update copyrights in config dir.
[official-gcc.git] / gcc / regclass.c
blob8780ec64da0f84c52c734134ff8fbf43fcac4907
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 88, 91-98, 1999, 2000 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This file contains two passes of the compiler: reg_scan and reg_class.
23 It also defines some tables of information about the hardware registers
24 and a function init_reg_sets to initialize the tables. */
26 #include "config.h"
27 #include "system.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "hard-reg-set.h"
31 #include "flags.h"
32 #include "basic-block.h"
33 #include "regs.h"
34 #include "function.h"
35 #include "insn-config.h"
36 #include "recog.h"
37 #include "reload.h"
38 #include "real.h"
39 #include "toplev.h"
40 #include "output.h"
41 #include "ggc.h"
43 #ifndef REGISTER_MOVE_COST
44 #define REGISTER_MOVE_COST(x, y) 2
45 #endif
47 static void init_reg_sets_1 PARAMS ((void));
48 static void init_reg_modes PARAMS ((void));
50 /* If we have auto-increment or auto-decrement and we can have secondary
51 reloads, we are not allowed to use classes requiring secondary
52 reloads for pseudos auto-incremented since reload can't handle it. */
54 #ifdef AUTO_INC_DEC
55 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
56 #define FORBIDDEN_INC_DEC_CLASSES
57 #endif
58 #endif
60 /* Register tables used by many passes. */
62 /* Indexed by hard register number, contains 1 for registers
63 that are fixed use (stack pointer, pc, frame pointer, etc.).
64 These are the registers that cannot be used to allocate
65 a pseudo reg for general use. */
67 char fixed_regs[FIRST_PSEUDO_REGISTER];
69 /* Same info as a HARD_REG_SET. */
71 HARD_REG_SET fixed_reg_set;
73 /* Data for initializing the above. */
75 static char initial_fixed_regs[] = FIXED_REGISTERS;
77 /* Indexed by hard register number, contains 1 for registers
78 that are fixed use or are clobbered by function calls.
79 These are the registers that cannot be used to allocate
80 a pseudo reg whose life crosses calls unless we are able
81 to save/restore them across the calls. */
83 char call_used_regs[FIRST_PSEUDO_REGISTER];
85 /* Same info as a HARD_REG_SET. */
87 HARD_REG_SET call_used_reg_set;
89 /* HARD_REG_SET of registers we want to avoid caller saving. */
90 HARD_REG_SET losing_caller_save_reg_set;
92 /* Data for initializing the above. */
94 static char initial_call_used_regs[] = CALL_USED_REGISTERS;
96 /* Indexed by hard register number, contains 1 for registers that are
97 fixed use or call used registers that cannot hold quantities across
98 calls even if we are willing to save and restore them. call fixed
99 registers are a subset of call used registers. */
101 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
103 /* The same info as a HARD_REG_SET. */
105 HARD_REG_SET call_fixed_reg_set;
107 /* Number of non-fixed registers. */
109 int n_non_fixed_regs;
111 /* Indexed by hard register number, contains 1 for registers
112 that are being used for global register decls.
113 These must be exempt from ordinary flow analysis
114 and are also considered fixed. */
116 char global_regs[FIRST_PSEUDO_REGISTER];
118 /* Table of register numbers in the order in which to try to use them. */
119 #ifdef REG_ALLOC_ORDER
120 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
122 /* The inverse of reg_alloc_order. */
123 int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
124 #endif
126 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
128 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
130 /* The same information, but as an array of unsigned ints. We copy from
131 these unsigned ints to the table above. We do this so the tm.h files
132 do not have to be aware of the wordsize for machines with <= 64 regs. */
134 #define N_REG_INTS \
135 ((FIRST_PSEUDO_REGISTER + (HOST_BITS_PER_INT - 1)) / HOST_BITS_PER_INT)
137 static unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
138 = REG_CLASS_CONTENTS;
140 /* For each reg class, number of regs it contains. */
142 int reg_class_size[N_REG_CLASSES];
144 /* For each reg class, table listing all the containing classes. */
146 enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
148 /* For each reg class, table listing all the classes contained in it. */
150 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
152 /* For each pair of reg classes,
153 a largest reg class contained in their union. */
155 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
157 /* For each pair of reg classes,
158 the smallest reg class containing their union. */
160 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
162 /* Array containing all of the register names */
164 const char *reg_names[] = REGISTER_NAMES;
166 /* For each hard register, the widest mode object that it can contain.
167 This will be a MODE_INT mode if the register can hold integers. Otherwise
168 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
169 register. */
171 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
173 /* Maximum cost of moving from a register in one class to a register in
174 another class. Based on REGISTER_MOVE_COST. */
176 static int move_cost[N_REG_CLASSES][N_REG_CLASSES];
178 /* Similar, but here we don't have to move if the first index is a subset
179 of the second so in that case the cost is zero. */
181 static int may_move_in_cost[N_REG_CLASSES][N_REG_CLASSES];
183 /* Similar, but here we don't have to move if the first index is a superset
184 of the second so in that case the cost is zero. */
186 static int may_move_out_cost[N_REG_CLASSES][N_REG_CLASSES];
188 #ifdef FORBIDDEN_INC_DEC_CLASSES
190 /* These are the classes that regs which are auto-incremented or decremented
191 cannot be put in. */
193 static int forbidden_inc_dec_class[N_REG_CLASSES];
195 /* Indexed by n, is non-zero if (REG n) is used in an auto-inc or auto-dec
196 context. */
198 static char *in_inc_dec;
200 #endif /* FORBIDDEN_INC_DEC_CLASSES */
202 #ifdef HAVE_SECONDARY_RELOADS
204 /* Sample MEM values for use by memory_move_secondary_cost. */
206 static rtx top_of_stack[MAX_MACHINE_MODE];
208 #endif /* HAVE_SECONDARY_RELOADS */
210 /* Linked list of reg_info structures allocated for reg_n_info array.
211 Grouping all of the allocated structures together in one lump
212 means only one call to bzero to clear them, rather than n smaller
213 calls. */
214 struct reg_info_data {
215 struct reg_info_data *next; /* next set of reg_info structures */
216 size_t min_index; /* minimum index # */
217 size_t max_index; /* maximum index # */
218 char used_p; /* non-zero if this has been used previously */
219 reg_info data[1]; /* beginning of the reg_info data */
222 static struct reg_info_data *reg_info_head;
224 /* No more global register variables may be declared; true once
225 regclass has been initialized. */
227 static int no_global_reg_vars = 0;
230 /* Function called only once to initialize the above data on reg usage.
231 Once this is done, various switches may override. */
233 void
234 init_reg_sets ()
236 register int i, j;
238 /* First copy the register information from the initial int form into
239 the regsets. */
241 for (i = 0; i < N_REG_CLASSES; i++)
243 CLEAR_HARD_REG_SET (reg_class_contents[i]);
245 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
246 if (int_reg_class_contents[i][j / HOST_BITS_PER_INT]
247 & ((unsigned) 1 << (j % HOST_BITS_PER_INT)))
248 SET_HARD_REG_BIT (reg_class_contents[i], j);
251 bcopy (initial_fixed_regs, fixed_regs, sizeof fixed_regs);
252 bcopy (initial_call_used_regs, call_used_regs, sizeof call_used_regs);
253 bzero (global_regs, sizeof global_regs);
255 /* Do any additional initialization regsets may need */
256 INIT_ONCE_REG_SET ();
258 #ifdef REG_ALLOC_ORDER
259 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
260 inv_reg_alloc_order[reg_alloc_order[i]] = i;
261 #endif
264 /* After switches have been processed, which perhaps alter
265 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
267 static void
268 init_reg_sets_1 ()
270 register unsigned int i, j;
272 /* This macro allows the fixed or call-used registers
273 and the register classes to depend on target flags. */
275 #ifdef CONDITIONAL_REGISTER_USAGE
276 CONDITIONAL_REGISTER_USAGE;
277 #endif
279 /* Compute number of hard regs in each class. */
281 bzero ((char *) reg_class_size, sizeof reg_class_size);
282 for (i = 0; i < N_REG_CLASSES; i++)
283 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
284 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
285 reg_class_size[i]++;
287 /* Initialize the table of subunions.
288 reg_class_subunion[I][J] gets the largest-numbered reg-class
289 that is contained in the union of classes I and J. */
291 for (i = 0; i < N_REG_CLASSES; i++)
293 for (j = 0; j < N_REG_CLASSES; j++)
295 #ifdef HARD_REG_SET
296 register /* Declare it register if it's a scalar. */
297 #endif
298 HARD_REG_SET c;
299 register int k;
301 COPY_HARD_REG_SET (c, reg_class_contents[i]);
302 IOR_HARD_REG_SET (c, reg_class_contents[j]);
303 for (k = 0; k < N_REG_CLASSES; k++)
305 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
306 subclass1);
307 continue;
309 subclass1:
310 /* keep the largest subclass */ /* SPEE 900308 */
311 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
312 reg_class_contents[(int) reg_class_subunion[i][j]],
313 subclass2);
314 reg_class_subunion[i][j] = (enum reg_class) k;
315 subclass2:
321 /* Initialize the table of superunions.
