Daily bump.
[official-gcc.git] / gcc / fold-const-call.c
blobc542e780a18679748b62f00f476b0ea904e376c8
1 /* Constant folding for calls to built-in and internal functions.
2 Copyright (C) 1988-2021 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "realmpfr.h"
24 #include "tree.h"
25 #include "stor-layout.h"
26 #include "options.h"
27 #include "fold-const.h"
28 #include "fold-const-call.h"
29 #include "case-cfn-macros.h"
30 #include "tm.h" /* For C[LT]Z_DEFINED_AT_ZERO. */
31 #include "builtins.h"
32 #include "gimple-expr.h"
33 #include "tree-vector-builder.h"
35 /* Functions that test for certain constant types, abstracting away the
36 decision about whether to check for overflow. */
38 static inline bool
39 integer_cst_p (tree t)
41 return TREE_CODE (t) == INTEGER_CST && !TREE_OVERFLOW (t);
44 static inline bool
45 real_cst_p (tree t)
47 return TREE_CODE (t) == REAL_CST && !TREE_OVERFLOW (t);
50 static inline bool
51 complex_cst_p (tree t)
53 return TREE_CODE (t) == COMPLEX_CST;
56 /* Return true if ARG is a size_type_node constant.
57 Store it in *SIZE_OUT if so. */
59 static inline bool
60 size_t_cst_p (tree t, unsigned HOST_WIDE_INT *size_out)
62 if (types_compatible_p (size_type_node, TREE_TYPE (t))
63 && integer_cst_p (t)
64 && tree_fits_uhwi_p (t))
66 *size_out = tree_to_uhwi (t);
67 return true;
69 return false;
72 /* RES is the result of a comparison in which < 0 means "less", 0 means
73 "equal" and > 0 means "more". Canonicalize it to -1, 0 or 1 and
74 return it in type TYPE. */
76 tree
77 build_cmp_result (tree type, int res)
79 return build_int_cst (type, res < 0 ? -1 : res > 0 ? 1 : 0);
82 /* M is the result of trying to constant-fold an expression (starting
83 with clear MPFR flags) and INEXACT says whether the result in M is
84 exact or inexact. Return true if M can be used as a constant-folded
85 result in format FORMAT, storing the value in *RESULT if so. */
87 static bool
88 do_mpfr_ckconv (real_value *result, mpfr_srcptr m, bool inexact,
89 const real_format *format)
91 /* Proceed iff we get a normal number, i.e. not NaN or Inf and no
92 overflow/underflow occurred. If -frounding-math, proceed iff the
93 result of calling FUNC was exact. */
94 if (!mpfr_number_p (m)
95 || mpfr_overflow_p ()
96 || mpfr_underflow_p ()
97 || (flag_rounding_math && inexact))
98 return false;
100 REAL_VALUE_TYPE tmp;
101 real_from_mpfr (&tmp, m, format, MPFR_RNDN);
103 /* Proceed iff GCC's REAL_VALUE_TYPE can hold the MPFR values.
104 If the REAL_VALUE_TYPE is zero but the mpft_t is not, then we
105 underflowed in the conversion. */
106 if (!real_isfinite (&tmp)
107 || ((tmp.cl == rvc_zero) != (mpfr_zero_p (m) != 0)))
108 return false;
110 real_convert (result, format, &tmp);
111 return real_identical (result, &tmp);
114 /* Try to evaluate:
116 *RESULT = f (*ARG)
118 in format FORMAT, given that FUNC is the MPFR implementation of f.
119 Return true on success. */
121 static bool
122 do_mpfr_arg1 (real_value *result,
123 int (*func) (mpfr_ptr, mpfr_srcptr, mpfr_rnd_t),
124 const real_value *arg, const real_format *format)
126 /* To proceed, MPFR must exactly represent the target floating point
127 format, which only happens when the target base equals two. */
128 if (format->b != 2 || !real_isfinite (arg))
129 return false;
131 int prec = format->p;
132 mpfr_rnd_t rnd = format->round_towards_zero ? MPFR_RNDZ : MPFR_RNDN;
133 mpfr_t m;
135 mpfr_init2 (m, prec);
136 mpfr_from_real (m, arg, MPFR_RNDN);
137 mpfr_clear_flags ();
138 bool inexact = func (m, m, rnd);
139 bool ok = do_mpfr_ckconv (result, m, inexact, format);
140 mpfr_clear (m);
142 return ok;
145 /* Try to evaluate:
147 *RESULT_SIN = sin (*ARG);
148 *RESULT_COS = cos (*ARG);
150 for format FORMAT. Return true on success. */
152 static bool
153 do_mpfr_sincos (real_value *result_sin, real_value *result_cos,
154 const real_value *arg, const real_format *format)
156 /* To proceed, MPFR must exactly represent the target floating point
157 format, which only happens when the target base equals two. */
158 if (format->b != 2 || !real_isfinite (arg))
159 return false;
161 int prec = format->p;
162 mpfr_rnd_t rnd = format->round_towards_zero ? MPFR_RNDZ : MPFR_RNDN;
163 mpfr_t m, ms, mc;
165 mpfr_inits2 (prec, m, ms, mc, NULL);
166 mpfr_from_real (m, arg, MPFR_RNDN);
167 mpfr_clear_flags ();
168 bool inexact = mpfr_sin_cos (ms, mc, m, rnd);
169 bool ok = (do_mpfr_ckconv (result_sin, ms, inexact, format)
170 && do_mpfr_ckconv (result_cos, mc, inexact, format));
171 mpfr_clears (m, ms, mc, NULL);
173 return ok;
176 /* Try to evaluate:
178 *RESULT = f (*ARG0, *ARG1)
180 in format FORMAT, given that FUNC is the MPFR implementation of f.
181 Return true on success. */
183 static bool
184 do_mpfr_arg2 (real_value *result,
185 int (*func) (mpfr_ptr, mpfr_srcptr, mpfr_srcptr, mpfr_rnd_t),
186 const real_value *arg0, const real_value *arg1,
187 const real_format *format)
189 /* To proceed, MPFR must exactly represent the target floating point
190 format, which only happens when the target base equals two. */
191 if (format->b != 2 || !real_isfinite (arg0) || !real_isfinite (arg1))
192 return false;
194 int prec = format->p;
195 mpfr_rnd_t rnd = format->round_towards_zero ? MPFR_RNDZ : MPFR_RNDN;
196 mpfr_t m0, m1;
198 mpfr_inits2 (prec, m0, m1, NULL);
199 mpfr_from_real (m0, arg0, MPFR_RNDN);
200 mpfr_from_real (m1, arg1, MPFR_RNDN);
201 mpfr_clear_flags ();
202 bool inexact = func (m0, m0, m1, rnd);
203 bool ok = do_mpfr_ckconv (result, m0, inexact, format);
204 mpfr_clears (m0, m1, NULL);
206 return ok;
209 /* Try to evaluate:
211 *RESULT = f (ARG0, *ARG1)
213 in format FORMAT, given that FUNC is the MPFR implementation of f.
214 Return true on success. */
216 static bool
217 do_mpfr_arg2 (real_value *result,
218 int (*func) (mpfr_ptr, long, mpfr_srcptr, mpfr_rnd_t),
219 const wide_int_ref &arg0, const real_value *arg1,
220 const real_format *format)
222 if (format->b != 2 || !real_isfinite (arg1))
223 return false;
225 int prec = format->p;
226 mpfr_rnd_t rnd = format->round_towards_zero ? MPFR_RNDZ : MPFR_RNDN;
227 mpfr_t m;
229 mpfr_init2 (m, prec);
230 mpfr_from_real (m, arg1, MPFR_RNDN);
231 mpfr_clear_flags ();
232 bool inexact = func (m, arg0.to_shwi (), m, rnd);
233 bool ok = do_mpfr_ckconv (result, m, inexact, format);
234 mpfr_clear (m);
236 return ok;
239 /* Try to evaluate:
241 *RESULT = f (*ARG0, *ARG1, *ARG2)
243 in format FORMAT, given that FUNC is the MPFR implementation of f.
