d: Merge upstream dmd d579c467c1, phobos 88aa69b14.
[official-gcc.git] / libsanitizer / lsan / lsan_allocator.cpp
blob43928ad294e2c154279ad6b15e46282f57eb763a
1 //=-- lsan_allocator.cpp --------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of LeakSanitizer.
10 // See lsan_allocator.h for details.
12 //===----------------------------------------------------------------------===//
14 #include "lsan_allocator.h"
16 #include "sanitizer_common/sanitizer_allocator.h"
17 #include "sanitizer_common/sanitizer_allocator_checks.h"
18 #include "sanitizer_common/sanitizer_allocator_interface.h"
19 #include "sanitizer_common/sanitizer_allocator_report.h"
20 #include "sanitizer_common/sanitizer_errno.h"
21 #include "sanitizer_common/sanitizer_internal_defs.h"
22 #include "sanitizer_common/sanitizer_stackdepot.h"
23 #include "sanitizer_common/sanitizer_stacktrace.h"
24 #include "lsan_common.h"
26 extern "C" void *memset(void *ptr, int value, uptr num);
28 namespace __lsan {
29 #if defined(__i386__) || defined(__arm__)
30 static const uptr kMaxAllowedMallocSize = 1ULL << 30;
31 #elif defined(__mips64) || defined(__aarch64__)
32 static const uptr kMaxAllowedMallocSize = 4ULL << 30;
33 #else
34 static const uptr kMaxAllowedMallocSize = 8ULL << 30;
35 #endif
37 static Allocator allocator;
39 static uptr max_malloc_size;
41 void InitializeAllocator() {
42 SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
43 allocator.InitLinkerInitialized(
44 common_flags()->allocator_release_to_os_interval_ms);
45 if (common_flags()->max_allocation_size_mb)
46 max_malloc_size = Min(common_flags()->max_allocation_size_mb << 20,
47 kMaxAllowedMallocSize);
48 else
49 max_malloc_size = kMaxAllowedMallocSize;
52 void AllocatorThreadFinish() {
53 allocator.SwallowCache(GetAllocatorCache());
56 static ChunkMetadata *Metadata(const void *p) {
57 return reinterpret_cast<ChunkMetadata *>(allocator.GetMetaData(p));
60 static void RegisterAllocation(const StackTrace &stack, void *p, uptr size) {
61 if (!p) return;
62 ChunkMetadata *m = Metadata(p);
63 CHECK(m);
64 m->tag = DisabledInThisThread() ? kIgnored : kDirectlyLeaked;
65 m->stack_trace_id = StackDepotPut(stack);
66 m->requested_size = size;
67 atomic_store(reinterpret_cast<atomic_uint8_t *>(m), 1, memory_order_relaxed);
70 static void RegisterDeallocation(void *p) {
71 if (!p) return;
72 ChunkMetadata *m = Metadata(p);
73 CHECK(m);
74 atomic_store(reinterpret_cast<atomic_uint8_t *>(m), 0, memory_order_relaxed);
77 static void *ReportAllocationSizeTooBig(uptr size, const StackTrace &stack) {
78 if (AllocatorMayReturnNull()) {
79 Report("WARNING: LeakSanitizer failed to allocate 0x%zx bytes\n", size);
80 return nullptr;
82 ReportAllocationSizeTooBig(size, max_malloc_size, &stack);
85 void *Allocate(const StackTrace &stack, uptr size, uptr alignment,
86 bool cleared) {
87 if (size == 0)
88 size = 1;
89 if (size > max_malloc_size)
90 return ReportAllocationSizeTooBig(size, stack);
91 if (UNLIKELY(IsRssLimitExceeded())) {
92 if (AllocatorMayReturnNull())
93 return nullptr;
94 ReportRssLimitExceeded(&stack);
96 void *p = allocator.Allocate(GetAllocatorCache(), size, alignment);
97 if (UNLIKELY(!p)) {
98 SetAllocatorOutOfMemory();
99 if (AllocatorMayReturnNull())
100 return nullptr;
101 ReportOutOfMemory(size, &stack);
103 // Do not rely on the allocator to clear the memory (it's slow).
