1 /* Classes for modeling the state of memory.
2 Copyright (C) 2020-2021 Free Software Foundation, Inc.
3 Contributed by David Malcolm <dmalcolm@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_ANALYZER_STORE_H
22 #define GCC_ANALYZER_STORE_H
24 /* Implementation of the region-based ternary model described in:
25 "A Memory Model for Static Analysis of C Programs"
26 (Zhongxing Xu, Ted Kremenek, and Jian Zhang)
27 http://lcs.ios.ac.cn/~xuzb/canalyze/memmodel.pdf */
29 /* The store models memory as a collection of "clusters", where regions
30 are partitioned into clusters via their base region.
34 struct coord { double x; double y; } verts[3];
35 then "verts[0].y" and "verts[1].x" both have "verts" as their base region.
36 Each of a, b, c, and verts will have their own clusters, so that we
37 know that writes to e.g. "verts[1].x".don't affect e.g. "a".
39 Within each cluster we store a map of bindings to values, where the
40 binding keys can be either concrete or symbolic.
42 Concrete bindings affect a specific range of bits relative to the start
43 of the base region of the cluster, whereas symbolic bindings affect
44 a specific subregion within the cluster.
46 Consider (from the symbolic-1.c testcase):
51 After (1) and (2), the cluster for "arr" has concrete bindings
52 for bits 16-23 and for bits 24-31, with svalues "INIT_VAL(a)"
53 and "INIT_VAL(b)" respectively:
54 cluster: {bits 16-23: "INIT_VAL(a)",
55 bits 24-31: "INIT_VAL(b)";
57 Attempting to query unbound subregions e.g. arr[4] will
58 return "UNINITIALIZED".
59 "a" and "b" are each in their own clusters, with no explicit
60 bindings, and thus implicitly have value INIT_VAL(a) and INIT_VAL(b).
63 After (3), the concrete binding for bits 24-31 is replaced with the
65 cluster: {bits 16-23: "INIT_VAL(a)", (from before)
66 bits 24-31: "INIT_VAL(c)"; (updated)
70 After (4), we lose the concrete bindings and replace them with a
71 symbolic binding for "arr[i]", with svalue "INIT_VAL(d)". We also
72 mark the cluster as having been "symbolically touched": future
73 attempts to query the values of subregions other than "arr[i]",
74 such as "arr[3]" are "UNKNOWN", since we don't know if the write
75 to arr[i] affected them.
76 cluster: {symbolic_key(arr[i]): "INIT_VAL(d)";
80 After (5), we lose the symbolic binding for "arr[i]" since we could
81 have overwritten it, and add a symbolic binding for "arr[j]".
82 cluster: {symbolic_key(arr[j]): "INIT_VAL(d)"; (different symbolic
83 flags: {TOUCHED}} binding)
86 After (6), we lose the symbolic binding for "arr[j]" since we could
87 have overwritten it, and gain a concrete binding for bits 24-31
88 again, this time with svalue "INIT_VAL(e)":
89 cluster: {bits 24-31: "INIT_VAL(d)";
91 The cluster is still flagged as touched, so that we know that
92 accesses to other elements are "UNKNOWN" rather than
95 Handling symbolic regions requires us to handle aliasing.
97 In the first example above, each of a, b, c and verts are non-symbolic
98 base regions and so their clusters are "concrete clusters", whereas given:
100 then "*p" and "*q" are symbolic base regions, and thus "*p" and "*q"
101 have "symbolic clusters".
103 In the above, "verts[i].x" will have a symbolic *binding* within a
104 concrete cluster for "verts", whereas "*p" is a symbolic *cluster*.
106 Writes to concrete clusters can't affect other concrete clusters,
107 but can affect symbolic clusters; e.g. after:
109 we bind 42 in the cluster for "verts", but the clusters for "b" and "c"
110 can't be affected. Any symbolic clusters for *p and for *q can be
111 affected, *p and *q could alias verts.
113 Writes to a symbolic cluster can affect other clusters, both
114 concrete and symbolic; e.g. after:
116 we bind 17 within the cluster for "*p". The concrete clusters for a, b,
117 c, and verts could be affected, depending on whether *p aliases them.
118 Similarly, the symbolic cluster to *q could be affected. */
122 /* A class for keeping track of aspects of a program_state that we don't
123 know about, to avoid false positives about leaks.
