Split print_rtx into subroutines
[official-gcc.git] / gcc / tree-ssa-tail-merge.c
blob5e815ec582abeadfbc51e576f0c6545799a8000c
1 /* Tail merging for gimple.
2 Copyright (C) 2011-2016 Free Software Foundation, Inc.
3 Contributed by Tom de Vries (tom@codesourcery.com)
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Pass overview.
24 MOTIVATIONAL EXAMPLE
26 gimple representation of gcc/testsuite/gcc.dg/pr43864.c at
28 hprofStartupp (charD.1 * outputFileNameD.2600, charD.1 * ctxD.2601)
30 struct FILED.1638 * fpD.2605;
31 charD.1 fileNameD.2604[1000];
32 intD.0 D.3915;
33 const charD.1 * restrict outputFileName.0D.3914;
35 # BLOCK 2 freq:10000
36 # PRED: ENTRY [100.0%] (fallthru,exec)
37 # PT = nonlocal { D.3926 } (restr)
38 outputFileName.0D.3914_3
39 = (const charD.1 * restrict) outputFileNameD.2600_2(D);
40 # .MEMD.3923_13 = VDEF <.MEMD.3923_12(D)>
41 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
42 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
43 sprintfD.759 (&fileNameD.2604, outputFileName.0D.3914_3);
44 # .MEMD.3923_14 = VDEF <.MEMD.3923_13>
45 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
46 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
47 D.3915_4 = accessD.2606 (&fileNameD.2604, 1);
48 if (D.3915_4 == 0)
49 goto <bb 3>;
50 else
51 goto <bb 4>;
52 # SUCC: 3 [10.0%] (true,exec) 4 [90.0%] (false,exec)
54 # BLOCK 3 freq:1000
55 # PRED: 2 [10.0%] (true,exec)
56 # .MEMD.3923_15 = VDEF <.MEMD.3923_14>
57 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
58 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
59 freeD.898 (ctxD.2601_5(D));
60 goto <bb 7>;
61 # SUCC: 7 [100.0%] (fallthru,exec)
63 # BLOCK 4 freq:9000
64 # PRED: 2 [90.0%] (false,exec)
65 # .MEMD.3923_16 = VDEF <.MEMD.3923_14>
66 # PT = nonlocal escaped
67 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
68 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
69 fpD.2605_8 = fopenD.1805 (&fileNameD.2604[0], 0B);
70 if (fpD.2605_8 == 0B)
71 goto <bb 5>;
72 else
73 goto <bb 6>;
74 # SUCC: 5 [1.9%] (true,exec) 6 [98.1%] (false,exec)
76 # BLOCK 5 freq:173
77 # PRED: 4 [1.9%] (true,exec)
78 # .MEMD.3923_17 = VDEF <.MEMD.3923_16>
79 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
80 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
81 freeD.898 (ctxD.2601_5(D));
82 goto <bb 7>;
83 # SUCC: 7 [100.0%] (fallthru,exec)
85 # BLOCK 6 freq:8827
86 # PRED: 4 [98.1%] (false,exec)
87 # .MEMD.3923_18 = VDEF <.MEMD.3923_16>
88 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
89 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
90 fooD.2599 (outputFileNameD.2600_2(D), fpD.2605_8);
91 # SUCC: 7 [100.0%] (fallthru,exec)
93 # BLOCK 7 freq:10000
94 # PRED: 3 [100.0%] (fallthru,exec) 5 [100.0%] (fallthru,exec)
95 6 [100.0%] (fallthru,exec)
96 # PT = nonlocal null
98 # ctxD.2601_1 = PHI <0B(3), 0B(5), ctxD.2601_5(D)(6)>
99 # .MEMD.3923_11 = PHI <.MEMD.3923_15(3), .MEMD.3923_17(5),
100 .MEMD.3923_18(6)>
101 # VUSE <.MEMD.3923_11>
102 return ctxD.2601_1;
103 # SUCC: EXIT [100.0%]
106 bb 3 and bb 5 can be merged. The blocks have different predecessors, but the
107 same successors, and the same operations.
110 CONTEXT
112 A technique called tail merging (or cross jumping) can fix the example
113 above. For a block, we look for common code at the end (the tail) of the
114 predecessor blocks, and insert jumps from one block to the other.
115 The example is a special case for tail merging, in that 2 whole blocks
116 can be merged, rather than just the end parts of it.
117 We currently only focus on whole block merging, so in that sense
118 calling this pass tail merge is a bit of a misnomer.
120 We distinguish 2 kinds of situations in which blocks can be merged:
121 - same operations, same predecessors. The successor edges coming from one
122 block are redirected to come from the other block.
123 - same operations, same successors. The predecessor edges entering one block
124 are redirected to enter the other block. Note that this operation might
125 involve introducing phi operations.
127 For efficient implementation, we would like to value numbers the blocks, and
128 have a comparison operator that tells us whether the blocks are equal.
129 Besides being runtime efficient, block value numbering should also abstract
130 from irrelevant differences in order of operations, much like normal value
131 numbering abstracts from irrelevant order of operations.
133 For the first situation (same_operations, same predecessors), normal value
134 numbering fits well. We can calculate a block value number based on the
135 value numbers of the defs and vdefs.
137 For the second situation (same operations, same successors), this approach
138 doesn't work so well. We can illustrate this using the example. The calls
139 to free use different vdefs: MEMD.3923_16 and MEMD.3923_14, and these will
140 remain different in value numbering, since they represent different memory
141 states. So the resulting vdefs of the frees will be different in value
142 numbering, so the block value numbers will be different.
144 The reason why we call the blocks equal is not because they define the same
145 values, but because uses in the blocks use (possibly different) defs in the
146 same way. To be able to detect this efficiently, we need to do some kind of
147 reverse value numbering, meaning number the uses rather than the defs, and
148 calculate a block value number based on the value number of the uses.
149 Ideally, a block comparison operator will also indicate which phis are needed
150 to merge the blocks.
152 For the moment, we don't do block value numbering, but we do insn-by-insn
153 matching, using scc value numbers to match operations with results, and
154 structural comparison otherwise, while ignoring vop mismatches.
157 IMPLEMENTATION
159 1. The pass first determines all groups of blocks with the same successor
160 blocks.
161 2. Within each group, it tries to determine clusters of equal basic blocks.
162 3. The clusters are applied.
163 4. The same successor groups are updated.
164 5. This process is repeated from 2 onwards, until no more changes.
167 LIMITATIONS/TODO
169 - block only
170 - handles only 'same operations, same successors'.
171 It handles same predecessors as a special subcase though.
172 - does not implement the reverse value numbering and block value numbering.
173 - improve memory allocation: use garbage collected memory, obstacks,
174 allocpools where appropriate.
175 - no insertion of gimple_reg phis, We only introduce vop-phis.
176 - handle blocks with gimple_reg phi_nodes.
179 PASS PLACEMENT
180 This 'pass' is not a stand-alone gimple pass, but runs as part of
181 pass_pre, in order to share the value numbering.
