Split print_rtx into subroutines
[official-gcc.git] / gcc / gcse.c
blobc2c0e8ec690db96d93c91ecc8e7e69b79498b19a
1 /* Partial redundancy elimination / Hoisting for RTL.
2 Copyright (C) 1997-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* TODO
21 - reordering of memory allocation and freeing to be more space efficient
22 - calc rough register pressure information and use the info to drive all
23 kinds of code motion (including code hoisting) in a unified way.
26 /* References searched while implementing this.
28 Compilers Principles, Techniques and Tools
29 Aho, Sethi, Ullman
30 Addison-Wesley, 1988
32 Global Optimization by Suppression of Partial Redundancies
33 E. Morel, C. Renvoise
34 communications of the acm, Vol. 22, Num. 2, Feb. 1979
36 A Portable Machine-Independent Global Optimizer - Design and Measurements
37 Frederick Chow
38 Stanford Ph.D. thesis, Dec. 1983
40 A Fast Algorithm for Code Movement Optimization
41 D.M. Dhamdhere
42 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
44 A Solution to a Problem with Morel and Renvoise's
45 Global Optimization by Suppression of Partial Redundancies
46 K-H Drechsler, M.P. Stadel
47 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
49 Practical Adaptation of the Global Optimization
50 Algorithm of Morel and Renvoise
51 D.M. Dhamdhere
52 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
54 Efficiently Computing Static Single Assignment Form and the Control
55 Dependence Graph
56 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
57 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
59 Lazy Code Motion
60 J. Knoop, O. Ruthing, B. Steffen
61 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
63 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
64 Time for Reducible Flow Control
65 Thomas Ball
66 ACM Letters on Programming Languages and Systems,
67 Vol. 2, Num. 1-4, Mar-Dec 1993
69 An Efficient Representation for Sparse Sets
70 Preston Briggs, Linda Torczon
71 ACM Letters on Programming Languages and Systems,
72 Vol. 2, Num. 1-4, Mar-Dec 1993
74 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
75 K-H Drechsler, M.P. Stadel
76 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
78 Partial Dead Code Elimination
79 J. Knoop, O. Ruthing, B. Steffen
80 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
82 Effective Partial Redundancy Elimination
83 P. Briggs, K.D. Cooper
84 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
86 The Program Structure Tree: Computing Control Regions in Linear Time
87 R. Johnson, D. Pearson, K. Pingali
88 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
90 Optimal Code Motion: Theory and Practice
91 J. Knoop, O. Ruthing, B. Steffen
92 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
94 The power of assignment motion
95 J. Knoop, O. Ruthing, B. Steffen
96 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
98 Global code motion / global value numbering
99 C. Click
100 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
102 Value Driven Redundancy Elimination
103 L.T. Simpson
104 Rice University Ph.D. thesis, Apr. 1996
106 Value Numbering
107 L.T. Simpson
108 Massively Scalar Compiler Project, Rice University, Sep. 1996
110 High Performance Compilers for Parallel Computing
111 Michael Wolfe
112 Addison-Wesley, 1996
114 Advanced Compiler Design and Implementation
115 Steven Muchnick
116 Morgan Kaufmann, 1997
118 Building an Optimizing Compiler
119 Robert Morgan
120 Digital Press, 1998
122 People wishing to speed up the code here should read:
123 Elimination Algorithms for Data Flow Analysis
124 B.G. Ryder, M.C. Paull
125 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
127 How to Analyze Large Programs Efficiently and Informatively
128 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
129 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
131 People wishing to do something different can find various possibilities
132 in the above papers and elsewhere.
135 #include "config.h"
136 #include "system.h"
137 #include "coretypes.h"
138 #include "backend.h"
139 #include "target.h"
140 #include "rtl.h"
141 #include "tree.h"
142 #include "predict.h"
143 #include "df.h"
144 #include "tm_p.h"
145 #include "insn-config.h"
146 #include "print-rtl.h"
147 #include "regs.h"
148 #include "ira.h"
149 #include "recog.h"
150 #include "diagnostic-core.h"
151 #include "cfgrtl.h"
152 #include "cfganal.h"
153 #include "lcm.h"
154 #include "cfgcleanup.h"
155 #include "expr.h"
156 #include "params.h"
157 #include "intl.h"
158 #include "tree-pass.h"
159 #include "dbgcnt.h"
160 #include "gcse.h"
161 #include "gcse-common.h"
163 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
164 are a superset of those done by classic GCSE.
166 Two passes of copy/constant propagation are done around PRE or hoisting
167 because the first one enables more GCSE and the second one helps to clean
168 up the copies that PRE and HOIST create. This is needed more for PRE than
169 for HOIST because code hoisting will try to use an existing register
170 containing the common subexpression rather than create a new one. This is
171 harder to do for PRE because of the code motion (which HOIST doesn't do).
173 Expressions we are interested in GCSE-ing are of the form
174 (set (pseudo-reg) (expression)).
175 Function want_to_gcse_p says what these are.
177 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
178 This allows PRE to hoist expressions that are expressed in multiple insns,
179 such as complex address calculations (e.g. for PIC code, or loads with a
180 high part and a low part).
182 PRE handles moving invariant expressions out of loops (by treating them as
183 partially redundant).
185 **********************
187 We used to support multiple passes but there are diminishing returns in
188 doing so. The first pass usually makes 90% of the changes that are doable.
189 A second pass can make a few more changes made possible by the first pass.
190 Experiments show any further passes don't make enough changes to justify
191 the expense.
193 A study of spec92 using an unlimited number of passes:
194 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
195 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
196 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
198 It was found doing copy propagation between each pass enables further
199 substitutions.
201 This study was done before expressions in REG_EQUAL notes were added as
202 candidate expressions for optimization, and before the GIMPLE optimizers
203 were added. Probably, multiple passes is even less efficient now than
204 at the time when the study was conducted.
206 PRE is quite expensive in complicated functions because the DFA can take
207 a while to converge. Hence we only perform one pass.
209 **********************
211 The steps for PRE are:
213 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
215 2) Perform the data flow analysis for PRE.
217 3) Delete the redundant instructions
219 4) Insert the required copies [if any] that make the partially
220 redundant instructions fully redundant.
222 5) For other reaching expressions, insert an instruction to copy the value
223 to a newly created pseudo that will reach the redundant instruction.
225 The deletion is done first so that when we do insertions we
226 know which pseudo reg to use.
228 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
229 argue it is not. The number of iterations for the algorithm to converge
230 is typically 2-4 so I don't view it as that expensive (relatively speaking).
232 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
233 we create. To make an expression reach the place where it's redundant,
234 the result of the expression is copied to a new register, and the redundant
235 expression is deleted by replacing it with this new register. Classic GCSE
236 doesn't have this problem as much as it computes the reaching defs of
237 each register in each block and thus can try to use an existing
238 register. */
240 /* GCSE global vars. */
242 struct target_gcse default_target_gcse;
243 #if SWITCHABLE_TARGET
244 struct target_gcse *this_target_gcse = &default_target_gcse;
245 #endif
247 /* Set to non-zero if CSE should run after all GCSE optimizations are done. */
248 int flag_rerun_cse_after_global_opts;
250 /* An obstack for our working variables. */
251 static struct obstack gcse_obstack;
253 /* Hash table of expressions. */
255 struct gcse_expr
257 /* The expression. */
258 rtx expr;
259 /* Index in the available expression bitmaps. */
260 int bitmap_index;
261 /* Next entry with the same hash. */
262 struct gcse_expr *next_same_hash;
263 /* List of anticipatable occurrences in basic blocks in the function.
264 An "anticipatable occurrence" is one that is the first occurrence in the
265 basic block, the operands are not modified in the basic block prior
266 to the occurrence and the output is not used between the start of
267 the block and the occurrence. */
268 struct gcse_occr *antic_occr;
269 /* List of available occurrence in basic blocks in the function.
270 An "available occurrence" is one that is the last occurrence in the
271 basic block and the operands are not modified by following statements in
272 the basic block [including this insn]. */
273 struct gcse_occr *avail_occr;
274 /* Non-null if the computation is PRE redundant.
275 The value is the newly created pseudo-reg to record a copy of the
276 expression in all the places that reach the redundant copy. */
277 rtx reaching_reg;
278 /* Maximum distance in instructions this expression can travel.
279 We avoid moving simple expressions for more than a few instructions
280 to keep register pressure under control.
281 A value of "0" removes restrictions on how far the expression can
282 travel. */
283 int max_distance;
286 /* Occurrence of an expression.
287 There is one per basic block. If a pattern appears more than once the
288 last appearance is used [or first for anticipatable expressions]. */
290 struct gcse_occr
292 /* Next occurrence of this expression. */
293 struct gcse_occr *next;
294 /* The insn that computes the expression. */
295 rtx_insn *insn;
296 /* Nonzero if this [anticipatable] occurrence has been deleted. */
297 char deleted_p;
298 /* Nonzero if this [available] occurrence has been copied to
299 reaching_reg. */
300 /* ??? This is mutually exclusive with deleted_p, so they could share
301 the same byte. */
302 char copied_p;
305 typedef struct gcse_occr *occr_t;
307 /* Expression hash tables.
308 Each hash table is an array of buckets.
309 ??? It is known that if it were an array of entries, structure elements
310 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
311 not clear whether in the final analysis a sufficient amount of memory would
312 be saved as the size of the available expression bitmaps would be larger
313 [one could build a mapping table without holes afterwards though].
314 Someday I'll perform the computation and figure it out. */
316 struct gcse_hash_table_d
318 /* The table itself.
319 This is an array of `expr_hash_table_size' elements. */
320 struct gcse_expr **table;
322 /* Size of the hash table, in elements. */
323 unsigned int size;
325 /* Number of hash table elements. */
326 unsigned int n_elems;
329 /* Expression hash table. */
330 static struct gcse_hash_table_d expr_hash_table;
332 /* This is a list of expressions which are MEMs and will be used by load
333 or store motion.
334 Load motion tracks MEMs which aren't killed by anything except itself,
335 i.e. loads and stores to a single location.
336 We can then allow movement of these MEM refs with a little special
337 allowance. (all stores copy the same value to the reaching reg used
338 for the loads). This means all values used to store into memory must have
339 no side effects so we can re-issue the setter value. */
341 struct ls_expr
343 struct gcse_expr * expr; /* Gcse expression reference for LM. */
344 rtx pattern; /* Pattern of this mem. */
345 rtx pattern_regs; /* List of registers mentioned by the mem. */
346 vec<rtx_insn *> stores; /* INSN list of stores seen. */
347 struct ls_expr * next; /* Next in the list. */
348 int invalid; /* Invalid for some reason. */
349 int index; /* If it maps to a bitmap index. */
350 unsigned int hash_index; /* Index when in a hash table. */
351 rtx reaching_reg; /* Register to use when re-writing. */
354 /* Head of the list of load/store memory refs. */
355 static struct ls_expr * pre_ldst_mems = NULL;
357 struct pre_ldst_expr_hasher : nofree_ptr_hash <ls_expr>
359 typedef value_type compare_type;
360 static inline hashval_t hash (const ls_expr *);
361 static inline bool equal (const ls_expr *, const ls_expr *);
364 /* Hashtable helpers. */
365 inline hashval_t
366 pre_ldst_expr_hasher::hash (const ls_expr *x)
368 int do_not_record_p = 0;
369 return
370 hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
373 static int expr_equiv_p (const_rtx, const_rtx);
375 inline bool
376 pre_ldst_expr_hasher::equal (const ls_expr *ptr1,
377 const ls_expr *ptr2)
379 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
382 /* Hashtable for the load/store memory refs. */
383 static hash_table<pre_ldst_expr_hasher> *pre_ldst_table;
385 /* Bitmap containing one bit for each register in the program.
386 Used when performing GCSE to track which registers have been set since
387 the start of the basic block. */
388 static regset reg_set_bitmap;
390 /* Array, indexed by basic block number for a list of insns which modify
391 memory within that block. */
392 static vec<rtx_insn *> *modify_mem_list;
393 static bitmap modify_mem_list_set;
395 /* This array parallels modify_mem_list, except that it stores MEMs
396 being set and their canonicalized memory addresses. */
397 static vec<modify_pair> *canon_modify_mem_list;
399 /* Bitmap indexed by block numbers to record which blocks contain
400 function calls. */
401 static bitmap blocks_with_calls;
403 /* Various variables for statistics gathering. */
405 /* Memory used in a pass.