322 reg_class_superunion[I][J] gets the smallest-numbered reg-class
323 containing the union of classes I and J. */
325 for (i = 0; i < N_REG_CLASSES; i++)
327 for (j = 0; j < N_REG_CLASSES; j++)
329 #ifdef HARD_REG_SET
330 register /* Declare it register if it's a scalar. */
331 #endif
332 HARD_REG_SET c;
333 register int k;
335 COPY_HARD_REG_SET (c, reg_class_contents[i]);
336 IOR_HARD_REG_SET (c, reg_class_contents[j]);
337 for (k = 0; k < N_REG_CLASSES; k++)
338 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
340 superclass:
341 reg_class_superunion[i][j] = (enum reg_class) k;
345 /* Initialize the tables of subclasses and superclasses of each reg class.
346 First clear the whole table, then add the elements as they are found. */
348 for (i = 0; i < N_REG_CLASSES; i++)
350 for (j = 0; j < N_REG_CLASSES; j++)
352 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
353 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
357 for (i = 0; i < N_REG_CLASSES; i++)
359 if (i == (int) NO_REGS)
360 continue;
362 for (j = i + 1; j < N_REG_CLASSES; j++)
364 enum reg_class *p;
366 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
367 subclass);
368 continue;
369 subclass:
370 /* Reg class I is a subclass of J.
371 Add J to the table of superclasses of I. */
372 p = &reg_class_superclasses[i][0];
373 while (*p != LIM_REG_CLASSES) p++;
374 *p = (enum reg_class) j;
375 /* Add I to the table of superclasses of J. */
376 p = &reg_class_subclasses[j][0];
377 while (*p != LIM_REG_CLASSES) p++;
378 *p = (enum reg_class) i;
382 /* Initialize "constant" tables. */
384 CLEAR_HARD_REG_SET (fixed_reg_set);
385 CLEAR_HARD_REG_SET (call_used_reg_set);
386 CLEAR_HARD_REG_SET (call_fixed_reg_set);
388 bcopy (fixed_regs, call_fixed_regs, sizeof call_fixed_regs);
390 n_non_fixed_regs = 0;
392 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
394 if (fixed_regs[i])
395 SET_HARD_REG_BIT (fixed_reg_set, i);
396 else
397 n_non_fixed_regs++;
399 if (call_used_regs[i])
400 SET_HARD_REG_BIT (call_used_reg_set, i);
401 if (call_fixed_regs[i])
402 SET_HARD_REG_BIT (call_fixed_reg_set, i);
403 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
404 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
407 /* Initialize the move cost table. Find every subset of each class
408 and take the maximum cost of moving any subset to any other. */
410 for (i = 0; i < N_REG_CLASSES; i++)
411 for (j = 0; j < N_REG_CLASSES; j++)
413 int cost = i == j ? 2 : REGISTER_MOVE_COST (i, j);
414 enum reg_class *p1, *p2;
416 for (p2 = &reg_class_subclasses[j][0]; *p2 != LIM_REG_CLASSES; p2++)
417 if (*p2 != i)
418 cost = MAX (cost, REGISTER_MOVE_COST (i, *p2));
420 for (p1 = &reg_class_subclasses[i][0]; *p1 != LIM_REG_CLASSES; p1++)
422 if (*p1 != j)
423 cost = MAX (cost, REGISTER_MOVE_COST (*p1, j));
425 for (p2 = &reg_class_subclasses[j][0];
426 *p2 != LIM_REG_CLASSES; p2++)
427 if (*p1 != *p2)
428 cost = MAX (cost, REGISTER_MOVE_COST (*p1, *p2));
431 move_cost[i][j] = cost;
433 if (reg_class_subset_p (i, j))
434 may_move_in_cost[i][j] = 0;
435 else
436 may_move_in_cost[i][j] = cost;
438 if (reg_class_subset_p (j, i))
439 may_move_out_cost[i][j] = 0;
440 else
441 may_move_out_cost[i][j] = cost;
445 /* Compute the table of register modes.
446 These values are used to record death information for individual registers
447 (as opposed to a multi-register mode). */
449 static void
450 init_reg_modes ()
452 register int i;
454 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
456 reg_raw_mode[i] = choose_hard_reg_mode (i, 1);
458 /* If we couldn't find a valid mode, just use the previous mode.
459 ??? One situation in which we need to do this is on the mips where
460 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
461 to use DF mode for the even registers and VOIDmode for the odd
462 (for the cpu models where the odd ones are inaccessible). */
463 if (reg_raw_mode[i] == VOIDmode)
464 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
468 /* Finish initializing the register sets and
469 initialize the register modes. */
471 void
472 init_regs ()
474 /* This finishes what was started by init_reg_sets, but couldn't be done
475 until after register usage was specified. */
476 init_reg_sets_1 ();
478 init_reg_modes ();
480 #ifdef HAVE_SECONDARY_RELOADS
482 /* Make some fake stack-frame MEM references for use in
483 memory_move_secondary_cost. */
484 int i;
485 for (i = 0; i < MAX_MACHINE_MODE; i++)
486 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
487 ggc_add_rtx_root (top_of_stack, MAX_MACHINE_MODE);
489 #endif
492 #ifdef HAVE_SECONDARY_RELOADS
494 /* Compute extra cost of moving registers to/from memory due to reloads.
495 Only needed if secondary reloads are required for memory moves. */
498 memory_move_secondary_cost (mode, class, in)
499 enum machine_mode mode;
500 enum reg_class class;
501 int in;
503 enum reg_class altclass;
504 int partial_cost = 0;
505 /* We need a memory reference to feed to SECONDARY... macros. */
506 /* mem may be unused even if the SECONDARY_ macros are defined. */
507 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
510 if (in)
512 #ifdef SECONDARY_INPUT_RELOAD_CLASS
513 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
514 #else
515 altclass = NO_REGS;
516 #endif
518 else
520 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
521 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
522 #else
523 altclass = NO_REGS;
524 #endif
527 if (altclass == NO_REGS)
528 return 0;
530 if (in)
531 partial_cost = REGISTER_MOVE_COST (altclass, class);
532 else
533 partial_cost = REGISTER_MOVE_COST (class, altclass);
535 if (class == altclass)
536 /* This isn't simply a copy-to-temporary situation. Can't guess
537 what it is, so MEMORY_MOVE_COST really ought not to be calling
538 here in that case.
540 I'm tempted to put in an abort here, but returning this will
541 probably only give poor estimates, which is what we would've
542 had before this code anyways. */
543 return partial_cost;
545 /* Check if the secondary reload register will also need a
546 secondary reload. */
547 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
549 #endif
551 /* Return a machine mode that is legitimate for hard reg REGNO and large
552 enough to save nregs. If we can't find one, return VOIDmode. */
554 enum machine_mode
555 choose_hard_reg_mode (regno, nregs)
556 int regno ATTRIBUTE_UNUSED;
557 int nregs;
559 enum machine_mode found_mode = VOIDmode, mode;
561 /* We first look for the largest integer mode that can be validly
562 held in REGNO. If none, we look for the largest floating-point mode.
563 If we still didn't find a valid mode, try CCmode. */
565 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
566 mode != VOIDmode;
567 mode = GET_MODE_WIDER_MODE (mode))
568 if (HARD_REGNO_NREGS (regno, mode) == nregs
569 && HARD_REGNO_MODE_OK (regno, mode))
570 found_mode = mode;
572 if (found_mode != VOIDmode)
573 return found_mode;
575 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
576 mode != VOIDmode;
577 mode = GET_MODE_WIDER_MODE (mode))
578 if (HARD_REGNO_NREGS (regno, mode) == nregs
579 && HARD_REGNO_MODE_OK (regno, mode))
580 found_mode = mode;
582 if (found_mode != VOIDmode)
583 return found_mode;
585 if (HARD_REGNO_NREGS (regno, CCmode) == nregs
586 && HARD_REGNO_MODE_OK (regno, CCmode))
587 return CCmode;
589 /* We can't find a mode valid for this register. */
590 return VOIDmode;
593 /* Specify the usage characteristics of the register named NAME.
