update copyrights in config dir.
[official-gcc.git] / gcc / function.c
blob9006d16dd9b9d093be87b90ea3a3e7a8969cfd73
1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 88, 89, 91-99, 2000 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register.
36 Call `put_var_into_stack' when you learn, belatedly, that a variable
37 previously given a pseudo-register must in fact go in the stack.
38 This function changes the DECL_RTL to be a stack slot instead of a reg
39 then scans all the RTL instructions so far generated to correct them. */
41 #include "config.h"
42 #include "system.h"
43 #include "rtl.h"
44 #include "tree.h"
45 #include "flags.h"
46 #include "except.h"
47 #include "function.h"
48 #include "insn-flags.h"
49 #include "expr.h"
50 #include "insn-codes.h"
51 #include "regs.h"
52 #include "hard-reg-set.h"
53 #include "insn-config.h"
54 #include "recog.h"
55 #include "output.h"
56 #include "basic-block.h"
57 #include "obstack.h"
58 #include "toplev.h"
59 #include "hash.h"
60 #include "ggc.h"
61 #include "tm_p.h"
63 #ifndef TRAMPOLINE_ALIGNMENT
64 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
65 #endif
67 #ifndef LOCAL_ALIGNMENT
68 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
69 #endif
71 #if !defined (PREFERRED_STACK_BOUNDARY) && defined (STACK_BOUNDARY)
72 #define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
73 #endif
75 /* Some systems use __main in a way incompatible with its use in gcc, in these
76 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
77 give the same symbol without quotes for an alternative entry point. You
78 must define both, or neither. */
79 #ifndef NAME__MAIN
80 #define NAME__MAIN "__main"
81 #define SYMBOL__MAIN __main
82 #endif
84 /* Round a value to the lowest integer less than it that is a multiple of
85 the required alignment. Avoid using division in case the value is
86 negative. Assume the alignment is a power of two. */
87 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
89 /* Similar, but round to the next highest integer that meets the
90 alignment. */
91 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
93 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
94 during rtl generation. If they are different register numbers, this is
95 always true. It may also be true if
96 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
97 generation. See fix_lexical_addr for details. */
99 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
100 #define NEED_SEPARATE_AP
101 #endif
103 /* Nonzero if function being compiled doesn't contain any calls
104 (ignoring the prologue and epilogue). This is set prior to
105 local register allocation and is valid for the remaining
106 compiler passes. */
107 int current_function_is_leaf;
109 /* Nonzero if function being compiled doesn't modify the stack pointer
110 (ignoring the prologue and epilogue). This is only valid after
111 life_analysis has run. */
112 int current_function_sp_is_unchanging;
114 /* Nonzero if the function being compiled is a leaf function which only
115 uses leaf registers. This is valid after reload (specifically after
116 sched2) and is useful only if the port defines LEAF_REGISTERS. */
117 int current_function_uses_only_leaf_regs;
119 /* Nonzero once virtual register instantiation has been done.
120 assign_stack_local uses frame_pointer_rtx when this is nonzero. */
121 static int virtuals_instantiated;
123 /* These variables hold pointers to functions to
124 save and restore machine-specific data,
125 in push_function_context and pop_function_context. */
126 void (*init_machine_status) PARAMS ((struct function *));
127 void (*save_machine_status) PARAMS ((struct function *));
128 void (*restore_machine_status) PARAMS ((struct function *));
129 void (*mark_machine_status) PARAMS ((struct function *));
130 void (*free_machine_status) PARAMS ((struct function *));
132 /* Likewise, but for language-specific data. */
133 void (*init_lang_status) PARAMS ((struct function *));
134 void (*save_lang_status) PARAMS ((struct function *));
135 void (*restore_lang_status) PARAMS ((struct function *));
136 void (*mark_lang_status) PARAMS ((struct function *));
137 void (*free_lang_status) PARAMS ((struct function *));
139 /* The FUNCTION_DECL for an inline function currently being expanded. */
140 tree inline_function_decl;
142 /* The currently compiled function. */
143 struct function *cfun = 0;
145 /* Global list of all compiled functions. */
146 struct function *all_functions = 0;
148 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
149 static int *prologue;
150 static int *epilogue;
152 /* In order to evaluate some expressions, such as function calls returning
153 structures in memory, we need to temporarily allocate stack locations.
154 We record each allocated temporary in the following structure.
156 Associated with each temporary slot is a nesting level. When we pop up
157 one level, all temporaries associated with the previous level are freed.
158 Normally, all temporaries are freed after the execution of the statement
159 in which they were created. However, if we are inside a ({...}) grouping,
160 the result may be in a temporary and hence must be preserved. If the
161 result could be in a temporary, we preserve it if we can determine which
162 one it is in. If we cannot determine which temporary may contain the
163 result, all temporaries are preserved. A temporary is preserved by
164 pretending it was allocated at the previous nesting level.
166 Automatic variables are also assigned temporary slots, at the nesting
167 level where they are defined. They are marked a "kept" so that
168 free_temp_slots will not free them. */
170 struct temp_slot
172 /* Points to next temporary slot. */
173 struct temp_slot *next;
174 /* The rtx to used to reference the slot. */
175 rtx slot;
176 /* The rtx used to represent the address if not the address of the
177 slot above. May be an EXPR_LIST if multiple addresses exist. */
178 rtx address;
179 /* The alignment (in bits) of the slot. */
180 int align;
181 /* The size, in units, of the slot. */
182 HOST_WIDE_INT size;
183 /* The alias set for the slot. If the alias set is zero, we don't
184 know anything about the alias set of the slot. We must only
185 reuse a slot if it is assigned an object of the same alias set.
186 Otherwise, the rest of the compiler may assume that the new use
187 of the slot cannot alias the old use of the slot, which is
188 false. If the slot has alias set zero, then we can't reuse the
189 slot at all, since we have no idea what alias set may have been
190 imposed on the memory. For example, if the stack slot is the
191 call frame for an inline functioned, we have no idea what alias
192 sets will be assigned to various pieces of the call frame. */
193 int alias_set;
194 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
195 tree rtl_expr;
196 /* Non-zero if this temporary is currently in use. */
197 char in_use;
198 /* Non-zero if this temporary has its address taken. */
199 char addr_taken;
200 /* Nesting level at which this slot is being used. */
201 int level;
202 /* Non-zero if this should survive a call to free_temp_slots. */
203 int keep;
204 /* The offset of the slot from the frame_pointer, including extra space
205 for alignment. This info is for combine_temp_slots. */
206 HOST_WIDE_INT base_offset;
207 /* The size of the slot, including extra space for alignment. This
208 info is for combine_temp_slots. */
209 HOST_WIDE_INT full_size;
212 /* This structure is used to record MEMs or pseudos used to replace VAR, any
213 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
214 maintain this list in case two operands of an insn were required to match;
215 in that case we must ensure we use the same replacement. */
217 struct fixup_replacement
219 rtx old;
220 rtx new;
221 struct fixup_replacement *next;
224 struct insns_for_mem_entry {
225 /* The KEY in HE will be a MEM. */
226 struct hash_entry he;
227 /* These are the INSNS which reference the MEM. */
228 rtx insns;
231 /* Forward declarations. */
233 static rtx assign_stack_local_1 PARAMS ((enum machine_mode, HOST_WIDE_INT,
234 int, struct function *));
235 static rtx assign_stack_temp_for_type PARAMS ((enum machine_mode,
236 HOST_WIDE_INT, int, tree));
237 static struct temp_slot *find_temp_slot_from_address PARAMS ((rtx));
238 static void put_reg_into_stack PARAMS ((struct function *, rtx, tree,
239 enum machine_mode, enum machine_mode,
240 int, int, int, struct hash_table *));
241 static void fixup_var_refs PARAMS ((rtx, enum machine_mode, int,
242 struct hash_table *));
243 static struct fixup_replacement
244 *find_fixup_replacement PARAMS ((struct fixup_replacement **, rtx));
245 static void fixup_var_refs_insns PARAMS ((rtx, enum machine_mode, int,
246 rtx, int, struct hash_table *));
247 static void fixup_var_refs_1 PARAMS ((rtx, enum machine_mode, rtx *, rtx,
248 struct fixup_replacement **));
249 static rtx fixup_memory_subreg PARAMS ((rtx, rtx, int));
250 static rtx walk_fixup_memory_subreg PARAMS ((rtx, rtx, int));
251 static rtx fixup_stack_1 PARAMS ((rtx, rtx));
252 static void optimize_bit_field PARAMS ((rtx, rtx, rtx *));
253 static void instantiate_decls PARAMS ((tree, int));
254 static void instantiate_decls_1 PARAMS ((tree, int));
255 static void instantiate_decl PARAMS ((rtx, int, int));
256 static int instantiate_virtual_regs_1 PARAMS ((rtx *, rtx, int));
257 static void delete_handlers PARAMS ((void));
258 static void pad_to_arg_alignment PARAMS ((struct args_size *, int,
259 struct args_size *));
260 #ifndef ARGS_GROW_DOWNWARD
261 static void pad_below PARAMS ((struct args_size *, enum machine_mode,
262 tree));
263 #endif
264 #ifdef ARGS_GROW_DOWNWARD
265 static tree round_down PARAMS ((tree, int));
266 #endif
267 static rtx round_trampoline_addr PARAMS ((rtx));
268 static tree blocks_nreverse PARAMS ((tree));
269 static int all_blocks PARAMS ((tree, tree *));
270 /* We always define `record_insns' even if its not used so that we
271 can always export `prologue_epilogue_contains'. */
272 static int *record_insns PARAMS ((rtx)) ATTRIBUTE_UNUSED;
273 static int contains PARAMS ((rtx, int *));
274 static void put_addressof_into_stack PARAMS ((rtx, struct hash_table *));
275 static boolean purge_addressof_1 PARAMS ((rtx *, rtx, int, int,
276 struct hash_table *));
277 static int is_addressof PARAMS ((rtx *, void *));
278 static struct hash_entry *insns_for_mem_newfunc PARAMS ((struct hash_entry *,
279 struct hash_table *,
280 hash_table_key));
281 static unsigned long insns_for_mem_hash PARAMS ((hash_table_key));
282 static boolean insns_for_mem_comp PARAMS ((hash_table_key, hash_table_key));
283 static int insns_for_mem_walk PARAMS ((rtx *, void *));
284 static void compute_insns_for_mem PARAMS ((rtx, rtx, struct hash_table *));
285 static void mark_temp_slot PARAMS ((struct temp_slot *));
286 static void mark_function_status PARAMS ((struct function *));
287 static void mark_function_chain PARAMS ((void *));
288 static void prepare_function_start PARAMS ((void));
291 /* Pointer to chain of `struct function' for containing functions. */
292 struct function *outer_function_chain;
294 /* Given a function decl for a containing function,
295 return the `struct function' for it. */
297 struct function *
298 find_function_data (decl)
299 tree decl;
301 struct function *p;
303 for (p = outer_function_chain; p; p = p->next)
304 if (p->decl == decl)
305 return p;
307 abort ();
310 /* Save the current context for compilation of a nested function.
311 This is called from language-specific code. The caller should use
312 the save_lang_status callback to save any language-specific state,
313 since this function knows only about language-independent
314 variables. */
316 void
317 push_function_context_to (context)
318 tree context;
320 struct function *p, *context_data;
322 if (context)
324 context_data = (context == current_function_decl
325 ? cfun
326 : find_function_data (context));
327 context_data->contains_functions = 1;
330 if (cfun == 0)
331 init_dummy_function_start ();
332 p = cfun;
334 p->next = outer_function_chain;
335 outer_function_chain = p;
336 p->fixup_var_refs_queue = 0;
338 save_tree_status (p);
339 if (save_lang_status)
340 (*save_lang_status) (p);
341 if (save_machine_status)
342 (*save_machine_status) (p);
344 cfun = 0;
347 void
348 push_function_context ()
350 push_function_context_to (current_function_decl);
353 /* Restore the last saved context, at the end of a nested function.
354 This function is called from language-specific code. */
356 void
357 pop_function_context_from (context)
358 tree context ATTRIBUTE_UNUSED;
360 struct function *p = outer_function_chain;
361 struct var_refs_queue *queue;
362 struct var_refs_queue *next;
364 cfun = p;
365 outer_function_chain = p->next;
367 current_function_decl = p->decl;
368 reg_renumber = 0;
370 restore_tree_status (p);
371 restore_emit_status (p);
373 if (restore_machine_status)
374 (*restore_machine_status) (p);
375 if (restore_lang_status)
376 (*restore_lang_status) (p);
378 /* Finish doing put_var_into_stack for any of our variables
379 which became addressable during the nested function. */
380 for (queue = p->fixup_var_refs_queue; queue; queue = next)
382 next = queue->next;
383 fixup_var_refs (queue->modified, queue->promoted_mode,
384 queue->unsignedp, 0);
385 free (queue);
387 p->fixup_var_refs_queue = 0;
389 /* Reset variables that have known state during rtx generation. */
390 rtx_equal_function_value_matters = 1;
391 virtuals_instantiated = 0;
394 void
395 pop_function_context ()
397 pop_function_context_from (current_function_decl);
400 /* Clear out all parts of the state in F that can safely be discarded
401 after the function has been parsed, but not compiled, to let
402 garbage collection reclaim the memory. */
404 void
405 free_after_parsing (f)
406 struct function *f;
408 /* f->expr->forced_labels is used by code generation. */
409 /* f->emit->regno_reg_rtx is used by code generation. */
410 /* f->varasm is used by code generation. */
411 /* f->eh->eh_return_stub_label is used by code generation. */
413 if (free_lang_status)
414 (*free_lang_status) (f);
415 free_stmt_status (f);
418 /* Clear out all parts of the state in F that can safely be discarded
419 after the function has been compiled, to let garbage collection
420 reclaim the memory. */
422 void
423 free_after_compilation (f)
424 struct function *f;
426 free_eh_status (f);
427 free_expr_status (f);
428 free_emit_status (f);
429 free_varasm_status (f);
431 if (free_machine_status)
432 (*free_machine_status) (f);
434 if (f->x_parm_reg_stack_loc)
435 free (f->x_parm_reg_stack_loc);
437 f->arg_offset_rtx = NULL;
438 f->return_rtx = NULL;
439 f->internal_arg_pointer = NULL;
440 f->x_nonlocal_labels = NULL;
441 f->x_nonlocal_goto_handler_slots = NULL;
442 f->x_nonlocal_goto_handler_labels = NULL;
443 f->x_nonlocal_goto_stack_level = NULL;
444 f->x_cleanup_label = NULL;
445 f->x_return_label = NULL;
446 f->x_save_expr_regs = NULL;
447 f->x_stack_slot_list = NULL;
448 f->x_rtl_expr_chain = NULL;
449 f->x_tail_recursion_label = NULL;
450 f->x_tail_recursion_reentry = NULL;
451 f->x_arg_pointer_save_area = NULL;
452 f->x_context_display = NULL;
453 f->x_trampoline_list = NULL;
454 f->x_parm_birth_insn = NULL;
455 f->x_last_parm_insn = NULL;
456 f->x_parm_reg_stack_loc = NULL;
457 f->x_temp_slots = NULL;
458 f->fixup_var_refs_queue = NULL;
459 f->original_arg_vector = NULL;
460 f->original_decl_initial = NULL;
461 f->inl_last_parm_insn = NULL;
462 f->epilogue_delay_list = NULL;
466 /* Allocate fixed slots in the stack frame of the current function. */
468 /* Return size needed for stack frame based on slots so far allocated in
469 function F.
470 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
471 the caller may have to do that. */
473 HOST_WIDE_INT
474 get_func_frame_size (f)
475 struct function *f;
477 #ifdef FRAME_GROWS_DOWNWARD
478 return -f->x_frame_offset;
479 #else
480 return f->x_frame_offset;
481 #endif
484 /* Return size needed for stack frame based on slots so far allocated.
485 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
486 the caller may have to do that. */
487 HOST_WIDE_INT
488 get_frame_size ()
490 return get_func_frame_size (cfun);
493 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
494 with machine mode MODE.
496 ALIGN controls the amount of alignment for the address of the slot:
497 0 means according to MODE,
498 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
499 positive specifies alignment boundary in bits.
501 We do not round to stack_boundary here.
503 FUNCTION specifies the function to allocate in. */
505 static rtx
506 assign_stack_local_1 (mode, size, align, function)
507 enum machine_mode mode;
508 HOST_WIDE_INT size;
509 int align;
510 struct function *function;
512 register rtx x, addr;
513 int bigend_correction = 0;
514 int alignment;
516 /* Allocate in the memory associated with the function in whose frame
517 we are assigning. */
518 if (function != cfun)
519 push_obstacks (function->function_obstack,
520 function->function_maybepermanent_obstack);
522 if (align == 0)
524 tree type;
526 alignment = GET_MODE_ALIGNMENT (mode);
527 if (mode == BLKmode)
528 alignment = BIGGEST_ALIGNMENT;
530 /* Allow the target to (possibly) increase the alignment of this
531 stack slot. */
532 type = type_for_mode (mode, 0);
533 if (type)
534 alignment = LOCAL_ALIGNMENT (type, alignment);
536 alignment /= BITS_PER_UNIT;
538 else if (align == -1)
540 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
541 size = CEIL_ROUND (size, alignment);
543 else
544 alignment = align / BITS_PER_UNIT;
546 #ifdef FRAME_GROWS_DOWNWARD
547 function->x_frame_offset -= size;
548 #endif
550 /* Ignore alignment we can't do with expected alignment of the boundary. */
551 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
552 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
554 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
555 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
557 /* Round frame offset to that alignment.
558 We must be careful here, since FRAME_OFFSET might be negative and
559 division with a negative dividend isn't as well defined as we might
560 like. So we instead assume that ALIGNMENT is a power of two and
561 use logical operations which are unambiguous. */
562 #ifdef FRAME_GROWS_DOWNWARD
563 function->x_frame_offset = FLOOR_ROUND (function->x_frame_offset, alignment);
564 #else
565 function->x_frame_offset = CEIL_ROUND (function->x_frame_offset, alignment);
566 #endif
568 /* On a big-endian machine, if we are allocating more space than we will use,
569 use the least significant bytes of those that are allocated. */
570 if (BYTES_BIG_ENDIAN && mode != BLKmode)
571 bigend_correction = size - GET_MODE_SIZE (mode);
573 /* If we have already instantiated virtual registers, return the actual
574 address relative to the frame pointer. */
575 if (function == cfun && virtuals_instantiated)
576 addr = plus_constant (frame_pointer_rtx,
577 (frame_offset + bigend_correction
578 + STARTING_FRAME_OFFSET));
579 else
580 addr = plus_constant (virtual_stack_vars_rtx,
581 function->x_frame_offset + bigend_correction);
583 #ifndef FRAME_GROWS_DOWNWARD
584 function->x_frame_offset += size;
585 #endif
587 x = gen_rtx_MEM (mode, addr);
589 function->x_stack_slot_list
590 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
592 if (function != cfun)
593 pop_obstacks ();
595 return x;
598 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
599 current function. */
601 assign_stack_local (mode, size, align)
602 enum machine_mode mode;
603 HOST_WIDE_INT size;
604 int align;
606 return assign_stack_local_1 (mode, size, align, cfun);
609 /* Allocate a temporary stack slot and record it for possible later
610 reuse.
612 MODE is the machine mode to be given to the returned rtx.
614 SIZE is the size in units of the space required. We do no rounding here
615 since assign_stack_local will do any required rounding.
617 KEEP is 1 if this slot is to be retained after a call to
618 free_temp_slots. Automatic variables for a block are allocated
619 with this flag. KEEP is 2 if we allocate a longer term temporary,
620 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
621 if we are to allocate something at an inner level to be treated as
622 a variable in the block (e.g., a SAVE_EXPR).
624 TYPE is the type that will be used for the stack slot. */
626 static rtx
627 assign_stack_temp_for_type (mode, size, keep, type)
628 enum machine_mode mode;
629 HOST_WIDE_INT size;
630 int keep;
631 tree type;
633 int align;
634 int alias_set;
635 struct temp_slot *p, *best_p = 0;
637 /* If SIZE is -1 it means that somebody tried to allocate a temporary
638 of a variable size. */
639 if (size == -1)
640 abort ();
642 /* If we know the alias set for the memory that will be used, use
643 it. If there's no TYPE, then we don't know anything about the
644 alias set for the memory. */
645 if (type)
646 alias_set = get_alias_set (type);
647 else
648 alias_set = 0;
650 align = GET_MODE_ALIGNMENT (mode);
651 if (mode == BLKmode)
652 align = BIGGEST_ALIGNMENT;
654 if (! type)
655 type = type_for_mode (mode, 0);
656 if (type)
657 align = LOCAL_ALIGNMENT (type, align);
659 /* Try to find an available, already-allocated temporary of the proper
660 mode which meets the size and alignment requirements. Choose the
661 smallest one with the closest alignment. */
662 for (p = temp_slots; p; p = p->next)
663 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
664 && ! p->in_use
665 && (!flag_strict_aliasing
666 || (alias_set && p->alias_set == alias_set))
667 && (best_p == 0 || best_p->size > p->size
668 || (best_p->size == p->size && best_p->align > p->align)))
670 if (p->align == align && p->size == size)
672 best_p = 0;
673 break;
675 best_p = p;
678 /* Make our best, if any, the one to use. */
679 if (best_p)
681 /* If there are enough aligned bytes left over, make them into a new
682 temp_slot so that the extra bytes don't get wasted. Do this only
683 for BLKmode slots, so that we can be sure of the alignment. */
684 if (GET_MODE (best_p->slot) == BLKmode
685 /* We can't split slots if -fstrict-aliasing because the
686 information about the alias set for the new slot will be
687 lost. */
688 && !flag_strict_aliasing)
690 int alignment = best_p->align / BITS_PER_UNIT;
691 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
693 if (best_p->size - rounded_size >= alignment)
695 p = (struct temp_slot *) oballoc (sizeof (struct temp_slot));
696 p->in_use = p->addr_taken = 0;
697 p->size = best_p->size - rounded_size;
698 p->base_offset = best_p->base_offset + rounded_size;
699 p->full_size = best_p->full_size - rounded_size;
700 p->slot = gen_rtx_MEM (BLKmode,
701 plus_constant (XEXP (best_p->slot, 0),
702 rounded_size));
703 p->align = best_p->align;
704 p->address = 0;
705 p->rtl_expr = 0;
706 p->next = temp_slots;
707 temp_slots = p;
709 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
710 stack_slot_list);
712 best_p->size = rounded_size;
713 best_p->full_size = rounded_size;
717 p = best_p;
720 /* If we still didn't find one, make a new temporary. */
721 if (p == 0)
723 HOST_WIDE_INT frame_offset_old = frame_offset;
725 p = (struct temp_slot *) oballoc (sizeof (struct temp_slot));
727 /* We are passing an explicit alignment request to assign_stack_local.
728 One side effect of that is assign_stack_local will not round SIZE
729 to ensure the frame offset remains suitably aligned.
731 So for requests which depended on the rounding of SIZE, we go ahead
732 and round it now. We also make sure ALIGNMENT is at least
733 BIGGEST_ALIGNMENT. */
734 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
735 abort();
736 p->slot = assign_stack_local (mode,
737 (mode == BLKmode
738 ? CEIL_ROUND (size, align / BITS_PER_UNIT)
739 : size),
740 align);
742 p->align = align;
743 p->alias_set = alias_set;
745 /* The following slot size computation is necessary because we don't
746 know the actual size of the temporary slot until assign_stack_local
747 has performed all the frame alignment and size rounding for the
748 requested temporary. Note that extra space added for alignment
749 can be either above or below this stack slot depending on which
750 way the frame grows. We include the extra space if and only if it
751 is above this slot. */
752 #ifdef FRAME_GROWS_DOWNWARD
753 p->size = frame_offset_old - frame_offset;
754 #else
755 p->size = size;
756 #endif
758 /* Now define the fields used by combine_temp_slots. */
759 #ifdef FRAME_GROWS_DOWNWARD
760 p->base_offset = frame_offset;
761 p->full_size = frame_offset_old - frame_offset;
762 #else
763 p->base_offset = frame_offset_old;
764 p->full_size = frame_offset - frame_offset_old;
765 #endif
766 p->address = 0;
767 p->next = temp_slots;
768 temp_slots = p;
771 p->in_use = 1;
772 p->addr_taken = 0;
773 p->rtl_expr = seq_rtl_expr;
775 if (keep == 2)
777 p->level = target_temp_slot_level;
778 p->keep = 0;
780 else if (keep == 3)
782 p->level = var_temp_slot_level;
783 p->keep = 0;
785 else
787 p->level = temp_slot_level;
788 p->keep = keep;
791 /* We may be reusing an old slot, so clear any MEM flags that may have been
792 set from before. */
793 RTX_UNCHANGING_P (p->slot) = 0;
794 MEM_IN_STRUCT_P (p->slot) = 0;
795 MEM_SCALAR_P (p->slot) = 0;
796 MEM_ALIAS_SET (p->slot) = 0;
797 return p->slot;
800 /* Allocate a temporary stack slot and record it for possible later
801 reuse. First three arguments are same as in preceding function. */
804 assign_stack_temp (mode, size, keep)
805 enum machine_mode mode;
806 HOST_WIDE_INT size;
807 int keep;
809 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
812 /* Assign a temporary of given TYPE.
813 KEEP is as for assign_stack_temp.
814 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
815 it is 0 if a register is OK.
816 DONT_PROMOTE is 1 if we should not promote values in register
817 to wider modes. */
820 assign_temp (type, keep, memory_required, dont_promote)
821 tree type;
822 int keep;
823 int memory_required;
824 int dont_promote ATTRIBUTE_UNUSED;
826 enum machine_mode mode = TYPE_MODE (type);
827 #ifndef PROMOTE_FOR_CALL_ONLY
828 int unsignedp = TREE_UNSIGNED (type);
829 #endif
831 if (mode == BLKmode || memory_required)
833 HOST_WIDE_INT size = int_size_in_bytes (type);
834 rtx tmp;
836 /* Unfortunately, we don't yet know how to allocate variable-sized
837 temporaries. However, sometimes we have a fixed upper limit on
838 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
839 instead. This is the case for Chill variable-sized strings. */
840 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
841 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
842 && TREE_CODE (TYPE_ARRAY_MAX_SIZE (type)) == INTEGER_CST)
843 size = TREE_INT_CST_LOW (TYPE_ARRAY_MAX_SIZE (type));
845 tmp = assign_stack_temp_for_type (mode, size, keep, type);
846 MEM_SET_IN_STRUCT_P (tmp, AGGREGATE_TYPE_P (type));
847 return tmp;
850 #ifndef PROMOTE_FOR_CALL_ONLY
851 if (! dont_promote)
852 mode = promote_mode (type, mode, &unsignedp, 0);
853 #endif
855 return gen_reg_rtx (mode);
858 /* Combine temporary stack slots which are adjacent on the stack.
