PR c++/63925
[official-gcc.git] / gcc / ipa-inline-analysis.c
blobdace2fc78bebd9ae3549a83e704d3b46acbf3aa8
1 /* Inlining decision heuristics.
2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Analysis used by the inliner and other passes limiting code size growth.
23 We estimate for each function
24 - function body size
25 - average function execution time
26 - inlining size benefit (that is how much of function body size
27 and its call sequence is expected to disappear by inlining)
28 - inlining time benefit
29 - function frame size
30 For each call
31 - call statement size and time
33 inlinie_summary datastructures store above information locally (i.e.
34 parameters of the function itself) and globally (i.e. parameters of
35 the function created by applying all the inline decisions already
36 present in the callgraph).
38 We provide accestor to the inline_summary datastructure and
39 basic logic updating the parameters when inlining is performed.
41 The summaries are context sensitive. Context means
42 1) partial assignment of known constant values of operands
43 2) whether function is inlined into the call or not.
44 It is easy to add more variants. To represent function size and time
45 that depends on context (i.e. it is known to be optimized away when
46 context is known either by inlining or from IP-CP and clonning),
47 we use predicates. Predicates are logical formulas in
48 conjunctive-disjunctive form consisting of clauses. Clauses are bitmaps
49 specifying what conditions must be true. Conditions are simple test
50 of the form described above.
52 In order to make predicate (possibly) true, all of its clauses must
53 be (possibly) true. To make clause (possibly) true, one of conditions
54 it mentions must be (possibly) true. There are fixed bounds on
55 number of clauses and conditions and all the manipulation functions
56 are conservative in positive direction. I.e. we may lose precision
57 by thinking that predicate may be true even when it is not.
59 estimate_edge_size and estimate_edge_growth can be used to query
60 function size/time in the given context. inline_merge_summary merges
61 properties of caller and callee after inlining.
63 Finally pass_inline_parameters is exported. This is used to drive
64 computation of function parameters used by the early inliner. IPA
65 inlined performs analysis via its analyze_function method. */
67 #include "config.h"
68 #include "system.h"
69 #include "coretypes.h"
70 #include "tm.h"
71 #include "tree.h"
72 #include "stor-layout.h"
73 #include "stringpool.h"
74 #include "print-tree.h"
75 #include "tree-inline.h"
76 #include "langhooks.h"
77 #include "flags.h"
78 #include "diagnostic.h"
79 #include "gimple-pretty-print.h"
80 #include "params.h"
81 #include "tree-pass.h"
82 #include "coverage.h"
83 #include "predict.h"
84 #include "vec.h"
85 #include "hashtab.h"
86 #include "hash-set.h"
87 #include "machmode.h"
88 #include "hard-reg-set.h"
89 #include "input.h"
90 #include "function.h"
91 #include "dominance.h"
92 #include "cfg.h"
93 #include "cfganal.h"
94 #include "basic-block.h"
95 #include "tree-ssa-alias.h"
96 #include "internal-fn.h"
97 #include "gimple-expr.h"
98 #include "is-a.h"
99 #include "gimple.h"
100 #include "gimple-iterator.h"
101 #include "gimple-ssa.h"
102 #include "tree-cfg.h"
103 #include "tree-phinodes.h"
104 #include "ssa-iterators.h"
105 #include "tree-ssanames.h"
106 #include "tree-ssa-loop-niter.h"
107 #include "tree-ssa-loop.h"
108 #include "hash-map.h"
109 #include "plugin-api.h"
110 #include "ipa-ref.h"
111 #include "cgraph.h"
112 #include "alloc-pool.h"
113 #include "ipa-prop.h"
114 #include "lto-streamer.h"
115 #include "data-streamer.h"
116 #include "tree-streamer.h"
117 #include "ipa-inline.h"
118 #include "cfgloop.h"
119 #include "tree-scalar-evolution.h"
120 #include "ipa-utils.h"
121 #include "cilk.h"
122 #include "cfgexpand.h"
124 /* Estimate runtime of function can easilly run into huge numbers with many
125 nested loops. Be sure we can compute time * INLINE_SIZE_SCALE * 2 in an
126 integer. For anything larger we use gcov_type. */
127 #define MAX_TIME 500000
129 /* Number of bits in integer, but we really want to be stable across different
130 hosts. */
131 #define NUM_CONDITIONS 32
133 enum predicate_conditions
135 predicate_false_condition = 0,
136 predicate_not_inlined_condition = 1,
137 predicate_first_dynamic_condition = 2
140 /* Special condition code we use to represent test that operand is compile time
141 constant. */
142 #define IS_NOT_CONSTANT ERROR_MARK
143 /* Special condition code we use to represent test that operand is not changed
144 across invocation of the function. When operand IS_NOT_CONSTANT it is always
145 CHANGED, however i.e. loop invariants can be NOT_CHANGED given percentage
146 of executions even when they are not compile time constants. */
147 #define CHANGED IDENTIFIER_NODE
149 /* Holders of ipa cgraph hooks: */
150 static struct cgraph_node_hook_list *function_insertion_hook_holder;
151 static struct cgraph_node_hook_list *node_removal_hook_holder;
152 static struct cgraph_2node_hook_list *node_duplication_hook_holder;
153 static struct cgraph_2edge_hook_list *edge_duplication_hook_holder;
154 static struct cgraph_edge_hook_list *edge_removal_hook_holder;
155 static void inline_node_removal_hook (struct cgraph_node *, void *);
156 static void inline_node_duplication_hook (struct cgraph_node *,
157 struct cgraph_node *, void *);
158 static void inline_edge_removal_hook (struct cgraph_edge *, void *);
159 static void inline_edge_duplication_hook (struct cgraph_edge *,
160 struct cgraph_edge *, void *);
162 /* VECtor holding inline summaries.
163 In GGC memory because conditions might point to constant trees. */
164 vec<inline_summary_t, va_gc> *inline_summary_vec;
165 vec<inline_edge_summary_t> inline_edge_summary_vec;
167 /* Cached node/edge growths. */
168 vec<int> node_growth_cache;
169 vec<edge_growth_cache_entry> edge_growth_cache;
171 /* Edge predicates goes here. */
172 static alloc_pool edge_predicate_pool;
174 /* Return true predicate (tautology).
175 We represent it by empty list of clauses. */
177 static inline struct predicate
178 true_predicate (void)
180 struct predicate p;
181 p.clause[0] = 0;
182 return p;
186 /* Return predicate testing single condition number COND. */
188 static inline struct predicate
189 single_cond_predicate (int cond)
191 struct predicate p;
192 p.clause[0] = 1 << cond;
193 p.clause[1] = 0;
194 return p;
198 /* Return false predicate. First clause require false condition. */
200 static inline struct predicate
201 false_predicate (void)
203 return single_cond_predicate (predicate_false_condition);
207 /* Return true if P is (true). */
209 static inline bool
210 true_predicate_p (struct predicate *p)
212 return !p->clause[0];
216 /* Return true if P is (false). */
218 static inline bool
219 false_predicate_p (struct predicate *p)
221 if (p->clause[0] == (1 << predicate_false_condition))
223 gcc_checking_assert (!p->clause[1]
224 && p->clause[0] == 1 << predicate_false_condition);
225 return true;
227 return false;
231 /* Return predicate that is set true when function is not inlined. */
233 static inline struct predicate
234 not_inlined_predicate (void)
236 return single_cond_predicate (predicate_not_inlined_condition);
239 /* Simple description of whether a memory load or a condition refers to a load
240 from an aggregate and if so, how and where from in the aggregate.
241 Individual fields have the same meaning like fields with the same name in
242 struct condition. */
244 struct agg_position_info
246 HOST_WIDE_INT offset;
247 bool agg_contents;
248 bool by_ref;
251 /* Add condition to condition list CONDS. AGGPOS describes whether the used
252 oprand is loaded from an aggregate and where in the aggregate it is. It can
253 be NULL, which means this not a load from an aggregate. */
255 static struct predicate
256 add_condition (struct inline_summary *summary, int operand_num,
257 struct agg_position_info *aggpos,
258 enum tree_code code, tree val)
260 int i;
261 struct condition *c;
262 struct condition new_cond;
263 HOST_WIDE_INT offset;
264 bool agg_contents, by_ref;
266 if (aggpos)
268 offset = aggpos->offset;
269 agg_contents = aggpos->agg_contents;
270 by_ref = aggpos->by_ref;
272 else
274 offset = 0;
275 agg_contents = false;
276 by_ref = false;
279 gcc_checking_assert (operand_num >= 0);
280 for (i = 0; vec_safe_iterate (summary->conds, i, &c); i++)
282 if (c->operand_num == operand_num
283 && c->code == code
284 && c->val == val
285 && c->agg_contents == agg_contents
286 && (!agg_contents || (c->offset == offset && c->by_ref == by_ref)))
287 return single_cond_predicate (i + predicate_first_dynamic_condition);
289 /* Too many conditions. Give up and return constant true. */
290 if (i == NUM_CONDITIONS - predicate_first_dynamic_condition)
291 return true_predicate ();
293 new_cond.operand_num = operand_num;
294 new_cond.code = code;
295 new_cond.val = val;
296 new_cond.agg_contents = agg_contents;
297 new_cond.by_ref = by_ref;
298 new_cond.offset = offset;
299 vec_safe_push (summary->conds, new_cond);
300 return single_cond_predicate (i + predicate_first_dynamic_condition);
304 /* Add clause CLAUSE into the predicate P. */
306 static inline void
307 add_clause (conditions conditions, struct predicate *p, clause_t clause)
309 int i;
310 int i2;
311 int insert_here = -1;
312 int c1, c2;
314 /* True clause. */
315 if (!clause)
316 return;
318 /* False clause makes the whole predicate false. Kill the other variants. */
319 if (clause == (1 << predicate_false_condition))
321 p->clause[0] = (1 << predicate_false_condition);
322 p->clause[1] = 0;
323 return;
325 if (false_predicate_p (p))
326 return;
328 /* No one should be silly enough to add false into nontrivial clauses. */
329 gcc_checking_assert (!(clause & (1 << predicate_false_condition)));
331 /* Look where to insert the clause. At the same time prune out
332 clauses of P that are implied by the new clause and thus
333 redundant. */
334 for (i = 0, i2 = 0; i <= MAX_CLAUSES; i++)
336 p->clause[i2] = p->clause[i];
338 if (!p->clause[i])
339 break;
341 /* If p->clause[i] implies clause, there is nothing to add. */
342 if ((p->clause[i] & clause) == p->clause[i])
344 /* We had nothing to add, none of clauses should've become
345 redundant. */
346 gcc_checking_assert (i == i2);
347 return;
350 if (p->clause[i] < clause && insert_here < 0)
351 insert_here = i2;
353 /* If clause implies p->clause[i], then p->clause[i] becomes redundant.
354 Otherwise the p->clause[i] has to stay. */
355 if ((p->clause[i] & clause) != clause)
356 i2++;
359 /* Look for clauses that are obviously true. I.e.
360 op0 == 5 || op0 != 5. */
361 for (c1 = predicate_first_dynamic_condition; c1 < NUM_CONDITIONS; c1++)
363 condition *cc1;
364 if (!(clause & (1 << c1)))
365 continue;
366 cc1 = &(*conditions)[c1 - predicate_first_dynamic_condition];
367 /* We have no way to represent !CHANGED and !IS_NOT_CONSTANT
368 and thus there is no point for looking for them. */
369 if (cc1->code == CHANGED || cc1->code == IS_NOT_CONSTANT)
370 continue;
371 for (c2 = c1 + 1; c2 < NUM_CONDITIONS; c2++)
372 if (clause & (1 << c2))
374 condition *cc1 =
375 &(*conditions)[c1 - predicate_first_dynamic_condition];
376 condition *cc2 =
377 &(*conditions)[c2 - predicate_first_dynamic_condition];
378 if (cc1->operand_num == cc2->operand_num
379 && cc1->val == cc2->val
380 && cc2->code != IS_NOT_CONSTANT
381 && cc2->code != CHANGED
382 && cc1->code == invert_tree_comparison
383 (cc2->code,
384 HONOR_NANS (TYPE_MODE (TREE_TYPE (cc1->val)))))
385 return;
390 /* We run out of variants. Be conservative in positive direction. */
391 if (i2 == MAX_CLAUSES)
392 return;
393 /* Keep clauses in decreasing order. This makes equivalence testing easy. */
394 p->clause[i2 + 1] = 0;
395 if (insert_here >= 0)
396 for (; i2 > insert_here; i2--)
397 p->clause[i2] = p->clause[i2 - 1];
398 else
399 insert_here = i2;
400 p->clause[insert_here] = clause;
404 /* Return P & P2. */
406 static struct predicate
407 and_predicates (conditions conditions,
408 struct predicate *p, struct predicate *p2)
410 struct predicate out = *p;
411 int i;
413 /* Avoid busy work. */
414 if (false_predicate_p (p2) || true_predicate_p (p))
415 return *p2;
416 if (false_predicate_p (p) || true_predicate_p (p2))
417 return *p;
419 /* See how far predicates match. */
420 for (i = 0; p->clause[i] && p->clause[i] == p2->clause[i]; i++)
422 gcc_checking_assert (i < MAX_CLAUSES);
425 /* Combine the predicates rest. */
426 for (; p2->clause[i]; i++)
428 gcc_checking_assert (i < MAX_CLAUSES);
429 add_clause (conditions, &out, p2->clause[i]);
431 return out;
435 /* Return true if predicates are obviously equal. */
437 static inline bool
438 predicates_equal_p (struct predicate *p, struct predicate *p2)
440 int i;
441 for (i = 0; p->clause[i]; i++)
443 gcc_checking_assert (i < MAX_CLAUSES);
444 gcc_checking_assert (p->clause[i] > p->clause[i + 1]);
445 gcc_checking_assert (!p2->clause[i]
446 || p2->clause[i] > p2->clause[i + 1]);
447 if (p->clause[i] != p2->clause[i])
448 return false;
450 return !p2->clause[i];
454 /* Return P | P2. */
456 static struct predicate
457 or_predicates (conditions conditions,
458 struct predicate *p, struct predicate *p2)
460 struct predicate out = true_predicate ();
461 int i, j;
463 /* Avoid busy work. */
464 if (false_predicate_p (p2) || true_predicate_p (p))
465 return *p;
466 if (false_predicate_p (p) || true_predicate_p (p2))
467 return *p2;
468 if (predicates_equal_p (p, p2))
469 return *p;
471 /* OK, combine the predicates. */
472 for (i = 0; p->clause[i]; i++)
473 for (j = 0; p2->clause[j]; j++)
475 gcc_checking_assert (i < MAX_CLAUSES && j < MAX_CLAUSES);
476 add_clause (conditions, &out, p->clause[i] | p2->clause[j]);
478 return out;
482 /* Having partial truth assignment in POSSIBLE_TRUTHS, return false
483 if predicate P is known to be false. */
485 static bool
486 evaluate_predicate (struct predicate *p, clause_t possible_truths)
488 int i;
490 /* True remains true. */
491 if (true_predicate_p (p))
492 return true;
494 gcc_assert (!(possible_truths & (1 << predicate_false_condition)));
496 /* See if we can find clause we can disprove. */
497 for (i = 0; p->clause[i]; i++)
499 gcc_checking_assert (i < MAX_CLAUSES);
500 if (!(p->clause[i] & possible_truths))
501 return false;
503 return true;
506 /* Return the probability in range 0...REG_BR_PROB_BASE that the predicated
507 instruction will be recomputed per invocation of the inlined call. */
509 static int
510 predicate_probability (conditions conds,
511 struct predicate *p, clause_t possible_truths,
512 vec<inline_param_summary> inline_param_summary)
514 int i;
