Fix "PR c++/92804 ICE trying to use concept as a nested-name-specifier"
[official-gcc.git] / libgo / go / time / time.go
blob10a132fa2389188ef792b0beb21b342da47fd95f
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 // Package time provides functionality for measuring and displaying time.
6 //
7 // The calendrical calculations always assume a Gregorian calendar, with
8 // no leap seconds.
9 //
10 // Monotonic Clocks
12 // Operating systems provide both a “wall clock,” which is subject to
13 // changes for clock synchronization, and a “monotonic clock,” which is
14 // not. The general rule is that the wall clock is for telling time and
15 // the monotonic clock is for measuring time. Rather than split the API,
16 // in this package the Time returned by time.Now contains both a wall
17 // clock reading and a monotonic clock reading; later time-telling
18 // operations use the wall clock reading, but later time-measuring
19 // operations, specifically comparisons and subtractions, use the
20 // monotonic clock reading.
22 // For example, this code always computes a positive elapsed time of
23 // approximately 20 milliseconds, even if the wall clock is changed during
24 // the operation being timed:
26 // start := time.Now()
27 // ... operation that takes 20 milliseconds ...
28 // t := time.Now()
29 // elapsed := t.Sub(start)
31 // Other idioms, such as time.Since(start), time.Until(deadline), and
32 // time.Now().Before(deadline), are similarly robust against wall clock
33 // resets.
35 // The rest of this section gives the precise details of how operations
36 // use monotonic clocks, but understanding those details is not required
37 // to use this package.
39 // The Time returned by time.Now contains a monotonic clock reading.
40 // If Time t has a monotonic clock reading, t.Add adds the same duration to
41 // both the wall clock and monotonic clock readings to compute the result.
42 // Because t.AddDate(y, m, d), t.Round(d), and t.Truncate(d) are wall time
43 // computations, they always strip any monotonic clock reading from their results.
44 // Because t.In, t.Local, and t.UTC are used for their effect on the interpretation
45 // of the wall time, they also strip any monotonic clock reading from their results.
46 // The canonical way to strip a monotonic clock reading is to use t = t.Round(0).
48 // If Times t and u both contain monotonic clock readings, the operations
49 // t.After(u), t.Before(u), t.Equal(u), and t.Sub(u) are carried out
50 // using the monotonic clock readings alone, ignoring the wall clock
51 // readings. If either t or u contains no monotonic clock reading, these
52 // operations fall back to using the wall clock readings.
54 // On some systems the monotonic clock will stop if the computer goes to sleep.
55 // On such a system, t.Sub(u) may not accurately reflect the actual
56 // time that passed between t and u.
58 // Because the monotonic clock reading has no meaning outside
59 // the current process, the serialized forms generated by t.GobEncode,
60 // t.MarshalBinary, t.MarshalJSON, and t.MarshalText omit the monotonic
61 // clock reading, and t.Format provides no format for it. Similarly, the
62 // constructors time.Date, time.Parse, time.ParseInLocation, and time.Unix,
63 // as well as the unmarshalers t.GobDecode, t.UnmarshalBinary.
64 // t.UnmarshalJSON, and t.UnmarshalText always create times with
65 // no monotonic clock reading.
67 // Note that the Go == operator compares not just the time instant but
68 // also the Location and the monotonic clock reading. See the
69 // documentation for the Time type for a discussion of equality
70 // testing for Time values.
72 // For debugging, the result of t.String does include the monotonic
73 // clock reading if present. If t != u because of different monotonic clock readings,
74 // that difference will be visible when printing t.String() and u.String().
76 package time
78 import (
79 "errors"
80 _ "unsafe" // for go:linkname
83 // A Time represents an instant in time with nanosecond precision.
85 // Programs using times should typically store and pass them as values,
86 // not pointers. That is, time variables and struct fields should be of
87 // type time.Time, not *time.Time.
89 // A Time value can be used by multiple goroutines simultaneously except
90 // that the methods GobDecode, UnmarshalBinary, UnmarshalJSON and
91 // UnmarshalText are not concurrency-safe.
93 // Time instants can be compared using the Before, After, and Equal methods.
94 // The Sub method subtracts two instants, producing a Duration.
95 // The Add method adds a Time and a Duration, producing a Time.
97 // The zero value of type Time is January 1, year 1, 00:00:00.000000000 UTC.
98 // As this time is unlikely to come up in practice, the IsZero method gives
99 // a simple way of detecting a time that has not been initialized explicitly.
101 // Each Time has associated with it a Location, consulted when computing the
102 // presentation form of the time, such as in the Format, Hour, and Year methods.
103 // The methods Local, UTC, and In return a Time with a specific location.
104 // Changing the location in this way changes only the presentation; it does not
105 // change the instant in time being denoted and therefore does not affect the
106 // computations described in earlier paragraphs.
108 // Representations of a Time value saved by the GobEncode, MarshalBinary,
109 // MarshalJSON, and MarshalText methods store the Time.Location's offset, but not
110 // the location name. They therefore lose information about Daylight Saving Time.
112 // In addition to the required “wall clock” reading, a Time may contain an optional
113 // reading of the current process's monotonic clock, to provide additional precision
114 // for comparison or subtraction.
115 // See the “Monotonic Clocks” section in the package documentation for details.
117 // Note that the Go == operator compares not just the time instant but also the
118 // Location and the monotonic clock reading. Therefore, Time values should not
119 // be used as map or database keys without first guaranteeing that the
120 // identical Location has been set for all values, which can be achieved
121 // through use of the UTC or Local method, and that the monotonic clock reading
122 // has been stripped by setting t = t.Round(0). In general, prefer t.Equal(u)
123 // to t == u, since t.Equal uses the most accurate comparison available and
124 // correctly handles the case when only one of its arguments has a monotonic
125 // clock reading.
127 type Time struct {
128 // wall and ext encode the wall time seconds, wall time nanoseconds,
129 // and optional monotonic clock reading in nanoseconds.
131 // From high to low bit position, wall encodes a 1-bit flag (hasMonotonic),
132 // a 33-bit seconds field, and a 30-bit wall time nanoseconds field.
133 // The nanoseconds field is in the range [0, 999999999].
134 // If the hasMonotonic bit is 0, then the 33-bit field must be zero
135 // and the full signed 64-bit wall seconds since Jan 1 year 1 is stored in ext.
136 // If the hasMonotonic bit is 1, then the 33-bit field holds a 33-bit
137 // unsigned wall seconds since Jan 1 year 1885, and ext holds a
138 // signed 64-bit monotonic clock reading, nanoseconds since process start.
139 wall uint64
140 ext int64
142 // loc specifies the Location that should be used to
143 // determine the minute, hour, month, day, and year
144 // that correspond to this Time.
