_compute (df, blocks);
2539 free (dflow.in);
2540 free (dflow.out);
2541 free (dflow.gen);
2542 free (dflow.kill);
2544 free (df->dfs_order);
2545 free (df->rc_order);
2546 free (df->rts_order);
2549 /* Free all the dataflow info and the DF structure. */
2550 void
2551 df_finish (struct df *df)
2553 df_free (df);
2554 free (df);
2557 /* Unlink INSN from its reference information. */
2558 static void
2559 df_insn_refs_unlink (struct df *df, basic_block bb ATTRIBUTE_UNUSED, rtx insn)
2561 struct df_link *link;
2562 unsigned int uid;
2564 uid = INSN_UID (insn);
2566 /* Unlink all refs defined by this insn. */
2567 for (link = df->insns[uid].defs; link; link = link->next)
2568 df_def_unlink (df, link->ref);
2570 /* Unlink all refs used by this insn. */
2571 for (link = df->insns[uid].uses; link; link = link->next)
2572 df_use_unlink (df, link->ref);
2574 df->insns[uid].defs = 0;
2575 df->insns[uid].uses = 0;
2579 #if 0
2580 /* Unlink all the insns within BB from their reference information. */
2581 static void
2582 df_bb_refs_unlink (struct df *df, basic_block bb)
2584 rtx insn;
2586 /* Scan the block an insn at a time from beginning to end. */
2587 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
2589 if (INSN_P (insn))
2591 /* Unlink refs for INSN. */
2592 df_insn_refs_unlink (df, bb, insn);
2594 if (insn == BB_END (bb))
2595 break;
2600 /* Unlink all the refs in the basic blocks specified by BLOCKS.
2601 Not currently used. */
2602 static void
2603 df_refs_unlink (struct df *df, bitmap blocks)
2605 basic_block bb;
2607 if (blocks)
2609 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
2611 df_bb_refs_unlink (df, bb);
2614 else
2616 FOR_EACH_BB (bb)
2617 df_bb_refs_unlink (df, bb);
2620 #endif
2622 /* Functions to modify insns. */
2625 /* Delete INSN and all its reference information. */
2627 df_insn_delete (struct df *df, basic_block bb ATTRIBUTE_UNUSED, rtx insn)
2629 /* If the insn is a jump, we should perhaps call delete_insn to
2630 handle the JUMP_LABEL? */
2632 /* We should not be deleting the NOTE_INSN_BASIC_BLOCK or label. */
2633 gcc_assert (insn != BB_HEAD (bb));
2635 /* Delete the insn. */
2636 delete_insn (insn);
2638 df_insn_modify (df, bb, insn);
2640 return NEXT_INSN (insn);
2643 /* Mark that basic block BB was modified. */
2645 static void
2646 df_bb_modify (struct df *df, basic_block bb)
2648 if ((unsigned) bb->index >= df->n_bbs)
2649 df_bb_table_realloc (df, df->n_bbs);
2651 bitmap_set_bit (df->bbs_modified, bb->index);
2654 /* Mark that INSN within BB may have changed (created/modified/deleted).
2655 This may be called multiple times for the same insn. There is no
2656 harm calling this function if the insn wasn't changed; it will just
2657 slow down the rescanning of refs. */
2658 void
2659 df_insn_modify (struct df *df, basic_block bb, rtx insn)
2661 unsigned int uid;
2663 uid = INSN_UID (insn);
2664 if (uid >= df->insn_size)
2665 df_insn_table_realloc (df, uid);
2667 df_bb_modify (df, bb);
2668 bitmap_set_bit (df->insns_modified, uid);
2670 /* For incremental updating on the fly, perhaps we could make a copy
2671 of all the refs of the original insn and turn them into
2672 anti-refs. When df_refs_update finds these anti-refs, it annihilates
2673 the original refs. If validate_change fails then these anti-refs
2674 will just get ignored. */
2677 typedef struct replace_args
2679 rtx match;
2680 rtx replacement;
2681 rtx insn;
2682 int modified;
2683 } replace_args;
2686 /* Replace mem pointed to by PX with its associated pseudo register.