515 int combined_prob = REG_BR_PROB_BASE;
517 /* True remains true. */
518 if (true_predicate_p (p))
519 return REG_BR_PROB_BASE;
521 if (false_predicate_p (p))
522 return 0;
524 gcc_assert (!(possible_truths & (1 << predicate_false_condition)));
526 /* See if we can find clause we can disprove. */
527 for (i = 0; p->clause[i]; i++)
529 gcc_checking_assert (i < MAX_CLAUSES);
530 if (!(p->clause[i] & possible_truths))
531 return 0;
532 else
534 int this_prob = 0;
535 int i2;
536 if (!inline_param_summary.exists ())
537 return REG_BR_PROB_BASE;
538 for (i2 = 0; i2 < NUM_CONDITIONS; i2++)
539 if ((p->clause[i] & possible_truths) & (1 << i2))
541 if (i2 >= predicate_first_dynamic_condition)
543 condition *c =
544 &(*conds)[i2 - predicate_first_dynamic_condition];
545 if (c->code == CHANGED
546 && (c->operand_num <
547 (int) inline_param_summary.length ()))
549 int iprob =
550 inline_param_summary[c->operand_num].change_prob;
551 this_prob = MAX (this_prob, iprob);
553 else
554 this_prob = REG_BR_PROB_BASE;
556 else
557 this_prob = REG_BR_PROB_BASE;
559 combined_prob = MIN (this_prob, combined_prob);
560 if (!combined_prob)
561 return 0;
564 return combined_prob;
568 /* Dump conditional COND. */
570 static void
571 dump_condition (FILE *f, conditions conditions, int cond)
573 condition *c;
574 if (cond == predicate_false_condition)
575 fprintf (f, "false");
576 else if (cond == predicate_not_inlined_condition)
577 fprintf (f, "not inlined");
578 else
580 c = &(*conditions)[cond - predicate_first_dynamic_condition];
581 fprintf (f, "op%i", c->operand_num);
582 if (c->agg_contents)
583 fprintf (f, "[%soffset: " HOST_WIDE_INT_PRINT_DEC "]",
584 c->by_ref ? "ref " : "", c->offset);
585 if (c->code == IS_NOT_CONSTANT)
587 fprintf (f, " not constant");
588 return;
590 if (c->code == CHANGED)
592 fprintf (f, " changed");
593 return;
595 fprintf (f, " %s ", op_symbol_code (c->code));
596 print_generic_expr (f, c->val, 1);
601 /* Dump clause CLAUSE. */
603 static void
604 dump_clause (FILE *f, conditions conds, clause_t clause)
606 int i;
607 bool found = false;
608 fprintf (f, "(");
609 if (!clause)
610 fprintf (f, "true");
611 for (i = 0; i < NUM_CONDITIONS; i++)
612 if (clause & (1 << i))
614 if (found)
615 fprintf (f, " || ");
616 found = true;
617 dump_condition (f, conds, i);
619 fprintf (f, ")");
623 /* Dump predicate PREDICATE. */
625 static void
626 dump_predicate (FILE *f, conditions conds, struct predicate *pred)
628 int i;
629 if (true_predicate_p (pred))
630 dump_clause (f, conds, 0);
631 else
632 for (i = 0; pred->clause[i]; i++)
634 if (i)
635 fprintf (f, " && ");
636 dump_clause (f, conds, pred->clause[i]);
638 fprintf (f, "\n");
642 /* Dump inline hints. */
643 void
644 dump_inline_hints (FILE *f, inline_hints hints)
646 if (!hints)
647 return;
648 fprintf (f, "inline hints:");
649 if (hints & INLINE_HINT_indirect_call)
651 hints &= ~INLINE_HINT_indirect_call;
652 fprintf (f, " indirect_call");
654 if (hints & INLINE_HINT_loop_iterations)
656 hints &= ~INLINE_HINT_loop_iterations;
657 fprintf (f, " loop_iterations");
659 if (hints & INLINE_HINT_loop_stride)
661 hints &= ~INLINE_HINT_loop_stride;
662 fprintf (f, " loop_stride");
664 if (hints & INLINE_HINT_same_scc)
666 hints &= ~INLINE_HINT_same_scc;
667 fprintf (f, " same_scc");
669 if (hints & INLINE_HINT_in_scc)
671 hints &= ~INLINE_HINT_in_scc;
672 fprintf (f, " in_scc");
674 if (hints & INLINE_HINT_cross_module)
676 hints &= ~INLINE_HINT_cross_module;
677 fprintf (f, " cross_module");
679 if (hints & INLINE_HINT_declared_inline)
681 hints &= ~INLINE_HINT_declared_inline;
682 fprintf (f, " declared_inline");
684 if (hints & INLINE_HINT_array_index)
686 hints &= ~INLINE_HINT_array_index;
687 fprintf (f, " array_index");
689 if (hints & INLINE_HINT_known_hot)
691 hints &= ~INLINE_HINT_known_hot;
692 fprintf (f, " known_hot");
694 gcc_assert (!hints);
698 /* Record SIZE and TIME under condition PRED into the inline summary. */
700 static void
701 account_size_time (struct inline_summary *summary, int size, int time,
702 struct predicate *pred)
704 size_time_entry *e;
705 bool found = false;
706 int i;
708 if (false_predicate_p (pred))
709 return;
711 /* We need to create initial empty unconitional clause, but otherwie
712 we don't need to account empty times and sizes. */
713 if (!size && !time && summary->entry)
714 return;
716 /* Watch overflow that might result from insane profiles. */
717 if (time > MAX_TIME * INLINE_TIME_SCALE)
718 time = MAX_TIME * INLINE_TIME_SCALE;
719 gcc_assert (time >= 0);
721 for (i = 0; vec_safe_iterate (summary->entry, i, &e); i++)
722 if (predicates_equal_p (&e->predicate, pred))
724 found = true;
725 break;
727 if (i == 256)
729 i = 0;
730 found = true;
731 e = &(*summary->entry)[0];
732 gcc_assert (!e->predicate.clause[0]);
733 if (dump_file && (dump_flags & TDF_DETAILS))
734 fprintf (dump_file,
735 "\t\tReached limit on number of entries, "
736 "ignoring the predicate.");
738 if (dump_file && (dump_flags & TDF_DETAILS) && (time || size))
740 fprintf (dump_file,
741 "\t\tAccounting size:%3.2f, time:%3.2f on %spredicate:",
742 ((double) size) / INLINE_SIZE_SCALE,
743 ((double) time) / INLINE_TIME_SCALE, found ? "" : "new ");
744 dump_predicate (dump_file, summary->conds, pred);
746 if (!found)
748 struct size_time_entry new_entry;
749 new_entry.size = size;
750 new_entry.time = time;
751 new_entry.predicate = *pred;
752 vec_safe_push (summary->entry, new_entry);
754 else
756 e->size += size;
757 e->time += time;
758 if (e->time > MAX_TIME * INLINE_TIME_SCALE)
759 e->time = MAX_TIME * INLINE_TIME_SCALE;
763 /* Set predicate for edge E. */
765 static void
766 edge_set_predicate (struct cgraph_edge *e, struct predicate *predicate)
768 struct inline_edge_summary *es = inline_edge_summary (e);
770 /* If the edge is determined to be never executed, redirect it
771 to BUILTIN_UNREACHABLE to save inliner from inlining into it. */
772 if (predicate && false_predicate_p (predicate) && e->callee)
774 struct cgraph_node *callee = !e->inline_failed ? e->callee : NULL;
776 e->redirect_callee (cgraph_node::get_create
777 (builtin_decl_implicit (BUILT_IN_UNREACHABLE)));
778 e->inline_failed = CIF_UNREACHABLE;
779 if (callee)
780 callee->remove_symbol_and_inline_clones ();
782 if (predicate && !true_predicate_p (predicate))
784 if (!es->predicate)
785 es->predicate = (struct predicate *) pool_alloc (edge_predicate_pool);
786 *es->predicate = *predicate;
788 else
790 if (es->predicate)
791 pool_free (edge_predicate_pool, es->predicate);
792 es->predicate = NULL;
796 /* Set predicate for hint *P. */
798 static void
799 set_hint_predicate (struct predicate **p, struct predicate new_predicate)
801 if (false_predicate_p (&new_predicate) || true_predicate_p (&new_predicate))
803 if (*p)
804 pool_free (edge_predicate_pool, *p);
805 *p = NULL;
807 else
809 if (!*p)
810 *p = (struct predicate *) pool_alloc (edge_predicate_pool);
811 **p = new_predicate;
816 /* KNOWN_VALS is partial mapping of parameters of NODE to constant values.
817 KNOWN_AGGS is a vector of aggreggate jump functions for each parameter.
818 Return clause of possible truths. When INLINE_P is true, assume that we are
819 inlining.
821 ERROR_MARK means compile time invariant. */
823 static clause_t
824 evaluate_conditions_for_known_args (struct cgraph_node *node,
825 bool inline_p,
826 vec<tree> known_vals,
827 vec<ipa_agg_jump_function_p>
828 known_aggs)
830 clause_t clause = inline_p ? 0 : 1 << predicate_not_inlined_condition;
831 struct inline_summary *info = inline_summary (node);
832 int i;
833 struct condition *c;
835 for (i = 0; vec_safe_iterate (info->conds, i, &c); i++)
837 tree val;
838 tree res;
840 /* We allow call stmt to have fewer arguments than the callee function
841 (especially for K&R style programs). So bound check here (we assume
842 known_aggs vector, if non-NULL, has the same length as
843 known_vals). */
844 gcc_checking_assert (!known_aggs.exists ()
845 || (known_vals.length () == known_aggs.length ()));
846 if (c->operand_num >= (int) known_vals.length ())
848 clause |= 1 << (i + predicate_first_dynamic_condition);
849 continue;
852 if (c->agg_contents)
854 struct ipa_agg_jump_function *agg;
856 if (c->code == CHANGED
857 && !c->by_ref
858 && (known_vals[c->operand_num] == error_mark_node))
859 continue;
861 if (known_aggs.exists ())
863 agg = known_aggs[c->operand_num];
864 val = ipa_find_agg_cst_for_param (agg, c->offset, c->by_ref);
866 else
867 val = NULL_TREE;
869 else
871 val = known_vals[c->operand_num];
872 if (val == error_mark_node && c->code != CHANGED)
873 val = NULL_TREE;
876 if (!val)
878 clause |= 1 << (i + predicate_first_dynamic_condition);
879 continue;
881 if (c->code == IS_NOT_CONSTANT || c->code == CHANGED)
882 continue;
883 res = fold_binary_to_constant (c->code, boolean_type_node, val, c->val);
884 if (res && integer_zerop (res))
885 continue;
886 clause |= 1 << (i + predicate_first_dynamic_condition);
888 return clause;
892 /* Work out what conditions might be true at invocation of E. */
894 static void
895 evaluate_properties_for_edge (struct cgraph_edge *e, bool inline_p,
896 clause_t *clause_ptr,
897 vec<tree> *known_vals_ptr,
898 vec<ipa_polymorphic_call_context>
899 *known_contexts_ptr,
900 vec<ipa_agg_jump_function_p> *known_aggs_ptr)
902 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
903 struct inline_summary *info = inline_summary (callee);
904 vec<tree> known_vals = vNULL;
905 vec<ipa_agg_jump_function_p> known_aggs = vNULL;
907 if (clause_ptr)
908 *clause_ptr = inline_p ? 0 : 1 << predicate_not_inlined_condition;
909 if (known_vals_ptr)
910 known_vals_ptr->create (0);
911 if (known_contexts_ptr)
912 known_contexts_ptr->create (0);
914 if (ipa_node_params_vector.exists ()
915 && !e->call_stmt_cannot_inline_p
916 && ((clause_ptr && info->conds) || known_vals_ptr || known_contexts_ptr))
918 struct ipa_node_params *parms_info;
919 struct ipa_edge_args *args = IPA_EDGE_REF (e);
920 struct inline_edge_summary *es = inline_edge_summary (e);
921 int i, count = ipa_get_cs_argument_count (args);
923 if (e->caller->global.inlined_to)
924 parms_info = IPA_NODE_REF (e->caller->global.inlined_to);
925 else
926 parms_info = IPA_NODE_REF (e->caller);
928 if (count && (info->conds || known_vals_ptr))
929 known_vals.safe_grow_cleared (count);
930 if (count && (info->conds || known_aggs_ptr))
931 known_aggs.safe_grow_cleared (count);
932 if (count && known_contexts_ptr)
933 known_contexts_ptr->safe_grow_cleared (count);
935 for (i = 0; i < count; i++)
937 struct ipa_jump_func *jf = ipa_get_ith_jump_func (args, i);
938 tree cst = ipa_value_from_jfunc (parms_info, jf);
939 if (cst)
941 gcc_checking_assert (TREE_CODE (cst) != TREE_BINFO);
942 if (known_vals.exists ())
943 known_vals[i] = cst;
945 else if (inline_p && !es->param[i].change_prob)
946 known_vals[i] = error_mark_node;
948 if (known_contexts_ptr)
949 (*known_contexts_ptr)[i] = ipa_context_from_jfunc (parms_info, e,
950 i, jf);
951 /* TODO: When IPA-CP starts propagating and merging aggregate jump
952 functions, use its knowledge of the caller too, just like the
953 scalar case above. */
954 known_aggs[i] = &jf->agg;
958 if (clause_ptr)
959 *clause_ptr = evaluate_conditions_for_known_args (callee, inline_p,
960 known_vals, known_aggs);
962 if (known_vals_ptr)
963 *known_vals_ptr = known_vals;
964 else
965 known_vals.release ();
967 if (known_aggs_ptr)
968 *known_aggs_ptr = known_aggs;
969 else
970 known_aggs.release ();
974 /* Allocate the inline summary vector or resize it to cover all cgraph nodes. */
976 static void
977 inline_summary_alloc (void)
979 if (!node_removal_hook_holder)
980 node_removal_hook_holder =
981 symtab->add_cgraph_removal_hook (&inline_node_removal_hook, NULL);
982 if (!edge_removal_hook_holder)
983 edge_removal_hook_holder =
984 symtab->add_edge_removal_hook (&inline_edge_removal_hook, NULL);
985 if (!node_duplication_hook_holder)
986 node_duplication_hook_holder =
987 symtab->add_cgraph_duplication_hook (&inline_node_duplication_hook, NULL);
988 if (!edge_duplication_hook_holder)
989 edge_duplication_hook_holder =
990 symtab->add_edge_duplication_hook (&inline_edge_duplication_hook, NULL);
992 if (vec_safe_length (inline_summary_vec) <= (unsigned) symtab->cgraph_max_uid)
993 vec_safe_grow_cleared (inline_summary_vec, symtab->cgraph_max_uid + 1);
994 if (inline_edge_summary_vec.length () <= (unsigned) symtab->edges_max_uid)
995 inline_edge_summary_vec.safe_grow_cleared (symtab->edges_max_uid + 1);
996 if (!edge_predicate_pool)
997 edge_predicate_pool = create_alloc_pool ("edge predicates",
998 sizeof (struct predicate), 10);
1001 /* We are called multiple time for given function; clear
1002 data from previous run so they are not cumulated. */
1004 static void
1005 reset_inline_edge_summary (struct cgraph_edge *e)
1007 if (e->uid < (int) inline_edge_summary_vec.length ())
1009 struct inline_edge_summary *es = inline_edge_summary (e);
1011 es->call_stmt_size = es->call_stmt_time = 0;
1012 if (es->predicate)
1013 pool_free (edge_predicate_pool, es->predicate);
1014 es->predicate = NULL;
1015 es->param.release ();
1019 /* We are called multiple time for given function; clear
1020 data from previous run so they are not cumulated. */
1022 static void
1023 reset_inline_summary (struct cgraph_node *node)
1025 struct inline_summary *info = inline_summary (node);
1026 struct cgraph_edge *e;
1028 info->self_size = info->self_time = 0;
1029 info->estimated_stack_size = 0;
1030 info->estimated_self_stack_size = 0;
1031 info->stack_frame_offset = 0;
1032 info->size = 0;
1033 info->time = 0;
1034 info->growth = 0;
1035 info->scc_no = 0;
1036 if (info->loop_iterations)
1038 pool_free (edge_predicate_pool, info->loop_iterations);
1039 info->loop_iterations = NULL;
1041 if (info->loop_stride)
1043 pool_free (edge_predicate_pool, info->loop_stride);
1044 info->loop_stride = NULL;
1046 if (info->array_index)
1048 pool_free (edge_predicate_pool, info->array_index);
1049 info->array_index = NULL;
1051 vec_free (info->conds);
1052 vec_free (info->entry);
1053 for (e = node->callees; e; e = e->next_callee)
1054 reset_inline_edge_summary (e);
1055 for (e = node->indirect_calls; e; e = e->next_callee)
1056 reset_inline_edge_summary (e);
1059 /* Hook that is called by cgraph.c when a node is removed. */
1061 static void
1062 inline_node_removal_hook (struct cgraph_node *node,
1063 void *data ATTRIBUTE_UNUSED)
1065 struct inline_summary *info;
1066 if (vec_safe_length (inline_summary_vec) <= (unsigned) node->uid)
1067 return;
1068 info = inline_summary (node);
1069 reset_inline_summary (node);
1070 memset (info, 0, sizeof (inline_summary_t));
1073 /* Remap predicate P of former function to be predicate of duplicated function.