406 This isn't intended to be absolutely precise. Its intent is only
407 to keep an eye on memory usage. */
408 static int bytes_used;
410 /* GCSE substitutions made. */
411 static int gcse_subst_count;
412 /* Number of copy instructions created. */
413 static int gcse_create_count;
415 /* Doing code hoisting. */
416 static bool doing_code_hoisting_p = false;
418 /* For available exprs */
419 static sbitmap *ae_kill;
421 /* Data stored for each basic block. */
422 struct bb_data
424 /* Maximal register pressure inside basic block for given register class
425 (defined only for the pressure classes). */
426 int max_reg_pressure[N_REG_CLASSES];
427 /* Recorded register pressure of basic block before trying to hoist
428 an expression. Will be used to restore the register pressure
429 if the expression should not be hoisted. */
430 int old_pressure;
431 /* Recorded register live_in info of basic block during code hoisting
432 process. BACKUP is used to record live_in info before trying to
433 hoist an expression, and will be used to restore LIVE_IN if the
434 expression should not be hoisted. */
435 bitmap live_in, backup;
438 #define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
440 static basic_block curr_bb;
442 /* Current register pressure for each pressure class. */
443 static int curr_reg_pressure[N_REG_CLASSES];
446 static void compute_can_copy (void);
447 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
448 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
449 static void *gcse_alloc (unsigned long);
450 static void alloc_gcse_mem (void);
451 static void free_gcse_mem (void);
452 static void hash_scan_insn (rtx_insn *, struct gcse_hash_table_d *);
453 static void hash_scan_set (rtx, rtx_insn *, struct gcse_hash_table_d *);
454 static void hash_scan_clobber (rtx, rtx_insn *, struct gcse_hash_table_d *);
455 static void hash_scan_call (rtx, rtx_insn *, struct gcse_hash_table_d *);
456 static int oprs_unchanged_p (const_rtx, const rtx_insn *, int);
457 static int oprs_anticipatable_p (const_rtx, const rtx_insn *);
458 static int oprs_available_p (const_rtx, const rtx_insn *);
459 static void insert_expr_in_table (rtx, machine_mode, rtx_insn *, int, int,
460 int, struct gcse_hash_table_d *);
461 static unsigned int hash_expr (const_rtx, machine_mode, int *, int);
462 static void record_last_reg_set_info (rtx_insn *, int);
463 static void record_last_mem_set_info (rtx_insn *);
464 static void record_last_set_info (rtx, const_rtx, void *);
465 static void compute_hash_table (struct gcse_hash_table_d *);
466 static void alloc_hash_table (struct gcse_hash_table_d *);
467 static void free_hash_table (struct gcse_hash_table_d *);
468 static void compute_hash_table_work (struct gcse_hash_table_d *);
469 static void dump_hash_table (FILE *, const char *, struct gcse_hash_table_d *);
470 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
471 struct gcse_hash_table_d *);
472 static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
473 static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
474 static void alloc_pre_mem (int, int);
475 static void free_pre_mem (void);
476 static struct edge_list *compute_pre_data (void);
477 static int pre_expr_reaches_here_p (basic_block, struct gcse_expr *,
478 basic_block);
479 static void insert_insn_end_basic_block (struct gcse_expr *, basic_block);
480 static void pre_insert_copy_insn (struct gcse_expr *, rtx_insn *);
481 static void pre_insert_copies (void);
482 static int pre_delete (void);
483 static int pre_gcse (struct edge_list *);
484 static int one_pre_gcse_pass (void);
485 static void add_label_notes (rtx, rtx_insn *);
486 static void alloc_code_hoist_mem (int, int);
487 static void free_code_hoist_mem (void);
488 static void compute_code_hoist_vbeinout (void);
489 static void compute_code_hoist_data (void);
490 static int should_hoist_expr_to_dom (basic_block, struct gcse_expr *, basic_block,
491 sbitmap, int, int *, enum reg_class,
492 int *, bitmap, rtx_insn *);
493 static int hoist_code (void);
494 static enum reg_class get_regno_pressure_class (int regno, int *nregs);
495 static enum reg_class get_pressure_class_and_nregs (rtx_insn *insn, int *nregs);
496 static int one_code_hoisting_pass (void);
497 static rtx_insn *process_insert_insn (struct gcse_expr *);
498 static int pre_edge_insert (struct edge_list *, struct gcse_expr **);
499 static int pre_expr_reaches_here_p_work (basic_block, struct gcse_expr *,
500 basic_block, char *);
501 static struct ls_expr * ldst_entry (rtx);
502 static void free_ldst_entry (struct ls_expr *);
503 static void free_ld_motion_mems (void);
504 static void print_ldst_list (FILE *);
505 static struct ls_expr * find_rtx_in_ldst (rtx);
506 static int simple_mem (const_rtx);
507 static void invalidate_any_buried_refs (rtx);
508 static void compute_ld_motion_mems (void);
509 static void trim_ld_motion_mems (void);
510 static void update_ld_motion_stores (struct gcse_expr *);
511 static void clear_modify_mem_tables (void);
512 static void free_modify_mem_tables (void);
514 #define GNEW(T) ((T *) gmalloc (sizeof (T)))
515 #define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
517 #define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
518 #define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
520 #define GNEWVAR(T, S) ((T *) gmalloc ((S)))
521 #define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
523 #define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
524 #define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
526 /* Misc. utilities. */
528 #define can_copy \
529 (this_target_gcse->x_can_copy)
530 #define can_copy_init_p \
531 (this_target_gcse->x_can_copy_init_p)
533 /* Compute which modes support reg/reg copy operations. */
535 static void
536 compute_can_copy (void)
538 int i;
539 #ifndef AVOID_CCMODE_COPIES
540 rtx reg;
541 rtx_insn *insn;
542 #endif
543 memset (can_copy, 0, NUM_MACHINE_MODES);
545 start_sequence ();
546 for (i = 0; i < NUM_MACHINE_MODES; i++)
547 if (GET_MODE_CLASS (i) == MODE_CC)
549 #ifdef AVOID_CCMODE_COPIES
550 can_copy[i] = 0;
551 #else
552 reg = gen_rtx_REG ((machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
553 insn = emit_insn (gen_rtx_SET (reg, reg));
554 if (recog (PATTERN (insn), insn, NULL) >= 0)
555 can_copy[i] = 1;
556 #endif
558 else
559 can_copy[i] = 1;
561 end_sequence ();
564 /* Returns whether the mode supports reg/reg copy operations. */
566 bool
567 can_copy_p (machine_mode mode)
569 if (! can_copy_init_p)
571 compute_can_copy ();
572 can_copy_init_p = true;
575 return can_copy[mode] != 0;
578 /* Cover function to xmalloc to record bytes allocated. */
580 static void *
581 gmalloc (size_t size)
583 bytes_used += size;
584 return xmalloc (size);
587 /* Cover function to xcalloc to record bytes allocated. */
589 static void *
590 gcalloc (size_t nelem, size_t elsize)
592 bytes_used += nelem * elsize;
593 return xcalloc (nelem, elsize);
596 /* Cover function to obstack_alloc. */
598 static void *
599 gcse_alloc (unsigned long size)
601 bytes_used += size;
602 return obstack_alloc (&gcse_obstack, size);
605 /* Allocate memory for the reg/memory set tracking tables.
606 This is called at the start of each pass. */
608 static void
609 alloc_gcse_mem (void)
611 /* Allocate vars to track sets of regs. */
612 reg_set_bitmap = ALLOC_REG_SET (NULL);
614 /* Allocate array to keep a list of insns which modify memory in each
615 basic block. The two typedefs are needed to work around the
616 pre-processor limitation with template types in macro arguments. */
617 typedef vec<rtx_insn *> vec_rtx_heap;
618 typedef vec<modify_pair> vec_modify_pair_heap;
619 modify_mem_list = GCNEWVEC (vec_rtx_heap, last_basic_block_for_fn (cfun));
620 canon_modify_mem_list = GCNEWVEC (vec_modify_pair_heap,
621 last_basic_block_for_fn (cfun));
622 modify_mem_list_set = BITMAP_ALLOC (NULL);
623 blocks_with_calls = BITMAP_ALLOC (NULL);
626 /* Free memory allocated by alloc_gcse_mem. */
628 static void
629 free_gcse_mem (void)
631 FREE_REG_SET (reg_set_bitmap);
633 free_modify_mem_tables ();
634 BITMAP_FREE (modify_mem_list_set);
635 BITMAP_FREE (blocks_with_calls);
638 /* Compute the local properties of each recorded expression.
640 Local properties are those that are defined by the block, irrespective of
641 other blocks.
643 An expression is transparent in a block if its operands are not modified
644 in the block.
646 An expression is computed (locally available) in a block if it is computed
647 at least once and expression would contain the same value if the
648 computation was moved to the end of the block.
650 An expression is locally anticipatable in a block if it is computed at
651 least once and expression would contain the same value if the computation
652 was moved to the beginning of the block.
654 We call this routine for pre and code hoisting. They all compute
655 basically the same information and thus can easily share this code.
657 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
658 properties. If NULL, then it is not necessary to compute or record that
659 particular property.
661 TABLE controls which hash table to look at. */
663 static void
664 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
665 struct gcse_hash_table_d *table)
667 unsigned int i;
669 /* Initialize any bitmaps that were passed in. */
670 if (transp)
672 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
675 if (comp)
676 bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
677 if (antloc)
678 bitmap_vector_clear (antloc, last_basic_block_for_fn (cfun));
680 for (i = 0; i < table->size; i++)
682 struct gcse_expr *expr;
684 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
686 int indx = expr->bitmap_index;
687 struct gcse_occr *occr;
689 /* The expression is transparent in this block if it is not killed.
690 We start by assuming all are transparent [none are killed], and
691 then reset the bits for those that are. */
692 if (transp)
693 compute_transp (expr->expr, indx, transp,
694 blocks_with_calls,
695 modify_mem_list_set,
696 canon_modify_mem_list);
698 /* The occurrences recorded in antic_occr are exactly those that
699 we want to set to nonzero in ANTLOC. */
700 if (antloc)
701 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
703 bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
705 /* While we're scanning the table, this is a good place to
706 initialize this. */
707 occr->deleted_p = 0;
710 /* The occurrences recorded in avail_occr are exactly those that
711 we want to set to nonzero in COMP. */
712 if (comp)
713 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
715 bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
717 /* While we're scanning the table, this is a good place to
718 initialize this. */
719 occr->copied_p = 0;
722 /* While we're scanning the table, this is a good place to
723 initialize this. */
724 expr->reaching_reg = 0;
729 /* Hash table support. */
731 struct reg_avail_info
733 basic_block last_bb;
734 int first_set;
735 int last_set;
738 static struct reg_avail_info *reg_avail_info;
739 static basic_block current_bb;
741 /* See whether X, the source of a set, is something we want to consider for
742 GCSE. */
744 static int
745 want_to_gcse_p (rtx x, machine_mode mode, int *max_distance_ptr)
747 #ifdef STACK_REGS
748 /* On register stack architectures, don't GCSE constants from the
749 constant pool, as the benefits are often swamped by the overhead
750 of shuffling the register stack between basic blocks. */
751 if (IS_STACK_MODE (GET_MODE (x)))
752 x = avoid_constant_pool_reference (x);
753 #endif
755 /* GCSE'ing constants:
757 We do not specifically distinguish between constant and non-constant
758 expressions in PRE and Hoist. We use set_src_cost below to limit
759 the maximum distance simple expressions can travel.
761 Nevertheless, constants are much easier to GCSE, and, hence,
762 it is easy to overdo the optimizations. Usually, excessive PRE and
763 Hoisting of constant leads to increased register pressure.
765 RA can deal with this by rematerialing some of the constants.
766 Therefore, it is important that the back-end generates sets of constants
767 in a way that allows reload rematerialize them under high register
768 pressure, i.e., a pseudo register with REG_EQUAL to constant
769 is set only once. Failing to do so will result in IRA/reload
770 spilling such constants under high register pressure instead of
771 rematerializing them. */
773 switch (GET_CODE (x))
775 case REG:
776 case SUBREG:
777 case CALL:
778 return 0;
780 CASE_CONST_ANY:
781 if (!doing_code_hoisting_p)
782 /* Do not PRE constants. */
783 return 0;
785 /* FALLTHRU */
787 default:
788 if (doing_code_hoisting_p)
789 /* PRE doesn't implement max_distance restriction. */
791 int cost;
792 int max_distance;
794 gcc_assert (!optimize_function_for_speed_p (cfun)
795 && optimize_function_for_size_p (cfun));
796 cost = set_src_cost (x, mode, 0);
798 if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
800 max_distance = (GCSE_COST_DISTANCE_RATIO * cost) / 10;
801 if (max_distance == 0)
802 return 0;
804 gcc_assert (max_distance > 0);
806 else
807 max_distance = 0;
809 if (max_distance_ptr)
810 *max_distance_ptr = max_distance;
813 return can_assign_to_reg_without_clobbers_p (x, mode);
817 /* Used internally by can_assign_to_reg_without_clobbers_p. */
819 static GTY(()) rtx_insn *test_insn;
821 /* Return true if we can assign X to a pseudo register of mode MODE
822 such that the resulting insn does not result in clobbering a hard
823 register as a side-effect.
825 Additionally, if the target requires it, check that the resulting insn
826 can be copied. If it cannot, this means that X is special and probably
827 has hidden side-effects we don't want to mess with.
829 This function is typically used by code motion passes, to verify
830 that it is safe to insert an insn without worrying about clobbering
831 maybe live hard regs. */
833 bool
834 can_assign_to_reg_without_clobbers_p (rtx x, machine_mode mode)
836 int num_clobbers = 0;
837 int icode;
838 bool can_assign = false;
840 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
841 if (general_operand (x, mode))
842 return 1;
843 else if (GET_MODE (x) == VOIDmode)
844 return 0;
846 /* Otherwise, check if we can make a valid insn from it. First initialize
847 our test insn if we haven't already. */
848 if (test_insn == 0)
850 test_insn
851 = make_insn_raw (gen_rtx_SET (gen_rtx_REG (word_mode,
852 FIRST_PSEUDO_REGISTER * 2),
853 const0_rtx));
854 SET_NEXT_INSN (test_insn) = SET_PREV_INSN (test_insn) = 0;
855 INSN_LOCATION (test_insn) = UNKNOWN_LOCATION;
858 /* Now make an insn like the one we would make when GCSE'ing and see if
859 valid. */
860 PUT_MODE (SET_DEST (PATTERN (test_insn)), mode);
861 SET_SRC (PATTERN (test_insn)) = x;
863 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
865 /* If the test insn is valid and doesn't need clobbers, and the target also
866 has no objections, we're good. */
867 if (icode >= 0
868 && (num_clobbers == 0 || !added_clobbers_hard_reg_p (icode))
869 && ! (targetm.cannot_copy_insn_p
870 && targetm.cannot_copy_insn_p (test_insn)))
871 can_assign = true;
873 /* Make sure test_insn doesn't have any pointers into GC space. */
874 SET_SRC (PATTERN (test_insn)) = NULL_RTX;
876 return can_assign;
879 /* Return nonzero if the operands of expression X are unchanged from the
880 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
881 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
883 static int
884 oprs_unchanged_p (const_rtx x, const rtx_insn *insn, int avail_p)
886 int i, j;
887 enum rtx_code code;
888 const char *fmt;
890 if (x == 0)
891 return 1;
893 code = GET_CODE (x);
894 switch (code)
896 case REG:
898 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
900 if (info->last_bb != current_bb)
901 return 1;
902 if (avail_p)
903 return info->last_set < DF_INSN_LUID (insn);
904 else
905 return info->first_set >= DF_INSN_LUID (insn);
908 case MEM:
909 if (! flag_gcse_lm
910 || load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
911 x, avail_p))
912 return 0;
913 else
914 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
916 case PRE_DEC:
917 case PRE_INC:
918 case POST_DEC:
919 case POST_INC:
920 case PRE_MODIFY:
921 case POST_MODIFY:
922 return 0;
924 case PC:
925 case CC0: /*FIXME*/
926 case CONST:
927 CASE_CONST_ANY:
928 case SYMBOL_REF:
929 case LABEL_REF:
930 case ADDR_VEC:
931 case ADDR_DIFF_VEC:
932 return 1;
934 default:
935 break;
938 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
940 if (fmt[i] == 'e')
942 /* If we are about to do the last recursive call needed at this
943 level, change it into iteration. This function is called enough
944 to be worth it. */
945 if (i == 0)
946 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
948 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
949 return 0;
951 else if (fmt[i] == 'E')
952 for (j = 0; j < XVECLEN (x, i); j++)
953 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
954 return 0;
957 return 1;
960 /* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
962 struct mem_conflict_info
964 /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
965 see if a memory store conflicts with this memory load. */
966 const_rtx mem;
968 /* True if mems_conflict_for_gcse_p finds a conflict between two memory
969 references. */
970 bool conflict;
973 /* DEST is the output of an instruction. If it is a memory reference and
974 possibly conflicts with the load found in DATA, then communicate this
975 information back through DATA. */
977 static void
978 mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
979 void *data)
981 struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
983 while (GET_CODE (dest) == SUBREG
984 || GET_CODE (dest) == ZERO_EXTRACT
985 || GET_CODE (dest) == STRICT_LOW_PART)
986 dest = XEXP (dest, 0);
988 /* If DEST is not a MEM, then it will not conflict with the load. Note
989 that function calls are assumed to clobber memory, but are handled
990 elsewhere. */
991 if (! MEM_P (dest))
992 return;
994 /* If we are setting a MEM in our list of specially recognized MEMs,
995 don't mark as killed this time. */
996 if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
998 if (!find_rtx_in_ldst (dest))
999 mci->conflict = true;
1000 return;
1003 if (true_dependence (dest, GET_MODE (dest), mci->mem))
1004 mci->conflict = true;
1007 /* Return nonzero if the expression in X (a memory reference) is killed
1008 in block BB before or after the insn with the LUID in UID_LIMIT.
1009 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1010 before UID_LIMIT.