2687 DATA is actually a pointer to a structure describing the
2688 instruction currently being scanned and the MEM we are currently
2689 replacing. */
2690 static int
2691 df_rtx_mem_replace (rtx *px, void *data)
2693 replace_args *args = (replace_args *) data;
2694 rtx mem = *px;
2696 if (mem == NULL_RTX)
2697 return 0;
2699 switch (GET_CODE (mem))
2701 case MEM:
2702 break;
2704 case CONST_DOUBLE:
2705 /* We're not interested in the MEM associated with a
2706 CONST_DOUBLE, so there's no need to traverse into one. */
2707 return -1;
2709 default:
2710 /* This is not a MEM. */
2711 return 0;
2714 if (!rtx_equal_p (args->match, mem))
2715 /* This is not the MEM we are currently replacing. */
2716 return 0;
2718 /* Actually replace the MEM. */
2719 validate_change (args->insn, px, args->replacement, 1);
2720 args->modified++;
2722 return 0;
2727 df_insn_mem_replace (struct df *df, basic_block bb, rtx insn, rtx mem, rtx reg)
2729 replace_args args;
2731 args.insn = insn;
2732 args.match = mem;
2733 args.replacement = reg;
2734 args.modified = 0;
2736 /* Search and replace all matching mems within insn. */
2737 for_each_rtx (&insn, df_rtx_mem_replace, &args);
2739 if (args.modified)
2740 df_insn_modify (df, bb, insn);
2742 /* ???? FIXME. We may have a new def or one or more new uses of REG
2743 in INSN. REG should be a new pseudo so it won't affect the
2744 dataflow information that we currently have. We should add
2745 the new uses and defs to INSN and then recreate the chains
2746 when df_analyze is called. */
2747 return args.modified;
2751 /* Replace one register with another. Called through for_each_rtx; PX
2752 points to the rtx being scanned. DATA is actually a pointer to a
2753 structure of arguments. */
2754 static int
2755 df_rtx_reg_replace (rtx *px, void *data)
2757 rtx x = *px;
2758 replace_args *args = (replace_args *) data;
2760 if (x == NULL_RTX)
2761 return 0;
2763 if (x == args->match)
2765 validate_change (args->insn, px, args->replacement, 1);
2766 args->modified++;
2769 return 0;
2773 /* Replace the reg within every ref on CHAIN that is within the set
2774 BLOCKS of basic blocks with NEWREG. Also update the regs within
2775 REG_NOTES. */
2776 void
2777 df_refs_reg_replace (struct df *df, bitmap blocks, struct df_link *chain, rtx oldreg, rtx newreg)
2779 struct df_link *link;
2780 replace_args args;
2782 if (! blocks)
2783 blocks = df->all_blocks;
2785 args.match = oldreg;
2786 args.replacement = newreg;
2787 args.modified = 0;
2789 for (link = chain; link; link = link->next)
2791 struct ref *ref = link->ref;
2792 rtx insn = DF_REF_INSN (ref);
2794 if (! INSN_P (insn))
2795 continue;
2797 gcc_assert (bitmap_bit_p (blocks, DF_REF_BBNO (ref)));
2799 df_ref_reg_replace (df, ref, oldreg, newreg);
2801 /* Replace occurrences of the reg within the REG_NOTES. */
2802 if ((! link->next || DF_REF_INSN (ref)
2803 != DF_REF_INSN (link->next->ref))
2804 && REG_NOTES (insn))
2806 args.insn = insn;
2807 for_each_rtx (&REG_NOTES (insn), df_rtx_reg_replace, &args);
2813 /* Replace all occurrences of register OLDREG with register NEWREG in
2814 blocks defined by bitmap BLOCKS. This also replaces occurrences of
2815 OLDREG in the REG_NOTES but only for insns containing OLDREG. This
2816 routine expects the reg-use and reg-def chains to be valid. */
2818 df_reg_replace (struct df *df, bitmap blocks, rtx oldreg, rtx newreg)
2820 unsigned int oldregno = REGNO (oldreg);
2822 df_refs_reg_replace (df, blocks, df->regs[oldregno].defs, oldreg, newreg);
2823 df_refs_reg_replace (df, blocks, df->regs[oldregno].uses, oldreg, newreg);
2824 return 1;
2828 /* Try replacing the reg within REF with NEWREG. Do not modify
2829 def-use/use-def chains. */
2831 df_ref_reg_replace (struct df *df, struct ref *ref, rtx oldreg, rtx newreg)
2833 /* Check that insn was deleted by being converted into a NOTE. If
2834 so ignore this insn. */
2835 if (! INSN_P (DF_REF_INSN (ref)))
2836 return 0;
2838 gcc_assert (!oldreg || oldreg == DF_REF_REG (ref));
2840 if (! validate_change (DF_REF_INSN (ref), DF_REF_LOC (ref), newreg, 1))
2841 return 0;
2843 df_insn_modify (df, DF_REF_BB (ref), DF_REF_INSN (ref));
2844 return 1;
2848 struct ref*
2849 df_bb_def_use_swap (struct df *df, basic_block bb, rtx def_insn, rtx use_insn, unsigned int regno)
2851 struct ref *def;
2852 struct ref *use;
2853 int def_uid;
2854 int use_uid;
2855 struct df_link *link;