127 p->field = malloc (1024);
130 where we don't know whether or not p and q point to the same memory,
133 p->field = malloc (1024);
136 In both cases, the svalue for the address of the allocated buffer
137 goes from being bound to p->field to not having anything explicitly bound
140 Given that we conservatively discard bindings due to possible aliasing or
141 calls to unknown function, the store loses references to svalues,
142 but these svalues could still be live. We don't want to warn about
143 them leaking - they're effectively in a "maybe live" state.
145 This "maybe live" information is somewhat transient.
147 We don't want to store this "maybe live" information in the program_state,
148 region_model, or store, since we don't want to bloat these objects (and
149 potentially bloat the exploded_graph with more nodes).
150 However, we can't store it in the region_model_context, as these context
151 objects sometimes don't last long enough to be around when comparing the
152 old vs the new state.
154 This class is a way to track a set of such svalues, so that we can
155 temporarily capture that they are in a "maybe live" state whilst
156 comparing old and new states. */
161 typedef hash_set
<const svalue
*>::iterator iterator
;
163 void on_maybe_bound_sval (const svalue
*sval
)
165 m_maybe_bound_svals
.add (sval
);
167 void on_mutable_sval_at_unknown_call (const svalue
*sval
)
169 m_mutable_at_unknown_call_svals
.add (sval
);
172 bool unknown_sm_state_p (const svalue
*sval
)
174 return (m_maybe_bound_svals
.contains (sval
)
175 || m_mutable_at_unknown_call_svals
.contains (sval
));
178 void dump_to_pp (pretty_printer
*pp
, bool simple
) const;
179 void dump (bool simple
) const;
181 iterator
begin_maybe_bound_svals () const
183 return m_maybe_bound_svals
.begin ();
185 iterator
end_maybe_bound_svals () const
187 return m_maybe_bound_svals
.end ();
192 /* svalues that might or might not still be bound. */
193 hash_set
<const svalue
*> m_maybe_bound_svals
;
195 /* svalues that have mutable sm-state at unknown calls. */
196 hash_set
<const svalue
*> m_mutable_at_unknown_call_svals
;
200 class concrete_binding
;
201 class symbolic_binding
;
203 /* Abstract base class for describing ranges of bits within a binding_map
204 that can have svalues bound to them. */
209 virtual ~binding_key () {}
210 virtual bool concrete_p () const = 0;
211 bool symbolic_p () const { return !concrete_p (); }
213 static const binding_key
*make (store_manager
*mgr
, const region
*r
);
215 virtual void dump_to_pp (pretty_printer
*pp
, bool simple
) const = 0;
216 void dump (bool simple
) const;
217 label_text
get_desc (bool simple
=true) const;
219 static int cmp_ptrs (const void *, const void *);
220 static int cmp (const binding_key
*, const binding_key
*);
222 virtual const concrete_binding
*dyn_cast_concrete_binding () const
224 virtual const symbolic_binding
*dyn_cast_symbolic_binding () const
228 /* A concrete range of bits. */
232 bit_range (bit_offset_t start_bit_offset
, bit_size_t size_in_bits
)
233 : m_start_bit_offset (start_bit_offset
),
234 m_size_in_bits (size_in_bits
)
237 void dump_to_pp (pretty_printer
*pp
) const;
240 bit_offset_t
get_start_bit_offset () const
242 return m_start_bit_offset
;
244 bit_offset_t
get_next_bit_offset () const
246 return m_start_bit_offset
+ m_size_in_bits
;
248 bit_offset_t
get_last_bit_offset () const
250 return get_next_bit_offset () - 1;
253 bool contains_p (bit_offset_t offset
) const
255 return (offset
>= get_start_bit_offset ()
256 && offset
< get_next_bit_offset ());
259 bool contains_p (const bit_range