145 // The nil location means UTC.
146 // All UTC times are represented with loc==nil, never loc==&utcLoc.
147 loc *Location
150 const (
151 hasMonotonic = 1 << 63
152 maxWall = wallToInternal + (1<<33 - 1) // year 2157
153 minWall = wallToInternal // year 1885
154 nsecMask = 1<<30 - 1
155 nsecShift = 30
158 // These helpers for manipulating the wall and monotonic clock readings
159 // take pointer receivers, even when they don't modify the time,
160 // to make them cheaper to call.
162 // nsec returns the time's nanoseconds.
163 func (t *Time) nsec() int32 {
164 return int32(t.wall & nsecMask)
167 // sec returns the time's seconds since Jan 1 year 1.
168 func (t *Time) sec() int64 {
169 if t.wall&hasMonotonic != 0 {
170 return wallToInternal + int64(t.wall<<1>>(nsecShift+1))
172 return t.ext
175 // unixSec returns the time's seconds since Jan 1 1970 (Unix time).
176 func (t *Time) unixSec() int64 { return t.sec() + internalToUnix }
178 // addSec adds d seconds to the time.
179 func (t *Time) addSec(d int64) {
180 if t.wall&hasMonotonic != 0 {
181 sec := int64(t.wall << 1 >> (nsecShift + 1))
182 dsec := sec + d
183 if 0 <= dsec && dsec <= 1<<33-1 {
184 t.wall = t.wall&nsecMask | uint64(dsec)<<nsecShift | hasMonotonic
185 return
187 // Wall second now out of range for packed field.
188 // Move to ext.
189 t.stripMono()
192 // TODO: Check for overflow.
193 t.ext += d
196 // setLoc sets the location associated with the time.
197 func (t *Time) setLoc(loc *Location) {
198 if loc == &utcLoc {
199 loc = nil
201 t.stripMono()
202 t.loc = loc
205 // stripMono strips the monotonic clock reading in t.
206 func (t *Time) stripMono() {
207 if t.wall&hasMonotonic != 0 {
208 t.ext = t.sec()
209 t.wall &= nsecMask
213 // setMono sets the monotonic clock reading in t.
214 // If t cannot hold a monotonic clock reading,
215 // because its wall time is too large,
216 // setMono is a no-op.
217 func (t *Time) setMono(m int64) {
218 if t.wall&hasMonotonic == 0 {
219 sec := t.ext
220 if sec < minWall || maxWall < sec {
221 return
223 t.wall |= hasMonotonic | uint64(sec-minWall)<<nsecShift
225 t.ext = m
228 // mono returns t's monotonic clock reading.
229 // It returns 0 for a missing reading.
230 // This function is used only for testing,
231 // so it's OK that technically 0 is a valid
232 // monotonic clock reading as well.
233 func (t *Time) mono() int64 {
234 if t.wall&hasMonotonic == 0 {
235 return 0
237 return t.ext
240 // After reports whether the time instant t is after u.
241 func (t Time) After(u Time) bool {
242 if t.wall&u.wall&hasMonotonic != 0 {
243 return t.ext > u.ext
245 ts := t.sec()
246 us := u.sec()
247 return ts > us || ts == us && t.nsec() > u.nsec()
250 // Before reports whether the time instant t is before u.
251 func (t Time) Before(u Time) bool {
252 if t.wall&u.wall&hasMonotonic != 0 {
253 return t.ext < u.ext
255 return t.sec() < u.sec() || t.sec() == u.sec() && t.nsec() < u.nsec()
258 // Equal reports whether t and u represent the same time instant.
259 // Two times can be equal even if they are in different locations.
260 // For example, 6:00 +0200 and 4:00 UTC are Equal.
261 // See the documentation on the Time type for the pitfalls of using == with
262 // Time values; most code should use Equal instead.
263 func (t Time) Equal(u Time) bool {
264 if t.wall&u.wall&hasMonotonic != 0 {
265 return t.ext == u.ext
267 return t.sec() == u.sec() && t.nsec() == u.nsec()
270 // A Month specifies a month of the year (January = 1, ...).
271 type Month int
273 const (
274 January Month = 1 + iota
275 February
276 March
277 April
279 June
280 July
281 August
282 September
283 October
284 November
285 December
288 var months = [...]string{
289 "January",
290 "February",
291 "March",
292 "April",
293 "May",
294 "June",
295 "July",
296 "August",
297 "September",
298 "October",
299 "November",
300 "December",
303 // String returns the English name of the month ("January", "February", ...).
304 func (m Month) String() string {
305 if January <= m && m <= December {
306 return months[m-1]
308 buf := make([]byte, 20)
309 n := fmtInt(buf, uint64(m))
310 return "%!Month(" + string(buf[n:]) + ")"
313 // A Weekday specifies a day of the week (Sunday = 0, ...).
314 type Weekday int
316 const (
317 Sunday Weekday = iota
318 Monday
319 Tuesday
320 Wednesday
321 Thursday
322 Friday
323 Saturday
326 var days = [...]string{
327 "Sunday",
328 "Monday",
329 "Tuesday",
330 "Wednesday",
331 "Thursday",
332 "Friday",
333 "Saturday",
336 // String returns the English name of the day ("Sunday", "Monday", ...).
337 func (d Weekday) String() string {
338 if Sunday <= d && d <= Saturday {
339 return days[d]
341 buf := make([]byte, 20)
342 n := fmtInt(buf, uint64(d))
343 return "%!Weekday(" + string(buf[n:]) + ")"
346 // Computations on time.
348 // The zero value for a Time is defined to be
349 // January 1, year 1, 00:00:00.000000000 UTC
350 // which (1) looks like a zero, or as close as you can get in a date
351 // (1-1-1 00:00:00 UTC), (2) is unlikely enough to arise in practice to
352 // be a suitable "not set" sentinel, unlike Jan 1 1970, and (3) has a
353 // non-negative year even in time zones west of UTC, unlike 1-1-0
354 // 00:00:00 UTC, which would be 12-31-(-1) 19:00:00 in New York.
356 // The zero Time value does not force a specific epoch for the time
357 // representation. For example, to use the Unix epoch internally, we
358 // could define that to distinguish a zero value from Jan 1 1970, that
359 // time would be represented by sec=-1, nsec=1e9. However, it does
360 // suggest a representation, namely using 1-1-1 00:00:00 UTC as the
361 // epoch, and that's what we do.
363 // The Add and Sub computations are oblivious to the choice of epoch.