2857 def = df_bb_insn_regno_first_def_find (df, bb, def_insn, regno);
2858 if (! def)
2859 return 0;
2861 use = df_bb_insn_regno_last_use_find (df, bb, use_insn, regno);
2862 if (! use)
2863 return 0;
2865 /* The USE no longer exists. */
2866 use_uid = INSN_UID (use_insn);
2867 df_use_unlink (df, use);
2868 df_ref_unlink (&df->insns[use_uid].uses, use);
2870 /* The DEF requires shifting so remove it from DEF_INSN
2871 and add it to USE_INSN by reusing LINK. */
2872 def_uid = INSN_UID (def_insn);
2873 link = df_ref_unlink (&df->insns[def_uid].defs, def);
2874 link->ref = def;
2875 link->next = df->insns[use_uid].defs;
2876 df->insns[use_uid].defs = link;
2878 #if 0
2879 link = df_ref_unlink (&df->regs[regno].defs, def);
2880 link->ref = def;
2881 link->next = df->regs[regno].defs;
2882 df->insns[regno].defs = link;
2883 #endif
2885 DF_REF_INSN (def) = use_insn;
2886 return def;
2890 /* Record df between FIRST_INSN and LAST_INSN inclusive. All new
2891 insns must be processed by this routine. */
2892 static void
2893 df_insns_modify (struct df *df, basic_block bb, rtx first_insn, rtx last_insn)
2895 rtx insn;
2897 for (insn = first_insn; ; insn = NEXT_INSN (insn))
2899 unsigned int uid;
2901 /* A non-const call should not have slipped through the net. If
2902 it does, we need to create a new basic block. Ouch. The
2903 same applies for a label. */
2904 gcc_assert ((!CALL_P (insn) || CONST_OR_PURE_CALL_P (insn))
2905 && !LABEL_P (insn));
2907 uid = INSN_UID (insn);
2909 if (uid >= df->insn_size)
2910 df_insn_table_realloc (df, uid);
2912 df_insn_modify (df, bb, insn);
2914 if (insn == last_insn)
2915 break;
2920 /* Emit PATTERN before INSN within BB. */
2922 df_pattern_emit_before (struct df *df, rtx pattern, basic_block bb, rtx insn)
2924 rtx ret_insn;
2925 rtx prev_insn = PREV_INSN (insn);
2927 /* We should not be inserting before the start of the block. */
2928 gcc_assert (insn != BB_HEAD (bb));
2929 ret_insn = emit_insn_before (pattern, insn);
2930 if (ret_insn == insn)
2931 return ret_insn;
2933 df_insns_modify (df, bb, NEXT_INSN (prev_insn), ret_insn);
2934 return ret_insn;
2938 /* Emit PATTERN after INSN within BB. */
2940 df_pattern_emit_after (struct df *df, rtx pattern, basic_block bb, rtx insn)
2942 rtx ret_insn;
2944 ret_insn = emit_insn_after (pattern, insn);
2945 if (ret_insn == insn)
2946 return ret_insn;
2948 df_insns_modify (df, bb, NEXT_INSN (insn), ret_insn);
2949 return ret_insn;
2953 /* Emit jump PATTERN after INSN within BB. */
2955 df_jump_pattern_emit_after (struct df *df, rtx pattern, basic_block bb, rtx insn)
2957 rtx ret_insn;
2959 ret_insn = emit_jump_insn_after (pattern, insn);
2960 if (ret_insn == insn)
2961 return ret_insn;
2963 df_insns_modify (df, bb, NEXT_INSN (insn), ret_insn);
2964 return ret_insn;
2968 /* Move INSN within BB before BEFORE_INSN within BEFORE_BB.
2970 This function should only be used to move loop invariant insns
2971 out of a loop where it has been proven that the def-use info
2972 will still be valid. */
2974 df_insn_move_before (struct df *df, basic_block bb, rtx insn, basic_block before_bb, rtx before_insn)
2976 struct df_link *link;
2977 unsigned int uid;
2979 if (! bb)
2980 return df_pattern_emit_before (df, insn, before_bb, before_insn);
2982 uid = INSN_UID (insn);
2984 /* Change bb for all df defined and used by this insn. */
2985 for (link = df->insns[uid].defs; link; link = link->next)
2986 DF_REF_BB (link->ref) = before_bb;
2987 for (link = df->insns[uid].uses; link; link = link->next)
2988 DF_REF_BB (link->ref) = before_bb;
2990 /* The lifetimes of the registers used in this insn will be reduced
2991 while the lifetimes of the registers defined in this insn
2992 are likely to be increased. */
2994 /* ???? Perhaps all the insns moved should be stored on a list
2995 which df_analyze removes when it recalculates data flow. */
2997 return emit_insn_before (insn, before_insn);
3000 /* Functions to query dataflow information. */
3004 df_insn_regno_def_p (struct df *df, basic_block bb ATTRIBUTE_UNUSED,
3005 rtx insn, unsigned int regno)
3007 unsigned int uid;
3008 struct df_link *link;
3010 uid = INSN_UID (insn);
3012 for (link = df->insns[uid].defs; link; link = link->next)
3014 struct ref *def = link->ref;
3016 if (DF_REF_REGNO (def) == regno)
3017 return 1;
3020 return 0;
3023 /* Finds the reference corresponding to the definition of REG in INSN.