860 This allows for better use of already allocated stack space. This is only
861 done for BLKmode slots because we can be sure that we won't have alignment
862 problems in this case. */
864 void
865 combine_temp_slots ()
867 struct temp_slot *p, *q;
868 struct temp_slot *prev_p, *prev_q;
869 int num_slots;
871 /* We can't combine slots, because the information about which slot
872 is in which alias set will be lost. */
873 if (flag_strict_aliasing)
874 return;
876 /* If there are a lot of temp slots, don't do anything unless
877 high levels of optimizaton. */
878 if (! flag_expensive_optimizations)
879 for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
880 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
881 return;
883 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
885 int delete_p = 0;
887 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
888 for (q = p->next, prev_q = p; q; q = prev_q->next)
890 int delete_q = 0;
891 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
893 if (p->base_offset + p->full_size == q->base_offset)
895 /* Q comes after P; combine Q into P. */
896 p->size += q->size;
897 p->full_size += q->full_size;
898 delete_q = 1;
900 else if (q->base_offset + q->full_size == p->base_offset)
902 /* P comes after Q; combine P into Q. */
903 q->size += p->size;
904 q->full_size += p->full_size;
905 delete_p = 1;
906 break;
909 /* Either delete Q or advance past it. */
910 if (delete_q)
911 prev_q->next = q->next;
912 else
913 prev_q = q;
915 /* Either delete P or advance past it. */
916 if (delete_p)
918 if (prev_p)
919 prev_p->next = p->next;
920 else
921 temp_slots = p->next;
923 else
924 prev_p = p;
928 /* Find the temp slot corresponding to the object at address X. */
930 static struct temp_slot *
931 find_temp_slot_from_address (x)
932 rtx x;
934 struct temp_slot *p;
935 rtx next;
937 for (p = temp_slots; p; p = p->next)
939 if (! p->in_use)
940 continue;
942 else if (XEXP (p->slot, 0) == x
943 || p->address == x
944 || (GET_CODE (x) == PLUS
945 && XEXP (x, 0) == virtual_stack_vars_rtx
946 && GET_CODE (XEXP (x, 1)) == CONST_INT
947 && INTVAL (XEXP (x, 1)) >= p->base_offset
948 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
949 return p;
951 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
952 for (next = p->address; next; next = XEXP (next, 1))
953 if (XEXP (next, 0) == x)
954 return p;
957 /* If we have a sum involving a register, see if it points to a temp
958 slot. */
959 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
960 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
961 return p;
962 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
963 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
964 return p;
966 return 0;
969 /* Indicate that NEW is an alternate way of referring to the temp slot
970 that previously was known by OLD. */
972 void
973 update_temp_slot_address (old, new)
974 rtx old, new;
976 struct temp_slot *p;
978 if (rtx_equal_p (old, new))
979 return;
981 p = find_temp_slot_from_address (old);
983 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
984 is a register, see if one operand of the PLUS is a temporary
985 location. If so, NEW points into it. Otherwise, if both OLD and
986 NEW are a PLUS and if there is a register in common between them.
987 If so, try a recursive call on those values. */
988 if (p == 0)
990 if (GET_CODE (old) != PLUS)
991 return;
993 if (GET_CODE (new) == REG)
995 update_temp_slot_address (XEXP (old, 0), new);
996 update_temp_slot_address (XEXP (old, 1), new);
997 return;
999 else if (GET_CODE (new) != PLUS)
1000 return;
1002 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1003 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1004 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1005 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1006 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1007 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1008 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1009 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1011 return;
1014 /* Otherwise add an alias for the temp's address. */
1015 else if (p->address == 0)
1016 p->address = new;
1017 else
1019 if (GET_CODE (p->address) != EXPR_LIST)
1020 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1022 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1026 /* If X could be a reference to a temporary slot, mark the fact that its
1027 address was taken. */
1029 void
1030 mark_temp_addr_taken (x)
1031 rtx x;
1033 struct temp_slot *p;
1035 if (x == 0)
1036 return;
1038 /* If X is not in memory or is at a constant address, it cannot be in
1039 a temporary slot. */
1040 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1041 return;
1043 p = find_temp_slot_from_address (XEXP (x, 0));
1044 if (p != 0)
1045 p->addr_taken = 1;
1048 /* If X could be a reference to a temporary slot, mark that slot as
1049 belonging to the to one level higher than the current level. If X
1050 matched one of our slots, just mark that one. Otherwise, we can't
1051 easily predict which it is, so upgrade all of them. Kept slots
1052 need not be touched.
1054 This is called when an ({...}) construct occurs and a statement
1055 returns a value in memory. */
1057 void
1058 preserve_temp_slots (x)
1059 rtx x;
1061 struct temp_slot *p = 0;
1063 /* If there is no result, we still might have some objects whose address
1064 were taken, so we need to make sure they stay around. */
1065 if (x == 0)
1067 for (p = temp_slots; p; p = p->next)
1068 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1069 p->level--;
1071 return;
1074 /* If X is a register that is being used as a pointer, see if we have
1075 a temporary slot we know it points to. To be consistent with
1076 the code below, we really should preserve all non-kept slots
1077 if we can't find a match, but that seems to be much too costly. */
1078 if (GET_CODE (x) == REG && REGNO_POINTER_FLAG (REGNO (x)))
1079 p = find_temp_slot_from_address (x);
1081 /* If X is not in memory or is at a constant address, it cannot be in
1082 a temporary slot, but it can contain something whose address was
1083 taken. */
1084 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1086 for (p = temp_slots; p; p = p->next)
1087 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1088 p->level--;
1090 return;
1093 /* First see if we can find a match. */
1094 if (p == 0)
1095 p = find_temp_slot_from_address (XEXP (x, 0));
1097 if (p != 0)
1099 /* Move everything at our level whose address was taken to our new
1100 level in case we used its address. */
1101 struct temp_slot *q;
1103 if (p->level == temp_slot_level)
1105 for (q = temp_slots; q; q = q->next)
1106 if (q != p && q->addr_taken && q->level == p->level)
1107 q->level--;
1109 p->level--;
1110 p->addr_taken = 0;
1112 return;
1115 /* Otherwise, preserve all non-kept slots at this level. */
1116 for (p = temp_slots; p; p = p->next)
1117 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1118 p->level--;
1121 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1122 with that RTL_EXPR, promote it into a temporary slot at the present
1123 level so it will not be freed when we free slots made in the
1124 RTL_EXPR. */
1126 void
1127 preserve_rtl_expr_result (x)
1128 rtx x;
1130 struct temp_slot *p;
1132 /* If X is not in memory or is at a constant address, it cannot be in
1133 a temporary slot. */
1134 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1135 return;
1137 /* If we can find a match, move it to our level unless it is already at
1138 an upper level. */
1139 p = find_temp_slot_from_address (XEXP (x, 0));
1140 if (p != 0)
1142 p->level = MIN (p->level, temp_slot_level);
1143 p->rtl_expr = 0;
1146 return;
1149 /* Free all temporaries used so far. This is normally called at the end
1150 of generating code for a statement. Don't free any temporaries
1151 currently in use for an RTL_EXPR that hasn't yet been emitted.
1152 We could eventually do better than this since it can be reused while
1153 generating the same RTL_EXPR, but this is complex and probably not
1154 worthwhile. */
1156 void
1157 free_temp_slots ()
1159 struct temp_slot *p;
1161 for (p = temp_slots; p; p = p->next)
1162 if (p->in_use && p->level == temp_slot_level && ! p->keep
1163 && p->rtl_expr == 0)
1164 p->in_use = 0;
1166 combine_temp_slots ();
1169 /* Free all temporary slots used in T, an RTL_EXPR node. */
1171 void
1172 free_temps_for_rtl_expr (t)
1173 tree t;
1175 struct temp_slot *p;
1177 for (p = temp_slots; p; p = p->next)
1178 if (p->rtl_expr == t)
1179 p->in_use = 0;
1181 combine_temp_slots ();
1184 /* Mark all temporaries ever allocated in this function as not suitable
1185 for reuse until the current level is exited. */
1187 void
1188 mark_all_temps_used ()
1190 struct temp_slot *p;
1192 for (p = temp_slots; p; p = p->next)
1194 p->in_use = p->keep = 1;
1195 p->level = MIN (p->level, temp_slot_level);
1199 /* Push deeper into the nesting level for stack temporaries. */
1201 void
1202 push_temp_slots ()
1204 temp_slot_level++;
1207 /* Likewise, but save the new level as the place to allocate variables
1208 for blocks. */
1210 #if 0
1211 void
1212 push_temp_slots_for_block ()
1214 push_temp_slots ();
1216 var_temp_slot_level = temp_slot_level;
1219 /* Likewise, but save the new level as the place to allocate temporaries
1220 for TARGET_EXPRs. */
1222 void
1223 push_temp_slots_for_target ()
1225 push_temp_slots ();
1227 target_temp_slot_level = temp_slot_level;
1230 /* Set and get the value of target_temp_slot_level. The only
1231 permitted use of these functions is to save and restore this value. */
1234 get_target_temp_slot_level ()
1236 return target_temp_slot_level;
1239 void
1240 set_target_temp_slot_level (level)
1241 int level;
1243 target_temp_slot_level = level;
1245 #endif
1247 /* Pop a temporary nesting level. All slots in use in the current level
1248 are freed. */
1250 void
1251 pop_temp_slots ()
1253 struct temp_slot *p;
1255 for (p = temp_slots; p; p = p->next)
1256 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1257 p->in_use = 0;
1259 combine_temp_slots ();
1261 temp_slot_level--;
1264 /* Initialize temporary slots. */
1266 void
1267 init_temp_slots ()
1269 /* We have not allocated any temporaries yet. */
1270 temp_slots = 0;
1271 temp_slot_level = 0;
1272 var_temp_slot_level = 0;
1273 target_temp_slot_level = 0;
1276 /* Retroactively move an auto variable from a register to a stack slot.
1277 This is done when an address-reference to the variable is seen. */
1279 void
1280 put_var_into_stack (decl)
1281 tree decl;
1283 register rtx reg;
1284 enum machine_mode promoted_mode, decl_mode;
1285 struct function *function = 0;
1286 tree context;
1287 int can_use_addressof;
1289 context = decl_function_context (decl);
1291 /* Get the current rtl used for this object and its original mode. */
1292 reg = TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl) : DECL_RTL (decl);
1294 /* No need to do anything if decl has no rtx yet
1295 since in that case caller is setting TREE_ADDRESSABLE
1296 and a stack slot will be assigned when the rtl is made. */
1297 if (reg == 0)
1298 return;
1300 /* Get the declared mode for this object. */
1301 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1302 : DECL_MODE (decl));
1303 /* Get the mode it's actually stored in. */
1304 promoted_mode = GET_MODE (reg);
1306 /* If this variable comes from an outer function,
1307 find that function's saved context. */
1308 if (context != current_function_decl && context != inline_function_decl)
1309 for (function = outer_function_chain; function; function = function->next)
1310 if (function->decl == context)
1311 break;
1313 /* If this is a variable-size object with a pseudo to address it,
1314 put that pseudo into the stack, if the var is nonlocal. */
1315 if (DECL_NONLOCAL (decl)
1316 && GET_CODE (reg) == MEM
1317 && GET_CODE (XEXP (reg, 0)) == REG
1318 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1320 reg = XEXP (reg, 0);
1321 decl_mode = promoted_mode = GET_MODE (reg);
1324 can_use_addressof
1325 = (function == 0
1326 && optimize > 0
1327 /* FIXME make it work for promoted modes too */
1328 && decl_mode == promoted_mode
1329 #ifdef NON_SAVING_SETJMP
1330 && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1331 #endif
1334 /* If we can't use ADDRESSOF, make sure we see through one we already
1335 generated. */
1336 if (! can_use_addressof && GET_CODE (reg) == MEM
1337 && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1338 reg = XEXP (XEXP (reg, 0), 0);
1340 /* Now we should have a value that resides in one or more pseudo regs. */
1342 if (GET_CODE (reg) == REG)
1344 /* If this variable lives in the current function and we don't need
1345 to put things in the stack for the sake of setjmp, try to keep it
1346 in a register until we know we actually need the address. */
1347 if (can_use_addressof)
1348 gen_mem_addressof (reg, decl);
1349 else
1350 put_reg_into_stack (function, reg, TREE_TYPE (decl),
1351 promoted_mode, decl_mode,
1352 TREE_SIDE_EFFECTS (decl), 0,
1353 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1356 else if (GET_CODE (reg) == CONCAT)
1358 /* A CONCAT contains two pseudos; put them both in the stack.
1359 We do it so they end up consecutive. */
1360 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1361 tree part_type = TREE_TYPE (TREE_TYPE (decl));
1362 #ifdef FRAME_GROWS_DOWNWARD
1363 /* Since part 0 should have a lower address, do it second. */
1364 put_reg_into_stack (function, XEXP (reg, 1), part_type, part_mode,
1365 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1366 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1368 put_reg_into_stack (function, XEXP (reg, 0), part_type, part_mode,
1369 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1370 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1372 #else
1373 put_reg_into_stack (function, XEXP (reg, 0), part_type, part_mode,
1374 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1375 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1377 put_reg_into_stack (function, XEXP (reg, 1), part_type, part_mode,
1378 part_mode, TREE_SIDE_EFFECTS (decl), 0,
1379 TREE_USED (decl) || DECL_INITIAL (decl) != 0,
1381 #endif
1383 /* Change the CONCAT into a combined MEM for both parts. */
1384 PUT_CODE (reg, MEM);
1385 MEM_VOLATILE_P (reg) = MEM_VOLATILE_P (XEXP (reg, 0));
1386 MEM_ALIAS_SET (reg) = get_alias_set (decl);
1388 /* The two parts are in memory order already.
1389 Use the lower parts address as ours. */
1390 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1391 /* Prevent sharing of rtl that might lose. */
1392 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1393 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1395 else
1396 return;
1398 if (current_function_check_memory_usage)
1399 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
1400 XEXP (reg, 0), Pmode,
1401 GEN_INT (GET_MODE_SIZE (GET_MODE (reg))),
1402 TYPE_MODE (sizetype),
1403 GEN_INT (MEMORY_USE_RW),
1404 TYPE_MODE (integer_type_node));
1407 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1408 into the stack frame of FUNCTION (0 means the current function).
1409 DECL_MODE is the machine mode of the user-level data type.
1410 PROMOTED_MODE is the machine mode of the register.
1411 VOLATILE_P is nonzero if this is for a "volatile" decl.
1412 USED_P is nonzero if this reg might have already been used in an insn. */
1414 static void
1415 put_reg_into_stack (function, reg, type, promoted_mode, decl_mode, volatile_p,
1416 original_regno, used_p, ht)
1417 struct function *function;
1418 rtx reg;
1419 tree type;
1420 enum machine_mode promoted_mode, decl_mode;
1421 int volatile_p;
1422 int original_regno;
1423 int used_p;
1424 struct hash_table *ht;
1426 struct function *func = function ? function : cfun;
1427 rtx new = 0;
1428 int regno = original_regno;
1430 if (regno == 0)
1431 regno = REGNO (reg);
1433 if (regno < func->x_max_parm_reg)
1434 new = func->x_parm_reg_stack_loc[regno];
1435 if (new == 0)
1436 new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode), 0, func);
1438 PUT_CODE (reg, MEM);
1439 PUT_MODE (reg, decl_mode);
1440 XEXP (reg, 0) = XEXP (new, 0);
1441 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1442 MEM_VOLATILE_P (reg) = volatile_p;
1444 /* If this is a memory ref that contains aggregate components,
1445 mark it as such for cse and loop optimize. If we are reusing a
1446 previously generated stack slot, then we need to copy the bit in
1447 case it was set for other reasons. For instance, it is set for
1448 __builtin_va_alist. */
1449 MEM_SET_IN_STRUCT_P (reg,
1450 AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
1451 MEM_ALIAS_SET (reg) = get_alias_set (type);
1453 /* Now make sure that all refs to the variable, previously made
1454 when it was a register, are fixed up to be valid again. */
1456 if (used_p && function != 0)
1458 struct var_refs_queue *temp;
1460 temp
1461 = (struct var_refs_queue *) xmalloc (sizeof (struct var_refs_queue));
1462 temp->modified = reg;
1463 temp->promoted_mode = promoted_mode;
1464 temp->unsignedp = TREE_UNSIGNED (type);
1465 temp->next = function->fixup_var_refs_queue;
1466 function->fixup_var_refs_queue = temp;
1468 else if (used_p)
1469 /* Variable is local; fix it up now. */
1470 fixup_var_refs (reg, promoted_mode, TREE_UNSIGNED (type), ht);
1473 static void
1474 fixup_var_refs (var, promoted_mode, unsignedp, ht)
1475 rtx var;
1476 enum machine_mode promoted_mode;
1477 int unsignedp;
1478 struct hash_table *ht;
1480 tree pending;
1481 rtx first_insn = get_insns ();
1482 struct sequence_stack *stack = seq_stack;
1483 tree rtl_exps = rtl_expr_chain;
1485 /* Must scan all insns for stack-refs that exceed the limit. */
1486 fixup_var_refs_insns (var, promoted_mode, unsignedp, first_insn,
1487 stack == 0, ht);
1488 /* If there's a hash table, it must record all uses of VAR. */
1489 if (ht)
1490 return;
1492 /* Scan all pending sequences too. */
1493 for (; stack; stack = stack->next)
1495 push_to_sequence (stack->first);
1496 fixup_var_refs_insns (var, promoted_mode, unsignedp,
1497 stack->first, stack->next != 0, 0);
1498 /* Update remembered end of sequence
1499 in case we added an insn at the end. */
1500 stack->last = get_last_insn ();
1501 end_sequence ();
1504 /* Scan all waiting RTL_EXPRs too. */
1505 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1507 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1508 if (seq != const0_rtx && seq != 0)
1510 push_to_sequence (seq);
1511 fixup_var_refs_insns (var, promoted_mode, unsignedp, seq, 0,
1513 end_sequence ();
1517 /* Scan the catch clauses for exception handling too. */
1518 push_to_sequence (catch_clauses);
1519 fixup_var_refs_insns (var, promoted_mode, unsignedp, catch_clauses,
1520 0, 0);
1521 end_sequence ();
1524 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1525 some part of an insn. Return a struct fixup_replacement whose OLD
1526 value is equal to X. Allocate a new structure if no such entry exists. */
1528 static struct fixup_replacement *
1529 find_fixup_replacement (replacements, x)
1530 struct fixup_replacement **replacements;
1531 rtx x;
1533 struct fixup_replacement *p;
1535 /* See if we have already replaced this. */
1536 for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
1539 if (p == 0)
1541 p = (struct fixup_replacement *) oballoc (sizeof (struct fixup_replacement));
1542 p->old = x;
1543 p->new = 0;
1544 p->next = *replacements;
1545 *replacements = p;
1548 return p;
1551 /* Scan the insn-chain starting with INSN for refs to VAR
1552 and fix them up. TOPLEVEL is nonzero if this chain is the
1553 main chain of insns for the current function. */
1555 static void
1556 fixup_var_refs_insns (var, promoted_mode, unsignedp, insn, toplevel, ht)
1557 rtx var;
1558 enum machine_mode promoted_mode;
1559 int unsignedp;
1560 rtx insn;
1561 int toplevel;
1562 struct hash_table *ht;
1564 rtx call_dest = 0;
1565 rtx insn_list = NULL_RTX;
1567 /* If we already know which INSNs reference VAR there's no need
1568 to walk the entire instruction chain. */
1569 if (ht)
1571 insn_list = ((struct insns_for_mem_entry *)
1572 hash_lookup (ht, var, /*create=*/0, /*copy=*/0))->insns;
1573 insn = insn_list ? XEXP (insn_list, 0) : NULL_RTX;
1574 insn_list = XEXP (insn_list, 1);
1577 while (insn)
1579 rtx next = NEXT_INSN (insn);
1580 rtx set, prev, prev_set;
1581 rtx note;
1583 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1585 /* Remember the notes in case we delete the insn. */
1586 note = REG_NOTES (insn);
1588 /* If this is a CLOBBER of VAR, delete it.
1590 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1591 and REG_RETVAL notes too. */
1592 if (GET_CODE (PATTERN (insn)) == CLOBBER
1593 && (XEXP (PATTERN (insn), 0) == var
1594 || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
1595 && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
1596 || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
1598 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1599 /* The REG_LIBCALL note will go away since we are going to
1600 turn INSN into a NOTE, so just delete the
1601 corresponding REG_RETVAL note. */
1602 remove_note (XEXP (note, 0),
1603 find_reg_note (XEXP (note, 0), REG_RETVAL,
1604 NULL_RTX));
1606 /* In unoptimized compilation, we shouldn't call delete_insn
1607 except in jump.c doing warnings. */
1608 PUT_CODE (insn, NOTE);
1609 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1610 NOTE_SOURCE_FILE (insn) = 0;
1613 /* The insn to load VAR from a home in the arglist
1614 is now a no-op. When we see it, just delete it.
1615 Similarly if this is storing VAR from a register from which
1616 it was loaded in the previous insn. This will occur
1617 when an ADDRESSOF was made for an arglist slot. */
1618 else if (toplevel
1619 && (set = single_set (insn)) != 0
1620 && SET_DEST (set) == var
1621 /* If this represents the result of an insn group,
1622 don't delete the insn. */
1623 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1624 && (rtx_equal_p (SET_SRC (set), var)
1625 || (GET_CODE (SET_SRC (set)) == REG
1626 && (prev = prev_nonnote_insn (insn)) != 0
1627 && (prev_set = single_set (prev)) != 0
1628 && SET_DEST (prev_set) == SET_SRC (set)
1629 && rtx_equal_p (SET_SRC (prev_set), var))))
1631 /* In unoptimized compilation, we shouldn't call delete_insn
1632 except in jump.c doing warnings. */
1633 PUT_CODE (insn, NOTE);
1634 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1635 NOTE_SOURCE_FILE (insn) = 0;
1636 if (insn == last_parm_insn)
1637 last_parm_insn = PREV_INSN (next);
1639 else
1641 struct fixup_replacement *replacements = 0;
1642 rtx next_insn = NEXT_INSN (insn);
1644 if (SMALL_REGISTER_CLASSES)
1646 /* If the insn that copies the results of a CALL_INSN
1647 into a pseudo now references VAR, we have to use an
1648 intermediate pseudo since we want the life of the
1649 return value register to be only a single insn.
1651 If we don't use an intermediate pseudo, such things as
1652 address computations to make the address of VAR valid
1653 if it is not can be placed between the CALL_INSN and INSN.
1655 To make sure this doesn't happen, we record the destination
1656 of the CALL_INSN and see if the next insn uses both that
1657 and VAR. */
1659 if (call_dest != 0 && GET_CODE (insn) == INSN
1660 && reg_mentioned_p (var, PATTERN (insn))
1661 && reg_mentioned_p (call_dest, PATTERN (insn)))
1663 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1665 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1667 PATTERN (insn) = replace_rtx (PATTERN (insn),
1668 call_dest, temp);
1671 if (GET_CODE (insn) == CALL_INSN
1672 && GET_CODE (PATTERN (insn)) == SET)
1673 call_dest = SET_DEST (PATTERN (insn));
1674 else if (GET_CODE (insn) == CALL_INSN
1675 && GET_CODE (PATTERN (insn)) == PARALLEL
1676 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1677 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1678 else
1679 call_dest = 0;
1682 /* See if we have to do anything to INSN now that VAR is in
1683 memory. If it needs to be loaded into a pseudo, use a single
1684 pseudo for the entire insn in case there is a MATCH_DUP
1685 between two operands. We pass a pointer to the head of
1686 a list of struct fixup_replacements. If fixup_var_refs_1
1687 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1688 it will record them in this list.
1690 If it allocated a pseudo for any replacement, we copy into
1691 it here. */
1693 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1694 &replacements);
1696 /* If this is last_parm_insn, and any instructions were output
1697 after it to fix it up, then we must set last_parm_insn to
1698 the last such instruction emitted. */
1699 if (insn == last_parm_insn)
1700 last_parm_insn = PREV_INSN (next_insn);
1702 while (replacements)
1704 if (GET_CODE (replacements->new) == REG)
1706 rtx insert_before;
1707 rtx seq;
1709 /* OLD might be a (subreg (mem)). */
1710 if (GET_CODE (replacements->old) == SUBREG)
1711 replacements->old
1712 = fixup_memory_subreg (replacements->old, insn, 0);
1713 else
1714 replacements->old
1715 = fixup_stack_1 (replacements->old, insn);
1717 insert_before = insn;
1719 /* If we are changing the mode, do a conversion.
1720 This might be wasteful, but combine.c will
1721 eliminate much of the waste. */
1723 if (GET_MODE (replacements->new)
1724 != GET_MODE (replacements->old))
1726 start_sequence ();
1727 convert_move (replacements->new,
1728 replacements->old, unsignedp);
1729 seq = gen_sequence ();
1730 end_sequence ();
1732 else
1733 seq = gen_move_insn (replacements->new,
1734 replacements->old);
1736 emit_insn_before (seq, insert_before);
1739 replacements = replacements->next;
1743 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1744 But don't touch other insns referred to by reg-notes;
1745 we will get them elsewhere. */
1746 while (note)
1748 if (GET_CODE (note) != INSN_LIST)
1749 XEXP (note, 0)
1750 = walk_fixup_memory_subreg (XEXP (note, 0), insn, 1);
1751 note = XEXP (note, 1);
1755 if (!ht)
1756 insn = next;
1757 else if (insn_list)
1759 insn = XEXP (insn_list, 0);
1760 insn_list = XEXP (insn_list, 1);
1762 else
1763 insn = NULL_RTX;
1767 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1768 See if the rtx expression at *LOC in INSN needs to be changed.