184 SWITCHES
186 - ftree-tail-merge. On at -O2. We may have to enable it only at -Os. */
188 #include "config.h"
189 #include "system.h"
190 #include "coretypes.h"
191 #include "backend.h"
192 #include "tree.h"
193 #include "gimple.h"
194 #include "cfghooks.h"
195 #include "tree-pass.h"
196 #include "ssa.h"
197 #include "fold-const.h"
198 #include "trans-mem.h"
199 #include "cfganal.h"
200 #include "cfgcleanup.h"
201 #include "gimple-iterator.h"
202 #include "tree-cfg.h"
203 #include "tree-into-ssa.h"
204 #include "params.h"
205 #include "tree-ssa-sccvn.h"
206 #include "cfgloop.h"
208 /* Describes a group of bbs with the same successors. The successor bbs are
209 cached in succs, and the successor edge flags are cached in succ_flags.
210 If a bb has the EDGE_TRUE/FALSE_VALUE flags swapped compared to succ_flags,
211 it's marked in inverse.
212 Additionally, the hash value for the struct is cached in hashval, and
213 in_worklist indicates whether it's currently part of worklist. */
215 struct same_succ : pointer_hash <same_succ>
217 /* The bbs that have the same successor bbs. */
218 bitmap bbs;
219 /* The successor bbs. */
220 bitmap succs;
221 /* Indicates whether the EDGE_TRUE/FALSE_VALUEs of succ_flags are swapped for
222 bb. */
223 bitmap inverse;
224 /* The edge flags for each of the successor bbs. */
225 vec<int> succ_flags;
226 /* Indicates whether the struct is currently in the worklist. */
227 bool in_worklist;
228 /* The hash value of the struct. */
229 hashval_t hashval;
231 /* hash_table support. */
232 static inline hashval_t hash (const same_succ *);
233 static int equal (const same_succ *, const same_succ *);
234 static void remove (same_succ *);
237 /* hash routine for hash_table support, returns hashval of E. */
239 inline hashval_t
240 same_succ::hash (const same_succ *e)
242 return e->hashval;
245 /* A group of bbs where 1 bb from bbs can replace the other bbs. */
247 struct bb_cluster
249 /* The bbs in the cluster. */
250 bitmap bbs;
251 /* The preds of the bbs in the cluster. */
252 bitmap preds;
253 /* Index in all_clusters vector. */
254 int index;
255 /* The bb to replace the cluster with. */
256 basic_block rep_bb;
259 /* Per bb-info. */
261 struct aux_bb_info
263 /* The number of non-debug statements in the bb. */
264 int size;
265 /* The same_succ that this bb is a member of. */
266 same_succ *bb_same_succ;
267 /* The cluster that this bb is a member of. */
268 bb_cluster *cluster;
269 /* The vop state at the exit of a bb. This is shortlived data, used to
270 communicate data between update_block_by and update_vuses. */
271 tree vop_at_exit;
272 /* The bb that either contains or is dominated by the dependencies of the
273 bb. */
274 basic_block dep_bb;
277 /* Macros to access the fields of struct aux_bb_info. */
279 #define BB_SIZE(bb) (((struct aux_bb_info *)bb->aux)->size)
280 #define BB_SAME_SUCC(bb) (((struct aux_bb_info *)bb->aux)->bb_same_succ)
281 #define BB_CLUSTER(bb) (((struct aux_bb_info *)bb->aux)->cluster)
282 #define BB_VOP_AT_EXIT(bb) (((struct aux_bb_info *)bb->aux)->vop_at_exit)
283 #define BB_DEP_BB(bb) (((struct aux_bb_info *)bb->aux)->dep_bb)
285 /* Returns true if the only effect a statement STMT has, is to define locally
286 used SSA_NAMEs. */
288 static bool
289 stmt_local_def (gimple *stmt)
291 basic_block bb, def_bb;
292 imm_use_iterator iter;
293 use_operand_p use_p;
294 tree val;
295 def_operand_p def_p;
297 if (gimple_vdef (stmt) != NULL_TREE
298 || gimple_has_side_effects (stmt)
299 || gimple_could_trap_p_1 (stmt, false, false)
300 || gimple_vuse (stmt) != NULL_TREE)
301 return false;
303 def_p = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_DEF);
304 if (def_p == NULL)
305 return false;
307 val = DEF_FROM_PTR (def_p);
308 if (val == NULL_TREE || TREE_CODE (val) != SSA_NAME)
309 return false;
311 def_bb = gimple_bb (stmt);
313 FOR_EACH_IMM_USE_FAST (use_p, iter, val)
315 if (is_gimple_debug (USE_STMT (use_p)))
316 continue;
317 bb = gimple_bb (USE_STMT (use_p));
318 if (bb == def_bb)
319 continue;
321 if (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI
322 && EDGE_PRED (bb, PHI_ARG_INDEX_FROM_USE (use_p))->src == def_bb)
323 continue;
325 return false;
328 return true;
331 /* Let GSI skip forwards over local defs. */
333 static void
334 gsi_advance_fw_nondebug_nonlocal (gimple_stmt_iterator *gsi)
336 gimple *stmt;
338 while (true)
340 if (gsi_end_p (*gsi))
341 return;
342 stmt = gsi_stmt (*gsi);
343 if (!stmt_local_def (stmt))
344 return;
345 gsi_next_nondebug (gsi);
349 /* VAL1 and VAL2 are either:
350 - uses in BB1 and BB2, or
351 - phi alternatives for BB1 and BB2.
352 Return true if the uses have the same gvn value. */
354 static bool
355 gvn_uses_equal (tree val1, tree val2)
357 gcc_checking_assert (val1 != NULL_TREE && val2 != NULL_TREE);
359 if (val1 == val2)
360 return true;
362 if (vn_valueize (val1) != vn_valueize (val2))
363 return false;
365 return ((TREE_CODE (val1) == SSA_NAME || CONSTANT_CLASS_P (val1))
366 && (TREE_CODE (val2) == SSA_NAME || CONSTANT_CLASS_P (val2)));
369 /* Prints E to FILE. */
371 static void
372 same_succ_print (FILE *file, const same_succ *e)
374 unsigned int i;
375 bitmap_print (file, e->bbs, "bbs:", "\n");
376 bitmap_print (file, e->succs, "succs:", "\n");
377 bitmap_print (file, e->inverse, "inverse:", "\n");
378 fprintf (file, "flags:");
379 for (i = 0; i < e->succ_flags.length (); ++i)
380 fprintf (file, " %x", e->succ_flags[i]);
381 fprintf (file, "\n");
384 /* Prints same_succ VE to VFILE. */
386 inline int
387 ssa_same_succ_print_traverse (same_succ **pe, FILE *file)
389 const same_succ *e = *pe;
390 same_succ_print (file, e);
391 return 1;
394 /* Update BB_DEP_BB (USE_BB), given a use of VAL in USE_BB. */
396 static void
397 update_dep_bb (basic_block use_bb, tree val)
399 basic_block dep_bb;
401 /* Not a dep. */
402 if (TREE_CODE (val) != SSA_NAME)
403 return;
405 /* Skip use of global def. */
406 if (SSA_NAME_IS_DEFAULT_DEF (val))
407 return;
409 /* Skip use of local def. */
410 dep_bb = gimple_bb (SSA_NAME_DEF_STMT (val));
411 if (dep_bb == use_bb)
412 return;
414 if (BB_DEP_BB (use_bb) == NULL
415 || dominated_by_p (CDI_DOMINATORS, dep_bb, BB_DEP_BB (use_bb)))
416 BB_DEP_BB (use_bb) = dep_bb;
419 /* Update BB_DEP_BB, given the dependencies in STMT. */
421 static void
422 stmt_update_dep_bb (gimple *stmt)
424 ssa_op_iter iter;
425 use_operand_p use;
427 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