1012 To check the entire block, set UID_LIMIT to max_uid + 1 and
1013 AVAIL_P to 0. */
1015 static int
1016 load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1017 int avail_p)
1019 vec<rtx_insn *> list = modify_mem_list[bb->index];
1020 rtx_insn *setter;
1021 unsigned ix;
1023 /* If this is a readonly then we aren't going to be changing it. */
1024 if (MEM_READONLY_P (x))
1025 return 0;
1027 FOR_EACH_VEC_ELT_REVERSE (list, ix, setter)
1029 struct mem_conflict_info mci;
1031 /* Ignore entries in the list that do not apply. */
1032 if ((avail_p
1033 && DF_INSN_LUID (setter) < uid_limit)
1034 || (! avail_p
1035 && DF_INSN_LUID (setter) > uid_limit))
1036 continue;
1038 /* If SETTER is a call everything is clobbered. Note that calls
1039 to pure functions are never put on the list, so we need not
1040 worry about them. */
1041 if (CALL_P (setter))
1042 return 1;
1044 /* SETTER must be an INSN of some kind that sets memory. Call
1045 note_stores to examine each hunk of memory that is modified. */
1046 mci.mem = x;
1047 mci.conflict = false;
1048 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, &mci);
1049 if (mci.conflict)
1050 return 1;
1052 return 0;
1055 /* Return nonzero if the operands of expression X are unchanged from
1056 the start of INSN's basic block up to but not including INSN. */
1058 static int
1059 oprs_anticipatable_p (const_rtx x, const rtx_insn *insn)
1061 return oprs_unchanged_p (x, insn, 0);
1064 /* Return nonzero if the operands of expression X are unchanged from
1065 INSN to the end of INSN's basic block. */
1067 static int
1068 oprs_available_p (const_rtx x, const rtx_insn *insn)
1070 return oprs_unchanged_p (x, insn, 1);
1073 /* Hash expression X.
1075 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1076 indicating if a volatile operand is found or if the expression contains
1077 something we don't want to insert in the table. HASH_TABLE_SIZE is
1078 the current size of the hash table to be probed. */
1080 static unsigned int
1081 hash_expr (const_rtx x, machine_mode mode, int *do_not_record_p,
1082 int hash_table_size)
1084 unsigned int hash;
1086 *do_not_record_p = 0;
1088 hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
1089 return hash % hash_table_size;
1092 /* Return nonzero if exp1 is equivalent to exp2. */
1094 static int
1095 expr_equiv_p (const_rtx x, const_rtx y)
1097 return exp_equiv_p (x, y, 0, true);
1100 /* Insert expression X in INSN in the hash TABLE.
1101 If it is already present, record it as the last occurrence in INSN's
1102 basic block.
1104 MODE is the mode of the value X is being stored into.
1105 It is only used if X is a CONST_INT.
1107 ANTIC_P is nonzero if X is an anticipatable expression.
1108 AVAIL_P is nonzero if X is an available expression.
1110 MAX_DISTANCE is the maximum distance in instructions this expression can
1111 be moved. */
1113 static void
1114 insert_expr_in_table (rtx x, machine_mode mode, rtx_insn *insn,
1115 int antic_p,
1116 int avail_p, int max_distance, struct gcse_hash_table_d *table)
1118 int found, do_not_record_p;
1119 unsigned int hash;
1120 struct gcse_expr *cur_expr, *last_expr = NULL;
1121 struct gcse_occr *antic_occr, *avail_occr;
1123 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1125 /* Do not insert expression in table if it contains volatile operands,
1126 or if hash_expr determines the expression is something we don't want
1127 to or can't handle. */
1128 if (do_not_record_p)
1129 return;
1131 cur_expr = table->table[hash];
1132 found = 0;
1134 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1136 /* If the expression isn't found, save a pointer to the end of
1137 the list. */
1138 last_expr = cur_expr;
1139 cur_expr = cur_expr->next_same_hash;
1142 if (! found)
1144 cur_expr = GOBNEW (struct gcse_expr);
1145 bytes_used += sizeof (struct gcse_expr);
1146 if (table->table[hash] == NULL)
1147 /* This is the first pattern that hashed to this index. */
1148 table->table[hash] = cur_expr;
1149 else
1150 /* Add EXPR to end of this hash chain. */
1151 last_expr->next_same_hash = cur_expr;
1153 /* Set the fields of the expr element. */
1154 cur_expr->expr = x;
1155 cur_expr->bitmap_index = table->n_elems++;
1156 cur_expr->next_same_hash = NULL;
1157 cur_expr->antic_occr = NULL;
1158 cur_expr->avail_occr = NULL;
1159 gcc_assert (max_distance >= 0);
1160 cur_expr->max_distance = max_distance;
1162 else
1163 gcc_assert (cur_expr->max_distance == max_distance);
1165 /* Now record the occurrence(s). */
1166 if (antic_p)
1168 antic_occr = cur_expr->antic_occr;
1170 if (antic_occr
1171 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
1172 antic_occr = NULL;
1174 if (antic_occr)
1175 /* Found another instance of the expression in the same basic block.
1176 Prefer the currently recorded one. We want the first one in the
1177 block and the block is scanned from start to end. */
1178 ; /* nothing to do */
1179 else
1181 /* First occurrence of this expression in this basic block. */
1182 antic_occr = GOBNEW (struct gcse_occr);
1183 bytes_used += sizeof (struct gcse_occr);
1184 antic_occr->insn = insn;
1185 antic_occr->next = cur_expr->antic_occr;
1186 antic_occr->deleted_p = 0;
1187 cur_expr->antic_occr = antic_occr;
1191 if (avail_p)
1193 avail_occr = cur_expr->avail_occr;
1195 if (avail_occr
1196 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
1198 /* Found another instance of the expression in the same basic block.
1199 Prefer this occurrence to the currently recorded one. We want
1200 the last one in the block and the block is scanned from start
1201 to end. */
1202 avail_occr->insn = insn;
1204 else
1206 /* First occurrence of this expression in this basic block. */
1207 avail_occr = GOBNEW (struct gcse_occr);
1208 bytes_used += sizeof (struct gcse_occr);
1209 avail_occr->insn = insn;
1210 avail_occr->next = cur_expr->avail_occr;
1211 avail_occr->deleted_p = 0;
1212 cur_expr->avail_occr = avail_occr;
1217 /* Scan SET present in INSN and add an entry to the hash TABLE. */
1219 static void
1220 hash_scan_set (rtx set, rtx_insn *insn, struct gcse_hash_table_d *table)
1222 rtx src = SET_SRC (set);
1223 rtx dest = SET_DEST (set);
1224 rtx note;
1226 if (GET_CODE (src) == CALL)
1227 hash_scan_call (src, insn, table);
1229 else if (REG_P (dest))
1231 unsigned int regno = REGNO (dest);
1232 int max_distance = 0;
1234 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1236 This allows us to do a single GCSE pass and still eliminate
1237 redundant constants, addresses or other expressions that are
1238 constructed with multiple instructions.
1240 However, keep the original SRC if INSN is a simple reg-reg move.
1241 In this case, there will almost always be a REG_EQUAL note on the
1242 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1243 for INSN, we miss copy propagation opportunities and we perform the
1244 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1245 do more than one PRE GCSE pass.
1247 Note that this does not impede profitable constant propagations. We
1248 "look through" reg-reg sets in lookup_avail_set. */
1249 note = find_reg_equal_equiv_note (insn);
1250 if (note != 0
1251 && REG_NOTE_KIND (note) == REG_EQUAL
1252 && !REG_P (src)
1253 && want_to_gcse_p (XEXP (note, 0), GET_MODE (dest), NULL))
1254 src = XEXP (note, 0), set = gen_rtx_SET (dest, src);
1256 /* Only record sets of pseudo-regs in the hash table. */
1257 if (regno >= FIRST_PSEUDO_REGISTER
1258 /* Don't GCSE something if we can't do a reg/reg copy. */
1259 && can_copy_p (GET_MODE (dest))
1260 /* GCSE commonly inserts instruction after the insn. We can't
1261 do that easily for EH edges so disable GCSE on these for now. */
1262 /* ??? We can now easily create new EH landing pads at the
1263 gimple level, for splitting edges; there's no reason we
1264 can't do the same thing at the rtl level. */
1265 && !can_throw_internal (insn)
1266 /* Is SET_SRC something we want to gcse? */
1267 && want_to_gcse_p (src, GET_MODE (dest), &max_distance)
1268 /* Don't CSE a nop. */
1269 && ! set_noop_p (set)
1270 /* Don't GCSE if it has attached REG_EQUIV note.
1271 At this point this only function parameters should have
1272 REG_EQUIV notes and if the argument slot is used somewhere
1273 explicitly, it means address of parameter has been taken,
1274 so we should not extend the lifetime of the pseudo. */
1275 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1277 /* An expression is not anticipatable if its operands are
1278 modified before this insn or if this is not the only SET in
1279 this insn. The latter condition does not have to mean that
1280 SRC itself is not anticipatable, but we just will not be
1281 able to handle code motion of insns with multiple sets. */
1282 int antic_p = oprs_anticipatable_p (src, insn)
1283 && !multiple_sets (insn);
1284 /* An expression is not available if its operands are
1285 subsequently modified, including this insn. It's also not
1286 available if this is a branch, because we can't insert
1287 a set after the branch. */
1288 int avail_p = (oprs_available_p (src, insn)
1289 && ! JUMP_P (insn));
1291 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1292 max_distance, table);
1295 /* In case of store we want to consider the memory value as available in
1296 the REG stored in that memory. This makes it possible to remove
1297 redundant loads from due to stores to the same location. */
1298 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1300 unsigned int regno = REGNO (src);
1301 int max_distance = 0;
1303 /* Only record sets of pseudo-regs in the hash table. */
1304 if (regno >= FIRST_PSEUDO_REGISTER
1305 /* Don't GCSE something if we can't do a reg/reg copy. */
1306 && can_copy_p (GET_MODE (src))
1307 /* GCSE commonly inserts instruction after the insn. We can't
1308 do that easily for EH edges so disable GCSE on these for now. */
1309 && !can_throw_internal (insn)
1310 /* Is SET_DEST something we want to gcse? */
1311 && want_to_gcse_p (dest, GET_MODE (dest), &max_distance)
1312 /* Don't CSE a nop. */
1313 && ! set_noop_p (set)
1314 /* Don't GCSE if it has attached REG_EQUIV note.
1315 At this point this only function parameters should have
1316 REG_EQUIV notes and if the argument slot is used somewhere
1317 explicitly, it means address of parameter has been taken,
1318 so we should not extend the lifetime of the pseudo. */
1319 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1320 || ! MEM_P (XEXP (note, 0))))
1322 /* Stores are never anticipatable. */
1323 int antic_p = 0;
1324 /* An expression is not available if its operands are
1325 subsequently modified, including this insn. It's also not
1326 available if this is a branch, because we can't insert
1327 a set after the branch. */
1328 int avail_p = oprs_available_p (dest, insn) && ! JUMP_P (insn);
1330 /* Record the memory expression (DEST) in the hash table. */
1331 insert_expr_in_table (dest, GET_MODE (dest), insn,
1332 antic_p, avail_p, max_distance, table);
1337 static void
1338 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1339 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1341 /* Currently nothing to do. */
1344 static void
1345 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1346 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1348 /* Currently nothing to do. */
1351 /* Process INSN and add hash table entries as appropriate. */
1353 static void
1354 hash_scan_insn (rtx_insn *insn, struct gcse_hash_table_d *table)
1356 rtx pat = PATTERN (insn);
1357 int i;
1359 /* Pick out the sets of INSN and for other forms of instructions record
1360 what's been modified. */
1362 if (GET_CODE (pat) == SET)
1363 hash_scan_set (pat, insn, table);
1365 else if (GET_CODE (pat) == CLOBBER)
1366 hash_scan_clobber (pat, insn, table);
1368 else if (GET_CODE (pat) == CALL)
1369 hash_scan_call (pat, insn, table);
1371 else if (GET_CODE (pat) == PARALLEL)
1372 for (i = 0; i < XVECLEN (pat, 0); i++)
1374 rtx x = XVECEXP (pat, 0, i);
1376 if (GET_CODE (x) == SET)
1377 hash_scan_set (x, insn, table);
1378 else if (GET_CODE (x) == CLOBBER)
1379 hash_scan_clobber (x, insn, table);
1380 else if (GET_CODE (x) == CALL)
1381 hash_scan_call (x, insn, table);
1385 /* Dump the hash table TABLE to file FILE under the name NAME. */
1387 static void
1388 dump_hash_table (FILE *file, const char *name, struct gcse_hash_table_d *table)
1390 int i;
1391 /* Flattened out table, so it's printed in proper order. */
1392 struct gcse_expr **flat_table;
1393 unsigned int *hash_val;
1394 struct gcse_expr *expr;
1396 flat_table = XCNEWVEC (struct gcse_expr *, table->n_elems);
1397 hash_val = XNEWVEC (unsigned int, table->n_elems);
1399 for (i = 0; i < (int) table->size; i++)
1400 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1402 flat_table[expr->bitmap_index] = expr;
1403 hash_val[expr->bitmap_index] = i;
1406 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1407 name, table->size, table->n_elems);
1409 for (i = 0; i < (int) table->n_elems; i++)
1410 if (flat_table[i] != 0)
1412 expr = flat_table[i];
1413 fprintf (file, "Index %d (hash value %d; max distance %d)\n ",
1414 expr->bitmap_index, hash_val[i], expr->max_distance);
1415 print_rtl (file, expr->expr);
1416 fprintf (file, "\n");
1419 fprintf (file, "\n");
1421 free (flat_table);
1422 free (hash_val);
1425 /* Record register first/last/block set information for REGNO in INSN.
1427 first_set records the first place in the block where the register
1428 is set and is used to compute "anticipatability".
1430 last_set records the last place in the block where the register
1431 is set and is used to compute "availability".
1433 last_bb records the block for which first_set and last_set are
1434 valid, as a quick test to invalidate them. */
1436 static void
1437 record_last_reg_set_info (rtx_insn *insn, int regno)
1439 struct reg_avail_info *info = &reg_avail_info[regno];
1440 int luid = DF_INSN_LUID (insn);
1442 info->last_set = luid;
1443 if (info->last_bb != current_bb)
1445 info->last_bb = current_bb;
1446 info->first_set = luid;
1450 /* Record memory modification information for INSN. We do not actually care
1451 about the memory location(s) that are set, or even how they are set (consider
1452 a CALL_INSN). We merely need to record which insns modify memory. */
1454 static void
1455 record_last_mem_set_info (rtx_insn *insn)
1457 if (! flag_gcse_lm)
1458 return;
1460 record_last_mem_set_info_common (insn, modify_mem_list,
1461 canon_modify_mem_list,
1462 modify_mem_list_set,
1463 blocks_with_calls);
1466 /* Called from compute_hash_table via note_stores to handle one
1467 SET or CLOBBER in an insn. DATA is really the instruction in which
1468 the SET is taking place. */
1470 static void
1471 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1473 rtx_insn *last_set_insn = (rtx_insn *) data;
1475 if (GET_CODE (dest) == SUBREG)
1476 dest = SUBREG_REG (dest);
1478 if (REG_P (dest))
1479 record_last_reg_set_info (last_set_insn, REGNO (dest));
1480 else if (MEM_P (dest)
1481 /* Ignore pushes, they clobber nothing. */
1482 && ! push_operand (dest, GET_MODE (dest)))
1483 record_last_mem_set_info (last_set_insn);
1486 /* Top level function to create an expression hash table.