594 It should be a fixed register if FIXED and a
595 call-used register if CALL_USED. */
597 void
598 fix_register (name, fixed, call_used)
599 const char *name;
600 int fixed, call_used;
602 int i;
604 /* Decode the name and update the primary form of
605 the register info. */
607 if ((i = decode_reg_name (name)) >= 0)
609 if ((i == STACK_POINTER_REGNUM
610 #ifdef HARD_FRAME_POINTER_REGNUM
611 || i == HARD_FRAME_POINTER_REGNUM
612 #else
613 || i == FRAME_POINTER_REGNUM
614 #endif
616 && (fixed == 0 || call_used == 0))
618 static const char * const what_option[2][2] = {
619 { "call-saved", "call-used" },
620 { "no-such-option", "fixed" }};
622 error ("can't use '%s' as a %s register", name,
623 what_option[fixed][call_used]);
625 else
627 fixed_regs[i] = fixed;
628 call_used_regs[i] = call_used;
631 else
633 warning ("unknown register name: %s", name);
637 /* Mark register number I as global. */
639 void
640 globalize_reg (i)
641 int i;
643 if (fixed_regs[i] == 0 && no_global_reg_vars)
644 error ("global register variable follows a function definition");
646 if (global_regs[i])
648 warning ("register used for two global register variables");
649 return;
652 if (call_used_regs[i] && ! fixed_regs[i])
653 warning ("call-clobbered register used for global register variable");
655 global_regs[i] = 1;
657 /* If already fixed, nothing else to do. */
658 if (fixed_regs[i])
659 return;
661 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
662 n_non_fixed_regs--;
664 SET_HARD_REG_BIT (fixed_reg_set, i);
665 SET_HARD_REG_BIT (call_used_reg_set, i);
666 SET_HARD_REG_BIT (call_fixed_reg_set, i);
669 /* Now the data and code for the `regclass' pass, which happens
670 just before local-alloc. */
672 /* The `costs' struct records the cost of using a hard register of each class
673 and of using memory for each pseudo. We use this data to set up
674 register class preferences. */
676 struct costs
678 int cost[N_REG_CLASSES];
679 int mem_cost;
682 /* Structure used to record preferrences of given pseudo. */
683 struct reg_pref
685 /* (enum reg_class) prefclass is the preferred class. */
686 char prefclass;
688 /* altclass is a register class that we should use for allocating
689 pseudo if no register in the preferred class is available.
690 If no register in this class is available, memory is preferred.
692 It might appear to be more general to have a bitmask of classes here,
693 but since it is recommended that there be a class corresponding to the
694 union of most major pair of classes, that generality is not required. */
695 char altclass;
698 /* Record the cost of each class for each pseudo. */
700 static struct costs *costs;
702 /* Initialized once, and used to initialize cost values for each insn. */
704 static struct costs init_cost;
706 /* Record preferrences of each pseudo.
707 This is available after `regclass' is run. */
709 static struct reg_pref *reg_pref;
711 /* Allocated buffers for reg_pref. */
713 static struct reg_pref *reg_pref_buffer;
715 /* Account for the fact that insns within a loop are executed very commonly,
716 but don't keep doing this as loops go too deep. */
718 static int loop_cost;
720 static rtx scan_one_insn PARAMS ((rtx, int));
721 static void record_operand_costs PARAMS ((rtx, struct costs *, struct reg_pref *));
722 static void dump_regclass PARAMS ((FILE *));
723 static void record_reg_classes PARAMS ((int, int, rtx *, enum machine_mode *,
724 char *, const char **, rtx,
725 struct costs *, struct reg_pref *));
726 static int copy_cost PARAMS ((rtx, enum machine_mode,
727 enum reg_class, int));
728 static void record_address_regs PARAMS ((rtx, enum reg_class, int));
729 #ifdef FORBIDDEN_INC_DEC_CLASSES
730 static int auto_inc_dec_reg_p PARAMS ((rtx, enum machine_mode));
731 #endif
732 static void reg_scan_mark_refs PARAMS ((rtx, rtx, int, int));
734 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
735 This function is sometimes called before the info has been computed.
736 When that happens, just return GENERAL_REGS, which is innocuous. */
738 enum reg_class
739 reg_preferred_class (regno)
740 int regno;
742 if (reg_pref == 0)
743 return GENERAL_REGS;
744 return (enum reg_class) reg_pref[regno].prefclass;
747 enum reg_class
748 reg_alternate_class (regno)
749 int regno;
751 if (reg_pref == 0)
752 return ALL_REGS;
754 return (enum reg_class) reg_pref[regno].altclass;
757 /* Initialize some global data for this pass. */
759 void
760 regclass_init ()
762 int i;
764 init_cost.mem_cost = 10000;
765 for (i = 0; i < N_REG_CLASSES; i++)
766 init_cost.cost[i] = 10000;
768 /* This prevents dump_flow_info from losing if called
769 before regclass is run. */
770 reg_pref = NULL;
772 /* No more global register variables may be declared. */
773 no_global_reg_vars = 1;
776 /* Dump register costs. */
777 static void
778 dump_regclass (dump)
779 FILE *dump;
781 static const char *const reg_class_names[] = REG_CLASS_NAMES;
782 int i;
783 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
785 enum reg_class class;
786 if (REG_N_REFS (i))
788 fprintf (dump, " Register %i costs:", i);
789 for (class = 0; class < N_REG_CLASSES; class++)
790 fprintf (dump, " %s:%i", reg_class_names[(int) class],
791 costs[i].cost[class]);
792 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
798 /* Calculate the costs of insn operands. */
800 static void
801 record_operand_costs (insn, op_costs, reg_pref)
802 rtx insn;
803 struct costs *op_costs;
804 struct reg_pref *reg_pref;
806 const char *constraints[MAX_RECOG_OPERANDS];
807 enum machine_mode modes[MAX_RECOG_OPERANDS];
808 char subreg_changes_size[MAX_RECOG_OPERANDS];
809 int i;
811 for (i = 0; i < recog_data.n_operands; i++)
813 constraints[i] = recog_data.constraints[i];
814 modes[i] = recog_data.operand_mode[i];
816 memset (subreg_changes_size, 0, sizeof (subreg_changes_size));
818 /* If we get here, we are set up to record the costs of all the
819 operands for this insn. Start by initializing the costs.
820 Then handle any address registers. Finally record the desired
821 classes for any pseudos, doing it twice if some pair of
822 operands are commutative. */
824 for (i = 0; i < recog_data.n_operands; i++)
826 op_costs[i] = init_cost;
828 if (GET_CODE (recog_data.operand[i]) == SUBREG)
830 rtx inner = SUBREG_REG (recog_data.operand[i]);
831 if (GET_MODE_SIZE (modes[i]) != GET_MODE_SIZE (GET_MODE (inner)))
832 subreg_changes_size[i] = 1;
833 recog_data.operand[i] = inner;
836 if (GET_CODE (recog_data.operand[i]) == MEM)
837 record_address_regs (XEXP (recog_data.operand[i], 0),
838 BASE_REG_CLASS, loop_cost * 2);
839 else if (constraints[i][0] == 'p')
840 record_address_regs (recog_data.operand[i],
841 BASE_REG_CLASS, loop_cost * 2);
844 /* Check for commutative in a separate loop so everything will
845 have been initialized. We must do this even if one operand
846 is a constant--see addsi3 in m68k.md. */
848 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
849 if (constraints[i][0] == '%')
851 const char *xconstraints[MAX_RECOG_OPERANDS];
852 int j;
854 /* Handle commutative operands by swapping the constraints.
855 We assume the modes are the same. */
857 for (j = 0; j < recog_data.n_operands; j++)
858 xconstraints[j] = constraints[j];
860 xconstraints[i] = constraints[i+1];
861 xconstraints[i+1] = constraints[i];
862 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
863 recog_data.operand, modes, subreg_changes_size,
864 xconstraints, insn, op_costs, reg_pref);
867 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
868 recog_data.operand, modes, subreg_changes_size,
869 constraints, insn, op_costs, reg_pref);
872 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
873 time it would save code to put a certain register in a certain class.
874 PASS, when nonzero, inhibits some optimizations which need only be done
875 once.
876 Return the last insn processed, so that the scan can be continued from
877 there. */
879 static rtx
880 scan_one_insn (insn, pass)
881 rtx insn;
882 int pass;
884 enum rtx_code code = GET_CODE (insn);
885 enum rtx_code pat_code;
886 rtx set, note;
887 int i, j;
888 struct costs op_costs[MAX_RECOG_OPERANDS];
890 if (GET_RTX_CLASS (code) != 'i')
891 return insn;
893 pat_code = GET_CODE (PATTERN (insn));
894 if (pat_code == USE
895 || pat_code == CLOBBER
896 || pat_code == ASM_INPUT
897 || pat_code == ADDR_VEC
898 || pat_code == ADDR_DIFF_VEC)
899 return insn;
901 set = single_set (insn);
902 extract_insn (insn);
904 /* If this insn loads a parameter from its stack slot, then
905 it represents a savings, rather than a cost, if the
906 parameter is stored in memory. Record this fact. */
908 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
909 && GET_CODE (SET_SRC (set)) == MEM
910 && (note = find_reg_note (insn, REG_EQUIV,
911 NULL_RTX)) != 0
912 && GET_CODE (XEXP (note, 0)) == MEM)
914 costs[REGNO (SET_DEST (set))].mem_cost
915 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
916 GENERAL_REGS, 1)
917 * loop_cost);
918 record_address_regs (XEXP (SET_SRC (set), 0),
919 BASE_REG_CLASS, loop_cost * 2);
920 return insn;
923 /* Improve handling of two-address insns such as
924 (set X (ashift CONST Y)) where CONST must be made to
925 match X. Change it into two insns: (set X CONST)
926 (set X (ashift X Y)). If we left this for reloading, it
927 would probably get three insns because X and Y might go
928 in the same place. This prevents X and Y from receiving
929 the same hard reg.