428 update_dep_bb (gimple_bb (stmt), USE_FROM_PTR (use));
431 /* Calculates hash value for same_succ VE. */
433 static hashval_t
434 same_succ_hash (const same_succ *e)
436 inchash::hash hstate (bitmap_hash (e->succs));
437 int flags;
438 unsigned int i;
439 unsigned int first = bitmap_first_set_bit (e->bbs);
440 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, first);
441 int size = 0;
442 gimple *stmt;
443 tree arg;
444 unsigned int s;
445 bitmap_iterator bs;
447 for (gimple_stmt_iterator gsi = gsi_start_nondebug_bb (bb);
448 !gsi_end_p (gsi); gsi_next_nondebug (&gsi))
450 stmt = gsi_stmt (gsi);
451 stmt_update_dep_bb (stmt);
452 if (stmt_local_def (stmt))
453 continue;
454 size++;
456 hstate.add_int (gimple_code (stmt));
457 if (is_gimple_assign (stmt))
458 hstate.add_int (gimple_assign_rhs_code (stmt));
459 if (!is_gimple_call (stmt))
460 continue;
461 if (gimple_call_internal_p (stmt))
462 hstate.add_int (gimple_call_internal_fn (stmt));
463 else
465 inchash::add_expr (gimple_call_fn (stmt), hstate);
466 if (gimple_call_chain (stmt))
467 inchash::add_expr (gimple_call_chain (stmt), hstate);
469 for (i = 0; i < gimple_call_num_args (stmt); i++)
471 arg = gimple_call_arg (stmt, i);
472 arg = vn_valueize (arg);
473 inchash::add_expr (arg, hstate);
477 hstate.add_int (size);
478 BB_SIZE (bb) = size;
480 for (i = 0; i < e->succ_flags.length (); ++i)
482 flags = e->succ_flags[i];
483 flags = flags & ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
484 hstate.add_int (flags);
487 EXECUTE_IF_SET_IN_BITMAP (e->succs, 0, s, bs)
489 int n = find_edge (bb, BASIC_BLOCK_FOR_FN (cfun, s))->dest_idx;
490 for (gphi_iterator gsi = gsi_start_phis (BASIC_BLOCK_FOR_FN (cfun, s));
491 !gsi_end_p (gsi);
492 gsi_next (&gsi))
494 gphi *phi = gsi.phi ();
495 tree lhs = gimple_phi_result (phi);
496 tree val = gimple_phi_arg_def (phi, n);
498 if (virtual_operand_p (lhs))
499 continue;
500 update_dep_bb (bb, val);
504 return hstate.end ();
507 /* Returns true if E1 and E2 have 2 successors, and if the successor flags
508 are inverse for the EDGE_TRUE_VALUE and EDGE_FALSE_VALUE flags, and equal for
509 the other edge flags. */
511 static bool
512 inverse_flags (const same_succ *e1, const same_succ *e2)
514 int f1a, f1b, f2a, f2b;
515 int mask = ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
517 if (e1->succ_flags.length () != 2)
518 return false;
520 f1a = e1->succ_flags[0];
521 f1b = e1->succ_flags[1];
522 f2a = e2->succ_flags[0];
523 f2b = e2->succ_flags[1];
525 if (f1a == f2a && f1b == f2b)
526 return false;
528 return (f1a & mask) == (f2a & mask) && (f1b & mask) == (f2b & mask);
531 /* Compares SAME_SUCCs E1 and E2. */
534 same_succ::equal (const same_succ *e1, const same_succ *e2)
536 unsigned int i, first1, first2;
537 gimple_stmt_iterator gsi1, gsi2;
538 gimple *s1, *s2;
539 basic_block bb1, bb2;
541 if (e1 == e2)
542 return 1;
544 if (e1->hashval != e2->hashval)
545 return 0;
547 if (e1->succ_flags.length () != e2->succ_flags.length ())
548 return 0;
550 if (!bitmap_equal_p (e1->succs, e2->succs))
551 return 0;
553 if (!inverse_flags (e1, e2))
555 for (i = 0; i < e1->succ_flags.length (); ++i)
556 if (e1->succ_flags[i] != e2->succ_flags[i])
557 return 0;
560 first1 = bitmap_first_set_bit (e1->bbs);
561 first2 = bitmap_first_set_bit (e2->bbs);
563 bb1 = BASIC_BLOCK_FOR_FN (cfun, first1);
564 bb2 = BASIC_BLOCK_FOR_FN (cfun, first2);
566 if (BB_SIZE (bb1) != BB_SIZE (bb2))
567 return 0;
569 gsi1 = gsi_start_nondebug_bb (bb1);
570 gsi2 = gsi_start_nondebug_bb (bb2);
571 gsi_advance_fw_nondebug_nonlocal (&gsi1);
572 gsi_advance_fw_nondebug_nonlocal (&gsi2);
573 while (!(gsi_end_p (gsi1) || gsi_end_p (gsi2)))
575 s1 = gsi_stmt (gsi1);
576 s2 = gsi_stmt (gsi2);
577 if (gimple_code (s1) != gimple_code (s2))
578 return 0;
579 if (is_gimple_call (s1) && !gimple_call_same_target_p (s1, s2))
580 return 0;
581 gsi_next_nondebug (&gsi1);
582 gsi_next_nondebug (&gsi2);
583 gsi_advance_fw_nondebug_nonlocal (&gsi1);
584 gsi_advance_fw_nondebug_nonlocal (&gsi2);
587 return 1;
590 /* Alloc and init a new SAME_SUCC. */
592 static same_succ *
593 same_succ_alloc (void)
595 same_succ *same = XNEW (struct same_succ);
597 same->bbs = BITMAP_ALLOC (NULL);
598 same->succs = BITMAP_ALLOC (NULL);
599 same->inverse = BITMAP_ALLOC (NULL);
600 same->succ_flags.create (10);
601 same->in_worklist = false;
603 return same;
606 /* Delete same_succ E. */
608 void
609 same_succ::remove (same_succ *e)
611 BITMAP_FREE (e->bbs);
612 BITMAP_FREE (e->succs);
613 BITMAP_FREE (e->inverse);
614 e->succ_flags.release ();
616 XDELETE (e);
619 /* Reset same_succ SAME. */
621 static void
622 same_succ_reset (same_succ *same)
624 bitmap_clear (same->bbs);
625 bitmap_clear (same->succs);
626 bitmap_clear (same->inverse);
627 same->succ_flags.truncate (0);
630 static hash_table<same_succ> *same_succ_htab;
632 /* Array that is used to store the edge flags for a successor. */
634 static int *same_succ_edge_flags;
636 /* Bitmap that is used to mark bbs that are recently deleted. */
638 static bitmap deleted_bbs;
640 /* Bitmap that is used to mark predecessors of bbs that are
641 deleted. */
643 static bitmap deleted_bb_preds;
645 /* Prints same_succ_htab to stderr. */
647 extern void debug_same_succ (void);
648 DEBUG_FUNCTION void
649 debug_same_succ ( void)
651 same_succ_htab->traverse <FILE *, ssa_same_succ_print_traverse> (stderr);
655 /* Vector of bbs to process. */
657 static vec<same_succ *> worklist;
659 /* Prints worklist to FILE. */
661 static void
662 print_worklist (FILE *file)
664 unsigned int i;
665 for (i = 0; i < worklist.length (); ++i)
666 same_succ_print (file, worklist[i]);
669 /* Adds SAME to worklist. */
671 static void
672 add_to_worklist (same_succ *same)
674 if (same->in_worklist)
675 return;
677 if (bitmap_count_bits (same->bbs) < 2)
678 return;
680 same->in_worklist = true;
681 worklist.safe_push (same);
684 /* Add BB to same_succ_htab. */
686 static void
687 find_same_succ_bb (basic_block bb, same_succ **same_p)
689 unsigned int j;
690 bitmap_iterator bj;
691 same_succ *same = *same_p;
692 same_succ **slot;
693 edge_iterator ei;
694 edge e;
696 if (bb == NULL
697 /* Be conservative with loop structure. It's not evident that this test
698 is sufficient. Before tail-merge, we've just called
699 loop_optimizer_finalize, and LOOPS_MAY_HAVE_MULTIPLE_LATCHES is now
700 set, so there's no guarantee that the loop->latch value is still valid.