365 // The presentation computations - year, month, minute, and so on - all
366 // rely heavily on division and modulus by positive constants. For
367 // calendrical calculations we want these divisions to round down, even
368 // for negative values, so that the remainder is always positive, but
369 // Go's division (like most hardware division instructions) rounds to
370 // zero. We can still do those computations and then adjust the result
371 // for a negative numerator, but it's annoying to write the adjustment
372 // over and over. Instead, we can change to a different epoch so long
373 // ago that all the times we care about will be positive, and then round
374 // to zero and round down coincide. These presentation routines already
375 // have to add the zone offset, so adding the translation to the
376 // alternate epoch is cheap. For example, having a non-negative time t
377 // means that we can write
379 // sec = t % 60
381 // instead of
383 // sec = t % 60
384 // if sec < 0 {
385 // sec += 60
386 // }
388 // everywhere.
390 // The calendar runs on an exact 400 year cycle: a 400-year calendar
391 // printed for 1970-2369 will apply as well to 2370-2769. Even the days
392 // of the week match up. It simplifies the computations to choose the
393 // cycle boundaries so that the exceptional years are always delayed as
394 // long as possible. That means choosing a year equal to 1 mod 400, so
395 // that the first leap year is the 4th year, the first missed leap year
396 // is the 100th year, and the missed missed leap year is the 400th year.
397 // So we'd prefer instead to print a calendar for 2001-2400 and reuse it
398 // for 2401-2800.
400 // Finally, it's convenient if the delta between the Unix epoch and
401 // long-ago epoch is representable by an int64 constant.
403 // These three considerations—choose an epoch as early as possible, that
404 // uses a year equal to 1 mod 400, and that is no more than 2⁶³ seconds
405 // earlier than 1970—bring us to the year -292277022399. We refer to
406 // this year as the absolute zero year, and to times measured as a uint64
407 // seconds since this year as absolute times.
409 // Times measured as an int64 seconds since the year 1—the representation
410 // used for Time's sec field—are called internal times.
412 // Times measured as an int64 seconds since the year 1970 are called Unix
413 // times.
415 // It is tempting to just use the year 1 as the absolute epoch, defining
416 // that the routines are only valid for years >= 1. However, the
417 // routines would then be invalid when displaying the epoch in time zones
418 // west of UTC, since it is year 0. It doesn't seem tenable to say that
419 // printing the zero time correctly isn't supported in half the time
420 // zones. By comparison, it's reasonable to mishandle some times in
421 // the year -292277022399.
423 // All this is opaque to clients of the API and can be changed if a
424 // better implementation presents itself.
426 const (
427 // The unsigned zero year for internal calculations.
428 // Must be 1 mod 400, and times before it will not compute correctly,
429 // but otherwise can be changed at will.
430 absoluteZeroYear = -292277022399
432 // The year of the zero Time.
433 // Assumed by the unixToInternal computation below.
434 internalYear = 1
436 // Offsets to convert between internal and absolute or Unix times.
437 absoluteToInternal int64 = (absoluteZeroYear - internalYear) * 365.2425 * secondsPerDay
438 internalToAbsolute = -absoluteToInternal
440 unixToInternal int64 = (1969*365 + 1969/4 - 1969/100 + 1969/400) * secondsPerDay
441 internalToUnix int64 = -unixToInternal
443 wallToInternal int64 = (1884*365 + 1884/4 - 1884/100 + 1884/400) * secondsPerDay
444 internalToWall int64 = -wallToInternal
447 // IsZero reports whether t represents the zero time instant,
448 // January 1, year 1, 00:00:00 UTC.
449 func (t Time) IsZero() bool {
450 return t.sec() == 0 && t.nsec() == 0
453 // abs returns the time t as an absolute time, adjusted by the zone offset.
454 // It is called when computing a presentation property like Month or Hour.
455 func (t Time) abs() uint64 {
456 l := t.loc
457 // Avoid function calls when possible.
458 if l == nil || l == &localLoc {
459 l = l.get()
461 sec := t.unixSec()
462 if l != &utcLoc {
463 if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
464 sec += int64(l.cacheZone.offset)
465 } else {
466 _, offset, _, _ := l.lookup(sec)
467 sec += int64(offset)
470 return uint64(sec + (unixToInternal + internalToAbsolute))
473 // locabs is a combination of the Zone and abs methods,
474 // extracting both return values from a single zone lookup.
475 func (t Time) locabs() (name string, offset int, abs uint64) {
476 l := t.loc
477 if l == nil || l == &localLoc {
478 l = l.get()
480 // Avoid function call if we hit the local time cache.
481 sec := t.unixSec()
482 if l != &utcLoc {
483 if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
484 name = l.cacheZone.name
485 offset = l.cacheZone.offset
486 } else {
487 name, offset, _, _ = l.lookup(sec)
489 sec += int64(offset)
490 } else {
491 name = "UTC"
493 abs = uint64(sec + (unixToInternal + internalToAbsolute))
494 return
497 // Date returns the year, month, and day in which t occurs.
498 func (t Time) Date() (year int, month Month, day int) {
499 year, month, day, _ = t.date(true)
500 return
503 // Year returns the year in which t occurs.
504 func (t Time) Year() int {
505 year, _, _, _ := t.date(false)
506 return year
509 // Month returns the month of the year specified by t.
510 func (t Time) Month() Month {
511 _, month, _, _ := t.date(true)
512 return month
515 // Day returns the day of the month specified by t.
516 func (t Time) Day() int {
517 _, _, day, _ := t.date(true)
518 return day
521 // Weekday returns the day of the week specified by t.
522 func (t Time) Weekday() Weekday {
523 return absWeekday(t.abs())
526 // absWeekday is like Weekday but operates on an absolute time.
527 func absWeekday(abs uint64) Weekday {
528 // January 1 of the absolute year, like January 1 of 2001, was a Monday.
529 sec := (abs + uint64(Monday)*secondsPerDay) % secondsPerWeek
530 return Weekday(int(sec) / secondsPerDay)
533 // ISOWeek returns the ISO 8601 year and week number in which t occurs.
534 // Week ranges from 1 to 53. Jan 01 to Jan 03 of year n might belong to
535 // week 52 or 53 of year n-1, and Dec 29 to Dec 31 might belong to week 1
536 // of year n+1.
537 func (t Time) ISOWeek() (year, week int) {
538 year, month, day, yday := t.date(true)
539 wday := int(t.Weekday()+6) % 7 // weekday but Monday = 0.
540 const (
541 Mon int = iota
550 // Calculate week as number of Mondays in year up to
551 // and including today, plus 1 because the first week is week 0.
552 // Putting the + 1 inside the numerator as a + 7 keeps the
553 // numerator from being negative, which would cause it to
554 // round incorrectly.