&other
, bit_range
*out
) const;
261 bool operator== (const bit_range
&other
) const
263 return (m_start_bit_offset
== other
.m_start_bit_offset
264 && m_size_in_bits
== other
.m_size_in_bits
);
267 bool intersects_p (const bit_range
&other
) const
269 return (get_start_bit_offset () < other
.get_next_bit_offset ()
270 && other
.get_start_bit_offset () < get_next_bit_offset ());
272 bool intersects_p (const bit_range
&other
,
274 bit_range
*out_other
) const;
276 static int cmp (const bit_range
&br1
, const bit_range
&br2
);
278 bit_range
operator- (bit_offset_t offset
) const;
280 static bool from_mask (unsigned HOST_WIDE_INT mask
, bit_range
*out
);
282 bool as_byte_range (byte_range
*out
) const;
284 bit_offset_t m_start_bit_offset
;
285 bit_size_t m_size_in_bits
;
288 /* A concrete range of bytes. */
292 byte_range (byte_offset_t start_byte_offset
, byte_size_t size_in_bytes
)
293 : m_start_byte_offset (start_byte_offset
),
294 m_size_in_bytes (size_in_bytes
)
297 void dump_to_pp (pretty_printer
*pp
) const;
300 bool contains_p (byte_offset_t offset
) const
302 return (offset
>= get_start_byte_offset ()
303 && offset
< get_next_byte_offset ());
305 bool contains_p (const byte_range
&other
, byte_range
*out
) const;
307 bool operator== (const byte_range
&other
) const
309 return (m_start_byte_offset
== other
.m_start_byte_offset
310 && m_size_in_bytes
== other
.m_size_in_bytes
);
313 byte_offset_t
get_start_byte_offset () const
315 return m_start_byte_offset
;
317 byte_offset_t
get_next_byte_offset () const
319 return m_start_byte_offset
+ m_size_in_bytes
;
321 byte_offset_t
get_last_byte_offset () const
323 return m_start_byte_offset
+ m_size_in_bytes
- 1;
326 bit_range
as_bit_range () const
328 return bit_range (m_start_byte_offset
* BITS_PER_UNIT
,
329 m_size_in_bytes
* BITS_PER_UNIT
);
332 static int cmp (const byte_range
&br1
, const byte_range
&br2
);
334 byte_offset_t m_start_byte_offset
;
335 byte_size_t m_size_in_bytes
;
338 /* Concrete subclass of binding_key, for describing a concrete range of
339 bits within the binding_map (e.g. "bits 8-15"). */
341 class concrete_binding
: public binding_key
344 /* This class is its own key for the purposes of consolidation. */
345 typedef concrete_binding key_t
;
347 concrete_binding (bit_offset_t start_bit_offset
, bit_size_t size_in_bits
)
348 : m_bit_range (start_bit_offset
, size_in_bits
)
350 bool concrete_p () const FINAL OVERRIDE
{ return true; }
352 hashval_t
hash () const
354 inchash::hash hstate
;
355 hstate
.add_wide_int (m_bit_range
.m_start_bit_offset
);
356 hstate
.add_wide_int (m_bit_range
.m_size_in_bits
);
357 return hstate
.end ();
359 bool operator== (const concrete_binding
&other
) const
361 return m_bit_range
== other
.m_bit_range
;
364 void dump_to_pp (pretty_printer
*pp
, bool simple
) const FINAL OVERRIDE
;
366 const concrete_binding
*dyn_cast_concrete_binding () const FINAL OVERRIDE
369 const bit_range
&get_bit_range () const { return m_bit_range
; }
371 bit_offset_t
get_start_bit_offset () const
373 return m_bit_range
.m_start_bit_offset
;
375 bit_size_t
get_size_in_bits () const
377 return m_bit_range
.m_size_in_bits
;
379 /* Return the next bit offset after the end of this binding. */
380 bit_offset_t
get_next_bit_offset () const
382 return m_bit_range
.get_next_bit_offset ();
385 bool overlaps_p (const concrete_binding
&other
) const;
387 static int cmp_ptr_ptr (const void *, const void *);
389 void mark_deleted () { m_bit_range
.m_start_bit_offset
= -1; }
390 void mark_empty () { m_bit_range
.m_start_bit_offset
= -2; }
391 bool is_deleted () const { return m_bit_range