1770 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1771 contain a list of original rtx's and replacements. If we find that we need
1772 to modify this insn by replacing a memory reference with a pseudo or by
1773 making a new MEM to implement a SUBREG, we consult that list to see if
1774 we have already chosen a replacement. If none has already been allocated,
1775 we allocate it and update the list. fixup_var_refs_insns will copy VAR
1776 or the SUBREG, as appropriate, to the pseudo. */
1778 static void
1779 fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements)
1780 register rtx var;
1781 enum machine_mode promoted_mode;
1782 register rtx *loc;
1783 rtx insn;
1784 struct fixup_replacement **replacements;
1786 register int i;
1787 register rtx x = *loc;
1788 RTX_CODE code = GET_CODE (x);
1789 register const char *fmt;
1790 register rtx tem, tem1;
1791 struct fixup_replacement *replacement;
1793 switch (code)
1795 case ADDRESSOF:
1796 if (XEXP (x, 0) == var)
1798 /* Prevent sharing of rtl that might lose. */
1799 rtx sub = copy_rtx (XEXP (var, 0));
1801 if (! validate_change (insn, loc, sub, 0))
1803 rtx y = gen_reg_rtx (GET_MODE (sub));
1804 rtx seq, new_insn;
1806 /* We should be able to replace with a register or all is lost.
1807 Note that we can't use validate_change to verify this, since
1808 we're not caring for replacing all dups simultaneously. */
1809 if (! validate_replace_rtx (*loc, y, insn))
1810 abort ();
1812 /* Careful! First try to recognize a direct move of the
1813 value, mimicking how things are done in gen_reload wrt
1814 PLUS. Consider what happens when insn is a conditional
1815 move instruction and addsi3 clobbers flags. */
1817 start_sequence ();
1818 new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
1819 seq = gen_sequence ();
1820 end_sequence ();
1822 if (recog_memoized (new_insn) < 0)
1824 /* That failed. Fall back on force_operand and hope. */
1826 start_sequence ();
1827 force_operand (sub, y);
1828 seq = gen_sequence ();
1829 end_sequence ();
1832 #ifdef HAVE_cc0
1833 /* Don't separate setter from user. */
1834 if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
1835 insn = PREV_INSN (insn);
1836 #endif
1838 emit_insn_before (seq, insn);
1841 return;
1843 case MEM:
1844 if (var == x)
1846 /* If we already have a replacement, use it. Otherwise,
1847 try to fix up this address in case it is invalid. */
1849 replacement = find_fixup_replacement (replacements, var);
1850 if (replacement->new)
1852 *loc = replacement->new;
1853 return;
1856 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1858 /* Unless we are forcing memory to register or we changed the mode,
1859 we can leave things the way they are if the insn is valid. */
1861 INSN_CODE (insn) = -1;
1862 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1863 && recog_memoized (insn) >= 0)
1864 return;
1866 *loc = replacement->new = gen_reg_rtx (promoted_mode);
1867 return;
1870 /* If X contains VAR, we need to unshare it here so that we update
1871 each occurrence separately. But all identical MEMs in one insn
1872 must be replaced with the same rtx because of the possibility of
1873 MATCH_DUPs. */
1875 if (reg_mentioned_p (var, x))
1877 replacement = find_fixup_replacement (replacements, x);
1878 if (replacement->new == 0)
1879 replacement->new = copy_most_rtx (x, var);
1881 *loc = x = replacement->new;
1883 break;
1885 case REG:
1886 case CC0:
1887 case PC:
1888 case CONST_INT:
1889 case CONST:
1890 case SYMBOL_REF:
1891 case LABEL_REF:
1892 case CONST_DOUBLE:
1893 return;
1895 case SIGN_EXTRACT:
1896 case ZERO_EXTRACT:
1897 /* Note that in some cases those types of expressions are altered
1898 by optimize_bit_field, and do not survive to get here. */
1899 if (XEXP (x, 0) == var
1900 || (GET_CODE (XEXP (x, 0)) == SUBREG
1901 && SUBREG_REG (XEXP (x, 0)) == var))
1903 /* Get TEM as a valid MEM in the mode presently in the insn.
1905 We don't worry about the possibility of MATCH_DUP here; it
1906 is highly unlikely and would be tricky to handle. */
1908 tem = XEXP (x, 0);
1909 if (GET_CODE (tem) == SUBREG)
1911 if (GET_MODE_BITSIZE (GET_MODE (tem))
1912 > GET_MODE_BITSIZE (GET_MODE (var)))
1914 replacement = find_fixup_replacement (replacements, var);
1915 if (replacement->new == 0)
1916 replacement->new = gen_reg_rtx (GET_MODE (var));
1917 SUBREG_REG (tem) = replacement->new;
1919 else
1920 tem = fixup_memory_subreg (tem, insn, 0);
1922 else
1923 tem = fixup_stack_1 (tem, insn);
1925 /* Unless we want to load from memory, get TEM into the proper mode
1926 for an extract from memory. This can only be done if the
1927 extract is at a constant position and length. */
1929 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
1930 && GET_CODE (XEXP (x, 2)) == CONST_INT
1931 && ! mode_dependent_address_p (XEXP (tem, 0))
1932 && ! MEM_VOLATILE_P (tem))
1934 enum machine_mode wanted_mode = VOIDmode;
1935 enum machine_mode is_mode = GET_MODE (tem);
1936 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
1938 #ifdef HAVE_extzv
1939 if (GET_CODE (x) == ZERO_EXTRACT)
1941 wanted_mode
1942 = insn_data[(int) CODE_FOR_extzv].operand[1].mode;
1943 if (wanted_mode == VOIDmode)
1944 wanted_mode = word_mode;
1946 #endif
1947 #ifdef HAVE_extv
1948 if (GET_CODE (x) == SIGN_EXTRACT)
1950 wanted_mode = insn_data[(int) CODE_FOR_extv].operand[1].mode;
1951 if (wanted_mode == VOIDmode)
1952 wanted_mode = word_mode;
1954 #endif
1955 /* If we have a narrower mode, we can do something. */
1956 if (wanted_mode != VOIDmode
1957 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
1959 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
1960 rtx old_pos = XEXP (x, 2);
1961 rtx newmem;
1963 /* If the bytes and bits are counted differently, we
1964 must adjust the offset. */
1965 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
1966 offset = (GET_MODE_SIZE (is_mode)
1967 - GET_MODE_SIZE (wanted_mode) - offset);
1969 pos %= GET_MODE_BITSIZE (wanted_mode);
1971 newmem = gen_rtx_MEM (wanted_mode,
1972 plus_constant (XEXP (tem, 0), offset));
1973 RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (tem);
1974 MEM_COPY_ATTRIBUTES (newmem, tem);
1976 /* Make the change and see if the insn remains valid. */
1977 INSN_CODE (insn) = -1;
1978 XEXP (x, 0) = newmem;
1979 XEXP (x, 2) = GEN_INT (pos);
1981 if (recog_memoized (insn) >= 0)
1982 return;
1984 /* Otherwise, restore old position. XEXP (x, 0) will be
1985 restored later. */
1986 XEXP (x, 2) = old_pos;
1990 /* If we get here, the bitfield extract insn can't accept a memory
1991 reference. Copy the input into a register. */
1993 tem1 = gen_reg_rtx (GET_MODE (tem));
1994 emit_insn_before (gen_move_insn (tem1, tem), insn);
1995 XEXP (x, 0) = tem1;
1996 return;
1998 break;
2000 case SUBREG:
2001 if (SUBREG_REG (x) == var)
2003 /* If this is a special SUBREG made because VAR was promoted
2004 from a wider mode, replace it with VAR and call ourself
2005 recursively, this time saying that the object previously
2006 had its current mode (by virtue of the SUBREG). */
2008 if (SUBREG_PROMOTED_VAR_P (x))
2010 *loc = var;
2011 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements);
2012 return;
2015 /* If this SUBREG makes VAR wider, it has become a paradoxical
2016 SUBREG with VAR in memory, but these aren't allowed at this
2017 stage of the compilation. So load VAR into a pseudo and take
2018 a SUBREG of that pseudo. */
2019 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
2021 replacement = find_fixup_replacement (replacements, var);
2022 if (replacement->new == 0)
2023 replacement->new = gen_reg_rtx (GET_MODE (var));
2024 SUBREG_REG (x) = replacement->new;
2025 return;
2028 /* See if we have already found a replacement for this SUBREG.
2029 If so, use it. Otherwise, make a MEM and see if the insn
2030 is recognized. If not, or if we should force MEM into a register,
2031 make a pseudo for this SUBREG. */
2032 replacement = find_fixup_replacement (replacements, x);
2033 if (replacement->new)
2035 *loc = replacement->new;
2036 return;
2039 replacement->new = *loc = fixup_memory_subreg (x, insn, 0);
2041 INSN_CODE (insn) = -1;
2042 if (! flag_force_mem && recog_memoized (insn) >= 0)
2043 return;
2045 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
2046 return;
2048 break;
2050 case SET:
2051 /* First do special simplification of bit-field references. */
2052 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
2053 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2054 optimize_bit_field (x, insn, 0);
2055 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
2056 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
2057 optimize_bit_field (x, insn, NULL_PTR);
2059 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2060 into a register and then store it back out. */
2061 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2062 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
2063 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
2064 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2065 > GET_MODE_SIZE (GET_MODE (var))))
2067 replacement = find_fixup_replacement (replacements, var);
2068 if (replacement->new == 0)
2069 replacement->new = gen_reg_rtx (GET_MODE (var));
2071 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
2072 emit_insn_after (gen_move_insn (var, replacement->new), insn);
2075 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2076 insn into a pseudo and store the low part of the pseudo into VAR. */
2077 if (GET_CODE (SET_DEST (x)) == SUBREG
2078 && SUBREG_REG (SET_DEST (x)) == var
2079 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2080 > GET_MODE_SIZE (GET_MODE (var))))
2082 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
2083 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2084 tem)),
2085 insn);
2086 break;
2090 rtx dest = SET_DEST (x);
2091 rtx src = SET_SRC (x);
2092 #ifdef HAVE_insv
2093 rtx outerdest = dest;
2094 #endif
2096 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2097 || GET_CODE (dest) == SIGN_EXTRACT
2098 || GET_CODE (dest) == ZERO_EXTRACT)
2099 dest = XEXP (dest, 0);
2101 if (GET_CODE (src) == SUBREG)
2102 src = XEXP (src, 0);
2104 /* If VAR does not appear at the top level of the SET
2105 just scan the lower levels of the tree. */
2107 if (src != var && dest != var)
2108 break;
2110 /* We will need to rerecognize this insn. */
2111 INSN_CODE (insn) = -1;
2113 #ifdef HAVE_insv
2114 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var)
2116 /* Since this case will return, ensure we fixup all the
2117 operands here. */
2118 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2119 insn, replacements);
2120 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2121 insn, replacements);
2122 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2123 insn, replacements);
2125 tem = XEXP (outerdest, 0);
2127 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2128 that may appear inside a ZERO_EXTRACT.
2129 This was legitimate when the MEM was a REG. */
2130 if (GET_CODE (tem) == SUBREG
2131 && SUBREG_REG (tem) == var)
2132 tem = fixup_memory_subreg (tem, insn, 0);
2133 else
2134 tem = fixup_stack_1 (tem, insn);
2136 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2137 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2138 && ! mode_dependent_address_p (XEXP (tem, 0))
2139 && ! MEM_VOLATILE_P (tem))
2141 enum machine_mode wanted_mode;
2142 enum machine_mode is_mode = GET_MODE (tem);
2143 HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
2145 wanted_mode = insn_data[(int) CODE_FOR_insv].operand[0].mode;
2146 if (wanted_mode == VOIDmode)
2147 wanted_mode = word_mode;
2149 /* If we have a narrower mode, we can do something. */
2150 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2152 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2153 rtx old_pos = XEXP (outerdest, 2);
2154 rtx newmem;
2156 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2157 offset = (GET_MODE_SIZE (is_mode)
2158 - GET_MODE_SIZE (wanted_mode) - offset);
2160 pos %= GET_MODE_BITSIZE (wanted_mode);
2162 newmem = gen_rtx_MEM (wanted_mode,
2163 plus_constant (XEXP (tem, 0),
2164 offset));
2165 RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (tem);
2166 MEM_COPY_ATTRIBUTES (newmem, tem);
2168 /* Make the change and see if the insn remains valid. */
2169 INSN_CODE (insn) = -1;
2170 XEXP (outerdest, 0) = newmem;
2171 XEXP (outerdest, 2) = GEN_INT (pos);
2173 if (recog_memoized (insn) >= 0)
2174 return;
2176 /* Otherwise, restore old position. XEXP (x, 0) will be
2177 restored later. */
2178 XEXP (outerdest, 2) = old_pos;
2182 /* If we get here, the bit-field store doesn't allow memory
2183 or isn't located at a constant position. Load the value into
2184 a register, do the store, and put it back into memory. */
2186 tem1 = gen_reg_rtx (GET_MODE (tem));
2187 emit_insn_before (gen_move_insn (tem1, tem), insn);
2188 emit_insn_after (gen_move_insn (tem, tem1), insn);
2189 XEXP (outerdest, 0) = tem1;
2190 return;
2192 #endif
2194 /* STRICT_LOW_PART is a no-op on memory references
2195 and it can cause combinations to be unrecognizable,
2196 so eliminate it. */
2198 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2199 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2201 /* A valid insn to copy VAR into or out of a register
2202 must be left alone, to avoid an infinite loop here.
2203 If the reference to VAR is by a subreg, fix that up,
2204 since SUBREG is not valid for a memref.
2205 Also fix up the address of the stack slot.
2207 Note that we must not try to recognize the insn until
2208 after we know that we have valid addresses and no
2209 (subreg (mem ...) ...) constructs, since these interfere
2210 with determining the validity of the insn. */
2212 if ((SET_SRC (x) == var
2213 || (GET_CODE (SET_SRC (x)) == SUBREG
2214 && SUBREG_REG (SET_SRC (x)) == var))
2215 && (GET_CODE (SET_DEST (x)) == REG
2216 || (GET_CODE (SET_DEST (x)) == SUBREG
2217 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2218 && GET_MODE (var) == promoted_mode
2219 && x == single_set (insn))
2221 rtx pat;
2223 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2224 if (replacement->new)
2225 SET_SRC (x) = replacement->new;
2226 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2227 SET_SRC (x) = replacement->new
2228 = fixup_memory_subreg (SET_SRC (x), insn, 0);
2229 else
2230 SET_SRC (x) = replacement->new
2231 = fixup_stack_1 (SET_SRC (x), insn);
2233 if (recog_memoized (insn) >= 0)
2234 return;
2236 /* INSN is not valid, but we know that we want to
2237 copy SET_SRC (x) to SET_DEST (x) in some way. So
2238 we generate the move and see whether it requires more
2239 than one insn. If it does, we emit those insns and
2240 delete INSN. Otherwise, we an just replace the pattern
2241 of INSN; we have already verified above that INSN has
2242 no other function that to do X. */
2244 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2245 if (GET_CODE (pat) == SEQUENCE)
2247 emit_insn_after (pat, insn);
2248 PUT_CODE (insn, NOTE);
2249 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2250 NOTE_SOURCE_FILE (insn) = 0;
2252 else
2253 PATTERN (insn) = pat;
2255 return;
2258 if ((SET_DEST (x) == var
2259 || (GET_CODE (SET_DEST (x)) == SUBREG
2260 && SUBREG_REG (SET_DEST (x)) == var))
2261 && (GET_CODE (SET_SRC (x)) == REG
2262 || (GET_CODE (SET_SRC (x)) == SUBREG
2263 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2264 && GET_MODE (var) == promoted_mode
2265 && x == single_set (insn))
2267 rtx pat;
2269 if (GET_CODE (SET_DEST (x)) == SUBREG)
2270 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn, 0);
2271 else
2272 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2274 if (recog_memoized (insn) >= 0)
2275 return;
2277 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2278 if (GET_CODE (pat) == SEQUENCE)
2280 emit_insn_after (pat, insn);
2281 PUT_CODE (insn, NOTE);
2282 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2283 NOTE_SOURCE_FILE (insn) = 0;
2285 else
2286 PATTERN (insn) = pat;
2288 return;
2291 /* Otherwise, storing into VAR must be handled specially
2292 by storing into a temporary and copying that into VAR
2293 with a new insn after this one. Note that this case
2294 will be used when storing into a promoted scalar since
2295 the insn will now have different modes on the input
2296 and output and hence will be invalid (except for the case
2297 of setting it to a constant, which does not need any
2298 change if it is valid). We generate extra code in that case,
2299 but combine.c will eliminate it. */
2301 if (dest == var)
2303 rtx temp;
2304 rtx fixeddest = SET_DEST (x);
2306 /* STRICT_LOW_PART can be discarded, around a MEM. */
2307 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2308 fixeddest = XEXP (fixeddest, 0);
2309 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2310 if (GET_CODE (fixeddest) == SUBREG)
2312 fixeddest = fixup_memory_subreg (fixeddest, insn, 0);
2313 promoted_mode = GET_MODE (fixeddest);
2315 else
2316 fixeddest = fixup_stack_1 (fixeddest, insn);
2318 temp = gen_reg_rtx (promoted_mode);
2320 emit_insn_after (gen_move_insn (fixeddest,
2321 gen_lowpart (GET_MODE (fixeddest),
2322 temp)),
2323 insn);
2325 SET_DEST (x) = temp;
2329 default:
2330 break;
2333 /* Nothing special about this RTX; fix its operands. */
2335 fmt = GET_RTX_FORMAT (code);
2336 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2338 if (fmt[i] == 'e')
2339 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements);
2340 else if (fmt[i] == 'E')
2342 register int j;
2343 for (j = 0; j < XVECLEN (x, i); j++)
2344 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2345 insn, replacements);
2350 /* Given X, an rtx of the form (SUBREG:m1 (MEM:m2 addr)),
2351 return an rtx (MEM:m1 newaddr) which is equivalent.
2352 If any insns must be emitted to compute NEWADDR, put them before INSN.
2354 UNCRITICAL nonzero means accept paradoxical subregs.
2355 This is used for subregs found inside REG_NOTES. */
2357 static rtx
2358 fixup_memory_subreg (x, insn, uncritical)
2359 rtx x;
2360 rtx insn;
2361 int uncritical;
2363 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
2364 rtx addr = XEXP (SUBREG_REG (x), 0);
2365 enum machine_mode mode = GET_MODE (x);
2366 rtx result;
2368 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2369 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
2370 && ! uncritical)
2371 abort ();
2373 if (BYTES_BIG_ENDIAN)
2374 offset += (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2375 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
2376 addr = plus_constant (addr, offset);
2377 if (!flag_force_addr && memory_address_p (mode, addr))
2378 /* Shortcut if no insns need be emitted. */
2379 return change_address (SUBREG_REG (x), mode, addr);
2380 start_sequence ();
2381 result = change_address (SUBREG_REG (x), mode, addr);
2382 emit_insn_before (gen_sequence (), insn);
2383 end_sequence ();
2384 return result;
2387 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2388 Replace subexpressions of X in place.
2389 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2390 Otherwise return X, with its contents possibly altered.
2392 If any insns must be emitted to compute NEWADDR, put them before INSN.
2394 UNCRITICAL is as in fixup_memory_subreg. */
2396 static rtx
2397 walk_fixup_memory_subreg (x, insn, uncritical)
2398 register rtx x;
2399 rtx insn;
2400 int uncritical;
2402 register enum rtx_code code;
2403 register const char *fmt;
2404 register int i;
2406 if (x == 0)
2407 return 0;
2409 code = GET_CODE (x);
2411 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2412 return fixup_memory_subreg (x, insn, uncritical);
2414 /* Nothing special about this RTX; fix its operands. */
2416 fmt = GET_RTX_FORMAT (code);
2417 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2419 if (fmt[i] == 'e')
2420 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn, uncritical);
2421 else if (fmt[i] == 'E')
2423 register int j;
2424 for (j = 0; j < XVECLEN (x, i); j++)
2425 XVECEXP (x, i, j)
2426 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn, uncritical);
2429 return x;
2432 /* For each memory ref within X, if it refers to a stack slot
2433 with an out of range displacement, put the address in a temp register
2434 (emitting new insns before INSN to load these registers)
2435 and alter the memory ref to use that register.
2436 Replace each such MEM rtx with a copy, to avoid clobberage. */
2438 static rtx
2439 fixup_stack_1 (x, insn)
2440 rtx x;
2441 rtx insn;
2443 register int i;
2444 register RTX_CODE code = GET_CODE (x);
2445 register const char *fmt;
2447 if (code == MEM)
2449 register rtx ad = XEXP (x, 0);
2450 /* If we have address of a stack slot but it's not valid
2451 (displacement is too large), compute the sum in a register. */
2452 if (GET_CODE (ad) == PLUS
2453 && GET_CODE (XEXP (ad, 0)) == REG
2454 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2455 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2456 || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2457 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2458 || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2459 #endif
2460 || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
2461 || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2462 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2463 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2465 rtx temp, seq;
2466 if (memory_address_p (GET_MODE (x), ad))
2467 return x;
2469 start_sequence ();
2470 temp = copy_to_reg (ad);
2471 seq = gen_sequence ();
2472 end_sequence ();
2473 emit_insn_before (seq, insn);
2474 return change_address (x, VOIDmode, temp);
2476 return x;
2479 fmt = GET_RTX_FORMAT (code);
2480 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2482 if (fmt[i] == 'e')
2483 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2484 else if (fmt[i] == 'E')
2486 register int j;
2487 for (j = 0; j < XVECLEN (x, i); j++)
2488 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2491 return x;
2494 /* Optimization: a bit-field instruction whose field
2495 happens to be a byte or halfword in memory
2496 can be changed to a move instruction.
2498 We call here when INSN is an insn to examine or store into a bit-field.
2499 BODY is the SET-rtx to be altered.
2501 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2502 (Currently this is called only from function.c, and EQUIV_MEM
2503 is always 0.) */
2505 static void
2506 optimize_bit_field (body, insn, equiv_mem)
2507 rtx body;
2508 rtx insn;
2509 rtx *equiv_mem;
2511 register rtx bitfield;
2512 int destflag;
2513 rtx seq = 0;
2514 enum machine_mode mode;
2516 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2517 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2518 bitfield = SET_DEST (body), destflag = 1;
2519 else
2520 bitfield = SET_SRC (body), destflag = 0;
2522 /* First check that the field being stored has constant size and position
2523 and is in fact a byte or halfword suitably aligned. */
2525 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2526 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2527 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2528 != BLKmode)
2529 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2531 register rtx memref = 0;
2533 /* Now check that the containing word is memory, not a register,
2534 and that it is safe to change the machine mode. */
2536 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2537 memref = XEXP (bitfield, 0);
2538 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2539 && equiv_mem != 0)
2540 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2541 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2542 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2543 memref = SUBREG_REG (XEXP (bitfield, 0));
2544 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2545 && equiv_mem != 0
2546 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2547 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2549 if (memref
2550 && ! mode_dependent_address_p (XEXP (memref, 0))
2551 && ! MEM_VOLATILE_P (memref))
2553 /* Now adjust the address, first for any subreg'ing
2554 that we are now getting rid of,
2555 and then for which byte of the word is wanted. */
2557 HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
2558 rtx insns;
2560 /* Adjust OFFSET to count bits from low-address byte. */
2561 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2562 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2563 - offset - INTVAL (XEXP (bitfield, 1)));
2565 /* Adjust OFFSET to count bytes from low-address byte. */
2566 offset /= BITS_PER_UNIT;
2567 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2569 offset += SUBREG_WORD (XEXP (bitfield, 0)) * UNITS_PER_WORD;
2570 if (BYTES_BIG_ENDIAN)
2571 offset -= (MIN (UNITS_PER_WORD,
2572 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2573 - MIN (UNITS_PER_WORD,
2574 GET_MODE_SIZE (GET_MODE (memref))));
2577 start_sequence ();
2578 memref = change_address (memref, mode,
2579 plus_constant (XEXP (memref, 0), offset));
2580 insns = get_insns ();
2581 end_sequence ();
2582 emit_insns_before (insns, insn);
2584 /* Store this memory reference where
2585 we found the bit field reference. */
2587 if (destflag)
2589 validate_change (insn, &SET_DEST (body), memref, 1);
2590 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2592 rtx src = SET_SRC (body);
2593 while (GET_CODE (src) == SUBREG
2594 && SUBREG_WORD (src) == 0)
2595 src = SUBREG_REG (src);
2596 if (GET_MODE (src) != GET_MODE (memref))
2597 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2598 validate_change (insn, &SET_SRC (body), src, 1);
2600 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2601 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2602 /* This shouldn't happen because anything that didn't have
2603 one of these modes should have got converted explicitly
2604 and then referenced through a subreg.
2605 This is so because the original bit-field was
2606 handled by agg_mode and so its tree structure had
2607 the same mode that memref now has. */
2608 abort ();
2610 else
2612 rtx dest = SET_DEST (body);
2614 while (GET_CODE (dest) == SUBREG
2615 && SUBREG_WORD (dest) == 0
2616 && (GET_MODE_CLASS (GET_MODE (dest))
2617 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
2618 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2619 <= UNITS_PER_WORD))
2620 dest = SUBREG_REG (dest);
2622 validate_change (insn, &SET_DEST (body), dest, 1);
2624 if (GET_MODE (dest) == GET_MODE (memref))
2625 validate_change (insn, &SET_SRC (body), memref, 1);
2626 else
2628 /* Convert the mem ref to the destination mode. */
2629 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2631 start_sequence ();
2632 convert_move (newreg, memref,
2633 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2634 seq = get_insns ();
2635 end_sequence ();
2637 validate_change (insn, &SET_SRC (body), newreg, 1);
2641 /* See if we can convert this extraction or insertion into
2642 a simple move insn. We might not be able to do so if this
2643 was, for example, part of a PARALLEL.
2645 If we succeed, write out any needed conversions. If we fail,
2646 it is hard to guess why we failed, so don't do anything
2647 special; just let the optimization be suppressed. */
2649 if (apply_change_group () && seq)
2650 emit_insns_before (seq, insn);
2655 /* These routines are responsible for converting virtual register references
2656 to the actual hard register references once RTL generation is complete.