931 We can only do this if the modes of operands 0 and 1
932 (which might not be the same) are tieable and we only need
933 do this during our first pass. */
935 if (pass == 0 && optimize
936 && recog_data.n_operands >= 3
937 && recog_data.constraints[1][0] == '0'
938 && recog_data.constraints[1][1] == 0
939 && CONSTANT_P (recog_data.operand[1])
940 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
941 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
942 && GET_CODE (recog_data.operand[0]) == REG
943 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
944 recog_data.operand_mode[1]))
946 rtx previnsn = prev_real_insn (insn);
947 rtx dest
948 = gen_lowpart (recog_data.operand_mode[1],
949 recog_data.operand[0]);
950 rtx newinsn
951 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
953 /* If this insn was the start of a basic block,
954 include the new insn in that block.
955 We need not check for code_label here;
956 while a basic block can start with a code_label,
957 INSN could not be at the beginning of that block. */
958 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
960 int b;
961 for (b = 0; b < n_basic_blocks; b++)
962 if (insn == BLOCK_HEAD (b))
963 BLOCK_HEAD (b) = newinsn;
966 /* This makes one more setting of new insns's dest. */
967 REG_N_SETS (REGNO (recog_data.operand[0]))++;
969 *recog_data.operand_loc[1] = recog_data.operand[0];
970 for (i = recog_data.n_dups - 1; i >= 0; i--)
971 if (recog_data.dup_num[i] == 1)
972 *recog_data.dup_loc[i] = recog_data.operand[0];
974 return PREV_INSN (newinsn);
977 record_operand_costs (insn, op_costs, reg_pref);
979 /* Now add the cost for each operand to the total costs for
980 its register. */
982 for (i = 0; i < recog_data.n_operands; i++)
983 if (GET_CODE (recog_data.operand[i]) == REG
984 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
986 int regno = REGNO (recog_data.operand[i]);
987 struct costs *p = &costs[regno], *q = &op_costs[i];
989 p->mem_cost += q->mem_cost * loop_cost;
990 for (j = 0; j < N_REG_CLASSES; j++)
991 p->cost[j] += q->cost[j] * loop_cost;
994 return insn;
997 /* This is a pass of the compiler that scans all instructions
998 and calculates the preferred class for each pseudo-register.
999 This information can be accessed later by calling `reg_preferred_class'.
1000 This pass comes just before local register allocation. */
1002 void
1003 regclass (f, nregs, dump)
1004 rtx f;
1005 int nregs;
1006 FILE *dump;
1008 register rtx insn;
1009 register int i;
1010 int pass;
1012 init_recog ();
1014 costs = (struct costs *) xmalloc (nregs * sizeof (struct costs));
1016 #ifdef FORBIDDEN_INC_DEC_CLASSES
1018 in_inc_dec = (char *) xmalloc (nregs);
1020 /* Initialize information about which register classes can be used for
1021 pseudos that are auto-incremented or auto-decremented. It would
1022 seem better to put this in init_reg_sets, but we need to be able
1023 to allocate rtx, which we can't do that early. */
1025 for (i = 0; i < N_REG_CLASSES; i++)
1027 rtx r = gen_rtx_REG (VOIDmode, 0);
1028 enum machine_mode m;
1029 register int j;
1031 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1032 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1034 REGNO (r) = j;
1036 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
1037 m = (enum machine_mode) ((int) m + 1))
1038 if (HARD_REGNO_MODE_OK (j, m))
1040 PUT_MODE (r, m);
1042 /* If a register is not directly suitable for an
1043 auto-increment or decrement addressing mode and
1044 requires secondary reloads, disallow its class from
1045 being used in such addresses. */
1047 if ((0
1048 #ifdef SECONDARY_RELOAD_CLASS
1049 || (SECONDARY_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1050 != NO_REGS)
1051 #else
1052 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1053 || (SECONDARY_INPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1054 != NO_REGS)
1055 #endif
1056 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1057 || (SECONDARY_OUTPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1058 != NO_REGS)
1059 #endif
1060 #endif
1062 && ! auto_inc_dec_reg_p (r, m))
1063 forbidden_inc_dec_class[i] = 1;
1067 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1069 /* Normally we scan the insns once and determine the best class to use for
1070 each register. However, if -fexpensive_optimizations are on, we do so
1071 twice, the second time using the tentative best classes to guide the
1072 selection. */
1074 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1076 int index;
1078 if (dump)
1079 fprintf (dump, "\n\nPass %i\n\n",pass);
1080 /* Zero out our accumulation of the cost of each class for each reg. */
1082 bzero ((char *) costs, nregs * sizeof (struct costs));
1084 #ifdef FORBIDDEN_INC_DEC_CLASSES
1085 bzero (in_inc_dec, nregs);
1086 #endif
1088 /* Scan the instructions and record each time it would
1089 save code to put a certain register in a certain class. */
1091 if (!optimize)
1093 loop_cost = 1;
1094 for (insn = f; insn; insn = NEXT_INSN (insn))
1095 insn = scan_one_insn (insn, pass);
1097 else
1098 for (index = 0; index < n_basic_blocks; index++)
1100 basic_block bb = BASIC_BLOCK (index);
1102 /* Show that an insn inside a loop is likely to be executed three
1103 times more than insns outside a loop. This is much more
1104 aggressive than the assumptions made elsewhere and is being
1105 tried as an experiment. */
1106 if (optimize_size)
1107 loop_cost = 1;
1108 else
1109 loop_cost = 1 << (2 * MIN (bb->loop_depth, 5));
1110 for (insn = bb->head; ; insn = NEXT_INSN (insn))
1112 insn = scan_one_insn (insn, pass);
1113 if (insn == bb->end)
1114 break;
1118 /* Now for each register look at how desirable each class is
1119 and find which class is preferred. Store that in
1120 `prefclass'. Record in `altclass' the largest register
1121 class any of whose registers is better than memory. */
1123 if (pass == 0)
1124 reg_pref = reg_pref_buffer;
1126 if (dump)
1128 dump_regclass (dump);
1129 fprintf (dump,"\n");
1131 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1133 register int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1134 enum reg_class best = ALL_REGS, alt = NO_REGS;
1135 /* This is an enum reg_class, but we call it an int
1136 to save lots of casts. */
1137 register int class;
1138 register struct costs *p = &costs[i];
1140 /* In non-optimizing compilation REG_N_REFS is not initialized
1141 yet. */
1142 if (optimize && !REG_N_REFS (i))
1143 continue;
1145 for (class = (int) ALL_REGS - 1; class > 0; class--)
1147 /* Ignore classes that are too small for this operand or
1148 invalid for a operand that was auto-incremented. */
1149 if (CLASS_MAX_NREGS (class, PSEUDO_REGNO_MODE (i))
1150 > reg_class_size[class]
1151 #ifdef FORBIDDEN_INC_DEC_CLASSES
1152 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1153 #endif
1156 else if (p->cost[class] < best_cost)
1158 best_cost = p->cost[class];
1159 best = (enum reg_class) class;
1161 else if (p->cost[class] == best_cost)
1162 best = reg_class_subunion[(int)best][class];
1165 /* Record the alternate register class; i.e., a class for which
1166 every register in it is better than using memory. If adding a
1167 class would make a smaller class (i.e., no union of just those
1168 classes exists), skip that class. The major unions of classes
1169 should be provided as a register class. Don't do this if we
1170 will be doing it again later. */
1172 if ((pass == 1 || dump) || ! flag_expensive_optimizations)
1173 for (class = 0; class < N_REG_CLASSES; class++)
1174 if (p->cost[class] < p->mem_cost
1175 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1176 > reg_class_size[(int) alt])
1177 #ifdef FORBIDDEN_INC_DEC_CLASSES
1178 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1179 #endif
1181 alt = reg_class_subunion[(int) alt][class];
1183 /* If we don't add any classes, nothing to try. */
1184 if (alt == best)
1185 alt = NO_REGS;
1187 if (dump
1188 && (reg_pref[i].prefclass != (int) best
1189 || reg_pref[i].altclass != (int) alt))
1191 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1192 fprintf (dump, " Register %i", i);
1193 if (alt == ALL_REGS || best == ALL_REGS)
1194 fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1195 else if (alt == NO_REGS)
1196 fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1197 else
1198 fprintf (dump, " pref %s, else %s\n",
1199 reg_class_names[(int) best],
1200 reg_class_names[(int) alt]);
1203 /* We cast to (int) because (char) hits bugs in some compilers. */
1204 reg_pref[i].prefclass = (int) best;
1205 reg_pref[i].altclass = (int) alt;
1209 #ifdef FORBIDDEN_INC_DEC_CLASSES
1210 free (in_inc_dec);
1211 #endif
1212 free (costs);
1215 /* Record the cost of using memory or registers of various classes for
1216 the operands in INSN.