244 Return true on success. */
246 static bool
247 do_mpfr_arg3 (real_value *result,
248 int (*func) (mpfr_ptr, mpfr_srcptr, mpfr_srcptr,
249 mpfr_srcptr, mpfr_rnd_t),
250 const real_value *arg0, const real_value *arg1,
251 const real_value *arg2, const real_format *format)
253 /* To proceed, MPFR must exactly represent the target floating point
254 format, which only happens when the target base equals two. */
255 if (format->b != 2
256 || !real_isfinite (arg0)
257 || !real_isfinite (arg1)
258 || !real_isfinite (arg2))
259 return false;
261 int prec = format->p;
262 mpfr_rnd_t rnd = format->round_towards_zero ? MPFR_RNDZ : MPFR_RNDN;
263 mpfr_t m0, m1, m2;
265 mpfr_inits2 (prec, m0, m1, m2, NULL);
266 mpfr_from_real (m0, arg0, MPFR_RNDN);
267 mpfr_from_real (m1, arg1, MPFR_RNDN);
268 mpfr_from_real (m2, arg2, MPFR_RNDN);
269 mpfr_clear_flags ();
270 bool inexact = func (m0, m0, m1, m2, rnd);
271 bool ok = do_mpfr_ckconv (result, m0, inexact, format);
272 mpfr_clears (m0, m1, m2, NULL);
274 return ok;
277 /* M is the result of trying to constant-fold an expression (starting
278 with clear MPFR flags) and INEXACT says whether the result in M is
279 exact or inexact. Return true if M can be used as a constant-folded
280 result in which the real and imaginary parts have format FORMAT.
281 Store those parts in *RESULT_REAL and *RESULT_IMAG if so. */
283 static bool
284 do_mpc_ckconv (real_value *result_real, real_value *result_imag,
285 mpc_srcptr m, bool inexact, const real_format *format)
287 /* Proceed iff we get a normal number, i.e. not NaN or Inf and no
288 overflow/underflow occurred. If -frounding-math, proceed iff the
289 result of calling FUNC was exact. */
290 if (!mpfr_number_p (mpc_realref (m))
291 || !mpfr_number_p (mpc_imagref (m))
292 || mpfr_overflow_p ()
293 || mpfr_underflow_p ()
294 || (flag_rounding_math && inexact))
295 return false;
297 REAL_VALUE_TYPE tmp_real, tmp_imag;
298 real_from_mpfr (&tmp_real, mpc_realref (m), format, MPFR_RNDN);
299 real_from_mpfr (&tmp_imag, mpc_imagref (m), format, MPFR_RNDN);
301 /* Proceed iff GCC's REAL_VALUE_TYPE can hold the MPFR values.
302 If the REAL_VALUE_TYPE is zero but the mpft_t is not, then we
303 underflowed in the conversion. */
304 if (!real_isfinite (&tmp_real)
305 || !real_isfinite (&tmp_imag)
306 || (tmp_real.cl == rvc_zero) != (mpfr_zero_p (mpc_realref (m)) != 0)
307 || (tmp_imag.cl == rvc_zero) != (mpfr_zero_p (mpc_imagref (m)) != 0))
308 return false;
310 real_convert (result_real, format, &tmp_real);
311 real_convert (result_imag, format, &tmp_imag);
313 return (real_identical (result_real, &tmp_real)
314 && real_identical (result_imag, &tmp_imag));
317 /* Try to evaluate:
319 RESULT = f (ARG)
321 in format FORMAT, given that FUNC is the mpc implementation of f.
322 Return true on success. Both RESULT and ARG are represented as
323 real and imaginary pairs. */
325 static bool
326 do_mpc_arg1 (real_value *result_real, real_value *result_imag,
327 int (*func) (mpc_ptr, mpc_srcptr, mpc_rnd_t),
328 const real_value *arg_real, const real_value *arg_imag,
329 const real_format *format)
331 /* To proceed, MPFR must exactly represent the target floating point
332 format, which only happens when the target base equals two. */
333 if (format->b != 2
334 || !real_isfinite (arg_real)
335 || !real_isfinite (arg_imag))
336 return false;
338 int prec = format->p;
339 mpc_rnd_t crnd = format->round_towards_zero ? MPC_RNDZZ : MPC_RNDNN;
340 mpc_t m;
342 mpc_init2 (m, prec);
343 mpfr_from_real (mpc_realref (m), arg_real, MPFR_RNDN);
344 mpfr_from_real (mpc_imagref (m), arg_imag, MPFR_RNDN);
345 mpfr_clear_flags ();
346 bool inexact = func (m, m, crnd);
347 bool ok = do_mpc_ckconv (result_real, result_imag, m, inexact, format);
348 mpc_clear (m);
350 return ok;
353 /* Try to evaluate:
355 RESULT = f (ARG0, ARG1)
357 in format FORMAT, given that FUNC is the mpc implementation of f.
358 Return true on success. RESULT, ARG0 and ARG1 are represented as
359 real and imaginary pairs. */
361 static bool
362 do_mpc_arg2 (real_value *result_real, real_value *result_imag,
363 int (*func)(mpc_ptr, mpc_srcptr, mpc_srcptr, mpc_rnd_t),
364 const real_value *arg0_real, const real_value *arg0_imag,
365 const real_value *arg1_real, const real_value *arg1_imag,
366 const real_format *format)
368 if (!real_isfinite (arg0_real)
369 || !real_isfinite (arg0_imag)
370 || !real_isfinite (arg1_real)
371 || !real_isfinite (arg1_imag))
372 return false;
374 int prec = format->p;
375 mpc_rnd_t crnd = format->round_towards_zero ? MPC_RNDZZ : MPC_RNDNN;
376 mpc_t m0, m1;
378 mpc_init2 (m0, prec);
379 mpc_init2 (m1, prec);
380 mpfr_from_real (mpc_realref (m0), arg0_real, MPFR_RNDN);
381 mpfr_from_real (mpc_imagref (m0), arg0_imag, MPFR_RNDN);
382 mpfr_from_real (mpc_realref (m1), arg1_real, MPFR_RNDN);
383 mpfr_from_real (mpc_imagref (m1), arg1_imag, MPFR_RNDN);
384 mpfr_clear_flags ();
385 bool inexact = func (m0, m0, m1, crnd);
386 bool ok = do_mpc_ckconv (result_real, result_imag, m0, inexact, format);
387 mpc_clear (m0);
388 mpc_clear (m1);
390 return ok;
393 /* Try to evaluate:
395 *RESULT = logb (*ARG)
397 in format FORMAT. Return true on success. */
399 static bool
400 fold_const_logb (real_value *result, const real_value *arg,
401 const real_format *format)
403 switch (arg->cl)
405 case rvc_nan:
406 /* If arg is +-NaN, then return it. */
407 *result = *arg;
408 return true;
410 case rvc_inf:
411 /* If arg is +-Inf, then return +Inf. */
412 *result = *arg;
413 result->sign = 0;
414 return true;
416 case rvc_zero:
417 /* Zero may set errno and/or raise an exception. */
418 return false;
420 case rvc_normal:
421 /* For normal numbers, proceed iff radix == 2. In GCC,
422 normalized significands are in the range [0.5, 1.0). We
423 want the exponent as if they were [1.0, 2.0) so get the
424 exponent and subtract 1. */
425 if (format->b == 2)
427 real_from_integer (result, format, REAL_EXP (arg) - 1, SIGNED);
428 return true;
430 return false;
434 /* Try to evaluate:
436 *RESULT = significand (*ARG)
438 in format FORMAT. Return true on success. */
440 static bool
441 fold_const_significand (real_value *result, const real_value *arg,
442 const real_format *format)
444 switch (arg->cl)
446 case rvc_zero:
447 case rvc_nan:
448 case rvc_inf:
449 /* If arg is +-0, +-Inf or +-NaN, then return it. */
450 *result = *arg;
451 return true;
453 case rvc_normal:
454 /* For normal numbers, proceed iff radix == 2. */
455 if (format->b == 2)
457 *result = *arg;
458 /* In GCC, normalized significands are in the range [0.5, 1.0).