.m_start_bit_offset
== -1; }
392 bool is_empty () const { return m_bit_range
.m_start_bit_offset
== -2; }
395 bit_range m_bit_range
;
400 template <> struct default_hash_traits
<ana::concrete_binding
>
401 : public member_function_hash_traits
<ana::concrete_binding
>
403 static const bool empty_zero_p
= false;
408 /* Concrete subclass of binding_key, for describing a symbolic set of
409 bits within the binding_map in terms of a region (e.g. "arr[i]"). */
411 class symbolic_binding
: public binding_key
414 /* This class is its own key for the purposes of consolidation. */
415 typedef symbolic_binding key_t
;
417 symbolic_binding (const region
*region
) : m_region (region
) {}
418 bool concrete_p () const FINAL OVERRIDE
{ return false; }
420 hashval_t
hash () const
422 return (intptr_t)m_region
;
424 bool operator== (const symbolic_binding
&other
) const
426 return m_region
== other
.m_region
;
429 void dump_to_pp (pretty_printer
*pp
, bool simple
) const FINAL OVERRIDE
;
431 const symbolic_binding
*dyn_cast_symbolic_binding () const FINAL OVERRIDE
434 const region
*get_region () const { return m_region
; }
436 static int cmp_ptr_ptr (const void *, const void *);
438 void mark_deleted () { m_region
= reinterpret_cast<const region
*> (1); }
439 void mark_empty () { m_region
= NULL
; }
440 bool is_deleted () const
441 { return m_region
== reinterpret_cast<const region
*> (1); }
442 bool is_empty () const { return m_region
== NULL
; }
445 const region
*m_region
;
450 template <> struct default_hash_traits
<ana::symbolic_binding
>
451 : public member_function_hash_traits
<ana::symbolic_binding
>
453 static const bool empty_zero_p
= true;
458 /* A mapping from binding_keys to svalues, for use by binding_cluster
459 and compound_svalue. */
464 typedef hash_map
<const binding_key
*, const svalue
*> map_t
;
465 typedef map_t::iterator iterator_t
;
467 binding_map () : m_map () {}
468 binding_map (const binding_map
&other
);
469 binding_map
& operator=(const binding_map
&other
);
471 bool operator== (const binding_map
&other
) const;
472 bool operator!= (const binding_map
&other
) const
474 return !(*this == other
);
477 hashval_t
hash () const;
479 const svalue
*get (const binding_key
*key
) const
481 const svalue
**slot
= const_cast<map_t
&> (m_map
).get (key
);
487 bool put (const binding_key
*k
, const svalue
*v
)
490 return m_map
.put (k
, v
);
493 void remove (const binding_key
*k
) { m_map
.remove (k
); }
494 void empty () { m_map
.empty (); }
496 iterator_t
begin () const { return m_map
.begin (); }
497 iterator_t
end () const { return m_map
.end (); }
498 size_t elements () const { return m_map
.elements (); }
500 void dump_to_pp (pretty_printer
*pp
, bool simple
, bool multiline
) const;
501 void dump (bool simple
) const;
503 json::object
*to_json () const;
505 bool apply_ctor_to_region (const region
*parent_reg
, tree ctor
,
506 region_model_manager
*mgr
);
508 static int cmp (const binding_map
&map1
, const binding_map
&map2
);
510 void remove_overlapping_bindings (store_manager
*mgr
,
511 const binding_key
*drop_key
,
512 uncertainty_t
*uncertainty
);
515 void get_overlapping_bindings (const binding_key
*key
,
516 auto_vec
<const binding_key
*> *out
);
517 bool apply_ctor_val_to_range (const region
*parent_reg
,
518 region_model_manager
*mgr
,
519 tree min_index
, tree max_index
,
521 bool apply_ctor_pair_to_child_region (const region
*parent_reg
,
522 region_model_manager
*mgr
,
523 tree index
, tree val
);
528 /* Concept: BindingVisitor, for use by binding_cluster::for_each_binding
529 and store::for_each_binding.