2658 The following four variables are used for communication between the
2659 routines. They contain the offsets of the virtual registers from their
2660 respective hard registers. */
2662 static int in_arg_offset;
2663 static int var_offset;
2664 static int dynamic_offset;
2665 static int out_arg_offset;
2666 static int cfa_offset;
2668 /* In most machines, the stack pointer register is equivalent to the bottom
2669 of the stack. */
2671 #ifndef STACK_POINTER_OFFSET
2672 #define STACK_POINTER_OFFSET 0
2673 #endif
2675 /* If not defined, pick an appropriate default for the offset of dynamically
2676 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2677 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2679 #ifndef STACK_DYNAMIC_OFFSET
2681 #ifdef ACCUMULATE_OUTGOING_ARGS
2682 /* The bottom of the stack points to the actual arguments. If
2683 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2684 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2685 stack space for register parameters is not pushed by the caller, but
2686 rather part of the fixed stack areas and hence not included in
2687 `current_function_outgoing_args_size'. Nevertheless, we must allow
2688 for it when allocating stack dynamic objects. */
2690 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2691 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2692 (current_function_outgoing_args_size \
2693 + REG_PARM_STACK_SPACE (FNDECL) + (STACK_POINTER_OFFSET))
2695 #else
2696 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2697 (current_function_outgoing_args_size + (STACK_POINTER_OFFSET))
2698 #endif
2700 #else
2701 #define STACK_DYNAMIC_OFFSET(FNDECL) STACK_POINTER_OFFSET
2702 #endif
2703 #endif
2705 /* On a few machines, the CFA coincides with the arg pointer. */
2707 #ifndef ARG_POINTER_CFA_OFFSET
2708 #define ARG_POINTER_CFA_OFFSET 0
2709 #endif
2712 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just had
2713 its address taken. DECL is the decl for the object stored in the
2714 register, for later use if we do need to force REG into the stack.
2715 REG is overwritten by the MEM like in put_reg_into_stack. */
2718 gen_mem_addressof (reg, decl)
2719 rtx reg;
2720 tree decl;
2722 tree type = TREE_TYPE (decl);
2723 rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
2724 REGNO (reg), decl);
2726 /* If the original REG was a user-variable, then so is the REG whose
2727 address is being taken. Likewise for unchanging. */
2728 REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
2729 RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
2731 PUT_CODE (reg, MEM);
2732 PUT_MODE (reg, DECL_MODE (decl));
2733 XEXP (reg, 0) = r;
2734 MEM_VOLATILE_P (reg) = TREE_SIDE_EFFECTS (decl);
2735 MEM_SET_IN_STRUCT_P (reg, AGGREGATE_TYPE_P (type));
2736 MEM_ALIAS_SET (reg) = get_alias_set (decl);
2738 if (TREE_USED (decl) || DECL_INITIAL (decl) != 0)
2739 fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), 0);
2741 return reg;
2744 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2746 #if 0
2747 void
2748 flush_addressof (decl)
2749 tree decl;
2751 if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
2752 && DECL_RTL (decl) != 0
2753 && GET_CODE (DECL_RTL (decl)) == MEM
2754 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
2755 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2756 put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
2758 #endif
2760 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2762 static void
2763 put_addressof_into_stack (r, ht)
2764 rtx r;
2765 struct hash_table *ht;
2767 tree decl = ADDRESSOF_DECL (r);
2768 rtx reg = XEXP (r, 0);
2770 if (GET_CODE (reg) != REG)
2771 abort ();
2773 put_reg_into_stack (0, reg, TREE_TYPE (decl), GET_MODE (reg),
2774 DECL_MODE (decl), TREE_SIDE_EFFECTS (decl),
2775 ADDRESSOF_REGNO (r),
2776 TREE_USED (decl) || DECL_INITIAL (decl) != 0, ht);
2779 /* List of replacements made below in purge_addressof_1 when creating
2780 bitfield insertions. */
2781 static rtx purge_bitfield_addressof_replacements;
2783 /* List of replacements made below in purge_addressof_1 for patterns
2784 (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
2785 corresponding (ADDRESSOF (REG ...)) and value is a substitution for
2786 the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
2787 enough in complex cases, e.g. when some field values can be
2788 extracted by usage MEM with narrower mode. */
2789 static rtx purge_addressof_replacements;
2791 /* Helper function for purge_addressof. See if the rtx expression at *LOC
2792 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
2793 the stack. If the function returns FALSE then the replacement could not
2794 be made. */
2796 static boolean
2797 purge_addressof_1 (loc, insn, force, store, ht)
2798 rtx *loc;
2799 rtx insn;
2800 int force, store;
2801 struct hash_table *ht;
2803 rtx x;
2804 RTX_CODE code;
2805 int i, j;
2806 const char *fmt;
2807 boolean result = true;
2809 /* Re-start here to avoid recursion in common cases. */
2810 restart:
2812 x = *loc;
2813 if (x == 0)
2814 return true;
2816 code = GET_CODE (x);
2818 /* If we don't return in any of the cases below, we will recurse inside
2819 the RTX, which will normally result in any ADDRESSOF being forced into
2820 memory. */
2821 if (code == SET)
2823 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
2824 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
2825 return result;
2828 else if (code == ADDRESSOF && GET_CODE (XEXP (x, 0)) == MEM)
2830 /* We must create a copy of the rtx because it was created by
2831 overwriting a REG rtx which is always shared. */
2832 rtx sub = copy_rtx (XEXP (XEXP (x, 0), 0));
2833 rtx insns;
2835 if (validate_change (insn, loc, sub, 0)
2836 || validate_replace_rtx (x, sub, insn))
2837 return true;
2839 start_sequence ();
2840 sub = force_operand (sub, NULL_RTX);
2841 if (! validate_change (insn, loc, sub, 0)
2842 && ! validate_replace_rtx (x, sub, insn))
2843 abort ();
2845 insns = gen_sequence ();
2846 end_sequence ();
2847 emit_insn_before (insns, insn);
2848 return true;
2851 else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
2853 rtx sub = XEXP (XEXP (x, 0), 0);
2854 rtx sub2;
2856 if (GET_CODE (sub) == MEM)
2858 sub2 = gen_rtx_MEM (GET_MODE (x), copy_rtx (XEXP (sub, 0)));
2859 MEM_COPY_ATTRIBUTES (sub2, sub);
2860 RTX_UNCHANGING_P (sub2) = RTX_UNCHANGING_P (sub);
2861 sub = sub2;
2863 else if (GET_CODE (sub) == REG
2864 && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2866 else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
2868 int size_x, size_sub;
2870 if (!insn)
2872 /* When processing REG_NOTES look at the list of
2873 replacements done on the insn to find the register that X
2874 was replaced by. */
2875 rtx tem;
2877 for (tem = purge_bitfield_addressof_replacements;
2878 tem != NULL_RTX;
2879 tem = XEXP (XEXP (tem, 1), 1))
2880 if (rtx_equal_p (x, XEXP (tem, 0)))
2882 *loc = XEXP (XEXP (tem, 1), 0);
2883 return true;
2886 /* See comment for purge_addressof_replacements. */
2887 for (tem = purge_addressof_replacements;
2888 tem != NULL_RTX;
2889 tem = XEXP (XEXP (tem, 1), 1))
2890 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
2892 rtx z = XEXP (XEXP (tem, 1), 0);
2894 if (GET_MODE (x) == GET_MODE (z)
2895 || (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
2896 && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
2897 abort ();
2899 /* It can happen that the note may speak of things
2900 in a wider (or just different) mode than the
2901 code did. This is especially true of
2902 REG_RETVAL. */
2904 if (GET_CODE (z) == SUBREG && SUBREG_WORD (z) == 0)
2905 z = SUBREG_REG (z);
2907 if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2908 && (GET_MODE_SIZE (GET_MODE (x))
2909 > GET_MODE_SIZE (GET_MODE (z))))
2911 /* This can occur as a result in invalid
2912 pointer casts, e.g. float f; ...
2913 *(long long int *)&f.
2914 ??? We could emit a warning here, but
2915 without a line number that wouldn't be
2916 very helpful. */
2917 z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
2919 else
2920 z = gen_lowpart (GET_MODE (x), z);
2922 *loc = z;
2923 return true;
2926 /* Sometimes we may not be able to find the replacement. For
2927 example when the original insn was a MEM in a wider mode,
2928 and the note is part of a sign extension of a narrowed
2929 version of that MEM. Gcc testcase compile/990829-1.c can
2930 generate an example of this siutation. Rather than complain
2931 we return false, which will prompt our caller to remove the
2932 offending note. */
2933 return false;
2936 size_x = GET_MODE_BITSIZE (GET_MODE (x));
2937 size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
2939 /* Don't even consider working with paradoxical subregs,
2940 or the moral equivalent seen here. */
2941 if (size_x <= size_sub
2942 && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
2944 /* Do a bitfield insertion to mirror what would happen
2945 in memory. */
2947 rtx val, seq;
2949 if (store)
2951 rtx p = PREV_INSN (insn);
2953 start_sequence ();
2954 val = gen_reg_rtx (GET_MODE (x));
2955 if (! validate_change (insn, loc, val, 0))
2957 /* Discard the current sequence and put the
2958 ADDRESSOF on stack. */
2959 end_sequence ();
2960 goto give_up;
2962 seq = gen_sequence ();
2963 end_sequence ();
2964 emit_insn_before (seq, insn);
2965 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
2966 insn, ht);
2968 start_sequence ();
2969 store_bit_field (sub, size_x, 0, GET_MODE (x),
2970 val, GET_MODE_SIZE (GET_MODE (sub)),
2971 GET_MODE_SIZE (GET_MODE (sub)));
2973 /* Make sure to unshare any shared rtl that store_bit_field
2974 might have created. */
2975 for (p = get_insns(); p; p = NEXT_INSN (p))
2977 reset_used_flags (PATTERN (p));
2978 reset_used_flags (REG_NOTES (p));
2979 reset_used_flags (LOG_LINKS (p));
2981 unshare_all_rtl (get_insns ());
2983 seq = gen_sequence ();
2984 end_sequence ();
2985 p = emit_insn_after (seq, insn);
2986 if (NEXT_INSN (insn))
2987 compute_insns_for_mem (NEXT_INSN (insn),
2988 p ? NEXT_INSN (p) : NULL_RTX,
2989 ht);
2991 else
2993 rtx p = PREV_INSN (insn);
2995 start_sequence ();
2996 val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
2997 GET_MODE (x), GET_MODE (x),
2998 GET_MODE_SIZE (GET_MODE (sub)),
2999 GET_MODE_SIZE (GET_MODE (sub)));
3001 if (! validate_change (insn, loc, val, 0))
3003 /* Discard the current sequence and put the
3004 ADDRESSOF on stack. */
3005 end_sequence ();
3006 goto give_up;
3009 seq = gen_sequence ();
3010 end_sequence ();
3011 emit_insn_before (seq, insn);
3012 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3013 insn, ht);
3016 /* Remember the replacement so that the same one can be done
3017 on the REG_NOTES. */
3018 purge_bitfield_addressof_replacements
3019 = gen_rtx_EXPR_LIST (VOIDmode, x,
3020 gen_rtx_EXPR_LIST
3021 (VOIDmode, val,
3022 purge_bitfield_addressof_replacements));
3024 /* We replaced with a reg -- all done. */
3025 return true;
3029 else if (validate_change (insn, loc, sub, 0))
3031 /* Remember the replacement so that the same one can be done
3032 on the REG_NOTES. */
3033 if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
3035 rtx tem;
3037 for (tem = purge_addressof_replacements;
3038 tem != NULL_RTX;
3039 tem = XEXP (XEXP (tem, 1), 1))
3040 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3042 XEXP (XEXP (tem, 1), 0) = sub;
3043 return true;
3045 purge_addressof_replacements
3046 = gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0),
3047 gen_rtx_EXPR_LIST (VOIDmode, sub,
3048 purge_addressof_replacements));
3049 return true;
3051 goto restart;
3053 give_up:;
3054 /* else give up and put it into the stack */
3057 else if (code == ADDRESSOF)
3059 put_addressof_into_stack (x, ht);
3060 return true;
3062 else if (code == SET)
3064 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
3065 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
3066 return result;
3069 /* Scan all subexpressions. */
3070 fmt = GET_RTX_FORMAT (code);
3071 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3073 if (*fmt == 'e')
3074 result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0, ht);
3075 else if (*fmt == 'E')
3076 for (j = 0; j < XVECLEN (x, i); j++)
3077 result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0, ht);
3080 return result;
3083 /* Return a new hash table entry in HT. */
3085 static struct hash_entry *
3086 insns_for_mem_newfunc (he, ht, k)
3087 struct hash_entry *he;
3088 struct hash_table *ht;
3089 hash_table_key k ATTRIBUTE_UNUSED;
3091 struct insns_for_mem_entry *ifmhe;
3092 if (he)
3093 return he;
3095 ifmhe = ((struct insns_for_mem_entry *)
3096 hash_allocate (ht, sizeof (struct insns_for_mem_entry)));
3097 ifmhe->insns = NULL_RTX;
3099 return &ifmhe->he;
3102 /* Return a hash value for K, a REG. */
3104 static unsigned long
3105 insns_for_mem_hash (k)
3106 hash_table_key k;
3108 /* K is really a RTX. Just use the address as the hash value. */
3109 return (unsigned long) k;
3112 /* Return non-zero if K1 and K2 (two REGs) are the same. */
3114 static boolean
3115 insns_for_mem_comp (k1, k2)
3116 hash_table_key k1;
3117 hash_table_key k2;
3119 return k1 == k2;
3122 struct insns_for_mem_walk_info {
3123 /* The hash table that we are using to record which INSNs use which
3124 MEMs. */
3125 struct hash_table *ht;
3127 /* The INSN we are currently proessing. */
3128 rtx insn;
3130 /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3131 to find the insns that use the REGs in the ADDRESSOFs. */
3132 int pass;
3135 /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
3136 that might be used in an ADDRESSOF expression, record this INSN in
3137 the hash table given by DATA (which is really a pointer to an
3138 insns_for_mem_walk_info structure). */
3140 static int
3141 insns_for_mem_walk (r, data)
3142 rtx *r;
3143 void *data;
3145 struct insns_for_mem_walk_info *ifmwi
3146 = (struct insns_for_mem_walk_info *) data;
3148 if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
3149 && GET_CODE (XEXP (*r, 0)) == REG)
3150 hash_lookup (ifmwi->ht, XEXP (*r, 0), /*create=*/1, /*copy=*/0);
3151 else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
3153 /* Lookup this MEM in the hashtable, creating it if necessary. */
3154 struct insns_for_mem_entry *ifme
3155 = (struct insns_for_mem_entry *) hash_lookup (ifmwi->ht,
3157 /*create=*/0,
3158 /*copy=*/0);
3160 /* If we have not already recorded this INSN, do so now. Since
3161 we process the INSNs in order, we know that if we have
3162 recorded it it must be at the front of the list. */
3163 if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
3165 /* We do the allocation on the same obstack as is used for
3166 the hash table since this memory will not be used once
3167 the hash table is deallocated. */
3168 push_obstacks (&ifmwi->ht->memory, &ifmwi->ht->memory);
3169 ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
3170 ifme->insns);
3171 pop_obstacks ();
3175 return 0;
3178 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3179 which REGs in HT. */
3181 static void
3182 compute_insns_for_mem (insns, last_insn, ht)
3183 rtx insns;
3184 rtx last_insn;
3185 struct hash_table *ht;
3187 rtx insn;
3188 struct insns_for_mem_walk_info ifmwi;
3189 ifmwi.ht = ht;
3191 for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
3192 for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
3193 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3195 ifmwi.insn = insn;
3196 for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
3200 /* Helper function for purge_addressof called through for_each_rtx.
3201 Returns true iff the rtl is an ADDRESSOF. */
3202 static int
3203 is_addressof (rtl, data)
3204 rtx * rtl;
3205 void * data ATTRIBUTE_UNUSED;
3207 return GET_CODE (* rtl) == ADDRESSOF;
3210 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
3211 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3212 stack. */
3214 void
3215 purge_addressof (insns)
3216 rtx insns;
3218 rtx insn;
3219 struct hash_table ht;
3221 /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
3222 requires a fixup pass over the instruction stream to correct
3223 INSNs that depended on the REG being a REG, and not a MEM. But,
3224 these fixup passes are slow. Furthermore, more MEMs are not
3225 mentioned in very many instructions. So, we speed up the process
3226 by pre-calculating which REGs occur in which INSNs; that allows
3227 us to perform the fixup passes much more quickly. */
3228 hash_table_init (&ht,
3229 insns_for_mem_newfunc,
3230 insns_for_mem_hash,
3231 insns_for_mem_comp);
3232 compute_insns_for_mem (insns, NULL_RTX, &ht);
3234 for (insn = insns; insn; insn = NEXT_INSN (insn))
3235 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3236 || GET_CODE (insn) == CALL_INSN)
3238 if (! purge_addressof_1 (&PATTERN (insn), insn,
3239 asm_noperands (PATTERN (insn)) > 0, 0, &ht))
3240 /* If we could not replace the ADDRESSOFs in the insn,
3241 something is wrong. */
3242 abort ();
3244 if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, &ht))
3246 /* If we could not replace the ADDRESSOFs in the insn's notes,
3247 we can just remove the offending notes instead. */
3248 rtx note;
3250 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3252 /* If we find a REG_RETVAL note then the insn is a libcall.
3253 Such insns must have REG_EQUAL notes as well, in order
3254 for later passes of the compiler to work. So it is not
3255 safe to delete the notes here, and instead we abort. */
3256 if (REG_NOTE_KIND (note) == REG_RETVAL)
3257 abort ();
3258 if (for_each_rtx (& note, is_addressof, NULL))
3259 remove_note (insn, note);
3264 /* Clean up. */
3265 hash_table_free (&ht);
3266 purge_bitfield_addressof_replacements = 0;
3267 purge_addressof_replacements = 0;
3270 /* Pass through the INSNS of function FNDECL and convert virtual register
3271 references to hard register references. */
3273 void
3274 instantiate_virtual_regs (fndecl, insns)
3275 tree fndecl;
3276 rtx insns;
3278 rtx insn;
3279 int i;
3281 /* Compute the offsets to use for this function. */
3282 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
3283 var_offset = STARTING_FRAME_OFFSET;
3284 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
3285 out_arg_offset = STACK_POINTER_OFFSET;
3286 cfa_offset = ARG_POINTER_CFA_OFFSET;
3288 /* Scan all variables and parameters of this function. For each that is
3289 in memory, instantiate all virtual registers if the result is a valid
3290 address. If not, we do it later. That will handle most uses of virtual
3291 regs on many machines. */
3292 instantiate_decls (fndecl, 1);
3294 /* Initialize recognition, indicating that volatile is OK. */
3295 init_recog ();
3297 /* Scan through all the insns, instantiating every virtual register still
3298 present. */
3299 for (insn = insns; insn; insn = NEXT_INSN (insn))
3300 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3301 || GET_CODE (insn) == CALL_INSN)
3303 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
3304 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
3307 /* Instantiate the stack slots for the parm registers, for later use in
3308 addressof elimination. */
3309 for (i = 0; i < max_parm_reg; ++i)
3310 if (parm_reg_stack_loc[i])
3311 instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
3313 /* Now instantiate the remaining register equivalences for debugging info.
3314 These will not be valid addresses. */
3315 instantiate_decls (fndecl, 0);
3317 /* Indicate that, from now on, assign_stack_local should use
3318 frame_pointer_rtx. */
3319 virtuals_instantiated = 1;
3322 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3323 all virtual registers in their DECL_RTL's.
3325 If VALID_ONLY, do this only if the resulting address is still valid.
3326 Otherwise, always do it. */
3328 static void
3329 instantiate_decls (fndecl, valid_only)
3330 tree fndecl;
3331 int valid_only;
3333 tree decl;
3335 if (DECL_SAVED_INSNS (fndecl))
3336 /* When compiling an inline function, the obstack used for
3337 rtl allocation is the maybepermanent_obstack. Calling
3338 `resume_temporary_allocation' switches us back to that
3339 obstack while we process this function's parameters. */
3340 resume_temporary_allocation ();
3342 /* Process all parameters of the function. */
3343 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
3345 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
3347 instantiate_decl (DECL_RTL (decl), size, valid_only);
3349 /* If the parameter was promoted, then the incoming RTL mode may be
3350 larger than the declared type size. We must use the larger of
3351 the two sizes. */
3352 size = MAX (GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl))), size);
3353 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
3356 /* Now process all variables defined in the function or its subblocks. */
3357 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
3359 if (DECL_INLINE (fndecl) || DECL_DEFER_OUTPUT (fndecl))
3361 /* Save all rtl allocated for this function by raising the
3362 high-water mark on the maybepermanent_obstack. */
3363 preserve_data ();
3364 /* All further rtl allocation is now done in the current_obstack. */
3365 rtl_in_current_obstack ();
3369 /* Subroutine of instantiate_decls: Process all decls in the given
3370 BLOCK node and all its subblocks. */
3372 static void
3373 instantiate_decls_1 (let, valid_only)
3374 tree let;
3375 int valid_only;
3377 tree t;
3379 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
3380 instantiate_decl (DECL_RTL (t), int_size_in_bytes (TREE_TYPE (t)),
3381 valid_only);
3383 /* Process all subblocks. */
3384 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
3385 instantiate_decls_1 (t, valid_only);
3388 /* Subroutine of the preceding procedures: Given RTL representing a
3389 decl and the size of the object, do any instantiation required.
3391 If VALID_ONLY is non-zero, it means that the RTL should only be
3392 changed if the new address is valid. */
3394 static void
3395 instantiate_decl (x, size, valid_only)
3396 rtx x;
3397 int size;
3398 int valid_only;
3400 enum machine_mode mode;
3401 rtx addr;
3403 /* If this is not a MEM, no need to do anything. Similarly if the
3404 address is a constant or a register that is not a virtual register. */
3406 if (x == 0 || GET_CODE (x) != MEM)
3407 return;
3409 addr = XEXP (x, 0);
3410 if (CONSTANT_P (addr)
3411 || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
3412 || (GET_CODE (addr) == REG
3413 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
3414 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
3415 return;
3417 /* If we should only do this if the address is valid, copy the address.
3418 We need to do this so we can undo any changes that might make the
3419 address invalid. This copy is unfortunate, but probably can't be
3420 avoided. */
3422 if (valid_only)
3423 addr = copy_rtx (addr);
3425 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
3427 if (valid_only)
3429 /* Now verify that the resulting address is valid for every integer or
3430 floating-point mode up to and including SIZE bytes long. We do this
3431 since the object might be accessed in any mode and frame addresses
3432 are shared. */
3434 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3435 mode != VOIDmode && GET_MODE_SIZE (mode) <= size;
3436 mode = GET_MODE_WIDER_MODE (mode))
3437 if (! memory_address_p (mode, addr))
3438 return;
3440 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3441 mode != VOIDmode && GET_MODE_SIZE (mode) <= size;
3442 mode = GET_MODE_WIDER_MODE (mode))
3443 if (! memory_address_p (mode, addr))
3444 return;
3447 /* Put back the address now that we have updated it and we either know
3448 it is valid or we don't care whether it is valid. */
3450 XEXP (x, 0) = addr;
3453 /* Given a pointer to a piece of rtx and an optional pointer to the
3454 containing object, instantiate any virtual registers present in it.
3456 If EXTRA_INSNS, we always do the replacement and generate
3457 any extra insns before OBJECT. If it zero, we do nothing if replacement
3458 is not valid.
3460 Return 1 if we either had nothing to do or if we were able to do the
3461 needed replacement. Return 0 otherwise; we only return zero if
3462 EXTRA_INSNS is zero.
3464 We first try some simple transformations to avoid the creation of extra
3465 pseudos. */
3467 static int
3468 instantiate_virtual_regs_1 (loc, object, extra_insns)
3469 rtx *loc;
3470 rtx object;
3471 int extra_insns;
3473 rtx x;
3474 RTX_CODE code;
3475 rtx new = 0;
3476 HOST_WIDE_INT offset = 0;
3477 rtx temp;
3478 rtx seq;
3479 int i, j;
3480 const char *fmt;
3482 /* Re-start here to avoid recursion in common cases. */
3483 restart:
3485 x = *loc;
3486 if (x == 0)
3487 return 1;
3489 code = GET_CODE (x);
3491 /* Check for some special cases. */
3492 switch (code)
3494 case CONST_INT:
3495 case CONST_DOUBLE:
3496 case CONST:
3497 case SYMBOL_REF:
3498 case CODE_LABEL:
3499 case PC:
3500 case CC0:
3501 case ASM_INPUT:
3502 case ADDR_VEC:
3503 case ADDR_DIFF_VEC:
3504 case RETURN:
3505 return 1;
3507 case SET:
3508 /* We are allowed to set the virtual registers. This means that
3509 the actual register should receive the source minus the
3510 appropriate offset. This is used, for example, in the handling
3511 of non-local gotos. */
3512 if (SET_DEST (x) == virtual_incoming_args_rtx)
3513 new = arg_pointer_rtx, offset = - in_arg_offset;
3514 else if (SET_DEST (x) == virtual_stack_vars_rtx)
3515 new = frame_pointer_rtx, offset = - var_offset;
3516 else if (SET_DEST (x) == virtual_stack_dynamic_rtx)
3517 new = stack_pointer_rtx, offset = - dynamic_offset;
3518 else if (SET_DEST (x) == virtual_outgoing_args_rtx)
3519 new = stack_pointer_rtx, offset = - out_arg_offset;
3520 else if (SET_DEST (x) == virtual_cfa_rtx)
3521 new = arg_pointer_rtx, offset = - cfa_offset;
3523 if (new)
3525 rtx src = SET_SRC (x);
3527 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
3529 /* The only valid sources here are PLUS or REG. Just do
3530 the simplest possible thing to handle them. */
3531 if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
3532 abort ();
3534 start_sequence ();
3535 if (GET_CODE (src) != REG)
3536 temp = force_operand (src, NULL_RTX);
3537 else
3538 temp = src;
3539 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
3540 seq = get_insns ();
3541 end_sequence ();
3543 emit_insns_before (seq, object);
3544 SET_DEST (x) = new;
3546 if (! validate_change (object, &SET_SRC (x), temp, 0)
3547 || ! extra_insns)
3548 abort ();
3550 return 1;
3553 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3554 loc = &SET_SRC (x);
3555 goto restart;
3557 case PLUS:
3558 /* Handle special case of virtual register plus constant. */
3559 if (CONSTANT_P (XEXP (x, 1)))
3561 rtx old, new_offset;
3563 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3564 if (GET_CODE (XEXP (x, 0)) == PLUS)
3566 rtx inner = XEXP (XEXP (x, 0), 0);
3568 if (inner == virtual_incoming_args_rtx)
3569 new = arg_pointer_rtx, offset = in_arg_offset;
3570 else if (inner == virtual_stack_vars_rtx)
3571 new = frame_pointer_rtx, offset = var_offset;
3572 else if (inner == virtual_stack_dynamic_rtx)
3573 new = stack_pointer_rtx, offset = dynamic_offset;
3574 else if (inner == virtual_outgoing_args_rtx)
3575 new = stack_pointer_rtx, offset = out_arg_offset;
3576 else if (inner == virtual_cfa_rtx)
3577 new = arg_pointer_rtx, offset = cfa_offset;
3578 else
3580 loc = &XEXP (x, 0);
3581 goto restart;
3584 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3585 extra_insns);
3586 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
3589 else if (XEXP (x, 0) == virtual_incoming_args_rtx)
3590 new = arg_pointer_rtx, offset = in_arg_offset;
3591 else if (XEXP (x, 0) == virtual_stack_vars_rtx)
3592 new = frame_pointer_rtx, offset = var_offset;
3593 else if (XEXP (x, 0) == virtual_stack_dynamic_rtx)
3594 new = stack_pointer_rtx, offset = dynamic_offset;
3595 else if (XEXP (x, 0) == virtual_outgoing_args_rtx)
3596 new = stack_pointer_rtx, offset = out_arg_offset;
3597 else if (XEXP (x, 0) == virtual_cfa_rtx)
3598 new = arg_pointer_rtx, offset = cfa_offset;
3599 else
3601 /* We know the second operand is a constant. Unless the
3602 first operand is a REG (which has been already checked),
3603 it needs to be checked. */
3604 if (GET_CODE (XEXP (x, 0)) != REG)
3606 loc = &XEXP (x, 0);
3607 goto restart;
3609 return 1;
3612 new_offset = plus_constant (XEXP (x, 1), offset);
3614 /* If the new constant is zero, try to replace the sum with just
3615 the register. */
3616 if (new_offset == const0_rtx
3617 && validate_change (object, loc, new, 0))
3618 return 1;
3620 /* Next try to replace the register and new offset.