1074 POSSIBLE_TRUTHS is clause of possible truths in the duplicated node,
1075 INFO is inline summary of the duplicated node. */
1077 static struct predicate
1078 remap_predicate_after_duplication (struct predicate *p,
1079 clause_t possible_truths,
1080 struct inline_summary *info)
1082 struct predicate new_predicate = true_predicate ();
1083 int j;
1084 for (j = 0; p->clause[j]; j++)
1085 if (!(possible_truths & p->clause[j]))
1087 new_predicate = false_predicate ();
1088 break;
1090 else
1091 add_clause (info->conds, &new_predicate,
1092 possible_truths & p->clause[j]);
1093 return new_predicate;
1096 /* Same as remap_predicate_after_duplication but handle hint predicate *P.
1097 Additionally care about allocating new memory slot for updated predicate
1098 and set it to NULL when it becomes true or false (and thus uninteresting).
1101 static void
1102 remap_hint_predicate_after_duplication (struct predicate **p,
1103 clause_t possible_truths,
1104 struct inline_summary *info)
1106 struct predicate new_predicate;
1108 if (!*p)
1109 return;
1111 new_predicate = remap_predicate_after_duplication (*p,
1112 possible_truths, info);
1113 /* We do not want to free previous predicate; it is used by node origin. */
1114 *p = NULL;
1115 set_hint_predicate (p, new_predicate);
1119 /* Hook that is called by cgraph.c when a node is duplicated. */
1121 static void
1122 inline_node_duplication_hook (struct cgraph_node *src,
1123 struct cgraph_node *dst,
1124 ATTRIBUTE_UNUSED void *data)
1126 struct inline_summary *info;
1127 inline_summary_alloc ();
1128 info = inline_summary (dst);
1129 memcpy (info, inline_summary (src), sizeof (struct inline_summary));
1130 /* TODO: as an optimization, we may avoid copying conditions
1131 that are known to be false or true. */
1132 info->conds = vec_safe_copy (info->conds);
1134 /* When there are any replacements in the function body, see if we can figure
1135 out that something was optimized out. */
1136 if (ipa_node_params_vector.exists () && dst->clone.tree_map)
1138 vec<size_time_entry, va_gc> *entry = info->entry;
1139 /* Use SRC parm info since it may not be copied yet. */
1140 struct ipa_node_params *parms_info = IPA_NODE_REF (src);
1141 vec<tree> known_vals = vNULL;
1142 int count = ipa_get_param_count (parms_info);
1143 int i, j;
1144 clause_t possible_truths;
1145 struct predicate true_pred = true_predicate ();
1146 size_time_entry *e;
1147 int optimized_out_size = 0;
1148 bool inlined_to_p = false;
1149 struct cgraph_edge *edge;
1151 info->entry = 0;
1152 known_vals.safe_grow_cleared (count);
1153 for (i = 0; i < count; i++)
1155 struct ipa_replace_map *r;
1157 for (j = 0; vec_safe_iterate (dst->clone.tree_map, j, &r); j++)
1159 if (((!r->old_tree && r->parm_num == i)
1160 || (r->old_tree && r->old_tree == ipa_get_param (parms_info, i)))
1161 && r->replace_p && !r->ref_p)
1163 known_vals[i] = r->new_tree;
1164 break;
1168 possible_truths = evaluate_conditions_for_known_args (dst, false,
1169 known_vals,
1170 vNULL);
1171 known_vals.release ();
1173 account_size_time (info, 0, 0, &true_pred);
1175 /* Remap size_time vectors.
1176 Simplify the predicate by prunning out alternatives that are known
1177 to be false.
1178 TODO: as on optimization, we can also eliminate conditions known
1179 to be true. */
1180 for (i = 0; vec_safe_iterate (entry, i, &e); i++)
1182 struct predicate new_predicate;
1183 new_predicate = remap_predicate_after_duplication (&e->predicate,
1184 possible_truths,
1185 info);
1186 if (false_predicate_p (&new_predicate))
1187 optimized_out_size += e->size;
1188 else
1189 account_size_time (info, e->size, e->time, &new_predicate);
1192 /* Remap edge predicates with the same simplification as above.
1193 Also copy constantness arrays. */
1194 for (edge = dst->callees; edge; edge = edge->next_callee)
1196 struct predicate new_predicate;
1197 struct inline_edge_summary *es = inline_edge_summary (edge);
1199 if (!edge->inline_failed)
1200 inlined_to_p = true;
1201 if (!es->predicate)
1202 continue;
1203 new_predicate = remap_predicate_after_duplication (es->predicate,
1204 possible_truths,
1205 info);
1206 if (false_predicate_p (&new_predicate)
1207 && !false_predicate_p (es->predicate))
1209 optimized_out_size += es->call_stmt_size * INLINE_SIZE_SCALE;
1210 edge->frequency = 0;
1212 edge_set_predicate (edge, &new_predicate);
1215 /* Remap indirect edge predicates with the same simplificaiton as above.
1216 Also copy constantness arrays. */
1217 for (edge = dst->indirect_calls; edge; edge = edge->next_callee)
1219 struct predicate new_predicate;
1220 struct inline_edge_summary *es = inline_edge_summary (edge);
1222 gcc_checking_assert (edge->inline_failed);
1223 if (!es->predicate)
1224 continue;
1225 new_predicate = remap_predicate_after_duplication (es->predicate,
1226 possible_truths,
1227 info);
1228 if (false_predicate_p (&new_predicate)
1229 && !false_predicate_p (es->predicate))
1231 optimized_out_size += es->call_stmt_size * INLINE_SIZE_SCALE;
1232 edge->frequency = 0;
1234 edge_set_predicate (edge, &new_predicate);
1236 remap_hint_predicate_after_duplication (&info->loop_iterations,
1237 possible_truths, info);
1238 remap_hint_predicate_after_duplication (&info->loop_stride,
1239 possible_truths, info);
1240 remap_hint_predicate_after_duplication (&info->array_index,
1241 possible_truths, info);
1243 /* If inliner or someone after inliner will ever start producing
1244 non-trivial clones, we will get trouble with lack of information
1245 about updating self sizes, because size vectors already contains
1246 sizes of the calees. */
1247 gcc_assert (!inlined_to_p || !optimized_out_size);
1249 else
1251 info->entry = vec_safe_copy (info->entry);
1252 if (info->loop_iterations)
1254 predicate p = *info->loop_iterations;
1255 info->loop_iterations = NULL;
1256 set_hint_predicate (&info->loop_iterations, p);
1258 if (info->loop_stride)
1260 predicate p = *info->loop_stride;
1261 info->loop_stride = NULL;
1262 set_hint_predicate (&info->loop_stride, p);
1264 if (info->array_index)
1266 predicate p = *info->array_index;
1267 info->array_index = NULL;
1268 set_hint_predicate (&info->array_index, p);
1271 inline_update_overall_summary (dst);
1275 /* Hook that is called by cgraph.c when a node is duplicated. */
1277 static void
1278 inline_edge_duplication_hook (struct cgraph_edge *src,
1279 struct cgraph_edge *dst,
1280 ATTRIBUTE_UNUSED void *data)
1282 struct inline_edge_summary *info;
1283 struct inline_edge_summary *srcinfo;
1284 inline_summary_alloc ();
1285 info = inline_edge_summary (dst);
1286 srcinfo = inline_edge_summary (src);
1287 memcpy (info, srcinfo, sizeof (struct inline_edge_summary));
1288 info->predicate = NULL;
1289 edge_set_predicate (dst, srcinfo->predicate);
1290 info->param = srcinfo->param.copy ();
1294 /* Keep edge cache consistent across edge removal. */
1296 static void
1297 inline_edge_removal_hook (struct cgraph_edge *edge,
1298 void *data ATTRIBUTE_UNUSED)
1300 if (edge_growth_cache.exists ())
1301 reset_edge_growth_cache (edge);
1302 reset_inline_edge_summary (edge);
1306 /* Initialize growth caches. */
1308 void
1309 initialize_growth_caches (void)
1311 if (symtab->edges_max_uid)
1312 edge_growth_cache.safe_grow_cleared (symtab->edges_max_uid);
1313 if (symtab->cgraph_max_uid)
1314 node_growth_cache.safe_grow_cleared (symtab->cgraph_max_uid);
1318 /* Free growth caches. */
1320 void
1321 free_growth_caches (void)
1323 edge_growth_cache.release ();
1324 node_growth_cache.release ();
1328 /* Dump edge summaries associated to NODE and recursively to all clones.
1329 Indent by INDENT. */
1331 static void
1332 dump_inline_edge_summary (FILE *f, int indent, struct cgraph_node *node,
1333 struct inline_summary *info)
1335 struct cgraph_edge *edge;
1336 for (edge = node->callees; edge; edge = edge->next_callee)
1338 struct inline_edge_summary *es = inline_edge_summary (edge);
1339 struct cgraph_node *callee = edge->callee->ultimate_alias_target ();
1340 int i;
1342 fprintf (f,
1343 "%*s%s/%i %s\n%*s loop depth:%2i freq:%4i size:%2i"
1344 " time: %2i callee size:%2i stack:%2i",
1345 indent, "", callee->name (), callee->order,
1346 !edge->inline_failed
1347 ? "inlined" : cgraph_inline_failed_string (edge-> inline_failed),
1348 indent, "", es->loop_depth, edge->frequency,
1349 es->call_stmt_size, es->call_stmt_time,
1350 (int) inline_summary (callee)->size / INLINE_SIZE_SCALE,
1351 (int) inline_summary (callee)->estimated_stack_size);
1353 if (es->predicate)
1355 fprintf (f, " predicate: ");
1356 dump_predicate (f, info->conds, es->predicate);
1358 else
1359 fprintf (f, "\n");
1360 if (es->param.exists ())
1361 for (i = 0; i < (int) es->param.length (); i++)
1363 int prob = es->param[i].change_prob;
1365 if (!prob)
1366 fprintf (f, "%*s op%i is compile time invariant\n",
1367 indent + 2, "", i);
1368 else if (prob != REG_BR_PROB_BASE)
1369 fprintf (f, "%*s op%i change %f%% of time\n", indent + 2, "", i,
1370 prob * 100.0 / REG_BR_PROB_BASE);
1372 if (!edge->inline_failed)
1374 fprintf (f, "%*sStack frame offset %i, callee self size %i,"
1375 " callee size %i\n",
1376 indent + 2, "",
1377 (int) inline_summary (callee)->stack_frame_offset,
1378 (int) inline_summary (callee)->estimated_self_stack_size,
1379 (int) inline_summary (callee)->estimated_stack_size);
1380 dump_inline_edge_summary (f, indent + 2, callee, info);
1383 for (edge = node->indirect_calls; edge; edge = edge->next_callee)
1385 struct inline_edge_summary *es = inline_edge_summary (edge);
1386 fprintf (f, "%*sindirect call loop depth:%2i freq:%4i size:%2i"
1387 " time: %2i",
1388 indent, "",
1389 es->loop_depth,
1390 edge->frequency, es->call_stmt_size, es->call_stmt_time);
1391 if (es->predicate)
1393 fprintf (f, "predicate: ");
1394 dump_predicate (f, info->conds, es->predicate);
1396 else
1397 fprintf (f, "\n");
1402 void
1403 dump_inline_summary (FILE *f, struct cgraph_node *node)
1405 if (node->definition)
1407 struct inline_summary *s = inline_summary (node);
1408 size_time_entry *e;
1409 int i;
1410 fprintf (f, "Inline summary for %s/%i", node->name (),
1411 node->order);
1412 if (DECL_DISREGARD_INLINE_LIMITS (node->decl))
1413 fprintf (f, " always_inline");
1414 if (s->inlinable)
1415 fprintf (f, " inlinable");
1416 fprintf (f, "\n self time: %i\n", s->self_time);
1417 fprintf (f, " global time: %i\n", s->time);
1418 fprintf (f, " self size: %i\n", s->self_size);
1419 fprintf (f, " global size: %i\n", s->size);
1420 fprintf (f, " min size: %i\n", s->min_size);
1421 fprintf (f, " self stack: %i\n",
1422 (int) s->estimated_self_stack_size);
1423 fprintf (f, " global stack: %i\n", (int) s->estimated_stack_size);
1424 if (s->growth)
1425 fprintf (f, " estimated growth:%i\n", (int) s->growth);
1426 if (s->scc_no)
1427 fprintf (f, " In SCC: %i\n", (int) s->scc_no);
1428 for (i = 0; vec_safe_iterate (s->entry, i, &e); i++)
1430 fprintf (f, " size:%f, time:%f, predicate:",
1431 (double) e->size / INLINE_SIZE_SCALE,
1432 (double) e->time / INLINE_TIME_SCALE);
1433 dump_predicate (f, s->conds, &e->predicate);
1435 if (s->loop_iterations)
1437 fprintf (f, " loop iterations:");
1438 dump_predicate (f, s->conds, s->loop_iterations);
1440 if (s->loop_stride)
1442 fprintf (f, " loop stride:");
1443 dump_predicate (f, s->conds, s->loop_stride);
1445 if (s->array_index)
1447 fprintf (f, " array index:");
1448 dump_predicate (f, s->conds, s->array_index);
1450 fprintf (f, " calls:\n");
1451 dump_inline_edge_summary (f, 4, node, s);
1452 fprintf (f, "\n");
1456 DEBUG_FUNCTION void
1457 debug_inline_summary (struct cgraph_node *node)
1459 dump_inline_summary (stderr, node);
1462 void
1463 dump_inline_summaries (FILE *f)
1465 struct cgraph_node *node;
1467 FOR_EACH_DEFINED_FUNCTION (node)
1468 if (!node->global.inlined_to)
1469 dump_inline_summary (f, node);
1472 /* Give initial reasons why inlining would fail on EDGE. This gets either
1473 nullified or usually overwritten by more precise reasons later. */
1475 void
1476 initialize_inline_failed (struct cgraph_edge *e)
1478 struct cgraph_node *callee = e->callee;
1480 if (e->indirect_unknown_callee)
1481 e->inline_failed = CIF_INDIRECT_UNKNOWN_CALL;
1482 else if (!callee->definition)
1483 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
1484 else if (callee->local.redefined_extern_inline)
1485 e->inline_failed = CIF_REDEFINED_EXTERN_INLINE;
1486 else if (e->call_stmt_cannot_inline_p)
1487 e->inline_failed = CIF_MISMATCHED_ARGUMENTS;
1488 else if (cfun && fn_contains_cilk_spawn_p (cfun))
1489 /* We can't inline if the function is spawing a function. */
1490 e->inline_failed = CIF_FUNCTION_NOT_INLINABLE;
1491 else
1492 e->inline_failed = CIF_FUNCTION_NOT_CONSIDERED;
1495 /* Callback of walk_aliased_vdefs. Flags that it has been invoked to the
1496 boolean variable pointed to by DATA. */
1498 static bool
1499 mark_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
1500 void *data)
1502 bool *b = (bool *) data;
1503 *b = true;
1504 return true;
1507 /* If OP refers to value of function parameter, return the corresponding
1508 parameter. */
1510 static tree
1511 unmodified_parm_1 (gimple stmt, tree op)
1513 /* SSA_NAME referring to parm default def? */
1514 if (TREE_CODE (op) == SSA_NAME
1515 && SSA_NAME_IS_DEFAULT_DEF (op)
1516 && TREE_CODE (SSA_NAME_VAR (op)) == PARM_DECL)
1517 return SSA_NAME_VAR (op);
1518 /* Non-SSA parm reference? */
1519 if (TREE_CODE (op) == PARM_DECL)
1521 bool modified = false;
1523 ao_ref refd;
1524 ao_ref_init (&refd, op);
1525 walk_aliased_vdefs (&refd, gimple_vuse (stmt), mark_modified, &modified,
1526 NULL);
1527 if (!modified)
1528 return op;
1530 return NULL_TREE;
1533 /* If OP refers to value of function parameter, return the corresponding
1534 parameter. Also traverse chains of SSA register assignments. */
1536 static tree
1537 unmodified_parm (gimple stmt, tree op)
1539 tree res = unmodified_parm_1 (stmt, op);
1540 if (res)
1541 return res;
1543 if (TREE_CODE (op) == SSA_NAME
1544 && !SSA_NAME_IS_DEFAULT_DEF (op)
1545 && gimple_assign_single_p (SSA_NAME_DEF_STMT (op)))
1546 return unmodified_parm (SSA_NAME_DEF_STMT (op),
1547 gimple_assign_rhs1 (SSA_NAME_DEF_STMT (op)));
1548 return NULL_TREE;
1551 /* If OP refers to a value of a function parameter or value loaded from an
1552 aggregate passed to a parameter (either by value or reference), return TRUE
1553 and store the number of the parameter to *INDEX_P and information whether
1554 and how it has been loaded from an aggregate into *AGGPOS. INFO describes
1555 the function parameters, STMT is the statement in which OP is used or
1556 loaded. */
1558 static bool
1559 unmodified_parm_or_parm_agg_item (struct ipa_node_params *info,
1560 gimple stmt, tree op, int *index_p,
1561 struct agg_position_info *aggpos)
1563 tree res = unmodified_parm_1 (stmt, op);
1565 gcc_checking_assert (aggpos);
1566 if (res)
1568 *index_p = ipa_get_param_decl_index (info, res);
1569 if (*index_p < 0)
1570 return false;
1571 aggpos->agg_contents = false;
1572 aggpos->by_ref = false;
1573 return true;
1576 if (TREE_CODE (op) == SSA_NAME)
1578 if (SSA_NAME_IS_DEFAULT_DEF (op)
1579 || !gimple_assign_single_p (SSA_NAME_DEF_STMT (op)))
1580 return false;
1581 stmt = SSA_NAME_DEF_STMT (op);
1582 op = gimple_assign_rhs1 (stmt);
1583 if (!REFERENCE_CLASS_P (op))
1584 return unmodified_parm_or_parm_agg_item (info, stmt, op, index_p,
1585 aggpos);
1588 aggpos->agg_contents = true;
1589 return ipa_load_from_parm_agg (info, stmt, op, index_p, &aggpos->offset,
1590 &aggpos->by_ref);
1593 /* See if statement might disappear after inlining.
