2005-08-31 J"orn Rennecke <joern.rennecke@st.com>
[official-gcc.git] / libgfortran / intrinsics / pack_generic.c
blob2b0be00e11d1de5adbd3567e63e2eeee5053ec52
1 /* Generic implementation of the PACK intrinsic
2 Copyright (C) 2002, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
21 Ligbfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
31 #include "config.h"
32 #include <stdlib.h>
33 #include <assert.h>
34 #include <string.h>
35 #include "libgfortran.h"
37 /* PACK is specified as follows:
39 13.14.80 PACK (ARRAY, MASK, [VECTOR])
41 Description: Pack an array into an array of rank one under the
42 control of a mask.
44 Class: Transformational fucntion.
46 Arguments:
47 ARRAY may be of any type. It shall not be scalar.
48 MASK shall be of type LOGICAL. It shall be conformable with ARRAY.
49 VECTOR (optional) shall be of the same type and type parameters
50 as ARRAY. VECTOR shall have at least as many elements as
51 there are true elements in MASK. If MASK is a scalar
52 with the value true, VECTOR shall have at least as many
53 elements as there are in ARRAY.
55 Result Characteristics: The result is an array of rank one with the
56 same type and type parameters as ARRAY. If VECTOR is present, the
57 result size is that of VECTOR; otherwise, the result size is the
58 number /t/ of true elements in MASK unless MASK is scalar with the
59 value true, in which case the result size is the size of ARRAY.
61 Result Value: Element /i/ of the result is the element of ARRAY
62 that corresponds to the /i/th true element of MASK, taking elements
63 in array element order, for /i/ = 1, 2, ..., /t/. If VECTOR is
64 present and has size /n/ > /t/, element /i/ of the result has the
65 value VECTOR(/i/), for /i/ = /t/ + 1, ..., /n/.
67 Examples: The nonzero elements of an array M with the value
68 | 0 0 0 |
69 | 9 0 0 | may be "gathered" by the function PACK. The result of
70 | 0 0 7 |
71 PACK (M, MASK = M.NE.0) is [9,7] and the result of PACK (M, M.NE.0,
72 VECTOR = (/ 2,4,6,8,10,12 /)) is [9,7,6,8,10,12].
74 There are two variants of the PACK intrinsic: one, where MASK is
75 array valued, and the other one where MASK is scalar. */
77 extern void pack (gfc_array_char *, const gfc_array_char *,
78 const gfc_array_l4 *, const gfc_array_char *);
79 export_proto(pack);
81 void
82 pack (gfc_array_char *ret, const gfc_array_char *array,
83 const gfc_array_l4 *mask, const gfc_array_char *vector)
85 /* r.* indicates the return array. */
86 index_type rstride0;
87 char *rptr;
88 /* s.* indicates the source array. */
89 index_type sstride[GFC_MAX_DIMENSIONS];
90 index_type sstride0;
91 const char *sptr;
92 /* m.* indicates the mask array. */
93 index_type mstride[GFC_MAX_DIMENSIONS];
94 index_type mstride0;
95 const GFC_LOGICAL_4 *mptr;
97 index_type count[GFC_MAX_DIMENSIONS];
98 index_type extent[GFC_MAX_DIMENSIONS];
99 index_type n;
100 index_type dim;
101 index_type size;
102 index_type nelem;
104 size = GFC_DESCRIPTOR_SIZE (array);
105 dim = GFC_DESCRIPTOR_RANK (array);
106 for (n = 0; n < dim; n++)
108 count[n] = 0;
109 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
110 sstride[n] = array->dim[n].stride * size;
111 mstride[n] = mask->dim[n].stride;
113 if (sstride[0] == 0)
114 sstride[0] = size;
115 if (mstride[0] == 0)
116 mstride[0] = 1;
118 sptr = array->data;
119 mptr = mask->data;
121 /* Use the same loop for both logical types. */
122 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
124 if (GFC_DESCRIPTOR_SIZE (mask) != 8)
125 runtime_error ("Funny sized logical array");
126 for (n = 0; n < dim; n++)
127 mstride[n] <<= 1;
128 mptr = GFOR_POINTER_L8_TO_L4 (mptr);
131 if (ret->data == NULL)
133 /* Allocate the memory for the result. */
134 int total;
136 if (vector != NULL)
138 /* The return array will have as many
139 elements as there are in VECTOR. */
140 total = vector->dim[0].ubound + 1 - vector->dim[0].lbound;
142 else
144 /* We have to count the true elements in MASK. */
146 /* TODO: We could speed up pack easily in the case of only
147 few .TRUE. entries in MASK, by keeping track of where we
148 would be in the source array during the initial traversal
149 of MASK, and caching the pointers to those elements. Then,
150 supposed the number of elements is small enough, we would
151 only have to traverse the list, and copy those elements
152 into the result array. In the case of datatypes which fit
153 in one of the integer types we could also cache the
154 value instead of a pointer to it.