555 week = (yday - wday + 7) / 7
557 // The week number is now correct under the assumption
558 // that the first Monday of the year is in week 1.
559 // If Jan 1 is a Tuesday, Wednesday, or Thursday, the first Monday
560 // is actually in week 2.
561 jan1wday := (wday - yday + 7*53) % 7
562 if Tue <= jan1wday && jan1wday <= Thu {
563 week++
566 // If the week number is still 0, we're in early January but in
567 // the last week of last year.
568 if week == 0 {
569 year--
570 week = 52
571 // A year has 53 weeks when Jan 1 or Dec 31 is a Thursday,
572 // meaning Jan 1 of the next year is a Friday
573 // or it was a leap year and Jan 1 of the next year is a Saturday.
574 if jan1wday == Fri || (jan1wday == Sat && isLeap(year)) {
575 week++
579 // December 29 to 31 are in week 1 of next year if
580 // they are after the last Thursday of the year and
581 // December 31 is a Monday, Tuesday, or Wednesday.
582 if month == December && day >= 29 && wday < Thu {
583 if dec31wday := (wday + 31 - day) % 7; Mon <= dec31wday && dec31wday <= Wed {
584 year++
585 week = 1
589 return
592 // Clock returns the hour, minute, and second within the day specified by t.
593 func (t Time) Clock() (hour, min, sec int) {
594 return absClock(t.abs())
597 // absClock is like clock but operates on an absolute time.
598 func absClock(abs uint64) (hour, min, sec int) {
599 sec = int(abs % secondsPerDay)
600 hour = sec / secondsPerHour
601 sec -= hour * secondsPerHour
602 min = sec / secondsPerMinute
603 sec -= min * secondsPerMinute
604 return
607 // Hour returns the hour within the day specified by t, in the range [0, 23].
608 func (t Time) Hour() int {
609 return int(t.abs()%secondsPerDay) / secondsPerHour
612 // Minute returns the minute offset within the hour specified by t, in the range [0, 59].
613 func (t Time) Minute() int {
614 return int(t.abs()%secondsPerHour) / secondsPerMinute
617 // Second returns the second offset within the minute specified by t, in the range [0, 59].
618 func (t Time) Second() int {
619 return int(t.abs() % secondsPerMinute)
622 // Nanosecond returns the nanosecond offset within the second specified by t,
623 // in the range [0, 999999999].
624 func (t Time) Nanosecond() int {
625 return int(t.nsec())
628 // YearDay returns the day of the year specified by t, in the range [1,365] for non-leap years,
629 // and [1,366] in leap years.
630 func (t Time) YearDay() int {
631 _, _, _, yday := t.date(false)
632 return yday + 1
635 // A Duration represents the elapsed time between two instants
636 // as an int64 nanosecond count. The representation limits the
637 // largest representable duration to approximately 290 years.
638 type Duration int64
640 const (
641 minDuration Duration = -1 << 63
642 maxDuration Duration = 1<<63 - 1
645 // Common durations. There is no definition for units of Day or larger
646 // to avoid confusion across daylight savings time zone transitions.
648 // To count the number of units in a Duration, divide:
649 // second := time.Second
650 // fmt.Print(int64(second/time.Millisecond)) // prints 1000
652 // To convert an integer number of units to a Duration, multiply:
653 // seconds := 10
654 // fmt.Print(time.Duration(seconds)*time.Second) // prints 10s
656 const (
657 Nanosecond Duration = 1
658 Microsecond = 1000 * Nanosecond
659 Millisecond = 1000 * Microsecond
660 Second = 1000 * Millisecond
661 Minute = 60 * Second
662 Hour = 60 * Minute
665 // String returns a string representing the duration in the form "72h3m0.5s".
666 // Leading zero units are omitted. As a special case, durations less than one
667 // second format use a smaller unit (milli-, micro-, or nanoseconds) to ensure
668 // that the leading digit is non-zero. The zero duration formats as 0s.
669 func (d Duration) String() string {
670 // Largest time is 2540400h10m10.000000000s
671 var buf [32]byte
672 w := len(buf)
674 u := uint64(d)
675 neg := d < 0
676 if neg {
677 u = -u
680 if u < uint64(Second) {
681 // Special case: if duration is smaller than a second,
682 // use smaller units, like 1.2ms
683 var prec int
685 buf[w] = 's'
687 switch {
688 case u == 0:
689 return "0s"
690 case u < uint64(Microsecond):
691 // print nanoseconds
692 prec = 0
693 buf[w] = 'n'
694 case u < uint64(Millisecond):
695 // print microseconds
696 prec = 3
697 // U+00B5 'µ' micro sign == 0xC2 0xB5
698 w-- // Need room for two bytes.
699 copy(buf[w:], "µ")
700 default:
701 // print milliseconds
702 prec = 6
703 buf[w] = 'm'
705 w, u = fmtFrac(buf[:w], u, prec)
706 w = fmtInt(buf[:w], u)
707 } else {
709 buf[w] = 's'
711 w, u = fmtFrac(buf[:w], u, 9)
713 // u is now integer seconds
714 w = fmtInt(buf[:w], u%60)
715 u /= 60
717 // u is now integer minutes
718 if u > 0 {
720 buf[w] = 'm'
721 w = fmtInt(buf[:w], u%60)
722 u /= 60
724 // u is now integer hours
725 // Stop at hours because days can be different lengths.
726 if u > 0 {
728 buf[w] = 'h'
729 w = fmtInt(buf[:w], u)
734 if neg {
736 buf[w] = '-'
739 return string(buf[w:])
742 // fmtFrac formats the fraction of v/10**prec (e.g., ".12345") into the
743 // tail of buf, omitting trailing zeros. It omits the decimal
744 // point too when the fraction is 0. It returns the index where the
745 // output bytes begin and the value v/10**prec.
746 func fmtFrac(buf []byte, v uint64, prec int) (nw int, nv uint64) {
747 // Omit trailing zeros up to and including decimal point.
748 w := len(buf)
749 print := false
750 for i := 0; i < prec; i++ {
751 digit := v % 10
752 print = print || digit != 0
753 if print {
755 buf[w] = byte(digit) + '0'
757 v /= 10
759 if print {
761 buf[w] = '.'
763 return w, v
766 // fmtInt formats v into the tail of buf.
767 // It returns the index where the output begins.
768 func fmtInt(buf []byte, v uint64) int {
769 w := len(buf)
770 if v == 0 {
772 buf[w] = '0'
773 } else {
774 for v > 0 {
776 buf[w] = byte(v%10) + '0'
777 v /= 10
780 return w
783 // Nanoseconds returns the duration as an integer nanosecond count.
784 func (d Duration) Nanoseconds() int64 { return int64(d) }
786 // Microseconds returns the duration as an integer microsecond count.