701 But we assume that, since we've forced LOOPS_HAVE_SIMPLE_LATCHES at the
702 start of pre, we've kept that property intact throughout pre, and are
703 keeping it throughout tail-merge using this test. */
704 || bb->loop_father->latch == bb)
705 return;
706 bitmap_set_bit (same->bbs, bb->index);
707 FOR_EACH_EDGE (e, ei, bb->succs)
709 int index = e->dest->index;
710 bitmap_set_bit (same->succs, index);
711 same_succ_edge_flags[index] = e->flags;
713 EXECUTE_IF_SET_IN_BITMAP (same->succs, 0, j, bj)
714 same->succ_flags.safe_push (same_succ_edge_flags[j]);
716 same->hashval = same_succ_hash (same);
718 slot = same_succ_htab->find_slot_with_hash (same, same->hashval, INSERT);
719 if (*slot == NULL)
721 *slot = same;
722 BB_SAME_SUCC (bb) = same;
723 add_to_worklist (same);
724 *same_p = NULL;
726 else
728 bitmap_set_bit ((*slot)->bbs, bb->index);
729 BB_SAME_SUCC (bb) = *slot;
730 add_to_worklist (*slot);
731 if (inverse_flags (same, *slot))
732 bitmap_set_bit ((*slot)->inverse, bb->index);
733 same_succ_reset (same);
737 /* Find bbs with same successors. */
739 static void
740 find_same_succ (void)
742 same_succ *same = same_succ_alloc ();
743 basic_block bb;
745 FOR_EACH_BB_FN (bb, cfun)
747 find_same_succ_bb (bb, &same);
748 if (same == NULL)
749 same = same_succ_alloc ();
752 same_succ::remove (same);
755 /* Initializes worklist administration. */
757 static void
758 init_worklist (void)
760 alloc_aux_for_blocks (sizeof (struct aux_bb_info));
761 same_succ_htab = new hash_table<same_succ> (n_basic_blocks_for_fn (cfun));
762 same_succ_edge_flags = XCNEWVEC (int, last_basic_block_for_fn (cfun));
763 deleted_bbs = BITMAP_ALLOC (NULL);
764 deleted_bb_preds = BITMAP_ALLOC (NULL);
765 worklist.create (n_basic_blocks_for_fn (cfun));
766 find_same_succ ();
768 if (dump_file && (dump_flags & TDF_DETAILS))
770 fprintf (dump_file, "initial worklist:\n");
771 print_worklist (dump_file);
775 /* Deletes worklist administration. */
777 static void
778 delete_worklist (void)
780 free_aux_for_blocks ();
781 delete same_succ_htab;
782 same_succ_htab = NULL;
783 XDELETEVEC (same_succ_edge_flags);
784 same_succ_edge_flags = NULL;
785 BITMAP_FREE (deleted_bbs);
786 BITMAP_FREE (deleted_bb_preds);
787 worklist.release ();
790 /* Mark BB as deleted, and mark its predecessors. */
792 static void
793 mark_basic_block_deleted (basic_block bb)
795 edge e;
796 edge_iterator ei;
798 bitmap_set_bit (deleted_bbs, bb->index);
800 FOR_EACH_EDGE (e, ei, bb->preds)
801 bitmap_set_bit (deleted_bb_preds, e->src->index);
804 /* Removes BB from its corresponding same_succ. */
806 static void
807 same_succ_flush_bb (basic_block bb)
809 same_succ *same = BB_SAME_SUCC (bb);
810 BB_SAME_SUCC (bb) = NULL;
811 if (bitmap_single_bit_set_p (same->bbs))
812 same_succ_htab->remove_elt_with_hash (same, same->hashval);
813 else
814 bitmap_clear_bit (same->bbs, bb->index);
817 /* Removes all bbs in BBS from their corresponding same_succ. */
819 static void
820 same_succ_flush_bbs (bitmap bbs)
822 unsigned int i;
823 bitmap_iterator bi;
825 EXECUTE_IF_SET_IN_BITMAP (bbs, 0, i, bi)
826 same_succ_flush_bb (BASIC_BLOCK_FOR_FN (cfun, i));
829 /* Release the last vdef in BB, either normal or phi result. */
831 static void
832 release_last_vdef (basic_block bb)
834 for (gimple_stmt_iterator i = gsi_last_bb (bb); !gsi_end_p (i);
835 gsi_prev_nondebug (&i))
837 gimple *stmt = gsi_stmt (i);
838 if (gimple_vdef (stmt) == NULL_TREE)
839 continue;
841 mark_virtual_operand_for_renaming (gimple_vdef (stmt));
842 return;
845 for (gphi_iterator i = gsi_start_phis (bb); !gsi_end_p (i);
846 gsi_next (&i))
848 gphi *phi = i.phi ();
849 tree res = gimple_phi_result (phi);
851 if (!virtual_operand_p (res))
852 continue;
854 mark_virtual_phi_result_for_renaming (phi);
855 return;
859 /* For deleted_bb_preds, find bbs with same successors. */
861 static void
862 update_worklist (void)
864 unsigned int i;
865 bitmap_iterator bi;
866 basic_block bb;
867 same_succ *same;
869 bitmap_and_compl_into (deleted_bb_preds, deleted_bbs);
870 bitmap_clear (deleted_bbs);
872 bitmap_clear_bit (deleted_bb_preds, ENTRY_BLOCK);
873 same_succ_flush_bbs (deleted_bb_preds);
875 same = same_succ_alloc ();
876 EXECUTE_IF_SET_IN_BITMAP (deleted_bb_preds, 0, i, bi)
878 bb = BASIC_BLOCK_FOR_FN (cfun, i);
879 gcc_assert (bb != NULL);
880 find_same_succ_bb (bb, &same);
881 if (same == NULL)
882 same = same_succ_alloc ();
884 same_succ::remove (same);
885 bitmap_clear (deleted_bb_preds);
888 /* Prints cluster C to FILE. */
890 static void
891 print_cluster (FILE *file, bb_cluster *c)
893 if (c == NULL)
894 return;
895 bitmap_print (file, c->bbs, "bbs:", "\n");
896 bitmap_print (file, c->preds, "preds:", "\n");
899 /* Prints cluster C to stderr. */
901 extern void debug_cluster (bb_cluster *);
902 DEBUG_FUNCTION void
903 debug_cluster (bb_cluster *c)
905 print_cluster (stderr, c);
908 /* Update C->rep_bb, given that BB is added to the cluster. */
910 static void
911 update_rep_bb (bb_cluster *c, basic_block bb)
913 /* Initial. */
914 if (c->rep_bb == NULL)
916 c->rep_bb = bb;
917 return;
920 /* Current needs no deps, keep it. */
921 if (BB_DEP_BB (c->rep_bb) == NULL)
922 return;
924 /* Bb needs no deps, change rep_bb. */
925 if (BB_DEP_BB (bb) == NULL)
927 c->rep_bb = bb;
928 return;