155 This approach might be bad from the point of view of
156 cache behavior in the case where our cache is not big
157 enough to hold all elements that have to be copied. */
159 const GFC_LOGICAL_4 *m = mptr;
161 total = 0;
163 while (m)
165 /* Test this element. */
166 if (*m)
167 total++;
169 /* Advance to the next element. */
170 m += mstride[0];
171 count[0]++;
172 n = 0;
173 while (count[n] == extent[n])
175 /* When we get to the end of a dimension, reset it
176 and increment the next dimension. */
177 count[n] = 0;
178 /* We could precalculate this product, but this is a
179 less frequently used path so proabably not worth
180 it. */
181 m -= mstride[n] * extent[n];
182 n++;
183 if (n >= dim)
185 /* Break out of the loop. */
186 m = NULL;
187 break;
189 else
191 count[n]++;
192 mptr += mstride[n];
198 /* Setup the array descriptor. */
199 ret->dim[0].lbound = 0;
200 ret->dim[0].ubound = total - 1;
201 ret->dim[0].stride = 1;
203 ret->data = internal_malloc_size (size * total);
204 ret->offset = 0;
206 if (total == 0)
207 /* In this case, nothing remains to be done. */
208 return;
211 rstride0 = ret->dim[0].stride * size;
212 if (rstride0 == 0)
213 rstride0 = size;
214 sstride0 = sstride[0];
215 mstride0 = mstride[0];
216 rptr = ret->data;
218 while (sptr)
220 /* Test this element. */
221 if (*mptr)
223 /* Add it. */
224 memcpy (rptr, sptr, size);
225 rptr += rstride0;
227 /* Advance to the next element. */
228 sptr += sstride0;
229 mptr += mstride0;
230 count[0]++;
231 n = 0;
232 while (count[n] == extent[n])
234 /* When we get to the end of a dimension, reset it and increment
235 the next dimension. */
236 count[n] = 0;
237 /* We could precalculate these products, but this is a less
238 frequently used path so proabably not worth it. */
239 sptr -= sstride[n] * extent[n];
240 mptr -= mstride[n] * extent[n];
241 n++;
242 if (n >= dim)
244 /* Break out of the loop. */
245 sptr = NULL;
246 break;
248 else
250 count[n]++;
251 sptr += sstride[n];
252 mptr += mstride[n];
257 /* Add any remaining elements from VECTOR. */
258 if (vector)
260 n = vector->dim[0].ubound + 1 - vector->dim[0].lbound;
261 nelem = ((rptr - ret->data) / rstride0);
262 if (n > nelem)
264 sstride0 = vector->dim[0].stride * size;
265 if (sstride0 == 0)
266 sstride0 = size;
268 sptr = vector->data + sstride0 * nelem;
269 n -= nelem;
270 while (n--)
272 memcpy (rptr, sptr, size);
273 rptr += rstride0;
274 sptr += sstride0;
280 extern void pack_s (gfc_array_char *ret, const gfc_array_char *array,
281 const GFC_LOGICAL_4 *, const gfc_array_char *);
282 export_proto(pack_s);
284 void
285 pack_s (gfc_array_char *ret, const gfc_array_char *array,
286 const GFC_LOGICAL_4 *mask, const gfc_array_char *vector)
288 /* r.* indicates the return array. */
289 index_type rstride0;
290 char *rptr;
291 /* s.* indicates the source array. */
292 index_type sstride[GFC_MAX_DIMENSIONS];