787 func (d Duration) Microseconds() int64 { return int64(d) / 1e3 }
789 // Milliseconds returns the duration as an integer millisecond count.
790 func (d Duration) Milliseconds() int64 { return int64(d) / 1e6 }
792 // These methods return float64 because the dominant
793 // use case is for printing a floating point number like 1.5s, and
794 // a truncation to integer would make them not useful in those cases.
795 // Splitting the integer and fraction ourselves guarantees that
796 // converting the returned float64 to an integer rounds the same
797 // way that a pure integer conversion would have, even in cases
798 // where, say, float64(d.Nanoseconds())/1e9 would have rounded
799 // differently.
801 // Seconds returns the duration as a floating point number of seconds.
802 func (d Duration) Seconds() float64 {
803 sec := d / Second
804 nsec := d % Second
805 return float64(sec) + float64(nsec)/1e9
808 // Minutes returns the duration as a floating point number of minutes.
809 func (d Duration) Minutes() float64 {
810 min := d / Minute
811 nsec := d % Minute
812 return float64(min) + float64(nsec)/(60*1e9)
815 // Hours returns the duration as a floating point number of hours.
816 func (d Duration) Hours() float64 {
817 hour := d / Hour
818 nsec := d % Hour
819 return float64(hour) + float64(nsec)/(60*60*1e9)
822 // Truncate returns the result of rounding d toward zero to a multiple of m.
823 // If m <= 0, Truncate returns d unchanged.
824 func (d Duration) Truncate(m Duration) Duration {
825 if m <= 0 {
826 return d
828 return d - d%m
831 // lessThanHalf reports whether x+x < y but avoids overflow,
832 // assuming x and y are both positive (Duration is signed).
833 func lessThanHalf(x, y Duration) bool {
834 return uint64(x)+uint64(x) < uint64(y)
837 // Round returns the result of rounding d to the nearest multiple of m.
838 // The rounding behavior for halfway values is to round away from zero.
839 // If the result exceeds the maximum (or minimum)
840 // value that can be stored in a Duration,
841 // Round returns the maximum (or minimum) duration.
842 // If m <= 0, Round returns d unchanged.
843 func (d Duration) Round(m Duration) Duration {
844 if m <= 0 {
845 return d
847 r := d % m
848 if d < 0 {
849 r = -r
850 if lessThanHalf(r, m) {
851 return d + r
853 if d1 := d - m + r; d1 < d {
854 return d1
856 return minDuration // overflow
858 if lessThanHalf(r, m) {
859 return d - r
861 if d1 := d + m - r; d1 > d {
862 return d1
864 return maxDuration // overflow
867 // Add returns the time t+d.
868 func (t Time) Add(d Duration) Time {
869 dsec := int64(d / 1e9)
870 nsec := t.nsec() + int32(d%1e9)
871 if nsec >= 1e9 {
872 dsec++
873 nsec -= 1e9
874 } else if nsec < 0 {
875 dsec--
876 nsec += 1e9
878 t.wall = t.wall&^nsecMask | uint64(nsec) // update nsec
879 t.addSec(dsec)
880 if t.wall&hasMonotonic != 0 {
881 te := t.ext + int64(d)
882 if d < 0 && te > t.ext || d > 0 && te < t.ext {
883 // Monotonic clock reading now out of range; degrade to wall-only.
884 t.stripMono()
885 } else {
886 t.ext = te
889 return t
892 // Sub returns the duration t-u. If the result exceeds the maximum (or minimum)
893 // value that can be stored in a Duration, the maximum (or minimum) duration
894 // will be returned.
895 // To compute t-d for a duration d, use t.Add(-d).
896 func (t Time) Sub(u Time) Duration {
897 if t.wall&u.wall&hasMonotonic != 0 {
898 te := t.ext
899 ue := u.ext
900 d := Duration(te - ue)
901 if d < 0 && te > ue {
902 return maxDuration // t - u is positive out of range
904 if d > 0 && te < ue {
905 return minDuration // t - u is negative out of range
907 return d
909 d := Duration(t.sec()-u.sec())*Second + Duration(t.nsec()-u.nsec())
910 // Check for overflow or underflow.
911 switch {
912 case u.Add(d).Equal(t):
913 return d // d is correct
914 case t.Before(u):
915 return minDuration // t - u is negative out of range
916 default:
917 return maxDuration // t - u is positive out of range
921 // Since returns the time elapsed since t.
922 // It is shorthand for time.Now().Sub(t).
923 func Since(t Time) Duration {
924 var now Time
925 if t.wall&hasMonotonic != 0 {
926 // Common case optimization: if t has monotonic time, then Sub will use only it.
927 now = Time{hasMonotonic, runtimeNano() - startNano, nil}
928 } else {
929 now = Now()
931 return now.Sub(t)
934 // Until returns the duration until t.
935 // It is shorthand for t.Sub(time.Now()).
936 func Until(t Time) Duration {
937 var now Time
938 if t.wall&hasMonotonic != 0 {
939 // Common case optimization: if t has monotonic time, then Sub will use only it.
940 now = Time{hasMonotonic, runtimeNano() - startNano, nil}
941 } else {
942 now = Now()
944 return t.Sub(now)
947 // AddDate returns the time corresponding to adding the
948 // given number of years, months, and days to t.
949 // For example, AddDate(-1, 2, 3) applied to January 1, 2011
950 // returns March 4, 2010.
952 // AddDate normalizes its result in the same way that Date does,
953 // so, for example, adding one month to October 31 yields
954 // December 1, the normalized form for November 31.
955 func (t Time) AddDate(years int, months int, days int) Time {
956 year, month, day := t.Date()
957 hour, min, sec := t.Clock()
958 return Date(year+years, month+Month(months), day+days, hour, min, sec, int(t.nsec()), t.Location())
961 const (
962 secondsPerMinute = 60
963 secondsPerHour = 60 * secondsPerMinute
964 secondsPerDay = 24 * secondsPerHour
965 secondsPerWeek = 7 * secondsPerDay
966 daysPer400Years = 365*400 + 97
967 daysPer100Years = 365*100 + 24
968 daysPer4Years = 365*4 + 1
971 // date computes the year, day of year, and when full=true,
972 // the month and day in which t occurs.
973 func (t Time) date(full bool) (year int, month Month, day int, yday int) {
974 return absDate(t.abs(), full)
977 // absDate is like date but operates on an absolute time.
978 func absDate(abs uint64, full bool) (year int, month Month, day int, yday int) {
979 // Split into time and day.
980 d := abs / secondsPerDay
982 // Account for 400 year cycles.