1218 N_ALTS is the number of alternatives.
1220 N_OPS is the number of operands.
1222 OPS is an array of the operands.
1224 MODES are the modes of the operands, in case any are VOIDmode.
1226 CONSTRAINTS are the constraints to use for the operands. This array
1227 is modified by this procedure.
1229 This procedure works alternative by alternative. For each alternative
1230 we assume that we will be able to allocate all pseudos to their ideal
1231 register class and calculate the cost of using that alternative. Then
1232 we compute for each operand that is a pseudo-register, the cost of
1233 having the pseudo allocated to each register class and using it in that
1234 alternative. To this cost is added the cost of the alternative.
1236 The cost of each class for this insn is its lowest cost among all the
1237 alternatives. */
1239 static void
1240 record_reg_classes (n_alts, n_ops, ops, modes, subreg_changes_size,
1241 constraints, insn, op_costs, reg_pref)
1242 int n_alts;
1243 int n_ops;
1244 rtx *ops;
1245 enum machine_mode *modes;
1246 char *subreg_changes_size ATTRIBUTE_UNUSED;
1247 const char **constraints;
1248 rtx insn;
1249 struct costs *op_costs;
1250 struct reg_pref *reg_pref;
1252 int alt;
1253 int i, j;
1254 rtx set;
1256 /* Process each alternative, each time minimizing an operand's cost with
1257 the cost for each operand in that alternative. */
1259 for (alt = 0; alt < n_alts; alt++)
1261 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1262 int alt_fail = 0;
1263 int alt_cost = 0;
1264 enum reg_class classes[MAX_RECOG_OPERANDS];
1265 int allows_mem[MAX_RECOG_OPERANDS];
1266 int class;
1268 for (i = 0; i < n_ops; i++)
1270 const char *p = constraints[i];
1271 rtx op = ops[i];
1272 enum machine_mode mode = modes[i];
1273 int allows_addr = 0;
1274 int win = 0;
1275 unsigned char c;
1277 /* Initially show we know nothing about the register class. */
1278 classes[i] = NO_REGS;
1279 allows_mem[i] = 0;
1281 /* If this operand has no constraints at all, we can conclude
1282 nothing about it since anything is valid. */
1284 if (*p == 0)
1286 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1287 bzero ((char *) &this_op_costs[i], sizeof this_op_costs[i]);
1289 continue;
1292 /* If this alternative is only relevant when this operand
1293 matches a previous operand, we do different things depending
1294 on whether this operand is a pseudo-reg or not. We must process
1295 any modifiers for the operand before we can make this test. */
1297 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1298 p++;
1300 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1302 /* Copy class and whether memory is allowed from the matching
1303 alternative. Then perform any needed cost computations
1304 and/or adjustments. */
1305 j = p[0] - '0';
1306 classes[i] = classes[j];
1307 allows_mem[i] = allows_mem[j];
1309 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1311 /* If this matches the other operand, we have no added
1312 cost and we win. */
1313 if (rtx_equal_p (ops[j], op))
1314 win = 1;
1316 /* If we can put the other operand into a register, add to
1317 the cost of this alternative the cost to copy this
1318 operand to the register used for the other operand. */
1320 else if (classes[j] != NO_REGS)
1321 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1323 else if (GET_CODE (ops[j]) != REG
1324 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1326 /* This op is a pseudo but the one it matches is not. */
1328 /* If we can't put the other operand into a register, this
1329 alternative can't be used. */
1331 if (classes[j] == NO_REGS)
1332 alt_fail = 1;
1334 /* Otherwise, add to the cost of this alternative the cost
1335 to copy the other operand to the register used for this
1336 operand. */
1338 else
1339 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1341 else
1343 /* The costs of this operand are not the same as the other
1344 operand since move costs are not symmetric. Moreover,
1345 if we cannot tie them, this alternative needs to do a
1346 copy, which is one instruction. */
1348 struct costs *pp = &this_op_costs[i];
1350 for (class = 0; class < N_REG_CLASSES; class++)
1351 pp->cost[class]
1352 = ((recog_data.operand_type[i] != OP_OUT
1353 ? may_move_in_cost[class][(int) classes[i]]
1354 : 0)
1355 + (recog_data.operand_type[i] != OP_IN
1356 ? may_move_out_cost[(int) classes[i]][class]
1357 : 0));
1359 /* If the alternative actually allows memory, make things
1360 a bit cheaper since we won't need an extra insn to
1361 load it. */
1363 pp->mem_cost
1364 = ((recog_data.operand_type[i] != OP_IN
1365 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1366 : 0)
1367 + (recog_data.operand_type[i] != OP_OUT
1368 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1369 : 0) - allows_mem[i]);
1371 /* If we have assigned a class to this register in our
1372 first pass, add a cost to this alternative corresponding
1373 to what we would add if this register were not in the
1374 appropriate class. */
1376 if (reg_pref)
1377 alt_cost
1378 += (may_move_in_cost[(unsigned char) reg_pref[REGNO (op)].prefclass]
1379 [(int) classes[i]]);
1381 if (REGNO (ops[i]) != REGNO (ops[j])
1382 && ! find_reg_note (insn, REG_DEAD, op))
1383 alt_cost += 2;
1385 /* This is in place of ordinary cost computation
1386 for this operand, so skip to the end of the
1387 alternative (should be just one character). */
1388 while (*p && *p++ != ',')
1391 constraints[i] = p;
1392 continue;
1396 /* Scan all the constraint letters. See if the operand matches
1397 any of the constraints. Collect the valid register classes
1398 and see if this operand accepts memory. */
1400 while (*p && (c = *p++) != ',')
1401 switch (c)
1403 case '*':
1404 /* Ignore the next letter for this pass. */
1405 p++;
1406 break;
1408 case '?':
1409 alt_cost += 2;
1410 case '!': case '#': case '&':
1411 case '0': case '1': case '2': case '3': case '4':
1412 case '5': case '6': case '7': case '8': case '9':
1413 break;
1415 case 'p':
1416 allows_addr = 1;
1417 win = address_operand (op, GET_MODE (op));
1418 /* We know this operand is an address, so we want it to be
1419 allocated to a register that can be the base of an
1420 address, ie BASE_REG_CLASS. */
1421 classes[i]
1422 = reg_class_subunion[(int) classes[i]]
1423 [(int) BASE_REG_CLASS];
1424 break;
1426 case 'm': case 'o': case 'V':
1427 /* It doesn't seem worth distinguishing between offsettable
1428 and non-offsettable addresses here. */
1429 allows_mem[i] = 1;
1430 if (GET_CODE (op) == MEM)
1431 win = 1;
1432 break;
1434 case '<':
1435 if (GET_CODE (op) == MEM
1436 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1437 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1438 win = 1;
1439 break;
1441 case '>':
1442 if (GET_CODE (op) == MEM
1443 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1444 || GET_CODE (XEXP (op, 0)) == POST_INC))
1445 win = 1;
1446 break;
1448 case 'E':
1449 #ifndef REAL_ARITHMETIC
1450 /* Match any floating double constant, but only if
1451 we can examine the bits of it reliably. */
1452 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
1453 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
1454 && GET_MODE (op) != VOIDmode && ! flag_pretend_float)
1455 break;
1456 #endif
1457 if (GET_CODE (op) == CONST_DOUBLE)
1458 win = 1;
1459 break;
1461 case 'F':
1462 if (GET_CODE (op) == CONST_DOUBLE)
1463 win = 1;
1464 break;
1466 case 'G':
1467 case 'H':
1468 if (GET_CODE (op) == CONST_DOUBLE
1469 && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
1470 win = 1;
1471 break;
1473 case 's':
1474 if (GET_CODE (op) == CONST_INT
1475 || (GET_CODE (op) == CONST_DOUBLE
1476 && GET_MODE (op) == VOIDmode))
1477 break;
1478 case 'i':
1479 if (CONSTANT_P (op)
1480 #ifdef LEGITIMATE_PIC_OPERAND_P
1481 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1482 #endif
1484 win = 1;
1485 break;
1487 case 'n':
1488 if (GET_CODE (op) == CONST_INT
1489 || (GET_CODE (op) == CONST_DOUBLE
1490 && GET_MODE (op) == VOIDmode))
1491 win = 1;
1492 break;
1494 case 'I':
1495 case 'J':
1496 case 'K':
1497 case 'L':
1498 case 'M':
1499 case 'N':
1500 case 'O':
1501 case 'P':
1502 if (GET_CODE (op) == CONST_INT
1503 && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
1504 win = 1;
1505 break;
1507 case 'X':
1508 win = 1;
1509 break;
1511 #ifdef EXTRA_CONSTRAINT
1512 case 'Q':
1513 case 'R':
1514 case 'S':
1515 case 'T':
1516 case 'U':
1517 if (EXTRA_CONSTRAINT (op, c))
1518 win = 1;
1519 break;
1520 #endif
1522 case 'g':
1523 if (GET_CODE (op) == MEM
1524 || (CONSTANT_P (op)
1525 #ifdef LEGITIMATE_PIC_OPERAND_P
1526 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1527 #endif
1529 win = 1;
1530 allows_mem[i] = 1;
1531 case 'r':
1532 classes[i]
1533 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1534 break;
1536 default:
1537 classes[i]
1538 = reg_class_subunion[(int) classes[i]]
1539 [(int) REG_CLASS_FROM_LETTER (c)];
1542 constraints[i] = p;
1544 #ifdef CLASS_CANNOT_CHANGE_SIZE
1545 /* If we noted a subreg earlier, and the selected class is a
1546 subclass of CLASS_CANNOT_CHANGE_SIZE, zap it. */
1547 if (subreg_changes_size[i]
1548 && (reg_class_subunion[(int) CLASS_CANNOT_CHANGE_SIZE]
1549 [(int) classes[i]]
1550 == CLASS_CANNOT_CHANGE_SIZE))
1551 classes[i] = NO_REGS;
1552 #endif
1554 /* How we account for this operand now depends on whether it is a
1555 pseudo register or not. If it is, we first check if any
1556 register classes are valid. If not, we ignore this alternative,
1557 since we want to assume that all pseudos get allocated for
1558 register preferencing. If some register class is valid, compute
1559 the costs of moving the pseudo into that class. */
1561 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1563 if (classes[i] == NO_REGS)
1565 /* We must always fail if the operand is a REG, but
1566 we did not find a suitable class.