931 /* Bb needs last deps earlier than current, change rep_bb. A potential
932 problem with this, is that the first deps might also be earlier, which
933 would mean we prefer longer lifetimes for the deps. To be able to check
934 for this, we would have to trace BB_FIRST_DEP_BB as well, besides
935 BB_DEP_BB, which is really BB_LAST_DEP_BB.
936 The benefit of choosing the bb with last deps earlier, is that it can
937 potentially be used as replacement for more bbs. */
938 if (dominated_by_p (CDI_DOMINATORS, BB_DEP_BB (c->rep_bb), BB_DEP_BB (bb)))
939 c->rep_bb = bb;
942 /* Add BB to cluster C. Sets BB in C->bbs, and preds of BB in C->preds. */
944 static void
945 add_bb_to_cluster (bb_cluster *c, basic_block bb)
947 edge e;
948 edge_iterator ei;
950 bitmap_set_bit (c->bbs, bb->index);
952 FOR_EACH_EDGE (e, ei, bb->preds)
953 bitmap_set_bit (c->preds, e->src->index);
955 update_rep_bb (c, bb);
958 /* Allocate and init new cluster. */
960 static bb_cluster *
961 new_cluster (void)
963 bb_cluster *c;
964 c = XCNEW (bb_cluster);
965 c->bbs = BITMAP_ALLOC (NULL);
966 c->preds = BITMAP_ALLOC (NULL);
967 c->rep_bb = NULL;
968 return c;
971 /* Delete clusters. */
973 static void
974 delete_cluster (bb_cluster *c)
976 if (c == NULL)
977 return;
978 BITMAP_FREE (c->bbs);
979 BITMAP_FREE (c->preds);
980 XDELETE (c);
984 /* Array that contains all clusters. */
986 static vec<bb_cluster *> all_clusters;
988 /* Allocate all cluster vectors. */
990 static void
991 alloc_cluster_vectors (void)
993 all_clusters.create (n_basic_blocks_for_fn (cfun));
996 /* Reset all cluster vectors. */
998 static void
999 reset_cluster_vectors (void)
1001 unsigned int i;
1002 basic_block bb;
1003 for (i = 0; i < all_clusters.length (); ++i)
1004 delete_cluster (all_clusters[i]);
1005 all_clusters.truncate (0);
1006 FOR_EACH_BB_FN (bb, cfun)
1007 BB_CLUSTER (bb) = NULL;
1010 /* Delete all cluster vectors. */
1012 static void
1013 delete_cluster_vectors (void)
1015 unsigned int i;
1016 for (i = 0; i < all_clusters.length (); ++i)
1017 delete_cluster (all_clusters[i]);
1018 all_clusters.release ();
1021 /* Merge cluster C2 into C1. */
1023 static void
1024 merge_clusters (bb_cluster *c1, bb_cluster *c2)
1026 bitmap_ior_into (c1->bbs, c2->bbs);
1027 bitmap_ior_into (c1->preds, c2->preds);
1030 /* Register equivalence of BB1 and BB2 (members of cluster C). Store c in
1031 all_clusters, or merge c with existing cluster. */
1033 static void
1034 set_cluster (basic_block bb1, basic_block bb2)
1036 basic_block merge_bb, other_bb;
1037 bb_cluster *merge, *old, *c;
1039 if (BB_CLUSTER (bb1) == NULL && BB_CLUSTER (bb2) == NULL)
1041 c = new_cluster ();
1042 add_bb_to_cluster (c, bb1);
1043 add_bb_to_cluster (c, bb2);
1044 BB_CLUSTER (bb1) = c;
1045 BB_CLUSTER (bb2) = c;
1046 c->index = all_clusters.length ();
1047 all_clusters.safe_push (c);
1049 else if (BB_CLUSTER (bb1) == NULL || BB_CLUSTER (bb2) == NULL)
1051 merge_bb = BB_CLUSTER (bb1) == NULL ? bb2 : bb1;
1052 other_bb = BB_CLUSTER (bb1) == NULL ? bb1 : bb2;
1053 merge = BB_CLUSTER (merge_bb);
1054 add_bb_to_cluster (merge, other_bb);
1055 BB_CLUSTER (other_bb) = merge;
1057 else if (BB_CLUSTER (bb1) != BB_CLUSTER (bb2))
1059 unsigned int i;
1060 bitmap_iterator bi;
1062 old = BB_CLUSTER (bb2);
1063 merge = BB_CLUSTER (bb1);
1064 merge_clusters (merge, old);
1065 EXECUTE_IF_SET_IN_BITMAP (old->bbs, 0, i, bi)
1066 BB_CLUSTER (BASIC_BLOCK_FOR_FN (cfun, i)) = merge;
1067 all_clusters[old->index] = NULL;
1068 update_rep_bb (merge, old->rep_bb);
1069 delete_cluster (old);
1071 else
1072 gcc_unreachable ();
1075 /* Return true if gimple operands T1 and T2 have the same value. */
1077 static bool
1078 gimple_operand_equal_value_p (tree t1, tree t2)
1080 if (t1 == t2)
1081 return true;
1083 if (t1 == NULL_TREE
1084 || t2 == NULL_TREE)
1085 return false;
1087 if (operand_equal_p (t1, t2, OEP_MATCH_SIDE_EFFECTS))
1088 return true;
1090 return gvn_uses_equal (t1, t2);
1093 /* Return true if gimple statements S1 and S2 are equal. Gimple_bb (s1) and
1094 gimple_bb (s2) are members of SAME_SUCC. */
1096 static bool
1097 gimple_equal_p (same_succ *same_succ, gimple *s1, gimple *s2)
1099 unsigned int i;
1100 tree lhs1, lhs2;
1101 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
1102 tree t1, t2;
1103 bool inv_cond;
1104 enum tree_code code1, code2;
1106 if (gimple_code (s1) != gimple_code (s2))
1107 return false;
1109 switch (gimple_code (s1))
1111 case GIMPLE_CALL:
1112 if (!gimple_call_same_target_p (s1, s2))
1113 return false;
1115 t1 = gimple_call_chain (s1);
1116 t2 = gimple_call_chain (s2);
1117 if (!gimple_operand_equal_value_p (t1, t2))
1118 return false;
1120 if (gimple_call_num_args (s1) != gimple_call_num_args (s2))
1121 return false;
1123 for (i = 0; i < gimple_call_num_args (s1); ++i)
1125 t1 = gimple_call_arg (s1, i);
1126 t2 = gimple_call_arg (s2, i);
1127 if (!gimple_operand_equal_value_p (t1, t2))
1128 return false;
1131 lhs1 = gimple_get_lhs (s1);
1132 lhs2 = gimple_get_lhs (s2);
1133 if (lhs1 == NULL_TREE && lhs2 == NULL_TREE)
1134 return true;
1135 if (lhs1 == NULL_TREE || lhs2 == NULL_TREE)
1136 return false;
1137 if (TREE_CODE (lhs1) == SSA_NAME && TREE_CODE (lhs2) == SSA_NAME)
1138 return vn_valueize (lhs1) == vn_valueize (lhs2);
1139 return operand_equal_p (lhs1, lhs2, 0);
1141 case GIMPLE_ASSIGN:
1142 lhs1 = gimple_get_lhs (s1);
1143 lhs2 = gimple_get_lhs (s2);
1144 if (TREE_CODE (lhs1) != SSA_NAME
1145 && TREE_CODE (lhs2) != SSA_NAME)
1146 return (operand_equal_p (lhs1, lhs2, 0)
1147 && gimple_operand_equal_value_p (gimple_assign_rhs1 (s1),
1148 gimple_assign_rhs1 (s2)));
1149 else if (TREE_CODE (lhs1) == SSA_NAME
1150 && TREE_CODE (lhs2) == SSA_NAME)
1151 return operand_equal_p (gimple_assign_rhs1 (s1),
1152 gimple_assign_rhs1 (s2), 0);
1153 return false;
1155 case GIMPLE_COND:
1156 t1 = gimple_cond_lhs (s1);
1157 t2 = gimple_cond_lhs (s2);
1158 if (!gimple_operand_equal_value_p (t1, t2))
1159 return false;
1161 t1 = gimple_cond_rhs (s1);
1162 t2 = gimple_cond_rhs (s2);
1163 if (!gimple_operand_equal_value_p (t1, t2))
1164 return false;
1166 code1 = gimple_expr_code (s1);
1167 code2 = gimple_expr_code (s2);
1168 inv_cond = (bitmap_bit_p (same_succ->inverse, bb1->index)
1169 != bitmap_bit_p (same_succ->inverse, bb2->index));
1170 if (inv_cond)
1172 bool honor_nans = HONOR_NANS (t1);
1173 code2 = invert_tree_comparison (code2, honor_nans);
1175 return code1 == code2;
1177 default:
1178 return false;
1182 /* Let GSI skip backwards over local defs. Return the earliest vuse in VUSE.