532 void on_binding (const binding_key *key, const svalue *&sval);
535 /* All of the bindings within a store for regions that share the same
538 class binding_cluster
543 typedef hash_map
<const binding_key
*, const svalue
*> map_t
;
544 typedef map_t::iterator iterator_t
;
546 binding_cluster (const region
*base_region
)
547 : m_base_region (base_region
), m_map (),
548 m_escaped (false), m_touched (false) {}
549 binding_cluster (const binding_cluster
&other
);
550 binding_cluster
& operator=(const binding_cluster
&other
);
552 bool operator== (const binding_cluster
&other
) const;
553 bool operator!= (const binding_cluster
&other
) const
555 return !(*this == other
);
558 hashval_t
hash () const;
560 bool symbolic_p () const;
562 void dump_to_pp (pretty_printer
*pp
, bool simple
, bool multiline
) const;
563 void dump (bool simple
) const;
565 void validate () const;
567 json::object
*to_json () const;
569 void bind (store_manager
*mgr
, const region
*, const svalue
*);
571 void clobber_region (store_manager
*mgr
, const region
*reg
);
572 void purge_region (store_manager
*mgr
, const region
*reg
);
573 void fill_region (store_manager
*mgr
, const region
*reg
, const svalue
*sval
);
574 void zero_fill_region (store_manager
*mgr
, const region
*reg
);
575 void mark_region_as_unknown (store_manager
*mgr
, const region
*reg
,
576 uncertainty_t
*uncertainty
);
577 void purge_state_involving (const svalue
*sval
,
578 region_model_manager
*sval_mgr
);
580 const svalue
*get_binding (store_manager
*mgr
, const region
*reg
) const;
581 const svalue
*get_binding_recursive (store_manager
*mgr
,
582 const region
*reg
) const;
583 const svalue
*get_any_binding (store_manager
*mgr
,
584 const region
*reg
) const;
585 const svalue
*maybe_get_compound_binding (store_manager
*mgr
,
586 const region
*reg
) const;
588 void remove_overlapping_bindings (store_manager
*mgr
, const region
*reg
,
589 uncertainty_t
*uncertainty
);
591 template <typename T
>
592 void for_each_value (void (*cb
) (const svalue
*sval
, T user_data
),
595 for (map_t::iterator iter
= m_map
.begin (); iter
!= m_map
.end (); ++iter
)
596 cb ((*iter
).second
, user_data
);
599 static bool can_merge_p (const binding_cluster
*cluster_a
,
600 const binding_cluster
*cluster_b
,
601 binding_cluster
*out_cluster
,
604 model_merger
*merger
);
605 void make_unknown_relative_to (const binding_cluster
*other_cluster
,
609 void mark_as_escaped ();
610 void on_unknown_fncall (const gcall
*call
, store_manager
*mgr
);
611 void on_asm (const gasm
*stmt
, store_manager
*mgr
);
613 bool escaped_p () const { return m_escaped
; }
614 bool touched_p () const { return m_touched
; }
616 bool redundant_p () const;
617 bool empty_p () const { return m_map
.elements () == 0; }
619 void get_representative_path_vars (const region_model
*model
,
621 const region
*base_reg
,
623 auto_vec
<path_var
> *out_pvs
) const;
625 const svalue
*maybe_get_simple_value (store_manager
*mgr
) const;
627 template <typename BindingVisitor
>
628 void for_each_binding (BindingVisitor
&v
) const
630 for (map_t::iterator iter
= m_map
.begin (); iter
!= m_map
.end (); ++iter
)
632 const binding_key
*key
= (*iter
).first
;
633 const svalue
*&sval
= (*iter
).second
;
634 v
.on_binding (key
, sval
);
638 iterator_t
begin () const { return m_map
.begin (); }
639 iterator_t
end () const { return m_map
.end (); }
641 const binding_map
&get_map () const { return m_map
; }
644 const svalue
*get_any_value (const binding_key
*key
) const;
645 void bind_compound_sval (store_manager
*mgr
,
647 const compound_svalue
*compound_sval
);
648 void bind_key (const binding_key
*key
, const svalue
*sval
);
650 const region
*m_base_region
;
654 /* Has a pointer to this cluster "escaped" into a part of the program
655 we don't know about (via a call to a function with an unknown body,
656 or by being passed in as a pointer param of a "top-level" function call).
657 Such regions could be overwritten when other such functions are called,
658 even if the region is no longer reachable by pointers that we are
662 /* Has this cluster been written to via a symbolic binding?
663 If so, then we don't know anything about unbound subregions,
664 so we can't use initial_svalue, treat them as uninitialized, or
665 inherit values from a parent region. */
669 /* The mapping from regions to svalues.
