d: Merge upstream dmd d579c467c1, phobos 88aa69b14.
[official-gcc.git] / gcc / ira-color.cc
blob4a1a325e8e31bc495846e840b0a61251406aeb92
1 /* IRA allocation based on graph coloring.
2 Copyright (C) 2006-2022 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "insn-config.h"
33 #include "regs.h"
34 #include "ira.h"
35 #include "ira-int.h"
36 #include "reload.h"
37 #include "cfgloop.h"
39 /* To prevent soft conflict detection becoming quadratic in the
40 loop depth. Only for very pathological cases, so it hardly
41 seems worth a --param. */
42 const int max_soft_conflict_loop_depth = 64;
44 typedef struct allocno_hard_regs *allocno_hard_regs_t;
46 /* The structure contains information about hard registers can be
47 assigned to allocnos. Usually it is allocno profitable hard
48 registers but in some cases this set can be a bit different. Major
49 reason of the difference is a requirement to use hard register sets
50 that form a tree or a forest (set of trees), i.e. hard register set
51 of a node should contain hard register sets of its subnodes. */
52 struct allocno_hard_regs
54 /* Hard registers can be assigned to an allocno. */
55 HARD_REG_SET set;
56 /* Overall (spilling) cost of all allocnos with given register
57 set. */
58 int64_t cost;
61 typedef struct allocno_hard_regs_node *allocno_hard_regs_node_t;
63 /* A node representing allocno hard registers. Such nodes form a
64 forest (set of trees). Each subnode of given node in the forest
65 refers for hard register set (usually allocno profitable hard
66 register set) which is a subset of one referred from given
67 node. */
68 struct allocno_hard_regs_node
70 /* Set up number of the node in preorder traversing of the forest. */
71 int preorder_num;
72 /* Used for different calculation like finding conflict size of an
73 allocno. */
74 int check;
75 /* Used for calculation of conflict size of an allocno. The
76 conflict size of the allocno is maximal number of given allocno
77 hard registers needed for allocation of the conflicting allocnos.
78 Given allocno is trivially colored if this number plus the number
79 of hard registers needed for given allocno is not greater than
80 the number of given allocno hard register set. */
81 int conflict_size;
82 /* The number of hard registers given by member hard_regs. */
83 int hard_regs_num;
84 /* The following member is used to form the final forest. */
85 bool used_p;
86 /* Pointer to the corresponding profitable hard registers. */
87 allocno_hard_regs_t hard_regs;
88 /* Parent, first subnode, previous and next node with the same
89 parent in the forest. */
90 allocno_hard_regs_node_t parent, first, prev, next;
93 /* Info about changing hard reg costs of an allocno. */
94 struct update_cost_record
96 /* Hard regno for which we changed the cost. */
97 int hard_regno;
98 /* Divisor used when we changed the cost of HARD_REGNO. */
99 int divisor;
100 /* Next record for given allocno. */
101 struct update_cost_record *next;
104 /* To decrease footprint of ira_allocno structure we store all data
105 needed only for coloring in the following structure. */
106 struct allocno_color_data
108 /* TRUE value means that the allocno was not removed yet from the
109 conflicting graph during coloring. */
110 unsigned int in_graph_p : 1;
111 /* TRUE if it is put on the stack to make other allocnos
112 colorable. */
113 unsigned int may_be_spilled_p : 1;
114 /* TRUE if the allocno is trivially colorable. */
115 unsigned int colorable_p : 1;
116 /* Number of hard registers of the allocno class really
117 available for the allocno allocation. It is number of the
118 profitable hard regs. */
119 int available_regs_num;
120 /* Sum of frequencies of hard register preferences of all
121 conflicting allocnos which are not the coloring stack yet. */
122 int conflict_allocno_hard_prefs;
123 /* Allocnos in a bucket (used in coloring) chained by the following
124 two members. */
125 ira_allocno_t next_bucket_allocno;
126 ira_allocno_t prev_bucket_allocno;
127 /* Used for temporary purposes. */
128 int temp;
129 /* Used to exclude repeated processing. */
130 int last_process;
131 /* Profitable hard regs available for this pseudo allocation. It
132 means that the set excludes unavailable hard regs and hard regs
133 conflicting with given pseudo. They should be of the allocno
134 class. */
135 HARD_REG_SET profitable_hard_regs;
136 /* The allocno hard registers node. */
137 allocno_hard_regs_node_t hard_regs_node;
138 /* Array of structures allocno_hard_regs_subnode representing
139 given allocno hard registers node (the 1st element in the array)
140 and all its subnodes in the tree (forest) of allocno hard
141 register nodes (see comments above). */
142 int hard_regs_subnodes_start;
143 /* The length of the previous array. */
144 int hard_regs_subnodes_num;
145 /* Records about updating allocno hard reg costs from copies. If
146 the allocno did not get expected hard register, these records are
147 used to restore original hard reg costs of allocnos connected to
148 this allocno by copies. */
149 struct update_cost_record *update_cost_records;
150 /* Threads. We collect allocnos connected by copies into threads
151 and try to assign hard regs to allocnos by threads. */
152 /* Allocno representing all thread. */
153 ira_allocno_t first_thread_allocno;
154 /* Allocnos in thread forms a cycle list through the following
155 member. */
156 ira_allocno_t next_thread_allocno;
157 /* All thread frequency. Defined only for first thread allocno. */
158 int thread_freq;
159 /* Sum of frequencies of hard register preferences of the allocno. */
160 int hard_reg_prefs;
163 /* See above. */
164 typedef struct allocno_color_data *allocno_color_data_t;
166 /* Container for storing allocno data concerning coloring. */
167 static allocno_color_data_t allocno_color_data;
169 /* Macro to access the data concerning coloring. */
170 #define ALLOCNO_COLOR_DATA(a) ((allocno_color_data_t) ALLOCNO_ADD_DATA (a))
172 /* Used for finding allocno colorability to exclude repeated allocno
173 processing and for updating preferencing to exclude repeated
174 allocno processing during assignment. */
175 static int curr_allocno_process;
177 /* This file contains code for regional graph coloring, spill/restore
178 code placement optimization, and code helping the reload pass to do
179 a better job. */
181 /* Bitmap of allocnos which should be colored. */
182 static bitmap coloring_allocno_bitmap;
184 /* Bitmap of allocnos which should be taken into account during
185 coloring. In general case it contains allocnos from
186 coloring_allocno_bitmap plus other already colored conflicting
187 allocnos. */
188 static bitmap consideration_allocno_bitmap;
190 /* All allocnos sorted according their priorities. */
191 static ira_allocno_t *sorted_allocnos;
193 /* Vec representing the stack of allocnos used during coloring. */
194 static vec<ira_allocno_t> allocno_stack_vec;
196 /* Helper for qsort comparison callbacks - return a positive integer if
197 X > Y, or a negative value otherwise. Use a conditional expression
198 instead of a difference computation to insulate from possible overflow
199 issues, e.g. X - Y < 0 for some X > 0 and Y < 0. */
200 #define SORTGT(x,y) (((x) > (y)) ? 1 : -1)
204 /* Definition of vector of allocno hard registers. */
206 /* Vector of unique allocno hard registers. */
207 static vec<allocno_hard_regs_t> allocno_hard_regs_vec;
209 struct allocno_hard_regs_hasher : nofree_ptr_hash <allocno_hard_regs>
211 static inline hashval_t hash (const allocno_hard_regs *);
212 static inline bool equal (const allocno_hard_regs *,
213 const allocno_hard_regs *);
216 /* Returns hash value for allocno hard registers V. */
217 inline hashval_t
218 allocno_hard_regs_hasher::hash (const allocno_hard_regs *hv)
220 return iterative_hash (&hv->set, sizeof (HARD_REG_SET), 0);
223 /* Compares allocno hard registers V1 and V2. */
224 inline bool
225 allocno_hard_regs_hasher::equal (const allocno_hard_regs *hv1,
226 const allocno_hard_regs *hv2)
228 return hv1->set == hv2->set;
231 /* Hash table of unique allocno hard registers. */
232 static hash_table<allocno_hard_regs_hasher> *allocno_hard_regs_htab;
234 /* Return allocno hard registers in the hash table equal to HV. */
235 static allocno_hard_regs_t
236 find_hard_regs (allocno_hard_regs_t hv)
238 return allocno_hard_regs_htab->find (hv);
241 /* Insert allocno hard registers HV in the hash table (if it is not
242 there yet) and return the value which in the table. */
243 static allocno_hard_regs_t
244 insert_hard_regs (allocno_hard_regs_t hv)
246 allocno_hard_regs **slot = allocno_hard_regs_htab->find_slot (hv, INSERT);
248 if (*slot == NULL)
249 *slot = hv;
250 return *slot;
253 /* Initialize data concerning allocno hard registers. */
254 static void
255 init_allocno_hard_regs (void)
257 allocno_hard_regs_vec.create (200);
258 allocno_hard_regs_htab
259 = new hash_table<allocno_hard_regs_hasher> (200);
262 /* Add (or update info about) allocno hard registers with SET and
263 COST. */
264 static allocno_hard_regs_t
265 add_allocno_hard_regs (HARD_REG_SET set, int64_t cost)
267 struct allocno_hard_regs temp;
268 allocno_hard_regs_t hv;
270 gcc_assert (! hard_reg_set_empty_p (set));
271 temp.set = set;
272 if ((hv = find_hard_regs (&temp)) != NULL)
273 hv->cost += cost;
274 else
276 hv = ((struct allocno_hard_regs *)
277 ira_allocate (sizeof (struct allocno_hard_regs)));
278 hv->set = set;
279 hv->cost = cost;
280 allocno_hard_regs_vec.safe_push (hv);
281 insert_hard_regs (hv);
283 return hv;
286 /* Finalize data concerning allocno hard registers. */
287 static void
288 finish_allocno_hard_regs (void)
290 int i;
291 allocno_hard_regs_t hv;
293 for (i = 0;
294 allocno_hard_regs_vec.iterate (i, &hv);
295 i++)
296 ira_free (hv);
297 delete allocno_hard_regs_htab;
298 allocno_hard_regs_htab = NULL;
299 allocno_hard_regs_vec.release ();
302 /* Sort hard regs according to their frequency of usage. */
303 static int
304 allocno_hard_regs_compare (const void *v1p, const void *v2p)
306 allocno_hard_regs_t hv1 = *(const allocno_hard_regs_t *) v1p;
307 allocno_hard_regs_t hv2 = *(const allocno_hard_regs_t *) v2p;
309 if (hv2->cost > hv1->cost)
310 return 1;
311 else if (hv2->cost < hv1->cost)
312 return -1;
313 return SORTGT (allocno_hard_regs_hasher::hash(hv2), allocno_hard_regs_hasher::hash(hv1));
318 /* Used for finding a common ancestor of two allocno hard registers
319 nodes in the forest. We use the current value of
320 'node_check_tick' to mark all nodes from one node to the top and
321 then walking up from another node until we find a marked node.
323 It is also used to figure out allocno colorability as a mark that
324 we already reset value of member 'conflict_size' for the forest
325 node corresponding to the processed allocno. */
326 static int node_check_tick;
328 /* Roots of the forest containing hard register sets can be assigned
329 to allocnos. */
330 static allocno_hard_regs_node_t hard_regs_roots;
332 /* Definition of vector of allocno hard register nodes. */
334 /* Vector used to create the forest. */
335 static vec<allocno_hard_regs_node_t> hard_regs_node_vec;
337 /* Create and return allocno hard registers node containing allocno
338 hard registers HV. */
339 static allocno_hard_regs_node_t
340 create_new_allocno_hard_regs_node (allocno_hard_regs_t hv)
342 allocno_hard_regs_node_t new_node;
344 new_node = ((struct allocno_hard_regs_node *)
345 ira_allocate (sizeof (struct allocno_hard_regs_node)));
346 new_node->check = 0;
347 new_node->hard_regs = hv;
348 new_node->hard_regs_num = hard_reg_set_size (hv->set);
349 new_node->first = NULL;
350 new_node->used_p = false;
351 return new_node;
354 /* Add allocno hard registers node NEW_NODE to the forest on its level
355 given by ROOTS. */
356 static void
357 add_new_allocno_hard_regs_node_to_forest (allocno_hard_regs_node_t *roots,
358 allocno_hard_regs_node_t new_node)
360 new_node->next = *roots;
361 if (new_node->next != NULL)
362 new_node->next->prev = new_node;
363 new_node->prev = NULL;
364 *roots = new_node;
367 /* Add allocno hard registers HV (or its best approximation if it is
368 not possible) to the forest on its level given by ROOTS. */
369 static void
370 add_allocno_hard_regs_to_forest (allocno_hard_regs_node_t *roots,
371 allocno_hard_regs_t hv)
373 unsigned int i, start;
374 allocno_hard_regs_node_t node, prev, new_node;
375 HARD_REG_SET temp_set;
376 allocno_hard_regs_t hv2;
378 start = hard_regs_node_vec.length ();
379 for (node = *roots; node != NULL; node = node->next)
381 if (hv->set == node->hard_regs->set)
382 return;
383 if (hard_reg_set_subset_p (hv->set, node->hard_regs->set))
385 add_allocno_hard_regs_to_forest (&node->first, hv);
386 return;
388 if (hard_reg_set_subset_p (node->hard_regs->set, hv->set))
389 hard_regs_node_vec.safe_push (node);
390 else if (hard_reg_set_intersect_p (hv->set, node->hard_regs->set))
392 temp_set = hv->set & node->hard_regs->set;
393 hv2 = add_allocno_hard_regs (temp_set, hv->cost);
394 add_allocno_hard_regs_to_forest (&node->first, hv2);
397 if (hard_regs_node_vec.length ()
398 > start + 1)
400 /* Create a new node which contains nodes in hard_regs_node_vec. */
401 CLEAR_HARD_REG_SET (temp_set);
402 for (i = start;
403 i < hard_regs_node_vec.length ();
404 i++)
406 node = hard_regs_node_vec[i];
407 temp_set |= node->hard_regs->set;
409 hv = add_allocno_hard_regs (temp_set, hv->cost);
410 new_node = create_new_allocno_hard_regs_node (hv);
411 prev = NULL;
412 for (i = start;
413 i < hard_regs_node_vec.length ();
414 i++)
416 node = hard_regs_node_vec[i];
417 if (node->prev == NULL)
418 *roots = node->next;
419 else
420 node->prev->next = node->next;
421 if (node->next != NULL)
422 node->next->prev = node->prev;
423 if (prev == NULL)
424 new_node->first = node;
425 else
426 prev->next = node;
427 node->prev = prev;
428 node->next = NULL;
429 prev = node;
431 add_new_allocno_hard_regs_node_to_forest (roots, new_node);
433 hard_regs_node_vec.truncate (start);
436 /* Add allocno hard registers nodes starting with the forest level
437 given by FIRST which contains biggest set inside SET. */
438 static void
439 collect_allocno_hard_regs_cover (allocno_hard_regs_node_t first,
440 HARD_REG_SET set)
442 allocno_hard_regs_node_t node;
444 ira_assert (first != NULL);
445 for (node = first; node != NULL; node = node->next)
446 if (hard_reg_set_subset_p (node->hard_regs->set, set))
447 hard_regs_node_vec.safe_push (node);
448 else if (hard_reg_set_intersect_p (set, node->hard_regs->set))
449 collect_allocno_hard_regs_cover (node->first, set);
452 /* Set up field parent as PARENT in all allocno hard registers nodes
453 in forest given by FIRST. */
454 static void
455 setup_allocno_hard_regs_nodes_parent (allocno_hard_regs_node_t first,
456 allocno_hard_regs_node_t parent)
458 allocno_hard_regs_node_t node;
460 for (node = first; node != NULL; node = node->next)
462 node->parent = parent;
463 setup_allocno_hard_regs_nodes_parent (node->first, node);
467 /* Return allocno hard registers node which is a first common ancestor
468 node of FIRST and SECOND in the forest. */
469 static allocno_hard_regs_node_t
470 first_common_ancestor_node (allocno_hard_regs_node_t first,
471 allocno_hard_regs_node_t second)
473 allocno_hard_regs_node_t node;
475 node_check_tick++;
476 for (node = first; node != NULL; node = node->parent)
477 node->check = node_check_tick;
478 for (node = second; node != NULL; node = node->parent)
479 if (node->check == node_check_tick)
480 return node;
481 return first_common_ancestor_node (second, first);
484 /* Print hard reg set SET to F. */
485 static void
486 print_hard_reg_set (FILE *f, HARD_REG_SET set, bool new_line_p)
488 int i, start, end;
490 for (start = end = -1, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
492 bool reg_included = TEST_HARD_REG_BIT (set, i);
494 if (reg_included)
496 if (start == -1)
497 start = i;
498 end = i;
500 if (start >= 0 && (!reg_included || i == FIRST_PSEUDO_REGISTER - 1))
502 if (start == end)
503 fprintf (f, " %d", start);
504 else if (start == end + 1)
505 fprintf (f, " %d %d", start, end);
506 else
507 fprintf (f, " %d-%d", start, end);
508 start = -1;
511 if (new_line_p)
512 fprintf (f, "\n");
515 /* Print allocno hard register subforest given by ROOTS and its LEVEL
516 to F. */
517 static void
518 print_hard_regs_subforest (FILE *f, allocno_hard_regs_node_t roots,
519 int level)
521 int i;
522 allocno_hard_regs_node_t node;
524 for (node = roots; node != NULL; node = node->next)
526 fprintf (f, " ");
527 for (i = 0; i < level * 2; i++)
528 fprintf (f, " ");
529 fprintf (f, "%d:(", node->preorder_num);
530 print_hard_reg_set (f, node->hard_regs->set, false);
531 fprintf (f, ")@%" PRId64"\n", node->hard_regs->cost);
532 print_hard_regs_subforest (f, node->first, level + 1);
536 /* Print the allocno hard register forest to F. */
537 static void
538 print_hard_regs_forest (FILE *f)
540 fprintf (f, " Hard reg set forest:\n");
541 print_hard_regs_subforest (f, hard_regs_roots, 1);
544 /* Print the allocno hard register forest to stderr. */
545 void
546 ira_debug_hard_regs_forest (void)
548 print_hard_regs_forest (stderr);
551 /* Remove unused allocno hard registers nodes from forest given by its
552 *ROOTS. */
553 static void
554 remove_unused_allocno_hard_regs_nodes (allocno_hard_regs_node_t *roots)
556 allocno_hard_regs_node_t node, prev, next, last;
558 for (prev = NULL, node = *roots; node != NULL; node = next)
560 next = node->next;
561 if (node->used_p)
563 remove_unused_allocno_hard_regs_nodes (&node->first);
564 prev = node;
566 else
568 for (last = node->first;
569 last != NULL && last->next != NULL;
570 last = last->next)
572 if (last != NULL)
574 if (prev == NULL)
575 *roots = node->first;
576 else
577 prev->next = node->first;
578 if (next != NULL)
579 next->prev = last;
580 last->next = next;
581 next = node->first;
583 else
585 if (prev == NULL)
586 *roots = next;
587 else
588 prev->next = next;
589 if (next != NULL)
590 next->prev = prev;
592 ira_free (node);
597 /* Set up fields preorder_num starting with START_NUM in all allocno
598 hard registers nodes in forest given by FIRST. Return biggest set
599 PREORDER_NUM increased by 1. */
600 static int
601 enumerate_allocno_hard_regs_nodes (allocno_hard_regs_node_t first,
602 allocno_hard_regs_node_t parent,
603 int start_num)
605 allocno_hard_regs_node_t node;
607 for (node = first; node != NULL; node = node->next)
609 node->preorder_num = start_num++;
610 node->parent = parent;
611 start_num = enumerate_allocno_hard_regs_nodes (node->first, node,
612 start_num);
614 return start_num;
617 /* Number of allocno hard registers nodes in the forest. */
618 static int allocno_hard_regs_nodes_num;
620 /* Table preorder number of allocno hard registers node in the forest
621 -> the allocno hard registers node. */
622 static allocno_hard_regs_node_t *allocno_hard_regs_nodes;
624 /* See below. */
625 typedef struct allocno_hard_regs_subnode *allocno_hard_regs_subnode_t;
627 /* The structure is used to describes all subnodes (not only immediate
628 ones) in the mentioned above tree for given allocno hard register
629 node. The usage of such data accelerates calculation of
630 colorability of given allocno. */
631 struct allocno_hard_regs_subnode
633 /* The conflict size of conflicting allocnos whose hard register
634 sets are equal sets (plus supersets if given node is given
635 allocno hard registers node) of one in the given node. */
636 int left_conflict_size;
637 /* The summary conflict size of conflicting allocnos whose hard
638 register sets are strict subsets of one in the given node.