3024 DF is the dataflow object. */
3026 struct ref *
3027 df_find_def (struct df *df, rtx insn, rtx reg)
3029 struct df_link *defs;
3031 for (defs = DF_INSN_DEFS (df, insn); defs; defs = defs->next)
3032 if (rtx_equal_p (DF_REF_REG (defs->ref), reg))
3033 return defs->ref;
3035 return NULL;
3038 /* Return 1 if REG is referenced in INSN, zero otherwise. */
3041 df_reg_used (struct df *df, rtx insn, rtx reg)
3043 struct df_link *uses;
3045 for (uses = DF_INSN_USES (df, insn); uses; uses = uses->next)
3046 if (rtx_equal_p (DF_REF_REG (uses->ref), reg))
3047 return 1;
3049 return 0;
3052 static int
3053 df_def_dominates_all_uses_p (struct df *df ATTRIBUTE_UNUSED, struct ref *def)
3055 struct df_link *du_link;
3057 /* Follow def-use chain to find all the uses of this def. */
3058 for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
3060 struct ref *use = du_link->ref;
3061 struct df_link *ud_link;
3063 /* Follow use-def chain to check all the defs for this use. */
3064 for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
3065 if (ud_link->ref != def)
3066 return 0;
3068 return 1;
3073 df_insn_dominates_all_uses_p (struct df *df, basic_block bb ATTRIBUTE_UNUSED,
3074 rtx insn)
3076 unsigned int uid;
3077 struct df_link *link;
3079 uid = INSN_UID (insn);
3081 for (link = df->insns[uid].defs; link; link = link->next)
3083 struct ref *def = link->ref;
3085 if (! df_def_dominates_all_uses_p (df, def))
3086 return 0;
3089 return 1;
3093 /* Return nonzero if all DF dominates all the uses within the bitmap
3094 BLOCKS. */
3095 static int
3096 df_def_dominates_uses_p (struct df *df ATTRIBUTE_UNUSED, struct ref *def,
3097 bitmap blocks)
3099 struct df_link *du_link;
3101 /* Follow def-use chain to find all the uses of this def. */
3102 for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
3104 struct ref *use = du_link->ref;
3105 struct df_link *ud_link;
3107 /* Only worry about the uses within BLOCKS. For example,
3108 consider a register defined within a loop that is live at the
3109 loop exits. */
3110 if (bitmap_bit_p (blocks, DF_REF_BBNO (use)))
3112 /* Follow use-def chain to check all the defs for this use. */
3113 for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
3114 if (ud_link->ref != def)
3115 return 0;
3118 return 1;
3122 /* Return nonzero if all the defs of INSN within BB dominates
3123 all the corresponding uses. */
3125 df_insn_dominates_uses_p (struct df *df, basic_block bb ATTRIBUTE_UNUSED,
3126 rtx insn, bitmap blocks)
3128 unsigned int uid;
3129 struct df_link *link;
3131 uid = INSN_UID (insn);
3133 for (link = df->insns[uid].defs; link; link = link->next)
3135 struct ref *def = link->ref;
3137 /* Only consider the defs within BLOCKS. */
3138 if (bitmap_bit_p (blocks, DF_REF_BBNO (def))
3139 && ! df_def_dominates_uses_p (df, def, blocks))
3140 return 0;
3142 return 1;
3146 /* Return the basic block that REG referenced in or NULL if referenced
3147 in multiple basic blocks. */
3148 basic_block
3149 df_regno_bb (struct df *df, unsigned int regno)
3151 struct df_link *defs = df->regs[regno].defs;
3152 struct df_link *uses = df->regs[regno].uses;
3153 struct ref *def = defs ? defs->ref : 0;
3154 struct ref *use = uses ? uses->ref : 0;
3155 basic_block bb_def = def ? DF_REF_BB (def) : 0;
3156 basic_block bb_use = use ? DF_REF_BB (use) : 0;
3158 /* Compare blocks of first def and last use. ???? FIXME. What if
3159 the reg-def and reg-use lists are not correctly ordered. */
3160 return bb_def == bb_use ? bb_def : 0;
3164 /* Return nonzero if REG used in multiple basic blocks. */
3166 df_reg_global_p (struct df *df, rtx reg)
3168 return df_regno_bb (df, REGNO (reg)) != 0;
3172 /* Return total lifetime (in insns) of REG. */
3174 df_reg_lifetime (struct df *df, rtx reg)
3176 return df->regs[REGNO (reg)].lifetime;
3180 /* Return nonzero if REG live at start of BB. */
3182 df_bb_reg_live_start_p (struct df *df, basic_block bb, rtx reg)
3184 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3186 gcc_assert (bb_info->lr_in);
3188 return bitmap_bit_p (bb_info->lr_in, REGNO (reg));
3192 /* Return nonzero if REG live at end of BB. */
3194 df_bb_reg_live_end_p (struct df *df, basic_block bb, rtx reg)