983 n := d / daysPer400Years
984 y := 400 * n
985 d -= daysPer400Years * n
987 // Cut off 100-year cycles.
988 // The last cycle has one extra leap year, so on the last day
989 // of that year, day / daysPer100Years will be 4 instead of 3.
990 // Cut it back down to 3 by subtracting n>>2.
991 n = d / daysPer100Years
992 n -= n >> 2
993 y += 100 * n
994 d -= daysPer100Years * n
996 // Cut off 4-year cycles.
997 // The last cycle has a missing leap year, which does not
998 // affect the computation.
999 n = d / daysPer4Years
1000 y += 4 * n
1001 d -= daysPer4Years * n
1003 // Cut off years within a 4-year cycle.
1004 // The last year is a leap year, so on the last day of that year,
1005 // day / 365 will be 4 instead of 3. Cut it back down to 3
1006 // by subtracting n>>2.
1007 n = d / 365
1008 n -= n >> 2
1009 y += n
1010 d -= 365 * n
1012 year = int(int64(y) + absoluteZeroYear)
1013 yday = int(d)
1015 if !full {
1016 return
1019 day = yday
1020 if isLeap(year) {
1021 // Leap year
1022 switch {
1023 case day > 31+29-1:
1024 // After leap day; pretend it wasn't there.
1025 day--
1026 case day == 31+29-1:
1027 // Leap day.
1028 month = February
1029 day = 29
1030 return
1034 // Estimate month on assumption that every month has 31 days.
1035 // The estimate may be too low by at most one month, so adjust.
1036 month = Month(day / 31)
1037 end := int(daysBefore[month+1])
1038 var begin int
1039 if day >= end {
1040 month++
1041 begin = end
1042 } else {
1043 begin = int(daysBefore[month])
1046 month++ // because January is 1
1047 day = day - begin + 1
1048 return
1051 // daysBefore[m] counts the number of days in a non-leap year
1052 // before month m begins. There is an entry for m=12, counting
1053 // the number of days before January of next year (365).
1054 var daysBefore = [...]int32{
1057 31 + 28,
1058 31 + 28 + 31,
1059 31 + 28 + 31 + 30,
1060 31 + 28 + 31 + 30 + 31,
1061 31 + 28 + 31 + 30 + 31 + 30,
1062 31 + 28 + 31 + 30 + 31 + 30 + 31,
1063 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31,
1064 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
1065 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
1066 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30,
1067 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31,
1070 func daysIn(m Month, year int) int {
1071 if m == February && isLeap(year) {
1072 return 29
1074 return int(daysBefore[m] - daysBefore[m-1])
1077 // Provided by package runtime.
1078 func now() (sec int64, nsec int32, mono int64)
1080 // runtimeNano returns the current value of the runtime clock in nanoseconds.
1081 //go:linkname runtimeNano runtime.nanotime
1082 func runtimeNano() int64
1084 // Monotonic times are reported as offsets from startNano.
1085 // We initialize startNano to runtimeNano() - 1 so that on systems where
1086 // monotonic time resolution is fairly low (e.g. Windows 2008
1087 // which appears to have a default resolution of 15ms),
1088 // we avoid ever reporting a monotonic time of 0.
1089 // (Callers may want to use 0 as "time not set".)
1090 var startNano int64 = runtimeNano() - 1
1092 // Now returns the current local time.
1093 func Now() Time {
1094 sec, nsec, mono := now()
1095 mono -= startNano
1096 sec += unixToInternal - minWall
1097 if uint64(sec)>>33 != 0 {
1098 return Time{uint64(nsec), sec + minWall, Local}
1100 return Time{hasMonotonic | uint64(sec)<<nsecShift | uint64(nsec), mono, Local}
1103 func unixTime(sec int64, nsec int32) Time {
1104 return Time{uint64(nsec), sec + unixToInternal, Local}
1107 // UTC returns t with the location set to UTC.
1108 func (t Time) UTC() Time {
1109 t.setLoc(&utcLoc)
1110 return t
1113 // Local returns t with the location set to local time.
1114 func (t Time) Local() Time {
1115 t.setLoc(Local)
1116 return t
1119 // In returns a copy of t representing the same time instant, but
1120 // with the copy's location information set to loc for display
1121 // purposes.
1123 // In panics if loc is nil.
1124 func (t Time) In(loc *Location) Time {
1125 if loc == nil {
1126 panic("time: missing Location in call to Time.In")
1128 t.setLoc(loc)
1129 return t
1132 // Location returns the time zone information associated with t.
1133 func (t Time) Location() *Location {
1134 l := t.loc
1135 if l == nil {
1136 l = UTC
1138 return l
1141 // Zone computes the time zone in effect at time t, returning the abbreviated
1142 // name of the zone (such as "CET") and its offset in seconds east of UTC.
1143 func (t Time) Zone() (name string, offset int) {
1144 name, offset, _, _ = t.loc.lookup(t.unixSec())
1145 return
1148 // Unix returns t as a Unix time, the number of seconds elapsed
1149 // since January 1, 1970 UTC. The result does not depend on the
1150 // location associated with t.
1151 func (t Time) Unix() int64 {
1152 return t.unixSec()
1155 // UnixNano returns t as a Unix time, the number of nanoseconds elapsed
1156 // since January 1, 1970 UTC. The result is undefined if the Unix time
1157 // in nanoseconds cannot be represented by an int64 (a date before the year
1158 // 1678 or after 2262). Note that this means the result of calling UnixNano
1159 // on the zero Time is undefined. The result does not depend on the
1160 // location associated with t.
1161 func (t Time) UnixNano() int64 {
1162 return (t.unixSec())*1e9 + int64(t.nsec())
1165 const timeBinaryVersion byte = 1
1167 // MarshalBinary implements the encoding.BinaryMarshaler interface.
1168 func (t Time) MarshalBinary() ([]byte, error) {
1169 var offsetMin int16 // minutes east of UTC. -1 is UTC.
1171 if t.Location() == UTC {
1172 offsetMin = -1
1173 } else {
1174 _, offset := t.Zone()
1175 if offset%60 != 0 {
1176 return nil, errors.New("Time.MarshalBinary: zone offset has fractional minute")
1178 offset /= 60
1179 if offset < -32768 || offset == -1 || offset > 32767 {
1180 return nil, errors.New("Time.MarshalBinary: unexpected zone offset")
1182 offsetMin = int16(offset)
1185 sec := t.sec()
1186 nsec := t.nsec()
1187 enc := []byte{
1188 timeBinaryVersion, // byte 0 : version
1189 byte(sec >> 56), // bytes 1-8: seconds
1190 byte(sec >> 48),
1191 byte(sec >> 40),
1192 byte(sec >> 32),
1193 byte(sec >> 24),
1194 byte(sec >> 16),
1195 byte(sec >> 8),
1196 byte(sec),
1197 byte(nsec >> 24), // bytes 9-12: nanoseconds
1198 byte(nsec >> 16),
1199 byte(nsec >> 8),
1200 byte(nsec),
1201 byte(offsetMin >> 8), // bytes 13-14: zone offset in minutes
1202 byte(offsetMin),
1205 return enc, nil
1208 // UnmarshalBinary implements the encoding.BinaryUnmarshaler interface.