1594 0 - means not eliminated
1595 1 - half of statements goes away
1596 2 - for sure it is eliminated.
1597 We are not terribly sophisticated, basically looking for simple abstraction
1598 penalty wrappers. */
1600 static int
1601 eliminated_by_inlining_prob (gimple stmt)
1603 enum gimple_code code = gimple_code (stmt);
1604 enum tree_code rhs_code;
1606 if (!optimize)
1607 return 0;
1609 switch (code)
1611 case GIMPLE_RETURN:
1612 return 2;
1613 case GIMPLE_ASSIGN:
1614 if (gimple_num_ops (stmt) != 2)
1615 return 0;
1617 rhs_code = gimple_assign_rhs_code (stmt);
1619 /* Casts of parameters, loads from parameters passed by reference
1620 and stores to return value or parameters are often free after
1621 inlining dua to SRA and further combining.
1622 Assume that half of statements goes away. */
1623 if (CONVERT_EXPR_CODE_P (rhs_code)
1624 || rhs_code == VIEW_CONVERT_EXPR
1625 || rhs_code == ADDR_EXPR
1626 || gimple_assign_rhs_class (stmt) == GIMPLE_SINGLE_RHS)
1628 tree rhs = gimple_assign_rhs1 (stmt);
1629 tree lhs = gimple_assign_lhs (stmt);
1630 tree inner_rhs = get_base_address (rhs);
1631 tree inner_lhs = get_base_address (lhs);
1632 bool rhs_free = false;
1633 bool lhs_free = false;
1635 if (!inner_rhs)
1636 inner_rhs = rhs;
1637 if (!inner_lhs)
1638 inner_lhs = lhs;
1640 /* Reads of parameter are expected to be free. */
1641 if (unmodified_parm (stmt, inner_rhs))
1642 rhs_free = true;
1643 /* Match expressions of form &this->field. Those will most likely
1644 combine with something upstream after inlining. */
1645 else if (TREE_CODE (inner_rhs) == ADDR_EXPR)
1647 tree op = get_base_address (TREE_OPERAND (inner_rhs, 0));
1648 if (TREE_CODE (op) == PARM_DECL)
1649 rhs_free = true;
1650 else if (TREE_CODE (op) == MEM_REF
1651 && unmodified_parm (stmt, TREE_OPERAND (op, 0)))
1652 rhs_free = true;
1655 /* When parameter is not SSA register because its address is taken
1656 and it is just copied into one, the statement will be completely
1657 free after inlining (we will copy propagate backward). */
1658 if (rhs_free && is_gimple_reg (lhs))
1659 return 2;
1661 /* Reads of parameters passed by reference
1662 expected to be free (i.e. optimized out after inlining). */
1663 if (TREE_CODE (inner_rhs) == MEM_REF
1664 && unmodified_parm (stmt, TREE_OPERAND (inner_rhs, 0)))
1665 rhs_free = true;
1667 /* Copying parameter passed by reference into gimple register is
1668 probably also going to copy propagate, but we can't be quite
1669 sure. */
1670 if (rhs_free && is_gimple_reg (lhs))
1671 lhs_free = true;
1673 /* Writes to parameters, parameters passed by value and return value
1674 (either dirrectly or passed via invisible reference) are free.
1676 TODO: We ought to handle testcase like
1677 struct a {int a,b;};
1678 struct a
1679 retrurnsturct (void)
1681 struct a a ={1,2};
1682 return a;
1685 This translate into:
1687 retrurnsturct ()
1689 int a$b;
1690 int a$a;
1691 struct a a;
1692 struct a D.2739;
1694 <bb 2>:
1695 D.2739.a = 1;
1696 D.2739.b = 2;
1697 return D.2739;
1700 For that we either need to copy ipa-split logic detecting writes
1701 to return value. */
1702 if (TREE_CODE (inner_lhs) == PARM_DECL
1703 || TREE_CODE (inner_lhs) == RESULT_DECL
1704 || (TREE_CODE (inner_lhs) == MEM_REF
1705 && (unmodified_parm (stmt, TREE_OPERAND (inner_lhs, 0))
1706 || (TREE_CODE (TREE_OPERAND (inner_lhs, 0)) == SSA_NAME
1707 && SSA_NAME_VAR (TREE_OPERAND (inner_lhs, 0))
1708 && TREE_CODE (SSA_NAME_VAR (TREE_OPERAND
1709 (inner_lhs,
1710 0))) == RESULT_DECL))))
1711 lhs_free = true;
1712 if (lhs_free
1713 && (is_gimple_reg (rhs) || is_gimple_min_invariant (rhs)))
1714 rhs_free = true;
1715 if (lhs_free && rhs_free)
1716 return 1;
1718 return 0;
1719 default:
1720 return 0;
1725 /* If BB ends by a conditional we can turn into predicates, attach corresponding
1726 predicates to the CFG edges. */
1728 static void
1729 set_cond_stmt_execution_predicate (struct ipa_node_params *info,
1730 struct inline_summary *summary,
1731 basic_block bb)
1733 gimple last;
1734 tree op;
1735 int index;
1736 struct agg_position_info aggpos;
1737 enum tree_code code, inverted_code;
1738 edge e;
1739 edge_iterator ei;
1740 gimple set_stmt;
1741 tree op2;
1743 last = last_stmt (bb);
1744 if (!last || gimple_code (last) != GIMPLE_COND)
1745 return;
1746 if (!is_gimple_ip_invariant (gimple_cond_rhs (last)))
1747 return;
1748 op = gimple_cond_lhs (last);
1749 /* TODO: handle conditionals like
1750 var = op0 < 4;
1751 if (var != 0). */
1752 if (unmodified_parm_or_parm_agg_item (info, last, op, &index, &aggpos))
1754 code = gimple_cond_code (last);
1755 inverted_code
1756 = invert_tree_comparison (code,
1757 HONOR_NANS (TYPE_MODE (TREE_TYPE (op))));
1759 FOR_EACH_EDGE (e, ei, bb->succs)
1761 enum tree_code this_code = (e->flags & EDGE_TRUE_VALUE
1762 ? code : inverted_code);
1763 /* invert_tree_comparison will return ERROR_MARK on FP
1764 comparsions that are not EQ/NE instead of returning proper
1765 unordered one. Be sure it is not confused with NON_CONSTANT. */
1766 if (this_code != ERROR_MARK)
1768 struct predicate p = add_condition (summary, index, &aggpos,
1769 this_code,
1770 gimple_cond_rhs (last));
1771 e->aux = pool_alloc (edge_predicate_pool);
1772 *(struct predicate *) e->aux = p;
1777 if (TREE_CODE (op) != SSA_NAME)
1778 return;
1779 /* Special case
1780 if (builtin_constant_p (op))
1781 constant_code
1782 else
1783 nonconstant_code.
1784 Here we can predicate nonconstant_code. We can't
1785 really handle constant_code since we have no predicate
1786 for this and also the constant code is not known to be
1787 optimized away when inliner doen't see operand is constant.
1788 Other optimizers might think otherwise. */
1789 if (gimple_cond_code (last) != NE_EXPR
1790 || !integer_zerop (gimple_cond_rhs (last)))
1791 return;
1792 set_stmt = SSA_NAME_DEF_STMT (op);
1793 if (!gimple_call_builtin_p (set_stmt, BUILT_IN_CONSTANT_P)
1794 || gimple_call_num_args (set_stmt) != 1)
1795 return;
1796 op2 = gimple_call_arg (set_stmt, 0);
1797 if (!unmodified_parm_or_parm_agg_item
1798 (info, set_stmt, op2, &index, &aggpos))
1799 return;
1800 FOR_EACH_EDGE (e, ei, bb->succs) if (e->flags & EDGE_FALSE_VALUE)
1802 struct predicate p = add_condition (summary, index, &aggpos,
1803 IS_NOT_CONSTANT, NULL_TREE);
1804 e->aux = pool_alloc (edge_predicate_pool);
1805 *(struct predicate *) e->aux = p;
1810 /* If BB ends by a switch we can turn into predicates, attach corresponding
1811 predicates to the CFG edges. */
1813 static void
1814 set_switch_stmt_execution_predicate (struct ipa_node_params *info,
1815 struct inline_summary *summary,
1816 basic_block bb)
1818 gimple last;
1819 tree op;
1820 int index;
1821 struct agg_position_info aggpos;
1822 edge e;
1823 edge_iterator ei;
1824 size_t n;
1825 size_t case_idx;
1827 last = last_stmt (bb);
1828 if (!last || gimple_code (last) != GIMPLE_SWITCH)
1829 return;
1830 op = gimple_switch_index (last);
1831 if (!unmodified_parm_or_parm_agg_item (info, last, op, &index, &aggpos))
1832 return;
1834 FOR_EACH_EDGE (e, ei, bb->succs)
1836 e->aux = pool_alloc (edge_predicate_pool);
1837 *(struct predicate *) e->aux = false_predicate ();
1839 n = gimple_switch_num_labels (last);
1840 for (case_idx = 0; case_idx < n; ++case_idx)
1842 tree cl = gimple_switch_label (last, case_idx);
1843 tree min, max;
1844 struct predicate p;
1846 e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
1847 min = CASE_LOW (cl);
1848 max = CASE_HIGH (cl);
1850 /* For default we might want to construct predicate that none
1851 of cases is met, but it is bit hard to do not having negations
1852 of conditionals handy. */
1853 if (!min && !max)
1854 p = true_predicate ();
1855 else if (!max)
1856 p = add_condition (summary, index, &aggpos, EQ_EXPR, min);
1857 else
1859 struct predicate p1, p2;
1860 p1 = add_condition (summary, index, &aggpos, GE_EXPR, min);
1861 p2 = add_condition (summary, index, &aggpos, LE_EXPR, max);
1862 p = and_predicates (summary->conds, &p1, &p2);
1864 *(struct predicate *) e->aux
1865 = or_predicates (summary->conds, &p, (struct predicate *) e->aux);
1870 /* For each BB in NODE attach to its AUX pointer predicate under
1871 which it is executable. */
1873 static void
1874 compute_bb_predicates (struct cgraph_node *node,
1875 struct ipa_node_params *parms_info,
1876 struct inline_summary *summary)
1878 struct function *my_function = DECL_STRUCT_FUNCTION (node->decl);
1879 bool done = false;
1880 basic_block bb;
1882 FOR_EACH_BB_FN (bb, my_function)
1884 set_cond_stmt_execution_predicate (parms_info, summary, bb);
1885 set_switch_stmt_execution_predicate (parms_info, summary, bb);
1888 /* Entry block is always executable. */
1889 ENTRY_BLOCK_PTR_FOR_FN (my_function)->aux
1890 = pool_alloc (edge_predicate_pool);
1891 *(struct predicate *) ENTRY_BLOCK_PTR_FOR_FN (my_function)->aux
1892 = true_predicate ();
1894 /* A simple dataflow propagation of predicates forward in the CFG.