1183 Return true in VUSE_ESCAPED if the vuse influenced a SSA_OP_DEF of one of the
1184 processed statements. */
1186 static void
1187 gsi_advance_bw_nondebug_nonlocal (gimple_stmt_iterator *gsi, tree *vuse,
1188 bool *vuse_escaped)
1190 gimple *stmt;
1191 tree lvuse;
1193 while (true)
1195 if (gsi_end_p (*gsi))
1196 return;
1197 stmt = gsi_stmt (*gsi);
1199 lvuse = gimple_vuse (stmt);
1200 if (lvuse != NULL_TREE)
1202 *vuse = lvuse;
1203 if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_DEF))
1204 *vuse_escaped = true;
1207 if (!stmt_local_def (stmt))
1208 return;
1209 gsi_prev_nondebug (gsi);
1213 /* Return true if equal (in the sense of gimple_equal_p) statements STMT1 and
1214 STMT2 are allowed to be merged. */
1216 static bool
1217 merge_stmts_p (gimple *stmt1, gimple *stmt2)
1219 /* What could be better than this here is to blacklist the bb
1220 containing the stmt, when encountering the stmt f.i. in
1221 same_succ_hash. */
1222 if (is_tm_ending (stmt1))
1223 return false;
1225 if (is_gimple_call (stmt1)
1226 && gimple_call_internal_p (stmt1))
1227 switch (gimple_call_internal_fn (stmt1))
1229 case IFN_UBSAN_NULL:
1230 case IFN_UBSAN_BOUNDS:
1231 case IFN_UBSAN_VPTR:
1232 case IFN_UBSAN_CHECK_ADD:
1233 case IFN_UBSAN_CHECK_SUB:
1234 case IFN_UBSAN_CHECK_MUL:
1235 case IFN_UBSAN_OBJECT_SIZE:
1236 case IFN_ASAN_CHECK:
1237 /* For these internal functions, gimple_location is an implicit
1238 parameter, which will be used explicitly after expansion.
1239 Merging these statements may cause confusing line numbers in
1240 sanitizer messages. */
1241 return gimple_location (stmt1) == gimple_location (stmt2);
1242 default:
1243 break;
1246 return true;
1249 /* Determines whether BB1 and BB2 (members of same_succ) are duplicates. If so,
1250 clusters them. */
1252 static void
1253 find_duplicate (same_succ *same_succ, basic_block bb1, basic_block bb2)
1255 gimple_stmt_iterator gsi1 = gsi_last_nondebug_bb (bb1);
1256 gimple_stmt_iterator gsi2 = gsi_last_nondebug_bb (bb2);
1257 tree vuse1 = NULL_TREE, vuse2 = NULL_TREE;
1258 bool vuse_escaped = false;
1260 gsi_advance_bw_nondebug_nonlocal (&gsi1, &vuse1, &vuse_escaped);
1261 gsi_advance_bw_nondebug_nonlocal (&gsi2, &vuse2, &vuse_escaped);
1263 while (!gsi_end_p (gsi1) && !gsi_end_p (gsi2))
1265 gimple *stmt1 = gsi_stmt (gsi1);
1266 gimple *stmt2 = gsi_stmt (gsi2);
1268 if (gimple_code (stmt1) == GIMPLE_LABEL
1269 && gimple_code (stmt2) == GIMPLE_LABEL)
1270 break;
1272 if (!gimple_equal_p (same_succ, stmt1, stmt2))
1273 return;
1275 if (!merge_stmts_p (stmt1, stmt2))
1276 return;
1278 gsi_prev_nondebug (&gsi1);
1279 gsi_prev_nondebug (&gsi2);
1280 gsi_advance_bw_nondebug_nonlocal (&gsi1, &vuse1, &vuse_escaped);
1281 gsi_advance_bw_nondebug_nonlocal (&gsi2, &vuse2, &vuse_escaped);
1284 while (!gsi_end_p (gsi1) && gimple_code (gsi_stmt (gsi1)) == GIMPLE_LABEL)
1286 tree label = gimple_label_label (as_a <glabel *> (gsi_stmt (gsi1)));
1287 if (DECL_NONLOCAL (label) || FORCED_LABEL (label))
1288 return;
1289 gsi_prev (&gsi1);
1291 while (!gsi_end_p (gsi2) && gimple_code (gsi_stmt (gsi2)) == GIMPLE_LABEL)
1293 tree label = gimple_label_label (as_a <glabel *> (gsi_stmt (gsi2)));
1294 if (DECL_NONLOCAL (label) || FORCED_LABEL (label))
1295 return;
1296 gsi_prev (&gsi2);
1298 if (!(gsi_end_p (gsi1) && gsi_end_p (gsi2)))
1299 return;
1301 /* If the incoming vuses are not the same, and the vuse escaped into an
1302 SSA_OP_DEF, then merging the 2 blocks will change the value of the def,
1303 which potentially means the semantics of one of the blocks will be changed.