293 index_type sstride0;
294 const char *sptr;
296 index_type count[GFC_MAX_DIMENSIONS];
297 index_type extent[GFC_MAX_DIMENSIONS];
298 index_type n;
299 index_type dim;
300 index_type size;
301 index_type nelem;
303 size = GFC_DESCRIPTOR_SIZE (array);
304 dim = GFC_DESCRIPTOR_RANK (array);
305 for (n = 0; n < dim; n++)
307 count[n] = 0;
308 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
309 sstride[n] = array->dim[n].stride * size;
311 if (sstride[0] == 0)
312 sstride[0] = size;
314 sstride0 = sstride[0];
315 sptr = array->data;
317 if (ret->data == NULL)
319 /* Allocate the memory for the result. */
320 int total;
322 if (vector != NULL)
324 /* The return array will have as many elements as there are
325 in vector. */
326 total = vector->dim[0].ubound + 1 - vector->dim[0].lbound;
328 else
330 if (*mask)
332 /* The result array will have as many elements as the input
333 array. */
334 total = extent[0];
335 for (n = 1; n < dim; n++)
336 total *= extent[n];
338 else
340 /* The result array will be empty. */
341 ret->dim[0].lbound = 0;
342 ret->dim[0].ubound = -1;
343 ret->dim[0].stride = 1;
344 ret->data = internal_malloc_size (0);
345 ret->offset = 0;
347 return;
351 /* Setup the array descriptor. */
352 ret->dim[0].lbound = 0;
353 ret->dim[0].ubound = total - 1;
354 ret->dim[0].stride = 1;
356 ret->data = internal_malloc_size (size * total);
357 ret->offset = 0;
360 rstride0 = ret->dim[0].stride * size;
361 if (rstride0 == 0)
362 rstride0 = size;
363 rptr = ret->data;
365 /* The remaining possibilities are now:
366 If MASK is .TRUE., we have to copy the source array into the
367 result array. We then have to fill it up with elements from VECTOR.
368 If MASK is .FALSE., we have to copy VECTOR into the result
369 array. If VECTOR were not present we would have already returned. */
371 if (*mask)
373 while (sptr)
375 /* Add this element. */
376 memcpy (rptr, sptr, size);
377 rptr += rstride0;
379 /* Advance to the next element. */
380 sptr += sstride0;
381 count[0]++;
382 n = 0;
383 while (count[n] == extent[n])
385 /* When we get to the end of a dimension, reset it and
386 increment the next dimension. */
387 count[n] = 0;
388 /* We could precalculate these products, but this is a
389 less frequently used path so proabably not worth it. */
390 sptr -= sstride[n] * extent[n];
391 n++;
392 if (n >= dim)
394 /* Break out of the loop. */
395 sptr = NULL;
396 break;
398 else
400 count[n]++;
401 sptr += sstride[n];
407 /* Add any remaining elements from VECTOR. */
408 if (vector)
410 n = vector->dim[0].ubound + 1 - vector->dim[0].lbound;
411 nelem = ((rptr - ret->data) / rstride0);
412 if (n > nelem)
414 sstride0 = vector->dim[0].stride * size;
415 if (sstride0 == 0)
416 sstride0 = size;
418 sptr = vector->data + sstride0 * nelem;
419 n -= nelem;
420 while (n--)
422 memcpy (rptr, sptr, size);
423 rptr += rstride0;
424 sptr += sstride0;