1568 Otherwise we may perform an uninitialized read
1569 from this_op_costs after the `continue' statement
1570 below. */
1571 alt_fail = 1;
1573 else
1575 struct costs *pp = &this_op_costs[i];
1577 for (class = 0; class < N_REG_CLASSES; class++)
1578 pp->cost[class]
1579 = ((recog_data.operand_type[i] != OP_OUT
1580 ? may_move_in_cost[class][(int) classes[i]]
1581 : 0)
1582 + (recog_data.operand_type[i] != OP_IN
1583 ? may_move_out_cost[(int) classes[i]][class]
1584 : 0));
1586 /* If the alternative actually allows memory, make things
1587 a bit cheaper since we won't need an extra insn to
1588 load it. */
1590 pp->mem_cost
1591 = ((recog_data.operand_type[i] != OP_IN
1592 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1593 : 0)
1594 + (recog_data.operand_type[i] != OP_OUT
1595 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1596 : 0) - allows_mem[i]);
1598 /* If we have assigned a class to this register in our
1599 first pass, add a cost to this alternative corresponding
1600 to what we would add if this register were not in the
1601 appropriate class. */
1603 if (reg_pref)
1604 alt_cost
1605 += (may_move_in_cost[(unsigned char) reg_pref[REGNO (op)].prefclass]
1606 [(int) classes[i]]);
1610 /* Otherwise, if this alternative wins, either because we
1611 have already determined that or if we have a hard register of
1612 the proper class, there is no cost for this alternative. */
1614 else if (win
1615 || (GET_CODE (op) == REG
1616 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1619 /* If registers are valid, the cost of this alternative includes
1620 copying the object to and/or from a register. */
1622 else if (classes[i] != NO_REGS)
1624 if (recog_data.operand_type[i] != OP_OUT)
1625 alt_cost += copy_cost (op, mode, classes[i], 1);
1627 if (recog_data.operand_type[i] != OP_IN)
1628 alt_cost += copy_cost (op, mode, classes[i], 0);
1631 /* The only other way this alternative can be used is if this is a
1632 constant that could be placed into memory. */
1634 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1635 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1636 else
1637 alt_fail = 1;
1640 if (alt_fail)
1641 continue;
1643 /* Finally, update the costs with the information we've calculated
1644 about this alternative. */
1646 for (i = 0; i < n_ops; i++)
1647 if (GET_CODE (ops[i]) == REG
1648 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1650 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1651 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1653 pp->mem_cost = MIN (pp->mem_cost,
1654 (qq->mem_cost + alt_cost) * scale);
1656 for (class = 0; class < N_REG_CLASSES; class++)
1657 pp->cost[class] = MIN (pp->cost[class],
1658 (qq->cost[class] + alt_cost) * scale);
1662 /* If this insn is a single set copying operand 1 to operand 0
1663 and one operand is a pseudo with the other a hard reg or a pseudo
1664 that prefers a register that is in its own register class then
1665 we may want to adjust the cost of that register class to -1.
1667 Avoid the adjustment if the source does not die to avoid stressing of
1668 register allocator by preferrencing two coliding registers into single
1669 class.
1671 Also avoid the adjustment if a copy between registers of the class
1672 is expensive (ten times the cost of a default copy is considered
1673 arbitrarily expensive). This avoids losing when the preferred class
1674 is very expensive as the source of a copy instruction. */
1676 if ((set = single_set (insn)) != 0
1677 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1678 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG
1679 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
1680 for (i = 0; i <= 1; i++)
1681 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1683 int regno = REGNO (ops[!i]);
1684 enum machine_mode mode = GET_MODE (ops[!i]);
1685 int class;
1686 int nr;
1688 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1690 enum reg_class pref = reg_pref[regno].prefclass;
1692 if ((reg_class_size[(unsigned char) pref]
1693 == CLASS_MAX_NREGS (pref, mode))
1694 && REGISTER_MOVE_COST (pref, pref) < 10 * 2)
1695 op_costs[i].cost[(unsigned char) pref] = -1;
1697 else if (regno < FIRST_PSEUDO_REGISTER)
1698 for (class = 0; class < N_REG_CLASSES; class++)
1699 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1700 && reg_class_size[class] == CLASS_MAX_NREGS (class, mode))
1702 if (reg_class_size[class] == 1)
1703 op_costs[i].cost[class] = -1;
1704 else
1706 for (nr = 0; nr < HARD_REGNO_NREGS(regno, mode); nr++)
1708 if (!TEST_HARD_REG_BIT (reg_class_contents[class], regno + nr))
1709 break;
1712 if (nr == HARD_REGNO_NREGS(regno,mode))
1713 op_costs[i].cost[class] = -1;
1719 /* Compute the cost of loading X into (if TO_P is non-zero) or from (if
1720 TO_P is zero) a register of class CLASS in mode MODE.
1722 X must not be a pseudo. */
1724 static int
1725 copy_cost (x, mode, class, to_p)
1726 rtx x;
1727 enum machine_mode mode ATTRIBUTE_UNUSED;
1728 enum reg_class class;
1729 int to_p ATTRIBUTE_UNUSED;
1731 #ifdef HAVE_SECONDARY_RELOADS
1732 enum reg_class secondary_class = NO_REGS;
1733 #endif
1735 /* If X is a SCRATCH, there is actually nothing to move since we are
1736 assuming optimal allocation. */
1738 if (GET_CODE (x) == SCRATCH)
1739 return 0;
1741 /* Get the class we will actually use for a reload. */
1742 class = PREFERRED_RELOAD_CLASS (x, class);
1744 #ifdef HAVE_SECONDARY_RELOADS
1745 /* If we need a secondary reload (we assume here that we are using
1746 the secondary reload as an intermediate, not a scratch register), the
1747 cost is that to load the input into the intermediate register, then
1748 to copy them. We use a special value of TO_P to avoid recursion. */
1750 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1751 if (to_p == 1)
1752 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1753 #endif
1755 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1756 if (! to_p)
1757 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1758 #endif
1760 if (secondary_class != NO_REGS)
1761 return (move_cost[(int) secondary_class][(int) class]
1762 + copy_cost (x, mode, secondary_class, 2));
1763 #endif /* HAVE_SECONDARY_RELOADS */
1765 /* For memory, use the memory move cost, for (hard) registers, use the
1766 cost to move between the register classes, and use 2 for everything
1767 else (constants). */
1769 if (GET_CODE (x) == MEM || class == NO_REGS)
1770 return MEMORY_MOVE_COST (mode, class, to_p);
1772 else if (GET_CODE (x) == REG)
1773 return move_cost[(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1775 else
1776 /* If this is a constant, we may eventually want to call rtx_cost here. */
1777 return 2;
1780 /* Record the pseudo registers we must reload into hard registers
1781 in a subexpression of a memory address, X.