639 Overall conflict size is
640 left_conflict_subnodes_size
641 + MIN (max_node_impact - left_conflict_subnodes_size,
642 left_conflict_size)
644 short left_conflict_subnodes_size;
645 short max_node_impact;
648 /* Container for hard regs subnodes of all allocnos. */
649 static allocno_hard_regs_subnode_t allocno_hard_regs_subnodes;
651 /* Table (preorder number of allocno hard registers node in the
652 forest, preorder number of allocno hard registers subnode) -> index
653 of the subnode relative to the node. -1 if it is not a
654 subnode. */
655 static int *allocno_hard_regs_subnode_index;
657 /* Setup arrays ALLOCNO_HARD_REGS_NODES and
658 ALLOCNO_HARD_REGS_SUBNODE_INDEX. */
659 static void
660 setup_allocno_hard_regs_subnode_index (allocno_hard_regs_node_t first)
662 allocno_hard_regs_node_t node, parent;
663 int index;
665 for (node = first; node != NULL; node = node->next)
667 allocno_hard_regs_nodes[node->preorder_num] = node;
668 for (parent = node; parent != NULL; parent = parent->parent)
670 index = parent->preorder_num * allocno_hard_regs_nodes_num;
671 allocno_hard_regs_subnode_index[index + node->preorder_num]
672 = node->preorder_num - parent->preorder_num;
674 setup_allocno_hard_regs_subnode_index (node->first);
678 /* Count all allocno hard registers nodes in tree ROOT. */
679 static int
680 get_allocno_hard_regs_subnodes_num (allocno_hard_regs_node_t root)
682 int len = 1;
684 for (root = root->first; root != NULL; root = root->next)
685 len += get_allocno_hard_regs_subnodes_num (root);
686 return len;
689 /* Build the forest of allocno hard registers nodes and assign each
690 allocno a node from the forest. */
691 static void
692 form_allocno_hard_regs_nodes_forest (void)
694 unsigned int i, j, size, len;
695 int start;
696 ira_allocno_t a;
697 allocno_hard_regs_t hv;
698 bitmap_iterator bi;
699 HARD_REG_SET temp;
700 allocno_hard_regs_node_t node, allocno_hard_regs_node;
701 allocno_color_data_t allocno_data;
703 node_check_tick = 0;
704 init_allocno_hard_regs ();
705 hard_regs_roots = NULL;
706 hard_regs_node_vec.create (100);
707 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
708 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, i))
710 CLEAR_HARD_REG_SET (temp);
711 SET_HARD_REG_BIT (temp, i);
712 hv = add_allocno_hard_regs (temp, 0);
713 node = create_new_allocno_hard_regs_node (hv);
714 add_new_allocno_hard_regs_node_to_forest (&hard_regs_roots, node);
716 start = allocno_hard_regs_vec.length ();
717 EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
719 a = ira_allocnos[i];
720 allocno_data = ALLOCNO_COLOR_DATA (a);
722 if (hard_reg_set_empty_p (allocno_data->profitable_hard_regs))
723 continue;
724 hv = (add_allocno_hard_regs
725 (allocno_data->profitable_hard_regs,
726 ALLOCNO_MEMORY_COST (a) - ALLOCNO_CLASS_COST (a)));
728 temp = ~ira_no_alloc_regs;
729 add_allocno_hard_regs (temp, 0);
730 qsort (allocno_hard_regs_vec.address () + start,
731 allocno_hard_regs_vec.length () - start,
732 sizeof (allocno_hard_regs_t), allocno_hard_regs_compare);
733 for (i = start;
734 allocno_hard_regs_vec.iterate (i, &hv);
735 i++)
737 add_allocno_hard_regs_to_forest (&hard_regs_roots, hv);
738 ira_assert (hard_regs_node_vec.length () == 0);
740 /* We need to set up parent fields for right work of
741 first_common_ancestor_node. */
742 setup_allocno_hard_regs_nodes_parent (hard_regs_roots, NULL);
743 EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
745 a = ira_allocnos[i];
746 allocno_data = ALLOCNO_COLOR_DATA (a);
747 if (hard_reg_set_empty_p (allocno_data->profitable_hard_regs))
748 continue;
749 hard_regs_node_vec.truncate (0);
750 collect_allocno_hard_regs_cover (hard_regs_roots,
751 allocno_data->profitable_hard_regs);
752 allocno_hard_regs_node = NULL;
753 for (j = 0; hard_regs_node_vec.iterate (j, &node); j++)
754 allocno_hard_regs_node
755 = (j == 0
756 ? node
757 : first_common_ancestor_node (node, allocno_hard_regs_node));
758 /* That is a temporary storage. */
759 allocno_hard_regs_node->used_p = true;
760 allocno_data->hard_regs_node = allocno_hard_regs_node;
762 ira_assert (hard_regs_roots->next == NULL);
763 hard_regs_roots->used_p = true;
764 remove_unused_allocno_hard_regs_nodes (&hard_regs_roots);
765 allocno_hard_regs_nodes_num
766 = enumerate_allocno_hard_regs_nodes (hard_regs_roots, NULL, 0);
767 allocno_hard_regs_nodes
768 = ((allocno_hard_regs_node_t *)
769 ira_allocate (allocno_hard_regs_nodes_num
770 * sizeof (allocno_hard_regs_node_t)));
771 size = allocno_hard_regs_nodes_num * allocno_hard_regs_nodes_num;
772 allocno_hard_regs_subnode_index
773 = (int *) ira_allocate (size * sizeof (int));
774 for (i = 0; i < size; i++)
775 allocno_hard_regs_subnode_index[i] = -1;
776 setup_allocno_hard_regs_subnode_index (hard_regs_roots);
777 start = 0;
778 EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
780 a = ira_allocnos[i];
781 allocno_data = ALLOCNO_COLOR_DATA (a);
782 if (hard_reg_set_empty_p (allocno_data->profitable_hard_regs))
783 continue;
784 len = get_allocno_hard_regs_subnodes_num (allocno_data->hard_regs_node);
785 allocno_data->hard_regs_subnodes_start = start;
786 allocno_data->hard_regs_subnodes_num = len;
787 start += len;
789 allocno_hard_regs_subnodes
790 = ((allocno_hard_regs_subnode_t)
791 ira_allocate (sizeof (struct allocno_hard_regs_subnode) * start));
792 hard_regs_node_vec.release ();
795 /* Free tree of allocno hard registers nodes given by its ROOT. */
796 static void
797 finish_allocno_hard_regs_nodes_tree (allocno_hard_regs_node_t root)
799 allocno_hard_regs_node_t child, next;
801 for (child = root->first; child != NULL; child = next)
803 next = child->next;
804 finish_allocno_hard_regs_nodes_tree (child);
806 ira_free (root);
809 /* Finish work with the forest of allocno hard registers nodes. */
810 static void
811 finish_allocno_hard_regs_nodes_forest (void)
813 allocno_hard_regs_node_t node, next;
815 ira_free (allocno_hard_regs_subnodes);
816 for (node = hard_regs_roots; node != NULL; node = next)
818 next = node->next;
819 finish_allocno_hard_regs_nodes_tree (node);
821 ira_free (allocno_hard_regs_nodes);
822 ira_free (allocno_hard_regs_subnode_index);
823 finish_allocno_hard_regs ();
826 /* Set up left conflict sizes and left conflict subnodes sizes of hard
827 registers subnodes of allocno A. Return TRUE if allocno A is
828 trivially colorable. */
829 static bool
830 setup_left_conflict_sizes_p (ira_allocno_t a)
832 int i, k, nobj, start;
833 int conflict_size, left_conflict_subnodes_size, node_preorder_num;
834 allocno_color_data_t data;
835 HARD_REG_SET profitable_hard_regs;
836 allocno_hard_regs_subnode_t subnodes;
837 allocno_hard_regs_node_t node;
838 HARD_REG_SET node_set;
840 nobj = ALLOCNO_NUM_OBJECTS (a);
841 data = ALLOCNO_COLOR_DATA (a);
842 subnodes = allocno_hard_regs_subnodes + data->hard_regs_subnodes_start;
843 profitable_hard_regs = data->profitable_hard_regs;
844 node = data->hard_regs_node;
845 node_preorder_num = node->preorder_num;
846 node_set = node->hard_regs->set;
847 node_check_tick++;
848 for (k = 0; k < nobj; k++)
850 ira_object_t obj = ALLOCNO_OBJECT (a, k);
851 ira_object_t conflict_obj;
852 ira_object_conflict_iterator oci;
854 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
856 int size;
857 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
858 allocno_hard_regs_node_t conflict_node, temp_node;
859 HARD_REG_SET conflict_node_set;
860 allocno_color_data_t conflict_data;
862 conflict_data = ALLOCNO_COLOR_DATA (conflict_a);
863 if (! ALLOCNO_COLOR_DATA (conflict_a)->in_graph_p
864 || ! hard_reg_set_intersect_p (profitable_hard_regs,
865 conflict_data
866 ->profitable_hard_regs))
867 continue;
868 conflict_node = conflict_data->hard_regs_node;
869 conflict_node_set = conflict_node->hard_regs->set;
870 if (hard_reg_set_subset_p (node_set, conflict_node_set))
871 temp_node = node;
872 else
874 ira_assert (hard_reg_set_subset_p (conflict_node_set, node_set));
875 temp_node = conflict_node;
877 if (temp_node->check != node_check_tick)
879 temp_node->check = node_check_tick;
880 temp_node->conflict_size = 0;
882 size = (ira_reg_class_max_nregs
883 [ALLOCNO_CLASS (conflict_a)][ALLOCNO_MODE (conflict_a)]);
884 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1)
885 /* We will deal with the subwords individually. */
886 size = 1;
887 temp_node->conflict_size += size;
890 for (i = 0; i < data->hard_regs_subnodes_num; i++)
892 allocno_hard_regs_node_t temp_node;
894 temp_node = allocno_hard_regs_nodes[i + node_preorder_num];
895 ira_assert (temp_node->preorder_num == i + node_preorder_num);
896 subnodes[i].left_conflict_size = (temp_node->check != node_check_tick
897 ? 0 : temp_node->conflict_size);
898 if (hard_reg_set_subset_p (temp_node->hard_regs->set,
899 profitable_hard_regs))
900 subnodes[i].max_node_impact = temp_node->hard_regs_num;
901 else
903 HARD_REG_SET temp_set;
904 int j, n, hard_regno;
905 enum reg_class aclass;
907 temp_set = temp_node->hard_regs->set & profitable_hard_regs;
908 aclass = ALLOCNO_CLASS (a);
909 for (n = 0, j = ira_class_hard_regs_num[aclass] - 1; j >= 0; j--)
911 hard_regno = ira_class_hard_regs[aclass][j];
912 if (TEST_HARD_REG_BIT (temp_set, hard_regno))
913 n++;
915 subnodes[i].max_node_impact = n;
917 subnodes[i].left_conflict_subnodes_size = 0;
919 start = node_preorder_num * allocno_hard_regs_nodes_num;
920 for (i = data->hard_regs_subnodes_num - 1; i > 0; i--)
922 int size, parent_i;
923 allocno_hard_regs_node_t parent;
925 size = (subnodes[i].left_conflict_subnodes_size
926 + MIN (subnodes[i].max_node_impact
927 - subnodes[i].left_conflict_subnodes_size,
928 subnodes[i].left_conflict_size));
929 parent = allocno_hard_regs_nodes[i + node_preorder_num]->parent;
930 gcc_checking_assert(parent);
931 parent_i
932 = allocno_hard_regs_subnode_index[start + parent->preorder_num];
933 gcc_checking_assert(parent_i >= 0);
934 subnodes[parent_i].left_conflict_subnodes_size += size;
936 left_conflict_subnodes_size = subnodes[0].left_conflict_subnodes_size;
937 conflict_size
938 = (left_conflict_subnodes_size
939 + MIN (subnodes[0].max_node_impact - left_conflict_subnodes_size,
940 subnodes[0].left_conflict_size));
941 conflict_size += ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
942 data->colorable_p = conflict_size <= data->available_regs_num;
943 return data->colorable_p;
946 /* Update left conflict sizes of hard registers subnodes of allocno A
947 after removing allocno REMOVED_A with SIZE from the conflict graph.
948 Return TRUE if A is trivially colorable. */
949 static bool
950 update_left_conflict_sizes_p (ira_allocno_t a,
951 ira_allocno_t removed_a, int size)
953 int i, conflict_size, before_conflict_size, diff, start;
954 int node_preorder_num, parent_i;
955 allocno_hard_regs_node_t node, removed_node, parent;
956 allocno_hard_regs_subnode_t subnodes;
957 allocno_color_data_t data = ALLOCNO_COLOR_DATA (a);
959 ira_assert (! data->colorable_p);
960 node = data->hard_regs_node;
961 node_preorder_num = node->preorder_num;
962 removed_node = ALLOCNO_COLOR_DATA (removed_a)->hard_regs_node;
963 ira_assert (hard_reg_set_subset_p (removed_node->hard_regs->set,
964 node->hard_regs->set)
965 || hard_reg_set_subset_p (node->hard_regs->set,
966 removed_node->hard_regs->set));
967 start = node_preorder_num * allocno_hard_regs_nodes_num;
968 i = allocno_hard_regs_subnode_index[start + removed_node->preorder_num];
969 if (i < 0)
970 i = 0;
971 subnodes = allocno_hard_regs_subnodes + data->hard_regs_subnodes_start;
972 before_conflict_size
973 = (subnodes[i].left_conflict_subnodes_size
974 + MIN (subnodes[i].max_node_impact
975 - subnodes[i].left_conflict_subnodes_size,
976 subnodes[i].left_conflict_size));
977 subnodes[i].left_conflict_size -= size;
978 for (;;)
980 conflict_size
981 = (subnodes[i].left_conflict_subnodes_size
982 + MIN (subnodes[i].max_node_impact
983 - subnodes[i].left_conflict_subnodes_size,
984 subnodes[i].left_conflict_size));
985 if ((diff = before_conflict_size - conflict_size) == 0)
986 break;
987 ira_assert (conflict_size < before_conflict_size);
988 parent = allocno_hard_regs_nodes[i + node_preorder_num]->parent;
989 if (parent == NULL)
990 break;
991 parent_i
992 = allocno_hard_regs_subnode_index[start + parent->preorder_num];
993 if (parent_i < 0)
994 break;
995 i = parent_i;
996 before_conflict_size
997 = (subnodes[i].left_conflict_subnodes_size
998 + MIN (subnodes[i].max_node_impact
999 - subnodes[i].left_conflict_subnodes_size,
1000 subnodes[i].left_conflict_size));
1001 subnodes[i].left_conflict_subnodes_size -= diff;
1003 if (i != 0
1004 || (conflict_size
1005 + ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]
1006 > data->available_regs_num))
1007 return false;
1008 data->colorable_p = true;
1009 return true;
1012 /* Return true if allocno A has empty profitable hard regs. */
1013 static bool
1014 empty_profitable_hard_regs (ira_allocno_t a)
1016 allocno_color_data_t data = ALLOCNO_COLOR_DATA (a);
1018 return hard_reg_set_empty_p (data->profitable_hard_regs);
1021 /* Set up profitable hard registers for each allocno being
1022 colored. */
1023 static void
1024 setup_profitable_hard_regs (void)
1026 unsigned int i;
1027 int j, k, nobj, hard_regno, nregs, class_size;
1028 ira_allocno_t a;
1029 bitmap_iterator bi;
1030 enum reg_class aclass;
1031 machine_mode mode;
1032 allocno_color_data_t data;
1034 /* Initial set up from allocno classes and explicitly conflicting
1035 hard regs. */
1036 EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
1038 a = ira_allocnos[i];
1039 if ((aclass = ALLOCNO_CLASS (a)) == NO_REGS)
1040 continue;
1041 data = ALLOCNO_COLOR_DATA (a);
1042 if (ALLOCNO_UPDATED_HARD_REG_COSTS (a) == NULL
1043 && ALLOCNO_CLASS_COST (a) > ALLOCNO_MEMORY_COST (a)
1044 /* Do not empty profitable regs for static chain pointer
1045 pseudo when non-local goto is used. */
1046 && ! non_spilled_static_chain_regno_p (ALLOCNO_REGNO (a)))
1047 CLEAR_HARD_REG_SET (data->profitable_hard_regs);
1048 else
1050 mode = ALLOCNO_MODE (a);
1051 data->profitable_hard_regs
1052 = ira_useful_class_mode_regs[aclass][mode];
1053 nobj = ALLOCNO_NUM_OBJECTS (a);
1054 for (k = 0; k < nobj; k++)
1056 ira_object_t obj = ALLOCNO_OBJECT (a, k);
1058 data->profitable_hard_regs
1059 &= ~OBJECT_TOTAL_CONFLICT_HARD_REGS (obj);
1063 /* Exclude hard regs already assigned for conflicting objects. */
1064 EXECUTE_IF_SET_IN_BITMAP (consideration_allocno_bitmap, 0, i, bi)
1066 a = ira_allocnos[i];
1067 if ((aclass = ALLOCNO_CLASS (a)) == NO_REGS
1068 || ! ALLOCNO_ASSIGNED_P (a)
1069 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
1070 continue;
1071 mode = ALLOCNO_MODE (a);
1072 nregs = hard_regno_nregs (hard_regno, mode);
1073 nobj = ALLOCNO_NUM_OBJECTS (a);
1074 for (k = 0; k < nobj; k++)
1076 ira_object_t obj = ALLOCNO_OBJECT (a, k);
1077 ira_object_t conflict_obj;
1078 ira_object_conflict_iterator oci;
1080 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
1082 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
1084 /* We can process the conflict allocno repeatedly with
1085 the same result. */
1086 if (nregs == nobj && nregs > 1)
1088 int num = OBJECT_SUBWORD (conflict_obj);
1090 if (REG_WORDS_BIG_ENDIAN)
1091 CLEAR_HARD_REG_BIT
1092 (ALLOCNO_COLOR_DATA (conflict_a)->profitable_hard_regs,
1093 hard_regno + nobj - num - 1);
1094 else
1095 CLEAR_HARD_REG_BIT
1096 (ALLOCNO_COLOR_DATA (conflict_a)->profitable_hard_regs,
1097 hard_regno + num);
1099 else
1100 ALLOCNO_COLOR_DATA (conflict_a)->profitable_hard_regs
1101 &= ~ira_reg_mode_hard_regset[hard_regno][mode];
1105 /* Exclude too costly hard regs. */
1106 EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
1108 int min_cost = INT_MAX;
1109 int *costs;
1111 a = ira_allocnos[i];
1112 if ((aclass = ALLOCNO_CLASS (a)) == NO_REGS
1113 || empty_profitable_hard_regs (a))
1114 continue;
1115 data = ALLOCNO_COLOR_DATA (a);
1116 if ((costs = ALLOCNO_UPDATED_HARD_REG_COSTS (a)) != NULL
1117 || (costs = ALLOCNO_HARD_REG_COSTS (a)) != NULL)
1119 class_size = ira_class_hard_regs_num[aclass];
1120 for (j = 0; j < class_size; j++)
1122 hard_regno = ira_class_hard_regs[aclass][j];
1123 if (! TEST_HARD_REG_BIT (data->profitable_hard_regs,
1124 hard_regno))
1125 continue;
1126 if (ALLOCNO_UPDATED_MEMORY_COST (a) < costs[j]
1127 /* Do not remove HARD_REGNO for static chain pointer
1128 pseudo when non-local goto is used. */
1129 && ! non_spilled_static_chain_regno_p (ALLOCNO_REGNO (a)))
1130 CLEAR_HARD_REG_BIT (data->profitable_hard_regs,
1131 hard_regno);
1132 else if (min_cost > costs[j])
1133 min_cost = costs[j];
1136 else if (ALLOCNO_UPDATED_MEMORY_COST (a)
1137 < ALLOCNO_UPDATED_CLASS_COST (a)
1138 /* Do not empty profitable regs for static chain
1139 pointer pseudo when non-local goto is used. */
1140 && ! non_spilled_static_chain_regno_p (ALLOCNO_REGNO (a)))
1141 CLEAR_HARD_REG_SET (data->profitable_hard_regs);
1142 if (ALLOCNO_UPDATED_CLASS_COST (a) > min_cost)
1143 ALLOCNO_UPDATED_CLASS_COST (a) = min_cost;
1149 /* This page contains functions used to choose hard registers for
1150 allocnos. */
1152 /* Pool for update cost records. */
1153 static object_allocator<update_cost_record> update_cost_record_pool
1154 ("update cost records");
1156 /* Return new update cost record with given params. */
1157 static struct update_cost_record *
1158 get_update_cost_record (int hard_regno, int divisor,
1159 struct update_cost_record *next)
1161 struct update_cost_record *record;
1163 record = update_cost_record_pool.allocate ();
1164 record->hard_regno = hard_regno;
1165 record->divisor = divisor;
1166 record->next = next;
1167 return record;
1170 /* Free memory for all records in LIST. */
1171 static void
1172 free_update_cost_record_list (struct update_cost_record *list)
1174 struct update_cost_record *next;
1176 while (list != NULL)
1178 next = list->next;
1179 update_cost_record_pool.remove (list);
1180 list = next;
1184 /* Free memory allocated for all update cost records. */
1185 static void
1186 finish_update_cost_records (void)
1188 update_cost_record_pool.release ();
1191 /* Array whose element value is TRUE if the corresponding hard
1192 register was already allocated for an allocno. */
1193 static bool allocated_hardreg_p[FIRST_PSEUDO_REGISTER];
1195 /* Describes one element in a queue of allocnos whose costs need to be
1196 updated. Each allocno in the queue is known to have an allocno
1197 class. */
1198 struct update_cost_queue_elem
1200 /* This element is in the queue iff CHECK == update_cost_check. */
1201 int check;
1203 /* COST_HOP_DIVISOR**N, where N is the length of the shortest path
1204 connecting this allocno to the one being allocated. */
1205 int divisor;
1207 /* Allocno from which we started chaining costs of connected
1208 allocnos. */
1209 ira_allocno_t start;
1211 /* Allocno from which we are chaining costs of connected allocnos.
1212 It is used not go back in graph of allocnos connected by
1213 copies. */
1214 ira_allocno_t from;
1216 /* The next allocno in the queue, or null if this is the last element. */
1217 ira_allocno_t next;
1220 /* The first element in a queue of allocnos whose copy costs need to be
1221 updated. Null if the queue is empty. */
1222 static ira_allocno_t update_cost_queue;
1224 /* The last element in the queue described by update_cost_queue.
1225 Not valid if update_cost_queue is null. */
1226 static struct update_cost_queue_elem *update_cost_queue_tail;
1228 /* A pool of elements in the queue described by update_cost_queue.
1229 Elements are indexed by ALLOCNO_NUM. */
1230 static struct update_cost_queue_elem *update_cost_queue_elems;
1232 /* The current value of update_costs_from_copies call count. */
1233 static int update_cost_check;
1235 /* Allocate and initialize data necessary for function
1236 update_costs_from_copies. */
1237 static void
1238 initiate_cost_update (void)
1240 size_t size;
1242 size = ira_allocnos_num * sizeof (struct update_cost_queue_elem);
1243 update_cost_queue_elems
1244 = (struct update_cost_queue_elem *) ira_allocate (size);
1245 memset (update_cost_queue_elems, 0, size);
1246 update_cost_check = 0;
1249 /* Deallocate data used by function update_costs_from_copies. */
1250 static void
1251 finish_cost_update (void)
1253 ira_free (update_cost_queue_elems);
1254 finish_update_cost_records ();
1257 /* When we traverse allocnos to update hard register costs, the cost
1258 divisor will be multiplied by the following macro value for each
1259 hop from given allocno to directly connected allocnos. */
1260 #define COST_HOP_DIVISOR 4
1262 /* Start a new cost-updating pass. */
1263 static void
1264 start_update_cost (void)
1266 update_cost_check++;
1267 update_cost_queue = NULL;
1270 /* Add (ALLOCNO, START, FROM, DIVISOR) to the end of update_cost_queue, unless
1271 ALLOCNO is already in the queue, or has NO_REGS class. */
1272 static inline void
1273 queue_update_cost (ira_allocno_t allocno, ira_allocno_t start,
1274 ira_allocno_t from, int divisor)
1276 struct update_cost_queue_elem *elem;
1278 elem = &update_cost_queue_elems[ALLOCNO_NUM (allocno)];
1279 if (elem->check != update_cost_check
1280 && ALLOCNO_CLASS (allocno) != NO_REGS)
1282 elem->check = update_cost_check;
1283 elem->start = start;
1284 elem->from = from;
1285 elem->divisor = divisor;
1286 elem->next = NULL;
1287 if (update_cost_queue == NULL)
1288 update_cost_queue = allocno;
1289 else
1290 update_cost_queue_tail->next = allocno;
1291 update_cost_queue_tail = elem;
1295 /* Try to remove the first element from update_cost_queue. Return
1296 false if the queue was empty, otherwise make (*ALLOCNO, *START,
1297 *FROM, *DIVISOR) describe the removed element. */
1298 static inline bool
1299 get_next_update_cost (ira_allocno_t *allocno, ira_allocno_t *start,
1300 ira_allocno_t *from, int *divisor)
1302 struct update_cost_queue_elem *elem;
1304 if (update_cost_queue == NULL)
1305 return false;
1307 *allocno = update_cost_queue;
1308 elem = &update_cost_queue_elems[ALLOCNO_NUM (*allocno)];
1309 *start = elem->start;
1310 *from = elem->from;
1311 *divisor = elem->divisor;
1312 update_cost_queue = elem->next;
1313 return true;
1316 /* Increase costs of HARD_REGNO by UPDATE_COST and conflict cost by
1317 UPDATE_CONFLICT_COST for ALLOCNO. Return true if we really
1318 modified the cost. */
1319 static bool
1320 update_allocno_cost (ira_allocno_t allocno, int hard_regno,
1321 int update_cost, int update_conflict_cost)
1323 int i;
1324 enum reg_class aclass = ALLOCNO_CLASS (allocno);
1326 i = ira_class_hard_reg_index[aclass][hard_regno];
1327 if (i < 0)
1328 return false;
1329 ira_allocate_and_set_or_copy_costs
1330 (&ALLOCNO_UPDATED_HARD_REG_COSTS (allocno), aclass,
1331 ALLOCNO_UPDATED_CLASS_COST (allocno),
1332 ALLOCNO_HARD_REG_COSTS (allocno));
1333 ira_allocate_and_set_or_copy_costs
1334 (&ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (allocno),
1335 aclass, 0, ALLOCNO_CONFLICT_HARD_REG_COSTS (allocno));
1336 ALLOCNO_UPDATED_HARD_REG_COSTS (allocno)[i] += update_cost;
1337 ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (allocno)[i] += update_conflict_cost;
1338 return true;
1341 /* Return TRUE if the object OBJ conflicts with the allocno A. */
1342 static bool
1343 object_conflicts_with_allocno_p (ira_object_t obj, ira_allocno_t a)
1345 if (!OBJECT_CONFLICT_VEC_P (obj))
1346 for (int word = 0; word < ALLOCNO_NUM_OBJECTS (a); word++)
1348 ira_object_t another_obj = ALLOCNO_OBJECT (a, word);
1349 if (OBJECT_CONFLICT_ID (another_obj) >= OBJECT_MIN (obj)
1350 && OBJECT_CONFLICT_ID (another_obj) <= OBJECT_MAX (obj)
1351 && TEST_MINMAX_SET_BIT (OBJECT_CONFLICT_BITVEC (obj),
1352 OBJECT_CONFLICT_ID (another_obj),
1353 OBJECT_MIN (obj), OBJECT_MAX (obj)))
1354 return true;
1356 else
1358 /* If this linear walk ever becomes a bottleneck we could add a
1359 conflict_vec_sorted_p flag and if not set, sort the conflicts after
1360 their ID so we can use a binary search. That would also require
1361 tracking the actual number of conflicts in the vector to not rely
1362 on the NULL termination. */
1363 ira_object_conflict_iterator oci;
1364 ira_object_t conflict_obj;
1365 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
1366 if (OBJECT_ALLOCNO (conflict_obj) == a)
1367 return true;
1369 return false;
1372 /* Return TRUE if allocnos A1 and A2 conflicts. Here we are
1373 interested only in conflicts of allocnos with intersecting allocno
1374 classes. */
1375 static bool
1376 allocnos_conflict_p (ira_allocno_t a1, ira_allocno_t a2)
1378 /* Compute the upper bound for the linear iteration when the object
1379 conflicts are represented as a sparse vector. In particular this
1380 will make sure we prefer O(1) bitvector testing. */
1381 int num_conflicts_in_vec1 = 0, num_conflicts_in_vec2 = 0;
1382 for (int word = 0; word < ALLOCNO_NUM_OBJECTS (a1); ++word)
1383 if (OBJECT_CONFLICT_VEC_P (ALLOCNO_OBJECT (a1, word)))
1384 num_conflicts_in_vec1 += OBJECT_NUM_CONFLICTS (ALLOCNO_OBJECT (a1, word));
1385 for (int word = 0; word < ALLOCNO_NUM_OBJECTS (a2); ++word)
1386 if (OBJECT_CONFLICT_VEC_P (ALLOCNO_OBJECT (a2, word)))
1387 num_conflicts_in_vec2 += OBJECT_NUM_CONFLICTS (ALLOCNO_OBJECT (a2, word));
1388 if (num_conflicts_in_vec2 < num_conflicts_in_vec1)
1389 std::swap (a1, a2);
1391 for (int word = 0; word < ALLOCNO_NUM_OBJECTS (a1); word++)
1393 ira_object_t obj = ALLOCNO_OBJECT (a1, word);
1394 /* Take preferences of conflicting allocnos into account. */
1395 if (object_conflicts_with_allocno_p (obj, a2))
1396 return true;
1398 return false;
1401 /* Update (decrease if DECR_P) HARD_REGNO cost of allocnos connected
1402 by copies to ALLOCNO to increase chances to remove some copies as
1403 the result of subsequent assignment. Update conflict costs.