104 if (cleared && allocator.FromPrimary(p))
105 memset(p, 0, size);
106 RegisterAllocation(stack, p, size);
107 RunMallocHooks(p, size);
108 return p;
111 static void *Calloc(uptr nmemb, uptr size, const StackTrace &stack) {
112 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
113 if (AllocatorMayReturnNull())
114 return nullptr;
115 ReportCallocOverflow(nmemb, size, &stack);
117 size *= nmemb;
118 return Allocate(stack, size, 1, true);
121 void Deallocate(void *p) {
122 RunFreeHooks(p);
123 RegisterDeallocation(p);
124 allocator.Deallocate(GetAllocatorCache(), p);
127 void *Reallocate(const StackTrace &stack, void *p, uptr new_size,
128 uptr alignment) {
129 if (new_size > max_malloc_size) {
130 ReportAllocationSizeTooBig(new_size, stack);
131 return nullptr;
133 RegisterDeallocation(p);
134 void *new_p =
135 allocator.Reallocate(GetAllocatorCache(), p, new_size, alignment);
136 if (new_p)
137 RegisterAllocation(stack, new_p, new_size);
138 else if (new_size != 0)
139 RegisterAllocation(stack, p, new_size);
140 return new_p;
143 void GetAllocatorCacheRange(uptr *begin, uptr *end) {
144 *begin = (uptr)GetAllocatorCache();
145 *end = *begin + sizeof(AllocatorCache);
148 uptr GetMallocUsableSize(const void *p) {
149 if (!p)
150 return 0;
151 ChunkMetadata *m = Metadata(p);
152 if (!m) return 0;
153 return m->requested_size;
156 int lsan_posix_memalign(void **memptr, uptr alignment, uptr size,
157 const StackTrace &stack) {
158 if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
159 if (AllocatorMayReturnNull())
160 return errno_EINVAL;
161 ReportInvalidPosixMemalignAlignment(alignment, &stack);
163 void *ptr = Allocate(stack, size, alignment, kAlwaysClearMemory);
164 if (UNLIKELY(!ptr))
165 // OOM error is already taken care of by Allocate.
166 return errno_ENOMEM;
167 CHECK(IsAligned((uptr)ptr, alignment));
168 *memptr = ptr;
169 return 0;
172 void *lsan_aligned_alloc(uptr alignment, uptr size, const StackTrace &stack) {
173 if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
174 errno = errno_EINVAL;
175 if (AllocatorMayReturnNull())
176 return nullptr;
177 ReportInvalidAlignedAllocAlignment(size, alignment, &stack);
179 return SetErrnoOnNull(Allocate(stack, size, alignment, kAlwaysClearMemory));
182 void *lsan_memalign(uptr alignment, uptr size, const StackTrace &stack) {
183 if (UNLIKELY(!IsPowerOfTwo(alignment))) {
184 errno = errno_EINVAL;
185 if (AllocatorMayReturnNull())
186 return nullptr;
187 ReportInvalidAllocationAlignment(alignment, &stack);
189 return SetErrnoOnNull(Allocate(stack, size, alignment, kAlwaysClearMemory));
192 void *lsan_malloc(uptr size, const StackTrace &stack) {
193 return SetErrnoOnNull(Allocate(stack, size, 1, kAlwaysClearMemory));
196 void lsan_free(void *p) {
197 Deallocate(p);
200 void *lsan_realloc(void *p, uptr size, const StackTrace &stack) {
201 return SetErrnoOnNull(Reallocate(stack, p, size, 1));
204 void *lsan_reallocarray(void *ptr, uptr nmemb, uptr size,
205 const StackTrace &stack) {
206 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
207 errno = errno_ENOMEM;
208 if (AllocatorMayReturnNull())
209 return nullptr;
210 ReportReallocArrayOverflow(nmemb, size, &stack);
212 return lsan_realloc(ptr, nmemb * size, stack);
215 void *lsan_calloc(uptr nmemb, uptr size, const StackTrace &stack) {
216 return SetErrnoOnNull(Calloc(nmemb, size, stack));
219 void *lsan_valloc(uptr size, const StackTrace &stack) {
220 return SetErrnoOnNull(
221 Allocate(stack, size, GetPageSizeCached(), kAlwaysClearMemory));
224 void *lsan_pvalloc(uptr size, const StackTrace &stack) {
225 uptr PageSize = GetPageSizeCached();
226 if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
227 errno = errno_ENOMEM;
228 if (AllocatorMayReturnNull())
229 return nullptr;
230 ReportPvallocOverflow(size, &stack);
232 // pvalloc(0) should allocate one page.