1488 Expression entries are placed in the hash table if
1489 - they are of the form (set (pseudo-reg) src),
1490 - src is something we want to perform GCSE on,
1491 - none of the operands are subsequently modified in the block
1493 Currently src must be a pseudo-reg or a const_int.
1495 TABLE is the table computed. */
1497 static void
1498 compute_hash_table_work (struct gcse_hash_table_d *table)
1500 int i;
1502 /* re-Cache any INSN_LIST nodes we have allocated. */
1503 clear_modify_mem_tables ();
1504 /* Some working arrays used to track first and last set in each block. */
1505 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
1507 for (i = 0; i < max_reg_num (); ++i)
1508 reg_avail_info[i].last_bb = NULL;
1510 FOR_EACH_BB_FN (current_bb, cfun)
1512 rtx_insn *insn;
1513 unsigned int regno;
1515 /* First pass over the instructions records information used to
1516 determine when registers and memory are first and last set. */
1517 FOR_BB_INSNS (current_bb, insn)
1519 if (!NONDEBUG_INSN_P (insn))
1520 continue;
1522 if (CALL_P (insn))
1524 hard_reg_set_iterator hrsi;
1525 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1526 0, regno, hrsi)
1527 record_last_reg_set_info (insn, regno);
1529 if (! RTL_CONST_OR_PURE_CALL_P (insn))
1530 record_last_mem_set_info (insn);
1533 note_stores (PATTERN (insn), record_last_set_info, insn);
1536 /* The next pass builds the hash table. */
1537 FOR_BB_INSNS (current_bb, insn)
1538 if (NONDEBUG_INSN_P (insn))
1539 hash_scan_insn (insn, table);
1542 free (reg_avail_info);
1543 reg_avail_info = NULL;
1546 /* Allocate space for the set/expr hash TABLE.
1547 It is used to determine the number of buckets to use. */
1549 static void
1550 alloc_hash_table (struct gcse_hash_table_d *table)
1552 int n;
1554 n = get_max_insn_count ();
1556 table->size = n / 4;
1557 if (table->size < 11)
1558 table->size = 11;
1560 /* Attempt to maintain efficient use of hash table.
1561 Making it an odd number is simplest for now.
1562 ??? Later take some measurements. */
1563 table->size |= 1;
1564 n = table->size * sizeof (struct gcse_expr *);
1565 table->table = GNEWVAR (struct gcse_expr *, n);
1568 /* Free things allocated by alloc_hash_table. */
1570 static void
1571 free_hash_table (struct gcse_hash_table_d *table)
1573 free (table->table);
1576 /* Compute the expression hash table TABLE. */
1578 static void
1579 compute_hash_table (struct gcse_hash_table_d *table)
1581 /* Initialize count of number of entries in hash table. */
1582 table->n_elems = 0;
1583 memset (table->table, 0, table->size * sizeof (struct gcse_expr *));
1585 compute_hash_table_work (table);
1588 /* Expression tracking support. */
1590 /* Clear canon_modify_mem_list and modify_mem_list tables. */
1591 static void
1592 clear_modify_mem_tables (void)
1594 unsigned i;
1595 bitmap_iterator bi;
1597 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
1599 modify_mem_list[i].release ();
1600 canon_modify_mem_list[i].release ();
1602 bitmap_clear (modify_mem_list_set);
1603 bitmap_clear (blocks_with_calls);
1606 /* Release memory used by modify_mem_list_set. */
1608 static void
1609 free_modify_mem_tables (void)
1611 clear_modify_mem_tables ();
1612 free (modify_mem_list);
1613 free (canon_modify_mem_list);
1614 modify_mem_list = 0;
1615 canon_modify_mem_list = 0;
1618 /* Compute PRE+LCM working variables. */
1620 /* Local properties of expressions. */
1622 /* Nonzero for expressions that are transparent in the block. */
1623 static sbitmap *transp;
1625 /* Nonzero for expressions that are computed (available) in the block. */
1626 static sbitmap *comp;
1628 /* Nonzero for expressions that are locally anticipatable in the block. */
1629 static sbitmap *antloc;
1631 /* Nonzero for expressions where this block is an optimal computation
1632 point. */
1633 static sbitmap *pre_optimal;
1635 /* Nonzero for expressions which are redundant in a particular block. */
1636 static sbitmap *pre_redundant;
1638 /* Nonzero for expressions which should be inserted on a specific edge. */
1639 static sbitmap *pre_insert_map;
1641 /* Nonzero for expressions which should be deleted in a specific block. */
1642 static sbitmap *pre_delete_map;
1644 /* Allocate vars used for PRE analysis. */
1646 static void
1647 alloc_pre_mem (int n_blocks, int n_exprs)
1649 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1650 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1651 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
1653 pre_optimal = NULL;
1654 pre_redundant = NULL;
1655 pre_insert_map = NULL;
1656 pre_delete_map = NULL;
1657 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
1659 /* pre_insert and pre_delete are allocated later. */
1662 /* Free vars used for PRE analysis. */
1664 static void
1665 free_pre_mem (void)
1667 sbitmap_vector_free (transp);
1668 sbitmap_vector_free (comp);
1670 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
1672 if (pre_optimal)
1673 sbitmap_vector_free (pre_optimal);
1674 if (pre_redundant)
1675 sbitmap_vector_free (pre_redundant);
1676 if (pre_insert_map)
1677 sbitmap_vector_free (pre_insert_map);
1678 if (pre_delete_map)
1679 sbitmap_vector_free (pre_delete_map);
1681 transp = comp = NULL;
1682 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
1685 /* Remove certain expressions from anticipatable and transparent
1686 sets of basic blocks that have incoming abnormal edge.
1687 For PRE remove potentially trapping expressions to avoid placing
1688 them on abnormal edges. For hoisting remove memory references that
1689 can be clobbered by calls. */
1691 static void
1692 prune_expressions (bool pre_p)
1694 struct gcse_expr *expr;
1695 unsigned int ui;
1696 basic_block bb;
1698 auto_sbitmap prune_exprs (expr_hash_table.n_elems);
1699 bitmap_clear (prune_exprs);
1700 for (ui = 0; ui < expr_hash_table.size; ui++)
1702 for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
1704 /* Note potentially trapping expressions. */
1705 if (may_trap_p (expr->expr))
1707 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1708 continue;
1711 if (!pre_p && MEM_P (expr->expr))
1712 /* Note memory references that can be clobbered by a call.
1713 We do not split abnormal edges in hoisting, so would
1714 a memory reference get hoisted along an abnormal edge,
1715 it would be placed /before/ the call. Therefore, only
1716 constant memory references can be hoisted along abnormal
1717 edges. */
1719 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
1720 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
1721 continue;
1723 if (MEM_READONLY_P (expr->expr)
1724 && !MEM_VOLATILE_P (expr->expr)
1725 && MEM_NOTRAP_P (expr->expr))
1726 /* Constant memory reference, e.g., a PIC address. */
1727 continue;
1729 /* ??? Optimally, we would use interprocedural alias
1730 analysis to determine if this mem is actually killed
1731 by this call. */
1733 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1738 FOR_EACH_BB_FN (bb, cfun)
1740 edge e;
1741 edge_iterator ei;
1743 /* If the current block is the destination of an abnormal edge, we
1744 kill all trapping (for PRE) and memory (for hoist) expressions
1745 because we won't be able to properly place the instruction on
1746 the edge. So make them neither anticipatable nor transparent.
1747 This is fairly conservative.
1749 ??? For hoisting it may be necessary to check for set-and-jump
1750 instructions here, not just for abnormal edges. The general problem
1751 is that when an expression cannot not be placed right at the end of
1752 a basic block we should account for any side-effects of a subsequent
1753 jump instructions that could clobber the expression. It would
1754 be best to implement this check along the lines of
1755 should_hoist_expr_to_dom where the target block is already known
1756 and, hence, there's no need to conservatively prune expressions on
1757 "intermediate" set-and-jump instructions. */
1758 FOR_EACH_EDGE (e, ei, bb->preds)
1759 if ((e->flags & EDGE_ABNORMAL)
1760 && (pre_p || CALL_P (BB_END (e->src))))
1762 bitmap_and_compl (antloc[bb->index],
1763 antloc[bb->index], prune_exprs);
1764 bitmap_and_compl (transp[bb->index],
1765 transp[bb->index], prune_exprs);
1766 break;
1771 /* It may be necessary to insert a large number of insns on edges to
1772 make the existing occurrences of expressions fully redundant. This
1773 routine examines the set of insertions and deletions and if the ratio
1774 of insertions to deletions is too high for a particular expression, then
1775 the expression is removed from the insertion/deletion sets.
1777 N_ELEMS is the number of elements in the hash table. */
1779 static void
1780 prune_insertions_deletions (int n_elems)
1782 sbitmap_iterator sbi;
1784 /* We always use I to iterate over blocks/edges and J to iterate over
1785 expressions. */
1786 unsigned int i, j;
1788 /* Counts for the number of times an expression needs to be inserted and
1789 number of times an expression can be removed as a result. */
1790 int *insertions = GCNEWVEC (int, n_elems);
1791 int *deletions = GCNEWVEC (int, n_elems);
1793 /* Set of expressions which require too many insertions relative to
1794 the number of deletions achieved. We will prune these out of the
1795 insertion/deletion sets. */
1796 auto_sbitmap prune_exprs (n_elems);
1797 bitmap_clear (prune_exprs);
1799 /* Iterate over the edges counting the number of times each expression
1800 needs to be inserted. */
1801 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1803 EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
1804 insertions[j]++;
1807 /* Similarly for deletions, but those occur in blocks rather than on
1808 edges. */
1809 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1811 EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
1812 deletions[j]++;
1815 /* Now that we have accurate counts, iterate over the elements in the
1816 hash table and see if any need too many insertions relative to the
1817 number of evaluations that can be removed. If so, mark them in
1818 PRUNE_EXPRS. */
1819 for (j = 0; j < (unsigned) n_elems; j++)
1820 if (deletions[j]
1821 && ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
1822 bitmap_set_bit (prune_exprs, j);
1824 /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
1825 EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
1827 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1828 bitmap_clear_bit (pre_insert_map[i], j);
1830 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1831 bitmap_clear_bit (pre_delete_map[i], j);
1834 free (insertions);
1835 free (deletions);
1838 /* Top level routine to do the dataflow analysis needed by PRE. */
1840 static struct edge_list *
1841 compute_pre_data (void)
1843 struct edge_list *edge_list;
1844 basic_block bb;
1846 compute_local_properties (transp, comp, antloc, &expr_hash_table);
1847 prune_expressions (true);
1848 bitmap_vector_clear (ae_kill, last_basic_block_for_fn (cfun));
1850 /* Compute ae_kill for each basic block using:
1852 ~(TRANSP | COMP)
1855 FOR_EACH_BB_FN (bb, cfun)
1857 bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
1858 bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
1861 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
1862 ae_kill, &pre_insert_map, &pre_delete_map);
1863 sbitmap_vector_free (antloc);
1864 antloc = NULL;
1865 sbitmap_vector_free (ae_kill);
1866 ae_kill = NULL;
1868 prune_insertions_deletions (expr_hash_table.n_elems);
1870 return edge_list;
1873 /* PRE utilities */
1875 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
1876 block BB.
1878 VISITED is a pointer to a working buffer for tracking which BB's have
1879 been visited. It is NULL for the top-level call.
1881 We treat reaching expressions that go through blocks containing the same
1882 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
1883 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
1884 2 as not reaching. The intent is to improve the probability of finding
1885 only one reaching expression and to reduce register lifetimes by picking
1886 the closest such expression. */
1888 static int
1889 pre_expr_reaches_here_p_work (basic_block occr_bb, struct gcse_expr *expr,
1890 basic_block bb, char *visited)
1892 edge pred;
1893 edge_iterator ei;
1895 FOR_EACH_EDGE (pred, ei, bb->preds)
1897 basic_block pred_bb = pred->src;
1899 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1900 /* Has predecessor has already been visited? */
1901 || visited[pred_bb->index])
1902 ;/* Nothing to do. */
1904 /* Does this predecessor generate this expression? */
1905 else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
1907 /* Is this the occurrence we're looking for?
1908 Note that there's only one generating occurrence per block
1909 so we just need to check the block number. */
1910 if (occr_bb == pred_bb)
1911 return 1;
1913 visited[pred_bb->index] = 1;
1915 /* Ignore this predecessor if it kills the expression. */
1916 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
1917 visited[pred_bb->index] = 1;
1919 /* Neither gen nor kill. */
1920 else
1922 visited[pred_bb->index] = 1;
1923 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
1924 return 1;
1928 /* All paths have been checked. */
1929 return 0;
1932 /* The wrapper for pre_expr_reaches_here_work that ensures that any
1933 memory allocated for that function is returned. */
1935 static int
1936 pre_expr_reaches_here_p (basic_block occr_bb, struct gcse_expr *expr, basic_block bb)
1938 int rval;
1939 char *visited = XCNEWVEC (char, last_basic_block_for_fn (cfun));
1941 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
1943 free (visited);
1944 return rval;
1947 /* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
1949 static rtx_insn *
1950 process_insert_insn (struct gcse_expr *expr)
1952 rtx reg = expr->reaching_reg;
1953 /* Copy the expression to make sure we don't have any sharing issues. */
1954 rtx exp = copy_rtx (expr->expr);
1955 rtx_insn *pat;
1957 start_sequence ();
1959 /* If the expression is something that's an operand, like a constant,
1960 just copy it to a register. */
1961 if (general_operand (exp, GET_MODE (reg)))
1962 emit_move_insn (reg, exp);
1964 /* Otherwise, make a new insn to compute this expression and make sure the
1965 insn will be recognized (this also adds any needed CLOBBERs). */
1966 else
1968 rtx_insn *insn = emit_insn (gen_rtx_SET (reg, exp));
1970 if (insn_invalid_p (insn, false))
1971 gcc_unreachable ();
1974 pat = get_insns ();
1975 end_sequence ();
1977 return pat;
1980 /* Add EXPR to the end of basic block BB.
1982 This is used by both the PRE and code hoisting. */
1984 static void
1985 insert_insn_end_basic_block (struct gcse_expr *expr, basic_block bb)
1987 rtx_insn *insn = BB_END (bb);
1988 rtx_insn *new_insn;
1989 rtx reg = expr->reaching_reg;
1990 int regno = REGNO (reg);
1991 rtx_insn *pat, *pat_end;
1993 pat = process_insert_insn (expr);
1994 gcc_assert (pat && INSN_P (pat));
1996 pat_end = pat;
1997 while (NEXT_INSN (pat_end) != NULL_RTX)
1998 pat_end = NEXT_INSN (pat_end);
2000 /* If the last insn is a jump, insert EXPR in front [taking care to
2001 handle cc0, etc. properly]. Similarly we need to care trapping
2002 instructions in presence of non-call exceptions. */
2004 if (JUMP_P (insn)
2005 || (NONJUMP_INSN_P (insn)
2006 && (!single_succ_p (bb)
2007 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
2009 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2010 if cc0 isn't set. */
2011 if (HAVE_cc0)
2013 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2014 if (note)
2015 insn = safe_as_a <rtx_insn *> (XEXP (note, 0));
2016 else
2018 rtx_insn *maybe_cc0_setter = prev_nonnote_insn (insn);
2019 if (maybe_cc0_setter
2020 && INSN_P (maybe_cc0_setter)
2021 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2022 insn = maybe_cc0_setter;
2026 /* FIXME: What if something in cc0/jump uses value set in new insn? */
2027 new_insn = emit_insn_before_noloc (pat, insn, bb);
2030 /* Likewise if the last insn is a call, as will happen in the presence
2031 of exception handling. */
2032 else if (CALL_P (insn)
2033 && (!single_succ_p (bb)
2034 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
2036 /* Keeping in mind targets with small register classes and parameters
2037 in registers, we search backward and place the instructions before
2038 the first parameter is loaded. Do this for everyone for consistency
2039 and a presumption that we'll get better code elsewhere as well. */
2041 /* Since different machines initialize their parameter registers
2042 in different orders, assume nothing. Collect the set of all
2043 parameter registers. */
2044 insn = find_first_parameter_load (insn, BB_HEAD (bb));
2046 /* If we found all the parameter loads, then we want to insert
2047 before the first parameter load.