1783 CLASS is the class that the register needs to be in and is either
1784 BASE_REG_CLASS or INDEX_REG_CLASS.
1786 SCALE is twice the amount to multiply the cost by (it is twice so we
1787 can represent half-cost adjustments). */
1789 static void
1790 record_address_regs (x, class, scale)
1791 rtx x;
1792 enum reg_class class;
1793 int scale;
1795 register enum rtx_code code = GET_CODE (x);
1797 switch (code)
1799 case CONST_INT:
1800 case CONST:
1801 case CC0:
1802 case PC:
1803 case SYMBOL_REF:
1804 case LABEL_REF:
1805 return;
1807 case PLUS:
1808 /* When we have an address that is a sum,
1809 we must determine whether registers are "base" or "index" regs.
1810 If there is a sum of two registers, we must choose one to be
1811 the "base". Luckily, we can use the REGNO_POINTER_FLAG
1812 to make a good choice most of the time. We only need to do this
1813 on machines that can have two registers in an address and where
1814 the base and index register classes are different.
1816 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1817 that seems bogus since it should only be set when we are sure
1818 the register is being used as a pointer. */
1821 rtx arg0 = XEXP (x, 0);
1822 rtx arg1 = XEXP (x, 1);
1823 register enum rtx_code code0 = GET_CODE (arg0);
1824 register enum rtx_code code1 = GET_CODE (arg1);
1826 /* Look inside subregs. */
1827 if (code0 == SUBREG)
1828 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1829 if (code1 == SUBREG)
1830 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1832 /* If this machine only allows one register per address, it must
1833 be in the first operand. */
1835 if (MAX_REGS_PER_ADDRESS == 1)
1836 record_address_regs (arg0, class, scale);
1838 /* If index and base registers are the same on this machine, just
1839 record registers in any non-constant operands. We assume here,
1840 as well as in the tests below, that all addresses are in
1841 canonical form. */
1843 else if (INDEX_REG_CLASS == BASE_REG_CLASS)
1845 record_address_regs (arg0, class, scale);
1846 if (! CONSTANT_P (arg1))
1847 record_address_regs (arg1, class, scale);
1850 /* If the second operand is a constant integer, it doesn't change
1851 what class the first operand must be. */
1853 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
1854 record_address_regs (arg0, class, scale);
1856 /* If the second operand is a symbolic constant, the first operand
1857 must be an index register. */
1859 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1860 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1862 /* If both operands are registers but one is already a hard register
1863 of index or base class, give the other the class that the hard
1864 register is not. */
1866 #ifdef REG_OK_FOR_BASE_P
1867 else if (code0 == REG && code1 == REG
1868 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1869 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
1870 record_address_regs (arg1,
1871 REG_OK_FOR_BASE_P (arg0)
1872 ? INDEX_REG_CLASS : BASE_REG_CLASS,
1873 scale);
1874 else if (code0 == REG && code1 == REG
1875 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1876 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
1877 record_address_regs (arg0,
1878 REG_OK_FOR_BASE_P (arg1)
1879 ? INDEX_REG_CLASS : BASE_REG_CLASS,
1880 scale);
1881 #endif
1883 /* If one operand is known to be a pointer, it must be the base
1884 with the other operand the index. Likewise if the other operand
1885 is a MULT. */
1887 else if ((code0 == REG && REGNO_POINTER_FLAG (REGNO (arg0)))
1888 || code1 == MULT)
1890 record_address_regs (arg0, BASE_REG_CLASS, scale);
1891 record_address_regs (arg1, INDEX_REG_CLASS, scale);
1893 else if ((code1 == REG && REGNO_POINTER_FLAG (REGNO (arg1)))
1894 || code0 == MULT)
1896 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1897 record_address_regs (arg1, BASE_REG_CLASS, scale);
1900 /* Otherwise, count equal chances that each might be a base
1901 or index register. This case should be rare. */
1903 else
1905 record_address_regs (arg0, BASE_REG_CLASS, scale / 2);
1906 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
1907 record_address_regs (arg1, BASE_REG_CLASS, scale / 2);
1908 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
1911 break;
1913 case POST_INC:
1914 case PRE_INC:
1915 case POST_DEC:
1916 case PRE_DEC:
1917 /* Double the importance of a pseudo register that is incremented
1918 or decremented, since it would take two extra insns
1919 if it ends up in the wrong place. If the operand is a pseudo,
1920 show it is being used in an INC_DEC context. */
1922 #ifdef FORBIDDEN_INC_DEC_CLASSES
1923 if (GET_CODE (XEXP (x, 0)) == REG
1924 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
1925 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
1926 #endif
1928 record_address_regs (XEXP (x, 0), class, 2 * scale);
1929 break;
1931 case REG:
1933 register struct costs *pp = &costs[REGNO (x)];
1934 register int i;
1936 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
1938 for (i = 0; i < N_REG_CLASSES; i++)
1939 pp->cost[i] += (may_move_in_cost[i][(int) class] * scale) / 2;
1941 break;
1943 default:
1945 register const char *fmt = GET_RTX_FORMAT (code);
1946 register int i;
1947 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1948 if (fmt[i] == 'e')
1949 record_address_regs (XEXP (x, i), class, scale);
1954 #ifdef FORBIDDEN_INC_DEC_CLASSES
1956 /* Return 1 if REG is valid as an auto-increment memory reference
1957 to an object of MODE. */
1959 static int
1960 auto_inc_dec_reg_p (reg, mode)
1961 rtx reg;
1962 enum machine_mode mode;
1964 if (HAVE_POST_INCREMENT
1965 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
1966 return 1;
1968 if (HAVE_POST_DECREMENT
1969 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
1970 return 1;
1972 if (HAVE_PRE_INCREMENT
1973 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
1974 return 1;
1976 if (HAVE_PRE_DECREMENT
1977 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
1978 return 1;
1980 return 0;
1982 #endif
1984 static short *renumber = (short *)0;
1985 static size_t regno_allocated = 0;
1987 /* Allocate enough space to hold NUM_REGS registers for the tables used for
1988 reg_scan and flow_analysis that are indexed by the register number. If
1989 NEW_P is non zero, initialize all of the registers, otherwise only
1990 initialize the new registers allocated. The same table is kept from
1991 function to function, only reallocating it when we need more room. If
1992 RENUMBER_P is non zero, allocate the reg_renumber array also. */
1994 void
1995 allocate_reg_info (num_regs, new_p, renumber_p)
1996 size_t num_regs;
1997 int new_p;
1998 int renumber_p;
2000 size_t size_info;
2001 size_t size_renumber;
2002 size_t min = (new_p) ? 0 : reg_n_max;
2003 struct reg_info_data *reg_data;
2004 struct reg_info_data *reg_next;
2006 if (num_regs > regno_allocated)
2008 size_t old_allocated = regno_allocated;
2010 regno_allocated = num_regs + (num_regs / 20); /* add some slop space */
2011 size_renumber = regno_allocated * sizeof (short);
2013 if (!reg_n_info)
2015 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
2016 renumber = (short *) xmalloc (size_renumber);
2017 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2018 * sizeof (struct reg_pref));
2021 else
2023 VARRAY_GROW (reg_n_info, regno_allocated);
2025 if (new_p) /* if we're zapping everything, no need to realloc */
2027 free ((char *)renumber);
2028 free ((char *)reg_pref);
2029 renumber = (short *) xmalloc (size_renumber);
2030 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2031 * sizeof (struct reg_pref));
2034 else
2036 renumber = (short *) xrealloc ((char *)renumber, size_renumber);
2037 reg_pref_buffer = (struct reg_pref *) xrealloc ((char *)reg_pref_buffer,
2038 regno_allocated
2039 * sizeof (struct reg_pref));
2043 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2044 + sizeof (struct reg_info_data) - sizeof (reg_info);
2045 reg_data = (struct reg_info_data *) xcalloc (size_info, 1);
2046 reg_data->min_index = old_allocated;
2047 reg_data->max_index = regno_allocated - 1;
2048 reg_data->next = reg_info_head;
2049 reg_info_head = reg_data;
2052 reg_n_max = num_regs;
2053 if (min < num_regs)
2055 /* Loop through each of the segments allocated for the actual
2056 reg_info pages, and set up the pointers, zero the pages, etc. */
2057 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2059 size_t min_index = reg_data->min_index;
2060 size_t max_index = reg_data->max_index;
2062 reg_next = reg_data->next;
2063 if (min <= max_index)
2065 size_t max = max_index;
2066 size_t local_min = min - min_index;
2067 size_t i;
2069 if (min < min_index)
2070 local_min = 0;
2071 if (!reg_data->used_p) /* page just allocated with calloc */
2072 reg_data->used_p = 1; /* no need to zero */
2073 else
2074 bzero ((char *) &reg_data->data[local_min],
2075 sizeof (reg_info) * (max - min_index - local_min + 1));
2077 for (i = min_index+local_min; i <= max; i++)
2079 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
2080 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2081 renumber[i] = -1;
2082 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2083 reg_pref_buffer[i].altclass = (char) NO_REGS;
2089 /* If {pref,alt}class have already been allocated, update the pointers to
2090 the newly realloced ones. */
2091 if (reg_pref)
2092 reg_pref = reg_pref_buffer;
2094 if (renumber_p)
2095 reg_renumber = renumber;
2097 /* Tell the regset code about the new number of registers */
2098 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
2101 /* Free up the space allocated by allocate_reg_info. */
2102 void
2103 free_reg_info ()
2105 if (reg_n_info)
2107 struct reg_info_data *reg_data;
2108 struct reg_info_data *reg_next;
2110 VARRAY_FREE (reg_n_info);
2111 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2113 reg_next = reg_data->next;
2114 free ((char *)reg_data);
2117 free (reg_pref_buffer);
2118 reg_pref_buffer = (struct reg_pref *)0;
2119 reg_info_head = (struct reg_info_data *)0;
2120 renumber = (short *)0;
2122 regno_allocated = 0;
2123 reg_n_max = 0;
2126 /* This is the `regscan' pass of the compiler, run just before cse
2127 and again just before loop.