459 We want them to be [1.0, 2.0) so set the exponent to 1. */
460 SET_REAL_EXP (result, 1);
461 return true;
463 return false;
467 /* Try to evaluate:
469 *RESULT = f (*ARG)
471 where FORMAT is the format of *ARG and PRECISION is the number of
472 significant bits in the result. Return true on success. */
474 static bool
475 fold_const_conversion (wide_int *result,
476 void (*fn) (real_value *, format_helper,
477 const real_value *),
478 const real_value *arg, unsigned int precision,
479 const real_format *format)
481 if (!real_isfinite (arg))
482 return false;
484 real_value rounded;
485 fn (&rounded, format, arg);
487 bool fail = false;
488 *result = real_to_integer (&rounded, &fail, precision);
489 return !fail;
492 /* Try to evaluate:
494 *RESULT = pow (*ARG0, *ARG1)
496 in format FORMAT. Return true on success. */
498 static bool
499 fold_const_pow (real_value *result, const real_value *arg0,
500 const real_value *arg1, const real_format *format)
502 if (do_mpfr_arg2 (result, mpfr_pow, arg0, arg1, format))
503 return true;
505 /* Check for an integer exponent. */
506 REAL_VALUE_TYPE cint1;
507 HOST_WIDE_INT n1 = real_to_integer (arg1);
508 real_from_integer (&cint1, VOIDmode, n1, SIGNED);
509 /* Attempt to evaluate pow at compile-time, unless this should
510 raise an exception. */
511 if (real_identical (arg1, &cint1)
512 && (n1 > 0
513 || (!flag_trapping_math && !flag_errno_math)
514 || !real_equal (arg0, &dconst0)))
516 bool inexact = real_powi (result, format, arg0, n1);
517 /* Avoid the folding if flag_signaling_nans is on. */
518 if (flag_unsafe_math_optimizations
519 || (!inexact
520 && !(flag_signaling_nans
521 && REAL_VALUE_ISSIGNALING_NAN (*arg0))))
522 return true;
525 return false;
528 /* Try to evaluate:
530 *RESULT = nextafter (*ARG0, *ARG1)
534 *RESULT = nexttoward (*ARG0, *ARG1)
536 in format FORMAT. Return true on success. */
538 static bool
539 fold_const_nextafter (real_value *result, const real_value *arg0,
540 const real_value *arg1, const real_format *format)
542 if (REAL_VALUE_ISSIGNALING_NAN (*arg0)
543 || REAL_VALUE_ISSIGNALING_NAN (*arg1))
544 return false;
546 /* Don't handle composite modes, nor decimal, nor modes without
547 inf or denorm at least for now. */
548 if (format->pnan < format->p
549 || format->b == 10
550 || !format->has_inf
551 || !format->has_denorm)
552 return false;
554 if (real_nextafter (result, format, arg0, arg1)
555 /* If raising underflow or overflow and setting errno to ERANGE,
556 fail if we care about those side-effects. */
557 && (flag_trapping_math || flag_errno_math))
558 return false;
559 /* Similarly for nextafter (0, 1) raising underflow. */
560 else if (flag_trapping_math
561 && arg0->cl == rvc_zero
562 && result->cl != rvc_zero)
563 return false;
565 real_convert (result, format, result);
567 return true;
570 /* Try to evaluate:
572 *RESULT = ldexp (*ARG0, ARG1)
574 in format FORMAT. Return true on success. */
576 static bool
577 fold_const_builtin_load_exponent (real_value *result, const real_value *arg0,
578 const wide_int_ref &arg1,
579 const real_format *format)
581 /* Bound the maximum adjustment to twice the range of the
582 mode's valid exponents. Use abs to ensure the range is
583 positive as a sanity check. */
584 int max_exp_adj = 2 * labs (format->emax - format->emin);
586 /* The requested adjustment must be inside this range. This
587 is a preliminary cap to avoid things like overflow, we
588 may still fail to compute the result for other reasons. */
589 if (wi::les_p (arg1, -max_exp_adj) || wi::ges_p (arg1, max_exp_adj))
590 return false;
592 /* Don't perform operation if we honor signaling NaNs and
593 operand is a signaling NaN. */
594 if (!flag_unsafe_math_optimizations
595 && flag_signaling_nans
596 && REAL_VALUE_ISSIGNALING_NAN (*arg0))
597 return false;
599 REAL_VALUE_TYPE initial_result;
600 real_ldexp (&initial_result, arg0, arg1.to_shwi ());
602 /* Ensure we didn't overflow. */
603 if (real_isinf (&initial_result))
604 return false;
606 /* Only proceed if the target mode can hold the
607 resulting value. */
608 *result = real_value_truncate (format, initial_result);
609 return real_equal (&initial_result, result);
612 /* Fold a call to __builtin_nan or __builtin_nans with argument ARG and
613 return type TYPE. QUIET is true if a quiet rather than signalling
614 NaN is required. */
616 static tree
617 fold_const_builtin_nan (tree type, tree arg, bool quiet)
619 REAL_VALUE_TYPE real;
620 const char *str = c_getstr (arg);
621 if (str && real_nan (&real, str, quiet, TYPE_MODE (type)))
622 return build_real (type, real);
623 return NULL_TREE;
626 /* Fold a call to IFN_REDUC_<CODE> (ARG), returning a value of type TYPE. */
628 static tree
629 fold_const_reduction (tree type, tree arg, tree_code code)
631 unsigned HOST_WIDE_INT nelts;
632 if (TREE_CODE (arg) != VECTOR_CST
633 || !VECTOR_CST_NELTS (arg).is_constant (&nelts))
634 return NULL_TREE;
636 tree res = VECTOR_CST_ELT (arg, 0);
637 for (unsigned HOST_WIDE_INT i = 1; i < nelts; i++)
639 res = const_binop (code, type, res, VECTOR_CST_ELT (arg, i));
640 if (res == NULL_TREE || !CONSTANT_CLASS_P (res))
641 return NULL_TREE;
643 return res;
646 /* Fold a call to IFN_VEC_CONVERT (ARG) returning TYPE. */
648 static tree
649 fold_const_vec_convert (tree ret_type, tree arg)
651 enum tree_code code = NOP_EXPR;
652 tree arg_type = TREE_TYPE (arg);
653 if (TREE_CODE (arg) != VECTOR_CST)
654 return NULL_TREE;
656 gcc_checking_assert (VECTOR_TYPE_P (ret_type) && VECTOR_TYPE_P (arg_type));
658 if (INTEGRAL_TYPE_P (TREE_TYPE (ret_type))
659 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (arg_type)))
660 code = FIX_TRUNC_EXPR;
661 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg_type))
662 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (ret_type)))
663 code = FLOAT_EXPR;
665 /* We can't handle steps directly when extending, since the
666 values need to wrap at the original precision first. */
667 bool step_ok_p
668 = (INTEGRAL_TYPE_P (TREE_TYPE (ret_type))
669 && INTEGRAL_TYPE_P (TREE_TYPE (arg_type))