2049 If we did not find all the parameter loads, then we might have
2050 stopped on the head of the block, which could be a CODE_LABEL.
2051 If we inserted before the CODE_LABEL, then we would be putting
2052 the insn in the wrong basic block. In that case, put the insn
2053 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
2054 while (LABEL_P (insn)
2055 || NOTE_INSN_BASIC_BLOCK_P (insn))
2056 insn = NEXT_INSN (insn);
2058 new_insn = emit_insn_before_noloc (pat, insn, bb);
2060 else
2061 new_insn = emit_insn_after_noloc (pat, insn, bb);
2063 while (1)
2065 if (INSN_P (pat))
2066 add_label_notes (PATTERN (pat), new_insn);
2067 if (pat == pat_end)
2068 break;
2069 pat = NEXT_INSN (pat);
2072 gcse_create_count++;
2074 if (dump_file)
2076 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
2077 bb->index, INSN_UID (new_insn));
2078 fprintf (dump_file, "copying expression %d to reg %d\n",
2079 expr->bitmap_index, regno);
2083 /* Insert partially redundant expressions on edges in the CFG to make
2084 the expressions fully redundant. */
2086 static int
2087 pre_edge_insert (struct edge_list *edge_list, struct gcse_expr **index_map)
2089 int e, i, j, num_edges, set_size, did_insert = 0;
2090 sbitmap *inserted;
2092 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2093 if it reaches any of the deleted expressions. */
2095 set_size = pre_insert_map[0]->size;
2096 num_edges = NUM_EDGES (edge_list);
2097 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
2098 bitmap_vector_clear (inserted, num_edges);
2100 for (e = 0; e < num_edges; e++)
2102 int indx;
2103 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
2105 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
2107 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
2109 for (j = indx;
2110 insert && j < (int) expr_hash_table.n_elems;
2111 j++, insert >>= 1)
2112 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2114 struct gcse_expr *expr = index_map[j];
2115 struct gcse_occr *occr;
2117 /* Now look at each deleted occurrence of this expression. */
2118 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2120 if (! occr->deleted_p)
2121 continue;
2123 /* Insert this expression on this edge if it would
2124 reach the deleted occurrence in BB. */
2125 if (!bitmap_bit_p (inserted[e], j))
2127 rtx_insn *insn;
2128 edge eg = INDEX_EDGE (edge_list, e);
2130 /* We can't insert anything on an abnormal and
2131 critical edge, so we insert the insn at the end of
2132 the previous block. There are several alternatives
2133 detailed in Morgans book P277 (sec 10.5) for
2134 handling this situation. This one is easiest for
2135 now. */
2137 if (eg->flags & EDGE_ABNORMAL)
2138 insert_insn_end_basic_block (index_map[j], bb);
2139 else
2141 insn = process_insert_insn (index_map[j]);
2142 insert_insn_on_edge (insn, eg);
2145 if (dump_file)
2147 fprintf (dump_file, "PRE: edge (%d,%d), ",
2148 bb->index,
2149 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
2150 fprintf (dump_file, "copy expression %d\n",
2151 expr->bitmap_index);
2154 update_ld_motion_stores (expr);
2155 bitmap_set_bit (inserted[e], j);
2156 did_insert = 1;
2157 gcse_create_count++;
2164 sbitmap_vector_free (inserted);
2165 return did_insert;
2168 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
2169 Given "old_reg <- expr" (INSN), instead of adding after it
2170 reaching_reg <- old_reg
2171 it's better to do the following:
2172 reaching_reg <- expr
2173 old_reg <- reaching_reg
2174 because this way copy propagation can discover additional PRE
2175 opportunities. But if this fails, we try the old way.
2176 When "expr" is a store, i.e.
2177 given "MEM <- old_reg", instead of adding after it
2178 reaching_reg <- old_reg
2179 it's better to add it before as follows:
2180 reaching_reg <- old_reg
2181 MEM <- reaching_reg. */
2183 static void
2184 pre_insert_copy_insn (struct gcse_expr *expr, rtx_insn *insn)
2186 rtx reg = expr->reaching_reg;
2187 int regno = REGNO (reg);
2188 int indx = expr->bitmap_index;
2189 rtx pat = PATTERN (insn);
2190 rtx set, first_set;
2191 rtx_insn *new_insn;
2192 rtx old_reg;
2193 int i;
2195 /* This block matches the logic in hash_scan_insn. */
2196 switch (GET_CODE (pat))
2198 case SET:
2199 set = pat;
2200 break;
2202 case PARALLEL:
2203 /* Search through the parallel looking for the set whose
2204 source was the expression that we're interested in. */
2205 first_set = NULL_RTX;
2206 set = NULL_RTX;
2207 for (i = 0; i < XVECLEN (pat, 0); i++)
2209 rtx x = XVECEXP (pat, 0, i);
2210 if (GET_CODE (x) == SET)
2212 /* If the source was a REG_EQUAL or REG_EQUIV note, we
2213 may not find an equivalent expression, but in this
2214 case the PARALLEL will have a single set. */
2215 if (first_set == NULL_RTX)
2216 first_set = x;
2217 if (expr_equiv_p (SET_SRC (x), expr->expr))
2219 set = x;
2220 break;
2225 gcc_assert (first_set);
2226 if (set == NULL_RTX)
2227 set = first_set;
2228 break;
2230 default:
2231 gcc_unreachable ();
2234 if (REG_P (SET_DEST (set)))
2236 old_reg = SET_DEST (set);
2237 /* Check if we can modify the set destination in the original insn. */
2238 if (validate_change (insn, &SET_DEST (set), reg, 0))
2240 new_insn = gen_move_insn (old_reg, reg);
2241 new_insn = emit_insn_after (new_insn, insn);
2243 else
2245 new_insn = gen_move_insn (reg, old_reg);
2246 new_insn = emit_insn_after (new_insn, insn);
2249 else /* This is possible only in case of a store to memory. */
2251 old_reg = SET_SRC (set);
2252 new_insn = gen_move_insn (reg, old_reg);
2254 /* Check if we can modify the set source in the original insn. */
2255 if (validate_change (insn, &SET_SRC (set), reg, 0))
2256 new_insn = emit_insn_before (new_insn, insn);
2257 else
2258 new_insn = emit_insn_after (new_insn, insn);
2261 gcse_create_count++;
2263 if (dump_file)
2264 fprintf (dump_file,
2265 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
2266 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
2267 INSN_UID (insn), regno);
2270 /* Copy available expressions that reach the redundant expression
2271 to `reaching_reg'. */
2273 static void
2274 pre_insert_copies (void)
2276 unsigned int i, added_copy;
2277 struct gcse_expr *expr;
2278 struct gcse_occr *occr;
2279 struct gcse_occr *avail;
2281 /* For each available expression in the table, copy the result to
2282 `reaching_reg' if the expression reaches a deleted one.
2284 ??? The current algorithm is rather brute force.
2285 Need to do some profiling. */
2287 for (i = 0; i < expr_hash_table.size; i++)
2288 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2290 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
2291 we don't want to insert a copy here because the expression may not
2292 really be redundant. So only insert an insn if the expression was
2293 deleted. This test also avoids further processing if the
2294 expression wasn't deleted anywhere. */
2295 if (expr->reaching_reg == NULL)
2296 continue;
2298 /* Set when we add a copy for that expression. */
2299 added_copy = 0;
2301 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2303 if (! occr->deleted_p)
2304 continue;
2306 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2308 rtx_insn *insn = avail->insn;
2310 /* No need to handle this one if handled already. */
2311 if (avail->copied_p)
2312 continue;
2314 /* Don't handle this one if it's a redundant one. */
2315 if (insn->deleted ())
2316 continue;
2318 /* Or if the expression doesn't reach the deleted one. */
2319 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
2320 expr,
2321 BLOCK_FOR_INSN (occr->insn)))
2322 continue;
2324 added_copy = 1;
2326 /* Copy the result of avail to reaching_reg. */
2327 pre_insert_copy_insn (expr, insn);
2328 avail->copied_p = 1;
2332 if (added_copy)
2333 update_ld_motion_stores (expr);
2337 struct set_data
2339 rtx_insn *insn;
2340 const_rtx set;
2341 int nsets;
2344 /* Increment number of sets and record set in DATA. */
2346 static void
2347 record_set_data (rtx dest, const_rtx set, void *data)
2349 struct set_data *s = (struct set_data *)data;
2351 if (GET_CODE (set) == SET)
2353 /* We allow insns having multiple sets, where all but one are
2354 dead as single set insns. In the common case only a single
2355 set is present, so we want to avoid checking for REG_UNUSED
2356 notes unless necessary. */
2357 if (s->nsets == 1
2358 && find_reg_note (s->insn, REG_UNUSED, SET_DEST (s->set))
2359 && !side_effects_p (s->set))
2360 s->nsets = 0;
2362 if (!s->nsets)
2364 /* Record this set. */
2365 s->nsets += 1;
2366 s->set = set;
2368 else if (!find_reg_note (s->insn, REG_UNUSED, dest)
2369 || side_effects_p (set))
2370 s->nsets += 1;
2374 static const_rtx
2375 single_set_gcse (rtx_insn *insn)
2377 struct set_data s;
2378 rtx pattern;
2380 gcc_assert (INSN_P (insn));
2382 /* Optimize common case. */
2383 pattern = PATTERN (insn);
2384 if (GET_CODE (pattern) == SET)
2385 return pattern;
2387 s.insn = insn;
2388 s.nsets = 0;
2389 note_stores (pattern, record_set_data, &s);
2391 /* Considered invariant insns have exactly one set. */
2392 gcc_assert (s.nsets == 1);
2393 return s.set;
2396 /* Emit move from SRC to DEST noting the equivalence with expression computed
2397 in INSN. */
2399 static rtx_insn *
2400 gcse_emit_move_after (rtx dest, rtx src, rtx_insn *insn)
2402 rtx_insn *new_rtx;
2403 const_rtx set = single_set_gcse (insn);
2404 rtx set2;
2405 rtx note;
2406 rtx eqv = NULL_RTX;
2408 /* This should never fail since we're creating a reg->reg copy
2409 we've verified to be valid. */
2411 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
2413 /* Note the equivalence for local CSE pass. Take the note from the old
2414 set if there was one. Otherwise record the SET_SRC from the old set
2415 unless DEST is also an operand of the SET_SRC. */
2416 set2 = single_set (new_rtx);
2417 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
2418 return new_rtx;
2419 if ((note = find_reg_equal_equiv_note (insn)))
2420 eqv = XEXP (note, 0);
2421 else if (! REG_P (dest)
2422 || ! reg_mentioned_p (dest, SET_SRC (set)))
2423 eqv = SET_SRC (set);
2425 if (eqv != NULL_RTX)
2426 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
2428 return new_rtx;
2431 /* Delete redundant computations.
2432 Deletion is done by changing the insn to copy the `reaching_reg' of
2433 the expression into the result of the SET. It is left to later passes
2434 to propagate the copy or eliminate it.
2436 Return nonzero if a change is made. */
2438 static int
2439 pre_delete (void)
2441 unsigned int i;
2442 int changed;
2443 struct gcse_expr *expr;
2444 struct gcse_occr *occr;
2446 changed = 0;
2447 for (i = 0; i < expr_hash_table.size; i++)
2448 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2450 int indx = expr->bitmap_index;
2452 /* We only need to search antic_occr since we require ANTLOC != 0. */
2453 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2455 rtx_insn *insn = occr->insn;
2456 rtx set;
2457 basic_block bb = BLOCK_FOR_INSN (insn);
2459 /* We only delete insns that have a single_set. */
2460 if (bitmap_bit_p (pre_delete_map[bb->index], indx)
2461 && (set = single_set (insn)) != 0
2462 && dbg_cnt (pre_insn))
2464 /* Create a pseudo-reg to store the result of reaching
2465 expressions into. Get the mode for the new pseudo from
2466 the mode of the original destination pseudo. */
2467 if (expr->reaching_reg == NULL)
2468 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
2470 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
2471 delete_insn (insn);
2472 occr->deleted_p = 1;
2473 changed = 1;
2474 gcse_subst_count++;
2476 if (dump_file)
2478 fprintf (dump_file,
2479 "PRE: redundant insn %d (expression %d) in ",
2480 INSN_UID (insn), indx);
2481 fprintf (dump_file, "bb %d, reaching reg is %d\n",
2482 bb->index, REGNO (expr->reaching_reg));
2488 return changed;
2491 /* Perform GCSE optimizations using PRE.
2492 This is called by one_pre_gcse_pass after all the dataflow analysis
2493 has been done.
2495 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2496 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2497 Compiler Design and Implementation.
2499 ??? A new pseudo reg is created to hold the reaching expression. The nice
2500 thing about the classical approach is that it would try to use an existing
2501 reg. If the register can't be adequately optimized [i.e. we introduce
2502 reload problems], one could add a pass here to propagate the new register
2503 through the block.
2505 ??? We don't handle single sets in PARALLELs because we're [currently] not
2506 able to copy the rest of the parallel when we insert copies to create full
2507 redundancies from partial redundancies. However, there's no reason why we
2508 can't handle PARALLELs in the cases where there are no partial
2509 redundancies. */
2511 static int
2512 pre_gcse (struct edge_list *edge_list)
2514 unsigned int i;
2515 int did_insert, changed;
2516 struct gcse_expr **index_map;
2517 struct gcse_expr *expr;
2519 /* Compute a mapping from expression number (`bitmap_index') to
2520 hash table entry. */
2522 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
2523 for (i = 0; i < expr_hash_table.size; i++)
2524 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2525 index_map[expr->bitmap_index] = expr;
2527 /* Delete the redundant insns first so that
2528 - we know what register to use for the new insns and for the other
2529 ones with reaching expressions
2530 - we know which insns are redundant when we go to create copies */
2532 changed = pre_delete ();
2533 did_insert = pre_edge_insert (edge_list, index_map);
2535 /* In other places with reaching expressions, copy the expression to the
2536 specially allocated pseudo-reg that reaches the redundant expr. */
2537 pre_insert_copies ();
2538 if (did_insert)
2540 commit_edge_insertions ();
2541 changed = 1;
2544 free (index_map);
2545 return changed;
2548 /* Top level routine to perform one PRE GCSE pass.