2129 It finds the first and last use of each pseudo-register
2130 and records them in the vectors regno_first_uid, regno_last_uid
2131 and counts the number of sets in the vector reg_n_sets.
2133 REPEAT is nonzero the second time this is called. */
2135 /* Maximum number of parallel sets and clobbers in any insn in this fn.
2136 Always at least 3, since the combiner could put that many together
2137 and we want this to remain correct for all the remaining passes. */
2139 int max_parallel;
2141 void
2142 reg_scan (f, nregs, repeat)
2143 rtx f;
2144 int nregs;
2145 int repeat ATTRIBUTE_UNUSED;
2147 register rtx insn;
2149 allocate_reg_info (nregs, TRUE, FALSE);
2150 max_parallel = 3;
2152 for (insn = f; insn; insn = NEXT_INSN (insn))
2153 if (GET_CODE (insn) == INSN
2154 || GET_CODE (insn) == CALL_INSN
2155 || GET_CODE (insn) == JUMP_INSN)
2157 if (GET_CODE (PATTERN (insn)) == PARALLEL
2158 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2159 max_parallel = XVECLEN (PATTERN (insn), 0);
2160 reg_scan_mark_refs (PATTERN (insn), insn, 0, 0);
2162 if (REG_NOTES (insn))
2163 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2167 /* Update 'regscan' information by looking at the insns
2168 from FIRST to LAST. Some new REGs have been created,
2169 and any REG with number greater than OLD_MAX_REGNO is
2170 such a REG. We only update information for those. */
2172 void
2173 reg_scan_update(first, last, old_max_regno)
2174 rtx first;
2175 rtx last;
2176 int old_max_regno;
2178 register rtx insn;
2180 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2182 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2183 if (GET_CODE (insn) == INSN
2184 || GET_CODE (insn) == CALL_INSN
2185 || GET_CODE (insn) == JUMP_INSN)
2187 if (GET_CODE (PATTERN (insn)) == PARALLEL
2188 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2189 max_parallel = XVECLEN (PATTERN (insn), 0);
2190 reg_scan_mark_refs (PATTERN (insn), insn, 0, old_max_regno);
2192 if (REG_NOTES (insn))
2193 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2197 /* X is the expression to scan. INSN is the insn it appears in.
2198 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2199 We should only record information for REGs with numbers
2200 greater than or equal to MIN_REGNO. */
2202 static void
2203 reg_scan_mark_refs (x, insn, note_flag, min_regno)
2204 rtx x;
2205 rtx insn;
2206 int note_flag;
2207 int min_regno;
2209 register enum rtx_code code;
2210 register rtx dest;
2211 register rtx note;
2213 code = GET_CODE (x);
2214 switch (code)
2216 case CONST:
2217 case CONST_INT:
2218 case CONST_DOUBLE:
2219 case CC0:
2220 case PC:
2221 case SYMBOL_REF:
2222 case LABEL_REF:
2223 case ADDR_VEC:
2224 case ADDR_DIFF_VEC:
2225 return;
2227 case REG:
2229 register int regno = REGNO (x);
2231 if (regno >= min_regno)
2233 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2234 if (!note_flag)
2235 REGNO_LAST_UID (regno) = INSN_UID (insn);
2236 if (REGNO_FIRST_UID (regno) == 0)
2237 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2240 break;
2242 case EXPR_LIST:
2243 if (XEXP (x, 0))
2244 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2245 if (XEXP (x, 1))
2246 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2247 break;
2249 case INSN_LIST:
2250 if (XEXP (x, 1))
2251 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2252 break;
2254 case SET:
2255 /* Count a set of the destination if it is a register. */
2256 for (dest = SET_DEST (x);
2257 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2258 || GET_CODE (dest) == ZERO_EXTEND;
2259 dest = XEXP (dest, 0))
2262 if (GET_CODE (dest) == REG
2263 && REGNO (dest) >= min_regno)
2264 REG_N_SETS (REGNO (dest))++;
2266 /* If this is setting a pseudo from another pseudo or the sum of a
2267 pseudo and a constant integer and the other pseudo is known to be
2268 a pointer, set the destination to be a pointer as well.
2270 Likewise if it is setting the destination from an address or from a
2271 value equivalent to an address or to the sum of an address and
2272 something else.
2274 But don't do any of this if the pseudo corresponds to a user
2275 variable since it should have already been set as a pointer based
2276 on the type. */
2278 if (GET_CODE (SET_DEST (x)) == REG
2279 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2280 && REGNO (SET_DEST (x)) >= min_regno
2281 /* If the destination pseudo is set more than once, then other
2282 sets might not be to a pointer value (consider access to a
2283 union in two threads of control in the presense of global
2284 optimizations). So only set REGNO_POINTER_FLAG on the destination
2285 pseudo if this is the only set of that pseudo. */
2286 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2287 && ! REG_USERVAR_P (SET_DEST (x))
2288 && ! REGNO_POINTER_FLAG (REGNO (SET_DEST (x)))
2289 && ((GET_CODE (SET_SRC (x)) == REG
2290 && REGNO_POINTER_FLAG (REGNO (SET_SRC (x))))
2291 || ((GET_CODE (SET_SRC (x)) == PLUS
2292 || GET_CODE (SET_SRC (x)) == LO_SUM)
2293 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2294 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2295 && REGNO_POINTER_FLAG (REGNO (XEXP (SET_SRC (x), 0))))
2296 || GET_CODE (SET_SRC (x)) == CONST
2297 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2298 || GET_CODE (SET_SRC (x)) == LABEL_REF
2299 || (GET_CODE (SET_SRC (x)) == HIGH
2300 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2301 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2302 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2303 || ((GET_CODE (SET_SRC (x)) == PLUS
2304 || GET_CODE (SET_SRC (x)) == LO_SUM)
2305 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2306 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2307 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2308 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2309 && (GET_CODE (XEXP (note, 0)) == CONST
2310 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2311 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2312 REGNO_POINTER_FLAG (REGNO (SET_DEST (x))) = 1;
2314 /* ... fall through ... */
2316 default:
2318 register const char *fmt = GET_RTX_FORMAT (code);
2319 register int i;
2320 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2322 if (fmt[i] == 'e')
2323 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2324 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2326 register int j;
2327 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2328 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2335 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2336 is also in C2. */
2339 reg_class_subset_p (c1, c2)
2340 register enum reg_class c1;
2341 register enum reg_class c2;
2343 if (c1 == c2) return 1;
2345 if (c2 == ALL_REGS)
2346 win:
2347 return 1;
2348 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int)c1],
2349 reg_class_contents[(int)c2],
2350 win);
2351 return 0;
2354 /* Return nonzero if there is a register that is in both C1 and C2. */
2357 reg_classes_intersect_p (c1, c2)
2358 register enum reg_class c1;
2359 register enum reg_class c2;
2361 #ifdef HARD_REG_SET
2362 register
2363 #endif
2364 HARD_REG_SET c;
2366 if (c1 == c2) return 1;
2368 if (c1 == ALL_REGS || c2 == ALL_REGS)
2369 return 1;
2371 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2372 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2374 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2375 return 1;
2377 lose:
2378 return 0;
2381 /* Release any memory allocated by register sets. */
2383 void
2384 regset_release_memory ()
2386 bitmap_release_memory ();