1404 Record cost updates if RECORD_P is true. */
1405 static void
1406 update_costs_from_allocno (ira_allocno_t allocno, int hard_regno,
1407 int divisor, bool decr_p, bool record_p)
1409 int cost, update_cost, update_conflict_cost;
1410 machine_mode mode;
1411 enum reg_class rclass, aclass;
1412 ira_allocno_t another_allocno, start = allocno, from = NULL;
1413 ira_copy_t cp, next_cp;
1415 rclass = REGNO_REG_CLASS (hard_regno);
1418 mode = ALLOCNO_MODE (allocno);
1419 ira_init_register_move_cost_if_necessary (mode);
1420 for (cp = ALLOCNO_COPIES (allocno); cp != NULL; cp = next_cp)
1422 if (cp->first == allocno)
1424 next_cp = cp->next_first_allocno_copy;
1425 another_allocno = cp->second;
1427 else if (cp->second == allocno)
1429 next_cp = cp->next_second_allocno_copy;
1430 another_allocno = cp->first;
1432 else
1433 gcc_unreachable ();
1435 if (another_allocno == from
1436 || (ALLOCNO_COLOR_DATA (another_allocno) != NULL
1437 && (ALLOCNO_COLOR_DATA (allocno)->first_thread_allocno
1438 != ALLOCNO_COLOR_DATA (another_allocno)->first_thread_allocno)))
1439 continue;
1441 aclass = ALLOCNO_CLASS (another_allocno);
1442 if (! TEST_HARD_REG_BIT (reg_class_contents[aclass],
1443 hard_regno)
1444 || ALLOCNO_ASSIGNED_P (another_allocno))
1445 continue;
1447 /* If we have different modes use the smallest one. It is
1448 a sub-register move. It is hard to predict what LRA
1449 will reload (the pseudo or its sub-register) but LRA
1450 will try to minimize the data movement. Also for some
1451 register classes bigger modes might be invalid,
1452 e.g. DImode for AREG on x86. For such cases the
1453 register move cost will be maximal. */
1454 mode = narrower_subreg_mode (ALLOCNO_MODE (cp->first),
1455 ALLOCNO_MODE (cp->second));
1457 ira_init_register_move_cost_if_necessary (mode);
1459 cost = (cp->second == allocno
1460 ? ira_register_move_cost[mode][rclass][aclass]
1461 : ira_register_move_cost[mode][aclass][rclass]);
1462 if (decr_p)
1463 cost = -cost;
1465 update_cost = cp->freq * cost / divisor;
1466 update_conflict_cost = update_cost;
1468 if (internal_flag_ira_verbose > 5 && ira_dump_file != NULL)
1469 fprintf (ira_dump_file,
1470 " a%dr%d (hr%d): update cost by %d, conflict cost by %d\n",
1471 ALLOCNO_NUM (another_allocno), ALLOCNO_REGNO (another_allocno),
1472 hard_regno, update_cost, update_conflict_cost);
1473 if (update_cost == 0)
1474 continue;
1476 if (! update_allocno_cost (another_allocno, hard_regno,
1477 update_cost, update_conflict_cost))
1478 continue;
1479 queue_update_cost (another_allocno, start, allocno,
1480 divisor * COST_HOP_DIVISOR);
1481 if (record_p && ALLOCNO_COLOR_DATA (another_allocno) != NULL)
1482 ALLOCNO_COLOR_DATA (another_allocno)->update_cost_records
1483 = get_update_cost_record (hard_regno, divisor,
1484 ALLOCNO_COLOR_DATA (another_allocno)
1485 ->update_cost_records);
1488 while (get_next_update_cost (&allocno, &start, &from, &divisor));
1491 /* Decrease preferred ALLOCNO hard register costs and costs of
1492 allocnos connected to ALLOCNO through copy. */
1493 static void
1494 update_costs_from_prefs (ira_allocno_t allocno)
1496 ira_pref_t pref;
1498 start_update_cost ();
1499 for (pref = ALLOCNO_PREFS (allocno); pref != NULL; pref = pref->next_pref)
1501 if (internal_flag_ira_verbose > 5 && ira_dump_file != NULL)
1502 fprintf (ira_dump_file, " Start updating from pref of hr%d for a%dr%d:\n",
1503 pref->hard_regno, ALLOCNO_NUM (allocno), ALLOCNO_REGNO (allocno));
1504 update_costs_from_allocno (allocno, pref->hard_regno,
1505 COST_HOP_DIVISOR, true, true);
1509 /* Update (decrease if DECR_P) the cost of allocnos connected to
1510 ALLOCNO through copies to increase chances to remove some copies as
1511 the result of subsequent assignment. ALLOCNO was just assigned to
1512 a hard register. Record cost updates if RECORD_P is true. */
1513 static void
1514 update_costs_from_copies (ira_allocno_t allocno, bool decr_p, bool record_p)
1516 int hard_regno;
1518 hard_regno = ALLOCNO_HARD_REGNO (allocno);
1519 ira_assert (hard_regno >= 0 && ALLOCNO_CLASS (allocno) != NO_REGS);
1520 start_update_cost ();
1521 if (internal_flag_ira_verbose > 5 && ira_dump_file != NULL)
1522 fprintf (ira_dump_file, " Start updating from a%dr%d by copies:\n",
1523 ALLOCNO_NUM (allocno), ALLOCNO_REGNO (allocno));
1524 update_costs_from_allocno (allocno, hard_regno, 1, decr_p, record_p);
1527 /* Update conflict_allocno_hard_prefs of allocnos conflicting with
1528 ALLOCNO. */
1529 static void
1530 update_conflict_allocno_hard_prefs (ira_allocno_t allocno)
1532 int l, nr = ALLOCNO_NUM_OBJECTS (allocno);
1534 for (l = 0; l < nr; l++)
1536 ira_object_t conflict_obj, obj = ALLOCNO_OBJECT (allocno, l);
1537 ira_object_conflict_iterator oci;
1539 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
1541 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
1542 allocno_color_data_t conflict_data = ALLOCNO_COLOR_DATA (conflict_a);
1543 ira_pref_t pref;
1545 if (!(hard_reg_set_intersect_p
1546 (ALLOCNO_COLOR_DATA (allocno)->profitable_hard_regs,
1547 conflict_data->profitable_hard_regs)))
1548 continue;
1549 for (pref = ALLOCNO_PREFS (allocno);
1550 pref != NULL;
1551 pref = pref->next_pref)
1552 conflict_data->conflict_allocno_hard_prefs += pref->freq;
1557 /* Restore costs of allocnos connected to ALLOCNO by copies as it was
1558 before updating costs of these allocnos from given allocno. This
1559 is a wise thing to do as if given allocno did not get an expected
1560 hard reg, using smaller cost of the hard reg for allocnos connected
1561 by copies to given allocno becomes actually misleading. Free all
1562 update cost records for ALLOCNO as we don't need them anymore. */
1563 static void
1564 restore_costs_from_copies (ira_allocno_t allocno)
1566 struct update_cost_record *records, *curr;
1568 if (ALLOCNO_COLOR_DATA (allocno) == NULL)
1569 return;
1570 records = ALLOCNO_COLOR_DATA (allocno)->update_cost_records;
1571 start_update_cost ();
1572 if (internal_flag_ira_verbose > 5 && ira_dump_file != NULL)
1573 fprintf (ira_dump_file, " Start restoring from a%dr%d:\n",
1574 ALLOCNO_NUM (allocno), ALLOCNO_REGNO (allocno));
1575 for (curr = records; curr != NULL; curr = curr->next)
1576 update_costs_from_allocno (allocno, curr->hard_regno,
1577 curr->divisor, true, false);
1578 free_update_cost_record_list (records);
1579 ALLOCNO_COLOR_DATA (allocno)->update_cost_records = NULL;
1582 /* This function updates COSTS (decrease if DECR_P) for hard_registers
1583 of ACLASS by conflict costs of the unassigned allocnos
1584 connected by copies with allocnos in update_cost_queue. This
1585 update increases chances to remove some copies. */
1586 static void
1587 update_conflict_hard_regno_costs (int *costs, enum reg_class aclass,
1588 bool decr_p)
1590 int i, cost, class_size, freq, mult, div, divisor;
1591 int index, hard_regno;
1592 int *conflict_costs;
1593 bool cont_p;
1594 enum reg_class another_aclass;
1595 ira_allocno_t allocno, another_allocno, start, from;
1596 ira_copy_t cp, next_cp;
1598 while (get_next_update_cost (&allocno, &start, &from, &divisor))
1599 for (cp = ALLOCNO_COPIES (allocno); cp != NULL; cp = next_cp)
1601 if (cp->first == allocno)
1603 next_cp = cp->next_first_allocno_copy;
1604 another_allocno = cp->second;
1606 else if (cp->second == allocno)
1608 next_cp = cp->next_second_allocno_copy;
1609 another_allocno = cp->first;
1611 else
1612 gcc_unreachable ();
1614 another_aclass = ALLOCNO_CLASS (another_allocno);
1615 if (another_allocno == from
1616 || ALLOCNO_ASSIGNED_P (another_allocno)
1617 || ALLOCNO_COLOR_DATA (another_allocno)->may_be_spilled_p
1618 || ! ira_reg_classes_intersect_p[aclass][another_aclass])
1619 continue;
1620 if (allocnos_conflict_p (another_allocno, start))
1621 continue;
1623 class_size = ira_class_hard_regs_num[another_aclass];
1624 ira_allocate_and_copy_costs
1625 (&ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (another_allocno),
1626 another_aclass, ALLOCNO_CONFLICT_HARD_REG_COSTS (another_allocno));
1627 conflict_costs
1628 = ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (another_allocno);
1629 if (conflict_costs == NULL)
1630 cont_p = true;
1631 else
1633 mult = cp->freq;
1634 freq = ALLOCNO_FREQ (another_allocno);
1635 if (freq == 0)
1636 freq = 1;
1637 div = freq * divisor;
1638 cont_p = false;
1639 for (i = class_size - 1; i >= 0; i--)
1641 hard_regno = ira_class_hard_regs[another_aclass][i];
1642 ira_assert (hard_regno >= 0);
1643 index = ira_class_hard_reg_index[aclass][hard_regno];
1644 if (index < 0)
1645 continue;
1646 cost = (int) (((int64_t) conflict_costs [i] * mult) / div);
1647 if (cost == 0)
1648 continue;
1649 cont_p = true;
1650 if (decr_p)
1651 cost = -cost;
1652 costs[index] += cost;
1655 /* Probably 5 hops will be enough. */
1656 if (cont_p
1657 && divisor <= (COST_HOP_DIVISOR
1658 * COST_HOP_DIVISOR
1659 * COST_HOP_DIVISOR
1660 * COST_HOP_DIVISOR))
1661 queue_update_cost (another_allocno, start, from, divisor * COST_HOP_DIVISOR);
1665 /* Set up conflicting (through CONFLICT_REGS) for each object of
1666 allocno A and the start allocno profitable regs (through
1667 START_PROFITABLE_REGS). Remember that the start profitable regs
1668 exclude hard regs which cannot hold value of mode of allocno A.
1669 This covers mostly cases when multi-register value should be
1670 aligned. */
1671 static inline void
1672 get_conflict_and_start_profitable_regs (ira_allocno_t a, bool retry_p,
1673 HARD_REG_SET *conflict_regs,
1674 HARD_REG_SET *start_profitable_regs)
1676 int i, nwords;
1677 ira_object_t obj;
1679 nwords = ALLOCNO_NUM_OBJECTS (a);
1680 for (i = 0; i < nwords; i++)
1682 obj = ALLOCNO_OBJECT (a, i);
1683 conflict_regs[i] = OBJECT_TOTAL_CONFLICT_HARD_REGS (obj);
1685 if (retry_p)
1686 *start_profitable_regs
1687 = (reg_class_contents[ALLOCNO_CLASS (a)]
1688 &~ (ira_prohibited_class_mode_regs
1689 [ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]));
1690 else
1691 *start_profitable_regs = ALLOCNO_COLOR_DATA (a)->profitable_hard_regs;
1694 /* Return true if HARD_REGNO is ok for assigning to allocno A with
1695 PROFITABLE_REGS and whose objects have CONFLICT_REGS. */
1696 static inline bool
1697 check_hard_reg_p (ira_allocno_t a, int hard_regno,
1698 HARD_REG_SET *conflict_regs, HARD_REG_SET profitable_regs)
1700 int j, nwords, nregs;
1701 enum reg_class aclass;
1702 machine_mode mode;
1704 aclass = ALLOCNO_CLASS (a);
1705 mode = ALLOCNO_MODE (a);
1706 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[aclass][mode],
1707 hard_regno))
1708 return false;
1709 /* Checking only profitable hard regs. */
1710 if (! TEST_HARD_REG_BIT (profitable_regs, hard_regno))
1711 return false;
1712 nregs = hard_regno_nregs (hard_regno, mode);
1713 nwords = ALLOCNO_NUM_OBJECTS (a);
1714 for (j = 0; j < nregs; j++)
1716 int k;
1717 int set_to_test_start = 0, set_to_test_end = nwords;
1719 if (nregs == nwords)
1721 if (REG_WORDS_BIG_ENDIAN)
1722 set_to_test_start = nwords - j - 1;
1723 else
1724 set_to_test_start = j;
1725 set_to_test_end = set_to_test_start + 1;
1727 for (k = set_to_test_start; k < set_to_test_end; k++)
1728 if (TEST_HARD_REG_BIT (conflict_regs[k], hard_regno + j))
1729 break;
1730 if (k != set_to_test_end)
1731 break;
1733 return j == nregs;
1736 /* Return number of registers needed to be saved and restored at
1737 function prologue/epilogue if we allocate HARD_REGNO to hold value
1738 of MODE. */
1739 static int
1740 calculate_saved_nregs (int hard_regno, machine_mode mode)
1742 int i;
1743 int nregs = 0;
1745 ira_assert (hard_regno >= 0);
1746 for (i = hard_regno_nregs (hard_regno, mode) - 1; i >= 0; i--)
1747 if (!allocated_hardreg_p[hard_regno + i]
1748 && !crtl->abi->clobbers_full_reg_p (hard_regno + i)
1749 && !LOCAL_REGNO (hard_regno + i))
1750 nregs++;
1751 return nregs;
1754 /* Allocnos A1 and A2 are known to conflict. Check whether, in some loop L
1755 that is either the current loop or a nested subloop, the conflict is of
1756 the following form:
1758 - One allocno (X) is a cap allocno for some non-cap allocno X2.
1760 - X2 belongs to some loop L2.
1762 - The other allocno (Y) is a non-cap allocno.
1764 - Y is an ancestor of some allocno Y2 in L2. (Note that such a Y2
1765 must exist, given that X and Y conflict.)
1767 - Y2 is not referenced in L2 (that is, ALLOCNO_NREFS (Y2) == 0).
1769 - Y can use a different allocation from Y2.
1771 In this case, Y's register is live across L2 but is not used within it,
1772 whereas X's register is used only within L2. The conflict is therefore
1773 only "soft", in that it can easily be avoided by spilling Y2 inside L2
1774 without affecting any insn references.
1776 If the conflict does have this form, return the Y2 that would need to be
1777 spilled in order to allow X and Y (and thus A1 and A2) to use the same
1778 register. Return null otherwise. Returning null is conservatively correct;
1779 any nonnnull return value is an optimization. */
1780 ira_allocno_t
1781 ira_soft_conflict (ira_allocno_t a1, ira_allocno_t a2)
1783 /* Search for the loop L and its associated allocnos X and Y. */
1784 int search_depth = 0;
1785 while (ALLOCNO_CAP_MEMBER (a1) && ALLOCNO_CAP_MEMBER (a2))
1787 a1 = ALLOCNO_CAP_MEMBER (a1);
1788 a2 = ALLOCNO_CAP_MEMBER (a2);
1789 if (search_depth++ > max_soft_conflict_loop_depth)
1790 return nullptr;
1792 /* This must be true if A1 and A2 conflict. */
1793 ira_assert (ALLOCNO_LOOP_TREE_NODE (a1) == ALLOCNO_LOOP_TREE_NODE (a2));
1795 /* Make A1 the cap allocno (X in the comment above) and A2 the
1796 non-cap allocno (Y in the comment above). */
1797 if (ALLOCNO_CAP_MEMBER (a2))
1798 std::swap (a1, a2);
1799 if (!ALLOCNO_CAP_MEMBER (a1))
1800 return nullptr;
1802 /* Search for the real allocno that A1 caps (X2 in the comment above). */
1805 a1 = ALLOCNO_CAP_MEMBER (a1);
1806 if (search_depth++ > max_soft_conflict_loop_depth)
1807 return nullptr;
1809 while (ALLOCNO_CAP_MEMBER (a1));
1811 /* Find the associated allocno for A2 (Y2 in the comment above). */
1812 auto node = ALLOCNO_LOOP_TREE_NODE (a1);
1813 auto local_a2 = node->regno_allocno_map[ALLOCNO_REGNO (a2)];
1815 /* Find the parent of LOCAL_A2/Y2. LOCAL_A2 must be a descendant of A2
1816 for the conflict query to make sense, so this parent lookup must succeed.
1818 If the parent allocno has no references, it is usually cheaper to
1819 spill at that loop level instead. Keep searching until we find
1820 a parent allocno that does have references (but don't look past
1821 the starting allocno). */
1822 ira_allocno_t local_parent_a2;
1823 for (;;)
1825 local_parent_a2 = ira_parent_allocno (local_a2);
1826 if (local_parent_a2 == a2 || ALLOCNO_NREFS (local_parent_a2) != 0)
1827 break;
1828 local_a2 = local_parent_a2;
1830 if (CHECKING_P)
1832 /* Sanity check to make sure that the conflict we've been given
1833 makes sense. */
1834 auto test_a2 = local_parent_a2;
1835 while (test_a2 != a2)
1837 test_a2 = ira_parent_allocno (test_a2);
1838 ira_assert (test_a2);
1841 if (local_a2
1842 && ALLOCNO_NREFS (local_a2) == 0
1843 && ira_subloop_allocnos_can_differ_p (local_parent_a2))
1844 return local_a2;
1845 return nullptr;
1848 /* The caller has decided to allocate HREGNO to A and has proved that
1849 this is safe. However, the allocation might require the kind of
1850 spilling described in the comment above ira_soft_conflict.
1851 The caller has recorded that:
1853 - The allocnos in ALLOCNOS_TO_SPILL are the ones that would need
1854 to be spilled to satisfy soft conflicts for at least one allocation
1855 (not necessarily HREGNO).
1857 - The soft conflicts apply only to A allocations that overlap
1858 SOFT_CONFLICT_REGS.
1860 If allocating HREGNO is subject to any soft conflicts, record the
1861 subloop allocnos that need to be spilled. */
1862 static void
1863 spill_soft_conflicts (ira_allocno_t a, bitmap allocnos_to_spill,
1864 HARD_REG_SET soft_conflict_regs, int hregno)
1866 auto nregs = hard_regno_nregs (hregno, ALLOCNO_MODE (a));
1867 bitmap_iterator bi;
1868 unsigned int i;
1869 EXECUTE_IF_SET_IN_BITMAP (allocnos_to_spill, 0, i, bi)
1871 /* SPILL_A needs to be spilled for at least one allocation
1872 (not necessarily this one). */
1873 auto spill_a = ira_allocnos[i];
1875 /* Find the corresponding allocno for this loop. */
1876 auto conflict_a = spill_a;
1879 conflict_a = ira_parent_or_cap_allocno (conflict_a);
1880 ira_assert (conflict_a);
1882 while (ALLOCNO_LOOP_TREE_NODE (conflict_a)->level
1883 > ALLOCNO_LOOP_TREE_NODE (a)->level);
1885 ira_assert (ALLOCNO_LOOP_TREE_NODE (conflict_a)
1886 == ALLOCNO_LOOP_TREE_NODE (a));
1888 if (conflict_a == a)
1890 /* SPILL_A is a descendant of A. We don't know (and don't need
1891 to know) which cap allocnos have a soft conflict with A.
1892 All we need to do is test whether the soft conflict applies
1893 to the chosen allocation. */
1894 if (ira_hard_reg_set_intersection_p (hregno, ALLOCNO_MODE (a),
1895 soft_conflict_regs))
1896 ALLOCNO_MIGHT_CONFLICT_WITH_PARENT_P (spill_a) = true;
1898 else
1900 /* SPILL_A is a descendant of CONFLICT_A, which has a soft conflict
1901 with A. Test whether the soft conflict applies to the current
1902 allocation. */
1903 ira_assert (ira_soft_conflict (a, conflict_a) == spill_a);
1904 auto conflict_hregno = ALLOCNO_HARD_REGNO (conflict_a);
1905 ira_assert (conflict_hregno >= 0);
1906 auto conflict_nregs = hard_regno_nregs (conflict_hregno,
1907 ALLOCNO_MODE (conflict_a));
1908 if (hregno + nregs > conflict_hregno
1909 && conflict_hregno + conflict_nregs > hregno)
1910 ALLOCNO_MIGHT_CONFLICT_WITH_PARENT_P (spill_a) = true;
1915 /* Choose a hard register for allocno A. If RETRY_P is TRUE, it means
1916 that the function called from function
1917 `ira_reassign_conflict_allocnos' and `allocno_reload_assign'. In
1918 this case some allocno data are not defined or updated and we
1919 should not touch these data. The function returns true if we
1920 managed to assign a hard register to the allocno.
1922 To assign a hard register, first of all we calculate all conflict
1923 hard registers which can come from conflicting allocnos with
1924 already assigned hard registers. After that we find first free
1925 hard register with the minimal cost. During hard register cost
1926 calculation we take conflict hard register costs into account to
1927 give a chance for conflicting allocnos to get a better hard
1928 register in the future.
1930 If the best hard register cost is bigger than cost of memory usage
1931 for the allocno, we don't assign a hard register to given allocno
1932 at all.