2550 Return nonzero if a change was made. */
2552 static int
2553 one_pre_gcse_pass (void)
2555 int changed = 0;
2557 gcse_subst_count = 0;
2558 gcse_create_count = 0;
2560 /* Return if there's nothing to do, or it is too expensive. */
2561 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
2562 || gcse_or_cprop_is_too_expensive (_("PRE disabled")))
2563 return 0;
2565 /* We need alias. */
2566 init_alias_analysis ();
2568 bytes_used = 0;
2569 gcc_obstack_init (&gcse_obstack);
2570 alloc_gcse_mem ();
2572 alloc_hash_table (&expr_hash_table);
2573 add_noreturn_fake_exit_edges ();
2574 if (flag_gcse_lm)
2575 compute_ld_motion_mems ();
2577 compute_hash_table (&expr_hash_table);
2578 if (flag_gcse_lm)
2579 trim_ld_motion_mems ();
2580 if (dump_file)
2581 dump_hash_table (dump_file, "Expression", &expr_hash_table);
2583 if (expr_hash_table.n_elems > 0)
2585 struct edge_list *edge_list;
2586 alloc_pre_mem (last_basic_block_for_fn (cfun), expr_hash_table.n_elems);
2587 edge_list = compute_pre_data ();
2588 changed |= pre_gcse (edge_list);
2589 free_edge_list (edge_list);
2590 free_pre_mem ();
2593 if (flag_gcse_lm)
2594 free_ld_motion_mems ();
2595 remove_fake_exit_edges ();
2596 free_hash_table (&expr_hash_table);
2598 free_gcse_mem ();
2599 obstack_free (&gcse_obstack, NULL);
2601 /* We are finished with alias. */
2602 end_alias_analysis ();
2604 if (dump_file)
2606 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
2607 current_function_name (), n_basic_blocks_for_fn (cfun),
2608 bytes_used);
2609 fprintf (dump_file, "%d substs, %d insns created\n",
2610 gcse_subst_count, gcse_create_count);
2613 return changed;
2616 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2617 to INSN. If such notes are added to an insn which references a
2618 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
2619 that note, because the following loop optimization pass requires
2620 them. */
2622 /* ??? If there was a jump optimization pass after gcse and before loop,
2623 then we would not need to do this here, because jump would add the
2624 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
2626 static void
2627 add_label_notes (rtx x, rtx_insn *insn)
2629 enum rtx_code code = GET_CODE (x);
2630 int i, j;
2631 const char *fmt;
2633 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2635 /* This code used to ignore labels that referred to dispatch tables to
2636 avoid flow generating (slightly) worse code.
2638 We no longer ignore such label references (see LABEL_REF handling in
2639 mark_jump_label for additional information). */
2641 /* There's no reason for current users to emit jump-insns with
2642 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2643 notes. */
2644 gcc_assert (!JUMP_P (insn));
2645 add_reg_note (insn, REG_LABEL_OPERAND, LABEL_REF_LABEL (x));
2647 if (LABEL_P (LABEL_REF_LABEL (x)))
2648 LABEL_NUSES (LABEL_REF_LABEL (x))++;
2650 return;
2653 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2655 if (fmt[i] == 'e')
2656 add_label_notes (XEXP (x, i), insn);
2657 else if (fmt[i] == 'E')
2658 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2659 add_label_notes (XVECEXP (x, i, j), insn);
2663 /* Code Hoisting variables and subroutines. */
2665 /* Very busy expressions. */
2666 static sbitmap *hoist_vbein;
2667 static sbitmap *hoist_vbeout;
2669 /* ??? We could compute post dominators and run this algorithm in
2670 reverse to perform tail merging, doing so would probably be
2671 more effective than the tail merging code in jump.c.
2673 It's unclear if tail merging could be run in parallel with
2674 code hoisting. It would be nice. */
2676 /* Allocate vars used for code hoisting analysis. */
2678 static void
2679 alloc_code_hoist_mem (int n_blocks, int n_exprs)
2681 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2682 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2683 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2685 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2686 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
2689 /* Free vars used for code hoisting analysis. */
2691 static void
2692 free_code_hoist_mem (void)
2694 sbitmap_vector_free (antloc);
2695 sbitmap_vector_free (transp);
2696 sbitmap_vector_free (comp);
2698 sbitmap_vector_free (hoist_vbein);
2699 sbitmap_vector_free (hoist_vbeout);
2701 free_dominance_info (CDI_DOMINATORS);
2704 /* Compute the very busy expressions at entry/exit from each block.
2706 An expression is very busy if all paths from a given point
2707 compute the expression. */
2709 static void
2710 compute_code_hoist_vbeinout (void)
2712 int changed, passes;
2713 basic_block bb;
2715 bitmap_vector_clear (hoist_vbeout, last_basic_block_for_fn (cfun));
2716 bitmap_vector_clear (hoist_vbein, last_basic_block_for_fn (cfun));
2718 passes = 0;
2719 changed = 1;
2721 while (changed)
2723 changed = 0;
2725 /* We scan the blocks in the reverse order to speed up
2726 the convergence. */
2727 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2729 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
2731 bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2732 hoist_vbein, bb);
2734 /* Include expressions in VBEout that are calculated
2735 in BB and available at its end. */
2736 bitmap_ior (hoist_vbeout[bb->index],
2737 hoist_vbeout[bb->index], comp[bb->index]);
2740 changed |= bitmap_or_and (hoist_vbein[bb->index],
2741 antloc[bb->index],
2742 hoist_vbeout[bb->index],
2743 transp[bb->index]);
2746 passes++;
2749 if (dump_file)
2751 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2753 FOR_EACH_BB_FN (bb, cfun)
2755 fprintf (dump_file, "vbein (%d): ", bb->index);
2756 dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
2757 fprintf (dump_file, "vbeout(%d): ", bb->index);
2758 dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
2763 /* Top level routine to do the dataflow analysis needed by code hoisting. */
2765 static void
2766 compute_code_hoist_data (void)
2768 compute_local_properties (transp, comp, antloc, &expr_hash_table);
2769 prune_expressions (false);
2770 compute_code_hoist_vbeinout ();
2771 calculate_dominance_info (CDI_DOMINATORS);
2772 if (dump_file)
2773 fprintf (dump_file, "\n");
2776 /* Update register pressure for BB when hoisting an expression from
2777 instruction FROM, if live ranges of inputs are shrunk. Also
2778 maintain live_in information if live range of register referred
2779 in FROM is shrunk.
2781 Return 0 if register pressure doesn't change, otherwise return
2782 the number by which register pressure is decreased.
2784 NOTE: Register pressure won't be increased in this function. */
2786 static int
2787 update_bb_reg_pressure (basic_block bb, rtx_insn *from)
2789 rtx dreg;
2790 rtx_insn *insn;
2791 basic_block succ_bb;
2792 df_ref use, op_ref;
2793 edge succ;
2794 edge_iterator ei;
2795 int decreased_pressure = 0;
2796 int nregs;
2797 enum reg_class pressure_class;
2799 FOR_EACH_INSN_USE (use, from)
2801 dreg = DF_REF_REAL_REG (use);
2802 /* The live range of register is shrunk only if it isn't:
2803 1. referred on any path from the end of this block to EXIT, or
2804 2. referred by insns other than FROM in this block. */
2805 FOR_EACH_EDGE (succ, ei, bb->succs)
2807 succ_bb = succ->dest;
2808 if (succ_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2809 continue;
2811 if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
2812 break;
2814 if (succ != NULL)
2815 continue;
2817 op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
2818 for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
2820 if (!DF_REF_INSN_INFO (op_ref))
2821 continue;
2823 insn = DF_REF_INSN (op_ref);
2824 if (BLOCK_FOR_INSN (insn) == bb
2825 && NONDEBUG_INSN_P (insn) && insn != from)
2826 break;
2829 pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
2830 /* Decrease register pressure and update live_in information for
2831 this block. */
2832 if (!op_ref && pressure_class != NO_REGS)
2834 decreased_pressure += nregs;
2835 BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
2836 bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
2839 return decreased_pressure;
2842 /* Determine if the expression EXPR should be hoisted to EXPR_BB up in
2843 flow graph, if it can reach BB unimpared. Stop the search if the
2844 expression would need to be moved more than DISTANCE instructions.
2846 DISTANCE is the number of instructions through which EXPR can be
2847 hoisted up in flow graph.
2849 BB_SIZE points to an array which contains the number of instructions
2850 for each basic block.
2852 PRESSURE_CLASS and NREGS are register class and number of hard registers
2853 for storing EXPR.
2855 HOISTED_BBS points to a bitmap indicating basic blocks through which
2856 EXPR is hoisted.
2858 FROM is the instruction from which EXPR is hoisted.
2860 It's unclear exactly what Muchnick meant by "unimpared". It seems
2861 to me that the expression must either be computed or transparent in
2862 *every* block in the path(s) from EXPR_BB to BB. Any other definition
2863 would allow the expression to be hoisted out of loops, even if
2864 the expression wasn't a loop invariant.
2866 Contrast this to reachability for PRE where an expression is
2867 considered reachable if *any* path reaches instead of *all*
2868 paths. */
2870 static int
2871 should_hoist_expr_to_dom (basic_block expr_bb, struct gcse_expr *expr,
2872 basic_block bb, sbitmap visited, int distance,
2873 int *bb_size, enum reg_class pressure_class,
2874 int *nregs, bitmap hoisted_bbs, rtx_insn *from)
2876 unsigned int i;
2877 edge pred;
2878 edge_iterator ei;
2879 sbitmap_iterator sbi;
2880 int visited_allocated_locally = 0;
2881 int decreased_pressure = 0;
2883 if (flag_ira_hoist_pressure)
2885 /* Record old information of basic block BB when it is visited
2886 at the first time. */
2887 if (!bitmap_bit_p (hoisted_bbs, bb->index))
2889 struct bb_data *data = BB_DATA (bb);
2890 bitmap_copy (data->backup, data->live_in);
2891 data->old_pressure = data->max_reg_pressure[pressure_class];
2893 decreased_pressure = update_bb_reg_pressure (bb, from);
2895 /* Terminate the search if distance, for which EXPR is allowed to move,
2896 is exhausted. */
2897 if (distance > 0)
2899 if (flag_ira_hoist_pressure)
2901 /* Prefer to hoist EXPR if register pressure is decreased. */
2902 if (decreased_pressure > *nregs)
2903 distance += bb_size[bb->index];
2904 /* Let EXPR be hoisted through basic block at no cost if one
2905 of following conditions is satisfied:
2907 1. The basic block has low register pressure.
2908 2. Register pressure won't be increases after hoisting EXPR.
2910 Constant expressions is handled conservatively, because
2911 hoisting constant expression aggressively results in worse
2912 code. This decision is made by the observation of CSiBE
2913 on ARM target, while it has no obvious effect on other
2914 targets like x86, x86_64, mips and powerpc. */
2915 else if (CONST_INT_P (expr->expr)
2916 || (BB_DATA (bb)->max_reg_pressure[pressure_class]
2917 >= ira_class_hard_regs_num[pressure_class]
2918 && decreased_pressure < *nregs))
2919 distance -= bb_size[bb->index];
2921 else
2922 distance -= bb_size[bb->index];
2924 if (distance <= 0)
2925 return 0;
2927 else
2928 gcc_assert (distance == 0);
2930 if (visited == NULL)
2932 visited_allocated_locally = 1;
2933 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
2934 bitmap_clear (visited);
2937 FOR_EACH_EDGE (pred, ei, bb->preds)
2939 basic_block pred_bb = pred->src;
2941 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2942 break;
2943 else if (pred_bb == expr_bb)
2944 continue;
2945 else if (bitmap_bit_p (visited, pred_bb->index))
2946 continue;
2947 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
2948 break;
2949 /* Not killed. */
2950 else
2952 bitmap_set_bit (visited, pred_bb->index);
2953 if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
2954 visited, distance, bb_size,
2955 pressure_class, nregs,
2956 hoisted_bbs, from))
2957 break;
2960 if (visited_allocated_locally)
2962 /* If EXPR can be hoisted to expr_bb, record basic blocks through
2963 which EXPR is hoisted in hoisted_bbs. */
2964 if (flag_ira_hoist_pressure && !pred)
2966 /* Record the basic block from which EXPR is hoisted. */
2967 bitmap_set_bit (visited, bb->index);
2968 EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
2969 bitmap_set_bit (hoisted_bbs, i);
2971 sbitmap_free (visited);
2974 return (pred == NULL);
2977 /* Find occurrence in BB. */
2979 static struct gcse_occr *
2980 find_occr_in_bb (struct gcse_occr *occr, basic_block bb)
2982 /* Find the right occurrence of this expression. */
2983 while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
2984 occr = occr->next;
2986 return occr;
2989 /* Actually perform code hoisting.
2991 The code hoisting pass can hoist multiple computations of the same
2992 expression along dominated path to a dominating basic block, like
2993 from b2/b3 to b1 as depicted below:
2995 b1 ------
2996 /\ |
2997 / \ |
2998 bx by distance
2999 / \ |
3000 / \ |
3001 b2 b3 ------
3003 Unfortunately code hoisting generally extends the live range of an
3004 output pseudo register, which increases register pressure and hurts
3005 register allocation. To address this issue, an attribute MAX_DISTANCE
3006 is computed and attached to each expression. The attribute is computed
3007 from rtx cost of the corresponding expression and it's used to control
3008 how long the expression can be hoisted up in flow graph. As the
3009 expression is hoisted up in flow graph, GCC decreases its DISTANCE
3010 and stops the hoist if DISTANCE reaches 0. Code hoisting can decrease
3011 register pressure if live ranges of inputs are shrunk.
3013 Option "-fira-hoist-pressure" implements register pressure directed
3014 hoist based on upper method. The rationale is:
3015 1. Calculate register pressure for each basic block by reusing IRA
3016 facility.
3017 2. When expression is hoisted through one basic block, GCC checks
3018 the change of live ranges for inputs/output. The basic block's
3019 register pressure will be increased because of extended live
3020 range of output. However, register pressure will be decreased
3021 if the live ranges of inputs are shrunk.
3022 3. After knowing how hoisting affects register pressure, GCC prefers
3023 to hoist the expression if it can decrease register pressure, by
3024 increasing DISTANCE of the corresponding expression.
3025 4. If hoisting the expression increases register pressure, GCC checks
3026 register pressure of the basic block and decrease DISTANCE only if
3027 the register pressure is high. In other words, expression will be
3028 hoisted through at no cost if the basic block has low register
3029 pressure.