1895 TODO: work in reverse postorder. */
1896 while (!done)
1898 done = true;
1899 FOR_EACH_BB_FN (bb, my_function)
1901 struct predicate p = false_predicate ();
1902 edge e;
1903 edge_iterator ei;
1904 FOR_EACH_EDGE (e, ei, bb->preds)
1906 if (e->src->aux)
1908 struct predicate this_bb_predicate
1909 = *(struct predicate *) e->src->aux;
1910 if (e->aux)
1911 this_bb_predicate
1912 = and_predicates (summary->conds, &this_bb_predicate,
1913 (struct predicate *) e->aux);
1914 p = or_predicates (summary->conds, &p, &this_bb_predicate);
1915 if (true_predicate_p (&p))
1916 break;
1919 if (false_predicate_p (&p))
1920 gcc_assert (!bb->aux);
1921 else
1923 if (!bb->aux)
1925 done = false;
1926 bb->aux = pool_alloc (edge_predicate_pool);
1927 *((struct predicate *) bb->aux) = p;
1929 else if (!predicates_equal_p (&p, (struct predicate *) bb->aux))
1931 /* This OR operation is needed to ensure monotonous data flow
1932 in the case we hit the limit on number of clauses and the
1933 and/or operations above give approximate answers. */
1934 p = or_predicates (summary->conds, &p, (struct predicate *)bb->aux);
1935 if (!predicates_equal_p (&p, (struct predicate *) bb->aux))
1937 done = false;
1938 *((struct predicate *) bb->aux) = p;
1947 /* We keep info about constantness of SSA names. */
1949 typedef struct predicate predicate_t;
1950 /* Return predicate specifying when the STMT might have result that is not
1951 a compile time constant. */
1953 static struct predicate
1954 will_be_nonconstant_expr_predicate (struct ipa_node_params *info,
1955 struct inline_summary *summary,
1956 tree expr,
1957 vec<predicate_t> nonconstant_names)
1959 tree parm;
1960 int index;
1962 while (UNARY_CLASS_P (expr))
1963 expr = TREE_OPERAND (expr, 0);
1965 parm = unmodified_parm (NULL, expr);
1966 if (parm && (index = ipa_get_param_decl_index (info, parm)) >= 0)
1967 return add_condition (summary, index, NULL, CHANGED, NULL_TREE);
1968 if (is_gimple_min_invariant (expr))
1969 return false_predicate ();
1970 if (TREE_CODE (expr) == SSA_NAME)
1971 return nonconstant_names[SSA_NAME_VERSION (expr)];
1972 if (BINARY_CLASS_P (expr) || COMPARISON_CLASS_P (expr))
1974 struct predicate p1 = will_be_nonconstant_expr_predicate
1975 (info, summary, TREE_OPERAND (expr, 0),
1976 nonconstant_names);
1977 struct predicate p2;
1978 if (true_predicate_p (&p1))
1979 return p1;
1980 p2 = will_be_nonconstant_expr_predicate (info, summary,
1981 TREE_OPERAND (expr, 1),
1982 nonconstant_names);
1983 return or_predicates (summary->conds, &p1, &p2);
1985 else if (TREE_CODE (expr) == COND_EXPR)
1987 struct predicate p1 = will_be_nonconstant_expr_predicate
1988 (info, summary, TREE_OPERAND (expr, 0),
1989 nonconstant_names);
1990 struct predicate p2;
1991 if (true_predicate_p (&p1))
1992 return p1;
1993 p2 = will_be_nonconstant_expr_predicate (info, summary,
1994 TREE_OPERAND (expr, 1),
1995 nonconstant_names);
1996 if (true_predicate_p (&p2))
1997 return p2;
1998 p1 = or_predicates (summary->conds, &p1, &p2);
1999 p2 = will_be_nonconstant_expr_predicate (info, summary,
2000 TREE_OPERAND (expr, 2),
2001 nonconstant_names);
2002 return or_predicates (summary->conds, &p1, &p2);
2004 else
2006 debug_tree (expr);
2007 gcc_unreachable ();
2009 return false_predicate ();
2013 /* Return predicate specifying when the STMT might have result that is not
2014 a compile time constant. */
2016 static struct predicate
2017 will_be_nonconstant_predicate (struct ipa_node_params *info,
2018 struct inline_summary *summary,
2019 gimple stmt,
2020 vec<predicate_t> nonconstant_names)
2022 struct predicate p = true_predicate ();
2023 ssa_op_iter iter;
2024 tree use;
2025 struct predicate op_non_const;
2026 bool is_load;
2027 int base_index;
2028 struct agg_position_info aggpos;
2030 /* What statments might be optimized away
2031 when their arguments are constant
2032 TODO: also trivial builtins.
2033 builtin_constant_p is already handled later. */
2034 if (gimple_code (stmt) != GIMPLE_ASSIGN
2035 && gimple_code (stmt) != GIMPLE_COND
2036 && gimple_code (stmt) != GIMPLE_SWITCH)
2037 return p;
2039 /* Stores will stay anyway. */
2040 if (gimple_store_p (stmt))
2041 return p;
2043 is_load = gimple_assign_load_p (stmt);
2045 /* Loads can be optimized when the value is known. */
2046 if (is_load)
2048 tree op;
2049 gcc_assert (gimple_assign_single_p (stmt));
2050 op = gimple_assign_rhs1 (stmt);
2051 if (!unmodified_parm_or_parm_agg_item (info, stmt, op, &base_index,
2052 &aggpos))
2053 return p;
2055 else
2056 base_index = -1;
2058 /* See if we understand all operands before we start
2059 adding conditionals. */
2060 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
2062 tree parm = unmodified_parm (stmt, use);
2063 /* For arguments we can build a condition. */
2064 if (parm && ipa_get_param_decl_index (info, parm) >= 0)
2065 continue;
2066 if (TREE_CODE (use) != SSA_NAME)
2067 return p;
2068 /* If we know when operand is constant,
2069 we still can say something useful. */
2070 if (!true_predicate_p (&nonconstant_names[SSA_NAME_VERSION (use)]))
2071 continue;
2072 return p;
2075 if (is_load)
2076 op_non_const =
2077 add_condition (summary, base_index, &aggpos, CHANGED, NULL);
2078 else
2079 op_non_const = false_predicate ();
2080 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
2082 tree parm = unmodified_parm (stmt, use);
2083 int index;
2085 if (parm && (index = ipa_get_param_decl_index (info, parm)) >= 0)
2087 if (index != base_index)
2088 p = add_condition (summary, index, NULL, CHANGED, NULL_TREE);
2089 else
2090 continue;
2092 else
2093 p = nonconstant_names[SSA_NAME_VERSION (use)];
2094 op_non_const = or_predicates (summary->conds, &p, &op_non_const);
2096 if (gimple_code (stmt) == GIMPLE_ASSIGN
2097 && TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME)
2098 nonconstant_names[SSA_NAME_VERSION (gimple_assign_lhs (stmt))]
2099 = op_non_const;
2100 return op_non_const;
2103 struct record_modified_bb_info
2105 bitmap bb_set;
2106 gimple stmt;
2109 /* Callback of walk_aliased_vdefs. Records basic blocks where the value may be
2110 set except for info->stmt. */
2112 static bool
2113 record_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef, void *data)
2115 struct record_modified_bb_info *info =
2116 (struct record_modified_bb_info *) data;
2117 if (SSA_NAME_DEF_STMT (vdef) == info->stmt)
2118 return false;
2119 bitmap_set_bit (info->bb_set,
2120 SSA_NAME_IS_DEFAULT_DEF (vdef)
2121 ? ENTRY_BLOCK_PTR_FOR_FN (cfun)->index
2122 : gimple_bb (SSA_NAME_DEF_STMT (vdef))->index);
2123 return false;
2126 /* Return probability (based on REG_BR_PROB_BASE) that I-th parameter of STMT
2127 will change since last invocation of STMT.
2129 Value 0 is reserved for compile time invariants.
2130 For common parameters it is REG_BR_PROB_BASE. For loop invariants it
2131 ought to be REG_BR_PROB_BASE / estimated_iters. */
2133 static int
2134 param_change_prob (gimple stmt, int i)
2136 tree op = gimple_call_arg (stmt, i);
2137 basic_block bb = gimple_bb (stmt);
2138 tree base;
2140 /* Global invariants neve change. */
2141 if (is_gimple_min_invariant (op))
2142 return 0;
2143 /* We would have to do non-trivial analysis to really work out what
2144 is the probability of value to change (i.e. when init statement
2145 is in a sibling loop of the call).
2147 We do an conservative estimate: when call is executed N times more often
2148 than the statement defining value, we take the frequency 1/N. */
2149 if (TREE_CODE (op) == SSA_NAME)
2151 int init_freq;
2153 if (!bb->frequency)
2154 return REG_BR_PROB_BASE;
2156 if (SSA_NAME_IS_DEFAULT_DEF (op))
2157 init_freq = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency;
2158 else
2159 init_freq = gimple_bb (SSA_NAME_DEF_STMT (op))->frequency;
2161 if (!init_freq)
2162 init_freq = 1;
2163 if (init_freq < bb->frequency)
2164 return MAX (GCOV_COMPUTE_SCALE (init_freq, bb->frequency), 1);
2165 else
2166 return REG_BR_PROB_BASE;
2169 base = get_base_address (op);
2170 if (base)
2172 ao_ref refd;
2173 int max;
2174 struct record_modified_bb_info info;
2175 bitmap_iterator bi;
2176 unsigned index;
2177 tree init = ctor_for_folding (base);
2179 if (init != error_mark_node)
2180 return 0;
2181 if (!bb->frequency)
2182 return REG_BR_PROB_BASE;
2183 ao_ref_init (&refd, op);
2184 info.stmt = stmt;
2185 info.bb_set = BITMAP_ALLOC (NULL);
2186 walk_aliased_vdefs (&refd, gimple_vuse (stmt), record_modified, &info,
2187 NULL);
2188 if (bitmap_bit_p (info.bb_set, bb->index))
2190 BITMAP_FREE (info.bb_set);
2191 return REG_BR_PROB_BASE;
2194 /* Assume that every memory is initialized at entry.
2195 TODO: Can we easilly determine if value is always defined
2196 and thus we may skip entry block? */
2197 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency)
2198 max = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency;
2199 else
2200 max = 1;
2202 EXECUTE_IF_SET_IN_BITMAP (info.bb_set, 0, index, bi)
2203 max = MIN (max, BASIC_BLOCK_FOR_FN (cfun, index)->frequency);
2205 BITMAP_FREE (info.bb_set);
2206 if (max < bb->frequency)
2207 return MAX (GCOV_COMPUTE_SCALE (max, bb->frequency), 1);
2208 else
2209 return REG_BR_PROB_BASE;
2211 return REG_BR_PROB_BASE;
2214 /* Find whether a basic block BB is the final block of a (half) diamond CFG
2215 sub-graph and if the predicate the condition depends on is known. If so,
2216 return true and store the pointer the predicate in *P. */
2218 static bool
2219 phi_result_unknown_predicate (struct ipa_node_params *info,
2220 struct inline_summary *summary, basic_block bb,
2221 struct predicate *p,
2222 vec<predicate_t> nonconstant_names)
2224 edge e;
2225 edge_iterator ei;
2226 basic_block first_bb = NULL;
2227 gimple stmt;
2229 if (single_pred_p (bb))
2231 *p = false_predicate ();
2232 return true;
2235 FOR_EACH_EDGE (e, ei, bb->preds)
2237 if (single_succ_p (e->src))
2239 if (!single_pred_p (e->src))
2240 return false;
2241 if (!first_bb)
2242 first_bb = single_pred (e->src);
2243 else if (single_pred (e->src) != first_bb)
2244 return false;
2246 else
2248 if (!first_bb)
2249 first_bb = e->src;
2250 else if (e->src != first_bb)
2251 return false;
2255 if (!first_bb)
2256 return false;
2258 stmt = last_stmt (first_bb);
2259 if (!stmt
2260 || gimple_code (stmt) != GIMPLE_COND
2261 || !is_gimple_ip_invariant (gimple_cond_rhs (stmt)))
2262 return false;
2264 *p = will_be_nonconstant_expr_predicate (info, summary,
2265 gimple_cond_lhs (stmt),
2266 nonconstant_names);
2267 if (true_predicate_p (p))
2268 return false;
2269 else
2270 return true;
2273 /* Given a PHI statement in a function described by inline properties SUMMARY
2274 and *P being the predicate describing whether the selected PHI argument is
2275 known, store a predicate for the result of the PHI statement into
2276 NONCONSTANT_NAMES, if possible. */
2278 static void
2279 predicate_for_phi_result (struct inline_summary *summary, gimple phi,
2280 struct predicate *p,
2281 vec<predicate_t> nonconstant_names)
2283 unsigned i;
2285 for (i = 0; i < gimple_phi_num_args (phi); i++)
2287 tree arg = gimple_phi_arg (phi, i)->def;
2288 if (!is_gimple_min_invariant (arg))
2290 gcc_assert (TREE_CODE (arg) == SSA_NAME);
2291 *p = or_predicates (summary->conds, p,
2292 &nonconstant_names[SSA_NAME_VERSION (arg)]);
2293 if (true_predicate_p (p))
2294 return;
2298 if (dump_file && (dump_flags & TDF_DETAILS))
2300 fprintf (dump_file, "\t\tphi predicate: ");
2301 dump_predicate (dump_file, summary->conds, p);
2303 nonconstant_names[SSA_NAME_VERSION (gimple_phi_result (phi))] = *p;
2306 /* Return predicate specifying when array index in access OP becomes non-constant. */
2308 static struct predicate
2309 array_index_predicate (struct inline_summary *info,
2310 vec< predicate_t> nonconstant_names, tree op)
2312 struct predicate p = false_predicate ();
2313 while (handled_component_p (op))
2315 if (TREE_CODE (op) == ARRAY_REF || TREE_CODE (op) == ARRAY_RANGE_REF)
2317 if (TREE_CODE (TREE_OPERAND (op, 1)) == SSA_NAME)
2318 p = or_predicates (info->conds, &p,
2319 &nonconstant_names[SSA_NAME_VERSION
2320 (TREE_OPERAND (op, 1))]);
2322 op = TREE_OPERAND (op, 0);
2324 return p;
2327 /* For a typical usage of __builtin_expect (a<b, 1), we
2328 may introduce an extra relation stmt:
2329 With the builtin, we have
2330 t1 = a <= b;
2331 t2 = (long int) t1;
2332 t3 = __builtin_expect (t2, 1);
2333 if (t3 != 0)
2334 goto ...
2335 Without the builtin, we have
2336 if (a<=b)
2337 goto...
2338 This affects the size/time estimation and may have
2339 an impact on the earlier inlining.
2340 Here find this pattern and fix it up later. */
2342 static gimple
2343 find_foldable_builtin_expect (basic_block bb)
2345 gimple_stmt_iterator bsi;
2347 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2349 gimple stmt = gsi_stmt (bsi);
2350 if (gimple_call_builtin_p (stmt, BUILT_IN_EXPECT)
2351 || (is_gimple_call (stmt)
2352 && gimple_call_internal_p (stmt)
2353 && gimple_call_internal_fn (stmt) == IFN_BUILTIN_EXPECT))
2355 tree var = gimple_call_lhs (stmt);
2356 tree arg = gimple_call_arg (stmt, 0);
2357 use_operand_p use_p;
2358 gimple use_stmt;
2359 bool match = false;
2360 bool done = false;
2362 if (!var || !arg)
2363 continue;
2364 gcc_assert (TREE_CODE (var) == SSA_NAME);
2366 while (TREE_CODE (arg) == SSA_NAME)
2368 gimple stmt_tmp = SSA_NAME_DEF_STMT (arg);
2369 if (!is_gimple_assign (stmt_tmp))
2370 break;
2371 switch (gimple_assign_rhs_code (stmt_tmp))
2373 case LT_EXPR:
2374 case LE_EXPR:
2375 case GT_EXPR:
2376 case GE_EXPR:
2377 case EQ_EXPR:
2378 case NE_EXPR:
2379 match = true;
2380 done = true;
2381 break;
2382 CASE_CONVERT:
2383 break;
2384 default:
2385 done = true;
2386 break;
2388 if (done)
2389 break;
2390 arg = gimple_assign_rhs1 (stmt_tmp);
2393 if (match && single_imm_use (var, &use_p, &use_stmt)
2394 && gimple_code (use_stmt) == GIMPLE_COND)
2395 return use_stmt;
2398 return NULL;
2401 /* Return true when the basic blocks contains only clobbers followed by RESX.
2402 Such BBs are kept around to make removal of dead stores possible with
2403 presence of EH and will be optimized out by optimize_clobbers later in the
2404 game.