1209 func (t *Time) UnmarshalBinary(data []byte) error {
1210 buf := data
1211 if len(buf) == 0 {
1212 return errors.New("Time.UnmarshalBinary: no data")
1215 if buf[0] != timeBinaryVersion {
1216 return errors.New("Time.UnmarshalBinary: unsupported version")
1219 if len(buf) != /*version*/ 1+ /*sec*/ 8+ /*nsec*/ 4+ /*zone offset*/ 2 {
1220 return errors.New("Time.UnmarshalBinary: invalid length")
1223 buf = buf[1:]
1224 sec := int64(buf[7]) | int64(buf[6])<<8 | int64(buf[5])<<16 | int64(buf[4])<<24 |
1225 int64(buf[3])<<32 | int64(buf[2])<<40 | int64(buf[1])<<48 | int64(buf[0])<<56
1227 buf = buf[8:]
1228 nsec := int32(buf[3]) | int32(buf[2])<<8 | int32(buf[1])<<16 | int32(buf[0])<<24
1230 buf = buf[4:]
1231 offset := int(int16(buf[1])|int16(buf[0])<<8) * 60
1233 *t = Time{}
1234 t.wall = uint64(nsec)
1235 t.ext = sec
1237 if offset == -1*60 {
1238 t.setLoc(&utcLoc)
1239 } else if _, localoff, _, _ := Local.lookup(t.unixSec()); offset == localoff {
1240 t.setLoc(Local)
1241 } else {
1242 t.setLoc(FixedZone("", offset))
1245 return nil
1248 // TODO(rsc): Remove GobEncoder, GobDecoder, MarshalJSON, UnmarshalJSON in Go 2.
1249 // The same semantics will be provided by the generic MarshalBinary, MarshalText,
1250 // UnmarshalBinary, UnmarshalText.
1252 // GobEncode implements the gob.GobEncoder interface.
1253 func (t Time) GobEncode() ([]byte, error) {
1254 return t.MarshalBinary()
1257 // GobDecode implements the gob.GobDecoder interface.
1258 func (t *Time) GobDecode(data []byte) error {
1259 return t.UnmarshalBinary(data)
1262 // MarshalJSON implements the json.Marshaler interface.
1263 // The time is a quoted string in RFC 3339 format, with sub-second precision added if present.
1264 func (t Time) MarshalJSON() ([]byte, error) {
1265 if y := t.Year(); y < 0 || y >= 10000 {
1266 // RFC 3339 is clear that years are 4 digits exactly.
1267 // See golang.org/issue/4556#c15 for more discussion.
1268 return nil, errors.New("Time.MarshalJSON: year outside of range [0,9999]")
1271 b := make([]byte, 0, len(RFC3339Nano)+2)
1272 b = append(b, '"')
1273 b = t.AppendFormat(b, RFC3339Nano)
1274 b = append(b, '"')
1275 return b, nil
1278 // UnmarshalJSON implements the json.Unmarshaler interface.
1279 // The time is expected to be a quoted string in RFC 3339 format.
1280 func (t *Time) UnmarshalJSON(data []byte) error {
1281 // Ignore null, like in the main JSON package.
1282 if string(data) == "null" {
1283 return nil
1285 // Fractional seconds are handled implicitly by Parse.
1286 var err error
1287 *t, err = Parse(`"`+RFC3339+`"`, string(data))
1288 return err
1291 // MarshalText implements the encoding.TextMarshaler interface.
1292 // The time is formatted in RFC 3339 format, with sub-second precision added if present.
1293 func (t Time) MarshalText() ([]byte, error) {
1294 if y := t.Year(); y < 0 || y >= 10000 {
1295 return nil, errors.New("Time.MarshalText: year outside of range [0,9999]")
1298 b := make([]byte, 0, len(RFC3339Nano))
1299 return t.AppendFormat(b, RFC3339Nano), nil
1302 // UnmarshalText implements the encoding.TextUnmarshaler interface.
1303 // The time is expected to be in RFC 3339 format.
1304 func (t *Time) UnmarshalText(data []byte) error {
1305 // Fractional seconds are handled implicitly by Parse.
1306 var err error
1307 *t, err = Parse(RFC3339, string(data))
1308 return err
1311 // Unix returns the local Time corresponding to the given Unix time,
1312 // sec seconds and nsec nanoseconds since January 1, 1970 UTC.
1313 // It is valid to pass nsec outside the range [0, 999999999].
1314 // Not all sec values have a corresponding time value. One such
1315 // value is 1<<63-1 (the largest int64 value).
1316 func Unix(sec int64, nsec int64) Time {
1317 if nsec < 0 || nsec >= 1e9 {
1318 n := nsec / 1e9
1319 sec += n
1320 nsec -= n * 1e9
1321 if nsec < 0 {
1322 nsec += 1e9
1323 sec--
1326 return unixTime(sec, int32(nsec))
1329 func isLeap(year int) bool {
1330 return year%4 == 0 && (year%100 != 0 || year%400 == 0)
1333 // norm returns nhi, nlo such that
1334 // hi * base + lo == nhi * base + nlo
1335 // 0 <= nlo < base
1336 func norm(hi, lo, base int) (nhi, nlo int) {
1337 if lo < 0 {
1338 n := (-lo-1)/base + 1
1339 hi -= n
1340 lo += n * base
1342 if lo >= base {
1343 n := lo / base
1344 hi += n
1345 lo -= n * base
1347 return hi, lo
1350 // Date returns the Time corresponding to
1351 // yyyy-mm-dd hh:mm:ss + nsec nanoseconds
1352 // in the appropriate zone for that time in the given location.
1354 // The month, day, hour, min, sec, and nsec values may be outside
1355 // their usual ranges and will be normalized during the conversion.
1356 // For example, October 32 converts to November 1.
1358 // A daylight savings time transition skips or repeats times.
1359 // For example, in the United States, March 13, 2011 2:15am never occurred,
1360 // while November 6, 2011 1:15am occurred twice. In such cases, the
1361 // choice of time zone, and therefore the time, is not well-defined.
1362 // Date returns a time that is correct in one of the two zones involved
1363 // in the transition, but it does not guarantee which.