3030 5. Update register pressure information for basic blocks through
3031 which expression is hoisted. */
3033 static int
3034 hoist_code (void)
3036 basic_block bb, dominated;
3037 vec<basic_block> dom_tree_walk;
3038 unsigned int dom_tree_walk_index;
3039 vec<basic_block> domby;
3040 unsigned int i, j, k;
3041 struct gcse_expr **index_map;
3042 struct gcse_expr *expr;
3043 int *to_bb_head;
3044 int *bb_size;
3045 int changed = 0;
3046 struct bb_data *data;
3047 /* Basic blocks that have occurrences reachable from BB. */
3048 bitmap from_bbs;
3049 /* Basic blocks through which expr is hoisted. */
3050 bitmap hoisted_bbs = NULL;
3051 bitmap_iterator bi;
3053 /* Compute a mapping from expression number (`bitmap_index') to
3054 hash table entry. */
3056 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
3057 for (i = 0; i < expr_hash_table.size; i++)
3058 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
3059 index_map[expr->bitmap_index] = expr;
3061 /* Calculate sizes of basic blocks and note how far
3062 each instruction is from the start of its block. We then use this
3063 data to restrict distance an expression can travel. */
3065 to_bb_head = XCNEWVEC (int, get_max_uid ());
3066 bb_size = XCNEWVEC (int, last_basic_block_for_fn (cfun));
3068 FOR_EACH_BB_FN (bb, cfun)
3070 rtx_insn *insn;
3071 int to_head;
3073 to_head = 0;
3074 FOR_BB_INSNS (bb, insn)
3076 /* Don't count debug instructions to avoid them affecting
3077 decision choices. */
3078 if (NONDEBUG_INSN_P (insn))
3079 to_bb_head[INSN_UID (insn)] = to_head++;
3082 bb_size[bb->index] = to_head;
3085 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) == 1
3086 && (EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0)->dest
3087 == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb));
3089 from_bbs = BITMAP_ALLOC (NULL);
3090 if (flag_ira_hoist_pressure)
3091 hoisted_bbs = BITMAP_ALLOC (NULL);
3093 dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
3094 ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb);
3096 /* Walk over each basic block looking for potentially hoistable
3097 expressions, nothing gets hoisted from the entry block. */
3098 FOR_EACH_VEC_ELT (dom_tree_walk, dom_tree_walk_index, bb)
3100 domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
3102 if (domby.length () == 0)
3103 continue;
3105 /* Examine each expression that is very busy at the exit of this
3106 block. These are the potentially hoistable expressions. */
3107 for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
3109 if (bitmap_bit_p (hoist_vbeout[bb->index], i))
3111 int nregs = 0;
3112 enum reg_class pressure_class = NO_REGS;
3113 /* Current expression. */
3114 struct gcse_expr *expr = index_map[i];
3115 /* Number of occurrences of EXPR that can be hoisted to BB. */
3116 int hoistable = 0;
3117 /* Occurrences reachable from BB. */
3118 vec<occr_t> occrs_to_hoist = vNULL;
3119 /* We want to insert the expression into BB only once, so
3120 note when we've inserted it. */
3121 int insn_inserted_p;
3122 occr_t occr;
3124 /* If an expression is computed in BB and is available at end of
3125 BB, hoist all occurrences dominated by BB to BB. */
3126 if (bitmap_bit_p (comp[bb->index], i))
3128 occr = find_occr_in_bb (expr->antic_occr, bb);
3130 if (occr)
3132 /* An occurrence might've been already deleted
3133 while processing a dominator of BB. */
3134 if (!occr->deleted_p)
3136 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3137 hoistable++;
3140 else
3141 hoistable++;
3144 /* We've found a potentially hoistable expression, now
3145 we look at every block BB dominates to see if it
3146 computes the expression. */
3147 FOR_EACH_VEC_ELT (domby, j, dominated)
3149 int max_distance;
3151 /* Ignore self dominance. */
3152 if (bb == dominated)
3153 continue;
3154 /* We've found a dominated block, now see if it computes
3155 the busy expression and whether or not moving that
3156 expression to the "beginning" of that block is safe. */
3157 if (!bitmap_bit_p (antloc[dominated->index], i))
3158 continue;
3160 occr = find_occr_in_bb (expr->antic_occr, dominated);
3161 gcc_assert (occr);
3163 /* An occurrence might've been already deleted
3164 while processing a dominator of BB. */
3165 if (occr->deleted_p)
3166 continue;
3167 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3169 max_distance = expr->max_distance;
3170 if (max_distance > 0)
3171 /* Adjust MAX_DISTANCE to account for the fact that
3172 OCCR won't have to travel all of DOMINATED, but
3173 only part of it. */
3174 max_distance += (bb_size[dominated->index]
3175 - to_bb_head[INSN_UID (occr->insn)]);
3177 pressure_class = get_pressure_class_and_nregs (occr->insn,
3178 &nregs);
3180 /* Note if the expression should be hoisted from the dominated
3181 block to BB if it can reach DOMINATED unimpared.
3183 Keep track of how many times this expression is hoistable
3184 from a dominated block into BB. */
3185 if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3186 max_distance, bb_size,
3187 pressure_class, &nregs,
3188 hoisted_bbs, occr->insn))
3190 hoistable++;
3191 occrs_to_hoist.safe_push (occr);
3192 bitmap_set_bit (from_bbs, dominated->index);
3196 /* If we found more than one hoistable occurrence of this
3197 expression, then note it in the vector of expressions to
3198 hoist. It makes no sense to hoist things which are computed
3199 in only one BB, and doing so tends to pessimize register
3200 allocation. One could increase this value to try harder
3201 to avoid any possible code expansion due to register
3202 allocation issues; however experiments have shown that
3203 the vast majority of hoistable expressions are only movable
3204 from two successors, so raising this threshold is likely
3205 to nullify any benefit we get from code hoisting. */
3206 if (hoistable > 1 && dbg_cnt (hoist_insn))
3208 /* If (hoistable != vec::length), then there is
3209 an occurrence of EXPR in BB itself. Don't waste
3210 time looking for LCA in this case. */
3211 if ((unsigned) hoistable == occrs_to_hoist.length ())
3213 basic_block lca;
3215 lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3216 from_bbs);
3217 if (lca != bb)
3218 /* Punt, it's better to hoist these occurrences to
3219 LCA. */
3220 occrs_to_hoist.release ();
3223 else
3224 /* Punt, no point hoisting a single occurrence. */
3225 occrs_to_hoist.release ();
3227 if (flag_ira_hoist_pressure
3228 && !occrs_to_hoist.is_empty ())
3230 /* Increase register pressure of basic blocks to which
3231 expr is hoisted because of extended live range of
3232 output. */
3233 data = BB_DATA (bb);
3234 data->max_reg_pressure[pressure_class] += nregs;
3235 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3237 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3238 data->max_reg_pressure[pressure_class] += nregs;
3241 else if (flag_ira_hoist_pressure)
3243 /* Restore register pressure and live_in info for basic
3244 blocks recorded in hoisted_bbs when expr will not be
3245 hoisted. */
3246 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3248 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3249 bitmap_copy (data->live_in, data->backup);
3250 data->max_reg_pressure[pressure_class]
3251 = data->old_pressure;
3255 if (flag_ira_hoist_pressure)
3256 bitmap_clear (hoisted_bbs);
3258 insn_inserted_p = 0;
3260 /* Walk through occurrences of I'th expressions we want
3261 to hoist to BB and make the transformations. */
3262 FOR_EACH_VEC_ELT (occrs_to_hoist, j, occr)
3264 rtx_insn *insn;
3265 const_rtx set;
3267 gcc_assert (!occr->deleted_p);
3269 insn = occr->insn;
3270 set = single_set_gcse (insn);
3272 /* Create a pseudo-reg to store the result of reaching
3273 expressions into. Get the mode for the new pseudo
3274 from the mode of the original destination pseudo.
3276 It is important to use new pseudos whenever we
3277 emit a set. This will allow reload to use
3278 rematerialization for such registers. */
3279 if (!insn_inserted_p)
3280 expr->reaching_reg
3281 = gen_reg_rtx_and_attrs (SET_DEST (set));
3283 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
3284 insn);
3285 delete_insn (insn);
3286 occr->deleted_p = 1;
3287 changed = 1;
3288 gcse_subst_count++;
3290 if (!insn_inserted_p)
3292 insert_insn_end_basic_block (expr, bb);
3293 insn_inserted_p = 1;
3297 occrs_to_hoist.release ();
3298 bitmap_clear (from_bbs);
3301 domby.release ();
3304 dom_tree_walk.release ();
3305 BITMAP_FREE (from_bbs);
3306 if (flag_ira_hoist_pressure)
3307 BITMAP_FREE (hoisted_bbs);
3309 free (bb_size);
3310 free (to_bb_head);
3311 free (index_map);
3313 return changed;
3316 /* Return pressure class and number of needed hard registers (through
3317 *NREGS) of register REGNO. */
3318 static enum reg_class
3319 get_regno_pressure_class (int regno, int *nregs)
3321 if (regno >= FIRST_PSEUDO_REGISTER)
3323 enum reg_class pressure_class;
3325 pressure_class = reg_allocno_class (regno);
3326 pressure_class = ira_pressure_class_translate[pressure_class];
3327 *nregs
3328 = ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3329 return pressure_class;
3331 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3332 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3334 *nregs = 1;
3335 return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3337 else
3339 *nregs = 0;
3340 return NO_REGS;
3344 /* Return pressure class and number of hard registers (through *NREGS)
3345 for destination of INSN. */
3346 static enum reg_class
3347 get_pressure_class_and_nregs (rtx_insn *insn, int *nregs)
3349 rtx reg;
3350 enum reg_class pressure_class;
3351 const_rtx set = single_set_gcse (insn);
3353 reg = SET_DEST (set);
3354 if (GET_CODE (reg) == SUBREG)
3355 reg = SUBREG_REG (reg);
3356 if (MEM_P (reg))
3358 *nregs = 0;
3359 pressure_class = NO_REGS;
3361 else
3363 gcc_assert (REG_P (reg));
3364 pressure_class = reg_allocno_class (REGNO (reg));
3365 pressure_class = ira_pressure_class_translate[pressure_class];
3366 *nregs
3367 = ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3369 return pressure_class;
3372 /* Increase (if INCR_P) or decrease current register pressure for
3373 register REGNO. */
3374 static void
3375 change_pressure (int regno, bool incr_p)
3377 int nregs;
3378 enum reg_class pressure_class;
3380 pressure_class = get_regno_pressure_class (regno, &nregs);
3381 if (! incr_p)
3382 curr_reg_pressure[pressure_class] -= nregs;
3383 else
3385 curr_reg_pressure[pressure_class] += nregs;
3386 if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3387 < curr_reg_pressure[pressure_class])
3388 BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3389 = curr_reg_pressure[pressure_class];
3393 /* Calculate register pressure for each basic block by walking insns
3394 from last to first. */
3395 static void
3396 calculate_bb_reg_pressure (void)
3398 int i;
3399 unsigned int j;
3400 rtx_insn *insn;
3401 basic_block bb;
3402 bitmap curr_regs_live;
3403 bitmap_iterator bi;
3406 ira_setup_eliminable_regset ();
3407 curr_regs_live = BITMAP_ALLOC (&reg_obstack);
3408 FOR_EACH_BB_FN (bb, cfun)
3410 curr_bb = bb;
3411 BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3412 BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3413 bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3414 bitmap_copy (curr_regs_live, df_get_live_out (bb));
3415 for (i = 0; i < ira_pressure_classes_num; i++)
3416 curr_reg_pressure[ira_pressure_classes[i]] = 0;
3417 EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3418 change_pressure (j, true);
3420 FOR_BB_INSNS_REVERSE (bb, insn)
3422 rtx dreg;
3423 int regno;
3424 df_ref def, use;
3426 if (! NONDEBUG_INSN_P (insn))
3427 continue;
3429 FOR_EACH_INSN_DEF (def, insn)
3431 dreg = DF_REF_REAL_REG (def);
3432 gcc_assert (REG_P (dreg));
3433 regno = REGNO (dreg);
3434 if (!(DF_REF_FLAGS (def)
3435 & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3437 if (bitmap_clear_bit (curr_regs_live, regno))
3438 change_pressure (regno, false);
3442 FOR_EACH_INSN_USE (use, insn)
3444 dreg = DF_REF_REAL_REG (use);
3445 gcc_assert (REG_P (dreg));
3446 regno = REGNO (dreg);
3447 if (bitmap_set_bit (curr_regs_live, regno))
3448 change_pressure (regno, true);
3452 BITMAP_FREE (curr_regs_live);
3454 if (dump_file == NULL)
3455 return;
3457 fprintf (dump_file, "\nRegister Pressure: \n");
3458 FOR_EACH_BB_FN (bb, cfun)
3460 fprintf (dump_file, " Basic block %d: \n", bb->index);
3461 for (i = 0; (int) i < ira_pressure_classes_num; i++)
3463 enum reg_class pressure_class;
3465 pressure_class = ira_pressure_classes[i];
3466 if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3467 continue;
3469 fprintf (dump_file, " %s=%d\n", reg_class_names[pressure_class],
3470 BB_DATA (bb)->max_reg_pressure[pressure_class]);
3473 fprintf (dump_file, "\n");
3476 /* Top level routine to perform one code hoisting (aka unification) pass
3478 Return nonzero if a change was made. */
3480 static int
3481 one_code_hoisting_pass (void)
3483 int changed = 0;
3485 gcse_subst_count = 0;
3486 gcse_create_count = 0;
3488 /* Return if there's nothing to do, or it is too expensive. */
3489 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
3490 || gcse_or_cprop_is_too_expensive (_("GCSE disabled")))
3491 return 0;
3493 doing_code_hoisting_p = true;
3495 /* Calculate register pressure for each basic block. */
3496 if (flag_ira_hoist_pressure)
3498 regstat_init_n_sets_and_refs ();
3499 ira_set_pseudo_classes (false, dump_file);
3500 alloc_aux_for_blocks (sizeof (struct bb_data));
3501 calculate_bb_reg_pressure ();
3502 regstat_free_n_sets_and_refs ();
3505 /* We need alias. */
3506 init_alias_analysis ();
3508 bytes_used = 0;
3509 gcc_obstack_init (&gcse_obstack);
3510 alloc_gcse_mem ();
3512 alloc_hash_table (&expr_hash_table);
3513 compute_hash_table (&expr_hash_table);
3514 if (dump_file)
3515 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
3517 if (expr_hash_table.n_elems > 0)
3519 alloc_code_hoist_mem (last_basic_block_for_fn (cfun),
3520 expr_hash_table.n_elems);
3521 compute_code_hoist_data ();
3522 changed = hoist_code ();
3523 free_code_hoist_mem ();
3526 if (flag_ira_hoist_pressure)
3528 free_aux_for_blocks ();
3529 free_reg_info ();
3531 free_hash_table (&expr_hash_table);
3532 free_gcse_mem ();
3533 obstack_free (&gcse_obstack, NULL);
3535 /* We are finished with alias. */
3536 end_alias_analysis ();
3538 if (dump_file)
3540 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
3541 current_function_name (), n_basic_blocks_for_fn (cfun),
3542 bytes_used);
3543 fprintf (dump_file, "%d substs, %d insns created\n",
3544 gcse_subst_count, gcse_create_count);
3547 doing_code_hoisting_p = false;
3549 return changed;
3552 /* Here we provide the things required to do store motion towards the exit.
3553 In order for this to be effective, gcse also needed to be taught how to
3554 move a load when it is killed only by a store to itself.
3556 int i;
3557 float a[10];
3559 void foo(float scale)
3561 for (i=0; i<10; i++)
3562 a[i] *= scale;
3565 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
3566 the load out since its live around the loop, and stored at the bottom
3567 of the loop.
3569 The 'Load Motion' referred to and implemented in this file is
3570 an enhancement to gcse which when using edge based LCM, recognizes
3571 this situation and allows gcse to move the load out of the loop.