670 && (TYPE_PRECISION (TREE_TYPE (ret_type))
671 <= TYPE_PRECISION (TREE_TYPE (arg_type))));
672 tree_vector_builder elts;
673 if (!elts.new_unary_operation (ret_type, arg, step_ok_p))
674 return NULL_TREE;
676 unsigned int count = elts.encoded_nelts ();
677 for (unsigned int i = 0; i < count; ++i)
679 tree elt = fold_unary (code, TREE_TYPE (ret_type),
680 VECTOR_CST_ELT (arg, i));
681 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt))
682 return NULL_TREE;
683 elts.quick_push (elt);
686 return elts.build ();
689 /* Try to evaluate:
691 IFN_WHILE_ULT (ARG0, ARG1, (TYPE) { ... })
693 Return the value on success and null on failure. */
695 static tree
696 fold_while_ult (tree type, poly_uint64 arg0, poly_uint64 arg1)
698 if (known_ge (arg0, arg1))
699 return build_zero_cst (type);
701 if (maybe_ge (arg0, arg1))
702 return NULL_TREE;
704 poly_uint64 diff = arg1 - arg0;
705 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
706 if (known_ge (diff, nelts))
707 return build_all_ones_cst (type);
709 unsigned HOST_WIDE_INT const_diff;
710 if (known_le (diff, nelts) && diff.is_constant (&const_diff))
712 tree minus_one = build_minus_one_cst (TREE_TYPE (type));
713 tree zero = build_zero_cst (TREE_TYPE (type));
714 return build_vector_a_then_b (type, const_diff, minus_one, zero);
716 return NULL_TREE;
719 /* Try to evaluate:
721 *RESULT = FN (*ARG)
723 in format FORMAT. Return true on success. */
725 static bool
726 fold_const_call_ss (real_value *result, combined_fn fn,
727 const real_value *arg, const real_format *format)
729 switch (fn)
731 CASE_CFN_SQRT:
732 CASE_CFN_SQRT_FN:
733 return (real_compare (GE_EXPR, arg, &dconst0)
734 && do_mpfr_arg1 (result, mpfr_sqrt, arg, format));
736 CASE_CFN_CBRT:
737 return do_mpfr_arg1 (result, mpfr_cbrt, arg, format);
739 CASE_CFN_ASIN:
740 return (real_compare (GE_EXPR, arg, &dconstm1)
741 && real_compare (LE_EXPR, arg, &dconst1)
742 && do_mpfr_arg1 (result, mpfr_asin, arg, format));
744 CASE_CFN_ACOS:
745 return (real_compare (GE_EXPR, arg, &dconstm1)
746 && real_compare (LE_EXPR, arg, &dconst1)
747 && do_mpfr_arg1 (result, mpfr_acos, arg, format));
749 CASE_CFN_ATAN:
750 return do_mpfr_arg1 (result, mpfr_atan, arg, format);
752 CASE_CFN_ASINH:
753 return do_mpfr_arg1 (result, mpfr_asinh, arg, format);
755 CASE_CFN_ACOSH:
756 return (real_compare (GE_EXPR, arg, &dconst1)
757 && do_mpfr_arg1 (result, mpfr_acosh, arg, format));
759 CASE_CFN_ATANH:
760 return (real_compare (GE_EXPR, arg, &dconstm1)
761 && real_compare (LE_EXPR, arg, &dconst1)
762 && do_mpfr_arg1 (result, mpfr_atanh, arg, format));
764 CASE_CFN_SIN:
765 return do_mpfr_arg1 (result, mpfr_sin, arg, format);
767 CASE_CFN_COS:
768 return do_mpfr_arg1 (result, mpfr_cos, arg, format);
770 CASE_CFN_TAN:
771 return do_mpfr_arg1 (result, mpfr_tan, arg, format);
773 CASE_CFN_SINH:
774 return do_mpfr_arg1 (result, mpfr_sinh, arg, format);
776 CASE_CFN_COSH:
777 return do_mpfr_arg1 (result, mpfr_cosh, arg, format);
779 CASE_CFN_TANH:
780 return do_mpfr_arg1 (result, mpfr_tanh, arg, format);
782 CASE_CFN_ERF:
783 return do_mpfr_arg1 (result, mpfr_erf, arg, format);
785 CASE_CFN_ERFC:
786 return do_mpfr_arg1 (result, mpfr_erfc, arg, format);
788 CASE_CFN_TGAMMA:
789 return do_mpfr_arg1 (result, mpfr_gamma, arg, format);
791 CASE_CFN_EXP:
792 return do_mpfr_arg1 (result, mpfr_exp, arg, format);
794 CASE_CFN_EXP2:
795 return do_mpfr_arg1 (result, mpfr_exp2, arg, format);
797 CASE_CFN_EXP10:
798 CASE_CFN_POW10:
799 return do_mpfr_arg1 (result, mpfr_exp10, arg, format);
801 CASE_CFN_EXPM1:
802 return do_mpfr_arg1 (result, mpfr_expm1, arg, format);
804 CASE_CFN_LOG:
805 return (real_compare (GT_EXPR, arg, &dconst0)
806 && do_mpfr_arg1 (result, mpfr_log, arg, format));
808 CASE_CFN_LOG2:
809 return (real_compare (GT_EXPR, arg, &dconst0)
810 && do_mpfr_arg1 (result, mpfr_log2, arg, format));
812 CASE_CFN_LOG10:
813 return (real_compare (GT_EXPR, arg, &dconst0)
814 && do_mpfr_arg1 (result, mpfr_log10, arg, format));
816 CASE_CFN_LOG1P:
817 return (real_compare (GT_EXPR, arg, &dconstm1)
818 && do_mpfr_arg1 (result, mpfr_log1p, arg, format));
820 CASE_CFN_J0:
821 return do_mpfr_arg1 (result, mpfr_j0, arg, format);
823 CASE_CFN_J1:
824 return do_mpfr_arg1 (result, mpfr_j1, arg, format);
826 CASE_CFN_Y0:
827 return (real_compare (GT_EXPR, arg, &dconst0)
828 && do_mpfr_arg1 (result, mpfr_y0, arg, format));
830 CASE_CFN_Y1:
831 return (real_compare (GT_EXPR, arg, &dconst0)
832 && do_mpfr_arg1 (result, mpfr_y1, arg, format));
834 CASE_CFN_FLOOR:
835 CASE_CFN_FLOOR_FN:
836 if (!REAL_VALUE_ISSIGNALING_NAN (*arg))
838 real_floor (result, format, arg);
839 return true;
841 return false;
843 CASE_CFN_CEIL:
844 CASE_CFN_CEIL_FN:
845 if (!REAL_VALUE_ISSIGNALING_NAN (*arg))
847 real_ceil (result, format, arg);
848 return true;
850 return false;
852 CASE_CFN_TRUNC:
853 CASE_CFN_TRUNC_FN:
854 if (!REAL_VALUE_ISSIGNALING_NAN (*arg))
856 real_trunc (result, format, arg);
857 return true;
859 return false;
861 CASE_CFN_ROUND:
862 CASE_CFN_ROUND_FN:
863 if (!REAL_VALUE_ISSIGNALING_NAN (*arg))
865 real_round (result, format, arg);
866 return true;
868 return false;
870 CASE_CFN_ROUNDEVEN:
871 CASE_CFN_ROUNDEVEN_FN:
872 if (!REAL_VALUE_ISSIGNALING_NAN (*arg))
874 real_roundeven (result, format, arg);
875 return true;
877 return false;
879 CASE_CFN_LOGB:
880 return fold_const_logb (result, arg, format);
882 CASE_CFN_SIGNIFICAND:
883 return fold_const_significand (result, arg, format);
885 default:
886 return false;
890 /* Try to evaluate:
892 *RESULT = FN (*ARG)
894 where FORMAT is the format of ARG and PRECISION is the number of
895 significant bits in the result. Return true on success. */
897 static bool
898 fold_const_call_ss (wide_int *result, combined_fn fn,
899 const real_value *arg, unsigned int precision,
900 const real_format *format)
902 switch (fn)
904 CASE_CFN_SIGNBIT:
905 if (real_isneg (arg))
906 *result = wi::one (precision);
907 else
908 *result = wi::zero (precision);
909 return true;
911 CASE_CFN_ILOGB:
912 /* For ilogb we don't know FP_ILOGB0, so only handle normal values.