1934 If we assign a hard register to the allocno, we update costs of the
1935 hard register for allocnos connected by copies to improve a chance
1936 to coalesce insns represented by the copies when we assign hard
1937 registers to the allocnos connected by the copies. */
1938 static bool
1939 assign_hard_reg (ira_allocno_t a, bool retry_p)
1941 HARD_REG_SET conflicting_regs[2], profitable_hard_regs;
1942 int i, j, hard_regno, best_hard_regno, class_size;
1943 int cost, mem_cost, min_cost, full_cost, min_full_cost, nwords, word;
1944 int *a_costs;
1945 enum reg_class aclass;
1946 machine_mode mode;
1947 static int costs[FIRST_PSEUDO_REGISTER], full_costs[FIRST_PSEUDO_REGISTER];
1948 int saved_nregs;
1949 enum reg_class rclass;
1950 int add_cost;
1951 #ifdef STACK_REGS
1952 bool no_stack_reg_p;
1953 #endif
1954 auto_bitmap allocnos_to_spill;
1955 HARD_REG_SET soft_conflict_regs = {};
1957 ira_assert (! ALLOCNO_ASSIGNED_P (a));
1958 get_conflict_and_start_profitable_regs (a, retry_p,
1959 conflicting_regs,
1960 &profitable_hard_regs);
1961 aclass = ALLOCNO_CLASS (a);
1962 class_size = ira_class_hard_regs_num[aclass];
1963 best_hard_regno = -1;
1964 memset (full_costs, 0, sizeof (int) * class_size);
1965 mem_cost = 0;
1966 memset (costs, 0, sizeof (int) * class_size);
1967 memset (full_costs, 0, sizeof (int) * class_size);
1968 #ifdef STACK_REGS
1969 no_stack_reg_p = false;
1970 #endif
1971 if (! retry_p)
1972 start_update_cost ();
1973 mem_cost += ALLOCNO_UPDATED_MEMORY_COST (a);
1975 ira_allocate_and_copy_costs (&ALLOCNO_UPDATED_HARD_REG_COSTS (a),
1976 aclass, ALLOCNO_HARD_REG_COSTS (a));
1977 a_costs = ALLOCNO_UPDATED_HARD_REG_COSTS (a);
1978 #ifdef STACK_REGS
1979 no_stack_reg_p = no_stack_reg_p || ALLOCNO_TOTAL_NO_STACK_REG_P (a);
1980 #endif
1981 cost = ALLOCNO_UPDATED_CLASS_COST (a);
1982 for (i = 0; i < class_size; i++)
1983 if (a_costs != NULL)
1985 costs[i] += a_costs[i];
1986 full_costs[i] += a_costs[i];
1988 else
1990 costs[i] += cost;
1991 full_costs[i] += cost;
1993 nwords = ALLOCNO_NUM_OBJECTS (a);
1994 curr_allocno_process++;
1995 for (word = 0; word < nwords; word++)
1997 ira_object_t conflict_obj;
1998 ira_object_t obj = ALLOCNO_OBJECT (a, word);
1999 ira_object_conflict_iterator oci;
2001 /* Take preferences of conflicting allocnos into account. */
2002 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2004 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2005 enum reg_class conflict_aclass;
2006 allocno_color_data_t data = ALLOCNO_COLOR_DATA (conflict_a);
2008 /* Reload can give another class so we need to check all
2009 allocnos. */
2010 if (!retry_p
2011 && ((!ALLOCNO_ASSIGNED_P (conflict_a)
2012 || ALLOCNO_HARD_REGNO (conflict_a) < 0)
2013 && !(hard_reg_set_intersect_p
2014 (profitable_hard_regs,
2015 ALLOCNO_COLOR_DATA
2016 (conflict_a)->profitable_hard_regs))))
2018 /* All conflict allocnos are in consideration bitmap
2019 when retry_p is false. It might change in future and
2020 if it happens the assert will be broken. It means
2021 the code should be modified for the new
2022 assumptions. */
2023 ira_assert (bitmap_bit_p (consideration_allocno_bitmap,
2024 ALLOCNO_NUM (conflict_a)));
2025 continue;
2027 conflict_aclass = ALLOCNO_CLASS (conflict_a);
2028 ira_assert (ira_reg_classes_intersect_p
2029 [aclass][conflict_aclass]);
2030 if (ALLOCNO_ASSIGNED_P (conflict_a))
2032 hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2033 if (hard_regno >= 0
2034 && (ira_hard_reg_set_intersection_p
2035 (hard_regno, ALLOCNO_MODE (conflict_a),
2036 reg_class_contents[aclass])))
2038 int n_objects = ALLOCNO_NUM_OBJECTS (conflict_a);
2039 int conflict_nregs;
2041 mode = ALLOCNO_MODE (conflict_a);
2042 conflict_nregs = hard_regno_nregs (hard_regno, mode);
2043 auto spill_a = (retry_p
2044 ? nullptr
2045 : ira_soft_conflict (a, conflict_a));
2046 if (spill_a)
2048 if (bitmap_set_bit (allocnos_to_spill,
2049 ALLOCNO_NUM (spill_a)))
2051 ira_loop_border_costs border_costs (spill_a);
2052 auto cost = border_costs.spill_inside_loop_cost ();
2053 auto note_conflict = [&](int r)
2055 SET_HARD_REG_BIT (soft_conflict_regs, r);
2056 auto hri = ira_class_hard_reg_index[aclass][r];
2057 if (hri >= 0)
2059 costs[hri] += cost;
2060 full_costs[hri] += cost;
2063 for (int r = hard_regno;
2064 r >= 0 && (int) end_hard_regno (mode, r) > hard_regno;
2065 r--)
2066 note_conflict (r);
2067 for (int r = hard_regno + 1;
2068 r < hard_regno + conflict_nregs;
2069 r++)
2070 note_conflict (r);
2073 else
2075 if (conflict_nregs == n_objects && conflict_nregs > 1)
2077 int num = OBJECT_SUBWORD (conflict_obj);
2079 if (REG_WORDS_BIG_ENDIAN)
2080 SET_HARD_REG_BIT (conflicting_regs[word],
2081 hard_regno + n_objects - num - 1);
2082 else
2083 SET_HARD_REG_BIT (conflicting_regs[word],
2084 hard_regno + num);
2086 else
2087 conflicting_regs[word]
2088 |= ira_reg_mode_hard_regset[hard_regno][mode];
2089 if (hard_reg_set_subset_p (profitable_hard_regs,
2090 conflicting_regs[word]))
2091 goto fail;
2095 else if (! retry_p
2096 && ! ALLOCNO_COLOR_DATA (conflict_a)->may_be_spilled_p
2097 /* Don't process the conflict allocno twice. */
2098 && (ALLOCNO_COLOR_DATA (conflict_a)->last_process
2099 != curr_allocno_process))
2101 int k, *conflict_costs;
2103 ALLOCNO_COLOR_DATA (conflict_a)->last_process
2104 = curr_allocno_process;
2105 ira_allocate_and_copy_costs
2106 (&ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (conflict_a),
2107 conflict_aclass,
2108 ALLOCNO_CONFLICT_HARD_REG_COSTS (conflict_a));
2109 conflict_costs
2110 = ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (conflict_a);
2111 if (conflict_costs != NULL)
2112 for (j = class_size - 1; j >= 0; j--)
2114 hard_regno = ira_class_hard_regs[aclass][j];
2115 ira_assert (hard_regno >= 0);
2116 k = ira_class_hard_reg_index[conflict_aclass][hard_regno];
2117 if (k < 0
2118 /* If HARD_REGNO is not available for CONFLICT_A,
2119 the conflict would be ignored, since HARD_REGNO
2120 will never be assigned to CONFLICT_A. */
2121 || !TEST_HARD_REG_BIT (data->profitable_hard_regs,
2122 hard_regno))
2123 continue;
2124 full_costs[j] -= conflict_costs[k];
2126 queue_update_cost (conflict_a, conflict_a, NULL, COST_HOP_DIVISOR);
2130 if (! retry_p)
2131 /* Take into account preferences of allocnos connected by copies to
2132 the conflict allocnos. */
2133 update_conflict_hard_regno_costs (full_costs, aclass, true);
2135 /* Take preferences of allocnos connected by copies into
2136 account. */
2137 if (! retry_p)
2139 start_update_cost ();
2140 queue_update_cost (a, a, NULL, COST_HOP_DIVISOR);
2141 update_conflict_hard_regno_costs (full_costs, aclass, false);
2143 min_cost = min_full_cost = INT_MAX;
2144 /* We don't care about giving callee saved registers to allocnos no
2145 living through calls because call clobbered registers are
2146 allocated first (it is usual practice to put them first in
2147 REG_ALLOC_ORDER). */
2148 mode = ALLOCNO_MODE (a);
2149 for (i = 0; i < class_size; i++)
2151 hard_regno = ira_class_hard_regs[aclass][i];
2152 #ifdef STACK_REGS
2153 if (no_stack_reg_p
2154 && FIRST_STACK_REG <= hard_regno && hard_regno <= LAST_STACK_REG)
2155 continue;
2156 #endif
2157 if (! check_hard_reg_p (a, hard_regno,
2158 conflicting_regs, profitable_hard_regs))
2159 continue;
2160 cost = costs[i];
2161 full_cost = full_costs[i];
2162 if (!HONOR_REG_ALLOC_ORDER)
2164 if ((saved_nregs = calculate_saved_nregs (hard_regno, mode)) != 0)
2165 /* We need to save/restore the hard register in
2166 epilogue/prologue. Therefore we increase the cost. */
2168 rclass = REGNO_REG_CLASS (hard_regno);
2169 add_cost = ((ira_memory_move_cost[mode][rclass][0]
2170 + ira_memory_move_cost[mode][rclass][1])
2171 * saved_nregs / hard_regno_nregs (hard_regno,
2172 mode) - 1);
2173 cost += add_cost;
2174 full_cost += add_cost;
2177 if (min_cost > cost)
2178 min_cost = cost;
2179 if (min_full_cost > full_cost)
2181 min_full_cost = full_cost;
2182 best_hard_regno = hard_regno;
2183 ira_assert (hard_regno >= 0);
2185 if (internal_flag_ira_verbose > 5 && ira_dump_file != NULL)
2186 fprintf (ira_dump_file, "(%d=%d,%d) ", hard_regno, cost, full_cost);
2188 if (internal_flag_ira_verbose > 5 && ira_dump_file != NULL)
2189 fprintf (ira_dump_file, "\n");
2190 if (min_full_cost > mem_cost
2191 /* Do not spill static chain pointer pseudo when non-local goto
2192 is used. */
2193 && ! non_spilled_static_chain_regno_p (ALLOCNO_REGNO (a)))
2195 if (! retry_p && internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2196 fprintf (ira_dump_file, "(memory is more profitable %d vs %d) ",
2197 mem_cost, min_full_cost);
2198 best_hard_regno = -1;
2200 fail:
2201 if (best_hard_regno >= 0)
2203 for (i = hard_regno_nregs (best_hard_regno, mode) - 1; i >= 0; i--)
2204 allocated_hardreg_p[best_hard_regno + i] = true;
2205 spill_soft_conflicts (a, allocnos_to_spill, soft_conflict_regs,
2206 best_hard_regno);
2208 if (! retry_p)
2209 restore_costs_from_copies (a);
2210 ALLOCNO_HARD_REGNO (a) = best_hard_regno;
2211 ALLOCNO_ASSIGNED_P (a) = true;
2212 if (best_hard_regno >= 0)
2213 update_costs_from_copies (a, true, ! retry_p);
2214 ira_assert (ALLOCNO_CLASS (a) == aclass);
2215 /* We don't need updated costs anymore. */
2216 ira_free_allocno_updated_costs (a);
2217 return best_hard_regno >= 0;
2222 /* An array used to sort copies. */
2223 static ira_copy_t *sorted_copies;
2225 /* If allocno A is a cap, return non-cap allocno from which A is
2226 created. Otherwise, return A. */
2227 static ira_allocno_t
2228 get_cap_member (ira_allocno_t a)
2230 ira_allocno_t member;
2232 while ((member = ALLOCNO_CAP_MEMBER (a)) != NULL)
2233 a = member;
2234 return a;
2237 /* Return TRUE if live ranges of allocnos A1 and A2 intersect. It is
2238 used to find a conflict for new allocnos or allocnos with the
2239 different allocno classes. */
2240 static bool
2241 allocnos_conflict_by_live_ranges_p (ira_allocno_t a1, ira_allocno_t a2)
2243 rtx reg1, reg2;
2244 int i, j;
2245 int n1 = ALLOCNO_NUM_OBJECTS (a1);
2246 int n2 = ALLOCNO_NUM_OBJECTS (a2);
2248 if (a1 == a2)
2249 return false;
2250 reg1 = regno_reg_rtx[ALLOCNO_REGNO (a1)];
2251 reg2 = regno_reg_rtx[ALLOCNO_REGNO (a2)];
2252 if (reg1 != NULL && reg2 != NULL
2253 && ORIGINAL_REGNO (reg1) == ORIGINAL_REGNO (reg2))
2254 return false;
2256 /* We don't keep live ranges for caps because they can be quite big.
2257 Use ranges of non-cap allocno from which caps are created. */
2258 a1 = get_cap_member (a1);
2259 a2 = get_cap_member (a2);
2260 for (i = 0; i < n1; i++)
2262 ira_object_t c1 = ALLOCNO_OBJECT (a1, i);
2264 for (j = 0; j < n2; j++)
2266 ira_object_t c2 = ALLOCNO_OBJECT (a2, j);
2268 if (ira_live_ranges_intersect_p (OBJECT_LIVE_RANGES (c1),
2269 OBJECT_LIVE_RANGES (c2)))
2270 return true;
2273 return false;
2276 /* The function is used to sort copies according to their execution
2277 frequencies. */
2278 static int
2279 copy_freq_compare_func (const void *v1p, const void *v2p)
2281 ira_copy_t cp1 = *(const ira_copy_t *) v1p, cp2 = *(const ira_copy_t *) v2p;
2282 int pri1, pri2;
2284 pri1 = cp1->freq;
2285 pri2 = cp2->freq;
2286 if (pri2 - pri1)
2287 return pri2 - pri1;
2289 /* If frequencies are equal, sort by copies, so that the results of
2290 qsort leave nothing to chance. */
2291 return cp1->num - cp2->num;
2296 /* Return true if any allocno from thread of A1 conflicts with any
2297 allocno from thread A2. */
2298 static bool
2299 allocno_thread_conflict_p (ira_allocno_t a1, ira_allocno_t a2)
2301 ira_allocno_t a, conflict_a;
2303 for (a = ALLOCNO_COLOR_DATA (a2)->next_thread_allocno;;
2304 a = ALLOCNO_COLOR_DATA (a)->next_thread_allocno)
2306 for (conflict_a = ALLOCNO_COLOR_DATA (a1)->next_thread_allocno;;
2307 conflict_a = ALLOCNO_COLOR_DATA (conflict_a)->next_thread_allocno)
2309 if (allocnos_conflict_by_live_ranges_p (a, conflict_a))
2310 return true;
2311 if (conflict_a == a1)
2312 break;
2314 if (a == a2)
2315 break;
2317 return false;
2320 /* Merge two threads given correspondingly by their first allocnos T1
2321 and T2 (more accurately merging T2 into T1). */
2322 static void
2323 merge_threads (ira_allocno_t t1, ira_allocno_t t2)
2325 ira_allocno_t a, next, last;
2327 gcc_assert (t1 != t2
2328 && ALLOCNO_COLOR_DATA (t1)->first_thread_allocno == t1
2329 && ALLOCNO_COLOR_DATA (t2)->first_thread_allocno == t2);
2330 for (last = t2, a = ALLOCNO_COLOR_DATA (t2)->next_thread_allocno;;
2331 a = ALLOCNO_COLOR_DATA (a)->next_thread_allocno)
2333 ALLOCNO_COLOR_DATA (a)->first_thread_allocno = t1;
2334 if (a == t2)
2335 break;
2336 last = a;
2338 next = ALLOCNO_COLOR_DATA (t1)->next_thread_allocno;
2339 ALLOCNO_COLOR_DATA (t1)->next_thread_allocno = t2;
2340 ALLOCNO_COLOR_DATA (last)->next_thread_allocno = next;
2341 ALLOCNO_COLOR_DATA (t1)->thread_freq += ALLOCNO_COLOR_DATA (t2)->thread_freq;
2344 /* Create threads by processing CP_NUM copies from sorted copies. We
2345 process the most expensive copies first. */
2346 static void
2347 form_threads_from_copies (int cp_num)
2349 ira_allocno_t a, thread1, thread2;
2350 ira_copy_t cp;
2352 qsort (sorted_copies, cp_num, sizeof (ira_copy_t), copy_freq_compare_func);
2353 /* Form threads processing copies, most frequently executed
2354 first. */
2355 for (int i = 0; i < cp_num; i++)
2357 cp = sorted_copies[i];
2358 thread1 = ALLOCNO_COLOR_DATA (cp->first)->first_thread_allocno;
2359 thread2 = ALLOCNO_COLOR_DATA (cp->second)->first_thread_allocno;
2360 if (thread1 == thread2)
2361 continue;
2362 if (! allocno_thread_conflict_p (thread1, thread2))
2364 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2365 fprintf
2366 (ira_dump_file,
2367 " Forming thread by copy %d:a%dr%d-a%dr%d (freq=%d):\n",
2368 cp->num, ALLOCNO_NUM (cp->first), ALLOCNO_REGNO (cp->first),
2369 ALLOCNO_NUM (cp->second), ALLOCNO_REGNO (cp->second),
2370 cp->freq);
2371 merge_threads (thread1, thread2);
2372 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2374 thread1 = ALLOCNO_COLOR_DATA (thread1)->first_thread_allocno;
2375 fprintf (ira_dump_file, " Result (freq=%d): a%dr%d(%d)",
2376 ALLOCNO_COLOR_DATA (thread1)->thread_freq,
2377 ALLOCNO_NUM (thread1), ALLOCNO_REGNO (thread1),
2378 ALLOCNO_FREQ (thread1));
2379 for (a = ALLOCNO_COLOR_DATA (thread1)->next_thread_allocno;
2380 a != thread1;
2381 a = ALLOCNO_COLOR_DATA (a)->next_thread_allocno)
2382 fprintf (ira_dump_file, " a%dr%d(%d)",
2383 ALLOCNO_NUM (a), ALLOCNO_REGNO (a),
2384 ALLOCNO_FREQ (a));
2385 fprintf (ira_dump_file, "\n");
2391 /* Create threads by processing copies of all alocnos from BUCKET. We
2392 process the most expensive copies first. */
2393 static void
2394 form_threads_from_bucket (ira_allocno_t bucket)
2396 ira_allocno_t a;
2397 ira_copy_t cp, next_cp;
2398 int cp_num = 0;
2400 for (a = bucket; a != NULL; a = ALLOCNO_COLOR_DATA (a)->next_bucket_allocno)
2402 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2404 if (cp->first == a)
2406 next_cp = cp->next_first_allocno_copy;
2407 sorted_copies[cp_num++] = cp;
2409 else if (cp->second == a)
2410 next_cp = cp->next_second_allocno_copy;
2411 else
2412 gcc_unreachable ();
2415 form_threads_from_copies (cp_num);
2418 /* Create threads by processing copies of colorable allocno A. We
2419 process most expensive copies first. */
2420 static void
2421 form_threads_from_colorable_allocno (ira_allocno_t a)
2423 ira_allocno_t another_a;
2424 ira_copy_t cp, next_cp;
2425 int cp_num = 0;
2427 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2428 fprintf (ira_dump_file, " Forming thread from allocno a%dr%d:\n",
2429 ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
2430 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2432 if (cp->first == a)
2434 next_cp = cp->next_first_allocno_copy;
2435 another_a = cp->second;
2437 else if (cp->second == a)
2439 next_cp = cp->next_second_allocno_copy;
2440 another_a = cp->first;
2442 else
2443 gcc_unreachable ();
2444 if ((! ALLOCNO_COLOR_DATA (another_a)->in_graph_p
2445 && !ALLOCNO_COLOR_DATA (another_a)->may_be_spilled_p)
2446 || ALLOCNO_COLOR_DATA (another_a)->colorable_p)
2447 sorted_copies[cp_num++] = cp;
2449 form_threads_from_copies (cp_num);
2452 /* Form initial threads which contain only one allocno. */
2453 static void
2454 init_allocno_threads (void)
2456 ira_allocno_t a;
2457 unsigned int j;
2458 bitmap_iterator bi;
2459 ira_pref_t pref;
2461 EXECUTE_IF_SET_IN_BITMAP (consideration_allocno_bitmap, 0, j, bi)
2463 a = ira_allocnos[j];
2464 /* Set up initial thread data: */
2465 ALLOCNO_COLOR_DATA (a)->first_thread_allocno
2466 = ALLOCNO_COLOR_DATA (a)->next_thread_allocno = a;
2467 ALLOCNO_COLOR_DATA (a)->thread_freq = ALLOCNO_FREQ (a);
2468 ALLOCNO_COLOR_DATA (a)->hard_reg_prefs = 0;
2469 for (pref = ALLOCNO_PREFS (a); pref != NULL; pref = pref->next_pref)
2470 ALLOCNO_COLOR_DATA (a)->hard_reg_prefs += pref->freq;
2476 /* This page contains the allocator based on the Chaitin-Briggs algorithm. */
2478 /* Bucket of allocnos that can colored currently without spilling. */
2479 static ira_allocno_t colorable_allocno_bucket;
2481 /* Bucket of allocnos that might be not colored currently without
2482 spilling. */
2483 static ira_allocno_t uncolorable_allocno_bucket;
2485 /* The current number of allocnos in the uncolorable_bucket. */
2486 static int uncolorable_allocnos_num;
2488 /* Return the current spill priority of allocno A. The less the
2489 number, the more preferable the allocno for spilling. */
2490 static inline int
2491 allocno_spill_priority (ira_allocno_t a)
2493 allocno_color_data_t data = ALLOCNO_COLOR_DATA (a);
2495 return (data->temp
2496 / (ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a)
2497 * ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]
2498 + 1));
2501 /* Add allocno A to bucket *BUCKET_PTR. A should be not in a bucket
2502 before the call. */
2503 static void
2504 add_allocno_to_bucket (ira_allocno_t a, ira_allocno_t *bucket_ptr)
2506 ira_allocno_t first_a;
2507 allocno_color_data_t data;
2509 if (bucket_ptr == &uncolorable_allocno_bucket
2510 && ALLOCNO_CLASS (a) != NO_REGS)
2512 uncolorable_allocnos_num++;
2513 ira_assert (uncolorable_allocnos_num > 0);
2515 first_a = *bucket_ptr;
2516 data = ALLOCNO_COLOR_DATA (a);
2517 data->next_bucket_allocno = first_a;
2518 data->prev_bucket_allocno = NULL;
2519 if (first_a != NULL)
2520 ALLOCNO_COLOR_DATA (first_a)->prev_bucket_allocno = a;
2521 *bucket_ptr = a;
2524 /* Compare two allocnos to define which allocno should be pushed first
2525 into the coloring stack. If the return is a negative number, the
2526 allocno given by the first parameter will be pushed first. In this
2527 case such allocno has less priority than the second one and the
2528 hard register will be assigned to it after assignment to the second
2529 one. As the result of such assignment order, the second allocno
2530 has a better chance to get the best hard register. */
2531 static int
2532 bucket_allocno_compare_func (const void *v1p, const void *v2p)
2534 ira_allocno_t a1 = *(const ira_allocno_t *) v1p;
2535 ira_allocno_t a2 = *(const ira_allocno_t *) v2p;
2536 int diff, freq1, freq2, a1_num, a2_num, pref1, pref2;
2537 ira_allocno_t t1 = ALLOCNO_COLOR_DATA (a1)->first_thread_allocno;
2538 ira_allocno_t t2 = ALLOCNO_COLOR_DATA (a2)->first_thread_allocno;
2539 int cl1 = ALLOCNO_CLASS (a1), cl2 = ALLOCNO_CLASS (a2);
2541 freq1 = ALLOCNO_COLOR_DATA (t1)->thread_freq;
2542 freq2 = ALLOCNO_COLOR_DATA (t2)->thread_freq;
2543 if ((diff = freq1 - freq2) != 0)
2544 return diff;
2546 if ((diff = ALLOCNO_NUM (t2) - ALLOCNO_NUM (t1)) != 0)
2547 return diff;
2549 /* Push pseudos requiring less hard registers first. It means that
2550 we will assign pseudos requiring more hard registers first
2551 avoiding creation small holes in free hard register file into
2552 which the pseudos requiring more hard registers cannot fit. */
2553 if ((diff = (ira_reg_class_max_nregs[cl1][ALLOCNO_MODE (a1)]
2554 - ira_reg_class_max_nregs[cl2][ALLOCNO_MODE (a2)])) != 0)
2555 return diff;
2557 freq1 = ALLOCNO_FREQ (a1);
2558 freq2 = ALLOCNO_FREQ (a2);
2559 if ((diff = freq1 - freq2) != 0)
2560 return diff;
2562 a1_num = ALLOCNO_COLOR_DATA (a1)->available_regs_num;
2563 a2_num = ALLOCNO_COLOR_DATA (a2)->available_regs_num;
2564 if ((diff = a2_num - a1_num) != 0)
2565 return diff;
2566 /* Push allocnos with minimal conflict_allocno_hard_prefs first. */
2567 pref1 = ALLOCNO_COLOR_DATA (a1)->conflict_allocno_hard_prefs;
2568 pref2 = ALLOCNO_COLOR_DATA (a2)->conflict_allocno_hard_prefs;
2569 if ((diff = pref1 - pref2) != 0)
2570 return diff;
2571 return ALLOCNO_NUM (a2) - ALLOCNO_NUM (a1);
2574 /* Sort bucket *BUCKET_PTR and return the result through
2575 BUCKET_PTR. */
2576 static void
2577 sort_bucket (ira_allocno_t *bucket_ptr,
2578 int (*compare_func) (const void *, const void *))
2580 ira_allocno_t a, head;
2581 int n;
2583 for (n = 0, a = *bucket_ptr;
2584 a != NULL;
2585 a = ALLOCNO_COLOR_DATA (a)->next_bucket_allocno)
2586 sorted_allocnos[n++] = a;
2587 if (n <= 1)
2588 return;
2589 qsort (sorted_allocnos, n, sizeof (ira_allocno_t), compare_func);
2590 head = NULL;
2591 for (n--; n >= 0; n--)
2593 a = sorted_allocnos[n];
2594 ALLOCNO_COLOR_DATA (a)->next_bucket_allocno = head;
2595 ALLOCNO_COLOR_DATA (a)->prev_bucket_allocno = NULL;
2596 if (head != NULL)
2597 ALLOCNO_COLOR_DATA (head)->prev_bucket_allocno = a;
2598 head = a;
2600 *bucket_ptr = head;
2603 /* Add ALLOCNO to colorable bucket maintaining the order according
2604 their priority. ALLOCNO should be not in a bucket before the
2605 call. */
2606 static void
2607 add_allocno_to_ordered_colorable_bucket (ira_allocno_t allocno)
2609 ira_allocno_t before, after;
2611 form_threads_from_colorable_allocno (allocno);
2612 for (before = colorable_allocno_bucket, after = NULL;
2613 before != NULL;
2614 after = before,
2615 before = ALLOCNO_COLOR_DATA (before)->next_bucket_allocno)
2616 if (bucket_allocno_compare_func (&allocno, &before) < 0)
2617 break;
2618 ALLOCNO_COLOR_DATA (allocno)->next_bucket_allocno = before;
2619 ALLOCNO_COLOR_DATA (allocno)->prev_bucket_allocno = after;
2620 if (after == NULL)
2621 colorable_allocno_bucket = allocno;
2622 else
2623 ALLOCNO_COLOR_DATA (after)->next_bucket_allocno = allocno;
2624 if (before != NULL)
2625 ALLOCNO_COLOR_DATA (before)->prev_bucket_allocno = allocno;
2628 /* Delete ALLOCNO from bucket *BUCKET_PTR. It should be there before
2629 the call. */
2630 static void
2631 delete_allocno_from_bucket (ira_allocno_t allocno, ira_allocno_t *bucket_ptr)
2633 ira_allocno_t prev_allocno, next_allocno;
2635 if (bucket_ptr == &uncolorable_allocno_bucket
2636 && ALLOCNO_CLASS (allocno) != NO_REGS)
2638 uncolorable_allocnos_num--;
2639 ira_assert (uncolorable_allocnos_num >= 0);
2641 prev_allocno = ALLOCNO_COLOR_DATA (allocno)->prev_bucket_allocno;
2642 next_allocno = ALLOCNO_COLOR_DATA (allocno)->next_bucket_allocno;
2643 if (prev_allocno != NULL)
2644 ALLOCNO_COLOR_DATA (prev_allocno)->next_bucket_allocno = next_allocno;
2645 else
2647 ira_assert (*bucket_ptr == allocno);
2648 *bucket_ptr = next_allocno;
2650 if (next_allocno != NULL)
2651 ALLOCNO_COLOR_DATA (next_allocno)->prev_bucket_allocno = prev_allocno;
2654 /* Put allocno A onto the coloring stack without removing it from its
2655 bucket. Pushing allocno to the coloring stack can result in moving
2656 conflicting allocnos from the uncolorable bucket to the colorable
2657 one. Update conflict_allocno_hard_prefs of the conflicting
2658 allocnos which are not on stack yet. */
2659 static void
2660 push_allocno_to_stack (ira_allocno_t a)
2662 enum reg_class aclass;
2663 allocno_color_data_t data, conflict_data;
2664 int size, i, n = ALLOCNO_NUM_OBJECTS (a);
2666 data = ALLOCNO_COLOR_DATA (a);
2667 data->in_graph_p = false;
2668 allocno_stack_vec.safe_push (a);
2669 aclass = ALLOCNO_CLASS (a);
2670 if (aclass == NO_REGS)
2671 return;
2672 size = ira_reg_class_max_nregs[aclass][ALLOCNO_MODE (a)];
2673 if (n > 1)
2675 /* We will deal with the subwords individually. */
2676 gcc_assert (size == ALLOCNO_NUM_OBJECTS (a));
2677 size = 1;
2679 for (i = 0; i < n; i++)
2681 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2682 ira_object_t conflict_obj;
2683 ira_object_conflict_iterator oci;
2685 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2687 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2688 ira_pref_t pref;
2690 conflict_data = ALLOCNO_COLOR_DATA (conflict_a);
2691 if (! conflict_data->in_graph_p
2692 || ALLOCNO_ASSIGNED_P (conflict_a)
2693 || !(hard_reg_set_intersect_p
2694 (ALLOCNO_COLOR_DATA (a)->profitable_hard_regs,
2695 conflict_data->profitable_hard_regs)))
2696 continue;
2697 for (pref = ALLOCNO_PREFS (a); pref != NULL; pref = pref->next_pref)
2698 conflict_data->conflict_allocno_hard_prefs -= pref->freq;
2699 if (conflict_data->colorable_p)
2700 continue;
2701 ira_assert (bitmap_bit_p (coloring_allocno_bitmap,
2702 ALLOCNO_NUM (conflict_a)));
2703 if (update_left_conflict_sizes_p (conflict_a, a, size))
2705 delete_allocno_from_bucket
2706 (conflict_a, &uncolorable_allocno_bucket);
2707 add_allocno_to_ordered_colorable_bucket (conflict_a);
2708 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
2710 fprintf (ira_dump_file, " Making");
2711 ira_print_expanded_allocno (conflict_a);
2712 fprintf (ira_dump_file, " colorable\n");
2720 /* Put ALLOCNO onto the coloring stack and remove it from its bucket.