3573 Once gcse has hoisted the load, store motion can then push this
3574 load towards the exit, and we end up with no loads or stores of 'i'
3575 in the loop. */
3577 /* This will search the ldst list for a matching expression. If it
3578 doesn't find one, we create one and initialize it. */
3580 static struct ls_expr *
3581 ldst_entry (rtx x)
3583 int do_not_record_p = 0;
3584 struct ls_expr * ptr;
3585 unsigned int hash;
3586 ls_expr **slot;
3587 struct ls_expr e;
3589 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3590 NULL, /*have_reg_qty=*/false);
3592 e.pattern = x;
3593 slot = pre_ldst_table->find_slot_with_hash (&e, hash, INSERT);
3594 if (*slot)
3595 return *slot;
3597 ptr = XNEW (struct ls_expr);
3599 ptr->next = pre_ldst_mems;
3600 ptr->expr = NULL;
3601 ptr->pattern = x;
3602 ptr->pattern_regs = NULL_RTX;
3603 ptr->stores.create (0);
3604 ptr->reaching_reg = NULL_RTX;
3605 ptr->invalid = 0;
3606 ptr->index = 0;
3607 ptr->hash_index = hash;
3608 pre_ldst_mems = ptr;
3609 *slot = ptr;
3611 return ptr;
3614 /* Free up an individual ldst entry. */
3616 static void
3617 free_ldst_entry (struct ls_expr * ptr)
3619 ptr->stores.release ();
3621 free (ptr);
3624 /* Free up all memory associated with the ldst list. */
3626 static void
3627 free_ld_motion_mems (void)
3629 delete pre_ldst_table;
3630 pre_ldst_table = NULL;
3632 while (pre_ldst_mems)
3634 struct ls_expr * tmp = pre_ldst_mems;
3636 pre_ldst_mems = pre_ldst_mems->next;
3638 free_ldst_entry (tmp);
3641 pre_ldst_mems = NULL;
3644 /* Dump debugging info about the ldst list. */
3646 static void
3647 print_ldst_list (FILE * file)
3649 struct ls_expr * ptr;
3651 fprintf (file, "LDST list: \n");
3653 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
3655 fprintf (file, " Pattern (%3d): ", ptr->index);
3657 print_rtl (file, ptr->pattern);
3659 fprintf (file, "\n Stores : ");
3660 print_rtx_insn_vec (file, ptr->stores);
3662 fprintf (file, "\n\n");
3665 fprintf (file, "\n");
3668 /* Returns 1 if X is in the list of ldst only expressions. */
3670 static struct ls_expr *
3671 find_rtx_in_ldst (rtx x)
3673 struct ls_expr e;
3674 ls_expr **slot;
3675 if (!pre_ldst_table)
3676 return NULL;
3677 e.pattern = x;
3678 slot = pre_ldst_table->find_slot (&e, NO_INSERT);
3679 if (!slot || (*slot)->invalid)
3680 return NULL;
3681 return *slot;
3684 /* Load Motion for loads which only kill themselves. */
3686 /* Return true if x, a MEM, is a simple access with no side effects.
3687 These are the types of loads we consider for the ld_motion list,
3688 otherwise we let the usual aliasing take care of it. */
3690 static int
3691 simple_mem (const_rtx x)
3693 if (MEM_VOLATILE_P (x))
3694 return 0;
3696 if (GET_MODE (x) == BLKmode)
3697 return 0;
3699 /* If we are handling exceptions, we must be careful with memory references
3700 that may trap. If we are not, the behavior is undefined, so we may just
3701 continue. */
3702 if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
3703 return 0;
3705 if (side_effects_p (x))
3706 return 0;
3708 /* Do not consider function arguments passed on stack. */
3709 if (reg_mentioned_p (stack_pointer_rtx, x))
3710 return 0;
3712 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3713 return 0;
3715 return 1;
3718 /* Make sure there isn't a buried reference in this pattern anywhere.
3719 If there is, invalidate the entry for it since we're not capable
3720 of fixing it up just yet.. We have to be sure we know about ALL
3721 loads since the aliasing code will allow all entries in the
3722 ld_motion list to not-alias itself. If we miss a load, we will get
3723 the wrong value since gcse might common it and we won't know to
3724 fix it up. */
3726 static void
3727 invalidate_any_buried_refs (rtx x)
3729 const char * fmt;
3730 int i, j;
3731 struct ls_expr * ptr;
3733 /* Invalidate it in the list. */
3734 if (MEM_P (x) && simple_mem (x))
3736 ptr = ldst_entry (x);
3737 ptr->invalid = 1;
3740 /* Recursively process the insn. */
3741 fmt = GET_RTX_FORMAT (GET_CODE (x));
3743 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3745 if (fmt[i] == 'e')
3746 invalidate_any_buried_refs (XEXP (x, i));
3747 else if (fmt[i] == 'E')
3748 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3749 invalidate_any_buried_refs (XVECEXP (x, i, j));
3753 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
3754 being defined as MEM loads and stores to symbols, with no side effects
3755 and no registers in the expression. For a MEM destination, we also
3756 check that the insn is still valid if we replace the destination with a
3757 REG, as is done in update_ld_motion_stores. If there are any uses/defs
3758 which don't match this criteria, they are invalidated and trimmed out
3759 later. */
3761 static void
3762 compute_ld_motion_mems (void)
3764 struct ls_expr * ptr;
3765 basic_block bb;
3766 rtx_insn *insn;
3768 pre_ldst_mems = NULL;
3769 pre_ldst_table = new hash_table<pre_ldst_expr_hasher> (13);
3771 FOR_EACH_BB_FN (bb, cfun)
3773 FOR_BB_INSNS (bb, insn)
3775 if (NONDEBUG_INSN_P (insn))
3777 if (GET_CODE (PATTERN (insn)) == SET)
3779 rtx src = SET_SRC (PATTERN (insn));
3780 rtx dest = SET_DEST (PATTERN (insn));
3782 /* Check for a simple load. */
3783 if (MEM_P (src) && simple_mem (src))
3785 ptr = ldst_entry (src);
3786 if (!REG_P (dest))
3787 ptr->invalid = 1;
3789 else
3791 /* Make sure there isn't a buried load somewhere. */
3792 invalidate_any_buried_refs (src);
3795 /* Check for a simple load through a REG_EQUAL note. */
3796 rtx note = find_reg_equal_equiv_note (insn), src_eq;
3797 if (note
3798 && REG_NOTE_KIND (note) == REG_EQUAL
3799 && (src_eq = XEXP (note, 0))
3800 && !(MEM_P (src_eq) && simple_mem (src_eq)))
3801 invalidate_any_buried_refs (src_eq);
3803 /* Check for stores. Don't worry about aliased ones, they
3804 will block any movement we might do later. We only care
3805 about this exact pattern since those are the only
3806 circumstance that we will ignore the aliasing info. */
3807 if (MEM_P (dest) && simple_mem (dest))
3809 ptr = ldst_entry (dest);
3810 machine_mode src_mode = GET_MODE (src);
3811 if (! MEM_P (src)
3812 && GET_CODE (src) != ASM_OPERANDS
3813 /* Check for REG manually since want_to_gcse_p
3814 returns 0 for all REGs. */
3815 && can_assign_to_reg_without_clobbers_p (src,
3816 src_mode))
3817 ptr->stores.safe_push (insn);
3818 else
3819 ptr->invalid = 1;
3822 else
3824 /* Invalidate all MEMs in the pattern and... */
3825 invalidate_any_buried_refs (PATTERN (insn));
3827 /* ...in REG_EQUAL notes for PARALLELs with single SET. */
3828 rtx note = find_reg_equal_equiv_note (insn), src_eq;
3829 if (note
3830 && REG_NOTE_KIND (note) == REG_EQUAL
3831 && (src_eq = XEXP (note, 0)))
3832 invalidate_any_buried_refs (src_eq);
3839 /* Remove any references that have been either invalidated or are not in the
3840 expression list for pre gcse. */
3842 static void
3843 trim_ld_motion_mems (void)
3845 struct ls_expr * * last = & pre_ldst_mems;
3846 struct ls_expr * ptr = pre_ldst_mems;
3848 while (ptr != NULL)
3850 struct gcse_expr * expr;
3852 /* Delete if entry has been made invalid. */
3853 if (! ptr->invalid)
3855 /* Delete if we cannot find this mem in the expression list. */
3856 unsigned int hash = ptr->hash_index % expr_hash_table.size;
3858 for (expr = expr_hash_table.table[hash];
3859 expr != NULL;
3860 expr = expr->next_same_hash)
3861 if (expr_equiv_p (expr->expr, ptr->pattern))
3862 break;
3864 else
3865 expr = (struct gcse_expr *) 0;
3867 if (expr)
3869 /* Set the expression field if we are keeping it. */
3870 ptr->expr = expr;
3871 last = & ptr->next;
3872 ptr = ptr->next;
3874 else
3876 *last = ptr->next;
3877 pre_ldst_table->remove_elt_with_hash (ptr, ptr->hash_index);
3878 free_ldst_entry (ptr);
3879 ptr = * last;
3883 /* Show the world what we've found. */
3884 if (dump_file && pre_ldst_mems != NULL)
3885 print_ldst_list (dump_file);
3888 /* This routine will take an expression which we are replacing with
3889 a reaching register, and update any stores that are needed if
3890 that expression is in the ld_motion list. Stores are updated by
3891 copying their SRC to the reaching register, and then storing
3892 the reaching register into the store location. These keeps the
3893 correct value in the reaching register for the loads. */
3895 static void
3896 update_ld_motion_stores (struct gcse_expr * expr)
3898 struct ls_expr * mem_ptr;
3900 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
3902 /* We can try to find just the REACHED stores, but is shouldn't
3903 matter to set the reaching reg everywhere... some might be
3904 dead and should be eliminated later. */
3906 /* We replace (set mem expr) with (set reg expr) (set mem reg)
3907 where reg is the reaching reg used in the load. We checked in
3908 compute_ld_motion_mems that we can replace (set mem expr) with
3909 (set reg expr) in that insn. */
3910 rtx_insn *insn;
3911 unsigned int i;
3912 FOR_EACH_VEC_ELT_REVERSE (mem_ptr->stores, i, insn)
3914 rtx pat = PATTERN (insn);
3915 rtx src = SET_SRC (pat);
3916 rtx reg = expr->reaching_reg;
3918 /* If we've already copied it, continue. */
3919 if (expr->reaching_reg == src)
3920 continue;
3922 if (dump_file)
3924 fprintf (dump_file, "PRE: store updated with reaching reg ");
3925 print_rtl (dump_file, reg);
3926 fprintf (dump_file, ":\n ");
3927 print_inline_rtx (dump_file, insn, 8);
3928 fprintf (dump_file, "\n");
3931 rtx_insn *copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
3932 emit_insn_before (copy, insn);
3933 SET_SRC (pat) = reg;
3934 df_insn_rescan (insn);
3936 /* un-recognize this pattern since it's probably different now. */
3937 INSN_CODE (insn) = -1;
3938 gcse_create_count++;
3943 /* Return true if the graph is too expensive to optimize. PASS is the
3944 optimization about to be performed. */
3946 bool
3947 gcse_or_cprop_is_too_expensive (const char *pass)
3949 unsigned int memory_request = (n_basic_blocks_for_fn (cfun)
3950 * SBITMAP_SET_SIZE (max_reg_num ())
3951 * sizeof (SBITMAP_ELT_TYPE));
3953 /* Trying to perform global optimizations on flow graphs which have
3954 a high connectivity will take a long time and is unlikely to be
3955 particularly useful.
3957 In normal circumstances a cfg should have about twice as many
3958 edges as blocks. But we do not want to punish small functions
3959 which have a couple switch statements. Rather than simply
3960 threshold the number of blocks, uses something with a more
3961 graceful degradation. */
3962 if (n_edges_for_fn (cfun) > 20000 + n_basic_blocks_for_fn (cfun) * 4)
3964 warning (OPT_Wdisabled_optimization,
3965 "%s: %d basic blocks and %d edges/basic block",
3966 pass, n_basic_blocks_for_fn (cfun),
3967 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun));
3969 return true;
3972 /* If allocating memory for the dataflow bitmaps would take up too much
3973 storage it's better just to disable the optimization. */
3974 if (memory_request > MAX_GCSE_MEMORY)
3976 warning (OPT_Wdisabled_optimization,
3977 "%s: %d basic blocks and %d registers; increase --param max-gcse-memory above %d",
3978 pass, n_basic_blocks_for_fn (cfun), max_reg_num (),
3979 memory_request);
3981 return true;
3984 return false;
3987 static unsigned int
3988 execute_rtl_pre (void)
3990 int changed;
3991 delete_unreachable_blocks ();
3992 df_analyze ();
3993 changed = one_pre_gcse_pass ();
3994 flag_rerun_cse_after_global_opts |= changed;
3995 if (changed)
3996 cleanup_cfg (0);
3997 return 0;
4000 static unsigned int
4001 execute_rtl_hoist (void)
4003 int changed;
4004 delete_unreachable_blocks ();
4005 df_analyze ();
4006 changed = one_code_hoisting_pass ();
4007 flag_rerun_cse_after_global_opts |= changed;
4008 if (changed)
4009 cleanup_cfg (0);
4010 return 0;
4013 namespace {
4015 const pass_data pass_data_rtl_pre =
4017 RTL_PASS, /* type */
4018 "rtl pre", /* name */
4019 OPTGROUP_NONE, /* optinfo_flags */
4020 TV_PRE, /* tv_id */
4021 PROP_cfglayout, /* properties_required */
4022 0, /* properties_provided */
4023 0, /* properties_destroyed */
4024 0, /* todo_flags_start */
4025 TODO_df_finish, /* todo_flags_finish */
4028 class pass_rtl_pre : public rtl_opt_pass
4030 public:
4031 pass_rtl_pre (gcc::context *ctxt)
4032 : rtl_opt_pass (pass_data_rtl_pre, ctxt)
4035 /* opt_pass methods: */
4036 virtual bool gate (function *);
4037 virtual unsigned int execute (function *) { return execute_rtl_pre (); }
4039 }; // class pass_rtl_pre
4041 /* We do not construct an accurate cfg in functions which call
4042 setjmp, so none of these passes runs if the function calls
4043 setjmp.
4044 FIXME: Should just handle setjmp via REG_SETJMP notes. */
4046 bool
4047 pass_rtl_pre::gate (function *fun)
4049 return optimize > 0 && flag_gcse
4050 && !fun->calls_setjmp
4051 && optimize_function_for_speed_p (fun)
4052 && dbg_cnt (pre);
4055 } // anon namespace
4057 rtl_opt_pass *
4058 make_pass_rtl_pre (gcc::context *ctxt)
4060 return new pass_rtl_pre (ctxt);
4063 namespace {
4065 const pass_data pass_data_rtl_hoist =
4067 RTL_PASS, /* type */
4068 "hoist", /* name */
4069 OPTGROUP_NONE, /* optinfo_flags */
4070 TV_HOIST, /* tv_id */
4071 PROP_cfglayout, /* properties_required */
4072 0, /* properties_provided */
4073 0, /* properties_destroyed */
4074 0, /* todo_flags_start */
4075 TODO_df_finish, /* todo_flags_finish */
4078 class pass_rtl_hoist : public rtl_opt_pass
4080 public:
4081 pass_rtl_hoist (gcc::context *ctxt)
4082 : rtl_opt_pass (pass_data_rtl_hoist, ctxt)
4085 /* opt_pass methods: */
4086 virtual bool gate (function *);
4087 virtual unsigned int execute (function *) { return execute_rtl_hoist (); }
4089 }; // class pass_rtl_hoist
4091 bool
4092 pass_rtl_hoist::gate (function *)
4094 return optimize > 0 && flag_gcse
4095 && !cfun->calls_setjmp
4096 /* It does not make sense to run code hoisting unless we are optimizing
4097 for code size -- it rarely makes programs faster, and can make then
4098 bigger if we did PRE (when optimizing for space, we don't run PRE). */
4099 && optimize_function_for_size_p (cfun)
4100 && dbg_cnt (hoist);
4103 } // anon namespace
4105 rtl_opt_pass *
4106 make_pass_rtl_hoist (gcc::context *ctxt)
4108 return new pass_rtl_hoist (ctxt);
4111 /* Reset all state within gcse.c so that we can rerun the compiler
4112 within the same process. For use by toplev::finalize. */
4114 void
4115 gcse_c_finalize (void)
4117 test_insn = NULL;
4120 #include "gt-gcse.h"