2406 NEED_EH is used to recurse in case the clobber has non-EH predecestors
2407 that can be clobber only, too.. When it is false, the RESX is not necessary
2408 on the end of basic block. */
2410 static bool
2411 clobber_only_eh_bb_p (basic_block bb, bool need_eh = true)
2413 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2414 edge_iterator ei;
2415 edge e;
2417 if (need_eh)
2419 if (gsi_end_p (gsi))
2420 return false;
2421 if (gimple_code (gsi_stmt (gsi)) != GIMPLE_RESX)
2422 return false;
2423 gsi_prev (&gsi);
2425 else if (!single_succ_p (bb))
2426 return false;
2428 for (; !gsi_end_p (gsi); gsi_prev (&gsi))
2430 gimple stmt = gsi_stmt (gsi);
2431 if (is_gimple_debug (stmt))
2432 continue;
2433 if (gimple_clobber_p (stmt))
2434 continue;
2435 if (gimple_code (stmt) == GIMPLE_LABEL)
2436 break;
2437 return false;
2440 /* See if all predecestors are either throws or clobber only BBs. */
2441 FOR_EACH_EDGE (e, ei, bb->preds)
2442 if (!(e->flags & EDGE_EH)
2443 && !clobber_only_eh_bb_p (e->src, false))
2444 return false;
2446 return true;
2449 /* Compute function body size parameters for NODE.
2450 When EARLY is true, we compute only simple summaries without
2451 non-trivial predicates to drive the early inliner. */
2453 static void
2454 estimate_function_body_sizes (struct cgraph_node *node, bool early)
2456 gcov_type time = 0;
2457 /* Estimate static overhead for function prologue/epilogue and alignment. */
2458 int size = 2;
2459 /* Benefits are scaled by probability of elimination that is in range
2460 <0,2>. */
2461 basic_block bb;
2462 gimple_stmt_iterator bsi;
2463 struct function *my_function = DECL_STRUCT_FUNCTION (node->decl);
2464 int freq;
2465 struct inline_summary *info = inline_summary (node);
2466 struct predicate bb_predicate;
2467 struct ipa_node_params *parms_info = NULL;
2468 vec<predicate_t> nonconstant_names = vNULL;
2469 int nblocks, n;
2470 int *order;
2471 predicate array_index = true_predicate ();
2472 gimple fix_builtin_expect_stmt;
2474 info->conds = NULL;
2475 info->entry = NULL;
2477 if (optimize && !early)
2479 calculate_dominance_info (CDI_DOMINATORS);
2480 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
2482 if (ipa_node_params_vector.exists ())
2484 parms_info = IPA_NODE_REF (node);
2485 nonconstant_names.safe_grow_cleared
2486 (SSANAMES (my_function)->length ());
2490 if (dump_file)
2491 fprintf (dump_file, "\nAnalyzing function body size: %s\n",
2492 node->name ());
2494 /* When we run into maximal number of entries, we assign everything to the
2495 constant truth case. Be sure to have it in list. */
2496 bb_predicate = true_predicate ();
2497 account_size_time (info, 0, 0, &bb_predicate);
2499 bb_predicate = not_inlined_predicate ();
2500 account_size_time (info, 2 * INLINE_SIZE_SCALE, 0, &bb_predicate);
2502 gcc_assert (my_function && my_function->cfg);
2503 if (parms_info)
2504 compute_bb_predicates (node, parms_info, info);
2505 gcc_assert (cfun == my_function);
2506 order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
2507 nblocks = pre_and_rev_post_order_compute (NULL, order, false);
2508 for (n = 0; n < nblocks; n++)
2510 bb = BASIC_BLOCK_FOR_FN (cfun, order[n]);
2511 freq = compute_call_stmt_bb_frequency (node->decl, bb);
2512 if (clobber_only_eh_bb_p (bb))
2514 if (dump_file && (dump_flags & TDF_DETAILS))
2515 fprintf (dump_file, "\n Ignoring BB %i;"
2516 " it will be optimized away by cleanup_clobbers\n",
2517 bb->index);
2518 continue;
2521 /* TODO: Obviously predicates can be propagated down across CFG. */
2522 if (parms_info)
2524 if (bb->aux)
2525 bb_predicate = *(struct predicate *) bb->aux;
2526 else
2527 bb_predicate = false_predicate ();
2529 else
2530 bb_predicate = true_predicate ();
2532 if (dump_file && (dump_flags & TDF_DETAILS))
2534 fprintf (dump_file, "\n BB %i predicate:", bb->index);
2535 dump_predicate (dump_file, info->conds, &bb_predicate);
2538 if (parms_info && nonconstant_names.exists ())
2540 struct predicate phi_predicate;
2541 bool first_phi = true;
2543 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2545 if (first_phi
2546 && !phi_result_unknown_predicate (parms_info, info, bb,
2547 &phi_predicate,
2548 nonconstant_names))
2549 break;
2550 first_phi = false;
2551 if (dump_file && (dump_flags & TDF_DETAILS))
2553 fprintf (dump_file, " ");
2554 print_gimple_stmt (dump_file, gsi_stmt (bsi), 0, 0);
2556 predicate_for_phi_result (info, gsi_stmt (bsi), &phi_predicate,
2557 nonconstant_names);
2561 fix_builtin_expect_stmt = find_foldable_builtin_expect (bb);
2563 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2565 gimple stmt = gsi_stmt (bsi);
2566 int this_size = estimate_num_insns (stmt, &eni_size_weights);
2567 int this_time = estimate_num_insns (stmt, &eni_time_weights);
2568 int prob;
2569 struct predicate will_be_nonconstant;
2571 /* This relation stmt should be folded after we remove
2572 buildin_expect call. Adjust the cost here. */
2573 if (stmt == fix_builtin_expect_stmt)
2575 this_size--;
2576 this_time--;
2579 if (dump_file && (dump_flags & TDF_DETAILS))
2581 fprintf (dump_file, " ");
2582 print_gimple_stmt (dump_file, stmt, 0, 0);
2583 fprintf (dump_file, "\t\tfreq:%3.2f size:%3i time:%3i\n",
2584 ((double) freq) / CGRAPH_FREQ_BASE, this_size,
2585 this_time);
2588 if (gimple_assign_load_p (stmt) && nonconstant_names.exists ())
2590 struct predicate this_array_index;
2591 this_array_index =
2592 array_index_predicate (info, nonconstant_names,
2593 gimple_assign_rhs1 (stmt));
2594 if (!false_predicate_p (&this_array_index))
2595 array_index =
2596 and_predicates (info->conds, &array_index,
2597 &this_array_index);
2599 if (gimple_store_p (stmt) && nonconstant_names.exists ())
2601 struct predicate this_array_index;
2602 this_array_index =
2603 array_index_predicate (info, nonconstant_names,
2604 gimple_get_lhs (stmt));
2605 if (!false_predicate_p (&this_array_index))
2606 array_index =
2607 and_predicates (info->conds, &array_index,
2608 &this_array_index);
2612 if (is_gimple_call (stmt)
2613 && !gimple_call_internal_p (stmt))
2615 struct cgraph_edge *edge = node->get_edge (stmt);
2616 struct inline_edge_summary *es = inline_edge_summary (edge);
2618 /* Special case: results of BUILT_IN_CONSTANT_P will be always
2619 resolved as constant. We however don't want to optimize
2620 out the cgraph edges. */
2621 if (nonconstant_names.exists ()
2622 && gimple_call_builtin_p (stmt, BUILT_IN_CONSTANT_P)
2623 && gimple_call_lhs (stmt)
2624 && TREE_CODE (gimple_call_lhs (stmt)) == SSA_NAME)
2626 struct predicate false_p = false_predicate ();
2627 nonconstant_names[SSA_NAME_VERSION (gimple_call_lhs (stmt))]
2628 = false_p;
2630 if (ipa_node_params_vector.exists ())
2632 int count = gimple_call_num_args (stmt);
2633 int i;
2635 if (count)
2636 es->param.safe_grow_cleared (count);
2637 for (i = 0; i < count; i++)
2639 int prob = param_change_prob (stmt, i);
2640 gcc_assert (prob >= 0 && prob <= REG_BR_PROB_BASE);
2641 es->param[i].change_prob = prob;
2645 es->call_stmt_size = this_size;
2646 es->call_stmt_time = this_time;
2647 es->loop_depth = bb_loop_depth (bb);
2648 edge_set_predicate (edge, &bb_predicate);
2651 /* TODO: When conditional jump or swithc is known to be constant, but
2652 we did not translate it into the predicates, we really can account
2653 just maximum of the possible paths. */
2654 if (parms_info)
2655 will_be_nonconstant
2656 = will_be_nonconstant_predicate (parms_info, info,
2657 stmt, nonconstant_names);
2658 if (this_time || this_size)
2660 struct predicate p;
2662 this_time *= freq;
2664 prob = eliminated_by_inlining_prob (stmt);
2665 if (prob == 1 && dump_file && (dump_flags & TDF_DETAILS))
2666 fprintf (dump_file,
2667 "\t\t50%% will be eliminated by inlining\n");
2668 if (prob == 2 && dump_file && (dump_flags & TDF_DETAILS))
2669 fprintf (dump_file, "\t\tWill be eliminated by inlining\n");
2671 if (parms_info)
2672 p = and_predicates (info->conds, &bb_predicate,
2673 &will_be_nonconstant);
2674 else
2675 p = true_predicate ();
2677 if (!false_predicate_p (&p))
2679 time += this_time;
2680 size += this_size;
2681 if (time > MAX_TIME * INLINE_TIME_SCALE)
2682 time = MAX_TIME * INLINE_TIME_SCALE;
2685 /* We account everything but the calls. Calls have their own
2686 size/time info attached to cgraph edges. This is necessary
2687 in order to make the cost disappear after inlining. */
2688 if (!is_gimple_call (stmt))
2690 if (prob)
2692 struct predicate ip = not_inlined_predicate ();
2693 ip = and_predicates (info->conds, &ip, &p);
2694 account_size_time (info, this_size * prob,
2695 this_time * prob, &ip);
2697 if (prob != 2)
2698 account_size_time (info, this_size * (2 - prob),
2699 this_time * (2 - prob), &p);
2702 gcc_assert (time >= 0);
2703 gcc_assert (size >= 0);
2707 set_hint_predicate (&inline_summary (node)->array_index, array_index);
2708 time = (time + CGRAPH_FREQ_BASE / 2) / CGRAPH_FREQ_BASE;
2709 if (time > MAX_TIME)
2710 time = MAX_TIME;
2711 free (order);
2713 if (!early && nonconstant_names.exists ())
2715 struct loop *loop;
2716 predicate loop_iterations = true_predicate ();
2717 predicate loop_stride = true_predicate ();
2719 if (dump_file && (dump_flags & TDF_DETAILS))
2720 flow_loops_dump (dump_file, NULL, 0);
2721 scev_initialize ();
2722 FOR_EACH_LOOP (loop, 0)
2724 vec<edge> exits;
2725 edge ex;
2726 unsigned int j, i;
2727 struct tree_niter_desc niter_desc;
2728 basic_block *body = get_loop_body (loop);
2729 bb_predicate = *(struct predicate *) loop->header->aux;
2731 exits = get_loop_exit_edges (loop);
2732 FOR_EACH_VEC_ELT (exits, j, ex)
2733 if (number_of_iterations_exit (loop, ex, &niter_desc, false)
2734 && !is_gimple_min_invariant (niter_desc.niter))
2736 predicate will_be_nonconstant
2737 = will_be_nonconstant_expr_predicate (parms_info, info,
2738 niter_desc.niter,
2739 nonconstant_names);
2740 if (!true_predicate_p (&will_be_nonconstant))
2741 will_be_nonconstant = and_predicates (info->conds,
2742 &bb_predicate,
2743 &will_be_nonconstant);
2744 if (!true_predicate_p (&will_be_nonconstant)
2745 && !false_predicate_p (&will_be_nonconstant))
2746 /* This is slightly inprecise. We may want to represent each
2747 loop with independent predicate. */
2748 loop_iterations =
2749 and_predicates (info->conds, &loop_iterations,
2750 &will_be_nonconstant);
2752 exits.release ();
2754 for (i = 0; i < loop->num_nodes; i++)
2756 gimple_stmt_iterator gsi;
2757 bb_predicate = *(struct predicate *) body[i]->aux;
2758 for (gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi);
2759 gsi_next (&gsi))
2761 gimple stmt = gsi_stmt (gsi);
2762 affine_iv iv;
2763 ssa_op_iter iter;
2764 tree use;
2766 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
2768 predicate will_be_nonconstant;
2770 if (!simple_iv
2771 (loop, loop_containing_stmt (stmt), use, &iv, true)
2772 || is_gimple_min_invariant (iv.step))
2773 continue;
2774 will_be_nonconstant
2775 = will_be_nonconstant_expr_predicate (parms_info, info,
2776 iv.step,
2777 nonconstant_names);
2778 if (!true_predicate_p (&will_be_nonconstant))
2779 will_be_nonconstant
2780 = and_predicates (info->conds,
2781 &bb_predicate,
2782 &will_be_nonconstant);
2783 if (!true_predicate_p (&will_be_nonconstant)
2784 && !false_predicate_p (&will_be_nonconstant))
2785 /* This is slightly inprecise. We may want to represent
2786 each loop with independent predicate. */
2787 loop_stride =
2788 and_predicates (info->conds, &loop_stride,
2789 &will_be_nonconstant);
2793 free (body);
2795 set_hint_predicate (&inline_summary (node)->loop_iterations,
2796 loop_iterations);
2797 set_hint_predicate (&inline_summary (node)->loop_stride, loop_stride);
2798 scev_finalize ();
2800 FOR_ALL_BB_FN (bb, my_function)
2802 edge e;
2803 edge_iterator ei;
2805 if (bb->aux)
2806 pool_free (edge_predicate_pool, bb->aux);
2807 bb->aux = NULL;
2808 FOR_EACH_EDGE (e, ei, bb->succs)
2810 if (e->aux)
2811 pool_free (edge_predicate_pool, e->aux);
2812 e->aux = NULL;
2815 inline_summary (node)->self_time = time;
2816 inline_summary (node)->self_size = size;
2817 nonconstant_names.release ();
2818 if (optimize && !early)
2820 loop_optimizer_finalize ();
2821 free_dominance_info (CDI_DOMINATORS);
2823 if (dump_file)
2825 fprintf (dump_file, "\n");
2826 dump_inline_summary (dump_file, node);
2831 /* Compute parameters of functions used by inliner.
2832 EARLY is true when we compute parameters for the early inliner */
2834 void
2835 compute_inline_parameters (struct cgraph_node *node, bool early)
2837 HOST_WIDE_INT self_stack_size;
2838 struct cgraph_edge *e;
2839 struct inline_summary *info;
2841 gcc_assert (!node->global.inlined_to);
2843 inline_summary_alloc ();
2845 info = inline_summary (node);
2846 reset_inline_summary (node);
2848 /* FIXME: Thunks are inlinable, but tree-inline don't know how to do that.