3621 There are two changes to validate here and we can't assume that
3622 in the case of old offset equals new just changing the register
3623 will yield a valid insn. In the interests of a little efficiency,
3624 however, we only call validate change once (we don't queue up the
3625 changes and then call apply_change_group). */
3627 old = XEXP (x, 0);
3628 if (offset == 0
3629 ? ! validate_change (object, &XEXP (x, 0), new, 0)
3630 : (XEXP (x, 0) = new,
3631 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
3633 if (! extra_insns)
3635 XEXP (x, 0) = old;
3636 return 0;
3639 /* Otherwise copy the new constant into a register and replace
3640 constant with that register. */
3641 temp = gen_reg_rtx (Pmode);
3642 XEXP (x, 0) = new;
3643 if (validate_change (object, &XEXP (x, 1), temp, 0))
3644 emit_insn_before (gen_move_insn (temp, new_offset), object);
3645 else
3647 /* If that didn't work, replace this expression with a
3648 register containing the sum. */
3650 XEXP (x, 0) = old;
3651 new = gen_rtx_PLUS (Pmode, new, new_offset);
3653 start_sequence ();
3654 temp = force_operand (new, NULL_RTX);
3655 seq = get_insns ();
3656 end_sequence ();
3658 emit_insns_before (seq, object);
3659 if (! validate_change (object, loc, temp, 0)
3660 && ! validate_replace_rtx (x, temp, object))
3661 abort ();
3665 return 1;
3668 /* Fall through to generic two-operand expression case. */
3669 case EXPR_LIST:
3670 case CALL:
3671 case COMPARE:
3672 case MINUS:
3673 case MULT:
3674 case DIV: case UDIV:
3675 case MOD: case UMOD:
3676 case AND: case IOR: case XOR:
3677 case ROTATERT: case ROTATE:
3678 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
3679 case NE: case EQ:
3680 case GE: case GT: case GEU: case GTU:
3681 case LE: case LT: case LEU: case LTU:
3682 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
3683 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
3684 loc = &XEXP (x, 0);
3685 goto restart;
3687 case MEM:
3688 /* Most cases of MEM that convert to valid addresses have already been
3689 handled by our scan of decls. The only special handling we
3690 need here is to make a copy of the rtx to ensure it isn't being
3691 shared if we have to change it to a pseudo.
3693 If the rtx is a simple reference to an address via a virtual register,
3694 it can potentially be shared. In such cases, first try to make it
3695 a valid address, which can also be shared. Otherwise, copy it and
3696 proceed normally.
3698 First check for common cases that need no processing. These are
3699 usually due to instantiation already being done on a previous instance
3700 of a shared rtx. */
3702 temp = XEXP (x, 0);
3703 if (CONSTANT_ADDRESS_P (temp)
3704 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3705 || temp == arg_pointer_rtx
3706 #endif
3707 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3708 || temp == hard_frame_pointer_rtx
3709 #endif
3710 || temp == frame_pointer_rtx)
3711 return 1;
3713 if (GET_CODE (temp) == PLUS
3714 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3715 && (XEXP (temp, 0) == frame_pointer_rtx
3716 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3717 || XEXP (temp, 0) == hard_frame_pointer_rtx
3718 #endif
3719 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3720 || XEXP (temp, 0) == arg_pointer_rtx
3721 #endif
3723 return 1;
3725 if (temp == virtual_stack_vars_rtx
3726 || temp == virtual_incoming_args_rtx
3727 || (GET_CODE (temp) == PLUS
3728 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3729 && (XEXP (temp, 0) == virtual_stack_vars_rtx
3730 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
3732 /* This MEM may be shared. If the substitution can be done without
3733 the need to generate new pseudos, we want to do it in place
3734 so all copies of the shared rtx benefit. The call below will
3735 only make substitutions if the resulting address is still
3736 valid.
3738 Note that we cannot pass X as the object in the recursive call
3739 since the insn being processed may not allow all valid
3740 addresses. However, if we were not passed on object, we can
3741 only modify X without copying it if X will have a valid
3742 address.
3744 ??? Also note that this can still lose if OBJECT is an insn that
3745 has less restrictions on an address that some other insn.
3746 In that case, we will modify the shared address. This case
3747 doesn't seem very likely, though. One case where this could
3748 happen is in the case of a USE or CLOBBER reference, but we
3749 take care of that below. */
3751 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
3752 object ? object : x, 0))
3753 return 1;
3755 /* Otherwise make a copy and process that copy. We copy the entire
3756 RTL expression since it might be a PLUS which could also be
3757 shared. */
3758 *loc = x = copy_rtx (x);
3761 /* Fall through to generic unary operation case. */
3762 case SUBREG:
3763 case STRICT_LOW_PART:
3764 case NEG: case NOT:
3765 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
3766 case SIGN_EXTEND: case ZERO_EXTEND:
3767 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3768 case FLOAT: case FIX:
3769 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3770 case ABS:
3771 case SQRT:
3772 case FFS:
3773 /* These case either have just one operand or we know that we need not
3774 check the rest of the operands. */
3775 loc = &XEXP (x, 0);
3776 goto restart;
3778 case USE:
3779 case CLOBBER:
3780 /* If the operand is a MEM, see if the change is a valid MEM. If not,
3781 go ahead and make the invalid one, but do it to a copy. For a REG,
3782 just make the recursive call, since there's no chance of a problem. */
3784 if ((GET_CODE (XEXP (x, 0)) == MEM
3785 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
3787 || (GET_CODE (XEXP (x, 0)) == REG
3788 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
3789 return 1;
3791 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
3792 loc = &XEXP (x, 0);
3793 goto restart;
3795 case REG:
3796 /* Try to replace with a PLUS. If that doesn't work, compute the sum
3797 in front of this insn and substitute the temporary. */
3798 if (x == virtual_incoming_args_rtx)
3799 new = arg_pointer_rtx, offset = in_arg_offset;
3800 else if (x == virtual_stack_vars_rtx)
3801 new = frame_pointer_rtx, offset = var_offset;
3802 else if (x == virtual_stack_dynamic_rtx)
3803 new = stack_pointer_rtx, offset = dynamic_offset;
3804 else if (x == virtual_outgoing_args_rtx)
3805 new = stack_pointer_rtx, offset = out_arg_offset;
3806 else if (x == virtual_cfa_rtx)
3807 new = arg_pointer_rtx, offset = cfa_offset;
3809 if (new)
3811 temp = plus_constant (new, offset);
3812 if (!validate_change (object, loc, temp, 0))
3814 if (! extra_insns)
3815 return 0;
3817 start_sequence ();
3818 temp = force_operand (temp, NULL_RTX);
3819 seq = get_insns ();
3820 end_sequence ();
3822 emit_insns_before (seq, object);
3823 if (! validate_change (object, loc, temp, 0)
3824 && ! validate_replace_rtx (x, temp, object))
3825 abort ();
3829 return 1;
3831 case ADDRESSOF:
3832 if (GET_CODE (XEXP (x, 0)) == REG)
3833 return 1;
3835 else if (GET_CODE (XEXP (x, 0)) == MEM)
3837 /* If we have a (addressof (mem ..)), do any instantiation inside
3838 since we know we'll be making the inside valid when we finally
3839 remove the ADDRESSOF. */
3840 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
3841 return 1;
3843 break;
3845 default:
3846 break;
3849 /* Scan all subexpressions. */
3850 fmt = GET_RTX_FORMAT (code);
3851 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3852 if (*fmt == 'e')
3854 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
3855 return 0;
3857 else if (*fmt == 'E')
3858 for (j = 0; j < XVECLEN (x, i); j++)
3859 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
3860 extra_insns))
3861 return 0;
3863 return 1;
3866 /* Optimization: assuming this function does not receive nonlocal gotos,
3867 delete the handlers for such, as well as the insns to establish
3868 and disestablish them. */
3870 static void
3871 delete_handlers ()
3873 rtx insn;
3874 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3876 /* Delete the handler by turning off the flag that would
3877 prevent jump_optimize from deleting it.
3878 Also permit deletion of the nonlocal labels themselves
3879 if nothing local refers to them. */
3880 if (GET_CODE (insn) == CODE_LABEL)
3882 tree t, last_t;
3884 LABEL_PRESERVE_P (insn) = 0;
3886 /* Remove it from the nonlocal_label list, to avoid confusing
3887 flow. */
3888 for (t = nonlocal_labels, last_t = 0; t;
3889 last_t = t, t = TREE_CHAIN (t))
3890 if (DECL_RTL (TREE_VALUE (t)) == insn)
3891 break;
3892 if (t)
3894 if (! last_t)
3895 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
3896 else
3897 TREE_CHAIN (last_t) = TREE_CHAIN (t);
3900 if (GET_CODE (insn) == INSN)
3902 int can_delete = 0;
3903 rtx t;
3904 for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
3905 if (reg_mentioned_p (t, PATTERN (insn)))
3907 can_delete = 1;
3908 break;
3910 if (can_delete
3911 || (nonlocal_goto_stack_level != 0
3912 && reg_mentioned_p (nonlocal_goto_stack_level,
3913 PATTERN (insn))))
3914 delete_insn (insn);
3920 max_parm_reg_num ()
3922 return max_parm_reg;
3925 /* Return the first insn following those generated by `assign_parms'. */
3928 get_first_nonparm_insn ()
3930 if (last_parm_insn)
3931 return NEXT_INSN (last_parm_insn);
3932 return get_insns ();
3935 /* Return the first NOTE_INSN_BLOCK_BEG note in the function.
3936 Crash if there is none. */
3939 get_first_block_beg ()
3941 register rtx searcher;
3942 register rtx insn = get_first_nonparm_insn ();
3944 for (searcher = insn; searcher; searcher = NEXT_INSN (searcher))
3945 if (GET_CODE (searcher) == NOTE
3946 && NOTE_LINE_NUMBER (searcher) == NOTE_INSN_BLOCK_BEG)
3947 return searcher;
3949 abort (); /* Invalid call to this function. (See comments above.) */
3950 return NULL_RTX;
3953 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
3954 This means a type for which function calls must pass an address to the
3955 function or get an address back from the function.
3956 EXP may be a type node or an expression (whose type is tested). */
3959 aggregate_value_p (exp)
3960 tree exp;
3962 int i, regno, nregs;
3963 rtx reg;
3964 tree type;
3965 if (TREE_CODE_CLASS (TREE_CODE (exp)) == 't')
3966 type = exp;
3967 else
3968 type = TREE_TYPE (exp);
3970 if (RETURN_IN_MEMORY (type))
3971 return 1;
3972 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
3973 and thus can't be returned in registers. */
3974 if (TREE_ADDRESSABLE (type))
3975 return 1;
3976 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
3977 return 1;
3978 /* Make sure we have suitable call-clobbered regs to return
3979 the value in; if not, we must return it in memory. */
3980 reg = hard_function_value (type, 0, 0);
3982 /* If we have something other than a REG (e.g. a PARALLEL), then assume
3983 it is OK. */
3984 if (GET_CODE (reg) != REG)
3985 return 0;
3987 regno = REGNO (reg);
3988 nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
3989 for (i = 0; i < nregs; i++)
3990 if (! call_used_regs[regno + i])
3991 return 1;
3992 return 0;
3995 /* Assign RTL expressions to the function's parameters.
3996 This may involve copying them into registers and using
3997 those registers as the RTL for them. */
3999 void
4000 assign_parms (fndecl)
4001 tree fndecl;
4003 register tree parm;
4004 register rtx entry_parm = 0;
4005 register rtx stack_parm = 0;
4006 CUMULATIVE_ARGS args_so_far;
4007 enum machine_mode promoted_mode, passed_mode;
4008 enum machine_mode nominal_mode, promoted_nominal_mode;
4009 int unsignedp;
4010 /* Total space needed so far for args on the stack,
4011 given as a constant and a tree-expression. */
4012 struct args_size stack_args_size;
4013 tree fntype = TREE_TYPE (fndecl);
4014 tree fnargs = DECL_ARGUMENTS (fndecl);
4015 /* This is used for the arg pointer when referring to stack args. */
4016 rtx internal_arg_pointer;
4017 /* This is a dummy PARM_DECL that we used for the function result if
4018 the function returns a structure. */
4019 tree function_result_decl = 0;
4020 #ifdef SETUP_INCOMING_VARARGS
4021 int varargs_setup = 0;
4022 #endif
4023 rtx conversion_insns = 0;
4024 struct args_size alignment_pad;
4026 /* Nonzero if the last arg is named `__builtin_va_alist',
4027 which is used on some machines for old-fashioned non-ANSI varargs.h;
4028 this should be stuck onto the stack as if it had arrived there. */
4029 int hide_last_arg
4030 = (current_function_varargs
4031 && fnargs
4032 && (parm = tree_last (fnargs)) != 0
4033 && DECL_NAME (parm)
4034 && (! strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
4035 "__builtin_va_alist")));
4037 /* Nonzero if function takes extra anonymous args.
4038 This means the last named arg must be on the stack
4039 right before the anonymous ones. */
4040 int stdarg
4041 = (TYPE_ARG_TYPES (fntype) != 0
4042 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4043 != void_type_node));
4045 current_function_stdarg = stdarg;
4047 /* If the reg that the virtual arg pointer will be translated into is
4048 not a fixed reg or is the stack pointer, make a copy of the virtual
4049 arg pointer, and address parms via the copy. The frame pointer is
4050 considered fixed even though it is not marked as such.
4052 The second time through, simply use ap to avoid generating rtx. */
4054 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
4055 || ! (fixed_regs[ARG_POINTER_REGNUM]
4056 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
4057 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
4058 else
4059 internal_arg_pointer = virtual_incoming_args_rtx;
4060 current_function_internal_arg_pointer = internal_arg_pointer;
4062 stack_args_size.constant = 0;
4063 stack_args_size.var = 0;
4065 /* If struct value address is treated as the first argument, make it so. */
4066 if (aggregate_value_p (DECL_RESULT (fndecl))
4067 && ! current_function_returns_pcc_struct
4068 && struct_value_incoming_rtx == 0)
4070 tree type = build_pointer_type (TREE_TYPE (fntype));
4072 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
4074 DECL_ARG_TYPE (function_result_decl) = type;
4075 TREE_CHAIN (function_result_decl) = fnargs;
4076 fnargs = function_result_decl;
4079 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4080 parm_reg_stack_loc = (rtx *) xcalloc (max_parm_reg, sizeof (rtx));
4082 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4083 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
4084 #else
4085 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, 0);
4086 #endif
4088 /* We haven't yet found an argument that we must push and pretend the
4089 caller did. */
4090 current_function_pretend_args_size = 0;
4092 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
4094 int aggregate = AGGREGATE_TYPE_P (TREE_TYPE (parm));
4095 struct args_size stack_offset;
4096 struct args_size arg_size;
4097 int passed_pointer = 0;
4098 int did_conversion = 0;
4099 tree passed_type = DECL_ARG_TYPE (parm);
4100 tree nominal_type = TREE_TYPE (parm);
4101 int pretend_named;
4103 /* Set LAST_NAMED if this is last named arg before some
4104 anonymous args. */
4105 int last_named = ((TREE_CHAIN (parm) == 0
4106 || DECL_NAME (TREE_CHAIN (parm)) == 0)
4107 && (stdarg || current_function_varargs));
4108 /* Set NAMED_ARG if this arg should be treated as a named arg. For
4109 most machines, if this is a varargs/stdarg function, then we treat
4110 the last named arg as if it were anonymous too. */
4111 int named_arg = STRICT_ARGUMENT_NAMING ? 1 : ! last_named;
4113 if (TREE_TYPE (parm) == error_mark_node
4114 /* This can happen after weird syntax errors
4115 or if an enum type is defined among the parms. */
4116 || TREE_CODE (parm) != PARM_DECL
4117 || passed_type == NULL)
4119 DECL_INCOMING_RTL (parm) = DECL_RTL (parm)
4120 = gen_rtx_MEM (BLKmode, const0_rtx);
4121 TREE_USED (parm) = 1;
4122 continue;
4125 /* For varargs.h function, save info about regs and stack space
4126 used by the individual args, not including the va_alist arg. */
4127 if (hide_last_arg && last_named)
4128 current_function_args_info = args_so_far;
4130 /* Find mode of arg as it is passed, and mode of arg
4131 as it should be during execution of this function. */
4132 passed_mode = TYPE_MODE (passed_type);
4133 nominal_mode = TYPE_MODE (nominal_type);
4135 /* If the parm's mode is VOID, its value doesn't matter,
4136 and avoid the usual things like emit_move_insn that could crash. */
4137 if (nominal_mode == VOIDmode)
4139 DECL_INCOMING_RTL (parm) = DECL_RTL (parm) = const0_rtx;
4140 continue;
4143 /* If the parm is to be passed as a transparent union, use the
4144 type of the first field for the tests below. We have already
4145 verified that the modes are the same. */
4146 if (DECL_TRANSPARENT_UNION (parm)
4147 || TYPE_TRANSPARENT_UNION (passed_type))
4148 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
4150 /* See if this arg was passed by invisible reference. It is if
4151 it is an object whose size depends on the contents of the
4152 object itself or if the machine requires these objects be passed
4153 that way. */
4155 if ((TREE_CODE (TYPE_SIZE (passed_type)) != INTEGER_CST
4156 && contains_placeholder_p (TYPE_SIZE (passed_type)))
4157 || TREE_ADDRESSABLE (passed_type)
4158 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4159 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
4160 passed_type, named_arg)
4161 #endif
4164 passed_type = nominal_type = build_pointer_type (passed_type);
4165 passed_pointer = 1;
4166 passed_mode = nominal_mode = Pmode;
4169 promoted_mode = passed_mode;
4171 #ifdef PROMOTE_FUNCTION_ARGS
4172 /* Compute the mode in which the arg is actually extended to. */
4173 unsignedp = TREE_UNSIGNED (passed_type);
4174 promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
4175 #endif
4177 /* Let machine desc say which reg (if any) the parm arrives in.
4178 0 means it arrives on the stack. */
4179 #ifdef FUNCTION_INCOMING_ARG
4180 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4181 passed_type, named_arg);
4182 #else
4183 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
4184 passed_type, named_arg);
4185 #endif
4187 if (entry_parm == 0)
4188 promoted_mode = passed_mode;
4190 #ifdef SETUP_INCOMING_VARARGS
4191 /* If this is the last named parameter, do any required setup for
4192 varargs or stdargs. We need to know about the case of this being an
4193 addressable type, in which case we skip the registers it
4194 would have arrived in.
4196 For stdargs, LAST_NAMED will be set for two parameters, the one that
4197 is actually the last named, and the dummy parameter. We only
4198 want to do this action once.
4200 Also, indicate when RTL generation is to be suppressed. */
4201 if (last_named && !varargs_setup)
4203 SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type,
4204 current_function_pretend_args_size, 0);
4205 varargs_setup = 1;
4207 #endif
4209 /* Determine parm's home in the stack,
4210 in case it arrives in the stack or we should pretend it did.
4212 Compute the stack position and rtx where the argument arrives
4213 and its size.
4215 There is one complexity here: If this was a parameter that would
4216 have been passed in registers, but wasn't only because it is
4217 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4218 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4219 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4220 0 as it was the previous time. */
4222 pretend_named = named_arg || PRETEND_OUTGOING_VARARGS_NAMED;
4223 locate_and_pad_parm (promoted_mode, passed_type,
4224 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4226 #else
4227 #ifdef FUNCTION_INCOMING_ARG
4228 FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4229 passed_type,
4230 pretend_named) != 0,
4231 #else
4232 FUNCTION_ARG (args_so_far, promoted_mode,
4233 passed_type,
4234 pretend_named) != 0,
4235 #endif
4236 #endif
4237 fndecl, &stack_args_size, &stack_offset, &arg_size,
4238 &alignment_pad);
4241 rtx offset_rtx = ARGS_SIZE_RTX (stack_offset);
4243 if (offset_rtx == const0_rtx)
4244 stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
4245 else
4246 stack_parm = gen_rtx_MEM (promoted_mode,
4247 gen_rtx_PLUS (Pmode,
4248 internal_arg_pointer,
4249 offset_rtx));
4251 /* If this is a memory ref that contains aggregate components,
4252 mark it as such for cse and loop optimize. Likewise if it
4253 is readonly. */
4254 MEM_SET_IN_STRUCT_P (stack_parm, aggregate);
4255 RTX_UNCHANGING_P (stack_parm) = TREE_READONLY (parm);
4256 MEM_ALIAS_SET (stack_parm) = get_alias_set (parm);
4259 /* If this parameter was passed both in registers and in the stack,
4260 use the copy on the stack. */
4261 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
4262 entry_parm = 0;
4264 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4265 /* If this parm was passed part in regs and part in memory,
4266 pretend it arrived entirely in memory
4267 by pushing the register-part onto the stack.
4269 In the special case of a DImode or DFmode that is split,
4270 we could put it together in a pseudoreg directly,
4271 but for now that's not worth bothering with. */
4273 if (entry_parm)
4275 int nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
4276 passed_type, named_arg);
4278 if (nregs > 0)
4280 current_function_pretend_args_size
4281 = (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
4282 / (PARM_BOUNDARY / BITS_PER_UNIT)
4283 * (PARM_BOUNDARY / BITS_PER_UNIT));
4285 /* Handle calls that pass values in multiple non-contiguous
4286 locations. The Irix 6 ABI has examples of this. */
4287 if (GET_CODE (entry_parm) == PARALLEL)
4288 emit_group_store (validize_mem (stack_parm), entry_parm,
4289 int_size_in_bytes (TREE_TYPE (parm)),
4290 (TYPE_ALIGN (TREE_TYPE (parm))
4291 / BITS_PER_UNIT));
4292 else
4293 move_block_from_reg (REGNO (entry_parm),
4294 validize_mem (stack_parm), nregs,
4295 int_size_in_bytes (TREE_TYPE (parm)));
4297 entry_parm = stack_parm;
4300 #endif
4302 /* If we didn't decide this parm came in a register,
4303 by default it came on the stack. */
4304 if (entry_parm == 0)
4305 entry_parm = stack_parm;
4307 /* Record permanently how this parm was passed. */
4308 DECL_INCOMING_RTL (parm) = entry_parm;
4310 /* If there is actually space on the stack for this parm,
4311 count it in stack_args_size; otherwise set stack_parm to 0
4312 to indicate there is no preallocated stack slot for the parm. */
4314 if (entry_parm == stack_parm
4315 || (GET_CODE (entry_parm) == PARALLEL
4316 && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
4317 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
4318 /* On some machines, even if a parm value arrives in a register
4319 there is still an (uninitialized) stack slot allocated for it.
4321 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
4322 whether this parameter already has a stack slot allocated,
4323 because an arg block exists only if current_function_args_size
4324 is larger than some threshold, and we haven't calculated that
4325 yet. So, for now, we just assume that stack slots never exist
4326 in this case. */
4327 || REG_PARM_STACK_SPACE (fndecl) > 0
4328 #endif
4331 stack_args_size.constant += arg_size.constant;
4332 if (arg_size.var)
4333 ADD_PARM_SIZE (stack_args_size, arg_size.var);
4335 else
4336 /* No stack slot was pushed for this parm. */
4337 stack_parm = 0;
4339 /* Update info on where next arg arrives in registers. */
4341 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
4342 passed_type, named_arg);
4344 /* If we can't trust the parm stack slot to be aligned enough
4345 for its ultimate type, don't use that slot after entry.
4346 We'll make another stack slot, if we need one. */
4348 int thisparm_boundary
4349 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
4351 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
4352 stack_parm = 0;
4355 /* If parm was passed in memory, and we need to convert it on entry,
4356 don't store it back in that same slot. */
4357 if (entry_parm != 0
4358 && nominal_mode != BLKmode && nominal_mode != passed_mode)
4359 stack_parm = 0;
4361 #if 0
4362 /* Now adjust STACK_PARM to the mode and precise location
4363 where this parameter should live during execution,
4364 if we discover that it must live in the stack during execution.
4365 To make debuggers happier on big-endian machines, we store
4366 the value in the last bytes of the space available. */
4368 if (nominal_mode != BLKmode && nominal_mode != passed_mode
4369 && stack_parm != 0)
4371 rtx offset_rtx;
4373 if (BYTES_BIG_ENDIAN
4374 && GET_MODE_SIZE (nominal_mode) < UNITS_PER_WORD)
4375 stack_offset.constant += (GET_MODE_SIZE (passed_mode)
4376 - GET_MODE_SIZE (nominal_mode));
4378 offset_rtx = ARGS_SIZE_RTX (stack_offset);
4379 if (offset_rtx == const0_rtx)
4380 stack_parm = gen_rtx_MEM (nominal_mode, internal_arg_pointer);
4381 else
4382 stack_parm = gen_rtx_MEM (nominal_mode,
4383 gen_rtx_PLUS (Pmode,
4384 internal_arg_pointer,
4385 offset_rtx));
4387 /* If this is a memory ref that contains aggregate components,
4388 mark it as such for cse and loop optimize. */
4389 MEM_SET_IN_STRUCT_P (stack_parm, aggregate);
4391 #endif /* 0 */
4393 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4394 in the mode in which it arrives.