2721 The allocno is in the colorable bucket if COLORABLE_P is TRUE. */
2722 static void
2723 remove_allocno_from_bucket_and_push (ira_allocno_t allocno, bool colorable_p)
2725 if (colorable_p)
2726 delete_allocno_from_bucket (allocno, &colorable_allocno_bucket);
2727 else
2728 delete_allocno_from_bucket (allocno, &uncolorable_allocno_bucket);
2729 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2731 fprintf (ira_dump_file, " Pushing");
2732 ira_print_expanded_allocno (allocno);
2733 if (colorable_p)
2734 fprintf (ira_dump_file, "(cost %d)\n",
2735 ALLOCNO_COLOR_DATA (allocno)->temp);
2736 else
2737 fprintf (ira_dump_file, "(potential spill: %spri=%d, cost=%d)\n",
2738 ALLOCNO_BAD_SPILL_P (allocno) ? "bad spill, " : "",
2739 allocno_spill_priority (allocno),
2740 ALLOCNO_COLOR_DATA (allocno)->temp);
2742 if (! colorable_p)
2743 ALLOCNO_COLOR_DATA (allocno)->may_be_spilled_p = true;
2744 push_allocno_to_stack (allocno);
2747 /* Put all allocnos from colorable bucket onto the coloring stack. */
2748 static void
2749 push_only_colorable (void)
2751 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2752 fprintf (ira_dump_file, " Forming thread from colorable bucket:\n");
2753 form_threads_from_bucket (colorable_allocno_bucket);
2754 for (ira_allocno_t a = colorable_allocno_bucket;
2755 a != NULL;
2756 a = ALLOCNO_COLOR_DATA (a)->next_bucket_allocno)
2757 update_costs_from_prefs (a);
2758 sort_bucket (&colorable_allocno_bucket, bucket_allocno_compare_func);
2759 for (;colorable_allocno_bucket != NULL;)
2760 remove_allocno_from_bucket_and_push (colorable_allocno_bucket, true);
2763 /* Return the frequency of exit edges (if EXIT_P) or entry from/to the
2764 loop given by its LOOP_NODE. */
2766 ira_loop_edge_freq (ira_loop_tree_node_t loop_node, int regno, bool exit_p)
2768 int freq, i;
2769 edge_iterator ei;
2770 edge e;
2772 ira_assert (current_loops != NULL && loop_node->loop != NULL
2773 && (regno < 0 || regno >= FIRST_PSEUDO_REGISTER));
2774 freq = 0;
2775 if (! exit_p)
2777 FOR_EACH_EDGE (e, ei, loop_node->loop->header->preds)
2778 if (e->src != loop_node->loop->latch
2779 && (regno < 0
2780 || (bitmap_bit_p (df_get_live_out (e->src), regno)
2781 && bitmap_bit_p (df_get_live_in (e->dest), regno))))
2782 freq += EDGE_FREQUENCY (e);
2784 else
2786 auto_vec<edge> edges = get_loop_exit_edges (loop_node->loop);
2787 FOR_EACH_VEC_ELT (edges, i, e)
2788 if (regno < 0
2789 || (bitmap_bit_p (df_get_live_out (e->src), regno)
2790 && bitmap_bit_p (df_get_live_in (e->dest), regno)))
2791 freq += EDGE_FREQUENCY (e);
2794 return REG_FREQ_FROM_EDGE_FREQ (freq);
2797 /* Construct an object that describes the boundary between A and its
2798 parent allocno. */
2799 ira_loop_border_costs::ira_loop_border_costs (ira_allocno_t a)
2800 : m_mode (ALLOCNO_MODE (a)),
2801 m_class (ALLOCNO_CLASS (a)),
2802 m_entry_freq (ira_loop_edge_freq (ALLOCNO_LOOP_TREE_NODE (a),
2803 ALLOCNO_REGNO (a), false)),
2804 m_exit_freq (ira_loop_edge_freq (ALLOCNO_LOOP_TREE_NODE (a),
2805 ALLOCNO_REGNO (a), true))
2809 /* Calculate and return the cost of putting allocno A into memory. */
2810 static int
2811 calculate_allocno_spill_cost (ira_allocno_t a)
2813 int regno, cost;
2814 ira_allocno_t parent_allocno;
2815 ira_loop_tree_node_t parent_node, loop_node;
2817 regno = ALLOCNO_REGNO (a);
2818 cost = ALLOCNO_UPDATED_MEMORY_COST (a) - ALLOCNO_UPDATED_CLASS_COST (a);
2819 if (ALLOCNO_CAP (a) != NULL)
2820 return cost;
2821 loop_node = ALLOCNO_LOOP_TREE_NODE (a);
2822 if ((parent_node = loop_node->parent) == NULL)
2823 return cost;
2824 if ((parent_allocno = parent_node->regno_allocno_map[regno]) == NULL)
2825 return cost;
2826 ira_loop_border_costs border_costs (a);
2827 if (ALLOCNO_HARD_REGNO (parent_allocno) < 0)
2828 cost -= border_costs.spill_outside_loop_cost ();
2829 else
2830 cost += (border_costs.spill_inside_loop_cost ()
2831 - border_costs.move_between_loops_cost ());
2832 return cost;
2835 /* Used for sorting allocnos for spilling. */
2836 static inline int
2837 allocno_spill_priority_compare (ira_allocno_t a1, ira_allocno_t a2)
2839 int pri1, pri2, diff;
2841 /* Avoid spilling static chain pointer pseudo when non-local goto is
2842 used. */
2843 if (non_spilled_static_chain_regno_p (ALLOCNO_REGNO (a1)))
2844 return 1;
2845 else if (non_spilled_static_chain_regno_p (ALLOCNO_REGNO (a2)))
2846 return -1;
2847 if (ALLOCNO_BAD_SPILL_P (a1) && ! ALLOCNO_BAD_SPILL_P (a2))
2848 return 1;
2849 if (ALLOCNO_BAD_SPILL_P (a2) && ! ALLOCNO_BAD_SPILL_P (a1))
2850 return -1;
2851 pri1 = allocno_spill_priority (a1);
2852 pri2 = allocno_spill_priority (a2);
2853 if ((diff = pri1 - pri2) != 0)
2854 return diff;
2855 if ((diff
2856 = ALLOCNO_COLOR_DATA (a1)->temp - ALLOCNO_COLOR_DATA (a2)->temp) != 0)
2857 return diff;
2858 return ALLOCNO_NUM (a1) - ALLOCNO_NUM (a2);
2861 /* Used for sorting allocnos for spilling. */
2862 static int
2863 allocno_spill_sort_compare (const void *v1p, const void *v2p)
2865 ira_allocno_t p1 = *(const ira_allocno_t *) v1p;
2866 ira_allocno_t p2 = *(const ira_allocno_t *) v2p;
2868 return allocno_spill_priority_compare (p1, p2);
2871 /* Push allocnos to the coloring stack. The order of allocnos in the
2872 stack defines the order for the subsequent coloring. */
2873 static void
2874 push_allocnos_to_stack (void)
2876 ira_allocno_t a;
2877 int cost;
2879 /* Calculate uncolorable allocno spill costs. */
2880 for (a = uncolorable_allocno_bucket;
2881 a != NULL;
2882 a = ALLOCNO_COLOR_DATA (a)->next_bucket_allocno)
2883 if (ALLOCNO_CLASS (a) != NO_REGS)
2885 cost = calculate_allocno_spill_cost (a);
2886 /* ??? Remove cost of copies between the coalesced
2887 allocnos. */
2888 ALLOCNO_COLOR_DATA (a)->temp = cost;
2890 sort_bucket (&uncolorable_allocno_bucket, allocno_spill_sort_compare);
2891 for (;;)
2893 push_only_colorable ();
2894 a = uncolorable_allocno_bucket;
2895 if (a == NULL)
2896 break;
2897 remove_allocno_from_bucket_and_push (a, false);
2899 ira_assert (colorable_allocno_bucket == NULL
2900 && uncolorable_allocno_bucket == NULL);
2901 ira_assert (uncolorable_allocnos_num == 0);
2904 /* Pop the coloring stack and assign hard registers to the popped
2905 allocnos. */
2906 static void
2907 pop_allocnos_from_stack (void)
2909 ira_allocno_t allocno;
2910 enum reg_class aclass;
2912 for (;allocno_stack_vec.length () != 0;)
2914 allocno = allocno_stack_vec.pop ();
2915 aclass = ALLOCNO_CLASS (allocno);
2916 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2918 fprintf (ira_dump_file, " Popping");
2919 ira_print_expanded_allocno (allocno);
2920 fprintf (ira_dump_file, " -- ");
2922 if (aclass == NO_REGS)
2924 ALLOCNO_HARD_REGNO (allocno) = -1;
2925 ALLOCNO_ASSIGNED_P (allocno) = true;
2926 ira_assert (ALLOCNO_UPDATED_HARD_REG_COSTS (allocno) == NULL);
2927 ira_assert
2928 (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (allocno) == NULL);
2929 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2930 fprintf (ira_dump_file, "assign memory\n");
2932 else if (assign_hard_reg (allocno, false))
2934 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2935 fprintf (ira_dump_file, " assign reg %d\n",
2936 ALLOCNO_HARD_REGNO (allocno));
2938 else if (ALLOCNO_ASSIGNED_P (allocno))
2940 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2941 fprintf (ira_dump_file, "spill%s\n",
2942 ALLOCNO_COLOR_DATA (allocno)->may_be_spilled_p
2943 ? "" : "!");
2945 ALLOCNO_COLOR_DATA (allocno)->in_graph_p = true;
2949 /* Set up number of available hard registers for allocno A. */
2950 static void
2951 setup_allocno_available_regs_num (ira_allocno_t a)
2953 int i, n, hard_regno, hard_regs_num, nwords;
2954 enum reg_class aclass;
2955 allocno_color_data_t data;
2957 aclass = ALLOCNO_CLASS (a);
2958 data = ALLOCNO_COLOR_DATA (a);
2959 data->available_regs_num = 0;
2960 if (aclass == NO_REGS)
2961 return;
2962 hard_regs_num = ira_class_hard_regs_num[aclass];
2963 nwords = ALLOCNO_NUM_OBJECTS (a);
2964 for (n = 0, i = hard_regs_num - 1; i >= 0; i--)
2966 hard_regno = ira_class_hard_regs[aclass][i];
2967 /* Checking only profitable hard regs. */
2968 if (TEST_HARD_REG_BIT (data->profitable_hard_regs, hard_regno))
2969 n++;
2971 data->available_regs_num = n;
2972 if (internal_flag_ira_verbose <= 2 || ira_dump_file == NULL)
2973 return;
2974 fprintf
2975 (ira_dump_file,
2976 " Allocno a%dr%d of %s(%d) has %d avail. regs ",
2977 ALLOCNO_NUM (a), ALLOCNO_REGNO (a),
2978 reg_class_names[aclass], ira_class_hard_regs_num[aclass], n);
2979 print_hard_reg_set (ira_dump_file, data->profitable_hard_regs, false);
2980 fprintf (ira_dump_file, ", %snode: ",
2981 data->profitable_hard_regs == data->hard_regs_node->hard_regs->set
2982 ? "" : "^");
2983 print_hard_reg_set (ira_dump_file,
2984 data->hard_regs_node->hard_regs->set, false);
2985 for (i = 0; i < nwords; i++)
2987 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2989 if (nwords != 1)
2991 if (i != 0)
2992 fprintf (ira_dump_file, ", ");
2993 fprintf (ira_dump_file, " obj %d", i);
2995 fprintf (ira_dump_file, " (confl regs = ");
2996 print_hard_reg_set (ira_dump_file, OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
2997 false);
2998 fprintf (ira_dump_file, ")");
3000 fprintf (ira_dump_file, "\n");
3003 /* Put ALLOCNO in a bucket corresponding to its number and size of its
3004 conflicting allocnos and hard registers. */
3005 static void
3006 put_allocno_into_bucket (ira_allocno_t allocno)
3008 ALLOCNO_COLOR_DATA (allocno)->in_graph_p = true;
3009 setup_allocno_available_regs_num (allocno);
3010 if (setup_left_conflict_sizes_p (allocno))
3011 add_allocno_to_bucket (allocno, &colorable_allocno_bucket);
3012 else
3013 add_allocno_to_bucket (allocno, &uncolorable_allocno_bucket);
3016 /* Map: allocno number -> allocno priority. */
3017 static int *allocno_priorities;
3019 /* Set up priorities for N allocnos in array
3020 CONSIDERATION_ALLOCNOS. */
3021 static void
3022 setup_allocno_priorities (ira_allocno_t *consideration_allocnos, int n)
3024 int i, length, nrefs, priority, max_priority, mult, diff;
3025 ira_allocno_t a;
3027 max_priority = 0;
3028 for (i = 0; i < n; i++)
3030 a = consideration_allocnos[i];
3031 nrefs = ALLOCNO_NREFS (a);
3032 ira_assert (nrefs >= 0);
3033 mult = floor_log2 (ALLOCNO_NREFS (a)) + 1;
3034 ira_assert (mult >= 0);
3035 mult *= ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
3036 diff = ALLOCNO_MEMORY_COST (a) - ALLOCNO_CLASS_COST (a);
3037 #ifdef __has_builtin
3038 #if __has_builtin(__builtin_smul_overflow)
3039 #define HAS_SMUL_OVERFLOW
3040 #endif
3041 #endif
3042 /* Multiplication can overflow for very large functions.
3043 Check the overflow and constrain the result if necessary: */
3044 #ifdef HAS_SMUL_OVERFLOW
3045 if (__builtin_smul_overflow (mult, diff, &priority)
3046 || priority < -INT_MAX)
3047 priority = diff >= 0 ? INT_MAX : -INT_MAX;
3048 #else
3049 static_assert
3050 (sizeof (long long) >= 2 * sizeof (int),
3051 "overflow code does not work for such int and long long sizes");
3052 long long priorityll = (long long) mult * diff;
3053 if (priorityll < -INT_MAX || priorityll > INT_MAX)
3054 priority = diff >= 0 ? INT_MAX : -INT_MAX;
3055 else
3056 priority = priorityll;
3057 #endif
3058 allocno_priorities[ALLOCNO_NUM (a)] = priority;
3059 if (priority < 0)
3060 priority = -priority;
3061 if (max_priority < priority)
3062 max_priority = priority;
3064 mult = max_priority == 0 ? 1 : INT_MAX / max_priority;
3065 for (i = 0; i < n; i++)
3067 a = consideration_allocnos[i];
3068 length = ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a);
3069 if (ALLOCNO_NUM_OBJECTS (a) > 1)
3070 length /= ALLOCNO_NUM_OBJECTS (a);
3071 if (length <= 0)
3072 length = 1;
3073 allocno_priorities[ALLOCNO_NUM (a)]
3074 = allocno_priorities[ALLOCNO_NUM (a)] * mult / length;
3078 /* Sort allocnos according to the profit of usage of a hard register
3079 instead of memory for them. */
3080 static int
3081 allocno_cost_compare_func (const void *v1p, const void *v2p)
3083 ira_allocno_t p1 = *(const ira_allocno_t *) v1p;
3084 ira_allocno_t p2 = *(const ira_allocno_t *) v2p;
3085 int c1, c2;
3087 c1 = ALLOCNO_UPDATED_MEMORY_COST (p1) - ALLOCNO_UPDATED_CLASS_COST (p1);
3088 c2 = ALLOCNO_UPDATED_MEMORY_COST (p2) - ALLOCNO_UPDATED_CLASS_COST (p2);
3089 if (c1 - c2)
3090 return c1 - c2;
3092 /* If regs are equally good, sort by allocno numbers, so that the
3093 results of qsort leave nothing to chance. */
3094 return ALLOCNO_NUM (p1) - ALLOCNO_NUM (p2);
3097 /* Return savings on removed copies when ALLOCNO is assigned to
3098 HARD_REGNO. */
3099 static int
3100 allocno_copy_cost_saving (ira_allocno_t allocno, int hard_regno)
3102 int cost = 0;
3103 machine_mode allocno_mode = ALLOCNO_MODE (allocno);
3104 enum reg_class rclass;
3105 ira_copy_t cp, next_cp;
3107 rclass = REGNO_REG_CLASS (hard_regno);
3108 if (ira_reg_class_max_nregs[rclass][allocno_mode]
3109 > ira_class_hard_regs_num[rclass])
3110 /* For the above condition the cost can be wrong. Use the allocno
3111 class in this case. */
3112 rclass = ALLOCNO_CLASS (allocno);
3113 for (cp = ALLOCNO_COPIES (allocno); cp != NULL; cp = next_cp)
3115 if (cp->first == allocno)
3117 next_cp = cp->next_first_allocno_copy;
3118 if (ALLOCNO_HARD_REGNO (cp->second) != hard_regno)
3119 continue;
3121 else if (cp->second == allocno)
3123 next_cp = cp->next_second_allocno_copy;
3124 if (ALLOCNO_HARD_REGNO (cp->first) != hard_regno)
3125 continue;
3127 else
3128 gcc_unreachable ();
3129 ira_init_register_move_cost_if_necessary (allocno_mode);
3130 cost += cp->freq * ira_register_move_cost[allocno_mode][rclass][rclass];
3132 return cost;
3135 /* We used Chaitin-Briggs coloring to assign as many pseudos as
3136 possible to hard registers. Let us try to improve allocation with
3137 cost point of view. This function improves the allocation by
3138 spilling some allocnos and assigning the freed hard registers to
3139 other allocnos if it decreases the overall allocation cost. */
3140 static void
3141 improve_allocation (void)
3143 unsigned int i;
3144 int j, k, n, hregno, conflict_hregno, base_cost, class_size, word, nwords;
3145 int check, spill_cost, min_cost, nregs, conflict_nregs, r, best;
3146 bool try_p;
3147 enum reg_class aclass;
3148 machine_mode mode;
3149 int *allocno_costs;
3150 int costs[FIRST_PSEUDO_REGISTER];
3151 HARD_REG_SET conflicting_regs[2], profitable_hard_regs;
3152 ira_allocno_t a;
3153 bitmap_iterator bi;
3155 /* Don't bother to optimize the code with static chain pointer and
3156 non-local goto in order not to spill the chain pointer
3157 pseudo. */
3158 if (cfun->static_chain_decl && crtl->has_nonlocal_goto)
3159 return;
3160 /* Clear counts used to process conflicting allocnos only once for
3161 each allocno. */
3162 EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
3163 ALLOCNO_COLOR_DATA (ira_allocnos[i])->temp = 0;
3164 check = n = 0;
3165 /* Process each allocno and try to assign a hard register to it by
3166 spilling some its conflicting allocnos. */
3167 EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
3169 a = ira_allocnos[i];
3170 ALLOCNO_COLOR_DATA (a)->temp = 0;
3171 if (empty_profitable_hard_regs (a))
3172 continue;
3173 check++;
3174 aclass = ALLOCNO_CLASS (a);
3175 allocno_costs = ALLOCNO_HARD_REG_COSTS (a);
3176 if ((hregno = ALLOCNO_HARD_REGNO (a)) < 0)
3177 base_cost = ALLOCNO_UPDATED_MEMORY_COST (a);
3178 else if (allocno_costs == NULL)
3179 /* It means that assigning a hard register is not profitable
3180 (we don't waste memory for hard register costs in this
3181 case). */
3182 continue;
3183 else
3184 base_cost = (allocno_costs[ira_class_hard_reg_index[aclass][hregno]]
3185 - allocno_copy_cost_saving (a, hregno));
3186 try_p = false;
3187 get_conflict_and_start_profitable_regs (a, false,
3188 conflicting_regs,
3189 &profitable_hard_regs);
3190 class_size = ira_class_hard_regs_num[aclass];
3191 /* Set up cost improvement for usage of each profitable hard
3192 register for allocno A. */
3193 for (j = 0; j < class_size; j++)
3195 hregno = ira_class_hard_regs[aclass][j];
3196 if (! check_hard_reg_p (a, hregno,
3197 conflicting_regs, profitable_hard_regs))
3198 continue;
3199 ira_assert (ira_class_hard_reg_index[aclass][hregno] == j);
3200 k = allocno_costs == NULL ? 0 : j;
3201 costs[hregno] = (allocno_costs == NULL
3202 ? ALLOCNO_UPDATED_CLASS_COST (a) : allocno_costs[k]);
3203 costs[hregno] -= allocno_copy_cost_saving (a, hregno);
3204 costs[hregno] -= base_cost;
3205 if (costs[hregno] < 0)
3206 try_p = true;
3208 if (! try_p)
3209 /* There is no chance to improve the allocation cost by
3210 assigning hard register to allocno A even without spilling
3211 conflicting allocnos. */
3212 continue;
3213 auto_bitmap allocnos_to_spill;
3214 HARD_REG_SET soft_conflict_regs = {};
3215 mode = ALLOCNO_MODE (a);
3216 nwords = ALLOCNO_NUM_OBJECTS (a);
3217 /* Process each allocno conflicting with A and update the cost
3218 improvement for profitable hard registers of A. To use a
3219 hard register for A we need to spill some conflicting
3220 allocnos and that creates penalty for the cost
3221 improvement. */
3222 for (word = 0; word < nwords; word++)
3224 ira_object_t conflict_obj;
3225 ira_object_t obj = ALLOCNO_OBJECT (a, word);
3226 ira_object_conflict_iterator oci;
3228 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
3230 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
3232 if (ALLOCNO_COLOR_DATA (conflict_a)->temp == check)
3233 /* We already processed this conflicting allocno
3234 because we processed earlier another object of the
3235 conflicting allocno. */
3236 continue;
3237 ALLOCNO_COLOR_DATA (conflict_a)->temp = check;
3238 if ((conflict_hregno = ALLOCNO_HARD_REGNO (conflict_a)) < 0)
3239 continue;
3240 auto spill_a = ira_soft_conflict (a, conflict_a);
3241 if (spill_a)
3243 if (!bitmap_set_bit (allocnos_to_spill,
3244 ALLOCNO_NUM (spill_a)))
3245 continue;
3246 ira_loop_border_costs border_costs (spill_a);
3247 spill_cost = border_costs.spill_inside_loop_cost ();
3249 else
3251 spill_cost = ALLOCNO_UPDATED_MEMORY_COST (conflict_a);
3252 k = (ira_class_hard_reg_index
3253 [ALLOCNO_CLASS (conflict_a)][conflict_hregno]);
3254 ira_assert (k >= 0);
3255 if ((allocno_costs = ALLOCNO_HARD_REG_COSTS (conflict_a))
3256 != NULL)
3257 spill_cost -= allocno_costs[k];
3258 else
3259 spill_cost -= ALLOCNO_UPDATED_CLASS_COST (conflict_a);
3260 spill_cost
3261 += allocno_copy_cost_saving (conflict_a, conflict_hregno);
3263 conflict_nregs = hard_regno_nregs (conflict_hregno,
3264 ALLOCNO_MODE (conflict_a));
3265 auto note_conflict = [&](int r)
3267 if (check_hard_reg_p (a, r,
3268 conflicting_regs, profitable_hard_regs))
3270 if (spill_a)
3271 SET_HARD_REG_BIT (soft_conflict_regs, r);
3272 costs[r] += spill_cost;
3275 for (r = conflict_hregno;
3276 r >= 0 && (int) end_hard_regno (mode, r) > conflict_hregno;
3277 r--)
3278 note_conflict (r);
3279 for (r = conflict_hregno + 1;
3280 r < conflict_hregno + conflict_nregs;
3281 r++)
3282 note_conflict (r);
3285 min_cost = INT_MAX;
3286 best = -1;
3287 /* Now we choose hard register for A which results in highest
3288 allocation cost improvement. */
3289 for (j = 0; j < class_size; j++)
3291 hregno = ira_class_hard_regs[aclass][j];
3292 if (check_hard_reg_p (a, hregno,
3293 conflicting_regs, profitable_hard_regs)
3294 && min_cost > costs[hregno])
3296 best = hregno;
3297 min_cost = costs[hregno];
3300 if (min_cost >= 0)
3301 /* We are in a situation when assigning any hard register to A
3302 by spilling some conflicting allocnos does not improve the
3303 allocation cost. */
3304 continue;
3305 spill_soft_conflicts (a, allocnos_to_spill, soft_conflict_regs, best);
3306 nregs = hard_regno_nregs (best, mode);
3307 /* Now spill conflicting allocnos which contain a hard register
3308 of A when we assign the best chosen hard register to it. */
3309 for (word = 0; word < nwords; word++)
3311 ira_object_t conflict_obj;
3312 ira_object_t obj = ALLOCNO_OBJECT (a, word);
3313 ira_object_conflict_iterator oci;
3315 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
3317 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
3319 if ((conflict_hregno = ALLOCNO_HARD_REGNO (conflict_a)) < 0)
3320 continue;
3321 conflict_nregs = hard_regno_nregs (conflict_hregno,
3322 ALLOCNO_MODE (conflict_a));
3323 if (best + nregs <= conflict_hregno
3324 || conflict_hregno + conflict_nregs <= best)
3325 /* No intersection. */
3326 continue;
3327 ALLOCNO_HARD_REGNO (conflict_a) = -1;
3328 sorted_allocnos[n++] = conflict_a;
3329 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
3330 fprintf (ira_dump_file, "Spilling a%dr%d for a%dr%d\n",
3331 ALLOCNO_NUM (conflict_a), ALLOCNO_REGNO (conflict_a),
3332 ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
3335 /* Assign the best chosen hard register to A. */
3336 ALLOCNO_HARD_REGNO (a) = best;
3337 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
3338 fprintf (ira_dump_file, "Assigning %d to a%dr%d\n",
3339 best, ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
3341 if (n == 0)
3342 return;
3343 /* We spilled some allocnos to assign their hard registers to other
3344 allocnos. The spilled allocnos are now in array
3345 'sorted_allocnos'. There is still a possibility that some of the
3346 spilled allocnos can get hard registers. So let us try assign
3347 them hard registers again (just a reminder -- function
3348 'assign_hard_reg' assigns hard registers only if it is possible
3349 and profitable). We process the spilled allocnos with biggest
3350 benefit to get hard register first -- see function
3351 'allocno_cost_compare_func'. */
3352 qsort (sorted_allocnos, n, sizeof (ira_allocno_t),
3353 allocno_cost_compare_func);
3354 for (j = 0; j < n; j++)
3356 a = sorted_allocnos[j];
3357 ALLOCNO_ASSIGNED_P (a) = false;
3358 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
3360 fprintf (ira_dump_file, " ");
3361 ira_print_expanded_allocno (a);
3362 fprintf (ira_dump_file, " -- ");
3364 if (assign_hard_reg (a, false))
3366 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
3367 fprintf (ira_dump_file, "assign hard reg %d\n",
3368 ALLOCNO_HARD_REGNO (a));
3370 else
3372 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
3373 fprintf (ira_dump_file, "assign memory\n");
3378 /* Sort allocnos according to their priorities. */
3379 static int
3380 allocno_priority_compare_func (const void *v1p, const void *v2p)
3382 ira_allocno_t a1 = *(const ira_allocno_t *) v1p;
3383 ira_allocno_t a2 = *(const ira_allocno_t *) v2p;
3384 int pri1, pri2, diff;
3386 /* Assign hard reg to static chain pointer pseudo first when
3387 non-local goto is used. */
3388 if ((diff = (non_spilled_static_chain_regno_p (ALLOCNO_REGNO (a2))
3389 - non_spilled_static_chain_regno_p (ALLOCNO_REGNO (a1)))) != 0)
3390 return diff;
3391 pri1 = allocno_priorities[ALLOCNO_NUM (a1)];
3392 pri2 = allocno_priorities[ALLOCNO_NUM (a2)];
3393 if (pri2 != pri1)
3394 return SORTGT (pri2, pri1);