1304 TODO: make this check more precise. */
1305 if (vuse_escaped && vuse1 != vuse2)
1306 return;
1308 if (dump_file)
1309 fprintf (dump_file, "find_duplicates: <bb %d> duplicate of <bb %d>\n",
1310 bb1->index, bb2->index);
1312 set_cluster (bb1, bb2);
1315 /* Returns whether for all phis in DEST the phi alternatives for E1 and
1316 E2 are equal. */
1318 static bool
1319 same_phi_alternatives_1 (basic_block dest, edge e1, edge e2)
1321 int n1 = e1->dest_idx, n2 = e2->dest_idx;
1322 gphi_iterator gsi;
1324 for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
1326 gphi *phi = gsi.phi ();
1327 tree lhs = gimple_phi_result (phi);
1328 tree val1 = gimple_phi_arg_def (phi, n1);
1329 tree val2 = gimple_phi_arg_def (phi, n2);
1331 if (virtual_operand_p (lhs))
1332 continue;
1334 if (operand_equal_for_phi_arg_p (val1, val2))
1335 continue;
1336 if (gvn_uses_equal (val1, val2))
1337 continue;
1339 return false;
1342 return true;
1345 /* Returns whether for all successors of BB1 and BB2 (members of SAME_SUCC), the
1346 phi alternatives for BB1 and BB2 are equal. */
1348 static bool
1349 same_phi_alternatives (same_succ *same_succ, basic_block bb1, basic_block bb2)
1351 unsigned int s;
1352 bitmap_iterator bs;
1353 edge e1, e2;
1354 basic_block succ;
1356 EXECUTE_IF_SET_IN_BITMAP (same_succ->succs, 0, s, bs)
1358 succ = BASIC_BLOCK_FOR_FN (cfun, s);
1359 e1 = find_edge (bb1, succ);
1360 e2 = find_edge (bb2, succ);
1361 if (e1->flags & EDGE_COMPLEX
1362 || e2->flags & EDGE_COMPLEX)
1363 return false;
1365 /* For all phis in bb, the phi alternatives for e1 and e2 need to have
1366 the same value. */
1367 if (!same_phi_alternatives_1 (succ, e1, e2))
1368 return false;
1371 return true;
1374 /* Return true if BB has non-vop phis. */
1376 static bool
1377 bb_has_non_vop_phi (basic_block bb)
1379 gimple_seq phis = phi_nodes (bb);
1380 gimple *phi;
1382 if (phis == NULL)
1383 return false;
1385 if (!gimple_seq_singleton_p (phis))
1386 return true;
1388 phi = gimple_seq_first_stmt (phis);
1389 return !virtual_operand_p (gimple_phi_result (phi));
1392 /* Returns true if redirecting the incoming edges of FROM to TO maintains the
1393 invariant that uses in FROM are dominates by their defs. */
1395 static bool
1396 deps_ok_for_redirect_from_bb_to_bb (basic_block from, basic_block to)
1398 basic_block cd, dep_bb = BB_DEP_BB (to);
1399 edge_iterator ei;
1400 edge e;
1402 if (dep_bb == NULL)
1403 return true;
1405 bitmap from_preds = BITMAP_ALLOC (NULL);
1406 FOR_EACH_EDGE (e, ei, from->preds)
1407 bitmap_set_bit (from_preds, e->src->index);
1408 cd = nearest_common_dominator_for_set (CDI_DOMINATORS, from_preds);
1409 BITMAP_FREE (from_preds);
1411 return dominated_by_p (CDI_DOMINATORS, dep_bb, cd);
1414 /* Returns true if replacing BB1 (or its replacement bb) by BB2 (or its
1415 replacement bb) and vice versa maintains the invariant that uses in the
1416 replacement are dominates by their defs. */
1418 static bool
1419 deps_ok_for_redirect (basic_block bb1, basic_block bb2)
1421 if (BB_CLUSTER (bb1) != NULL)
1422 bb1 = BB_CLUSTER (bb1)->rep_bb;
1424 if (BB_CLUSTER (bb2) != NULL)
1425 bb2 = BB_CLUSTER (bb2)->rep_bb;
1427 return (deps_ok_for_redirect_from_bb_to_bb (bb1, bb2)
1428 && deps_ok_for_redirect_from_bb_to_bb (bb2, bb1));
1431 /* Within SAME_SUCC->bbs, find clusters of bbs which can be merged. */
1433 static void
1434 find_clusters_1 (same_succ *same_succ)
1436 basic_block bb1, bb2;
1437 unsigned int i, j;
1438 bitmap_iterator bi, bj;
1439 int nr_comparisons;
1440 int max_comparisons = PARAM_VALUE (PARAM_MAX_TAIL_MERGE_COMPARISONS);
1442 EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, 0, i, bi)
1444 bb1 = BASIC_BLOCK_FOR_FN (cfun, i);
1446 /* TODO: handle blocks with phi-nodes. We'll have to find corresponding
1447 phi-nodes in bb1 and bb2, with the same alternatives for the same
1448 preds. */
1449 if (bb_has_non_vop_phi (bb1) || bb_has_eh_pred (bb1))
1450 continue;
1452 nr_comparisons = 0;
1453 EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, i + 1, j, bj)
1455 bb2 = BASIC_BLOCK_FOR_FN (cfun, j);
1457 if (bb_has_non_vop_phi (bb2) || bb_has_eh_pred (bb2))
1458 continue;
1460 if (BB_CLUSTER (bb1) != NULL && BB_CLUSTER (bb1) == BB_CLUSTER (bb2))
1461 continue;
1463 /* Limit quadratic behavior. */
1464 nr_comparisons++;
1465 if (nr_comparisons > max_comparisons)
1466 break;
1468 /* This is a conservative dependency check. We could test more
1469 precise for allowed replacement direction. */
1470 if (!deps_ok_for_redirect (bb1, bb2))
1471 continue;
1473 if (!(same_phi_alternatives (same_succ, bb1, bb2)))
1474 continue;
1476 find_duplicate (same_succ, bb1, bb2);
1481 /* Find clusters of bbs which can be merged. */
1483 static void
1484 find_clusters (void)
1486 same_succ *same;
1488 while (!worklist.is_empty ())
1490 same = worklist.pop ();
1491 same->in_worklist = false;
1492 if (dump_file && (dump_flags & TDF_DETAILS))
1494 fprintf (dump_file, "processing worklist entry\n");
1495 same_succ_print (dump_file, same);
1497 find_clusters_1 (same);
1501 /* Returns the vop phi of BB, if any. */
1503 static gphi *
1504 vop_phi (basic_block bb)
1506 gphi *stmt;
1507 gphi_iterator gsi;
1508 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1510 stmt = gsi.phi ();
1511 if (! virtual_operand_p (gimple_phi_result (stmt)))
1512 continue;
1513 return stmt;
1515 return NULL;
1518 /* Redirect all edges from BB1 to BB2, removes BB1 and marks it as removed. */
1520 static void
1521 replace_block_by (basic_block bb1, basic_block bb2)
1523 edge pred_edge;
1524 edge e1, e2;
1525 edge_iterator ei;
1526 unsigned int i;
1527 gphi *bb2_phi;
1529 bb2_phi = vop_phi (bb2);
1531 /* Mark the basic block as deleted. */
1532 mark_basic_block_deleted (bb1);
1534 /* Redirect the incoming edges of bb1 to bb2. */
1535 for (i = EDGE_COUNT (bb1->preds); i > 0 ; --i)
1537 pred_edge = EDGE_PRED (bb1, i - 1);
1538 pred_edge = redirect_edge_and_branch (pred_edge, bb2);
1539 gcc_assert (pred_edge != NULL);
1541 if (bb2_phi == NULL)
1542 continue;
1544 /* The phi might have run out of capacity when the redirect added an
1545 argument, which means it could have been replaced. Refresh it. */
1546 bb2_phi = vop_phi (bb2);
1548 add_phi_arg (bb2_phi, SSA_NAME_VAR (gimple_phi_result (bb2_phi)),
1549 pred_edge, UNKNOWN_LOCATION);
1552 bb2->frequency += bb1->frequency;
1553 if (bb2->frequency > BB_FREQ_MAX)
1554 bb2->frequency = BB_FREQ_MAX;
1556 bb2->count += bb1->count;
1558 /* Merge the outgoing edge counts from bb1 onto bb2. */
1559 gcov_type out_sum = 0;
1560 FOR_EACH_EDGE (e1, ei, bb1->succs)
1562 e2 = find_edge (bb2, e1->dest);
1563 gcc_assert (e2);
1564 e2->count += e1->count;
1565 out_sum += e2->count;
1567 /* Recompute the edge probabilities from the new merged edge count.