4395 STACK_PARM is an RTX for a stack slot where the parameter can live
4396 during the function (in case we want to put it there).
4397 STACK_PARM is 0 if no stack slot was pushed for it.
4399 Now output code if necessary to convert ENTRY_PARM to
4400 the type in which this function declares it,
4401 and store that result in an appropriate place,
4402 which may be a pseudo reg, may be STACK_PARM,
4403 or may be a local stack slot if STACK_PARM is 0.
4405 Set DECL_RTL to that place. */
4407 if (nominal_mode == BLKmode || GET_CODE (entry_parm) == PARALLEL)
4409 /* If a BLKmode arrives in registers, copy it to a stack slot.
4410 Handle calls that pass values in multiple non-contiguous
4411 locations. The Irix 6 ABI has examples of this. */
4412 if (GET_CODE (entry_parm) == REG
4413 || GET_CODE (entry_parm) == PARALLEL)
4415 int size_stored
4416 = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)),
4417 UNITS_PER_WORD);
4419 /* Note that we will be storing an integral number of words.
4420 So we have to be careful to ensure that we allocate an
4421 integral number of words. We do this below in the
4422 assign_stack_local if space was not allocated in the argument
4423 list. If it was, this will not work if PARM_BOUNDARY is not
4424 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4425 if it becomes a problem. */
4427 if (stack_parm == 0)
4429 stack_parm
4430 = assign_stack_local (GET_MODE (entry_parm),
4431 size_stored, 0);
4433 /* If this is a memory ref that contains aggregate
4434 components, mark it as such for cse and loop optimize. */
4435 MEM_SET_IN_STRUCT_P (stack_parm, aggregate);
4438 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4439 abort ();
4441 if (TREE_READONLY (parm))
4442 RTX_UNCHANGING_P (stack_parm) = 1;
4444 /* Handle calls that pass values in multiple non-contiguous
4445 locations. The Irix 6 ABI has examples of this. */
4446 if (GET_CODE (entry_parm) == PARALLEL)
4447 emit_group_store (validize_mem (stack_parm), entry_parm,
4448 int_size_in_bytes (TREE_TYPE (parm)),
4449 (TYPE_ALIGN (TREE_TYPE (parm))
4450 / BITS_PER_UNIT));
4451 else
4452 move_block_from_reg (REGNO (entry_parm),
4453 validize_mem (stack_parm),
4454 size_stored / UNITS_PER_WORD,
4455 int_size_in_bytes (TREE_TYPE (parm)));
4457 DECL_RTL (parm) = stack_parm;
4459 else if (! ((! optimize
4460 && ! DECL_REGISTER (parm)
4461 && ! DECL_INLINE (fndecl))
4462 /* layout_decl may set this. */
4463 || TREE_ADDRESSABLE (parm)
4464 || TREE_SIDE_EFFECTS (parm)
4465 /* If -ffloat-store specified, don't put explicit
4466 float variables into registers. */
4467 || (flag_float_store
4468 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4469 /* Always assign pseudo to structure return or item passed
4470 by invisible reference. */
4471 || passed_pointer || parm == function_result_decl)
4473 /* Store the parm in a pseudoregister during the function, but we
4474 may need to do it in a wider mode. */
4476 register rtx parmreg;
4477 int regno, regnoi = 0, regnor = 0;
4479 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
4481 promoted_nominal_mode
4482 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
4484 parmreg = gen_reg_rtx (promoted_nominal_mode);
4485 mark_user_reg (parmreg);
4487 /* If this was an item that we received a pointer to, set DECL_RTL
4488 appropriately. */
4489 if (passed_pointer)
4491 DECL_RTL (parm)
4492 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)), parmreg);
4493 MEM_SET_IN_STRUCT_P (DECL_RTL (parm), aggregate);
4495 else
4496 DECL_RTL (parm) = parmreg;
4498 /* Copy the value into the register. */
4499 if (nominal_mode != passed_mode
4500 || promoted_nominal_mode != promoted_mode)
4502 int save_tree_used;
4503 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4504 mode, by the caller. We now have to convert it to
4505 NOMINAL_MODE, if different. However, PARMREG may be in
4506 a different mode than NOMINAL_MODE if it is being stored
4507 promoted.
4509 If ENTRY_PARM is a hard register, it might be in a register
4510 not valid for operating in its mode (e.g., an odd-numbered
4511 register for a DFmode). In that case, moves are the only
4512 thing valid, so we can't do a convert from there. This
4513 occurs when the calling sequence allow such misaligned
4514 usages.
4516 In addition, the conversion may involve a call, which could
4517 clobber parameters which haven't been copied to pseudo
4518 registers yet. Therefore, we must first copy the parm to
4519 a pseudo reg here, and save the conversion until after all
4520 parameters have been moved. */
4522 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4524 emit_move_insn (tempreg, validize_mem (entry_parm));
4526 push_to_sequence (conversion_insns);
4527 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4529 /* TREE_USED gets set erroneously during expand_assignment. */
4530 save_tree_used = TREE_USED (parm);
4531 expand_assignment (parm,
4532 make_tree (nominal_type, tempreg), 0, 0);
4533 TREE_USED (parm) = save_tree_used;
4534 conversion_insns = get_insns ();
4535 did_conversion = 1;
4536 end_sequence ();
4538 else
4539 emit_move_insn (parmreg, validize_mem (entry_parm));
4541 /* If we were passed a pointer but the actual value
4542 can safely live in a register, put it in one. */
4543 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4544 && ! ((! optimize
4545 && ! DECL_REGISTER (parm)
4546 && ! DECL_INLINE (fndecl))
4547 /* layout_decl may set this. */
4548 || TREE_ADDRESSABLE (parm)
4549 || TREE_SIDE_EFFECTS (parm)
4550 /* If -ffloat-store specified, don't put explicit
4551 float variables into registers. */
4552 || (flag_float_store
4553 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE)))
4555 /* We can't use nominal_mode, because it will have been set to
4556 Pmode above. We must use the actual mode of the parm. */
4557 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
4558 mark_user_reg (parmreg);
4559 emit_move_insn (parmreg, DECL_RTL (parm));
4560 DECL_RTL (parm) = parmreg;
4561 /* STACK_PARM is the pointer, not the parm, and PARMREG is
4562 now the parm. */
4563 stack_parm = 0;
4565 #ifdef FUNCTION_ARG_CALLEE_COPIES
4566 /* If we are passed an arg by reference and it is our responsibility
4567 to make a copy, do it now.
4568 PASSED_TYPE and PASSED mode now refer to the pointer, not the
4569 original argument, so we must recreate them in the call to
4570 FUNCTION_ARG_CALLEE_COPIES. */
4571 /* ??? Later add code to handle the case that if the argument isn't
4572 modified, don't do the copy. */
4574 else if (passed_pointer
4575 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
4576 TYPE_MODE (DECL_ARG_TYPE (parm)),
4577 DECL_ARG_TYPE (parm),
4578 named_arg)
4579 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
4581 rtx copy;
4582 tree type = DECL_ARG_TYPE (parm);
4584 /* This sequence may involve a library call perhaps clobbering
4585 registers that haven't been copied to pseudos yet. */
4587 push_to_sequence (conversion_insns);
4589 if (TYPE_SIZE (type) == 0
4590 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4591 /* This is a variable sized object. */
4592 copy = gen_rtx_MEM (BLKmode,
4593 allocate_dynamic_stack_space
4594 (expr_size (parm), NULL_RTX,
4595 TYPE_ALIGN (type)));
4596 else
4597 copy = assign_stack_temp (TYPE_MODE (type),
4598 int_size_in_bytes (type), 1);
4599 MEM_SET_IN_STRUCT_P (copy, AGGREGATE_TYPE_P (type));
4600 RTX_UNCHANGING_P (copy) = TREE_READONLY (parm);
4602 store_expr (parm, copy, 0);
4603 emit_move_insn (parmreg, XEXP (copy, 0));
4604 if (current_function_check_memory_usage)
4605 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
4606 XEXP (copy, 0), Pmode,
4607 GEN_INT (int_size_in_bytes (type)),
4608 TYPE_MODE (sizetype),
4609 GEN_INT (MEMORY_USE_RW),
4610 TYPE_MODE (integer_type_node));
4611 conversion_insns = get_insns ();
4612 did_conversion = 1;
4613 end_sequence ();
4615 #endif /* FUNCTION_ARG_CALLEE_COPIES */
4617 /* In any case, record the parm's desired stack location
4618 in case we later discover it must live in the stack.
4620 If it is a COMPLEX value, store the stack location for both
4621 halves. */
4623 if (GET_CODE (parmreg) == CONCAT)
4624 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
4625 else
4626 regno = REGNO (parmreg);
4628 if (regno >= max_parm_reg)
4630 rtx *new;
4631 int old_max_parm_reg = max_parm_reg;
4633 /* It's slow to expand this one register at a time,
4634 but it's also rare and we need max_parm_reg to be
4635 precisely correct. */
4636 max_parm_reg = regno + 1;
4637 new = (rtx *) xrealloc (parm_reg_stack_loc,
4638 max_parm_reg * sizeof (rtx));
4639 bzero ((char *) (new + old_max_parm_reg),
4640 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
4641 parm_reg_stack_loc = new;
4644 if (GET_CODE (parmreg) == CONCAT)
4646 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
4648 regnor = REGNO (gen_realpart (submode, parmreg));
4649 regnoi = REGNO (gen_imagpart (submode, parmreg));
4651 if (stack_parm != 0)
4653 parm_reg_stack_loc[regnor]
4654 = gen_realpart (submode, stack_parm);
4655 parm_reg_stack_loc[regnoi]
4656 = gen_imagpart (submode, stack_parm);
4658 else
4660 parm_reg_stack_loc[regnor] = 0;
4661 parm_reg_stack_loc[regnoi] = 0;
4664 else
4665 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
4667 /* Mark the register as eliminable if we did no conversion
4668 and it was copied from memory at a fixed offset,
4669 and the arg pointer was not copied to a pseudo-reg.
4670 If the arg pointer is a pseudo reg or the offset formed
4671 an invalid address, such memory-equivalences
4672 as we make here would screw up life analysis for it. */
4673 if (nominal_mode == passed_mode
4674 && ! did_conversion
4675 && stack_parm != 0
4676 && GET_CODE (stack_parm) == MEM
4677 && stack_offset.var == 0
4678 && reg_mentioned_p (virtual_incoming_args_rtx,
4679 XEXP (stack_parm, 0)))
4681 rtx linsn = get_last_insn ();
4682 rtx sinsn, set;
4684 /* Mark complex types separately. */
4685 if (GET_CODE (parmreg) == CONCAT)
4686 /* Scan backwards for the set of the real and
4687 imaginary parts. */
4688 for (sinsn = linsn; sinsn != 0;
4689 sinsn = prev_nonnote_insn (sinsn))
4691 set = single_set (sinsn);
4692 if (set != 0
4693 && SET_DEST (set) == regno_reg_rtx [regnoi])
4694 REG_NOTES (sinsn)
4695 = gen_rtx_EXPR_LIST (REG_EQUIV,
4696 parm_reg_stack_loc[regnoi],
4697 REG_NOTES (sinsn));
4698 else if (set != 0
4699 && SET_DEST (set) == regno_reg_rtx [regnor])
4700 REG_NOTES (sinsn)
4701 = gen_rtx_EXPR_LIST (REG_EQUIV,
4702 parm_reg_stack_loc[regnor],
4703 REG_NOTES (sinsn));
4705 else if ((set = single_set (linsn)) != 0
4706 && SET_DEST (set) == parmreg)
4707 REG_NOTES (linsn)
4708 = gen_rtx_EXPR_LIST (REG_EQUIV,
4709 stack_parm, REG_NOTES (linsn));
4712 /* For pointer data type, suggest pointer register. */
4713 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4714 mark_reg_pointer (parmreg,
4715 (TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm)))
4716 / BITS_PER_UNIT));
4718 else
4720 /* Value must be stored in the stack slot STACK_PARM
4721 during function execution. */
4723 if (promoted_mode != nominal_mode)
4725 /* Conversion is required. */
4726 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4728 emit_move_insn (tempreg, validize_mem (entry_parm));
4730 push_to_sequence (conversion_insns);
4731 entry_parm = convert_to_mode (nominal_mode, tempreg,
4732 TREE_UNSIGNED (TREE_TYPE (parm)));
4733 if (stack_parm)
4735 /* ??? This may need a big-endian conversion on sparc64. */
4736 stack_parm = change_address (stack_parm, nominal_mode,
4737 NULL_RTX);
4739 conversion_insns = get_insns ();
4740 did_conversion = 1;
4741 end_sequence ();
4744 if (entry_parm != stack_parm)
4746 if (stack_parm == 0)
4748 stack_parm
4749 = assign_stack_local (GET_MODE (entry_parm),
4750 GET_MODE_SIZE (GET_MODE (entry_parm)), 0);
4751 /* If this is a memory ref that contains aggregate components,
4752 mark it as such for cse and loop optimize. */
4753 MEM_SET_IN_STRUCT_P (stack_parm, aggregate);
4756 if (promoted_mode != nominal_mode)
4758 push_to_sequence (conversion_insns);
4759 emit_move_insn (validize_mem (stack_parm),
4760 validize_mem (entry_parm));
4761 conversion_insns = get_insns ();
4762 end_sequence ();
4764 else
4765 emit_move_insn (validize_mem (stack_parm),
4766 validize_mem (entry_parm));
4768 if (current_function_check_memory_usage)
4770 push_to_sequence (conversion_insns);
4771 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
4772 XEXP (stack_parm, 0), Pmode,
4773 GEN_INT (GET_MODE_SIZE (GET_MODE
4774 (entry_parm))),
4775 TYPE_MODE (sizetype),
4776 GEN_INT (MEMORY_USE_RW),
4777 TYPE_MODE (integer_type_node));
4779 conversion_insns = get_insns ();
4780 end_sequence ();
4782 DECL_RTL (parm) = stack_parm;
4785 /* If this "parameter" was the place where we are receiving the
4786 function's incoming structure pointer, set up the result. */
4787 if (parm == function_result_decl)
4789 tree result = DECL_RESULT (fndecl);
4790 tree restype = TREE_TYPE (result);
4792 DECL_RTL (result)
4793 = gen_rtx_MEM (DECL_MODE (result), DECL_RTL (parm));
4795 MEM_SET_IN_STRUCT_P (DECL_RTL (result),
4796 AGGREGATE_TYPE_P (restype));
4799 if (TREE_THIS_VOLATILE (parm))
4800 MEM_VOLATILE_P (DECL_RTL (parm)) = 1;
4801 if (TREE_READONLY (parm))
4802 RTX_UNCHANGING_P (DECL_RTL (parm)) = 1;
4805 /* Output all parameter conversion instructions (possibly including calls)
4806 now that all parameters have been copied out of hard registers. */
4807 emit_insns (conversion_insns);
4809 last_parm_insn = get_last_insn ();
4811 current_function_args_size = stack_args_size.constant;
4813 /* Adjust function incoming argument size for alignment and
4814 minimum length. */
4816 #ifdef REG_PARM_STACK_SPACE
4817 #ifndef MAYBE_REG_PARM_STACK_SPACE
4818 current_function_args_size = MAX (current_function_args_size,
4819 REG_PARM_STACK_SPACE (fndecl));
4820 #endif
4821 #endif
4823 #ifdef STACK_BOUNDARY
4824 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
4826 current_function_args_size
4827 = ((current_function_args_size + STACK_BYTES - 1)
4828 / STACK_BYTES) * STACK_BYTES;
4829 #endif
4831 #ifdef ARGS_GROW_DOWNWARD
4832 current_function_arg_offset_rtx
4833 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
4834 : expand_expr (size_binop (MINUS_EXPR, stack_args_size.var,
4835 size_int (-stack_args_size.constant)),
4836 NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_BAD));
4837 #else
4838 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
4839 #endif
4841 /* See how many bytes, if any, of its args a function should try to pop
4842 on return. */
4844 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
4845 current_function_args_size);
4847 /* For stdarg.h function, save info about
4848 regs and stack space used by the named args. */
4850 if (!hide_last_arg)
4851 current_function_args_info = args_so_far;
4853 /* Set the rtx used for the function return value. Put this in its
4854 own variable so any optimizers that need this information don't have
4855 to include tree.h. Do this here so it gets done when an inlined
4856 function gets output. */
4858 current_function_return_rtx = DECL_RTL (DECL_RESULT (fndecl));
4861 /* Indicate whether REGNO is an incoming argument to the current function
4862 that was promoted to a wider mode. If so, return the RTX for the
4863 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
4864 that REGNO is promoted from and whether the promotion was signed or
4865 unsigned. */
4867 #ifdef PROMOTE_FUNCTION_ARGS
4870 promoted_input_arg (regno, pmode, punsignedp)
4871 int regno;
4872 enum machine_mode *pmode;
4873 int *punsignedp;
4875 tree arg;
4877 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
4878 arg = TREE_CHAIN (arg))
4879 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
4880 && REGNO (DECL_INCOMING_RTL (arg)) == regno
4881 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
4883 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
4884 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
4886 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
4887 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
4888 && mode != DECL_MODE (arg))
4890 *pmode = DECL_MODE (arg);
4891 *punsignedp = unsignedp;
4892 return DECL_INCOMING_RTL (arg);
4896 return 0;
4899 #endif
4901 /* Compute the size and offset from the start of the stacked arguments for a
4902 parm passed in mode PASSED_MODE and with type TYPE.
4904 INITIAL_OFFSET_PTR points to the current offset into the stacked
4905 arguments.
4907 The starting offset and size for this parm are returned in *OFFSET_PTR
4908 and *ARG_SIZE_PTR, respectively.
4910 IN_REGS is non-zero if the argument will be passed in registers. It will
4911 never be set if REG_PARM_STACK_SPACE is not defined.
4913 FNDECL is the function in which the argument was defined.
4915 There are two types of rounding that are done. The first, controlled by
4916 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
4917 list to be aligned to the specific boundary (in bits). This rounding
4918 affects the initial and starting offsets, but not the argument size.
4920 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
4921 optionally rounds the size of the parm to PARM_BOUNDARY. The
4922 initial offset is not affected by this rounding, while the size always
4923 is and the starting offset may be. */
4925 /* offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
4926 initial_offset_ptr is positive because locate_and_pad_parm's
4927 callers pass in the total size of args so far as
4928 initial_offset_ptr. arg_size_ptr is always positive.*/
4930 void
4931 locate_and_pad_parm (passed_mode, type, in_regs, fndecl,
4932 initial_offset_ptr, offset_ptr, arg_size_ptr,
4933 alignment_pad)
4934 enum machine_mode passed_mode;
4935 tree type;
4936 int in_regs ATTRIBUTE_UNUSED;
4937 tree fndecl ATTRIBUTE_UNUSED;
4938 struct args_size *initial_offset_ptr;
4939 struct args_size *offset_ptr;
4940 struct args_size *arg_size_ptr;
4941 struct args_size *alignment_pad;
4944 tree sizetree
4945 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
4946 enum direction where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
4947 int boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
4949 #ifdef REG_PARM_STACK_SPACE
4950 /* If we have found a stack parm before we reach the end of the
4951 area reserved for registers, skip that area. */
4952 if (! in_regs)
4954 int reg_parm_stack_space = 0;
4956 #ifdef MAYBE_REG_PARM_STACK_SPACE
4957 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
4958 #else
4959 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
4960 #endif
4961 if (reg_parm_stack_space > 0)
4963 if (initial_offset_ptr->var)
4965 initial_offset_ptr->var
4966 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
4967 size_int (reg_parm_stack_space));
4968 initial_offset_ptr->constant = 0;
4970 else if (initial_offset_ptr->constant < reg_parm_stack_space)
4971 initial_offset_ptr->constant = reg_parm_stack_space;
4974 #endif /* REG_PARM_STACK_SPACE */
4976 arg_size_ptr->var = 0;
4977 arg_size_ptr->constant = 0;
4979 #ifdef ARGS_GROW_DOWNWARD
4980 if (initial_offset_ptr->var)
4982 offset_ptr->constant = 0;
4983 offset_ptr->var = size_binop (MINUS_EXPR, integer_zero_node,
4984 initial_offset_ptr->var);
4986 else
4988 offset_ptr->constant = - initial_offset_ptr->constant;
4989 offset_ptr->var = 0;
4991 if (where_pad != none
4992 && (TREE_CODE (sizetree) != INTEGER_CST
4993 || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
4994 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
4995 SUB_PARM_SIZE (*offset_ptr, sizetree);
4996 if (where_pad != downward)
4997 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad);
4998 if (initial_offset_ptr->var)
5000 arg_size_ptr->var = size_binop (MINUS_EXPR,
5001 size_binop (MINUS_EXPR,
5002 integer_zero_node,
5003 initial_offset_ptr->var),
5004 offset_ptr->var);
5006 else
5008 arg_size_ptr->constant = (- initial_offset_ptr->constant
5009 - offset_ptr->constant);
5011 #else /* !ARGS_GROW_DOWNWARD */
5012 pad_to_arg_alignment (initial_offset_ptr, boundary, alignment_pad);
5013 *offset_ptr = *initial_offset_ptr;
5015 #ifdef PUSH_ROUNDING
5016 if (passed_mode != BLKmode)
5017 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
5018 #endif
5020 /* Pad_below needs the pre-rounded size to know how much to pad below
5021 so this must be done before rounding up. */
5022 if (where_pad == downward
5023 /* However, BLKmode args passed in regs have their padding done elsewhere.
5024 The stack slot must be able to hold the entire register. */
5025 && !(in_regs && passed_mode == BLKmode))
5026 pad_below (offset_ptr, passed_mode, sizetree);
5028 if (where_pad != none
5029 && (TREE_CODE (sizetree) != INTEGER_CST
5030 || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
5031 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5033 ADD_PARM_SIZE (*arg_size_ptr, sizetree);
5034 #endif /* ARGS_GROW_DOWNWARD */
5037 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5038 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
5040 static void
5041 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad)
5042 struct args_size *offset_ptr;
5043 int boundary;
5044 struct args_size *alignment_pad;
5046 tree save_var = NULL_TREE;
5047 HOST_WIDE_INT save_constant = 0;
5049 int boundary_in_bytes = boundary / BITS_PER_UNIT;
5051 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5053 save_var = offset_ptr->var;
5054 save_constant = offset_ptr->constant;
5057 alignment_pad->var = NULL_TREE;
5058 alignment_pad->constant = 0;
5060 if (boundary > BITS_PER_UNIT)
5062 if (offset_ptr->var)
5064 offset_ptr->var =
5065 #ifdef ARGS_GROW_DOWNWARD
5066 round_down
5067 #else
5068 round_up
5069 #endif
5070 (ARGS_SIZE_TREE (*offset_ptr),
5071 boundary / BITS_PER_UNIT);
5072 offset_ptr->constant = 0; /*?*/
5073 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5074 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var, save_var);
5076 else
5078 offset_ptr->constant =
5079 #ifdef ARGS_GROW_DOWNWARD
5080 FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
5081 #else
5082 CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
5083 #endif
5084 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5085 alignment_pad->constant = offset_ptr->constant - save_constant;
5090 #ifndef ARGS_GROW_DOWNWARD
5091 static void
5092 pad_below (offset_ptr, passed_mode, sizetree)
5093 struct args_size *offset_ptr;
5094 enum machine_mode passed_mode;
5095 tree sizetree;
5097 if (passed_mode != BLKmode)
5099 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
5100 offset_ptr->constant
5101 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
5102 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
5103 - GET_MODE_SIZE (passed_mode));
5105 else
5107 if (TREE_CODE (sizetree) != INTEGER_CST
5108 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
5110 /* Round the size up to multiple of PARM_BOUNDARY bits. */
5111 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5112 /* Add it in. */
5113 ADD_PARM_SIZE (*offset_ptr, s2);
5114 SUB_PARM_SIZE (*offset_ptr, sizetree);
5118 #endif
5120 #ifdef ARGS_GROW_DOWNWARD
5121 static tree
5122 round_down (value, divisor)
5123 tree value;
5124 int divisor;
5126 return size_binop (MULT_EXPR,
5127 size_binop (FLOOR_DIV_EXPR, value, size_int (divisor)),
5128 size_int (divisor));
5130 #endif
5132 /* Walk the tree of blocks describing the binding levels within a function
5133 and warn about uninitialized variables.
5134 This is done after calling flow_analysis and before global_alloc
5135 clobbers the pseudo-regs to hard regs. */
5137 void
5138 uninitialized_vars_warning (block)
5139 tree block;
5141 register tree decl, sub;
5142 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5144 if (warn_uninitialized
5145 && TREE_CODE (decl) == VAR_DECL
5146 /* These warnings are unreliable for and aggregates
5147 because assigning the fields one by one can fail to convince
5148 flow.c that the entire aggregate was initialized.
5149 Unions are troublesome because members may be shorter. */
5150 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
5151 && DECL_RTL (decl) != 0
5152 && GET_CODE (DECL_RTL (decl)) == REG
5153 /* Global optimizations can make it difficult to determine if a
5154 particular variable has been initialized. However, a VAR_DECL
5155 with a nonzero DECL_INITIAL had an initializer, so do not
5156 claim it is potentially uninitialized.