913 Proceed iff radix == 2. In GCC, normalized significands are in
914 the range [0.5, 1.0). We want the exponent as if they were
915 [1.0, 2.0) so get the exponent and subtract 1. */
916 if (arg->cl == rvc_normal && format->b == 2)
918 *result = wi::shwi (REAL_EXP (arg) - 1, precision);
919 return true;
921 return false;
923 CASE_CFN_ICEIL:
924 CASE_CFN_LCEIL:
925 CASE_CFN_LLCEIL:
926 return fold_const_conversion (result, real_ceil, arg,
927 precision, format);
929 CASE_CFN_LFLOOR:
930 CASE_CFN_IFLOOR:
931 CASE_CFN_LLFLOOR:
932 return fold_const_conversion (result, real_floor, arg,
933 precision, format);
935 CASE_CFN_IROUND:
936 CASE_CFN_LROUND:
937 CASE_CFN_LLROUND:
938 return fold_const_conversion (result, real_round, arg,
939 precision, format);
941 CASE_CFN_IRINT:
942 CASE_CFN_LRINT:
943 CASE_CFN_LLRINT:
944 /* Not yet folded to a constant. */
945 return false;
947 CASE_CFN_FINITE:
948 case CFN_BUILT_IN_FINITED32:
949 case CFN_BUILT_IN_FINITED64:
950 case CFN_BUILT_IN_FINITED128:
951 case CFN_BUILT_IN_ISFINITE:
952 *result = wi::shwi (real_isfinite (arg) ? 1 : 0, precision);
953 return true;
955 CASE_CFN_ISINF:
956 case CFN_BUILT_IN_ISINFD32:
957 case CFN_BUILT_IN_ISINFD64:
958 case CFN_BUILT_IN_ISINFD128:
959 if (real_isinf (arg))
960 *result = wi::shwi (arg->sign ? -1 : 1, precision);
961 else
962 *result = wi::shwi (0, precision);
963 return true;
965 CASE_CFN_ISNAN:
966 case CFN_BUILT_IN_ISNAND32:
967 case CFN_BUILT_IN_ISNAND64:
968 case CFN_BUILT_IN_ISNAND128:
969 *result = wi::shwi (real_isnan (arg) ? 1 : 0, precision);
970 return true;
972 default:
973 return false;
977 /* Try to evaluate:
979 *RESULT = FN (ARG)
981 where ARG_TYPE is the type of ARG and PRECISION is the number of bits
982 in the result. Return true on success. */
984 static bool
985 fold_const_call_ss (wide_int *result, combined_fn fn, const wide_int_ref &arg,
986 unsigned int precision, tree arg_type)
988 switch (fn)
990 CASE_CFN_FFS:
991 *result = wi::shwi (wi::ffs (arg), precision);
992 return true;
994 CASE_CFN_CLZ:
996 int tmp;
997 if (wi::ne_p (arg, 0))
998 tmp = wi::clz (arg);
999 else if (!CLZ_DEFINED_VALUE_AT_ZERO (SCALAR_INT_TYPE_MODE (arg_type),
1000 tmp))
1001 tmp = TYPE_PRECISION (arg_type);
1002 *result = wi::shwi (tmp, precision);
1003 return true;
1006 CASE_CFN_CTZ:
1008 int tmp;
1009 if (wi::ne_p (arg, 0))
1010 tmp = wi::ctz (arg);
1011 else if (!CTZ_DEFINED_VALUE_AT_ZERO (SCALAR_INT_TYPE_MODE (arg_type),
1012 tmp))
1013 tmp = TYPE_PRECISION (arg_type);
1014 *result = wi::shwi (tmp, precision);
1015 return true;
1018 CASE_CFN_CLRSB:
1019 *result = wi::shwi (wi::clrsb (arg), precision);
1020 return true;
1022 CASE_CFN_POPCOUNT:
1023 *result = wi::shwi (wi::popcount (arg), precision);
1024 return true;
1026 CASE_CFN_PARITY:
1027 *result = wi::shwi (wi::parity (arg), precision);
1028 return true;
1030 case CFN_BUILT_IN_BSWAP16:
1031 case CFN_BUILT_IN_BSWAP32:
1032 case CFN_BUILT_IN_BSWAP64:
1033 case CFN_BUILT_IN_BSWAP128:
1034 *result = wide_int::from (arg, precision, TYPE_SIGN (arg_type)).bswap ();
1035 return true;
1037 default:
1038 return false;
1042 /* Try to evaluate:
1044 RESULT = FN (*ARG)
1046 where FORMAT is the format of ARG and of the real and imaginary parts
1047 of RESULT, passed as RESULT_REAL and RESULT_IMAG respectively. Return
1048 true on success. */
1050 static bool
1051 fold_const_call_cs (real_value *result_real, real_value *result_imag,
1052 combined_fn fn, const real_value *arg,
1053 const real_format *format)
1055 switch (fn)
1057 CASE_CFN_CEXPI:
1058 /* cexpi(x+yi) = cos(x)+sin(y)*i. */
1059 return do_mpfr_sincos (result_imag, result_real, arg, format);
1061 default:
1062 return false;
1066 /* Try to evaluate:
1068 *RESULT = fn (ARG)
1070 where FORMAT is the format of RESULT and of the real and imaginary parts
1071 of ARG, passed as ARG_REAL and ARG_IMAG respectively. Return true on
1072 success. */
1074 static bool
1075 fold_const_call_sc (real_value *result, combined_fn fn,
1076 const real_value *arg_real, const real_value *arg_imag,
1077 const real_format *format)
1079 switch (fn)
1081 CASE_CFN_CABS:
1082 return do_mpfr_arg2 (result, mpfr_hypot, arg_real, arg_imag, format);
1084 default:
1085 return false;
1089 /* Try to evaluate:
1091 RESULT = fn (ARG)
1093 where FORMAT is the format of the real and imaginary parts of RESULT
1094 (RESULT_REAL and RESULT_IMAG) and of ARG (ARG_REAL and ARG_IMAG).
1095 Return true on success. */
1097 static bool
1098 fold_const_call_cc (real_value *result_real, real_value *result_imag,
1099 combined_fn fn, const real_value *arg_real,
1100 const real_value *arg_imag, const real_format *format)
1102 switch (fn)
1104 CASE_CFN_CCOS:
1105 return do_mpc_arg1 (result_real, result_imag, mpc_cos,
1106 arg_real, arg_imag, format);
1108 CASE_CFN_CCOSH:
1109 return do_mpc_arg1 (result_real, result_imag, mpc_cosh,
1110 arg_real, arg_imag, format);
1112 CASE_CFN_CPROJ:
1113 if (real_isinf (arg_real) || real_isinf (arg_imag))
1115 real_inf (result_real);
1116 *result_imag = dconst0;
1117 result_imag->sign = arg_imag->sign;
1119 else
1121 *result_real = *arg_real;
1122 *result_imag = *arg_imag;
1124 return true;
1126 CASE_CFN_CSIN:
1127 return do_mpc_arg1 (result_real, result_imag, mpc_sin,
1128 arg_real, arg_imag, format);
1130 CASE_CFN_CSINH:
1131 return do_mpc_arg1 (result_real, result_imag, mpc_sinh,
1132 arg_real, arg_imag, format);
1134 CASE_CFN_CTAN:
1135 return do_mpc_arg1 (result_real, result_imag, mpc_tan,
1136 arg_real, arg_imag, format);
1138 CASE_CFN_CTANH:
1139 return do_mpc_arg1 (result_real, result_imag, mpc_tanh,
1140 arg_real, arg_imag, format);
1142 CASE_CFN_CLOG:
1143 return do_mpc_arg1 (result_real, result_imag, mpc_log,
1144 arg_real, arg_imag, format);
1146 CASE_CFN_CSQRT:
1147 return do_mpc_arg1 (result_real, result_imag, mpc_sqrt,
1148 arg_real, arg_imag, format);
1150 CASE_CFN_CASIN:
1151 return do_mpc_arg1 (result_real, result_imag, mpc_asin,
1152 arg_real, arg_imag, format);
1154 CASE_CFN_CACOS:
1155 return do_mpc_arg1 (result_real, result_imag, mpc_acos,
1156 arg_real, arg_imag, format);
1158 CASE_CFN_CATAN:
1159 return do_mpc_arg1 (result_real, result_imag, mpc_atan,
1160 arg_real, arg_imag, format);
1162 CASE_CFN_CASINH:
1163 return do_mpc_arg1 (result_real, result_imag, mpc_asinh,
1164 arg_real, arg_imag, format);
1166 CASE_CFN_CACOSH:
1167 return do_mpc_arg1 (result_real, result_imag, mpc_acosh,
1168 arg_real, arg_imag, format);
1170 CASE_CFN_CATANH:
1171 return do_mpc_arg1 (result_real, result_imag, mpc_atanh,
1172 arg_real, arg_imag, format);
1174 CASE_CFN_CEXP:
1175 return do_mpc_arg1 (result_real, result_imag, mpc_exp,
1176 arg_real, arg_imag, format);
1178 default:
1179 return false;
1183 /* Subroutine of fold_const_call, with the same interface. Handle cases
1184 where the arguments and result are numerical. */
1186 static tree
1187 fold_const_call_1 (combined_fn fn, tree type, tree arg)
1189 machine_mode mode = TYPE_MODE (type);
1190 machine_mode arg_mode = TYPE_MODE (TREE_TYPE (arg));
1192 if (integer_cst_p (arg))
1194 if (SCALAR_INT_MODE_P (mode))
1196 wide_int result;
1197 if (fold_const_call_ss (&result, fn, wi::to_wide (arg),
1198 TYPE_PRECISION (type), TREE_TYPE (arg)))
1199 return wide_int_to_tree (type, result);
1201 return NULL_TREE;
1204 if (real_cst_p (arg))
1206 gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg_mode));
1207 if (mode == arg_mode)
1209 /* real -> real. */
1210 REAL_VALUE_TYPE result;
1211 if (fold_const_call_ss (&result, fn, TREE_REAL_CST_PTR (arg),
1212 REAL_MODE_FORMAT (mode)))
1213 return build_real (type, result);
1215 else if (COMPLEX_MODE_P (mode)
1216 && GET_MODE_INNER (mode) == arg_mode)
1218 /* real -> complex real. */
1219 REAL_VALUE_TYPE result_real, result_imag;
1220 if (fold_const_call_cs (&result_real, &result_imag, fn,
1221 TREE_REAL_CST_PTR (arg),
1222 REAL_MODE_FORMAT (arg_mode)))
1223 return build_complex (type,
1224 build_real (TREE_TYPE (type), result_real),
1225 build_real (TREE_TYPE (type), result_imag));
1227 else if (INTEGRAL_TYPE_P (type))
1229 /* real -> int. */
1230 wide_int result;
1231 if (fold_const_call_ss (&result, fn,
1232 TREE_REAL_CST_PTR (arg),
1233 TYPE_PRECISION (type),
1234 REAL_MODE_FORMAT (arg_mode)))
1235 return wide_int_to_tree (type, result);
1237 return NULL_TREE;
1240 if (complex_cst_p (arg))
1242 gcc_checking_assert (COMPLEX_MODE_P (arg_mode));
1243 machine_mode inner_mode = GET_MODE_INNER (arg_mode);
1244 tree argr = TREE_REALPART (arg);
1245 tree argi = TREE_IMAGPART (arg);
1246 if (mode == arg_mode
1247 && real_cst_p (argr)
1248 && real_cst_p (argi))
1250 /* complex real -> complex real. */
1251 REAL_VALUE_TYPE result_real, result_imag;
1252 if (fold_const_call_cc (&result_real, &result_imag, fn,
1253 TREE_REAL_CST_PTR (argr),
1254 TREE_REAL_CST_PTR (argi),
1255 REAL_MODE_FORMAT (inner_mode)))
1256 return build_complex (type,
1257 build_real (TREE_TYPE (type), result_real),
1258 build_real (TREE_TYPE (type), result_imag));
1260 if (mode == inner_mode
1261 && real_cst_p (argr)
1262 && real_cst_p (argi))
1264 /* complex real -> real. */
1265 REAL_VALUE_TYPE result;
1266 if (fold_const_call_sc (&result, fn,
1267 TREE_REAL_CST_PTR (argr),
1268 TREE_REAL_CST_PTR (argi),
1269 REAL_MODE_FORMAT (inner_mode)))
1270 return build_real (type, result);
1272 return NULL_TREE;
1275 return NULL_TREE;
1278 /* Try to fold FN (ARG) to a constant. Return the constant on success,
1279 otherwise return null. TYPE is the type of the return value. */
1281 tree
1282 fold_const_call (combined_fn fn, tree type, tree arg)
1284 switch (fn)
1286 case CFN_BUILT_IN_STRLEN:
1287 if (const char *str = c_getstr (arg))
1288 return build_int_cst (type, strlen (str));
1289 return NULL_TREE;
1291 CASE_CFN_NAN:
1292 CASE_FLT_FN_FLOATN_NX (CFN_BUILT_IN_NAN):
1293 case CFN_BUILT_IN_NAND32:
1294 case CFN_BUILT_IN_NAND64:
1295 case CFN_BUILT_IN_NAND128:
1296 return fold_const_builtin_nan (type, arg, true);
1298 CASE_CFN_NANS:
1299 CASE_FLT_FN_FLOATN_NX (CFN_BUILT_IN_NANS):
1300 case CFN_BUILT_IN_NANSD32:
1301 case CFN_BUILT_IN_NANSD64:
1302 case CFN_BUILT_IN_NANSD128:
1303 return fold_const_builtin_nan (type, arg, false);
1305 case CFN_REDUC_PLUS:
1306 return fold_const_reduction (type, arg, PLUS_EXPR);
1308 case CFN_REDUC_MAX:
1309 return fold_const_reduction (type, arg, MAX_EXPR);
1311 case CFN_REDUC_MIN:
1312 return fold_const_reduction (type, arg, MIN_EXPR);
1314 case CFN_REDUC_AND:
1315 return fold_const_reduction (type, arg, BIT_AND_EXPR);
1317 case CFN_REDUC_IOR:
1318 return fold_const_reduction (type, arg, BIT_IOR_EXPR);
1320 case CFN_REDUC_XOR:
1321 return fold_const_reduction (type, arg, BIT_XOR_EXPR);
1323 case CFN_VEC_CONVERT:
1324 return fold_const_vec_convert (type, arg);
1326 default:
1327 return fold_const_call_1 (fn, type, arg);
1331 /* Fold a call to IFN_FOLD_LEFT_<CODE> (ARG0, ARG1), returning a value
1332 of type TYPE. */
1334 static tree
1335 fold_const_fold_left (tree type, tree arg0, tree arg1, tree_code code)
1337 if (TREE_CODE (arg1) != VECTOR_CST)
1338 return NULL_TREE;
1340 unsigned HOST_WIDE_INT nelts;
1341 if (!VECTOR_CST_NELTS (arg1).is_constant (&nelts))
1342 return NULL_TREE;
1344 for (unsigned HOST_WIDE_INT i = 0; i < nelts; i++)
1346 arg0 = const_binop (code, type, arg0, VECTOR_CST_ELT (arg1, i));
1347 if (arg0 == NULL_TREE || !CONSTANT_CLASS_P (arg0))
1348 return NULL_TREE;
1350 return arg0;
1353 /* Try to evaluate:
1355 *RESULT = FN (*ARG0, *ARG1)
1357 in format FORMAT. Return true on success. */
1359 static bool
1360 fold_const_call_sss (real_value *result, combined_fn fn,
1361 const real_value *arg0, const real_value *arg1,
1362 const real_format *format)
1364 switch (fn)
1366 CASE_CFN_DREM:
1367 CASE_CFN_REMAINDER:
1368 return do_mpfr_arg2 (result, mpfr_remainder, arg0, arg1, format);
1370 CASE_CFN_ATAN2:
1371 return do_mpfr_arg2 (result, mpfr_atan2, arg0, arg1, format);
1373 CASE_CFN_FDIM:
1374 return do_mpfr_arg2 (result, mpfr_dim, arg0, arg1, format);
1376 CASE_CFN_FMOD:
1377 return do_mpfr_arg2 (result, mpfr_fmod, arg0, arg1, format);
1379 CASE_CFN_HYPOT:
1380 return do_mpfr_arg2 (result, mpfr_hypot, arg0, arg1, format);
1382 CASE_CFN_COPYSIGN:
1383 CASE_CFN_COPYSIGN_FN:
1384 *result = *arg0;
1385 real_copysign (result, arg1);