3396 /* If regs are equally good, sort by allocnos, so that the results of
3397 qsort leave nothing to chance. */
3398 return ALLOCNO_NUM (a1) - ALLOCNO_NUM (a2);
3401 /* Chaitin-Briggs coloring for allocnos in COLORING_ALLOCNO_BITMAP
3402 taking into account allocnos in CONSIDERATION_ALLOCNO_BITMAP. */
3403 static void
3404 color_allocnos (void)
3406 unsigned int i, n;
3407 bitmap_iterator bi;
3408 ira_allocno_t a;
3410 setup_profitable_hard_regs ();
3411 EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
3413 allocno_color_data_t data;
3414 ira_pref_t pref, next_pref;
3416 a = ira_allocnos[i];
3417 data = ALLOCNO_COLOR_DATA (a);
3418 data->conflict_allocno_hard_prefs = 0;
3419 for (pref = ALLOCNO_PREFS (a); pref != NULL; pref = next_pref)
3421 next_pref = pref->next_pref;
3422 if (! ira_hard_reg_in_set_p (pref->hard_regno,
3423 ALLOCNO_MODE (a),
3424 data->profitable_hard_regs))
3425 ira_remove_pref (pref);
3429 if (flag_ira_algorithm == IRA_ALGORITHM_PRIORITY)
3431 n = 0;
3432 EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
3434 a = ira_allocnos[i];
3435 if (ALLOCNO_CLASS (a) == NO_REGS)
3437 ALLOCNO_HARD_REGNO (a) = -1;
3438 ALLOCNO_ASSIGNED_P (a) = true;
3439 ira_assert (ALLOCNO_UPDATED_HARD_REG_COSTS (a) == NULL);
3440 ira_assert (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) == NULL);
3441 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
3443 fprintf (ira_dump_file, " Spill");
3444 ira_print_expanded_allocno (a);
3445 fprintf (ira_dump_file, "\n");
3447 continue;
3449 sorted_allocnos[n++] = a;
3451 if (n != 0)
3453 setup_allocno_priorities (sorted_allocnos, n);
3454 qsort (sorted_allocnos, n, sizeof (ira_allocno_t),
3455 allocno_priority_compare_func);
3456 for (i = 0; i < n; i++)
3458 a = sorted_allocnos[i];
3459 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
3461 fprintf (ira_dump_file, " ");
3462 ira_print_expanded_allocno (a);
3463 fprintf (ira_dump_file, " -- ");
3465 if (assign_hard_reg (a, false))
3467 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
3468 fprintf (ira_dump_file, "assign hard reg %d\n",
3469 ALLOCNO_HARD_REGNO (a));
3471 else
3473 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
3474 fprintf (ira_dump_file, "assign memory\n");
3479 else
3481 form_allocno_hard_regs_nodes_forest ();
3482 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
3483 print_hard_regs_forest (ira_dump_file);
3484 EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
3486 a = ira_allocnos[i];
3487 if (ALLOCNO_CLASS (a) != NO_REGS && ! empty_profitable_hard_regs (a))
3489 ALLOCNO_COLOR_DATA (a)->in_graph_p = true;
3490 update_conflict_allocno_hard_prefs (a);
3492 else
3494 ALLOCNO_HARD_REGNO (a) = -1;
3495 ALLOCNO_ASSIGNED_P (a) = true;
3496 /* We don't need updated costs anymore. */
3497 ira_free_allocno_updated_costs (a);
3498 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
3500 fprintf (ira_dump_file, " Spill");
3501 ira_print_expanded_allocno (a);
3502 fprintf (ira_dump_file, "\n");
3506 /* Put the allocnos into the corresponding buckets. */
3507 colorable_allocno_bucket = NULL;
3508 uncolorable_allocno_bucket = NULL;
3509 EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
3511 a = ira_allocnos[i];
3512 if (ALLOCNO_COLOR_DATA (a)->in_graph_p)
3513 put_allocno_into_bucket (a);
3515 push_allocnos_to_stack ();
3516 pop_allocnos_from_stack ();
3517 finish_allocno_hard_regs_nodes_forest ();
3519 improve_allocation ();
3524 /* Output information about the loop given by its LOOP_TREE_NODE. */
3525 static void
3526 print_loop_title (ira_loop_tree_node_t loop_tree_node)
3528 unsigned int j;
3529 bitmap_iterator bi;
3530 ira_loop_tree_node_t subloop_node, dest_loop_node;
3531 edge e;
3532 edge_iterator ei;
3534 if (loop_tree_node->parent == NULL)
3535 fprintf (ira_dump_file,
3536 "\n Loop 0 (parent -1, header bb%d, depth 0)\n bbs:",
3537 NUM_FIXED_BLOCKS);
3538 else
3540 ira_assert (current_loops != NULL && loop_tree_node->loop != NULL);
3541 fprintf (ira_dump_file,
3542 "\n Loop %d (parent %d, header bb%d, depth %d)\n bbs:",
3543 loop_tree_node->loop_num, loop_tree_node->parent->loop_num,
3544 loop_tree_node->loop->header->index,
3545 loop_depth (loop_tree_node->loop));
3547 for (subloop_node = loop_tree_node->children;
3548 subloop_node != NULL;
3549 subloop_node = subloop_node->next)
3550 if (subloop_node->bb != NULL)
3552 fprintf (ira_dump_file, " %d", subloop_node->bb->index);
3553 FOR_EACH_EDGE (e, ei, subloop_node->bb->succs)
3554 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
3555 && ((dest_loop_node = IRA_BB_NODE (e->dest)->parent)
3556 != loop_tree_node))
3557 fprintf (ira_dump_file, "(->%d:l%d)",
3558 e->dest->index, dest_loop_node->loop_num);
3560 fprintf (ira_dump_file, "\n all:");
3561 EXECUTE_IF_SET_IN_BITMAP (loop_tree_node->all_allocnos, 0, j, bi)
3562 fprintf (ira_dump_file, " %dr%d", j, ALLOCNO_REGNO (ira_allocnos[j]));
3563 fprintf (ira_dump_file, "\n modified regnos:");
3564 EXECUTE_IF_SET_IN_BITMAP (loop_tree_node->modified_regnos, 0, j, bi)
3565 fprintf (ira_dump_file, " %d", j);
3566 fprintf (ira_dump_file, "\n border:");
3567 EXECUTE_IF_SET_IN_BITMAP (loop_tree_node->border_allocnos, 0, j, bi)
3568 fprintf (ira_dump_file, " %dr%d", j, ALLOCNO_REGNO (ira_allocnos[j]));
3569 fprintf (ira_dump_file, "\n Pressure:");
3570 for (j = 0; (int) j < ira_pressure_classes_num; j++)
3572 enum reg_class pclass;
3574 pclass = ira_pressure_classes[j];
3575 if (loop_tree_node->reg_pressure[pclass] == 0)
3576 continue;
3577 fprintf (ira_dump_file, " %s=%d", reg_class_names[pclass],
3578 loop_tree_node->reg_pressure[pclass]);
3580 fprintf (ira_dump_file, "\n");
3583 /* Color the allocnos inside loop (in the extreme case it can be all
3584 of the function) given the corresponding LOOP_TREE_NODE. The
3585 function is called for each loop during top-down traverse of the
3586 loop tree. */
3587 static void
3588 color_pass (ira_loop_tree_node_t loop_tree_node)
3590 int regno, hard_regno, index = -1, n;
3591 int cost;
3592 unsigned int j;
3593 bitmap_iterator bi;
3594 machine_mode mode;
3595 enum reg_class rclass, aclass;
3596 ira_allocno_t a, subloop_allocno;
3597 ira_loop_tree_node_t subloop_node;
3599 ira_assert (loop_tree_node->bb == NULL);
3600 if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
3601 print_loop_title (loop_tree_node);
3603 bitmap_copy (coloring_allocno_bitmap, loop_tree_node->all_allocnos);
3604 bitmap_copy (consideration_allocno_bitmap, coloring_allocno_bitmap);
3605 n = 0;
3606 EXECUTE_IF_SET_IN_BITMAP (consideration_allocno_bitmap, 0, j, bi)
3608 a = ira_allocnos[j];
3609 n++;
3610 if (! ALLOCNO_ASSIGNED_P (a))
3611 continue;
3612 bitmap_clear_bit (coloring_allocno_bitmap, ALLOCNO_NUM (a));
3614 allocno_color_data
3615 = (allocno_color_data_t) ira_allocate (sizeof (struct allocno_color_data)
3616 * n);
3617 memset (allocno_color_data, 0, sizeof (struct allocno_color_data) * n);
3618 curr_allocno_process = 0;
3619 n = 0;
3620 EXECUTE_IF_SET_IN_BITMAP (consideration_allocno_bitmap, 0, j, bi)
3622 a = ira_allocnos[j];
3623 ALLOCNO_ADD_DATA (a) = allocno_color_data + n;
3624 n++;
3626 init_allocno_threads ();
3627 /* Color all mentioned allocnos including transparent ones. */
3628 color_allocnos ();
3629 /* Process caps. They are processed just once. */
3630 if (flag_ira_region == IRA_REGION_MIXED
3631 || flag_ira_region == IRA_REGION_ALL)
3632 EXECUTE_IF_SET_IN_BITMAP (loop_tree_node->all_allocnos, 0, j, bi)
3634 a = ira_allocnos[j];
3635 if (ALLOCNO_CAP_MEMBER (a) == NULL)
3636 continue;
3637 /* Remove from processing in the next loop. */
3638 bitmap_clear_bit (consideration_allocno_bitmap, j);
3639 rclass = ALLOCNO_CLASS (a);
3640 subloop_allocno = ALLOCNO_CAP_MEMBER (a);
3641 subloop_node = ALLOCNO_LOOP_TREE_NODE (subloop_allocno);
3642 if (ira_single_region_allocno_p (a, subloop_allocno))
3644 mode = ALLOCNO_MODE (a);
3645 hard_regno = ALLOCNO_HARD_REGNO (a);
3646 if (hard_regno >= 0)
3648 index = ira_class_hard_reg_index[rclass][hard_regno];
3649 ira_assert (index >= 0);
3651 regno = ALLOCNO_REGNO (a);
3652 ira_assert (!ALLOCNO_ASSIGNED_P (subloop_allocno));
3653 ALLOCNO_HARD_REGNO (subloop_allocno) = hard_regno;
3654 ALLOCNO_ASSIGNED_P (subloop_allocno) = true;
3655 if (hard_regno >= 0)
3656 update_costs_from_copies (subloop_allocno, true, true);
3657 /* We don't need updated costs anymore. */
3658 ira_free_allocno_updated_costs (subloop_allocno);
3661 /* Update costs of the corresponding allocnos (not caps) in the
3662 subloops. */
3663 for (subloop_node = loop_tree_node->subloops;
3664 subloop_node != NULL;
3665 subloop_node = subloop_node->subloop_next)
3667 ira_assert (subloop_node->bb == NULL);
3668 EXECUTE_IF_SET_IN_BITMAP (consideration_allocno_bitmap, 0, j, bi)
3670 a = ira_allocnos[j];
3671 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
3672 mode = ALLOCNO_MODE (a);
3673 rclass = ALLOCNO_CLASS (a);
3674 hard_regno = ALLOCNO_HARD_REGNO (a);
3675 /* Use hard register class here. ??? */
3676 if (hard_regno >= 0)
3678 index = ira_class_hard_reg_index[rclass][hard_regno];
3679 ira_assert (index >= 0);
3681 regno = ALLOCNO_REGNO (a);
3682 /* ??? conflict costs */
3683 subloop_allocno = subloop_node->regno_allocno_map[regno];
3684 if (subloop_allocno == NULL
3685 || ALLOCNO_CAP (subloop_allocno) != NULL)
3686 continue;
3687 ira_assert (ALLOCNO_CLASS (subloop_allocno) == rclass);
3688 ira_assert (bitmap_bit_p (subloop_node->all_allocnos,
3689 ALLOCNO_NUM (subloop_allocno)));
3690 if (ira_single_region_allocno_p (a, subloop_allocno)
3691 || !ira_subloop_allocnos_can_differ_p (a, hard_regno >= 0,
3692 false))
3694 gcc_assert (!ALLOCNO_MIGHT_CONFLICT_WITH_PARENT_P
3695 (subloop_allocno));
3696 if (! ALLOCNO_ASSIGNED_P (subloop_allocno))
3698 ALLOCNO_HARD_REGNO (subloop_allocno) = hard_regno;
3699 ALLOCNO_ASSIGNED_P (subloop_allocno) = true;
3700 if (hard_regno >= 0)
3701 update_costs_from_copies (subloop_allocno, true, true);
3702 /* We don't need updated costs anymore. */
3703 ira_free_allocno_updated_costs (subloop_allocno);
3706 else if (hard_regno < 0)
3708 /* If we allocate a register to SUBLOOP_ALLOCNO, we'll need
3709 to load the register on entry to the subloop and store
3710 the register back on exit from the subloop. This incurs
3711 a fixed cost for all registers. Since UPDATED_MEMORY_COST
3712 is (and should only be) used relative to the register costs
3713 for the same allocno, we can subtract this shared register
3714 cost from the memory cost. */
3715 ira_loop_border_costs border_costs (subloop_allocno);
3716 ALLOCNO_UPDATED_MEMORY_COST (subloop_allocno)
3717 -= border_costs.spill_outside_loop_cost ();
3719 else
3721 ira_loop_border_costs border_costs (subloop_allocno);
3722 aclass = ALLOCNO_CLASS (subloop_allocno);
3723 ira_init_register_move_cost_if_necessary (mode);
3724 cost = border_costs.move_between_loops_cost ();
3725 ira_allocate_and_set_or_copy_costs
3726 (&ALLOCNO_UPDATED_HARD_REG_COSTS (subloop_allocno), aclass,
3727 ALLOCNO_UPDATED_CLASS_COST (subloop_allocno),
3728 ALLOCNO_HARD_REG_COSTS (subloop_allocno));
3729 ira_allocate_and_set_or_copy_costs
3730 (&ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (subloop_allocno),
3731 aclass, 0, ALLOCNO_CONFLICT_HARD_REG_COSTS (subloop_allocno));
3732 ALLOCNO_UPDATED_HARD_REG_COSTS (subloop_allocno)[index] -= cost;
3733 ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (subloop_allocno)[index]
3734 -= cost;
3735 if (ALLOCNO_UPDATED_CLASS_COST (subloop_allocno)
3736 > ALLOCNO_UPDATED_HARD_REG_COSTS (subloop_allocno)[index])
3737 ALLOCNO_UPDATED_CLASS_COST (subloop_allocno)
3738 = ALLOCNO_UPDATED_HARD_REG_COSTS (subloop_allocno)[index];
3739 /* If we spill SUBLOOP_ALLOCNO, we'll need to store HARD_REGNO
3740 on entry to the subloop and restore HARD_REGNO on exit from
3741 the subloop. */
3742 ALLOCNO_UPDATED_MEMORY_COST (subloop_allocno)
3743 += border_costs.spill_inside_loop_cost ();
3747 ira_free (allocno_color_data);
3748 EXECUTE_IF_SET_IN_BITMAP (consideration_allocno_bitmap, 0, j, bi)
3750 a = ira_allocnos[j];
3751 ALLOCNO_ADD_DATA (a) = NULL;
3755 /* Initialize the common data for coloring and calls functions to do
3756 Chaitin-Briggs and regional coloring. */
3757 static void
3758 do_coloring (void)
3760 coloring_allocno_bitmap = ira_allocate_bitmap ();
3761 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
3762 fprintf (ira_dump_file, "\n**** Allocnos coloring:\n\n");
3764 ira_traverse_loop_tree (false, ira_loop_tree_root, color_pass, NULL);
3766 if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
3767 ira_print_disposition (ira_dump_file);
3769 ira_free_bitmap (coloring_allocno_bitmap);
3774 /* Move spill/restore code, which are to be generated in ira-emit.cc,
3775 to less frequent points (if it is profitable) by reassigning some
3776 allocnos (in loop with subloops containing in another loop) to
3777 memory which results in longer live-range where the corresponding
3778 pseudo-registers will be in memory. */
3779 static void
3780 move_spill_restore (void)
3782 int cost, regno, hard_regno, hard_regno2, index;
3783 bool changed_p;
3784 machine_mode mode;
3785 enum reg_class rclass;
3786 ira_allocno_t a, parent_allocno, subloop_allocno;
3787 ira_loop_tree_node_t parent, loop_node, subloop_node;
3788 ira_allocno_iterator ai;
3790 for (;;)
3792 changed_p = false;
3793 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
3794 fprintf (ira_dump_file, "New iteration of spill/restore move\n");
3795 FOR_EACH_ALLOCNO (a, ai)
3797 regno = ALLOCNO_REGNO (a);
3798 loop_node = ALLOCNO_LOOP_TREE_NODE (a);
3799 if (ALLOCNO_CAP_MEMBER (a) != NULL
3800 || ALLOCNO_CAP (a) != NULL
3801 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0
3802 || loop_node->children == NULL
3803 /* don't do the optimization because it can create
3804 copies and the reload pass can spill the allocno set
3805 by copy although the allocno will not get memory
3806 slot. */
3807 || ira_equiv_no_lvalue_p (regno)
3808 || !bitmap_bit_p (loop_node->border_allocnos, ALLOCNO_NUM (a))
3809 /* Do not spill static chain pointer pseudo when
3810 non-local goto is used. */
3811 || non_spilled_static_chain_regno_p (regno))
3812 continue;
3813 mode = ALLOCNO_MODE (a);
3814 rclass = ALLOCNO_CLASS (a);
3815 index = ira_class_hard_reg_index[rclass][hard_regno];
3816 ira_assert (index >= 0);
3817 cost = (ALLOCNO_MEMORY_COST (a)
3818 - (ALLOCNO_HARD_REG_COSTS (a) == NULL
3819 ? ALLOCNO_CLASS_COST (a)
3820 : ALLOCNO_HARD_REG_COSTS (a)[index]));
3821 ira_init_register_move_cost_if_necessary (mode);
3822 for (subloop_node = loop_node->subloops;
3823 subloop_node != NULL;
3824 subloop_node = subloop_node->subloop_next)
3826 ira_assert (subloop_node->bb == NULL);
3827 subloop_allocno = subloop_node->regno_allocno_map[regno];
3828 if (subloop_allocno == NULL)
3829 continue;
3830 ira_assert (rclass == ALLOCNO_CLASS (subloop_allocno));
3831 ira_loop_border_costs border_costs (subloop_allocno);
3833 /* We have accumulated cost. To get the real cost of
3834 allocno usage in the loop we should subtract the costs
3835 added by propagate_allocno_info for the subloop allocnos. */
3836 int reg_cost
3837 = (ALLOCNO_HARD_REG_COSTS (subloop_allocno) == NULL
3838 ? ALLOCNO_CLASS_COST (subloop_allocno)
3839 : ALLOCNO_HARD_REG_COSTS (subloop_allocno)[index]);
3841 int spill_cost
3842 = (border_costs.spill_inside_loop_cost ()
3843 + ALLOCNO_MEMORY_COST (subloop_allocno));
3845 /* If HARD_REGNO conflicts with SUBLOOP_A then
3846 propagate_allocno_info will have propagated
3847 the cost of spilling HARD_REGNO in SUBLOOP_NODE.
3848 (ira_subloop_allocnos_can_differ_p must be true
3849 in that case.) If HARD_REGNO is a caller-saved
3850 register, we might have modelled it in the same way.
3852 Otherwise, SPILL_COST acted as a cap on the propagated
3853 register cost, in cases where the allocations can differ. */
3854 auto conflicts = ira_total_conflict_hard_regs (subloop_allocno);
3855 if (TEST_HARD_REG_BIT (conflicts, hard_regno)
3856 || (ira_need_caller_save_p (subloop_allocno, hard_regno)
3857 && ira_caller_save_loop_spill_p (a, subloop_allocno,
3858 spill_cost)))
3859 reg_cost = spill_cost;
3860 else if (ira_subloop_allocnos_can_differ_p (a))
3861 reg_cost = MIN (reg_cost, spill_cost);
3863 cost -= ALLOCNO_MEMORY_COST (subloop_allocno) - reg_cost;
3865 if ((hard_regno2 = ALLOCNO_HARD_REGNO (subloop_allocno)) < 0)
3866 /* The register was spilled in the subloop. If we spill
3867 it in the outer loop too then we'll no longer need to
3868 save the register on entry to the subloop and restore
3869 the register on exit from the subloop. */
3870 cost -= border_costs.spill_inside_loop_cost ();
3871 else
3873 /* The register was also allocated in the subloop. If we
3874 spill it in the outer loop then we'll need to load the
3875 register on entry to the subloop and store the register
3876 back on exit from the subloop. */
3877 cost += border_costs.spill_outside_loop_cost ();
3878 if (hard_regno2 != hard_regno)
3879 cost -= border_costs.move_between_loops_cost ();
3882 if ((parent = loop_node->parent) != NULL
3883 && (parent_allocno = parent->regno_allocno_map[regno]) != NULL)
3885 ira_assert (rclass == ALLOCNO_CLASS (parent_allocno));
3886 ira_loop_border_costs border_costs (a);
3887 if ((hard_regno2 = ALLOCNO_HARD_REGNO (parent_allocno)) < 0)
3888 /* The register was spilled in the parent loop. If we spill
3889 it in this loop too then we'll no longer need to load the
3890 register on entry to this loop and save the register back
3891 on exit from this loop. */
3892 cost -= border_costs.spill_outside_loop_cost ();
3893 else
3895 /* The register was also allocated in the parent loop.
3896 If we spill it in this loop then we'll need to save
3897 the register on entry to this loop and restore the
3898 register on exit from this loop. */
3899 cost += border_costs.spill_inside_loop_cost ();
3900 if (hard_regno2 != hard_regno)
3901 cost -= border_costs.move_between_loops_cost ();
3904 if (cost < 0)
3906 ALLOCNO_HARD_REGNO (a) = -1;
3907 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
3909 fprintf
3910 (ira_dump_file,
3911 " Moving spill/restore for a%dr%d up from loop %d",
3912 ALLOCNO_NUM (a), regno, loop_node->loop_num);
3913 fprintf (ira_dump_file, " - profit %d\n", -cost);
3915 changed_p = true;
3918 if (! changed_p)
3919 break;
3925 /* Update current hard reg costs and current conflict hard reg costs
3926 for allocno A. It is done by processing its copies containing
3927 other allocnos already assigned. */
3928 static void
3929 update_curr_costs (ira_allocno_t a)
3931 int i, hard_regno, cost;
3932 machine_mode mode;
3933 enum reg_class aclass, rclass;
3934 ira_allocno_t another_a;
3935 ira_copy_t cp, next_cp;
3937 ira_free_allocno_updated_costs (a);
3938 ira_assert (! ALLOCNO_ASSIGNED_P (a));
3939 aclass = ALLOCNO_CLASS (a);
3940 if (aclass == NO_REGS)
3941 return;
3942 mode = ALLOCNO_MODE (a);
3943 ira_init_register_move_cost_if_necessary (mode);
3944 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
3946 if (cp->first == a)
3948 next_cp = cp->next_first_allocno_copy;
3949 another_a = cp->second;
3951 else if (cp->second == a)
3953 next_cp = cp->next_second_allocno_copy;
3954 another_a = cp->first;
3956 else
3957 gcc_unreachable ();
3958 if (! ira_reg_classes_intersect_p[aclass][ALLOCNO_CLASS (another_a)]
3959 || ! ALLOCNO_ASSIGNED_P (another_a)
3960 || (hard_regno = ALLOCNO_HARD_REGNO (another_a)) < 0)
3961 continue;
3962 rclass = REGNO_REG_CLASS (hard_regno);
3963 i = ira_class_hard_reg_index[aclass][hard_regno];
3964 if (i < 0)
3965 continue;
3966 cost = (cp->first == a
3967 ? ira_register_move_cost[mode][rclass][aclass]
3968 : ira_register_move_cost[mode][aclass][rclass]);
3969 ira_allocate_and_set_or_copy_costs
3970 (&ALLOCNO_UPDATED_HARD_REG_COSTS (a), aclass, ALLOCNO_CLASS_COST (a),
3971 ALLOCNO_HARD_REG_COSTS (a));
3972 ira_allocate_and_set_or_copy_costs
3973 (&ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a),
3974 aclass, 0, ALLOCNO_CONFLICT_HARD_REG_COSTS (a));
3975 ALLOCNO_UPDATED_HARD_REG_COSTS (a)[i] -= cp->freq * cost;
3976 ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a)[i] -= cp->freq * cost;
3980 /* Try to assign hard registers to the unassigned allocnos and
3981 allocnos conflicting with them or conflicting with allocnos whose
3982 regno >= START_REGNO. The function is called after ira_flattening,
3983 so more allocnos (including ones created in ira-emit.cc) will have a
3984 chance to get a hard register. We use simple assignment algorithm
3985 based on priorities. */
3986 void
3987 ira_reassign_conflict_allocnos (int start_regno)
3989 int i, allocnos_to_color_num;
3990 ira_allocno_t a;
3991 enum reg_class aclass;
3992 bitmap allocnos_to_color;
3993 ira_allocno_iterator ai;
3995 allocnos_to_color = ira_allocate_bitmap ();
3996 allocnos_to_color_num = 0;
3997 FOR_EACH_ALLOCNO (a, ai)
3999 int n = ALLOCNO_NUM_OBJECTS (a);
4001 if (! ALLOCNO_ASSIGNED_P (a)
4002 && ! bitmap_bit_p (allocnos_to_color, ALLOCNO_NUM (a)))
4004 if (ALLOCNO_CLASS (a) != NO_REGS)
4005 sorted_allocnos[allocnos_to_color_num++] = a;
4006 else
4008 ALLOCNO_ASSIGNED_P (a) = true;
4009 ALLOCNO_HARD_REGNO (a) = -1;
4010 ira_assert (ALLOCNO_UPDATED_HARD_REG_COSTS (a) == NULL);
4011 ira_assert (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) == NULL);
4013 bitmap_set_bit (allocnos_to_color, ALLOCNO_NUM (a));
4015 if (ALLOCNO_REGNO (a) < start_regno
4016 || (aclass = ALLOCNO_CLASS (a)) == NO_REGS)
4017 continue;
4018 for (i = 0; i < n; i++)
4020 ira_object_t obj = ALLOCNO_OBJECT (a, i);
4021 ira_object_t conflict_obj;
4022 ira_object_conflict_iterator oci;
4024 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
4026 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
4028 ira_assert (ira_reg_classes_intersect_p
4029 [aclass][ALLOCNO_CLASS (conflict_a)]);
4030 if (!bitmap_set_bit (allocnos_to_color, ALLOCNO_NUM (conflict_a)))
4031 continue;
4032 sorted_allocnos[allocnos_to_color_num++] = conflict_a;
4036 ira_free_bitmap (allocnos_to_color);
4037 if (allocnos_to_color_num > 1)
4039 setup_allocno_priorities (sorted_allocnos, allocnos_to_color_num);
4040 qsort (sorted_allocnos, allocnos_to_color_num, sizeof (ira_allocno_t),
4041 allocno_priority_compare_func);
4043 for (i = 0; i < allocnos_to_color_num; i++)
4045 a = sorted_allocnos[i];
4046 ALLOCNO_ASSIGNED_P (a) = false;
4047 update_curr_costs (a);
4049 for (i = 0; i < allocnos_to_color_num; i++)
4051 a = sorted_allocnos[i];
4052 if (assign_hard_reg (a, true))
4054 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
4055 fprintf
4056 (ira_dump_file,
4057 " Secondary allocation: assign hard reg %d to reg %d\n",
4058 ALLOCNO_HARD_REGNO (a), ALLOCNO_REGNO (a));
4065 /* This page contains functions used to find conflicts using allocno
4066 live ranges. */
4068 #ifdef ENABLE_IRA_CHECKING
4070 /* Return TRUE if live ranges of pseudo-registers REGNO1 and REGNO2
4071 intersect. This should be used when there is only one region.