5158 We do not care about the actual value in DECL_INITIAL, so we do
5159 not worry that it may be a dangling pointer. */
5160 && DECL_INITIAL (decl) == NULL_TREE
5161 && regno_uninitialized (REGNO (DECL_RTL (decl))))
5162 warning_with_decl (decl,
5163 "`%s' might be used uninitialized in this function");
5164 if (extra_warnings
5165 && TREE_CODE (decl) == VAR_DECL
5166 && DECL_RTL (decl) != 0
5167 && GET_CODE (DECL_RTL (decl)) == REG
5168 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5169 warning_with_decl (decl,
5170 "variable `%s' might be clobbered by `longjmp' or `vfork'");
5172 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5173 uninitialized_vars_warning (sub);
5176 /* Do the appropriate part of uninitialized_vars_warning
5177 but for arguments instead of local variables. */
5179 void
5180 setjmp_args_warning ()
5182 register tree decl;
5183 for (decl = DECL_ARGUMENTS (current_function_decl);
5184 decl; decl = TREE_CHAIN (decl))
5185 if (DECL_RTL (decl) != 0
5186 && GET_CODE (DECL_RTL (decl)) == REG
5187 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5188 warning_with_decl (decl, "argument `%s' might be clobbered by `longjmp' or `vfork'");
5191 /* If this function call setjmp, put all vars into the stack
5192 unless they were declared `register'. */
5194 void
5195 setjmp_protect (block)
5196 tree block;
5198 register tree decl, sub;
5199 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5200 if ((TREE_CODE (decl) == VAR_DECL
5201 || TREE_CODE (decl) == PARM_DECL)
5202 && DECL_RTL (decl) != 0
5203 && (GET_CODE (DECL_RTL (decl)) == REG
5204 || (GET_CODE (DECL_RTL (decl)) == MEM
5205 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5206 /* If this variable came from an inline function, it must be
5207 that its life doesn't overlap the setjmp. If there was a
5208 setjmp in the function, it would already be in memory. We
5209 must exclude such variable because their DECL_RTL might be
5210 set to strange things such as virtual_stack_vars_rtx. */
5211 && ! DECL_FROM_INLINE (decl)
5212 && (
5213 #ifdef NON_SAVING_SETJMP
5214 /* If longjmp doesn't restore the registers,
5215 don't put anything in them. */
5216 NON_SAVING_SETJMP
5218 #endif
5219 ! DECL_REGISTER (decl)))
5220 put_var_into_stack (decl);
5221 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5222 setjmp_protect (sub);
5225 /* Like the previous function, but for args instead of local variables. */
5227 void
5228 setjmp_protect_args ()
5230 register tree decl;
5231 for (decl = DECL_ARGUMENTS (current_function_decl);
5232 decl; decl = TREE_CHAIN (decl))
5233 if ((TREE_CODE (decl) == VAR_DECL
5234 || TREE_CODE (decl) == PARM_DECL)
5235 && DECL_RTL (decl) != 0
5236 && (GET_CODE (DECL_RTL (decl)) == REG
5237 || (GET_CODE (DECL_RTL (decl)) == MEM
5238 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5239 && (
5240 /* If longjmp doesn't restore the registers,
5241 don't put anything in them. */
5242 #ifdef NON_SAVING_SETJMP
5243 NON_SAVING_SETJMP
5245 #endif
5246 ! DECL_REGISTER (decl)))
5247 put_var_into_stack (decl);
5250 /* Return the context-pointer register corresponding to DECL,
5251 or 0 if it does not need one. */
5254 lookup_static_chain (decl)
5255 tree decl;
5257 tree context = decl_function_context (decl);
5258 tree link;
5260 if (context == 0
5261 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
5262 return 0;
5264 /* We treat inline_function_decl as an alias for the current function
5265 because that is the inline function whose vars, types, etc.
5266 are being merged into the current function.
5267 See expand_inline_function. */
5268 if (context == current_function_decl || context == inline_function_decl)
5269 return virtual_stack_vars_rtx;
5271 for (link = context_display; link; link = TREE_CHAIN (link))
5272 if (TREE_PURPOSE (link) == context)
5273 return RTL_EXPR_RTL (TREE_VALUE (link));
5275 abort ();
5278 /* Convert a stack slot address ADDR for variable VAR
5279 (from a containing function)
5280 into an address valid in this function (using a static chain). */
5283 fix_lexical_addr (addr, var)
5284 rtx addr;
5285 tree var;
5287 rtx basereg;
5288 HOST_WIDE_INT displacement;
5289 tree context = decl_function_context (var);
5290 struct function *fp;
5291 rtx base = 0;
5293 /* If this is the present function, we need not do anything. */
5294 if (context == current_function_decl || context == inline_function_decl)
5295 return addr;
5297 for (fp = outer_function_chain; fp; fp = fp->next)
5298 if (fp->decl == context)
5299 break;
5301 if (fp == 0)
5302 abort ();
5304 if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
5305 addr = XEXP (XEXP (addr, 0), 0);
5307 /* Decode given address as base reg plus displacement. */
5308 if (GET_CODE (addr) == REG)
5309 basereg = addr, displacement = 0;
5310 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5311 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
5312 else
5313 abort ();
5315 /* We accept vars reached via the containing function's
5316 incoming arg pointer and via its stack variables pointer. */
5317 if (basereg == fp->internal_arg_pointer)
5319 /* If reached via arg pointer, get the arg pointer value
5320 out of that function's stack frame.
5322 There are two cases: If a separate ap is needed, allocate a
5323 slot in the outer function for it and dereference it that way.
5324 This is correct even if the real ap is actually a pseudo.
5325 Otherwise, just adjust the offset from the frame pointer to
5326 compensate. */
5328 #ifdef NEED_SEPARATE_AP
5329 rtx addr;
5331 if (fp->x_arg_pointer_save_area == 0)
5332 fp->x_arg_pointer_save_area
5333 = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, fp);
5335 addr = fix_lexical_addr (XEXP (fp->x_arg_pointer_save_area, 0), var);
5336 addr = memory_address (Pmode, addr);
5338 base = copy_to_reg (gen_rtx_MEM (Pmode, addr));
5339 #else
5340 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
5341 base = lookup_static_chain (var);
5342 #endif
5345 else if (basereg == virtual_stack_vars_rtx)
5347 /* This is the same code as lookup_static_chain, duplicated here to
5348 avoid an extra call to decl_function_context. */
5349 tree link;
5351 for (link = context_display; link; link = TREE_CHAIN (link))
5352 if (TREE_PURPOSE (link) == context)
5354 base = RTL_EXPR_RTL (TREE_VALUE (link));
5355 break;
5359 if (base == 0)
5360 abort ();
5362 /* Use same offset, relative to appropriate static chain or argument
5363 pointer. */
5364 return plus_constant (base, displacement);
5367 /* Return the address of the trampoline for entering nested fn FUNCTION.
5368 If necessary, allocate a trampoline (in the stack frame)
5369 and emit rtl to initialize its contents (at entry to this function). */
5372 trampoline_address (function)
5373 tree function;
5375 tree link;
5376 tree rtlexp;
5377 rtx tramp;
5378 struct function *fp;
5379 tree fn_context;
5381 /* Find an existing trampoline and return it. */
5382 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5383 if (TREE_PURPOSE (link) == function)
5384 return
5385 round_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
5387 for (fp = outer_function_chain; fp; fp = fp->next)
5388 for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link))
5389 if (TREE_PURPOSE (link) == function)
5391 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
5392 function);
5393 return round_trampoline_addr (tramp);
5396 /* None exists; we must make one. */
5398 /* Find the `struct function' for the function containing FUNCTION. */
5399 fp = 0;
5400 fn_context = decl_function_context (function);
5401 if (fn_context != current_function_decl
5402 && fn_context != inline_function_decl)
5403 for (fp = outer_function_chain; fp; fp = fp->next)
5404 if (fp->decl == fn_context)
5405 break;
5407 /* Allocate run-time space for this trampoline
5408 (usually in the defining function's stack frame). */
5409 #ifdef ALLOCATE_TRAMPOLINE
5410 tramp = ALLOCATE_TRAMPOLINE (fp);
5411 #else
5412 /* If rounding needed, allocate extra space
5413 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
5414 #ifdef TRAMPOLINE_ALIGNMENT
5415 #define TRAMPOLINE_REAL_SIZE \
5416 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5417 #else
5418 #define TRAMPOLINE_REAL_SIZE (TRAMPOLINE_SIZE)
5419 #endif
5420 tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0,
5421 fp ? fp : cfun);
5422 #endif
5424 /* Record the trampoline for reuse and note it for later initialization
5425 by expand_function_end. */
5426 if (fp != 0)
5428 push_obstacks (fp->function_maybepermanent_obstack,
5429 fp->function_maybepermanent_obstack);
5430 rtlexp = make_node (RTL_EXPR);
5431 RTL_EXPR_RTL (rtlexp) = tramp;
5432 fp->x_trampoline_list = tree_cons (function, rtlexp,
5433 fp->x_trampoline_list);
5434 pop_obstacks ();
5436 else
5438 /* Make the RTL_EXPR node temporary, not momentary, so that the
5439 trampoline_list doesn't become garbage. */
5440 int momentary = suspend_momentary ();
5441 rtlexp = make_node (RTL_EXPR);
5442 resume_momentary (momentary);
5444 RTL_EXPR_RTL (rtlexp) = tramp;
5445 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
5448 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
5449 return round_trampoline_addr (tramp);
5452 /* Given a trampoline address,
5453 round it to multiple of TRAMPOLINE_ALIGNMENT. */
5455 static rtx
5456 round_trampoline_addr (tramp)
5457 rtx tramp;
5459 #ifdef TRAMPOLINE_ALIGNMENT
5460 /* Round address up to desired boundary. */
5461 rtx temp = gen_reg_rtx (Pmode);
5462 temp = expand_binop (Pmode, add_optab, tramp,
5463 GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1),
5464 temp, 0, OPTAB_LIB_WIDEN);
5465 tramp = expand_binop (Pmode, and_optab, temp,
5466 GEN_INT (- TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT),
5467 temp, 0, OPTAB_LIB_WIDEN);
5468 #endif
5469 return tramp;
5472 /* The functions identify_blocks and reorder_blocks provide a way to
5473 reorder the tree of BLOCK nodes, for optimizers that reshuffle or
5474 duplicate portions of the RTL code. Call identify_blocks before
5475 changing the RTL, and call reorder_blocks after. */
5477 /* Put all this function's BLOCK nodes including those that are chained
5478 onto the first block into a vector, and return it.
5479 Also store in each NOTE for the beginning or end of a block
5480 the index of that block in the vector.
5481 The arguments are BLOCK, the chain of top-level blocks of the function,
5482 and INSNS, the insn chain of the function. */
5484 void
5485 identify_blocks (block, insns)
5486 tree block;
5487 rtx insns;
5489 int n_blocks;
5490 tree *block_vector;
5491 tree *block_stack;
5492 int depth = 0;
5493 int current_block_number = 1;
5494 rtx insn;
5496 if (block == 0)
5497 return;
5499 /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
5500 depth-first order. */
5501 n_blocks = all_blocks (block, 0);
5502 block_vector = (tree *) xmalloc (n_blocks * sizeof (tree));
5503 all_blocks (block, block_vector);
5505 block_stack = (tree *) xmalloc (n_blocks * sizeof (tree));
5507 for (insn = insns; insn; insn = NEXT_INSN (insn))
5508 if (GET_CODE (insn) == NOTE)
5510 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5512 tree b;
5514 /* If there are more block notes than BLOCKs, something
5515 is badly wrong. */
5516 if (current_block_number == n_blocks)
5517 abort ();
5519 b = block_vector[current_block_number++];
5520 NOTE_BLOCK (insn) = b;
5521 block_stack[depth++] = b;
5523 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5525 if (depth == 0)
5526 /* There are more NOTE_INSN_BLOCK_ENDs that
5527 NOTE_INSN_BLOCK_BEGs. Something is badly wrong. */
5528 abort ();
5530 NOTE_BLOCK (insn) = block_stack[--depth];
5534 /* In whole-function mode, we might not have seen the whole function
5535 yet, so we might not use up all the blocks. */
5536 if (n_blocks != current_block_number
5537 && !cfun->x_whole_function_mode_p)
5538 abort ();
5540 free (block_vector);
5541 free (block_stack);
5544 /* Given a revised instruction chain, rebuild the tree structure of
5545 BLOCK nodes to correspond to the new order of RTL. The new block
5546 tree is inserted below TOP_BLOCK. Returns the current top-level
5547 block. */
5549 tree
5550 reorder_blocks (block, insns)
5551 tree block;
5552 rtx insns;
5554 tree current_block = block;
5555 rtx insn;
5557 if (block == NULL_TREE)
5558 return NULL_TREE;
5560 /* Prune the old trees away, so that it doesn't get in the way. */
5561 BLOCK_SUBBLOCKS (current_block) = 0;
5562 BLOCK_CHAIN (current_block) = 0;
5564 for (insn = insns; insn; insn = NEXT_INSN (insn))
5565 if (GET_CODE (insn) == NOTE)
5567 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5569 tree block = NOTE_BLOCK (insn);
5570 /* If we have seen this block before, copy it. */
5571 if (TREE_ASM_WRITTEN (block))
5572 block = copy_node (block);
5573 BLOCK_SUBBLOCKS (block) = 0;
5574 TREE_ASM_WRITTEN (block) = 1;
5575 BLOCK_SUPERCONTEXT (block) = current_block;
5576 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
5577 BLOCK_SUBBLOCKS (current_block) = block;
5578 current_block = block;
5580 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5582 BLOCK_SUBBLOCKS (current_block)
5583 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
5584 current_block = BLOCK_SUPERCONTEXT (current_block);
5588 BLOCK_SUBBLOCKS (current_block)
5589 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
5590 return current_block;
5593 /* Reverse the order of elements in the chain T of blocks,
5594 and return the new head of the chain (old last element). */
5596 static tree
5597 blocks_nreverse (t)
5598 tree t;
5600 register tree prev = 0, decl, next;
5601 for (decl = t; decl; decl = next)
5603 next = BLOCK_CHAIN (decl);
5604 BLOCK_CHAIN (decl) = prev;
5605 prev = decl;
5607 return prev;
5610 /* Count the subblocks of the list starting with BLOCK, and list them
5611 all into the vector VECTOR. Also clear TREE_ASM_WRITTEN in all
5612 blocks. */
5614 static int
5615 all_blocks (block, vector)
5616 tree block;
5617 tree *vector;
5619 int n_blocks = 0;
5621 while (block)
5623 TREE_ASM_WRITTEN (block) = 0;
5625 /* Record this block. */
5626 if (vector)
5627 vector[n_blocks] = block;
5629 ++n_blocks;
5631 /* Record the subblocks, and their subblocks... */
5632 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
5633 vector ? vector + n_blocks : 0);
5634 block = BLOCK_CHAIN (block);
5637 return n_blocks;
5640 /* Allocate a function structure and reset its contents to the defaults. */
5641 static void
5642 prepare_function_start ()
5644 cfun = (struct function *) xcalloc (1, sizeof (struct function));
5646 init_stmt_for_function ();
5647 init_eh_for_function ();
5649 cse_not_expected = ! optimize;
5651 /* Caller save not needed yet. */
5652 caller_save_needed = 0;
5654 /* No stack slots have been made yet. */
5655 stack_slot_list = 0;
5657 current_function_has_nonlocal_label = 0;
5658 current_function_has_nonlocal_goto = 0;
5660 /* There is no stack slot for handling nonlocal gotos. */
5661 nonlocal_goto_handler_slots = 0;
5662 nonlocal_goto_stack_level = 0;
5664 /* No labels have been declared for nonlocal use. */
5665 nonlocal_labels = 0;
5666 nonlocal_goto_handler_labels = 0;
5668 /* No function calls so far in this function. */
5669 function_call_count = 0;
5671 /* No parm regs have been allocated.
5672 (This is important for output_inline_function.) */
5673 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
5675 /* Initialize the RTL mechanism. */
5676 init_emit ();
5678 /* Initialize the queue of pending postincrement and postdecrements,
5679 and some other info in expr.c. */
5680 init_expr ();
5682 /* We haven't done register allocation yet. */
5683 reg_renumber = 0;
5685 init_varasm_status (cfun);
5687 /* Clear out data used for inlining. */
5688 cfun->inlinable = 0;
5689 cfun->original_decl_initial = 0;
5690 cfun->original_arg_vector = 0;
5692 cfun->stack_alignment_needed = 0;
5694 /* Set if a call to setjmp is seen. */
5695 current_function_calls_setjmp = 0;
5697 /* Set if a call to longjmp is seen. */
5698 current_function_calls_longjmp = 0;
5700 current_function_calls_alloca = 0;
5701 current_function_contains_functions = 0;
5702 current_function_is_leaf = 0;
5703 current_function_sp_is_unchanging = 0;
5704 current_function_uses_only_leaf_regs = 0;
5705 current_function_has_computed_jump = 0;
5706 current_function_is_thunk = 0;
5708 current_function_returns_pcc_struct = 0;
5709 current_function_returns_struct = 0;
5710 current_function_epilogue_delay_list = 0;
5711 current_function_uses_const_pool = 0;
5712 current_function_uses_pic_offset_table = 0;
5713 current_function_cannot_inline = 0;
5715 /* We have not yet needed to make a label to jump to for tail-recursion. */
5716 tail_recursion_label = 0;
5718 /* We haven't had a need to make a save area for ap yet. */
5719 arg_pointer_save_area = 0;
5721 /* No stack slots allocated yet. */
5722 frame_offset = 0;
5724 /* No SAVE_EXPRs in this function yet. */
5725 save_expr_regs = 0;
5727 /* No RTL_EXPRs in this function yet. */
5728 rtl_expr_chain = 0;
5730 /* Set up to allocate temporaries. */
5731 init_temp_slots ();
5733 /* Indicate that we need to distinguish between the return value of the
5734 present function and the return value of a function being called. */
5735 rtx_equal_function_value_matters = 1;
5737 /* Indicate that we have not instantiated virtual registers yet. */
5738 virtuals_instantiated = 0;
5740 /* Indicate we have no need of a frame pointer yet. */
5741 frame_pointer_needed = 0;
5743 /* By default assume not varargs or stdarg. */
5744 current_function_varargs = 0;
5745 current_function_stdarg = 0;
5747 /* We haven't made any trampolines for this function yet. */
5748 trampoline_list = 0;
5750 init_pending_stack_adjust ();
5751 inhibit_defer_pop = 0;
5753 current_function_outgoing_args_size = 0;
5755 if (init_lang_status)
5756 (*init_lang_status) (cfun);
5757 if (init_machine_status)
5758 (*init_machine_status) (cfun);
5761 /* Initialize the rtl expansion mechanism so that we can do simple things
5762 like generate sequences. This is used to provide a context during global
5763 initialization of some passes. */
5764 void
5765 init_dummy_function_start ()
5767 prepare_function_start ();
5770 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
5771 and initialize static variables for generating RTL for the statements
5772 of the function. */
5774 void
5775 init_function_start (subr, filename, line)
5776 tree subr;
5777 char *filename;
5778 int line;
5780 prepare_function_start ();
5782 /* Remember this function for later. */
5783 cfun->next_global = all_functions;
5784 all_functions = cfun;
5786 current_function_name = (*decl_printable_name) (subr, 2);
5787 cfun->decl = subr;
5789 /* Nonzero if this is a nested function that uses a static chain. */
5791 current_function_needs_context
5792 = (decl_function_context (current_function_decl) != 0
5793 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
5795 /* Within function body, compute a type's size as soon it is laid out. */
5796 immediate_size_expand++;
5798 /* Prevent ever trying to delete the first instruction of a function.
5799 Also tell final how to output a linenum before the function prologue.
5800 Note linenums could be missing, e.g. when compiling a Java .class file. */
5801 if (line > 0)
5802 emit_line_note (filename, line);
5804 /* Make sure first insn is a note even if we don't want linenums.
5805 This makes sure the first insn will never be deleted.
5806 Also, final expects a note to appear there. */
5807 emit_note (NULL_PTR, NOTE_INSN_DELETED);
5809 /* Set flags used by final.c. */
5810 if (aggregate_value_p (DECL_RESULT (subr)))
5812 #ifdef PCC_STATIC_STRUCT_RETURN
5813 current_function_returns_pcc_struct = 1;
5814 #endif
5815 current_function_returns_struct = 1;
5818 /* Warn if this value is an aggregate type,
5819 regardless of which calling convention we are using for it. */
5820 if (warn_aggregate_return
5821 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
5822 warning ("function returns an aggregate");
5824 current_function_returns_pointer
5825 = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
5828 /* Make sure all values used by the optimization passes have sane
5829 defaults. */
5830 void
5831 init_function_for_compilation ()
5833 reg_renumber = 0;
5834 /* No prologue/epilogue insns yet. */
5835 prologue = epilogue = 0;
5838 /* Indicate that the current function uses extra args
5839 not explicitly mentioned in the argument list in any fashion. */
5841 void
5842 mark_varargs ()
5844 current_function_varargs = 1;
5847 /* Expand a call to __main at the beginning of a possible main function. */
5849 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
5850 #undef HAS_INIT_SECTION
5851 #define HAS_INIT_SECTION
5852 #endif
5854 void
5855 expand_main_function ()
5857 #if !defined (HAS_INIT_SECTION)
5858 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, NAME__MAIN), 0,
5859 VOIDmode, 0);
5860 #endif /* not HAS_INIT_SECTION */
5863 extern struct obstack permanent_obstack;
5865 /* Start the RTL for a new function, and set variables used for
5866 emitting RTL.
5867 SUBR is the FUNCTION_DECL node.
5868 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
5869 the function's parameters, which must be run at any return statement. */
5871 void
5872 expand_function_start (subr, parms_have_cleanups)
5873 tree subr;
5874 int parms_have_cleanups;
5876 register int i;
5877 tree tem;
5878 rtx last_ptr = NULL_RTX;
5880 /* Make sure volatile mem refs aren't considered
5881 valid operands of arithmetic insns. */
5882 init_recog_no_volatile ();
5884 /* Set this before generating any memory accesses. */
5885 current_function_check_memory_usage
5886 = (flag_check_memory_usage
5887 && ! DECL_NO_CHECK_MEMORY_USAGE (current_function_decl));
5889 current_function_instrument_entry_exit
5890 = (flag_instrument_function_entry_exit
5891 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
5893 current_function_limit_stack
5894 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
5896 /* If function gets a static chain arg, store it in the stack frame.
5897 Do this first, so it gets the first stack slot offset. */
5898 if (current_function_needs_context)
5900 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5902 /* Delay copying static chain if it is not a register to avoid
5903 conflicts with regs used for parameters. */
5904 if (! SMALL_REGISTER_CLASSES
5905 || GET_CODE (static_chain_incoming_rtx) == REG)
5906 emit_move_insn (last_ptr, static_chain_incoming_rtx);
5909 /* If the parameters of this function need cleaning up, get a label
5910 for the beginning of the code which executes those cleanups. This must
5911 be done before doing anything with return_label. */
5912 if (parms_have_cleanups)
5913 cleanup_label = gen_label_rtx ();
5914 else
5915 cleanup_label = 0;
5917 /* Make the label for return statements to jump to, if this machine
5918 does not have a one-instruction return and uses an epilogue,
5919 or if it returns a structure, or if it has parm cleanups. */
5920 #ifdef HAVE_return
5921 if (cleanup_label == 0 && HAVE_return
5922 && ! current_function_instrument_entry_exit
5923 && ! current_function_returns_pcc_struct
5924 && ! (current_function_returns_struct && ! optimize))
5925 return_label = 0;
5926 else
5927 return_label = gen_label_rtx ();
5928 #else
5929 return_label = gen_label_rtx ();
5930 #endif
5932 /* Initialize rtx used to return the value. */
5933 /* Do this before assign_parms so that we copy the struct value address
5934 before any library calls that assign parms might generate. */
5936 /* Decide whether to return the value in memory or in a register. */
5937 if (aggregate_value_p (DECL_RESULT (subr)))
5939 /* Returning something that won't go in a register. */
5940 register rtx value_address = 0;
5942 #ifdef PCC_STATIC_STRUCT_RETURN
5943 if (current_function_returns_pcc_struct)
5945 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
5946 value_address = assemble_static_space (size);
5948 else
5949 #endif
5951 /* Expect to be passed the address of a place to store the value.
5952 If it is passed as an argument, assign_parms will take care of
5953 it. */
5954 if (struct_value_incoming_rtx)
5956 value_address = gen_reg_rtx (Pmode);
5957 emit_move_insn (value_address, struct_value_incoming_rtx);
5960 if (value_address)
5962 DECL_RTL (DECL_RESULT (subr))
5963 = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
5964 MEM_SET_IN_STRUCT_P (DECL_RTL (DECL_RESULT (subr)),
5965 AGGREGATE_TYPE_P (TREE_TYPE
5966 (DECL_RESULT
5967 (subr))));
5970 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
5971 /* If return mode is void, this decl rtl should not be used. */
5972 DECL_RTL (DECL_RESULT (subr)) = 0;
5973 else if (parms_have_cleanups || current_function_instrument_entry_exit)
5975 /* If function will end with cleanup code for parms,
5976 compute the return values into a pseudo reg,
5977 which we will copy into the true return register
5978 after the cleanups are done. */
5980 enum machine_mode mode = DECL_MODE (DECL_RESULT (subr));
5982 #ifdef PROMOTE_FUNCTION_RETURN
5983 tree type = TREE_TYPE (DECL_RESULT (subr));
5984 int unsignedp = TREE_UNSIGNED (type);
5986 mode = promote_mode (type, mode, &unsignedp, 1);
5987 #endif
5989 DECL_RTL (DECL_RESULT (subr)) = gen_reg_rtx (mode);
5991 else
5992 /* Scalar, returned in a register. */
5994 #ifdef FUNCTION_OUTGOING_VALUE
5995 DECL_RTL (DECL_RESULT (subr))
5996 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (subr)), subr);
5997 #else
5998 DECL_RTL (DECL_RESULT (subr))
5999 = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (subr)), subr);
6000 #endif
6002 /* Mark this reg as the function's return value. */
6003 if (GET_CODE (DECL_RTL (DECL_RESULT (subr))) == REG)
6005 REG_FUNCTION_VALUE_P (DECL_RTL (DECL_RESULT (subr))) = 1;
6006 /* Needed because we may need to move this to memory
6007 in case it's a named return value whose address is taken. */
6008 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6012 /* Initialize rtx for parameters and local variables.
6013 In some cases this requires emitting insns. */
6015 assign_parms (subr);
6017 /* Copy the static chain now if it wasn't a register. The delay is to
6018 avoid conflicts with the parameter passing registers. */
6020 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
6021 if (GET_CODE (static_chain_incoming_rtx) != REG)
6022 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6024 /* The following was moved from init_function_start.