1568 Use the sum of the new merged edge counts computed above instead
1569 of bb2's merged count, in case there are profile count insanities
1570 making the bb count inconsistent with the edge weights. */
1571 FOR_EACH_EDGE (e2, ei, bb2->succs)
1573 e2->probability = GCOV_COMPUTE_SCALE (e2->count, out_sum);
1576 /* Move over any user labels from bb1 after the bb2 labels. */
1577 gimple_stmt_iterator gsi1 = gsi_start_bb (bb1);
1578 if (!gsi_end_p (gsi1) && gimple_code (gsi_stmt (gsi1)) == GIMPLE_LABEL)
1580 gimple_stmt_iterator gsi2 = gsi_after_labels (bb2);
1581 while (!gsi_end_p (gsi1)
1582 && gimple_code (gsi_stmt (gsi1)) == GIMPLE_LABEL)
1584 tree label = gimple_label_label (as_a <glabel *> (gsi_stmt (gsi1)));
1585 gcc_assert (!DECL_NONLOCAL (label) && !FORCED_LABEL (label));
1586 if (DECL_ARTIFICIAL (label))
1587 gsi_next (&gsi1);
1588 else
1589 gsi_move_before (&gsi1, &gsi2);
1593 /* Clear range info from all stmts in BB2 -- this transformation
1594 could make them out of date. */
1595 reset_flow_sensitive_info_in_bb (bb2);
1597 /* Do updates that use bb1, before deleting bb1. */
1598 release_last_vdef (bb1);
1599 same_succ_flush_bb (bb1);
1601 delete_basic_block (bb1);
1604 /* Bbs for which update_debug_stmt need to be called. */
1606 static bitmap update_bbs;
1608 /* For each cluster in all_clusters, merge all cluster->bbs. Returns
1609 number of bbs removed. */
1611 static int
1612 apply_clusters (void)
1614 basic_block bb1, bb2;
1615 bb_cluster *c;
1616 unsigned int i, j;
1617 bitmap_iterator bj;
1618 int nr_bbs_removed = 0;
1620 for (i = 0; i < all_clusters.length (); ++i)
1622 c = all_clusters[i];
1623 if (c == NULL)
1624 continue;
1626 bb2 = c->rep_bb;
1627 bitmap_set_bit (update_bbs, bb2->index);
1629 bitmap_clear_bit (c->bbs, bb2->index);
1630 EXECUTE_IF_SET_IN_BITMAP (c->bbs, 0, j, bj)
1632 bb1 = BASIC_BLOCK_FOR_FN (cfun, j);
1633 bitmap_clear_bit (update_bbs, bb1->index);
1635 replace_block_by (bb1, bb2);
1636 nr_bbs_removed++;
1640 return nr_bbs_removed;
1643 /* Resets debug statement STMT if it has uses that are not dominated by their
1644 defs. */
1646 static void
1647 update_debug_stmt (gimple *stmt)
1649 use_operand_p use_p;
1650 ssa_op_iter oi;
1651 basic_block bbuse;
1653 if (!gimple_debug_bind_p (stmt))
1654 return;
1656 bbuse = gimple_bb (stmt);
1657 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, oi, SSA_OP_USE)
1659 tree name = USE_FROM_PTR (use_p);
1660 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
1661 basic_block bbdef = gimple_bb (def_stmt);
1662 if (bbdef == NULL || bbuse == bbdef
1663 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef))
1664 continue;
1666 gimple_debug_bind_reset_value (stmt);
1667 update_stmt (stmt);
1668 break;
1672 /* Resets all debug statements that have uses that are not
1673 dominated by their defs. */
1675 static void
1676 update_debug_stmts (void)
1678 basic_block bb;
1679 bitmap_iterator bi;
1680 unsigned int i;
1682 EXECUTE_IF_SET_IN_BITMAP (update_bbs, 0, i, bi)
1684 gimple *stmt;
1685 gimple_stmt_iterator gsi;
1687 bb = BASIC_BLOCK_FOR_FN (cfun, i);
1688 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1690 stmt = gsi_stmt (gsi);
1691 if (!is_gimple_debug (stmt))
1692 continue;
1693 update_debug_stmt (stmt);
1698 /* Runs tail merge optimization. */
1700 unsigned int
1701 tail_merge_optimize (unsigned int todo)
1703 int nr_bbs_removed_total = 0;
1704 int nr_bbs_removed;
1705 bool loop_entered = false;
1706 int iteration_nr = 0;
1707 int max_iterations = PARAM_VALUE (PARAM_MAX_TAIL_MERGE_ITERATIONS);
1709 if (!flag_tree_tail_merge
1710 || max_iterations == 0)
1711 return 0;
1713 timevar_push (TV_TREE_TAIL_MERGE);
1715 if (!dom_info_available_p (CDI_DOMINATORS))
1717 /* PRE can leave us with unreachable blocks, remove them now. */
1718 delete_unreachable_blocks ();
1719 calculate_dominance_info (CDI_DOMINATORS);
1721 init_worklist ();
1723 while (!worklist.is_empty ())
1725 if (!loop_entered)
1727 loop_entered = true;
1728 alloc_cluster_vectors ();
1729 update_bbs = BITMAP_ALLOC (NULL);
1731 else
1732 reset_cluster_vectors ();
1734 iteration_nr++;
1735 if (dump_file && (dump_flags & TDF_DETAILS))
1736 fprintf (dump_file, "worklist iteration #%d\n", iteration_nr);
1738 find_clusters ();
1739 gcc_assert (worklist.is_empty ());
1740 if (all_clusters.is_empty ())
1741 break;
1743 nr_bbs_removed = apply_clusters ();
1744 nr_bbs_removed_total += nr_bbs_removed;
1745 if (nr_bbs_removed == 0)
1746 break;
1748 free_dominance_info (CDI_DOMINATORS);
1750 if (iteration_nr == max_iterations)
1751 break;
1753 calculate_dominance_info (CDI_DOMINATORS);
1754 update_worklist ();
1757 if (dump_file && (dump_flags & TDF_DETAILS))
1758 fprintf (dump_file, "htab collision / search: %f\n",
1759 same_succ_htab->collisions ());
1761 if (nr_bbs_removed_total > 0)
1763 if (MAY_HAVE_DEBUG_STMTS)
1765 calculate_dominance_info (CDI_DOMINATORS);
1766 update_debug_stmts ();
1769 if (dump_file && (dump_flags & TDF_DETAILS))
1771 fprintf (dump_file, "Before TODOs.\n");
1772 dump_function_to_file (current_function_decl, dump_file, dump_flags);
1775 mark_virtual_operands_for_renaming (cfun);
1778 delete_worklist ();
1779 if (loop_entered)
1781 delete_cluster_vectors ();
1782 BITMAP_FREE (update_bbs);
1785 timevar_pop (TV_TREE_TAIL_MERGE);
1787 return todo;