3196 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3198 gcc_assert (bb_info->lr_in);
3200 return bitmap_bit_p (bb_info->lr_out, REGNO (reg));
3204 /* Return -1 if life of REG1 before life of REG2, 1 if life of REG1
3205 after life of REG2, or 0, if the lives overlap. */
3207 df_bb_regs_lives_compare (struct df *df, basic_block bb, rtx reg1, rtx reg2)
3209 unsigned int regno1 = REGNO (reg1);
3210 unsigned int regno2 = REGNO (reg2);
3211 struct ref *def1;
3212 struct ref *use1;
3213 struct ref *def2;
3214 struct ref *use2;
3217 /* The regs must be local to BB. */
3218 gcc_assert (df_regno_bb (df, regno1) == bb
3219 && df_regno_bb (df, regno2) == bb);
3221 def2 = df_bb_regno_first_def_find (df, bb, regno2);
3222 use1 = df_bb_regno_last_use_find (df, bb, regno1);
3224 if (DF_INSN_LUID (df, DF_REF_INSN (def2))
3225 > DF_INSN_LUID (df, DF_REF_INSN (use1)))
3226 return -1;
3228 def1 = df_bb_regno_first_def_find (df, bb, regno1);
3229 use2 = df_bb_regno_last_use_find (df, bb, regno2);
3231 if (DF_INSN_LUID (df, DF_REF_INSN (def1))
3232 > DF_INSN_LUID (df, DF_REF_INSN (use2)))
3233 return 1;
3235 return 0;
3239 /* Return last use of REGNO within BB. */
3240 struct ref *
3241 df_bb_regno_last_use_find (struct df *df, basic_block bb, unsigned int regno)
3243 struct df_link *link;
3245 /* This assumes that the reg-use list is ordered such that for any
3246 BB, the last use is found first. However, since the BBs are not
3247 ordered, the first use in the chain is not necessarily the last
3248 use in the function. */
3249 for (link = df->regs[regno].uses; link; link = link->next)
3251 struct ref *use = link->ref;
3253 if (DF_REF_BB (use) == bb)
3254 return use;
3256 return 0;
3260 /* Return first def of REGNO within BB. */
3261 struct ref *
3262 df_bb_regno_first_def_find (struct df *df, basic_block bb, unsigned int regno)
3264 struct df_link *link;
3266 /* This assumes that the reg-def list is ordered such that for any
3267 BB, the first def is found first. However, since the BBs are not
3268 ordered, the first def in the chain is not necessarily the first
3269 def in the function. */
3270 for (link = df->regs[regno].defs; link; link = link->next)
3272 struct ref *def = link->ref;
3274 if (DF_REF_BB (def) == bb)
3275 return def;
3277 return 0;
3280 /* Return last def of REGNO within BB. */
3281 struct ref *
3282 df_bb_regno_last_def_find (struct df *df, basic_block bb, unsigned int regno)
3284 struct df_link *link;
3285 struct ref *last_def = NULL;
3286 int in_bb = 0;
3288 /* This assumes that the reg-def list is ordered such that for any
3289 BB, the first def is found first. However, since the BBs are not
3290 ordered, the first def in the chain is not necessarily the first
3291 def in the function. */
3292 for (link = df->regs[regno].defs; link; link = link->next)
3294 struct ref *def = link->ref;
3295 /* The first time in the desired block. */
3296 if (DF_REF_BB (def) == bb)
3297 in_bb = 1;
3298 /* The last def in the desired block. */
3299 else if (in_bb)
3300 return last_def;
3301 last_def = def;
3303 return last_def;
3306 /* Return first use of REGNO inside INSN within BB. */
3307 static struct ref *
3308 df_bb_insn_regno_last_use_find (struct df *df,
3309 basic_block bb ATTRIBUTE_UNUSED, rtx insn,
3310 unsigned int regno)
3312 unsigned int uid;
3313 struct df_link *link;
3315 uid = INSN_UID (insn);
3317 for (link = df->insns[uid].uses; link; link = link->next)
3319 struct ref *use = link->ref;
3321 if (DF_REF_REGNO (use) == regno)
3322 return use;
3325 return 0;
3329 /* Return first def of REGNO inside INSN within BB. */
3330 static struct ref *
3331 df_bb_insn_regno_first_def_find (struct df *df,
3332 basic_block bb ATTRIBUTE_UNUSED, rtx insn,
3333 unsigned int regno)
3335 unsigned int uid;
3336 struct df_link *link;
3338 uid = INSN_UID (insn);
3340 for (link = df->insns[uid].defs; link; link = link->next)
3342 struct ref *def = link->ref;
3344 if (DF_REF_REGNO (def) == regno)
3345 return def;
3348 return 0;
3352 /* Return insn using REG if the BB contains only a single
3353 use and def of REG. */
3355 df_bb_single_def_use_insn_find (struct df *df, basic_block bb, rtx insn, rtx reg)
3357 struct ref *def;
3358 struct ref *use;
3359 struct df_link *du_link;