4072 Currently this is used during reload. */
4073 static bool
4074 conflict_by_live_ranges_p (int regno1, int regno2)
4076 ira_allocno_t a1, a2;
4078 ira_assert (regno1 >= FIRST_PSEUDO_REGISTER
4079 && regno2 >= FIRST_PSEUDO_REGISTER);
4080 /* Reg info calculated by dataflow infrastructure can be different
4081 from one calculated by regclass. */
4082 if ((a1 = ira_loop_tree_root->regno_allocno_map[regno1]) == NULL
4083 || (a2 = ira_loop_tree_root->regno_allocno_map[regno2]) == NULL)
4084 return false;
4085 return allocnos_conflict_by_live_ranges_p (a1, a2);
4088 #endif
4092 /* This page contains code to coalesce memory stack slots used by
4093 spilled allocnos. This results in smaller stack frame, better data
4094 locality, and in smaller code for some architectures like
4095 x86/x86_64 where insn size depends on address displacement value.
4096 On the other hand, it can worsen insn scheduling after the RA but
4097 in practice it is less important than smaller stack frames. */
4099 /* TRUE if we coalesced some allocnos. In other words, if we got
4100 loops formed by members first_coalesced_allocno and
4101 next_coalesced_allocno containing more one allocno. */
4102 static bool allocno_coalesced_p;
4104 /* Bitmap used to prevent a repeated allocno processing because of
4105 coalescing. */
4106 static bitmap processed_coalesced_allocno_bitmap;
4108 /* See below. */
4109 typedef struct coalesce_data *coalesce_data_t;
4111 /* To decrease footprint of ira_allocno structure we store all data
4112 needed only for coalescing in the following structure. */
4113 struct coalesce_data
4115 /* Coalesced allocnos form a cyclic list. One allocno given by
4116 FIRST represents all coalesced allocnos. The
4117 list is chained by NEXT. */
4118 ira_allocno_t first;
4119 ira_allocno_t next;
4120 int temp;
4123 /* Container for storing allocno data concerning coalescing. */
4124 static coalesce_data_t allocno_coalesce_data;
4126 /* Macro to access the data concerning coalescing. */
4127 #define ALLOCNO_COALESCE_DATA(a) ((coalesce_data_t) ALLOCNO_ADD_DATA (a))
4129 /* Merge two sets of coalesced allocnos given correspondingly by
4130 allocnos A1 and A2 (more accurately merging A2 set into A1
4131 set). */
4132 static void
4133 merge_allocnos (ira_allocno_t a1, ira_allocno_t a2)
4135 ira_allocno_t a, first, last, next;
4137 first = ALLOCNO_COALESCE_DATA (a1)->first;
4138 a = ALLOCNO_COALESCE_DATA (a2)->first;
4139 if (first == a)
4140 return;
4141 for (last = a2, a = ALLOCNO_COALESCE_DATA (a2)->next;;
4142 a = ALLOCNO_COALESCE_DATA (a)->next)
4144 ALLOCNO_COALESCE_DATA (a)->first = first;
4145 if (a == a2)
4146 break;
4147 last = a;
4149 next = allocno_coalesce_data[ALLOCNO_NUM (first)].next;
4150 allocno_coalesce_data[ALLOCNO_NUM (first)].next = a2;
4151 allocno_coalesce_data[ALLOCNO_NUM (last)].next = next;
4154 /* Return TRUE if there are conflicting allocnos from two sets of
4155 coalesced allocnos given correspondingly by allocnos A1 and A2. We
4156 use live ranges to find conflicts because conflicts are represented
4157 only for allocnos of the same allocno class and during the reload
4158 pass we coalesce allocnos for sharing stack memory slots. */
4159 static bool
4160 coalesced_allocno_conflict_p (ira_allocno_t a1, ira_allocno_t a2)
4162 ira_allocno_t a, conflict_a;
4164 if (allocno_coalesced_p)
4166 bitmap_clear (processed_coalesced_allocno_bitmap);
4167 for (a = ALLOCNO_COALESCE_DATA (a1)->next;;
4168 a = ALLOCNO_COALESCE_DATA (a)->next)
4170 bitmap_set_bit (processed_coalesced_allocno_bitmap, ALLOCNO_NUM (a));
4171 if (a == a1)
4172 break;
4175 for (a = ALLOCNO_COALESCE_DATA (a2)->next;;
4176 a = ALLOCNO_COALESCE_DATA (a)->next)
4178 for (conflict_a = ALLOCNO_COALESCE_DATA (a1)->next;;
4179 conflict_a = ALLOCNO_COALESCE_DATA (conflict_a)->next)
4181 if (allocnos_conflict_by_live_ranges_p (a, conflict_a))
4182 return true;
4183 if (conflict_a == a1)
4184 break;
4186 if (a == a2)
4187 break;
4189 return false;
4192 /* The major function for aggressive allocno coalescing. We coalesce
4193 only spilled allocnos. If some allocnos have been coalesced, we
4194 set up flag allocno_coalesced_p. */
4195 static void
4196 coalesce_allocnos (void)
4198 ira_allocno_t a;
4199 ira_copy_t cp, next_cp;
4200 unsigned int j;
4201 int i, n, cp_num, regno;
4202 bitmap_iterator bi;
4204 cp_num = 0;
4205 /* Collect copies. */
4206 EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, j, bi)
4208 a = ira_allocnos[j];
4209 regno = ALLOCNO_REGNO (a);
4210 if (! ALLOCNO_ASSIGNED_P (a) || ALLOCNO_HARD_REGNO (a) >= 0
4211 || ira_equiv_no_lvalue_p (regno))
4212 continue;
4213 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
4215 if (cp->first == a)
4217 next_cp = cp->next_first_allocno_copy;
4218 regno = ALLOCNO_REGNO (cp->second);
4219 /* For priority coloring we coalesce allocnos only with
4220 the same allocno class not with intersected allocno
4221 classes as it were possible. It is done for
4222 simplicity. */
4223 if ((cp->insn != NULL || cp->constraint_p)
4224 && ALLOCNO_ASSIGNED_P (cp->second)
4225 && ALLOCNO_HARD_REGNO (cp->second) < 0
4226 && ! ira_equiv_no_lvalue_p (regno))
4227 sorted_copies[cp_num++] = cp;
4229 else if (cp->second == a)
4230 next_cp = cp->next_second_allocno_copy;
4231 else
4232 gcc_unreachable ();
4235 qsort (sorted_copies, cp_num, sizeof (ira_copy_t), copy_freq_compare_func);
4236 /* Coalesced copies, most frequently executed first. */
4237 for (; cp_num != 0;)
4239 for (i = 0; i < cp_num; i++)
4241 cp = sorted_copies[i];
4242 if (! coalesced_allocno_conflict_p (cp->first, cp->second))
4244 allocno_coalesced_p = true;
4245 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
4246 fprintf
4247 (ira_dump_file,
4248 " Coalescing copy %d:a%dr%d-a%dr%d (freq=%d)\n",
4249 cp->num, ALLOCNO_NUM (cp->first), ALLOCNO_REGNO (cp->first),
4250 ALLOCNO_NUM (cp->second), ALLOCNO_REGNO (cp->second),
4251 cp->freq);
4252 merge_allocnos (cp->first, cp->second);
4253 i++;
4254 break;
4257 /* Collect the rest of copies. */
4258 for (n = 0; i < cp_num; i++)
4260 cp = sorted_copies[i];
4261 if (allocno_coalesce_data[ALLOCNO_NUM (cp->first)].first
4262 != allocno_coalesce_data[ALLOCNO_NUM (cp->second)].first)
4263 sorted_copies[n++] = cp;
4265 cp_num = n;
4269 /* Usage cost and order number of coalesced allocno set to which
4270 given pseudo register belongs to. */
4271 static int *regno_coalesced_allocno_cost;
4272 static int *regno_coalesced_allocno_num;
4274 /* Sort pseudos according frequencies of coalesced allocno sets they
4275 belong to (putting most frequently ones first), and according to
4276 coalesced allocno set order numbers. */
4277 static int
4278 coalesced_pseudo_reg_freq_compare (const void *v1p, const void *v2p)
4280 const int regno1 = *(const int *) v1p;
4281 const int regno2 = *(const int *) v2p;
4282 int diff;
4284 if ((diff = (regno_coalesced_allocno_cost[regno2]
4285 - regno_coalesced_allocno_cost[regno1])) != 0)
4286 return diff;
4287 if ((diff = (regno_coalesced_allocno_num[regno1]
4288 - regno_coalesced_allocno_num[regno2])) != 0)
4289 return diff;
4290 return regno1 - regno2;
4293 /* Widest width in which each pseudo reg is referred to (via subreg).
4294 It is used for sorting pseudo registers. */
4295 static machine_mode *regno_max_ref_mode;
4297 /* Sort pseudos according their slot numbers (putting ones with
4298 smaller numbers first, or last when the frame pointer is not
4299 needed). */
4300 static int
4301 coalesced_pseudo_reg_slot_compare (const void *v1p, const void *v2p)
4303 const int regno1 = *(const int *) v1p;
4304 const int regno2 = *(const int *) v2p;
4305 ira_allocno_t a1 = ira_regno_allocno_map[regno1];
4306 ira_allocno_t a2 = ira_regno_allocno_map[regno2];
4307 int diff, slot_num1, slot_num2;
4308 machine_mode mode1, mode2;
4310 if (a1 == NULL || ALLOCNO_HARD_REGNO (a1) >= 0)
4312 if (a2 == NULL || ALLOCNO_HARD_REGNO (a2) >= 0)
4313 return regno1 - regno2;
4314 return 1;
4316 else if (a2 == NULL || ALLOCNO_HARD_REGNO (a2) >= 0)
4317 return -1;
4318 slot_num1 = -ALLOCNO_HARD_REGNO (a1);
4319 slot_num2 = -ALLOCNO_HARD_REGNO (a2);
4320 if ((diff = slot_num1 - slot_num2) != 0)
4321 return (frame_pointer_needed
4322 || (!FRAME_GROWS_DOWNWARD) == STACK_GROWS_DOWNWARD ? diff : -diff);
4323 mode1 = wider_subreg_mode (PSEUDO_REGNO_MODE (regno1),
4324 regno_max_ref_mode[regno1]);
4325 mode2 = wider_subreg_mode (PSEUDO_REGNO_MODE (regno2),
4326 regno_max_ref_mode[regno2]);
4327 if ((diff = compare_sizes_for_sort (GET_MODE_SIZE (mode2),
4328 GET_MODE_SIZE (mode1))) != 0)
4329 return diff;
4330 return regno1 - regno2;
4333 /* Setup REGNO_COALESCED_ALLOCNO_COST and REGNO_COALESCED_ALLOCNO_NUM
4334 for coalesced allocno sets containing allocnos with their regnos
4335 given in array PSEUDO_REGNOS of length N. */
4336 static void
4337 setup_coalesced_allocno_costs_and_nums (int *pseudo_regnos, int n)
4339 int i, num, regno, cost;
4340 ira_allocno_t allocno, a;
4342 for (num = i = 0; i < n; i++)
4344 regno = pseudo_regnos[i];
4345 allocno = ira_regno_allocno_map[regno];
4346 if (allocno == NULL)
4348 regno_coalesced_allocno_cost[regno] = 0;
4349 regno_coalesced_allocno_num[regno] = ++num;
4350 continue;
4352 if (ALLOCNO_COALESCE_DATA (allocno)->first != allocno)
4353 continue;
4354 num++;
4355 for (cost = 0, a = ALLOCNO_COALESCE_DATA (allocno)->next;;
4356 a = ALLOCNO_COALESCE_DATA (a)->next)
4358 cost += ALLOCNO_FREQ (a);
4359 if (a == allocno)
4360 break;
4362 for (a = ALLOCNO_COALESCE_DATA (allocno)->next;;
4363 a = ALLOCNO_COALESCE_DATA (a)->next)
4365 regno_coalesced_allocno_num[ALLOCNO_REGNO (a)] = num;
4366 regno_coalesced_allocno_cost[ALLOCNO_REGNO (a)] = cost;
4367 if (a == allocno)
4368 break;
4373 /* Collect spilled allocnos representing coalesced allocno sets (the
4374 first coalesced allocno). The collected allocnos are returned
4375 through array SPILLED_COALESCED_ALLOCNOS. The function returns the
4376 number of the collected allocnos. The allocnos are given by their
4377 regnos in array PSEUDO_REGNOS of length N. */
4378 static int
4379 collect_spilled_coalesced_allocnos (int *pseudo_regnos, int n,
4380 ira_allocno_t *spilled_coalesced_allocnos)
4382 int i, num, regno;
4383 ira_allocno_t allocno;
4385 for (num = i = 0; i < n; i++)
4387 regno = pseudo_regnos[i];
4388 allocno = ira_regno_allocno_map[regno];
4389 if (allocno == NULL || ALLOCNO_HARD_REGNO (allocno) >= 0
4390 || ALLOCNO_COALESCE_DATA (allocno)->first != allocno)
4391 continue;
4392 spilled_coalesced_allocnos[num++] = allocno;
4394 return num;
4397 /* Array of live ranges of size IRA_ALLOCNOS_NUM. Live range for
4398 given slot contains live ranges of coalesced allocnos assigned to
4399 given slot. */
4400 static live_range_t *slot_coalesced_allocnos_live_ranges;
4402 /* Return TRUE if coalesced allocnos represented by ALLOCNO has live
4403 ranges intersected with live ranges of coalesced allocnos assigned
4404 to slot with number N. */
4405 static bool
4406 slot_coalesced_allocno_live_ranges_intersect_p (ira_allocno_t allocno, int n)
4408 ira_allocno_t a;
4410 for (a = ALLOCNO_COALESCE_DATA (allocno)->next;;
4411 a = ALLOCNO_COALESCE_DATA (a)->next)
4413 int i;
4414 int nr = ALLOCNO_NUM_OBJECTS (a);
4415 gcc_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
4416 for (i = 0; i < nr; i++)
4418 ira_object_t obj = ALLOCNO_OBJECT (a, i);
4420 if (ira_live_ranges_intersect_p
4421 (slot_coalesced_allocnos_live_ranges[n],
4422 OBJECT_LIVE_RANGES (obj)))
4423 return true;
4425 if (a == allocno)
4426 break;
4428 return false;
4431 /* Update live ranges of slot to which coalesced allocnos represented
4432 by ALLOCNO were assigned. */
4433 static void
4434 setup_slot_coalesced_allocno_live_ranges (ira_allocno_t allocno)
4436 int i, n;
4437 ira_allocno_t a;
4438 live_range_t r;
4440 n = ALLOCNO_COALESCE_DATA (allocno)->temp;
4441 for (a = ALLOCNO_COALESCE_DATA (allocno)->next;;
4442 a = ALLOCNO_COALESCE_DATA (a)->next)
4444 int nr = ALLOCNO_NUM_OBJECTS (a);
4445 gcc_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
4446 for (i = 0; i < nr; i++)
4448 ira_object_t obj = ALLOCNO_OBJECT (a, i);
4450 r = ira_copy_live_range_list (OBJECT_LIVE_RANGES (obj));
4451 slot_coalesced_allocnos_live_ranges[n]
4452 = ira_merge_live_ranges
4453 (slot_coalesced_allocnos_live_ranges[n], r);
4455 if (a == allocno)
4456 break;
4460 /* We have coalesced allocnos involving in copies. Coalesce allocnos
4461 further in order to share the same memory stack slot. Allocnos
4462 representing sets of allocnos coalesced before the call are given
4463 in array SPILLED_COALESCED_ALLOCNOS of length NUM. Return TRUE if
4464 some allocnos were coalesced in the function. */
4465 static bool
4466 coalesce_spill_slots (ira_allocno_t *spilled_coalesced_allocnos, int num)
4468 int i, j, n, last_coalesced_allocno_num;
4469 ira_allocno_t allocno, a;
4470 bool merged_p = false;
4471 bitmap set_jump_crosses = regstat_get_setjmp_crosses ();
4473 slot_coalesced_allocnos_live_ranges
4474 = (live_range_t *) ira_allocate (sizeof (live_range_t) * ira_allocnos_num);
4475 memset (slot_coalesced_allocnos_live_ranges, 0,
4476 sizeof (live_range_t) * ira_allocnos_num);
4477 last_coalesced_allocno_num = 0;
4478 /* Coalesce non-conflicting spilled allocnos preferring most
4479 frequently used. */
4480 for (i = 0; i < num; i++)
4482 allocno = spilled_coalesced_allocnos[i];
4483 if (ALLOCNO_COALESCE_DATA (allocno)->first != allocno
4484 || bitmap_bit_p (set_jump_crosses, ALLOCNO_REGNO (allocno))
4485 || ira_equiv_no_lvalue_p (ALLOCNO_REGNO (allocno)))
4486 continue;
4487 for (j = 0; j < i; j++)
4489 a = spilled_coalesced_allocnos[j];
4490 n = ALLOCNO_COALESCE_DATA (a)->temp;
4491 if (ALLOCNO_COALESCE_DATA (a)->first == a
4492 && ! bitmap_bit_p (set_jump_crosses, ALLOCNO_REGNO (a))
4493 && ! ira_equiv_no_lvalue_p (ALLOCNO_REGNO (a))
4494 && ! slot_coalesced_allocno_live_ranges_intersect_p (allocno, n))
4495 break;
4497 if (j >= i)
4499 /* No coalescing: set up number for coalesced allocnos
4500 represented by ALLOCNO. */
4501 ALLOCNO_COALESCE_DATA (allocno)->temp = last_coalesced_allocno_num++;
4502 setup_slot_coalesced_allocno_live_ranges (allocno);
4504 else
4506 allocno_coalesced_p = true;
4507 merged_p = true;
4508 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
4509 fprintf (ira_dump_file,
4510 " Coalescing spilled allocnos a%dr%d->a%dr%d\n",
4511 ALLOCNO_NUM (allocno), ALLOCNO_REGNO (allocno),
4512 ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
4513 ALLOCNO_COALESCE_DATA (allocno)->temp
4514 = ALLOCNO_COALESCE_DATA (a)->temp;
4515 setup_slot_coalesced_allocno_live_ranges (allocno);
4516 merge_allocnos (a, allocno);
4517 ira_assert (ALLOCNO_COALESCE_DATA (a)->first == a);
4520 for (i = 0; i < ira_allocnos_num; i++)
4521 ira_finish_live_range_list (slot_coalesced_allocnos_live_ranges[i]);
4522 ira_free (slot_coalesced_allocnos_live_ranges);
4523 return merged_p;
4526 /* Sort pseudo-register numbers in array PSEUDO_REGNOS of length N for
4527 subsequent assigning stack slots to them in the reload pass. To do
4528 this we coalesce spilled allocnos first to decrease the number of
4529 memory-memory move insns. This function is called by the
4530 reload. */
4531 void
4532 ira_sort_regnos_for_alter_reg (int *pseudo_regnos, int n,
4533 machine_mode *reg_max_ref_mode)
4535 int max_regno = max_reg_num ();
4536 int i, regno, num, slot_num;
4537 ira_allocno_t allocno, a;
4538 ira_allocno_iterator ai;
4539 ira_allocno_t *spilled_coalesced_allocnos;
4541 ira_assert (! ira_use_lra_p);
4543 /* Set up allocnos can be coalesced. */
4544 coloring_allocno_bitmap = ira_allocate_bitmap ();
4545 for (i = 0; i < n; i++)
4547 regno = pseudo_regnos[i];
4548 allocno = ira_regno_allocno_map[regno];
4549 if (allocno != NULL)
4550 bitmap_set_bit (coloring_allocno_bitmap, ALLOCNO_NUM (allocno));
4552 allocno_coalesced_p = false;
4553 processed_coalesced_allocno_bitmap = ira_allocate_bitmap ();
4554 allocno_coalesce_data
4555 = (coalesce_data_t) ira_allocate (sizeof (struct coalesce_data)
4556 * ira_allocnos_num);
4557 /* Initialize coalesce data for allocnos. */
4558 FOR_EACH_ALLOCNO (a, ai)
4560 ALLOCNO_ADD_DATA (a) = allocno_coalesce_data + ALLOCNO_NUM (a);
4561 ALLOCNO_COALESCE_DATA (a)->first = a;
4562 ALLOCNO_COALESCE_DATA (a)->next = a;
4564 coalesce_allocnos ();
4565 ira_free_bitmap (coloring_allocno_bitmap);
4566 regno_coalesced_allocno_cost
4567 = (int *) ira_allocate (max_regno * sizeof (int));
4568 regno_coalesced_allocno_num
4569 = (int *) ira_allocate (max_regno * sizeof (int));
4570 memset (regno_coalesced_allocno_num, 0, max_regno * sizeof (int));
4571 setup_coalesced_allocno_costs_and_nums (pseudo_regnos, n);
4572 /* Sort regnos according frequencies of the corresponding coalesced
4573 allocno sets. */
4574 qsort (pseudo_regnos, n, sizeof (int), coalesced_pseudo_reg_freq_compare);
4575 spilled_coalesced_allocnos
4576 = (ira_allocno_t *) ira_allocate (ira_allocnos_num
4577 * sizeof (ira_allocno_t));
4578 /* Collect allocnos representing the spilled coalesced allocno
4579 sets. */
4580 num = collect_spilled_coalesced_allocnos (pseudo_regnos, n,
4581 spilled_coalesced_allocnos);
4582 if (flag_ira_share_spill_slots
4583 && coalesce_spill_slots (spilled_coalesced_allocnos, num))
4585 setup_coalesced_allocno_costs_and_nums (pseudo_regnos, n);
4586 qsort (pseudo_regnos, n, sizeof (int),
4587 coalesced_pseudo_reg_freq_compare);
4588 num = collect_spilled_coalesced_allocnos (pseudo_regnos, n,
4589 spilled_coalesced_allocnos);
4591 ira_free_bitmap (processed_coalesced_allocno_bitmap);
4592 allocno_coalesced_p = false;
4593 /* Assign stack slot numbers to spilled allocno sets, use smaller
4594 numbers for most frequently used coalesced allocnos. -1 is
4595 reserved for dynamic search of stack slots for pseudos spilled by
4596 the reload. */
4597 slot_num = 1;
4598 for (i = 0; i < num; i++)
4600 allocno = spilled_coalesced_allocnos[i];
4601 if (ALLOCNO_COALESCE_DATA (allocno)->first != allocno
4602 || ALLOCNO_HARD_REGNO (allocno) >= 0
4603 || ira_equiv_no_lvalue_p (ALLOCNO_REGNO (allocno)))
4604 continue;
4605 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
4606 fprintf (ira_dump_file, " Slot %d (freq,size):", slot_num);
4607 slot_num++;
4608 for (a = ALLOCNO_COALESCE_DATA (allocno)->next;;
4609 a = ALLOCNO_COALESCE_DATA (a)->next)
4611 ira_assert (ALLOCNO_HARD_REGNO (a) < 0);
4612 ALLOCNO_HARD_REGNO (a) = -slot_num;
4613 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
4615 machine_mode mode = wider_subreg_mode
4616 (PSEUDO_REGNO_MODE (ALLOCNO_REGNO (a)),
4617 reg_max_ref_mode[ALLOCNO_REGNO (a)]);
4618 fprintf (ira_dump_file, " a%dr%d(%d,",
4619 ALLOCNO_NUM (a), ALLOCNO_REGNO (a), ALLOCNO_FREQ (a));
4620 print_dec (GET_MODE_SIZE (mode), ira_dump_file, SIGNED);
4621 fprintf (ira_dump_file, ")\n");
4624 if (a == allocno)
4625 break;
4627 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
4628 fprintf (ira_dump_file, "\n");
4630 ira_spilled_reg_stack_slots_num = slot_num - 1;
4631 ira_free (spilled_coalesced_allocnos);
4632 /* Sort regnos according the slot numbers. */
4633 regno_max_ref_mode = reg_max_ref_mode;
4634 qsort (pseudo_regnos, n, sizeof (int), coalesced_pseudo_reg_slot_compare);
4635 FOR_EACH_ALLOCNO (a, ai)
4636 ALLOCNO_ADD_DATA (a) = NULL;
4637 ira_free (allocno_coalesce_data);
4638 ira_free (regno_coalesced_allocno_num);
4639 ira_free (regno_coalesced_allocno_cost);
4644 /* This page contains code used by the reload pass to improve the
4645 final code. */
4647 /* The function is called from reload to mark changes in the
4648 allocation of REGNO made by the reload. Remember that reg_renumber
4649 reflects the change result. */
4650 void
4651 ira_mark_allocation_change (int regno)
4653 ira_allocno_t a = ira_regno_allocno_map[regno];
4654 int old_hard_regno, hard_regno, cost;
4655 enum reg_class aclass = ALLOCNO_CLASS (a);