233 size = size ? RoundUpTo(size, PageSize) : PageSize;
234 return SetErrnoOnNull(Allocate(stack, size, PageSize, kAlwaysClearMemory));
237 uptr lsan_mz_size(const void *p) {
238 return GetMallocUsableSize(p);
241 ///// Interface to the common LSan module. /////
243 void LockAllocator() {
244 allocator.ForceLock();
247 void UnlockAllocator() {
248 allocator.ForceUnlock();
251 void GetAllocatorGlobalRange(uptr *begin, uptr *end) {
252 *begin = (uptr)&allocator;
253 *end = *begin + sizeof(allocator);
256 uptr PointsIntoChunk(void* p) {
257 uptr addr = reinterpret_cast<uptr>(p);
258 uptr chunk = reinterpret_cast<uptr>(allocator.GetBlockBeginFastLocked(p));
259 if (!chunk) return 0;
260 // LargeMmapAllocator considers pointers to the meta-region of a chunk to be
261 // valid, but we don't want that.
262 if (addr < chunk) return 0;
263 ChunkMetadata *m = Metadata(reinterpret_cast<void *>(chunk));
264 CHECK(m);
265 if (!m->allocated)
266 return 0;
267 if (addr < chunk + m->requested_size)
268 return chunk;
269 if (IsSpecialCaseOfOperatorNew0(chunk, m->requested_size, addr))
270 return chunk;
271 return 0;
274 uptr GetUserBegin(uptr chunk) {
275 return chunk;
278 LsanMetadata::LsanMetadata(uptr chunk) {
279 metadata_ = Metadata(reinterpret_cast<void *>(chunk));
280 CHECK(metadata_);
283 bool LsanMetadata::allocated() const {
284 return reinterpret_cast<ChunkMetadata *>(metadata_)->allocated;
287 ChunkTag LsanMetadata::tag() const {
288 return reinterpret_cast<ChunkMetadata *>(metadata_)->tag;
291 void LsanMetadata::set_tag(ChunkTag value) {
292 reinterpret_cast<ChunkMetadata *>(metadata_)->tag = value;
295 uptr LsanMetadata::requested_size() const {
296 return reinterpret_cast<ChunkMetadata *>(metadata_)->requested_size;
299 u32 LsanMetadata::stack_trace_id() const {
300 return reinterpret_cast<ChunkMetadata *>(metadata_)->stack_trace_id;
303 void ForEachChunk(ForEachChunkCallback callback, void *arg) {
304 allocator.ForEachChunk(callback, arg);
307 IgnoreObjectResult IgnoreObjectLocked(const void *p) {
308 void *chunk = allocator.GetBlockBegin(p);
309 if (!chunk || p < chunk) return kIgnoreObjectInvalid;
310 ChunkMetadata *m = Metadata(chunk);
311 CHECK(m);
312 if (m->allocated && (uptr)p < (uptr)chunk + m->requested_size) {
313 if (m->tag == kIgnored)
314 return kIgnoreObjectAlreadyIgnored;
315 m->tag = kIgnored;
316 return kIgnoreObjectSuccess;
317 } else {
318 return kIgnoreObjectInvalid;
322 void GetAdditionalThreadContextPtrs(ThreadContextBase *tctx, void *ptrs) {
323 // This function can be used to treat memory reachable from `tctx` as live.
324 // This is useful for threads that have been created but not yet started.
326 // This is currently a no-op because the LSan `pthread_create()` interceptor
327 // blocks until the child thread starts which keeps the thread's `arg` pointer
328 // live.
331 } // namespace __lsan
333 using namespace __lsan;
335 extern "C" {
336 SANITIZER_INTERFACE_ATTRIBUTE
337 uptr __sanitizer_get_current_allocated_bytes() {
338 uptr stats[AllocatorStatCount];
339 allocator.GetStats(stats);
340 return stats[AllocatorStatAllocated];
343 SANITIZER_INTERFACE_ATTRIBUTE
344 uptr __sanitizer_get_heap_size() {
345 uptr stats[AllocatorStatCount];
346 allocator.GetStats(stats);
347 return stats[AllocatorStatMapped];
350 SANITIZER_INTERFACE_ATTRIBUTE
351 uptr __sanitizer_get_free_bytes() { return 0; }
353 SANITIZER_INTERFACE_ATTRIBUTE
354 uptr __sanitizer_get_unmapped_bytes() { return 0; }
356 SANITIZER_INTERFACE_ATTRIBUTE
357 uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
359 SANITIZER_INTERFACE_ATTRIBUTE
360 int __sanitizer_get_ownership(const void *p) { return Metadata(p) != nullptr; }
362 SANITIZER_INTERFACE_ATTRIBUTE
363 uptr __sanitizer_get_allocated_size(const void *p) {
364 return GetMallocUsableSize(p);
367 } // extern "C"