3361 def = df_bb_insn_regno_first_def_find (df, bb, insn, REGNO (reg));
3363 gcc_assert (def);
3365 du_link = DF_REF_CHAIN (def);
3367 if (! du_link)
3368 return NULL_RTX;
3370 use = du_link->ref;
3372 /* Check if def is dead. */
3373 if (! use)
3374 return NULL_RTX;
3376 /* Check for multiple uses. */
3377 if (du_link->next)
3378 return NULL_RTX;
3380 return DF_REF_INSN (use);
3383 /* Functions for debugging/dumping dataflow information. */
3386 /* Dump a def-use or use-def chain for REF to FILE. */
3387 static void
3388 df_chain_dump (struct df_link *link, FILE *file)
3390 fprintf (file, "{ ");
3391 for (; link; link = link->next)
3393 fprintf (file, "%c%d ",
3394 DF_REF_REG_DEF_P (link->ref) ? 'd' : 'u',
3395 DF_REF_ID (link->ref));
3397 fprintf (file, "}");
3401 /* Dump a chain of refs with the associated regno. */
3402 static void
3403 df_chain_dump_regno (struct df_link *link, FILE *file)
3405 fprintf (file, "{ ");
3406 for (; link; link = link->next)
3408 fprintf (file, "%c%d(%d) ",
3409 DF_REF_REG_DEF_P (link->ref) ? 'd' : 'u',
3410 DF_REF_ID (link->ref),
3411 DF_REF_REGNO (link->ref));
3413 fprintf (file, "}");
3417 /* Dump dataflow info. */
3418 void
3419 df_dump (struct df *df, int flags, FILE *file)
3421 unsigned int j;
3422 basic_block bb;
3424 if (! df || ! file)
3425 return;
3427 fprintf (file, "\nDataflow summary:\n");
3428 fprintf (file, "n_regs = %d, n_defs = %d, n_uses = %d, n_bbs = %d\n",
3429 df->n_regs, df->n_defs, df->n_uses, df->n_bbs);
3431 if (flags & DF_RD)
3433 basic_block bb;
3435 fprintf (file, "Reaching defs:\n");
3436 FOR_EACH_BB (bb)
3438 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3440 if (! bb_info->rd_in)
3441 continue;
3443 fprintf (file, "bb %d in \t", bb->index);
3444 dump_bitmap (file, bb_info->rd_in);
3445 fprintf (file, "bb %d gen \t", bb->index);
3446 dump_bitmap (file, bb_info->rd_gen);
3447 fprintf (file, "bb %d kill\t", bb->index);
3448 dump_bitmap (file, bb_info->rd_kill);
3449 fprintf (file, "bb %d out \t", bb->index);
3450 dump_bitmap (file, bb_info->rd_out);
3454 if (flags & DF_UD_CHAIN)
3456 fprintf (file, "Use-def chains:\n");
3457 for (j = 0; j < df->n_defs; j++)
3459 if (df->defs[j])
3461 fprintf (file, "d%d bb %d luid %d insn %d reg %d ",
3462 j, DF_REF_BBNO (df->defs[j]),
3463 DF_INSN_LUID (df, DF_REF_INSN (df->defs[j])),
3464 DF_REF_INSN_UID (df->defs[j]),
3465 DF_REF_REGNO (df->defs[j]));
3466 if (df->defs[j]->flags & DF_REF_READ_WRITE)
3467 fprintf (file, "read/write ");
3468 df_chain_dump (DF_REF_CHAIN (df->defs[j]), file);
3469 fprintf (file, "\n");
3474 if (flags & DF_RU)
3476 fprintf (file, "Reaching uses:\n");
3477 FOR_EACH_BB (bb)
3479 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3481 if (! bb_info->ru_in)
3482 continue;
3484 fprintf (file, "bb %d in \t", bb->index);
3485 dump_bitmap (file, bb_info->ru_in);
3486 fprintf (file, "bb %d gen \t", bb->index);
3487 dump_bitmap (file, bb_info->ru_gen);
3488 fprintf (file, "bb %d kill\t", bb->index);
3489 dump_bitmap (file, bb_info->ru_kill);
3490 fprintf (file, "bb %d out \t", bb->index);
3491 dump_bitmap (file, bb_info->ru_out);
3495 if (flags & DF_DU_CHAIN)
3497 fprintf (file, "Def-use chains:\n");
3498 for (j = 0; j < df->n_uses; j++)
3500 if (df->uses[j])
3502 fprintf (file, "u%d bb %d luid %d insn %d reg %d ",
3503 j, DF_REF_BBNO (df->uses[j]),
3504 DF_INSN_LUID (df, DF_REF_INSN (df->uses[j])),
3505 DF_REF_INSN_UID (df->uses[j]),
3506 DF_REF_REGNO (df->uses[j]));
3507 if (df->uses[j]->flags & DF_REF_READ_WRITE)
3508 fprintf (file, "read/write ");
3509 df_chain_dump (DF_REF_CHAIN (df->uses[j]), file);
3510 fprintf (file, "\n");
3515 if (flags & DF_LR)
3517 fprintf (file, "Live regs:\n");
3518 FOR_EACH_BB (bb)
3520 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3522 if (! bb_info->lr_in)
3523 continue;
3525 fprintf (file, "bb %d in \t", bb->index);
3526 dump_bitmap (file, bb_info->lr_in);
3527 fprintf (file, "bb %d use \t", bb->index);
3528 dump_bitmap (file, bb_info->lr_use);
3529 fprintf (file, "bb %d def \t", bb->index);
3530 dump_bitmap (file, bb_info->lr_def);
3531 fprintf (file, "bb %d out \t", bb->index);
3532 dump_bitmap (file, bb_info->lr_out);
3536 if (flags & (DF_REG_INFO | DF_RD_CHAIN | DF_RU_CHAIN))