1386 return true;
1388 CASE_CFN_FMIN:
1389 CASE_CFN_FMIN_FN:
1390 return do_mpfr_arg2 (result, mpfr_min, arg0, arg1, format);
1392 CASE_CFN_FMAX:
1393 CASE_CFN_FMAX_FN:
1394 return do_mpfr_arg2 (result, mpfr_max, arg0, arg1, format);
1396 CASE_CFN_POW:
1397 return fold_const_pow (result, arg0, arg1, format);
1399 CASE_CFN_NEXTAFTER:
1400 CASE_CFN_NEXTTOWARD:
1401 return fold_const_nextafter (result, arg0, arg1, format);
1403 default:
1404 return false;
1408 /* Try to evaluate:
1410 *RESULT = FN (*ARG0, ARG1)
1412 where FORMAT is the format of *RESULT and *ARG0. Return true on
1413 success. */
1415 static bool
1416 fold_const_call_sss (real_value *result, combined_fn fn,
1417 const real_value *arg0, const wide_int_ref &arg1,
1418 const real_format *format)
1420 switch (fn)
1422 CASE_CFN_LDEXP:
1423 return fold_const_builtin_load_exponent (result, arg0, arg1, format);
1425 CASE_CFN_SCALBN:
1426 CASE_CFN_SCALBLN:
1427 return (format->b == 2
1428 && fold_const_builtin_load_exponent (result, arg0, arg1,
1429 format));
1431 CASE_CFN_POWI:
1432 /* Avoid the folding if flag_signaling_nans is on and
1433 operand is a signaling NaN. */
1434 if (!flag_unsafe_math_optimizations
1435 && flag_signaling_nans
1436 && REAL_VALUE_ISSIGNALING_NAN (*arg0))
1437 return false;
1439 real_powi (result, format, arg0, arg1.to_shwi ());
1440 return true;
1442 default:
1443 return false;
1447 /* Try to evaluate:
1449 *RESULT = FN (ARG0, *ARG1)
1451 where FORMAT is the format of *RESULT and *ARG1. Return true on
1452 success. */
1454 static bool
1455 fold_const_call_sss (real_value *result, combined_fn fn,
1456 const wide_int_ref &arg0, const real_value *arg1,
1457 const real_format *format)
1459 switch (fn)
1461 CASE_CFN_JN:
1462 return do_mpfr_arg2 (result, mpfr_jn, arg0, arg1, format);
1464 CASE_CFN_YN:
1465 return (real_compare (GT_EXPR, arg1, &dconst0)
1466 && do_mpfr_arg2 (result, mpfr_yn, arg0, arg1, format));
1468 default:
1469 return false;
1473 /* Try to evaluate:
1475 RESULT = fn (ARG0, ARG1)
1477 where FORMAT is the format of the real and imaginary parts of RESULT
1478 (RESULT_REAL and RESULT_IMAG), of ARG0 (ARG0_REAL and ARG0_IMAG)
1479 and of ARG1 (ARG1_REAL and ARG1_IMAG). Return true on success. */
1481 static bool
1482 fold_const_call_ccc (real_value *result_real, real_value *result_imag,
1483 combined_fn fn, const real_value *arg0_real,
1484 const real_value *arg0_imag, const real_value *arg1_real,
1485 const real_value *arg1_imag, const real_format *format)
1487 switch (fn)
1489 CASE_CFN_CPOW:
1490 return do_mpc_arg2 (result_real, result_imag, mpc_pow,
1491 arg0_real, arg0_imag, arg1_real, arg1_imag, format);
1493 default:
1494 return false;
1498 /* Subroutine of fold_const_call, with the same interface. Handle cases
1499 where the arguments and result are numerical. */
1501 static tree
1502 fold_const_call_1 (combined_fn fn, tree type, tree arg0, tree arg1)
1504 machine_mode mode = TYPE_MODE (type);
1505 machine_mode arg0_mode = TYPE_MODE (TREE_TYPE (arg0));
1506 machine_mode arg1_mode = TYPE_MODE (TREE_TYPE (arg1));
1508 if (mode == arg0_mode
1509 && real_cst_p (arg0)
1510 && real_cst_p (arg1))
1512 gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg0_mode));
1513 REAL_VALUE_TYPE result;
1514 if (arg0_mode == arg1_mode)
1516 /* real, real -> real. */
1517 if (fold_const_call_sss (&result, fn, TREE_REAL_CST_PTR (arg0),
1518 TREE_REAL_CST_PTR (arg1),
1519 REAL_MODE_FORMAT (mode)))
1520 return build_real (type, result);
1522 else if (arg1_mode == TYPE_MODE (long_double_type_node))
1523 switch (fn)
1525 CASE_CFN_NEXTTOWARD:
1526 /* real, long double -> real. */
1527 if (fold_const_call_sss (&result, fn, TREE_REAL_CST_PTR (arg0),
1528 TREE_REAL_CST_PTR (arg1),
1529 REAL_MODE_FORMAT (mode)))
1530 return build_real (type, result);
1531 break;
1532 default:
1533 break;
1535 return NULL_TREE;
1538 if (real_cst_p (arg0)
1539 && integer_cst_p (arg1))
1541 gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg0_mode));
1542 if (mode == arg0_mode)
1544 /* real, int -> real. */
1545 REAL_VALUE_TYPE result;
1546 if (fold_const_call_sss (&result, fn, TREE_REAL_CST_PTR (arg0),
1547 wi::to_wide (arg1),
1548 REAL_MODE_FORMAT (mode)))
1549 return build_real (type, result);
1551 return NULL_TREE;
1554 if (integer_cst_p (arg0)
1555 && real_cst_p (arg1))
1557 gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg1_mode));
1558 if (mode == arg1_mode)
1560 /* int, real -> real. */
1561 REAL_VALUE_TYPE result;
1562 if (fold_const_call_sss (&result, fn, wi::to_wide (arg0),
1563 TREE_REAL_CST_PTR (arg1),
1564 REAL_MODE_FORMAT (mode)))
1565 return build_real (type, result);
1567 return NULL_TREE;
1570 if (arg0_mode == arg1_mode
1571 && complex_cst_p (arg0)
1572 && complex_cst_p (arg1))
1574 gcc_checking_assert (COMPLEX_MODE_P (arg0_mode));
1575 machine_mode inner_mode = GET_MODE_INNER (arg0_mode);
1576 tree arg0r = TREE_REALPART (arg0);
1577 tree arg0i = TREE_IMAGPART (arg0);
1578 tree arg1r = TREE_REALPART (arg1);
1579 tree arg1i = TREE_IMAGPART (arg1);
1580 if (mode == arg0_mode
1581 && real_cst_p (arg0r)
1582 && real_cst_p (arg0i)
1583 && real_cst_p (arg1r)
1584 && real_cst_p (arg1i))
1586 /* complex real, complex real -> complex real. */
1587 REAL_VALUE_TYPE result_real, result_imag;
1588 if (fold_const_call_ccc (&result_real, &result_imag, fn,
1589 TREE_REAL_CST_PTR (arg0r),
1590 TREE_REAL_CST_PTR (arg0i),
1591 TREE_REAL_CST_PTR (arg1r),
1592 TREE_REAL_CST_PTR (arg1i),
1593 REAL_MODE_FORMAT (inner_mode)))
1594 return build_complex (type,
1595 build_real (TREE_TYPE (type), result_real),
1596 build_real (TREE_TYPE (type), result_imag));
1598 return NULL_TREE;
1601 return NULL_TREE;
1604 /* Try to fold FN (ARG0, ARG1) to a constant. Return the constant on success,
1605 otherwise return null. TYPE is the type of the return value. */
1607 tree
1608 fold_const_call (combined_fn fn, tree type, tree arg0, tree arg1)
1610 const char *p0, *p1;
1611 char c;
1612 switch (fn)
1614 case CFN_BUILT_IN_STRSPN:
1615 if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1)))
1616 return build_int_cst (type, strspn (p0, p1));