4657 ira_assert (a != NULL);
4658 hard_regno = reg_renumber[regno];
4659 if ((old_hard_regno = ALLOCNO_HARD_REGNO (a)) == hard_regno)
4660 return;
4661 if (old_hard_regno < 0)
4662 cost = -ALLOCNO_MEMORY_COST (a);
4663 else
4665 ira_assert (ira_class_hard_reg_index[aclass][old_hard_regno] >= 0);
4666 cost = -(ALLOCNO_HARD_REG_COSTS (a) == NULL
4667 ? ALLOCNO_CLASS_COST (a)
4668 : ALLOCNO_HARD_REG_COSTS (a)
4669 [ira_class_hard_reg_index[aclass][old_hard_regno]]);
4670 update_costs_from_copies (a, false, false);
4672 ira_overall_cost -= cost;
4673 ALLOCNO_HARD_REGNO (a) = hard_regno;
4674 if (hard_regno < 0)
4676 ALLOCNO_HARD_REGNO (a) = -1;
4677 cost += ALLOCNO_MEMORY_COST (a);
4679 else if (ira_class_hard_reg_index[aclass][hard_regno] >= 0)
4681 cost += (ALLOCNO_HARD_REG_COSTS (a) == NULL
4682 ? ALLOCNO_CLASS_COST (a)
4683 : ALLOCNO_HARD_REG_COSTS (a)
4684 [ira_class_hard_reg_index[aclass][hard_regno]]);
4685 update_costs_from_copies (a, true, false);
4687 else
4688 /* Reload changed class of the allocno. */
4689 cost = 0;
4690 ira_overall_cost += cost;
4693 /* This function is called when reload deletes memory-memory move. In
4694 this case we marks that the allocation of the corresponding
4695 allocnos should be not changed in future. Otherwise we risk to get
4696 a wrong code. */
4697 void
4698 ira_mark_memory_move_deletion (int dst_regno, int src_regno)
4700 ira_allocno_t dst = ira_regno_allocno_map[dst_regno];
4701 ira_allocno_t src = ira_regno_allocno_map[src_regno];
4703 ira_assert (dst != NULL && src != NULL
4704 && ALLOCNO_HARD_REGNO (dst) < 0
4705 && ALLOCNO_HARD_REGNO (src) < 0);
4706 ALLOCNO_DONT_REASSIGN_P (dst) = true;
4707 ALLOCNO_DONT_REASSIGN_P (src) = true;
4710 /* Try to assign a hard register (except for FORBIDDEN_REGS) to
4711 allocno A and return TRUE in the case of success. */
4712 static bool
4713 allocno_reload_assign (ira_allocno_t a, HARD_REG_SET forbidden_regs)
4715 int hard_regno;
4716 enum reg_class aclass;
4717 int regno = ALLOCNO_REGNO (a);
4718 HARD_REG_SET saved[2];
4719 int i, n;
4721 n = ALLOCNO_NUM_OBJECTS (a);
4722 for (i = 0; i < n; i++)
4724 ira_object_t obj = ALLOCNO_OBJECT (a, i);
4725 saved[i] = OBJECT_TOTAL_CONFLICT_HARD_REGS (obj);
4726 OBJECT_TOTAL_CONFLICT_HARD_REGS (obj) |= forbidden_regs;
4727 if (! flag_caller_saves && ALLOCNO_CALLS_CROSSED_NUM (a) != 0)
4728 OBJECT_TOTAL_CONFLICT_HARD_REGS (obj) |= ira_need_caller_save_regs (a);
4730 ALLOCNO_ASSIGNED_P (a) = false;
4731 aclass = ALLOCNO_CLASS (a);
4732 update_curr_costs (a);
4733 assign_hard_reg (a, true);
4734 hard_regno = ALLOCNO_HARD_REGNO (a);
4735 reg_renumber[regno] = hard_regno;
4736 if (hard_regno < 0)
4737 ALLOCNO_HARD_REGNO (a) = -1;
4738 else
4740 ira_assert (ira_class_hard_reg_index[aclass][hard_regno] >= 0);
4741 ira_overall_cost
4742 -= (ALLOCNO_MEMORY_COST (a)
4743 - (ALLOCNO_HARD_REG_COSTS (a) == NULL
4744 ? ALLOCNO_CLASS_COST (a)
4745 : ALLOCNO_HARD_REG_COSTS (a)[ira_class_hard_reg_index
4746 [aclass][hard_regno]]));
4747 if (ira_need_caller_save_p (a, hard_regno))
4749 ira_assert (flag_caller_saves);
4750 caller_save_needed = 1;
4754 /* If we found a hard register, modify the RTL for the pseudo
4755 register to show the hard register, and mark the pseudo register
4756 live. */
4757 if (reg_renumber[regno] >= 0)
4759 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
4760 fprintf (ira_dump_file, ": reassign to %d\n", reg_renumber[regno]);
4761 SET_REGNO (regno_reg_rtx[regno], reg_renumber[regno]);
4762 mark_home_live (regno);
4764 else if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
4765 fprintf (ira_dump_file, "\n");
4766 for (i = 0; i < n; i++)
4768 ira_object_t obj = ALLOCNO_OBJECT (a, i);
4769 OBJECT_TOTAL_CONFLICT_HARD_REGS (obj) = saved[i];
4771 return reg_renumber[regno] >= 0;
4774 /* Sort pseudos according their usage frequencies (putting most
4775 frequently ones first). */
4776 static int
4777 pseudo_reg_compare (const void *v1p, const void *v2p)
4779 int regno1 = *(const int *) v1p;
4780 int regno2 = *(const int *) v2p;
4781 int diff;
4783 if ((diff = REG_FREQ (regno2) - REG_FREQ (regno1)) != 0)
4784 return diff;
4785 return regno1 - regno2;
4788 /* Try to allocate hard registers to SPILLED_PSEUDO_REGS (there are
4789 NUM of them) or spilled pseudos conflicting with pseudos in
4790 SPILLED_PSEUDO_REGS. Return TRUE and update SPILLED, if the
4791 allocation has been changed. The function doesn't use
4792 BAD_SPILL_REGS and hard registers in PSEUDO_FORBIDDEN_REGS and
4793 PSEUDO_PREVIOUS_REGS for the corresponding pseudos. The function
4794 is called by the reload pass at the end of each reload
4795 iteration. */
4796 bool
4797 ira_reassign_pseudos (int *spilled_pseudo_regs, int num,
4798 HARD_REG_SET bad_spill_regs,
4799 HARD_REG_SET *pseudo_forbidden_regs,
4800 HARD_REG_SET *pseudo_previous_regs,
4801 bitmap spilled)
4803 int i, n, regno;
4804 bool changed_p;
4805 ira_allocno_t a;
4806 HARD_REG_SET forbidden_regs;
4807 bitmap temp = BITMAP_ALLOC (NULL);
4809 /* Add pseudos which conflict with pseudos already in
4810 SPILLED_PSEUDO_REGS to SPILLED_PSEUDO_REGS. This is preferable
4811 to allocating in two steps as some of the conflicts might have
4812 a higher priority than the pseudos passed in SPILLED_PSEUDO_REGS. */
4813 for (i = 0; i < num; i++)
4814 bitmap_set_bit (temp, spilled_pseudo_regs[i]);
4816 for (i = 0, n = num; i < n; i++)
4818 int nr, j;
4819 int regno = spilled_pseudo_regs[i];
4820 bitmap_set_bit (temp, regno);
4822 a = ira_regno_allocno_map[regno];
4823 nr = ALLOCNO_NUM_OBJECTS (a);
4824 for (j = 0; j < nr; j++)
4826 ira_object_t conflict_obj;
4827 ira_object_t obj = ALLOCNO_OBJECT (a, j);
4828 ira_object_conflict_iterator oci;
4830 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
4832 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
4833 if (ALLOCNO_HARD_REGNO (conflict_a) < 0
4834 && ! ALLOCNO_DONT_REASSIGN_P (conflict_a)
4835 && bitmap_set_bit (temp, ALLOCNO_REGNO (conflict_a)))
4837 spilled_pseudo_regs[num++] = ALLOCNO_REGNO (conflict_a);
4838 /* ?!? This seems wrong. */
4839 bitmap_set_bit (consideration_allocno_bitmap,
4840 ALLOCNO_NUM (conflict_a));
4846 if (num > 1)
4847 qsort (spilled_pseudo_regs, num, sizeof (int), pseudo_reg_compare);
4848 changed_p = false;
4849 /* Try to assign hard registers to pseudos from
4850 SPILLED_PSEUDO_REGS. */
4851 for (i = 0; i < num; i++)
4853 regno = spilled_pseudo_regs[i];
4854 forbidden_regs = (bad_spill_regs
4855 | pseudo_forbidden_regs[regno]
4856 | pseudo_previous_regs[regno]);
4857 gcc_assert (reg_renumber[regno] < 0);
4858 a = ira_regno_allocno_map[regno];
4859 ira_mark_allocation_change (regno);
4860 ira_assert (reg_renumber[regno] < 0);
4861 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
4862 fprintf (ira_dump_file,
4863 " Try Assign %d(a%d), cost=%d", regno, ALLOCNO_NUM (a),
4864 ALLOCNO_MEMORY_COST (a)
4865 - ALLOCNO_CLASS_COST (a));
4866 allocno_reload_assign (a, forbidden_regs);
4867 if (reg_renumber[regno] >= 0)
4869 CLEAR_REGNO_REG_SET (spilled, regno);
4870 changed_p = true;
4873 BITMAP_FREE (temp);
4874 return changed_p;
4877 /* The function is called by reload and returns already allocated
4878 stack slot (if any) for REGNO with given INHERENT_SIZE and
4879 TOTAL_SIZE. In the case of failure to find a slot which can be
4880 used for REGNO, the function returns NULL. */
4882 ira_reuse_stack_slot (int regno, poly_uint64 inherent_size,
4883 poly_uint64 total_size)
4885 unsigned int i;
4886 int slot_num, best_slot_num;
4887 int cost, best_cost;
4888 ira_copy_t cp, next_cp;
4889 ira_allocno_t another_allocno, allocno = ira_regno_allocno_map[regno];
4890 rtx x;
4891 bitmap_iterator bi;
4892 class ira_spilled_reg_stack_slot *slot = NULL;
4894 ira_assert (! ira_use_lra_p);
4896 ira_assert (known_eq (inherent_size, PSEUDO_REGNO_BYTES (regno))
4897 && known_le (inherent_size, total_size)
4898 && ALLOCNO_HARD_REGNO (allocno) < 0);
4899 if (! flag_ira_share_spill_slots)
4900 return NULL_RTX;
4901 slot_num = -ALLOCNO_HARD_REGNO (allocno) - 2;
4902 if (slot_num != -1)
4904 slot = &ira_spilled_reg_stack_slots[slot_num];
4905 x = slot->mem;
4907 else
4909 best_cost = best_slot_num = -1;
4910 x = NULL_RTX;
4911 /* It means that the pseudo was spilled in the reload pass, try
4912 to reuse a slot. */
4913 for (slot_num = 0;
4914 slot_num < ira_spilled_reg_stack_slots_num;
4915 slot_num++)
4917 slot = &ira_spilled_reg_stack_slots[slot_num];
4918 if (slot->mem == NULL_RTX)
4919 continue;
4920 if (maybe_lt (slot->width, total_size)
4921 || maybe_lt (GET_MODE_SIZE (GET_MODE (slot->mem)), inherent_size))
4922 continue;
4924 EXECUTE_IF_SET_IN_BITMAP (&slot->spilled_regs,
4925 FIRST_PSEUDO_REGISTER, i, bi)
4927 another_allocno = ira_regno_allocno_map[i];
4928 if (allocnos_conflict_by_live_ranges_p (allocno,
4929 another_allocno))
4930 goto cont;
4932 for (cost = 0, cp = ALLOCNO_COPIES (allocno);
4933 cp != NULL;
4934 cp = next_cp)
4936 if (cp->first == allocno)
4938 next_cp = cp->next_first_allocno_copy;
4939 another_allocno = cp->second;
4941 else if (cp->second == allocno)
4943 next_cp = cp->next_second_allocno_copy;
4944 another_allocno = cp->first;
4946 else
4947 gcc_unreachable ();
4948 if (cp->insn == NULL_RTX)
4949 continue;
4950 if (bitmap_bit_p (&slot->spilled_regs,
4951 ALLOCNO_REGNO (another_allocno)))
4952 cost += cp->freq;
4954 if (cost > best_cost)
4956 best_cost = cost;
4957 best_slot_num = slot_num;
4959 cont:
4962 if (best_cost >= 0)
4964 slot_num = best_slot_num;
4965 slot = &ira_spilled_reg_stack_slots[slot_num];
4966 SET_REGNO_REG_SET (&slot->spilled_regs, regno);
4967 x = slot->mem;
4968 ALLOCNO_HARD_REGNO (allocno) = -slot_num - 2;
4971 if (x != NULL_RTX)
4973 ira_assert (known_ge (slot->width, total_size));
4974 #ifdef ENABLE_IRA_CHECKING
4975 EXECUTE_IF_SET_IN_BITMAP (&slot->spilled_regs,
4976 FIRST_PSEUDO_REGISTER, i, bi)
4978 ira_assert (! conflict_by_live_ranges_p (regno, i));
4980 #endif
4981 SET_REGNO_REG_SET (&slot->spilled_regs, regno);
4982 if (internal_flag_ira_verbose > 3 && ira_dump_file)
4984 fprintf (ira_dump_file, " Assigning %d(freq=%d) slot %d of",
4985 regno, REG_FREQ (regno), slot_num);
4986 EXECUTE_IF_SET_IN_BITMAP (&slot->spilled_regs,
4987 FIRST_PSEUDO_REGISTER, i, bi)
4989 if ((unsigned) regno != i)
4990 fprintf (ira_dump_file, " %d", i);
4992 fprintf (ira_dump_file, "\n");
4995 return x;
4998 /* This is called by reload every time a new stack slot X with
4999 TOTAL_SIZE was allocated for REGNO. We store this info for
5000 subsequent ira_reuse_stack_slot calls. */
5001 void
5002 ira_mark_new_stack_slot (rtx x, int regno, poly_uint64 total_size)
5004 class ira_spilled_reg_stack_slot *slot;
5005 int slot_num;
5006 ira_allocno_t allocno;
5008 ira_assert (! ira_use_lra_p);
5010 ira_assert (known_le (PSEUDO_REGNO_BYTES (regno), total_size));
5011 allocno = ira_regno_allocno_map[regno];
5012 slot_num = -ALLOCNO_HARD_REGNO (allocno) - 2;
5013 if (slot_num == -1)
5015 slot_num = ira_spilled_reg_stack_slots_num++;
5016 ALLOCNO_HARD_REGNO (allocno) = -slot_num - 2;
5018 slot = &ira_spilled_reg_stack_slots[slot_num];
5019 INIT_REG_SET (&slot->spilled_regs);
5020 SET_REGNO_REG_SET (&slot->spilled_regs, regno);
5021 slot->mem = x;
5022 slot->width = total_size;
5023 if (internal_flag_ira_verbose > 3 && ira_dump_file)
5024 fprintf (ira_dump_file, " Assigning %d(freq=%d) a new slot %d\n",
5025 regno, REG_FREQ (regno), slot_num);
5029 /* Return spill cost for pseudo-registers whose numbers are in array
5030 REGNOS (with a negative number as an end marker) for reload with
5031 given IN and OUT for INSN. Return also number points (through
5032 EXCESS_PRESSURE_LIVE_LENGTH) where the pseudo-register lives and
5033 the register pressure is high, number of references of the
5034 pseudo-registers (through NREFS), the number of psuedo registers
5035 whose allocated register wouldn't need saving in the prologue
5036 (through CALL_USED_COUNT), and the first hard regno occupied by the
5037 pseudo-registers (through FIRST_HARD_REGNO). */
5038 static int
5039 calculate_spill_cost (int *regnos, rtx in, rtx out, rtx_insn *insn,
5040 int *excess_pressure_live_length,
5041 int *nrefs, int *call_used_count, int *first_hard_regno)
5043 int i, cost, regno, hard_regno, count, saved_cost;
5044 bool in_p, out_p;
5045 int length;
5046 ira_allocno_t a;
5048 *nrefs = 0;
5049 for (length = count = cost = i = 0;; i++)
5051 regno = regnos[i];
5052 if (regno < 0)
5053 break;
5054 *nrefs += REG_N_REFS (regno);
5055 hard_regno = reg_renumber[regno];
5056 ira_assert (hard_regno >= 0);
5057 a = ira_regno_allocno_map[regno];
5058 length += ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) / ALLOCNO_NUM_OBJECTS (a);
5059 cost += ALLOCNO_MEMORY_COST (a) - ALLOCNO_CLASS_COST (a);
5060 if (in_hard_reg_set_p (crtl->abi->full_reg_clobbers (),
5061 ALLOCNO_MODE (a), hard_regno))
5062 count++;
5063 in_p = in && REG_P (in) && (int) REGNO (in) == hard_regno;
5064 out_p = out && REG_P (out) && (int) REGNO (out) == hard_regno;
5065 if ((in_p || out_p)
5066 && find_regno_note (insn, REG_DEAD, hard_regno) != NULL_RTX)
5068 saved_cost = 0;
5069 if (in_p)
5070 saved_cost += ira_memory_move_cost
5071 [ALLOCNO_MODE (a)][ALLOCNO_CLASS (a)][1];
5072 if (out_p)
5073 saved_cost
5074 += ira_memory_move_cost
5075 [ALLOCNO_MODE (a)][ALLOCNO_CLASS (a)][0];
5076 cost -= REG_FREQ_FROM_BB (BLOCK_FOR_INSN (insn)) * saved_cost;
5079 *excess_pressure_live_length = length;
5080 *call_used_count = count;
5081 hard_regno = -1;
5082 if (regnos[0] >= 0)
5084 hard_regno = reg_renumber[regnos[0]];
5086 *first_hard_regno = hard_regno;
5087 return cost;
5090 /* Return TRUE if spilling pseudo-registers whose numbers are in array
5091 REGNOS is better than spilling pseudo-registers with numbers in
5092 OTHER_REGNOS for reload with given IN and OUT for INSN. The
5093 function used by the reload pass to make better register spilling
5094 decisions. */
5095 bool
5096 ira_better_spill_reload_regno_p (int *regnos, int *other_regnos,
5097 rtx in, rtx out, rtx_insn *insn)
5099 int cost, other_cost;
5100 int length, other_length;
5101 int nrefs, other_nrefs;
5102 int call_used_count, other_call_used_count;
5103 int hard_regno, other_hard_regno;
5105 cost = calculate_spill_cost (regnos, in, out, insn,
5106 &length, &nrefs, &call_used_count, &hard_regno);
5107 other_cost = calculate_spill_cost (other_regnos, in, out, insn,
5108 &other_length, &other_nrefs,
5109 &other_call_used_count,
5110 &other_hard_regno);
5111 if (nrefs == 0 && other_nrefs != 0)
5112 return true;
5113 if (nrefs != 0 && other_nrefs == 0)
5114 return false;
5115 if (cost != other_cost)
5116 return cost < other_cost;
5117 if (length != other_length)
5118 return length > other_length;
5119 #ifdef REG_ALLOC_ORDER
5120 if (hard_regno >= 0 && other_hard_regno >= 0)
5121 return (inv_reg_alloc_order[hard_regno]
5122 < inv_reg_alloc_order[other_hard_regno]);
5123 #else
5124 if (call_used_count != other_call_used_count)
5125 return call_used_count > other_call_used_count;
5126 #endif
5127 return false;
5132 /* Allocate and initialize data necessary for assign_hard_reg. */
5133 void
5134 ira_initiate_assign (void)
5136 sorted_allocnos
5137 = (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t)
5138 * ira_allocnos_num);
5139 consideration_allocno_bitmap = ira_allocate_bitmap ();
5140 initiate_cost_update ();
5141 allocno_priorities = (int *) ira_allocate (sizeof (int) * ira_allocnos_num);
5142 sorted_copies = (ira_copy_t *) ira_allocate (ira_copies_num
5143 * sizeof (ira_copy_t));
5146 /* Deallocate data used by assign_hard_reg. */
5147 void
5148 ira_finish_assign (void)
5150 ira_free (sorted_allocnos);
5151 ira_free_bitmap (consideration_allocno_bitmap);
5152 finish_cost_update ();
5153 ira_free (allocno_priorities);
5154 ira_free (sorted_copies);
5159 /* Entry function doing color-based register allocation. */
5160 static void
5161 color (void)
5163 allocno_stack_vec.create (ira_allocnos_num);
5164 memset (allocated_hardreg_p, 0, sizeof (allocated_hardreg_p));
5165 ira_initiate_assign ();
5166 do_coloring ();
5167 ira_finish_assign ();
5168 allocno_stack_vec.release ();
5169 move_spill_restore ();
5174 /* This page contains a simple register allocator without usage of
5175 allocno conflicts. This is used for fast allocation for -O0. */
5177 /* Do register allocation by not using allocno conflicts. It uses
5178 only allocno live ranges. The algorithm is close to Chow's
5179 priority coloring. */
5180 static void
5181 fast_allocation (void)
5183 int i, j, k, num, class_size, hard_regno, best_hard_regno, cost, min_cost;
5184 int *costs;
5185 #ifdef STACK_REGS
5186 bool no_stack_reg_p;
5187 #endif
5188 enum reg_class aclass;
5189 machine_mode mode;
5190 ira_allocno_t a;
5191 ira_allocno_iterator ai;
5192 live_range_t r;
5193 HARD_REG_SET conflict_hard_regs, *used_hard_regs;
5195 sorted_allocnos = (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t)
5196 * ira_allocnos_num);
5197 num = 0;
5198 FOR_EACH_ALLOCNO (a, ai)
5199 sorted_allocnos[num++] = a;
5200 allocno_priorities = (int *) ira_allocate (sizeof (int) * ira_allocnos_num);
5201 setup_allocno_priorities (sorted_allocnos, num);
5202 used_hard_regs = (HARD_REG_SET *) ira_allocate (sizeof (HARD_REG_SET)
5203 * ira_max_point);
5204 for (i = 0; i < ira_max_point; i++)
5205 CLEAR_HARD_REG_SET (used_hard_regs[i]);
5206 qsort (sorted_allocnos, num, sizeof (ira_allocno_t),
5207 allocno_priority_compare_func);
5208 for (i = 0; i < num; i++)
5210 int nr, l;
5212 a = sorted_allocnos[i];
5213 nr = ALLOCNO_NUM_OBJECTS (a);
5214 CLEAR_HARD_REG_SET (conflict_hard_regs);
5215 for (l = 0; l < nr; l++)
5217 ira_object_t obj = ALLOCNO_OBJECT (a, l);
5218 conflict_hard_regs |= OBJECT_CONFLICT_HARD_REGS (obj);
5219 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
5220 for (j = r->start; j <= r->finish; j++)
5221 conflict_hard_regs |= used_hard_regs[j];
5223 aclass = ALLOCNO_CLASS (a);
5224 ALLOCNO_ASSIGNED_P (a) = true;
5225 ALLOCNO_HARD_REGNO (a) = -1;
5226 if (hard_reg_set_subset_p (reg_class_contents[aclass],
5227 conflict_hard_regs))
5228 continue;
5229 mode = ALLOCNO_MODE (a);
5230 #ifdef STACK_REGS
5231 no_stack_reg_p = ALLOCNO_NO_STACK_REG_P (a);
5232 #endif
5233 class_size = ira_class_hard_regs_num[aclass];
5234 costs = ALLOCNO_HARD_REG_COSTS (a);
5235 min_cost = INT_MAX;
5236 best_hard_regno = -1;
5237 for (j = 0; j < class_size; j++)
5239 hard_regno = ira_class_hard_regs[aclass][j];
5240 #ifdef STACK_REGS
5241 if (no_stack_reg_p && FIRST_STACK_REG <= hard_regno
5242 && hard_regno <= LAST_STACK_REG)
5243 continue;
5244 #endif
5245 if (ira_hard_reg_set_intersection_p (hard_regno, mode, conflict_hard_regs)
5246 || (TEST_HARD_REG_BIT
5247 (ira_prohibited_class_mode_regs[aclass][mode], hard_regno)))
5248 continue;
5249 if (costs == NULL)
5251 best_hard_regno = hard_regno;
5252 break;
5254 cost = costs[j];
5255 if (min_cost > cost)
5257 min_cost = cost;
5258 best_hard_regno = hard_regno;
5261 if (best_hard_regno < 0)
5262 continue;
5263 ALLOCNO_HARD_REGNO (a) = hard_regno = best_hard_regno;
5264 for (l = 0; l < nr; l++)
5266 ira_object_t obj = ALLOCNO_OBJECT (a, l);
5267 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
5268 for (k = r->start; k <= r->finish; k++)
5269 used_hard_regs[k] |= ira_reg_mode_hard_regset[hard_regno][mode];
5272 ira_free (sorted_allocnos);
5273 ira_free (used_hard_regs);
5274 ira_free (allocno_priorities);
5275 if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
5276 ira_print_disposition (ira_dump_file);
5281 /* Entry function doing coloring. */
5282 void
5283 ira_color (void)
5285 ira_allocno_t a;
5286 ira_allocno_iterator ai;
5288 /* Setup updated costs. */
5289 FOR_EACH_ALLOCNO (a, ai)
5291 ALLOCNO_UPDATED_MEMORY_COST (a) = ALLOCNO_MEMORY_COST (a);
5292 ALLOCNO_UPDATED_CLASS_COST (a) = ALLOCNO_CLASS_COST (a);
5294 if (ira_conflicts_p)
5295 color ();
5296 else
5297 fast_allocation ();