6025 The move is supposed to make sdb output more accurate. */
6026 /* Indicate the beginning of the function body,
6027 as opposed to parm setup. */
6028 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_BEG);
6030 if (GET_CODE (get_last_insn ()) != NOTE)
6031 emit_note (NULL_PTR, NOTE_INSN_DELETED);
6032 parm_birth_insn = get_last_insn ();
6034 context_display = 0;
6035 if (current_function_needs_context)
6037 /* Fetch static chain values for containing functions. */
6038 tem = decl_function_context (current_function_decl);
6039 /* Copy the static chain pointer into a pseudo. If we have
6040 small register classes, copy the value from memory if
6041 static_chain_incoming_rtx is a REG. */
6042 if (tem)
6044 /* If the static chain originally came in a register, put it back
6045 there, then move it out in the next insn. The reason for
6046 this peculiar code is to satisfy function integration. */
6047 if (SMALL_REGISTER_CLASSES
6048 && GET_CODE (static_chain_incoming_rtx) == REG)
6049 emit_move_insn (static_chain_incoming_rtx, last_ptr);
6050 last_ptr = copy_to_reg (static_chain_incoming_rtx);
6053 while (tem)
6055 tree rtlexp = make_node (RTL_EXPR);
6057 RTL_EXPR_RTL (rtlexp) = last_ptr;
6058 context_display = tree_cons (tem, rtlexp, context_display);
6059 tem = decl_function_context (tem);
6060 if (tem == 0)
6061 break;
6062 /* Chain thru stack frames, assuming pointer to next lexical frame
6063 is found at the place we always store it. */
6064 #ifdef FRAME_GROWS_DOWNWARD
6065 last_ptr = plus_constant (last_ptr, - GET_MODE_SIZE (Pmode));
6066 #endif
6067 last_ptr = copy_to_reg (gen_rtx_MEM (Pmode,
6068 memory_address (Pmode,
6069 last_ptr)));
6071 /* If we are not optimizing, ensure that we know that this
6072 piece of context is live over the entire function. */
6073 if (! optimize)
6074 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
6075 save_expr_regs);
6079 if (current_function_instrument_entry_exit)
6081 rtx fun = DECL_RTL (current_function_decl);
6082 if (GET_CODE (fun) == MEM)
6083 fun = XEXP (fun, 0);
6084 else
6085 abort ();
6086 emit_library_call (profile_function_entry_libfunc, 0, VOIDmode, 2,
6087 fun, Pmode,
6088 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6090 hard_frame_pointer_rtx),
6091 Pmode);
6094 /* After the display initializations is where the tail-recursion label
6095 should go, if we end up needing one. Ensure we have a NOTE here
6096 since some things (like trampolines) get placed before this. */
6097 tail_recursion_reentry = emit_note (NULL_PTR, NOTE_INSN_DELETED);
6099 /* Evaluate now the sizes of any types declared among the arguments. */
6100 for (tem = nreverse (get_pending_sizes ()); tem; tem = TREE_CHAIN (tem))
6102 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode,
6103 EXPAND_MEMORY_USE_BAD);
6104 /* Flush the queue in case this parameter declaration has
6105 side-effects. */
6106 emit_queue ();
6109 /* Make sure there is a line number after the function entry setup code. */
6110 force_next_line_note ();
6113 /* Undo the effects of init_dummy_function_start. */
6114 void
6115 expand_dummy_function_end ()
6117 /* End any sequences that failed to be closed due to syntax errors. */
6118 while (in_sequence_p ())
6119 end_sequence ();
6121 /* Outside function body, can't compute type's actual size
6122 until next function's body starts. */
6124 free_after_parsing (cfun);
6125 free_after_compilation (cfun);
6126 free (cfun);
6127 cfun = 0;
6130 /* Emit CODE for each register of the return value. Useful values for
6131 code are USE and CLOBBER. */
6133 void
6134 diddle_return_value (code)
6135 enum rtx_code code;
6137 tree decl_result = DECL_RESULT (current_function_decl);
6138 rtx return_reg = DECL_RTL (decl_result);
6140 if (return_reg)
6142 if (GET_CODE (return_reg) == REG
6143 && REGNO (return_reg) < FIRST_PSEUDO_REGISTER)
6145 /* Use hard_function_value to avoid creating a reference to a BLKmode
6146 register in the USE/CLOBBER insn. */
6147 return_reg = hard_function_value (TREE_TYPE (decl_result),
6148 current_function_decl, 1);
6149 REG_FUNCTION_VALUE_P (return_reg) = 1;
6150 emit_insn (gen_rtx_fmt_e (code, VOIDmode, return_reg));
6152 else if (GET_CODE (return_reg) == PARALLEL)
6154 int i;
6156 for (i = 0; i < XVECLEN (return_reg, 0); i++)
6158 rtx x = XEXP (XVECEXP (return_reg, 0, i), 0);
6160 if (GET_CODE (x) == REG
6161 && REGNO (x) < FIRST_PSEUDO_REGISTER)
6162 emit_insn (gen_rtx_fmt_e (code, VOIDmode, x));
6168 /* Generate RTL for the end of the current function.
6169 FILENAME and LINE are the current position in the source file.
6171 It is up to language-specific callers to do cleanups for parameters--
6172 or else, supply 1 for END_BINDINGS and we will call expand_end_bindings. */
6174 void
6175 expand_function_end (filename, line, end_bindings)
6176 char *filename;
6177 int line;
6178 int end_bindings;
6180 register int i;
6181 tree link;
6183 #ifdef TRAMPOLINE_TEMPLATE
6184 static rtx initial_trampoline;
6185 #endif
6187 finish_expr_for_function ();
6189 #ifdef NON_SAVING_SETJMP
6190 /* Don't put any variables in registers if we call setjmp
6191 on a machine that fails to restore the registers. */
6192 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
6194 if (DECL_INITIAL (current_function_decl) != error_mark_node)
6195 setjmp_protect (DECL_INITIAL (current_function_decl));
6197 setjmp_protect_args ();
6199 #endif
6201 /* Save the argument pointer if a save area was made for it. */
6202 if (arg_pointer_save_area)
6204 /* arg_pointer_save_area may not be a valid memory address, so we
6205 have to check it and fix it if necessary. */
6206 rtx seq;
6207 start_sequence ();
6208 emit_move_insn (validize_mem (arg_pointer_save_area),
6209 virtual_incoming_args_rtx);
6210 seq = gen_sequence ();
6211 end_sequence ();
6212 emit_insn_before (seq, tail_recursion_reentry);
6215 /* Initialize any trampolines required by this function. */
6216 for (link = trampoline_list; link; link = TREE_CHAIN (link))
6218 tree function = TREE_PURPOSE (link);
6219 rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function);
6220 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
6221 #ifdef TRAMPOLINE_TEMPLATE
6222 rtx blktramp;
6223 #endif
6224 rtx seq;
6226 #ifdef TRAMPOLINE_TEMPLATE
6227 /* First make sure this compilation has a template for
6228 initializing trampolines. */
6229 if (initial_trampoline == 0)
6231 end_temporary_allocation ();
6232 initial_trampoline
6233 = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
6234 resume_temporary_allocation ();
6236 ggc_add_rtx_root (&initial_trampoline, 1);
6238 #endif
6240 /* Generate insns to initialize the trampoline. */
6241 start_sequence ();
6242 tramp = round_trampoline_addr (XEXP (tramp, 0));
6243 #ifdef TRAMPOLINE_TEMPLATE
6244 blktramp = change_address (initial_trampoline, BLKmode, tramp);
6245 emit_block_move (blktramp, initial_trampoline,
6246 GEN_INT (TRAMPOLINE_SIZE),
6247 TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT);
6248 #endif
6249 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
6250 seq = get_insns ();
6251 end_sequence ();
6253 /* Put those insns at entry to the containing function (this one). */
6254 emit_insns_before (seq, tail_recursion_reentry);
6257 /* If we are doing stack checking and this function makes calls,
6258 do a stack probe at the start of the function to ensure we have enough
6259 space for another stack frame. */
6260 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
6262 rtx insn, seq;
6264 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6265 if (GET_CODE (insn) == CALL_INSN)
6267 start_sequence ();
6268 probe_stack_range (STACK_CHECK_PROTECT,
6269 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
6270 seq = get_insns ();
6271 end_sequence ();
6272 emit_insns_before (seq, tail_recursion_reentry);
6273 break;
6277 /* Warn about unused parms if extra warnings were specified. */
6278 if (warn_unused && extra_warnings)
6280 tree decl;
6282 for (decl = DECL_ARGUMENTS (current_function_decl);
6283 decl; decl = TREE_CHAIN (decl))
6284 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
6285 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
6286 warning_with_decl (decl, "unused parameter `%s'");
6289 /* Delete handlers for nonlocal gotos if nothing uses them. */
6290 if (nonlocal_goto_handler_slots != 0
6291 && ! current_function_has_nonlocal_label)
6292 delete_handlers ();
6294 /* End any sequences that failed to be closed due to syntax errors. */
6295 while (in_sequence_p ())
6296 end_sequence ();
6298 /* Outside function body, can't compute type's actual size
6299 until next function's body starts. */
6300 immediate_size_expand--;
6302 clear_pending_stack_adjust ();
6303 do_pending_stack_adjust ();
6305 /* Mark the end of the function body.
6306 If control reaches this insn, the function can drop through
6307 without returning a value. */
6308 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_END);
6310 /* Must mark the last line number note in the function, so that the test
6311 coverage code can avoid counting the last line twice. This just tells
6312 the code to ignore the immediately following line note, since there
6313 already exists a copy of this note somewhere above. This line number
6314 note is still needed for debugging though, so we can't delete it. */
6315 if (flag_test_coverage)
6316 emit_note (NULL_PTR, NOTE_REPEATED_LINE_NUMBER);
6318 /* Output a linenumber for the end of the function.
6319 SDB depends on this. */
6320 emit_line_note_force (filename, line);
6322 /* Output the label for the actual return from the function,
6323 if one is expected. This happens either because a function epilogue
6324 is used instead of a return instruction, or because a return was done
6325 with a goto in order to run local cleanups, or because of pcc-style
6326 structure returning. */
6328 if (return_label)
6330 /* Before the return label, clobber the return registers so that
6331 they are not propogated live to the rest of the function. This
6332 can only happen with functions that drop through; if there had
6333 been a return statement, there would have either been a return
6334 rtx, or a jump to the return label. */
6335 diddle_return_value (CLOBBER);
6337 emit_label (return_label);
6340 /* C++ uses this. */
6341 if (end_bindings)
6342 expand_end_bindings (0, 0, 0);
6344 /* Now handle any leftover exception regions that may have been
6345 created for the parameters. */
6347 rtx last = get_last_insn ();
6348 rtx label;
6350 expand_leftover_cleanups ();
6352 /* If there are any catch_clauses remaining, output them now. */
6353 emit_insns (catch_clauses);
6354 catch_clauses = NULL_RTX;
6355 /* If the above emitted any code, may sure we jump around it. */
6356 if (last != get_last_insn ())
6358 label = gen_label_rtx ();
6359 last = emit_jump_insn_after (gen_jump (label), last);
6360 last = emit_barrier_after (last);
6361 emit_label (label);
6365 if (current_function_instrument_entry_exit)
6367 rtx fun = DECL_RTL (current_function_decl);
6368 if (GET_CODE (fun) == MEM)
6369 fun = XEXP (fun, 0);
6370 else
6371 abort ();
6372 emit_library_call (profile_function_exit_libfunc, 0, VOIDmode, 2,
6373 fun, Pmode,
6374 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6376 hard_frame_pointer_rtx),
6377 Pmode);
6380 /* If we had calls to alloca, and this machine needs
6381 an accurate stack pointer to exit the function,
6382 insert some code to save and restore the stack pointer. */
6383 #ifdef EXIT_IGNORE_STACK
6384 if (! EXIT_IGNORE_STACK)
6385 #endif
6386 if (current_function_calls_alloca)
6388 rtx tem = 0;
6390 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
6391 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
6394 /* If scalar return value was computed in a pseudo-reg,
6395 copy that to the hard return register. */
6396 if (DECL_RTL (DECL_RESULT (current_function_decl)) != 0
6397 && GET_CODE (DECL_RTL (DECL_RESULT (current_function_decl))) == REG
6398 && (REGNO (DECL_RTL (DECL_RESULT (current_function_decl)))
6399 >= FIRST_PSEUDO_REGISTER))
6401 rtx real_decl_result;
6403 #ifdef FUNCTION_OUTGOING_VALUE
6404 real_decl_result
6405 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
6406 current_function_decl);
6407 #else
6408 real_decl_result
6409 = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
6410 current_function_decl);
6411 #endif
6412 REG_FUNCTION_VALUE_P (real_decl_result) = 1;
6413 /* If this is a BLKmode structure being returned in registers, then use
6414 the mode computed in expand_return. */
6415 if (GET_MODE (real_decl_result) == BLKmode)
6416 PUT_MODE (real_decl_result,
6417 GET_MODE (DECL_RTL (DECL_RESULT (current_function_decl))));
6418 emit_move_insn (real_decl_result,
6419 DECL_RTL (DECL_RESULT (current_function_decl)));
6421 /* The delay slot scheduler assumes that current_function_return_rtx
6422 holds the hard register containing the return value, not a temporary
6423 pseudo. */
6424 current_function_return_rtx = real_decl_result;
6427 /* If returning a structure, arrange to return the address of the value
6428 in a place where debuggers expect to find it.
6430 If returning a structure PCC style,
6431 the caller also depends on this value.
6432 And current_function_returns_pcc_struct is not necessarily set. */
6433 if (current_function_returns_struct
6434 || current_function_returns_pcc_struct)
6436 rtx value_address = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
6437 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6438 #ifdef FUNCTION_OUTGOING_VALUE
6439 rtx outgoing
6440 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
6441 current_function_decl);
6442 #else
6443 rtx outgoing
6444 = FUNCTION_VALUE (build_pointer_type (type),
6445 current_function_decl);
6446 #endif
6448 /* Mark this as a function return value so integrate will delete the
6449 assignment and USE below when inlining this function. */
6450 REG_FUNCTION_VALUE_P (outgoing) = 1;
6452 emit_move_insn (outgoing, value_address);
6455 /* If this is an implementation of __throw, do what's necessary to
6456 communicate between __builtin_eh_return and the epilogue. */
6457 expand_eh_return ();
6459 /* Output a return insn if we are using one.
6460 Otherwise, let the rtl chain end here, to drop through
6461 into the epilogue. */
6463 #ifdef HAVE_return
6464 if (HAVE_return)
6466 emit_jump_insn (gen_return ());
6467 emit_barrier ();
6469 #endif
6471 /* Fix up any gotos that jumped out to the outermost
6472 binding level of the function.
6473 Must follow emitting RETURN_LABEL. */
6475 /* If you have any cleanups to do at this point,
6476 and they need to create temporary variables,
6477 then you will lose. */
6478 expand_fixups (get_insns ());
6481 /* Create an array that records the INSN_UIDs of INSNS (either a sequence
6482 or a single insn). */
6484 static int *
6485 record_insns (insns)
6486 rtx insns;
6488 int *vec;
6490 if (GET_CODE (insns) == SEQUENCE)
6492 int len = XVECLEN (insns, 0);
6493 vec = (int *) oballoc ((len + 1) * sizeof (int));
6494 vec[len] = 0;
6495 while (--len >= 0)
6496 vec[len] = INSN_UID (XVECEXP (insns, 0, len));
6498 else
6500 vec = (int *) oballoc (2 * sizeof (int));
6501 vec[0] = INSN_UID (insns);
6502 vec[1] = 0;
6504 return vec;
6507 /* Determine how many INSN_UIDs in VEC are part of INSN. */
6509 static int
6510 contains (insn, vec)
6511 rtx insn;
6512 int *vec;
6514 register int i, j;
6516 if (GET_CODE (insn) == INSN
6517 && GET_CODE (PATTERN (insn)) == SEQUENCE)
6519 int count = 0;
6520 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6521 for (j = 0; vec[j]; j++)
6522 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == vec[j])
6523 count++;
6524 return count;
6526 else
6528 for (j = 0; vec[j]; j++)
6529 if (INSN_UID (insn) == vec[j])
6530 return 1;
6532 return 0;
6536 prologue_epilogue_contains (insn)
6537 rtx insn;
6539 if (prologue && contains (insn, prologue))
6540 return 1;
6541 if (epilogue && contains (insn, epilogue))
6542 return 1;
6543 return 0;
6546 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
6547 this into place with notes indicating where the prologue ends and where
6548 the epilogue begins. Update the basic block information when possible. */
6550 void
6551 thread_prologue_and_epilogue_insns (f)
6552 rtx f ATTRIBUTE_UNUSED;
6554 int insertted = 0;
6556 #ifdef HAVE_prologue
6557 if (HAVE_prologue)
6559 rtx seq;
6561 start_sequence ();
6562 seq = gen_prologue();
6563 emit_insn (seq);
6565 /* Retain a map of the prologue insns. */
6566 if (GET_CODE (seq) != SEQUENCE)
6567 seq = get_insns ();
6568 prologue = record_insns (seq);
6570 emit_note (NULL, NOTE_INSN_PROLOGUE_END);
6571 seq = gen_sequence ();
6572 end_sequence ();
6574 /* If optimization is off, and perhaps in an empty function,
6575 the entry block will have no successors. */
6576 if (ENTRY_BLOCK_PTR->succ)
6578 /* Can't deal with multiple successsors of the entry block. */
6579 if (ENTRY_BLOCK_PTR->succ->succ_next)
6580 abort ();
6582 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
6583 insertted = 1;
6585 else
6586 emit_insn_after (seq, f);
6588 #endif
6590 #ifdef HAVE_epilogue
6591 if (HAVE_epilogue)
6593 edge e;
6594 basic_block bb = 0;
6595 rtx tail = get_last_insn ();
6597 /* ??? This is gastly. If function returns were not done via uses,
6598 but via mark_regs_live_at_end, we could use insert_insn_on_edge
6599 and all of this uglyness would go away. */
6601 switch (optimize)
6603 default:
6604 /* If the exit block has no non-fake predecessors, we don't
6605 need an epilogue. Furthermore, only pay attention to the
6606 fallthru predecessors; if (conditional) return insns were
6607 generated, by definition we do not need to emit epilogue
6608 insns. */
6610 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
6611 if ((e->flags & EDGE_FAKE) == 0
6612 && (e->flags & EDGE_FALLTHRU) != 0)
6613 break;
6614 if (e == NULL)
6615 break;
6617 /* We can't handle multiple epilogues -- if one is needed,
6618 we won't be able to place it multiple times.
6620 ??? Fix epilogue expanders to not assume they are the
6621 last thing done compiling the function. Either that
6622 or copy_rtx each insn.
6624 ??? Blah, it's not a simple expression to assert that
6625 we've exactly one fallthru exit edge. */
6627 bb = e->src;
6628 tail = bb->end;
6630 /* ??? If the last insn of the basic block is a jump, then we
6631 are creating a new basic block. Wimp out and leave these
6632 insns outside any block. */
6633 if (GET_CODE (tail) == JUMP_INSN)
6634 bb = 0;
6636 /* FALLTHRU */
6637 case 0:
6639 rtx prev, seq, first_use;
6641 /* Move the USE insns at the end of a function onto a list. */
6642 prev = tail;
6643 if (GET_CODE (prev) == BARRIER
6644 || GET_CODE (prev) == NOTE)
6645 prev = prev_nonnote_insn (prev);
6647 first_use = 0;
6648 if (prev
6649 && GET_CODE (prev) == INSN
6650 && GET_CODE (PATTERN (prev)) == USE)
6652 /* If the end of the block is the use, grab hold of something
6653 else so that we emit barriers etc in the right place. */
6654 if (prev == tail)
6657 tail = PREV_INSN (tail);
6658 while (GET_CODE (tail) == INSN
6659 && GET_CODE (PATTERN (tail)) == USE);
6664 rtx use = prev;
6665 prev = prev_nonnote_insn (prev);
6667 remove_insn (use);
6668 if (first_use)
6670 NEXT_INSN (use) = first_use;
6671 PREV_INSN (first_use) = use;
6673 else
6674 NEXT_INSN (use) = NULL_RTX;
6675 first_use = use;
6677 while (prev
6678 && GET_CODE (prev) == INSN
6679 && GET_CODE (PATTERN (prev)) == USE);
6682 /* The last basic block ends with a NOTE_INSN_EPILOGUE_BEG, the
6683 epilogue insns, the USE insns at the end of a function,
6684 the jump insn that returns, and then a BARRIER. */
6686 if (GET_CODE (tail) != BARRIER)
6688 prev = next_nonnote_insn (tail);
6689 if (!prev || GET_CODE (prev) != BARRIER)
6690 emit_barrier_after (tail);
6693 seq = gen_epilogue ();
6694 prev = tail;
6695 tail = emit_jump_insn_after (seq, tail);
6697 /* Insert the USE insns immediately before the return insn, which
6698 must be the last instruction emitted in the sequence. */
6699 if (first_use)
6700 emit_insns_before (first_use, tail);
6701 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6703 /* Update the tail of the basic block. */
6704 if (bb)
6705 bb->end = tail;
6707 /* Retain a map of the epilogue insns. */
6708 epilogue = record_insns (GET_CODE (seq) == SEQUENCE ? seq : tail);
6712 #endif
6714 if (insertted)
6715 commit_edge_insertions ();
6718 /* Reposition the prologue-end and epilogue-begin notes after instruction
6719 scheduling and delayed branch scheduling. */
6721 void
6722 reposition_prologue_and_epilogue_notes (f)
6723 rtx f ATTRIBUTE_UNUSED;
6725 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
6726 /* Reposition the prologue and epilogue notes. */
6727 if (n_basic_blocks)
6729 int len;
6731 if (prologue)
6733 register rtx insn, note = 0;
6735 /* Scan from the beginning until we reach the last prologue insn.
6736 We apparently can't depend on basic_block_{head,end} after
6737 reorg has run. */
6738 for (len = 0; prologue[len]; len++)
6740 for (insn = f; len && insn; insn = NEXT_INSN (insn))
6742 if (GET_CODE (insn) == NOTE)
6744 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
6745 note = insn;
6747 else if ((len -= contains (insn, prologue)) == 0)
6749 rtx next;
6750 /* Find the prologue-end note if we haven't already, and
6751 move it to just after the last prologue insn. */
6752 if (note == 0)
6754 for (note = insn; (note = NEXT_INSN (note));)
6755 if (GET_CODE (note) == NOTE
6756 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
6757 break;
6760 next = NEXT_INSN (note);
6762 /* Whether or not we can depend on BLOCK_HEAD,
6763 attempt to keep it up-to-date. */
6764 if (BLOCK_HEAD (0) == note)
6765 BLOCK_HEAD (0) = next;
6767 remove_insn (note);
6768 add_insn_after (note, insn);
6773 if (epilogue)
6775 register rtx insn, note = 0;
6777 /* Scan from the end until we reach the first epilogue insn.
6778 We apparently can't depend on basic_block_{head,end} after
6779 reorg has run. */
6780 for (len = 0; epilogue[len]; len++)
6782 for (insn = get_last_insn (); len && insn; insn = PREV_INSN (insn))
6784 if (GET_CODE (insn) == NOTE)
6786 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
6787 note = insn;
6789 else if ((len -= contains (insn, epilogue)) == 0)
6791 /* Find the epilogue-begin note if we haven't already, and
6792 move it to just before the first epilogue insn. */
6793 if (note == 0)
6795 for (note = insn; (note = PREV_INSN (note));)
6796 if (GET_CODE (note) == NOTE
6797 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
6798 break;
6801 /* Whether or not we can depend on BLOCK_HEAD,
6802 attempt to keep it up-to-date. */
6803 if (n_basic_blocks
6804 && BLOCK_HEAD (n_basic_blocks-1) == insn)
6805 BLOCK_HEAD (n_basic_blocks-1) = note;
6807 remove_insn (note);
6808 add_insn_before (note, insn);
6813 #endif /* HAVE_prologue or HAVE_epilogue */
6816 /* Mark T for GC. */
6818 static void
6819 mark_temp_slot (t)
6820 struct temp_slot *t;
6822 while (t)
6824 ggc_mark_rtx (t->slot);
6825 ggc_mark_rtx (t->address);
6826 ggc_mark_tree (t->rtl_expr);
6828 t = t->next;
6832 /* Mark P for GC. */
6834 static void
6835 mark_function_status (p)
6836 struct function *p;
6838 int i;
6839 rtx *r;
6841 if (p == 0)
6842 return;
6844 ggc_mark_rtx (p->arg_offset_rtx);
6846 if (p->x_parm_reg_stack_loc)
6847 for (i = p->x_max_parm_reg, r = p->x_parm_reg_stack_loc;
6848 i > 0; --i, ++r)
6849 ggc_mark_rtx (*r);
6851 ggc_mark_rtx (p->return_rtx);
6852 ggc_mark_rtx (p->x_cleanup_label);
6853 ggc_mark_rtx (p->x_return_label);
6854 ggc_mark_rtx (p->x_save_expr_regs);
6855 ggc_mark_rtx (p->x_stack_slot_list);
6856 ggc_mark_rtx (p->x_parm_birth_insn);
6857 ggc_mark_rtx (p->x_tail_recursion_label);
6858 ggc_mark_rtx (p->x_tail_recursion_reentry);
6859 ggc_mark_rtx (p->internal_arg_pointer);
6860 ggc_mark_rtx (p->x_arg_pointer_save_area);
6861 ggc_mark_tree (p->x_rtl_expr_chain);
6862 ggc_mark_rtx (p->x_last_parm_insn);
6863 ggc_mark_tree (p->x_context_display);
6864 ggc_mark_tree (p->x_trampoline_list);
6865 ggc_mark_rtx (p->epilogue_delay_list);
6867 mark_temp_slot (p->x_temp_slots);
6870 struct var_refs_queue *q = p->fixup_var_refs_queue;
6871 while (q)
6873 ggc_mark_rtx (q->modified);
6874 q = q->next;
6878 ggc_mark_rtx (p->x_nonlocal_goto_handler_slots);
6879 ggc_mark_rtx (p->x_nonlocal_goto_handler_labels);
6880 ggc_mark_rtx (p->x_nonlocal_goto_stack_level);
6881 ggc_mark_tree (p->x_nonlocal_labels);
6884 /* Mark the function chain ARG (which is really a struct function **)
6885 for GC. */
6887 static void
6888 mark_function_chain (arg)
6889 void *arg;
6891 struct function *f = *(struct function **) arg;
6893 for (; f; f = f->next_global)
6895 ggc_mark_tree (f->decl);
6897 mark_function_status (f);
6898 mark_eh_status (f->eh);
6899 mark_stmt_status (f->stmt);
6900 mark_expr_status (f->expr);
6901 mark_emit_status (f->emit);
6902 mark_varasm_status (f->varasm);
6904 if (mark_machine_status)
6905 (*mark_machine_status) (f);
6906 if (mark_lang_status)
6907 (*mark_lang_status) (f);
6909 if (f->original_arg_vector)
6910 ggc_mark_rtvec ((rtvec) f->original_arg_vector);
6911 if (f->original_decl_initial)
6912 ggc_mark_tree (f->original_decl_initial);
6916 /* Called once, at initialization, to initialize function.c. */
6918 void
6919 init_function_once ()
6921 ggc_add_root (&all_functions, 1, sizeof all_functions,
6922 mark_function_chain);