3538 struct reg_info *reg_info = df->regs;
3540 fprintf (file, "Register info:\n");
3541 for (j = 0; j < df->n_regs; j++)
3543 if (((flags & DF_REG_INFO)
3544 && (reg_info[j].n_uses || reg_info[j].n_defs))
3545 || ((flags & DF_RD_CHAIN) && reg_info[j].defs)
3546 || ((flags & DF_RU_CHAIN) && reg_info[j].uses))
3548 fprintf (file, "reg %d", j);
3549 if ((flags & DF_RD_CHAIN) && (flags & DF_RU_CHAIN))
3551 basic_block bb = df_regno_bb (df, j);
3553 if (bb)
3554 fprintf (file, " bb %d", bb->index);
3555 else
3556 fprintf (file, " bb ?");
3558 if (flags & DF_REG_INFO)
3560 fprintf (file, " life %d", reg_info[j].lifetime);
3563 if ((flags & DF_REG_INFO) || (flags & DF_RD_CHAIN))
3565 fprintf (file, " defs ");
3566 if (flags & DF_REG_INFO)
3567 fprintf (file, "%d ", reg_info[j].n_defs);
3568 if (flags & DF_RD_CHAIN)
3569 df_chain_dump (reg_info[j].defs, file);
3572 if ((flags & DF_REG_INFO) || (flags & DF_RU_CHAIN))
3574 fprintf (file, " uses ");
3575 if (flags & DF_REG_INFO)
3576 fprintf (file, "%d ", reg_info[j].n_uses);
3577 if (flags & DF_RU_CHAIN)
3578 df_chain_dump (reg_info[j].uses, file);
3581 fprintf (file, "\n");
3585 fprintf (file, "\n");
3589 void
3590 df_insn_debug (struct df *df, rtx insn, FILE *file)
3592 unsigned int uid;
3593 int bbi;
3595 uid = INSN_UID (insn);
3596 if (uid >= df->insn_size)
3597 return;
3599 if (df->insns[uid].defs)
3600 bbi = DF_REF_BBNO (df->insns[uid].defs->ref);
3601 else if (df->insns[uid].uses)
3602 bbi = DF_REF_BBNO (df->insns[uid].uses->ref);
3603 else
3604 bbi = -1;
3606 fprintf (file, "insn %d bb %d luid %d defs ",
3607 uid, bbi, DF_INSN_LUID (df, insn));
3608 df_chain_dump (df->insns[uid].defs, file);
3609 fprintf (file, " uses ");
3610 df_chain_dump (df->insns[uid].uses, file);
3611 fprintf (file, "\n");
3615 void
3616 df_insn_debug_regno (struct df *df, rtx insn, FILE *file)
3618 unsigned int uid;
3619 int bbi;
3621 uid = INSN_UID (insn);
3622 if (uid >= df->insn_size)
3623 return;
3625 if (df->insns[uid].defs)
3626 bbi = DF_REF_BBNO (df->insns[uid].defs->ref);
3627 else if (df->insns[uid].uses)
3628 bbi = DF_REF_BBNO (df->insns[uid].uses->ref);
3629 else
3630 bbi = -1;
3632 fprintf (file, "insn %d bb %d luid %d defs ",
3633 uid, bbi, DF_INSN_LUID (df, insn));
3634 df_chain_dump_regno (df->insns[uid].defs, file);
3635 fprintf (file, " uses ");
3636 df_chain_dump_regno (df->insns[uid].uses, file);
3637 fprintf (file, "\n");
3641 static void
3642 df_regno_debug (struct df *df, unsigned int regno, FILE *file)
3644 if (regno >= df->reg_size)
3645 return;
3647 fprintf (file, "reg %d life %d defs ",
3648 regno, df->regs[regno].lifetime);
3649 df_chain_dump (df->regs[regno].defs, file);
3650 fprintf (file, " uses ");
3651 df_chain_dump (df->regs[regno].uses, file);
3652 fprintf (file, "\n");
3656 static void
3657 df_ref_debug (struct df *df, struct ref *ref, FILE *file)
3659 fprintf (file, "%c%d ",
3660 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
3661 DF_REF_ID (ref));
3662 fprintf (file, "reg %d bb %d luid %d insn %d chain ",
3663 DF_REF_REGNO (ref),
3664 DF_REF_BBNO (ref),
3665 DF_INSN_LUID (df, DF_REF_INSN (ref)),
3666 INSN_UID (DF_REF_INSN (ref)));
3667 df_chain_dump (DF_REF_CHAIN (ref), file);
3668 fprintf (file, "\n");
3671 /* Functions for debugging from GDB. */
3673 void
3674 debug_df_insn (rtx insn)
3676 df_insn_debug (ddf, insn, stderr);
3677 debug_rtx (insn);
3681 void
3682 debug_df_reg (rtx reg)
3684 df_regno_debug (ddf, REGNO (reg), stderr);
3688 void
3689 debug_df_regno (unsigned int regno)
3691 df_regno_debug (ddf, regno, stderr);
3695 void
3696 debug_df_ref (struct ref *ref)
3698 df_ref_debug (ddf, ref, stderr);
3702 void
3703 debug_df_defno (unsigned int defno)
3705 df_ref_debug (ddf, ddf->defs[defno], stderr);
3709 void
3710 debug_df_useno (unsigned int defno)
3712 df_ref_debug (ddf, ddf->uses[defno], stderr);
3716 void
3717 debug_df_chain (struct df_link *link)
3719 df_chain_dump (link, stderr);
3720 fputc ('\n', stderr);
3724 /* Perform the set operation OP1 OP OP2, using set representation REPR, and
3725 storing the result in OP1. */
3727 static void
3728 dataflow_set_a_op_b (enum set_representation repr,
3729 enum df_confluence_op op,
3730 void *op1, void *op2)