670 This is actually expressed by subdividing into clusters, to better
676 typedef hash_map
<const region
*, binding_cluster
*> cluster_map_t
;
679 store (const store
&other
);
682 store
&operator= (const store
&other
);
684 bool operator== (const store
&other
) const;
685 bool operator!= (const store
&other
) const
687 return !(*this == other
);
690 hashval_t
hash () const;
692 void dump_to_pp (pretty_printer
*pp
, bool summarize
, bool multiline
,
693 store_manager
*mgr
) const;
694 void dump (bool simple
) const;
695 void summarize_to_pp (pretty_printer
*pp
, bool simple
) const;
697 void validate () const;
699 json::object
*to_json () const;
701 const svalue
*get_any_binding (store_manager
*mgr
, const region
*reg
) const;
703 bool called_unknown_fn_p () const { return m_called_unknown_fn
; }
705 void set_value (store_manager
*mgr
, const region
*lhs_reg
,
706 const svalue
*rhs_sval
,
707 uncertainty_t
*uncertainty
);
708 void clobber_region (store_manager
*mgr
, const region
*reg
);
709 void purge_region (store_manager
*mgr
, const region
*reg
);
710 void fill_region (store_manager
*mgr
, const region
*reg
, const svalue
*sval
);
711 void zero_fill_region (store_manager
*mgr
, const region
*reg
);
712 void mark_region_as_unknown (store_manager
*mgr
, const region
*reg
,
713 uncertainty_t
*uncertainty
);
714 void purge_state_involving (const svalue
*sval
,
715 region_model_manager
*sval_mgr
);
717 const binding_cluster
*get_cluster (const region
*base_reg
) const;
718 binding_cluster
*get_cluster (const region
*base_reg
);
719 binding_cluster
*get_or_create_cluster (const region
*base_reg
);
720 void purge_cluster (const region
*base_reg
);
722 template <typename T
>
723 void for_each_cluster (void (*cb
) (const region
*base_reg
, T user_data
),
726 for (cluster_map_t::iterator iter
= m_cluster_map
.begin ();
727 iter
!= m_cluster_map
.end (); ++iter
)
728 cb ((*iter
).first
, user_data
);
731 static bool can_merge_p (const store
*store_a
, const store
*store_b
,
732 store
*out_store
, store_manager
*mgr
,
733 model_merger
*merger
);
735 void mark_as_escaped (const region
*base_reg
);
736 void on_unknown_fncall (const gcall
*call
, store_manager
*mgr
);
737 bool escaped_p (const region
*reg
) const;
739 void get_representative_path_vars (const region_model
*model
,
742 auto_vec
<path_var
> *out_pvs
) const;
744 cluster_map_t::iterator
begin () const { return m_cluster_map
.begin (); }
745 cluster_map_t::iterator
end () const { return m_cluster_map
.end (); }
747 tristate
eval_alias (const region
*base_reg_a
,
748 const region
*base_reg_b
) const;
750 template <typename BindingVisitor
>
751 void for_each_binding (BindingVisitor
&v
)
753 for (cluster_map_t::iterator iter
= m_cluster_map
.begin ();
754 iter
!= m_cluster_map
.end (); ++iter
)
755 (*iter
).second
->for_each_binding (v
);
758 void canonicalize (store_manager
*mgr
);
759 void loop_replay_fixup (const store
*other_store
,
760 region_model_manager
*mgr
);
763 void remove_overlapping_bindings (store_manager
*mgr
, const region
*reg
);
764 tristate
eval_alias_1 (const region
*base_reg_a
,
765 const region
*base_reg_b
) const;
767 cluster_map_t m_cluster_map
;
769 /* If this is true, then unknown code has been called, and so
770 any global variable that isn't currently modelled by the store
771 has unknown state, rather than being in an "initial state".
772 This is to avoid having to mark (and thus explicitly track)
773 every global when an unknown function is called; instead, they
774 can be tracked implicitly. */
775 bool m_called_unknown_fn
;
778 /* A class responsible for owning and consolidating binding keys
779 (both concrete and symbolic).
780 Key instances are immutable as far as clients are concerned, so they
781 are provided as "const" ptrs. */
786 store_manager (region_model_manager
*mgr
) : m_mgr (mgr
) {}
788 /* binding consolidation. */
789 const concrete_binding
*
790 get_concrete_binding (bit_offset_t start_bit_offset
,
791 bit_offset_t size_in_bits
);
792 const concrete_binding
*
793 get_concrete_binding (const bit_range
&bits
)
795 return get_concrete_binding (bits
.get_start_bit_offset (),
796 bits
.m_size_in_bits
);
798 const symbolic_binding
*
799 get_symbolic_binding (const region
*region
);
801 region_model_manager
*get_svalue_manager () const
806 void log_stats (logger
*logger
, bool show_objs
) const;
809 region_model_manager
*m_mgr
;
810 consolidation_map
<concrete_binding
> m_concrete_binding_key_mgr
;
811 consolidation_map
<symbolic_binding
> m_symbolic_binding_key_mgr
;
816 #endif /* GCC_ANALYZER_STORE_H */