1365 // Date panics if loc is nil.
1366 func Date(year int, month Month, day, hour, min, sec, nsec int, loc *Location) Time {
1367 if loc == nil {
1368 panic("time: missing Location in call to Date")
1371 // Normalize month, overflowing into year.
1372 m := int(month) - 1
1373 year, m = norm(year, m, 12)
1374 month = Month(m) + 1
1376 // Normalize nsec, sec, min, hour, overflowing into day.
1377 sec, nsec = norm(sec, nsec, 1e9)
1378 min, sec = norm(min, sec, 60)
1379 hour, min = norm(hour, min, 60)
1380 day, hour = norm(day, hour, 24)
1382 y := uint64(int64(year) - absoluteZeroYear)
1384 // Compute days since the absolute epoch.
1386 // Add in days from 400-year cycles.
1387 n := y / 400
1388 y -= 400 * n
1389 d := daysPer400Years * n
1391 // Add in 100-year cycles.
1392 n = y / 100
1393 y -= 100 * n
1394 d += daysPer100Years * n
1396 // Add in 4-year cycles.
1397 n = y / 4
1398 y -= 4 * n
1399 d += daysPer4Years * n
1401 // Add in non-leap years.
1402 n = y
1403 d += 365 * n
1405 // Add in days before this month.
1406 d += uint64(daysBefore[month-1])
1407 if isLeap(year) && month >= March {
1408 d++ // February 29
1411 // Add in days before today.
1412 d += uint64(day - 1)
1414 // Add in time elapsed today.
1415 abs := d * secondsPerDay
1416 abs += uint64(hour*secondsPerHour + min*secondsPerMinute + sec)
1418 unix := int64(abs) + (absoluteToInternal + internalToUnix)
1420 // Look for zone offset for t, so we can adjust to UTC.
1421 // The lookup function expects UTC, so we pass t in the
1422 // hope that it will not be too close to a zone transition,
1423 // and then adjust if it is.
1424 _, offset, start, end := loc.lookup(unix)
1425 if offset != 0 {
1426 switch utc := unix - int64(offset); {
1427 case utc < start:
1428 _, offset, _, _ = loc.lookup(start - 1)
1429 case utc >= end:
1430 _, offset, _, _ = loc.lookup(end)
1432 unix -= int64(offset)
1435 t := unixTime(unix, int32(nsec))
1436 t.setLoc(loc)
1437 return t
1440 // Truncate returns the result of rounding t down to a multiple of d (since the zero time).
1441 // If d <= 0, Truncate returns t stripped of any monotonic clock reading but otherwise unchanged.
1443 // Truncate operates on the time as an absolute duration since the
1444 // zero time; it does not operate on the presentation form of the
1445 // time. Thus, Truncate(Hour) may return a time with a non-zero
1446 // minute, depending on the time's Location.
1447 func (t Time) Truncate(d Duration) Time {
1448 t.stripMono()
1449 if d <= 0 {
1450 return t
1452 _, r := div(t, d)
1453 return t.Add(-r)
1456 // Round returns the result of rounding t to the nearest multiple of d (since the zero time).
1457 // The rounding behavior for halfway values is to round up.
1458 // If d <= 0, Round returns t stripped of any monotonic clock reading but otherwise unchanged.
1460 // Round operates on the time as an absolute duration since the
1461 // zero time; it does not operate on the presentation form of the
1462 // time. Thus, Round(Hour) may return a time with a non-zero
1463 // minute, depending on the time's Location.
1464 func (t Time) Round(d Duration) Time {
1465 t.stripMono()
1466 if d <= 0 {
1467 return t
1469 _, r := div(t, d)
1470 if lessThanHalf(r, d) {
1471 return t.Add(-r)
1473 return t.Add(d - r)
1476 // div divides t by d and returns the quotient parity and remainder.
1477 // We don't use the quotient parity anymore (round half up instead of round to even)
1478 // but it's still here in case we change our minds.
1479 func div(t Time, d Duration) (qmod2 int, r Duration) {
1480 neg := false
1481 nsec := t.nsec()
1482 sec := t.sec()
1483 if sec < 0 {
1484 // Operate on absolute value.
1485 neg = true
1486 sec = -sec
1487 nsec = -nsec
1488 if nsec < 0 {
1489 nsec += 1e9
1490 sec-- // sec >= 1 before the -- so safe
1494 switch {
1495 // Special case: 2d divides 1 second.
1496 case d < Second && Second%(d+d) == 0:
1497 qmod2 = int(nsec/int32(d)) & 1
1498 r = Duration(nsec % int32(d))
1500 // Special case: d is a multiple of 1 second.
1501 case d%Second == 0:
1502 d1 := int64(d / Second)
1503 qmod2 = int(sec/d1) & 1
1504 r = Duration(sec%d1)*Second + Duration(nsec)
1506 // General case.
1507 // This could be faster if more cleverness were applied,
1508 // but it's really only here to avoid special case restrictions in the API.
1509 // No one will care about these cases.
1510 default:
1511 // Compute nanoseconds as 128-bit number.
1512 sec := uint64(sec)
1513 tmp := (sec >> 32) * 1e9
1514 u1 := tmp >> 32
1515 u0 := tmp << 32
1516 tmp = (sec & 0xFFFFFFFF) * 1e9
1517 u0x, u0 := u0, u0+tmp
1518 if u0 < u0x {
1519 u1++
1521 u0x, u0 = u0, u0+uint64(nsec)
1522 if u0 < u0x {
1523 u1++
1526 // Compute remainder by subtracting r<<k for decreasing k.
1527 // Quotient parity is whether we subtract on last round.
1528 d1 := uint64(d)
1529 for d1>>63 != 1 {
1530 d1 <<= 1
1532 d0 := uint64(0)
1533 for {
1534 qmod2 = 0
1535 if u1 > d1 || u1 == d1 && u0 >= d0 {
1536 // subtract
1537 qmod2 = 1
1538 u0x, u0 = u0, u0-d0
1539 if u0 > u0x {
1540 u1--
1542 u1 -= d1
1544 if d1 == 0 && d0 == uint64(d) {
1545 break
1547 d0 >>= 1
1548 d0 |= (d1 & 1) << 63
1549 d1 >>= 1
1551 r = Duration(u0)
1554 if neg && r != 0 {
1555 // If input was negative and not an exact multiple of d, we computed q, r such that
1556 // q*d + r = -t
1557 // But the right answers are given by -(q-1), d-r:
1558 // q*d + r = -t
1559 // -q*d - r = t
1560 // -(q-1)*d + (d - r) = t
1561 qmod2 ^= 1
1562 r = d - r
1564 return