3732 switch (repr)
3734 case SR_SBITMAP:
3735 switch (op)
3737 case DF_UNION:
3738 sbitmap_a_or_b (op1, op1, op2);
3739 break;
3741 case DF_INTERSECTION:
3742 sbitmap_a_and_b (op1, op1, op2);
3743 break;
3745 default:
3746 gcc_unreachable ();
3748 break;
3750 case SR_BITMAP:
3751 switch (op)
3753 case DF_UNION:
3754 bitmap_ior_into (op1, op2);
3755 break;
3757 case DF_INTERSECTION:
3758 bitmap_and_into (op1, op2);
3759 break;
3761 default:
3762 gcc_unreachable ();
3764 break;
3766 default:
3767 gcc_unreachable ();
3771 static void
3772 dataflow_set_copy (enum set_representation repr, void *dest, void *src)
3774 switch (repr)
3776 case SR_SBITMAP:
3777 sbitmap_copy (dest, src);
3778 break;
3780 case SR_BITMAP:
3781 bitmap_copy (dest, src);
3782 break;
3784 default:
3785 gcc_unreachable ();
3789 /* Hybrid search algorithm from "Implementation Techniques for
3790 Efficient Data-Flow Analysis of Large Programs". */
3792 static void
3793 hybrid_search (basic_block bb, struct dataflow *dataflow,
3794 sbitmap visited, sbitmap pending, sbitmap considered)
3796 int changed;
3797 int i = bb->index;
3798 edge e;
3799 edge_iterator ei;
3801 SET_BIT (visited, bb->index);
3802 gcc_assert (TEST_BIT (pending, bb->index));
3803 RESET_BIT (pending, i);
3805 #define HS(E_ANTI, E_ANTI_BB, E_ANTI_START_BB, IN_SET, \
3806 E, E_BB, E_START_BB, OUT_SET) \
3807 do \
3809 /* Calculate <conf_op> of predecessor_outs. */ \
3810 bitmap_zero (IN_SET[i]); \
3811 FOR_EACH_EDGE (e, ei, bb->E_ANTI) \
3813 if (e->E_ANTI_BB == E_ANTI_START_BB) \
3814 continue; \
3815 if (!TEST_BIT (considered, e->E_ANTI_BB->index)) \
3816 continue; \
3818 dataflow_set_a_op_b (dataflow->repr, dataflow->conf_op, \
3819 IN_SET[i], \
3820 OUT_SET[e->E_ANTI_BB->index]); \
3823 (*dataflow->transfun)(i, &changed, \
3824 dataflow->in[i], dataflow->out[i], \
3825 dataflow->gen[i], dataflow->kill[i], \
3826 dataflow->data); \
3828 if (!changed) \
3829 break; \
3831 FOR_EACH_EDGE (e, ei, bb->E) \
3833 if (e->E_BB == E_START_BB || e->E_BB->index == i) \
3834 continue; \
3836 if (!TEST_BIT (considered, e->E_BB->index)) \
3837 continue; \
3839 SET_BIT (pending, e->E_BB->index); \
3842 FOR_EACH_EDGE (e, ei, bb->E) \
3844 if (e->E_BB == E_START_BB || e->E_BB->index == i) \
3845 continue; \
3847 if (!TEST_BIT (considered, e->E_BB->index)) \
3848 continue; \
3850 if (!TEST_BIT (visited, e->E_BB->index)) \
3851 hybrid_search (e->E_BB, dataflow, visited, pending, considered); \
3853 } while (0)
3855 if (dataflow->dir == DF_FORWARD)
3856 HS (preds, src, ENTRY_BLOCK_PTR, dataflow->in,
3857 succs, dest, EXIT_BLOCK_PTR, dataflow->out);
3858 else
3859 HS (succs, dest, EXIT_BLOCK_PTR, dataflow->out,
3860 preds, src, ENTRY_BLOCK_PTR, dataflow->in);
3863 /* This function will perform iterative bitvector dataflow described by
3864 DATAFLOW, producing the in and out sets. Only the part of the cfg
3865 induced by blocks in DATAFLOW->order is taken into account.
3867 For forward problems, you probably want to pass in a mapping of
3868 block number to rc_order (like df->inverse_rc_map). */
3870 void
3871 iterative_dataflow (struct dataflow *dataflow)
3873 unsigned i, idx;
3874 sbitmap visited, pending, considered;
3876 pending = sbitmap_alloc (last_basic_block);
3877 visited = sbitmap_alloc (last_basic_block);
3878 considered = sbitmap_alloc (last_basic_block);
3879 sbitmap_zero (pending);
3880 sbitmap_zero (visited);
3881 sbitmap_zero (considered);
3883 for (i = 0; i < dataflow->n_blocks; i++)
3885 idx = dataflow->order[i];
3886 SET_BIT (pending, idx);
3887 SET_BIT (considered, idx);
3888 if (dataflow->dir == DF_FORWARD)
3889 dataflow_set_copy (dataflow->repr,
3890 dataflow->out[idx], dataflow->gen[idx]);
3891 else
3892 dataflow_set_copy (dataflow->repr,
3893 dataflow->in[idx], dataflow->gen[idx]);
3896 while (1)
3898 for (i = 0; i < dataflow->n_blocks; i++)
3900 idx = dataflow->order[i];
3902 if (TEST_BIT (pending, idx) && !TEST_BIT (visited, idx))
3903 hybrid_search (BASIC_BLOCK (idx), dataflow,
3904 visited, pending, considered);
3907 if (sbitmap_first_set_bit (pending) == -1)
3908 break;
3910 sbitmap_zero (visited);
3913 sbitmap_free (pending);
3914 sbitmap_free (visited);
3915 sbitmap_free (considered);