2849 Once this happen, we will need to more curefully predict call
2850 statement size. */
2851 if (node->thunk.thunk_p)
2853 struct inline_edge_summary *es = inline_edge_summary (node->callees);
2854 struct predicate t = true_predicate ();
2856 info->inlinable = 0;
2857 node->callees->call_stmt_cannot_inline_p = true;
2858 node->local.can_change_signature = false;
2859 es->call_stmt_time = 1;
2860 es->call_stmt_size = 1;
2861 account_size_time (info, 0, 0, &t);
2862 return;
2865 /* Even is_gimple_min_invariant rely on current_function_decl. */
2866 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
2868 /* Estimate the stack size for the function if we're optimizing. */
2869 self_stack_size = optimize ? estimated_stack_frame_size (node) : 0;
2870 info->estimated_self_stack_size = self_stack_size;
2871 info->estimated_stack_size = self_stack_size;
2872 info->stack_frame_offset = 0;
2874 /* Can this function be inlined at all? */
2875 if (!optimize && !lookup_attribute ("always_inline",
2876 DECL_ATTRIBUTES (node->decl)))
2877 info->inlinable = false;
2878 else
2879 info->inlinable = tree_inlinable_function_p (node->decl);
2881 /* Type attributes can use parameter indices to describe them. */
2882 if (TYPE_ATTRIBUTES (TREE_TYPE (node->decl)))
2883 node->local.can_change_signature = false;
2884 else
2886 /* Otherwise, inlinable functions always can change signature. */
2887 if (info->inlinable)
2888 node->local.can_change_signature = true;
2889 else
2891 /* Functions calling builtin_apply can not change signature. */
2892 for (e = node->callees; e; e = e->next_callee)
2894 tree cdecl = e->callee->decl;
2895 if (DECL_BUILT_IN (cdecl)
2896 && DECL_BUILT_IN_CLASS (cdecl) == BUILT_IN_NORMAL
2897 && (DECL_FUNCTION_CODE (cdecl) == BUILT_IN_APPLY_ARGS
2898 || DECL_FUNCTION_CODE (cdecl) == BUILT_IN_VA_START))
2899 break;
2901 node->local.can_change_signature = !e;
2904 estimate_function_body_sizes (node, early);
2906 for (e = node->callees; e; e = e->next_callee)
2907 if (e->callee->comdat_local_p ())
2908 break;
2909 node->calls_comdat_local = (e != NULL);
2911 /* Inlining characteristics are maintained by the cgraph_mark_inline. */
2912 info->time = info->self_time;
2913 info->size = info->self_size;
2914 info->stack_frame_offset = 0;
2915 info->estimated_stack_size = info->estimated_self_stack_size;
2916 #ifdef ENABLE_CHECKING
2917 inline_update_overall_summary (node);
2918 gcc_assert (info->time == info->self_time && info->size == info->self_size);
2919 #endif
2921 pop_cfun ();
2925 /* Compute parameters of functions used by inliner using
2926 current_function_decl. */
2928 static unsigned int
2929 compute_inline_parameters_for_current (void)
2931 compute_inline_parameters (cgraph_node::get (current_function_decl), true);
2932 return 0;
2935 namespace {
2937 const pass_data pass_data_inline_parameters =
2939 GIMPLE_PASS, /* type */
2940 "inline_param", /* name */
2941 OPTGROUP_INLINE, /* optinfo_flags */
2942 TV_INLINE_PARAMETERS, /* tv_id */
2943 0, /* properties_required */
2944 0, /* properties_provided */
2945 0, /* properties_destroyed */
2946 0, /* todo_flags_start */
2947 0, /* todo_flags_finish */
2950 class pass_inline_parameters : public gimple_opt_pass
2952 public:
2953 pass_inline_parameters (gcc::context *ctxt)
2954 : gimple_opt_pass (pass_data_inline_parameters, ctxt)
2957 /* opt_pass methods: */
2958 opt_pass * clone () { return new pass_inline_parameters (m_ctxt); }
2959 virtual unsigned int execute (function *)
2961 return compute_inline_parameters_for_current ();
2964 }; // class pass_inline_parameters
2966 } // anon namespace
2968 gimple_opt_pass *
2969 make_pass_inline_parameters (gcc::context *ctxt)
2971 return new pass_inline_parameters (ctxt);
2975 /* Estimate benefit devirtualizing indirect edge IE, provided KNOWN_VALS,
2976 KNOWN_CONTEXTS and KNOWN_AGGS. */
2978 static bool
2979 estimate_edge_devirt_benefit (struct cgraph_edge *ie,
2980 int *size, int *time,
2981 vec<tree> known_vals,
2982 vec<ipa_polymorphic_call_context> known_contexts,
2983 vec<ipa_agg_jump_function_p> known_aggs)
2985 tree target;
2986 struct cgraph_node *callee;
2987 struct inline_summary *isummary;
2988 enum availability avail;
2989 bool speculative;
2991 if (!known_vals.exists () && !known_contexts.exists ())
2992 return false;
2993 if (!flag_indirect_inlining)
2994 return false;
2996 target = ipa_get_indirect_edge_target (ie, known_vals, known_contexts,
2997 known_aggs, &speculative);
2998 if (!target || speculative)
2999 return false;
3001 /* Account for difference in cost between indirect and direct calls. */
3002 *size -= (eni_size_weights.indirect_call_cost - eni_size_weights.call_cost);
3003 *time -= (eni_time_weights.indirect_call_cost - eni_time_weights.call_cost);
3004 gcc_checking_assert (*time >= 0);
3005 gcc_checking_assert (*size >= 0);
3007 callee = cgraph_node::get (target);
3008 if (!callee || !callee->definition)
3009 return false;
3010 callee = callee->function_symbol (&avail);
3011 if (avail < AVAIL_AVAILABLE)
3012 return false;
3013 isummary = inline_summary (callee);
3014 return isummary->inlinable;
3017 /* Increase SIZE, MIN_SIZE (if non-NULL) and TIME for size and time needed to
3018 handle edge E with probability PROB.
3019 Set HINTS if edge may be devirtualized.
3020 KNOWN_VALS, KNOWN_AGGS and KNOWN_CONTEXTS describe context of the call
3021 site. */
3023 static inline void
3024 estimate_edge_size_and_time (struct cgraph_edge *e, int *size, int *min_size,
3025 int *time,
3026 int prob,
3027 vec<tree> known_vals,
3028 vec<ipa_polymorphic_call_context> known_contexts,
3029 vec<ipa_agg_jump_function_p> known_aggs,
3030 inline_hints *hints)
3032 struct inline_edge_summary *es = inline_edge_summary (e);
3033 int call_size = es->call_stmt_size;
3034 int call_time = es->call_stmt_time;
3035 int cur_size;
3036 if (!e->callee
3037 && estimate_edge_devirt_benefit (e, &call_size, &call_time,
3038 known_vals, known_contexts, known_aggs)
3039 && hints && e->maybe_hot_p ())
3040 *hints |= INLINE_HINT_indirect_call;
3041 cur_size = call_size * INLINE_SIZE_SCALE;
3042 *size += cur_size;
3043 if (min_size)
3044 *min_size += cur_size;
3045 *time += apply_probability ((gcov_type) call_time, prob)
3046 * e->frequency * (INLINE_TIME_SCALE / CGRAPH_FREQ_BASE);
3047 if (*time > MAX_TIME * INLINE_TIME_SCALE)
3048 *time = MAX_TIME * INLINE_TIME_SCALE;
3053 /* Increase SIZE, MIN_SIZE and TIME for size and time needed to handle all
3054 calls in NODE. POSSIBLE_TRUTHS, KNOWN_VALS, KNOWN_AGGS and KNOWN_CONTEXTS
3055 describe context of the call site. */
3057 static void
3058 estimate_calls_size_and_time (struct cgraph_node *node, int *size,
3059 int *min_size, int *time,
3060 inline_hints *hints,
3061 clause_t possible_truths,
3062 vec<tree> known_vals,
3063 vec<ipa_polymorphic_call_context> known_contexts,
3064 vec<ipa_agg_jump_function_p> known_aggs)
3066 struct cgraph_edge *e;
3067 for (e = node->callees; e; e = e->next_callee)
3069 struct inline_edge_summary *es = inline_edge_summary (e);
3070 if (!es->predicate
3071 || evaluate_predicate (es->predicate, possible_truths))
3073 if (e->inline_failed)
3075 /* Predicates of calls shall not use NOT_CHANGED codes,
3076 sowe do not need to compute probabilities. */
3077 estimate_edge_size_and_time (e, size,
3078 es->predicate ? NULL : min_size,
3079 time, REG_BR_PROB_BASE,
3080 known_vals, known_contexts,
3081 known_aggs, hints);
3083 else
3084 estimate_calls_size_and_time (e->callee, size, min_size, time,
3085 hints,
3086 possible_truths,
3087 known_vals, known_contexts,
3088 known_aggs);
3091 for (e = node->indirect_calls; e; e = e->next_callee)
3093 struct inline_edge_summary *es = inline_edge_summary (e);
3094 if (!es->predicate
3095 || evaluate_predicate (es->predicate, possible_truths))
3096 estimate_edge_size_and_time (e, size,
3097 es->predicate ? NULL : min_size,
3098 time, REG_BR_PROB_BASE,
3099 known_vals, known_contexts, known_aggs,
3100 hints);
3105 /* Estimate size and time needed to execute NODE assuming
3106 POSSIBLE_TRUTHS clause, and KNOWN_VALS, KNOWN_AGGS and KNOWN_CONTEXTS
3107 information about NODE's arguments. If non-NULL use also probability
3108 information present in INLINE_PARAM_SUMMARY vector.
3109 Additionally detemine hints determined by the context. Finally compute
3110 minimal size needed for the call that is independent on the call context and
3111 can be used for fast estimates. Return the values in RET_SIZE,
3112 RET_MIN_SIZE, RET_TIME and RET_HINTS. */
3114 static void
3115 estimate_node_size_and_time (struct cgraph_node *node,
3116 clause_t possible_truths,
3117 vec<tree> known_vals,
3118 vec<ipa_polymorphic_call_context> known_contexts,
3119 vec<ipa_agg_jump_function_p> known_aggs,
3120 int *ret_size, int *ret_min_size, int *ret_time,
3121 inline_hints *ret_hints,
3122 vec<inline_param_summary>
3123 inline_param_summary)
3125 struct inline_summary *info = inline_summary (node);
3126 size_time_entry *e;
3127 int size = 0;
3128 int time = 0;
3129 int min_size = 0;
3130 inline_hints hints = 0;
3131 int i;
3133 if (dump_file && (dump_flags & TDF_DETAILS))
3135 bool found = false;
3136 fprintf (dump_file, " Estimating body: %s/%i\n"
3137 " Known to be false: ", node->name (),
3138 node->order);
3140 for (i = predicate_not_inlined_condition;
3141 i < (predicate_first_dynamic_condition
3142 + (int) vec_safe_length (info->conds)); i++)
3143 if (!(possible_truths & (1 << i)))
3145 if (found)
3146 fprintf (dump_file, ", ");
3147 found = true;
3148 dump_condition (dump_file, info->conds, i);
3152 for (i = 0; vec_safe_iterate (info->entry, i, &e); i++)
3153 if (evaluate_predicate (&e->predicate, possible_truths))
3155 size += e->size;
3156 gcc_checking_assert (e->time >= 0);
3157 gcc_checking_assert (time >= 0);
3158 if (!inline_param_summary.exists ())
3159 time += e->time;
3160 else
3162 int prob = predicate_probability (info->conds,
3163 &e->predicate,
3164 possible_truths,
3165 inline_param_summary);
3166 gcc_checking_assert (prob >= 0);
3167 gcc_checking_assert (prob <= REG_BR_PROB_BASE);
3168 time += apply_probability ((gcov_type) e->time, prob);
3170 if (time > MAX_TIME * INLINE_TIME_SCALE)
3171 time = MAX_TIME * INLINE_TIME_SCALE;
3172 gcc_checking_assert (time >= 0);
3175 gcc_checking_assert (true_predicate_p (&(*info->entry)[0].predicate));
3176 min_size = (*info->entry)[0].size;
3177 gcc_checking_assert (size >= 0);
3178 gcc_checking_assert (time >= 0);
3180 if (info->loop_iterations
3181 && !evaluate_predicate (info->loop_iterations, possible_truths))
3182 hints |= INLINE_HINT_loop_iterations;
3183 if (info->loop_stride
3184 && !evaluate_predicate (info->loop_stride, possible_truths))
3185 hints |= INLINE_HINT_loop_stride;
3186 if (info->array_index
3187 && !evaluate_predicate (info->array_index, possible_truths))
3188 hints |= INLINE_HINT_array_index;
3189 if (info->scc_no)
3190 hints |= INLINE_HINT_in_scc;
3191 if (DECL_DECLARED_INLINE_P (node->decl))
3192 hints |= INLINE_HINT_declared_inline;
3194 estimate_calls_size_and_time (node, &size, &min_size, &time, &hints, possible_truths,
3195 known_vals, known_contexts, known_aggs);
3196 gcc_checking_assert (size >= 0);
3197 gcc_checking_assert (time >= 0);
3198 time = RDIV (time, INLINE_TIME_SCALE);
3199 size = RDIV (size, INLINE_SIZE_SCALE);
3200 min_size = RDIV (min_size, INLINE_SIZE_SCALE);
3202 if (dump_file && (dump_flags & TDF_DETAILS))
3203 fprintf (dump_file, "\n size:%i time:%i\n", (int) size, (int) time);
3204 if (ret_time)
3205 *ret_time = time;
3206 if (ret_size)
3207 *ret_size = size;
3208 if (ret_min_size)
3209 *ret_min_size = min_size;
3210 if (ret_hints)
3211 *ret_hints = hints;
3212 return;
3216 /* Estimate size and time needed to execute callee of EDGE assuming that
3217 parameters known to be constant at caller of EDGE are propagated.
3218 KNOWN_VALS and KNOWN_CONTEXTS are vectors of assumed known constant values
3219 and types for parameters. */
3221 void
3222 estimate_ipcp_clone_size_and_time (struct cgraph_node *node,
3223 vec<tree> known_vals,
3224 vec<ipa_polymorphic_call_context>
3225 known_contexts,
3226 vec<ipa_agg_jump_function_p> known_aggs,
3227 int *ret_size, int *ret_time,
3228 inline_hints *hints)
3230 clause_t clause;
3232 clause = evaluate_conditions_for_known_args (node, false, known_vals,
3233 known_aggs);
3234 estimate_node_size_and_time (node, clause, known_vals, known_contexts,
3235 known_aggs, ret_size, NULL, ret_time, hints, vNULL);
3238 /* Translate all conditions from callee representation into caller
3239 representation and symbolically evaluate predicate P into new predicate.
3241 INFO is inline_summary of function we are adding predicate into, CALLEE_INFO
3242 is summary of function predicate P is from. OPERAND_MAP is array giving
3243 callee formal IDs the caller formal IDs. POSSSIBLE_TRUTHS is clausule of all
3244 callee conditions that may be true in caller context. TOPLEV_PREDICATE is
3245 predicate under which callee is executed. OFFSET_MAP is an array of of
3246 offsets that need to be added to conditions, negative offset means that
3247 conditions relying on values passed by reference have to be discarded
3248 because they might not be preserved (and should be considered offset zero
3249 for other purposes). */
3251 static struct predicate
3252 remap_predicate (struct inline_summary *info,
3253 struct inline_summary *callee_info,
3254 struct predicate *p,
3255 vec<int> operand_map,
3256 vec<int> offset_map,
3257 clause_t possible_truths, struct predicate *toplev_predicate)
3259 int i;
3260 struct predicate out = true_predicate ();
3262 /* True predicate is easy. */
3263 if (true_predicate_p (p))
3264 return *toplev_predicate;
3265 for (i = 0; p->clause[i]; i++)
3267 clause_t clause = p->clause[i];
3268 int cond;
3269 struct predicate clause_predicate = false_predicate ();
3271 gcc_assert (i < MAX_CLAUSES);
3273 for (cond = 0; cond < NUM_CONDITIONS; cond++)
3274 /* Do we have condition we can't disprove? */
3275 if (clause & possible_truths & (1 << cond))
3277 struct predicate cond_predicate;
3278 /* Work out if the condition can translate to predicate in the
3279 inlined function. */
3280 if (cond >= predicate_first_dynamic_condition)
3282 struct condition *c;
3284 c = &(*callee_info->conds)[cond
3286 predicate_first_dynamic_condition];
3287 /* See if we can remap condition operand to caller's operand.