1617 return NULL_TREE;
1619 case CFN_BUILT_IN_STRCSPN:
1620 if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1)))
1621 return build_int_cst (type, strcspn (p0, p1));
1622 return NULL_TREE;
1624 case CFN_BUILT_IN_STRCMP:
1625 if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1)))
1626 return build_cmp_result (type, strcmp (p0, p1));
1627 return NULL_TREE;
1629 case CFN_BUILT_IN_STRCASECMP:
1630 if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1)))
1632 int r = strcmp (p0, p1);
1633 if (r == 0)
1634 return build_cmp_result (type, r);
1636 return NULL_TREE;
1638 case CFN_BUILT_IN_INDEX:
1639 case CFN_BUILT_IN_STRCHR:
1640 if ((p0 = c_getstr (arg0)) && target_char_cst_p (arg1, &c))
1642 const char *r = strchr (p0, c);
1643 if (r == NULL)
1644 return build_int_cst (type, 0);
1645 return fold_convert (type,
1646 fold_build_pointer_plus_hwi (arg0, r - p0));
1648 return NULL_TREE;
1650 case CFN_BUILT_IN_RINDEX:
1651 case CFN_BUILT_IN_STRRCHR:
1652 if ((p0 = c_getstr (arg0)) && target_char_cst_p (arg1, &c))
1654 const char *r = strrchr (p0, c);
1655 if (r == NULL)
1656 return build_int_cst (type, 0);
1657 return fold_convert (type,
1658 fold_build_pointer_plus_hwi (arg0, r - p0));
1660 return NULL_TREE;
1662 case CFN_BUILT_IN_STRSTR:
1663 if ((p1 = c_getstr (arg1)))
1665 if ((p0 = c_getstr (arg0)))
1667 const char *r = strstr (p0, p1);
1668 if (r == NULL)
1669 return build_int_cst (type, 0);
1670 return fold_convert (type,
1671 fold_build_pointer_plus_hwi (arg0, r - p0));
1673 if (*p1 == '\0')
1674 return fold_convert (type, arg0);
1676 return NULL_TREE;
1678 case CFN_FOLD_LEFT_PLUS:
1679 return fold_const_fold_left (type, arg0, arg1, PLUS_EXPR);
1681 default:
1682 return fold_const_call_1 (fn, type, arg0, arg1);
1686 /* Try to evaluate:
1688 *RESULT = FN (*ARG0, *ARG1, *ARG2)
1690 in format FORMAT. Return true on success. */
1692 static bool
1693 fold_const_call_ssss (real_value *result, combined_fn fn,
1694 const real_value *arg0, const real_value *arg1,
1695 const real_value *arg2, const real_format *format)
1697 switch (fn)
1699 CASE_CFN_FMA:
1700 CASE_CFN_FMA_FN:
1701 return do_mpfr_arg3 (result, mpfr_fma, arg0, arg1, arg2, format);
1703 case CFN_FMS:
1705 real_value new_arg2 = real_value_negate (arg2);
1706 return do_mpfr_arg3 (result, mpfr_fma, arg0, arg1, &new_arg2, format);
1709 case CFN_FNMA:
1711 real_value new_arg0 = real_value_negate (arg0);
1712 return do_mpfr_arg3 (result, mpfr_fma, &new_arg0, arg1, arg2, format);
1715 case CFN_FNMS:
1717 real_value new_arg0 = real_value_negate (arg0);
1718 real_value new_arg2 = real_value_negate (arg2);
1719 return do_mpfr_arg3 (result, mpfr_fma, &new_arg0, arg1,
1720 &new_arg2, format);
1723 default:
1724 return false;
1728 /* Subroutine of fold_const_call, with the same interface. Handle cases
1729 where the arguments and result are numerical. */
1731 static tree
1732 fold_const_call_1 (combined_fn fn, tree type, tree arg0, tree arg1, tree arg2)
1734 machine_mode mode = TYPE_MODE (type);
1735 machine_mode arg0_mode = TYPE_MODE (TREE_TYPE (arg0));
1736 machine_mode arg1_mode = TYPE_MODE (TREE_TYPE (arg1));
1737 machine_mode arg2_mode = TYPE_MODE (TREE_TYPE (arg2));
1739 if (arg0_mode == arg1_mode
1740 && arg0_mode == arg2_mode
1741 && real_cst_p (arg0)
1742 && real_cst_p (arg1)
1743 && real_cst_p (arg2))
1745 gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg0_mode));
1746 if (mode == arg0_mode)
1748 /* real, real, real -> real. */
1749 REAL_VALUE_TYPE result;
1750 if (fold_const_call_ssss (&result, fn, TREE_REAL_CST_PTR (arg0),
1751 TREE_REAL_CST_PTR (arg1),
1752 TREE_REAL_CST_PTR (arg2),
1753 REAL_MODE_FORMAT (mode)))
1754 return build_real (type, result);
1756 return NULL_TREE;
1759 return NULL_TREE;
1762 /* Try to fold FN (ARG0, ARG1, ARG2) to a constant. Return the constant on
1763 success, otherwise return null. TYPE is the type of the return value. */
1765 tree
1766 fold_const_call (combined_fn fn, tree type, tree arg0, tree arg1, tree arg2)
1768 const char *p0, *p1;
1769 char c;
1770 unsigned HOST_WIDE_INT s0, s1, s2 = 0;
1771 switch (fn)
1773 case CFN_BUILT_IN_STRNCMP:
1774 if (!size_t_cst_p (arg2, &s2))
1775 return NULL_TREE;
1776 if (s2 == 0
1777 && !TREE_SIDE_EFFECTS (arg0)
1778 && !TREE_SIDE_EFFECTS (arg1))
1779 return build_int_cst (type, 0);
1780 else if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1)))
1781 return build_int_cst (type, strncmp (p0, p1, MIN (s2, SIZE_MAX)));
1782 return NULL_TREE;
1784 case CFN_BUILT_IN_STRNCASECMP:
1785 if (!size_t_cst_p (arg2, &s2))
1786 return NULL_TREE;
1787 if (s2 == 0
1788 && !TREE_SIDE_EFFECTS (arg0)
1789 && !TREE_SIDE_EFFECTS (arg1))
1790 return build_int_cst (type, 0);
1791 else if ((p0 = c_getstr (arg0))
1792 && (p1 = c_getstr (arg1))
1793 && strncmp (p0, p1, MIN (s2, SIZE_MAX)) == 0)
1794 return build_int_cst (type, 0);
1795 return NULL_TREE;
1797 case CFN_BUILT_IN_BCMP:
1798 case CFN_BUILT_IN_MEMCMP:
1799 if (!size_t_cst_p (arg2, &s2))
1800 return NULL_TREE;
1801 if (s2 == 0
1802 && !TREE_SIDE_EFFECTS (arg0)
1803 && !TREE_SIDE_EFFECTS (arg1))
1804 return build_int_cst (type, 0);
1805 if ((p0 = getbyterep (arg0, &s0))
1806 && (p1 = getbyterep (arg1, &s1))
1807 && s2 <= s0
1808 && s2 <= s1)
1809 return build_cmp_result (type, memcmp (p0, p1, s2));
1810 return NULL_TREE;
1812 case CFN_BUILT_IN_MEMCHR:
1813 if (!size_t_cst_p (arg2, &s2))
1814 return NULL_TREE;
1815 if (s2 == 0
1816 && !TREE_SIDE_EFFECTS (arg0)
1817 && !TREE_SIDE_EFFECTS (arg1))
1818 return build_int_cst (type, 0);
1819 if ((p0 = getbyterep (arg0, &s0))
1820 && s2 <= s0
1821 && target_char_cst_p (arg1, &c))
1823 const char *r = (const char *) memchr (p0, c, s2);
1824 if (r == NULL)
1825 return build_int_cst (type, 0);
1826 return fold_convert (type,
1827 fold_build_pointer_plus_hwi (arg0, r - p0));
1829 return NULL_TREE;
1831 case CFN_WHILE_ULT:
1833 poly_uint64 parg0, parg1;
1834 if (poly_int_tree_p (arg0, &parg0) && poly_int_tree_p (arg1, &parg1))
1835 return fold_while_ult (type, parg0, parg1);
1836 return NULL_TREE;
1839 default:
1840 return fold_const_call_1 (fn, type, arg0, arg1, arg2);