3288 Otherwise give up. */
3289 if (!operand_map.exists ()
3290 || (int) operand_map.length () <= c->operand_num
3291 || operand_map[c->operand_num] == -1
3292 /* TODO: For non-aggregate conditions, adding an offset is
3293 basically an arithmetic jump function processing which
3294 we should support in future. */
3295 || ((!c->agg_contents || !c->by_ref)
3296 && offset_map[c->operand_num] > 0)
3297 || (c->agg_contents && c->by_ref
3298 && offset_map[c->operand_num] < 0))
3299 cond_predicate = true_predicate ();
3300 else
3302 struct agg_position_info ap;
3303 HOST_WIDE_INT offset_delta = offset_map[c->operand_num];
3304 if (offset_delta < 0)
3306 gcc_checking_assert (!c->agg_contents || !c->by_ref);
3307 offset_delta = 0;
3309 gcc_assert (!c->agg_contents
3310 || c->by_ref || offset_delta == 0);
3311 ap.offset = c->offset + offset_delta;
3312 ap.agg_contents = c->agg_contents;
3313 ap.by_ref = c->by_ref;
3314 cond_predicate = add_condition (info,
3315 operand_map[c->operand_num],
3316 &ap, c->code, c->val);
3319 /* Fixed conditions remains same, construct single
3320 condition predicate. */
3321 else
3323 cond_predicate.clause[0] = 1 << cond;
3324 cond_predicate.clause[1] = 0;
3326 clause_predicate = or_predicates (info->conds, &clause_predicate,
3327 &cond_predicate);
3329 out = and_predicates (info->conds, &out, &clause_predicate);
3331 return and_predicates (info->conds, &out, toplev_predicate);
3335 /* Update summary information of inline clones after inlining.
3336 Compute peak stack usage. */
3338 static void
3339 inline_update_callee_summaries (struct cgraph_node *node, int depth)
3341 struct cgraph_edge *e;
3342 struct inline_summary *callee_info = inline_summary (node);
3343 struct inline_summary *caller_info = inline_summary (node->callers->caller);
3344 HOST_WIDE_INT peak;
3346 callee_info->stack_frame_offset
3347 = caller_info->stack_frame_offset
3348 + caller_info->estimated_self_stack_size;
3349 peak = callee_info->stack_frame_offset
3350 + callee_info->estimated_self_stack_size;
3351 if (inline_summary (node->global.inlined_to)->estimated_stack_size < peak)
3352 inline_summary (node->global.inlined_to)->estimated_stack_size = peak;
3353 ipa_propagate_frequency (node);
3354 for (e = node->callees; e; e = e->next_callee)
3356 if (!e->inline_failed)
3357 inline_update_callee_summaries (e->callee, depth);
3358 inline_edge_summary (e)->loop_depth += depth;
3360 for (e = node->indirect_calls; e; e = e->next_callee)
3361 inline_edge_summary (e)->loop_depth += depth;
3364 /* Update change_prob of EDGE after INLINED_EDGE has been inlined.
3365 When functoin A is inlined in B and A calls C with parameter that
3366 changes with probability PROB1 and C is known to be passthroug
3367 of argument if B that change with probability PROB2, the probability
3368 of change is now PROB1*PROB2. */
3370 static void
3371 remap_edge_change_prob (struct cgraph_edge *inlined_edge,
3372 struct cgraph_edge *edge)
3374 if (ipa_node_params_vector.exists ())
3376 int i;
3377 struct ipa_edge_args *args = IPA_EDGE_REF (edge);
3378 struct inline_edge_summary *es = inline_edge_summary (edge);
3379 struct inline_edge_summary *inlined_es
3380 = inline_edge_summary (inlined_edge);
3382 for (i = 0; i < ipa_get_cs_argument_count (args); i++)
3384 struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, i);
3385 if (jfunc->type == IPA_JF_PASS_THROUGH
3386 && (ipa_get_jf_pass_through_formal_id (jfunc)
3387 < (int) inlined_es->param.length ()))
3389 int jf_formal_id = ipa_get_jf_pass_through_formal_id (jfunc);
3390 int prob1 = es->param[i].change_prob;
3391 int prob2 = inlined_es->param[jf_formal_id].change_prob;
3392 int prob = combine_probabilities (prob1, prob2);
3394 if (prob1 && prob2 && !prob)
3395 prob = 1;
3397 es->param[i].change_prob = prob;
3403 /* Update edge summaries of NODE after INLINED_EDGE has been inlined.
3405 Remap predicates of callees of NODE. Rest of arguments match
3406 remap_predicate.
3408 Also update change probabilities. */
3410 static void
3411 remap_edge_summaries (struct cgraph_edge *inlined_edge,
3412 struct cgraph_node *node,
3413 struct inline_summary *info,
3414 struct inline_summary *callee_info,
3415 vec<int> operand_map,
3416 vec<int> offset_map,
3417 clause_t possible_truths,
3418 struct predicate *toplev_predicate)
3420 struct cgraph_edge *e;
3421 for (e = node->callees; e; e = e->next_callee)
3423 struct inline_edge_summary *es = inline_edge_summary (e);
3424 struct predicate p;
3426 if (e->inline_failed)
3428 remap_edge_change_prob (inlined_edge, e);
3430 if (es->predicate)
3432 p = remap_predicate (info, callee_info,
3433 es->predicate, operand_map, offset_map,
3434 possible_truths, toplev_predicate);
3435 edge_set_predicate (e, &p);
3436 /* TODO: We should remove the edge for code that will be
3437 optimized out, but we need to keep verifiers and tree-inline
3438 happy. Make it cold for now. */
3439 if (false_predicate_p (&p))
3441 e->count = 0;
3442 e->frequency = 0;
3445 else
3446 edge_set_predicate (e, toplev_predicate);
3448 else
3449 remap_edge_summaries (inlined_edge, e->callee, info, callee_info,
3450 operand_map, offset_map, possible_truths,
3451 toplev_predicate);
3453 for (e = node->indirect_calls; e; e = e->next_callee)
3455 struct inline_edge_summary *es = inline_edge_summary (e);
3456 struct predicate p;
3458 remap_edge_change_prob (inlined_edge, e);
3459 if (es->predicate)
3461 p = remap_predicate (info, callee_info,
3462 es->predicate, operand_map, offset_map,
3463 possible_truths, toplev_predicate);
3464 edge_set_predicate (e, &p);
3465 /* TODO: We should remove the edge for code that will be optimized
3466 out, but we need to keep verifiers and tree-inline happy.
3467 Make it cold for now. */
3468 if (false_predicate_p (&p))
3470 e->count = 0;
3471 e->frequency = 0;
3474 else
3475 edge_set_predicate (e, toplev_predicate);
3479 /* Same as remap_predicate, but set result into hint *HINT. */
3481 static void
3482 remap_hint_predicate (struct inline_summary *info,
3483 struct inline_summary *callee_info,
3484 struct predicate **hint,
3485 vec<int> operand_map,
3486 vec<int> offset_map,
3487 clause_t possible_truths,
3488 struct predicate *toplev_predicate)
3490 predicate p;
3492 if (!*hint)
3493 return;
3494 p = remap_predicate (info, callee_info,
3495 *hint,
3496 operand_map, offset_map,
3497 possible_truths, toplev_predicate);
3498 if (!false_predicate_p (&p) && !true_predicate_p (&p))
3500 if (!*hint)
3501 set_hint_predicate (hint, p);
3502 else
3503 **hint = and_predicates (info->conds, *hint, &p);
3507 /* We inlined EDGE. Update summary of the function we inlined into. */
3509 void
3510 inline_merge_summary (struct cgraph_edge *edge)
3512 struct inline_summary *callee_info = inline_summary (edge->callee);
3513 struct cgraph_node *to = (edge->caller->global.inlined_to
3514 ? edge->caller->global.inlined_to : edge->caller);
3515 struct inline_summary *info = inline_summary (to);
3516 clause_t clause = 0; /* not_inline is known to be false. */
3517 size_time_entry *e;
3518 vec<int> operand_map = vNULL;
3519 vec<int> offset_map = vNULL;
3520 int i;
3521 struct predicate toplev_predicate;
3522 struct predicate true_p = true_predicate ();
3523 struct inline_edge_summary *es = inline_edge_summary (edge);
3525 if (es->predicate)
3526 toplev_predicate = *es->predicate;
3527 else
3528 toplev_predicate = true_predicate ();
3530 if (ipa_node_params_vector.exists () && callee_info->conds)
3532 struct ipa_edge_args *args = IPA_EDGE_REF (edge);
3533 int count = ipa_get_cs_argument_count (args);
3534 int i;
3536 evaluate_properties_for_edge (edge, true, &clause, NULL, NULL, NULL);
3537 if (count)
3539 operand_map.safe_grow_cleared (count);
3540 offset_map.safe_grow_cleared (count);
3542 for (i = 0; i < count; i++)
3544 struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, i);
3545 int map = -1;
3547 /* TODO: handle non-NOPs when merging. */
3548 if (jfunc->type == IPA_JF_PASS_THROUGH)
3550 if (ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
3551 map = ipa_get_jf_pass_through_formal_id (jfunc);
3552 if (!ipa_get_jf_pass_through_agg_preserved (jfunc))
3553 offset_map[i] = -1;
3555 else if (jfunc->type == IPA_JF_ANCESTOR)
3557 HOST_WIDE_INT offset = ipa_get_jf_ancestor_offset (jfunc);
3558 if (offset >= 0 && offset < INT_MAX)
3560 map = ipa_get_jf_ancestor_formal_id (jfunc);
3561 if (!ipa_get_jf_ancestor_agg_preserved (jfunc))
3562 offset = -1;
3563 offset_map[i] = offset;
3566 operand_map[i] = map;
3567 gcc_assert (map < ipa_get_param_count (IPA_NODE_REF (to)));
3570 for (i = 0; vec_safe_iterate (callee_info->entry, i, &e); i++)
3572 struct predicate p = remap_predicate (info, callee_info,
3573 &e->predicate, operand_map,
3574 offset_map, clause,
3575 &toplev_predicate);
3576 if (!false_predicate_p (&p))
3578 gcov_type add_time = ((gcov_type) e->time * edge->frequency
3579 + CGRAPH_FREQ_BASE / 2) / CGRAPH_FREQ_BASE;
3580 int prob = predicate_probability (callee_info->conds,
3581 &e->predicate,
3582 clause, es->param);
3583 add_time = apply_probability ((gcov_type) add_time, prob);
3584 if (add_time > MAX_TIME * INLINE_TIME_SCALE)
3585 add_time = MAX_TIME * INLINE_TIME_SCALE;
3586 if (prob != REG_BR_PROB_BASE
3587 && dump_file && (dump_flags & TDF_DETAILS))
3589 fprintf (dump_file, "\t\tScaling time by probability:%f\n",
3590 (double) prob / REG_BR_PROB_BASE);
3592 account_size_time (info, e->size, add_time, &p);
3595 remap_edge_summaries (edge, edge->callee, info, callee_info, operand_map,
3596 offset_map, clause, &toplev_predicate);
3597 remap_hint_predicate (info, callee_info,
3598 &callee_info->loop_iterations,
3599 operand_map, offset_map, clause, &toplev_predicate);
3600 remap_hint_predicate (info, callee_info,
3601 &callee_info->loop_stride,
3602 operand_map, offset_map, clause, &toplev_predicate);
3603 remap_hint_predicate (info, callee_info,
3604 &callee_info->array_index,
3605 operand_map, offset_map, clause, &toplev_predicate);
3607 inline_update_callee_summaries (edge->callee,
3608 inline_edge_summary (edge)->loop_depth);
3610 /* We do not maintain predicates of inlined edges, free it. */
3611 edge_set_predicate (edge, &true_p);
3612 /* Similarly remove param summaries. */
3613 es->param.release ();
3614 operand_map.release ();
3615 offset_map.release ();
3618 /* For performance reasons inline_merge_summary is not updating overall size
3619 and time. Recompute it. */
3621 void
3622 inline_update_overall_summary (struct cgraph_node *node)
3624 struct inline_summary *info = inline_summary (node);
3625 size_time_entry *e;
3626 int i;
3628 info->size = 0;
3629 info->time = 0;
3630 for (i = 0; vec_safe_iterate (info->entry, i, &e); i++)
3632 info->size += e->size, info->time += e->time;
3633 if (info->time > MAX_TIME * INLINE_TIME_SCALE)
3634 info->time = MAX_TIME * INLINE_TIME_SCALE;
3636 estimate_calls_size_and_time (node, &info->size, &info->min_size,
3637 &info->time, NULL,
3638 ~(clause_t) (1 << predicate_false_condition),
3639 vNULL, vNULL, vNULL);
3640 info->time = (info->time + INLINE_TIME_SCALE / 2) / INLINE_TIME_SCALE;
3641 info->size = (info->size + INLINE_SIZE_SCALE / 2) / INLINE_SIZE_SCALE;
3644 /* Return hints derrived from EDGE. */
3646 simple_edge_hints (struct cgraph_edge *edge)
3648 int hints = 0;
3649 struct cgraph_node *to = (edge->caller->global.inlined_to
3650 ? edge->caller->global.inlined_to : edge->caller);
3651 if (inline_summary (to)->scc_no
3652 && inline_summary (to)->scc_no == inline_summary (edge->callee)->scc_no
3653 && !edge->recursive_p ())
3654 hints |= INLINE_HINT_same_scc;
3656 if (to->lto_file_data && edge->callee->lto_file_data
3657 && to->lto_file_data != edge->callee->lto_file_data)
3658 hints |= INLINE_HINT_cross_module;
3660 return hints;
3663 /* Estimate the time cost for the caller when inlining EDGE.
3664 Only to be called via estimate_edge_time, that handles the
3665 caching mechanism.
3667 When caching, also update the cache entry. Compute both time and
3668 size, since we always need both metrics eventually. */
3671 do_estimate_edge_time (struct cgraph_edge *edge)
3673 int time;
3674 int size;
3675 inline_hints hints;
3676 struct cgraph_node *callee;
3677 clause_t clause;
3678 vec<tree> known_vals;
3679 vec<ipa_polymorphic_call_context> known_contexts;
3680 vec<ipa_agg_jump_function_p> known_aggs;
3681 struct inline_edge_summary *es = inline_edge_summary (edge);
3682 int min_size;
3684 callee = edge->callee->ultimate_alias_target ();
3686 gcc_checking_assert (edge->inline_failed);
3687 evaluate_properties_for_edge (edge, true,
3688 &clause, &known_vals, &known_contexts,
3689 &known_aggs);
3690 estimate_node_size_and_time (callee, clause, known_vals, known_contexts,
3691 known_aggs, &size, &min_size, &time, &hints, es->param);
3693 /* When we have profile feedback, we can quite safely identify hot
3694 edges and for those we disable size limits. Don't do that when
3695 probability that caller will call the callee is low however, since it
3696 may hurt optimization of the caller's hot path. */
3697 if (edge->count && edge->maybe_hot_p ()
3698 && (edge->count * 2
3699 > (edge->caller->global.inlined_to
3700 ? edge->caller->global.inlined_to->count : edge->caller->count)))
3701 hints |= INLINE_HINT_known_hot;
3703 known_vals.release ();
3704 known_contexts.release ();
3705 known_aggs.release ();
3706 gcc_checking_assert (size >= 0);
3707 gcc_checking_assert (time >= 0);
3709 /* When caching, update the cache entry. */
3710 if (edge_growth_cache.exists ())
3712 inline_summary (edge->callee)->min_size = min_size;
3713 if ((int) edge_growth_cache.length () <= edge->uid)
3714 edge_growth_cache.safe_grow_cleared (symtab->edges_max_uid);
3715 edge_growth_cache[edge->uid].time = time + (time >= 0);
3717 edge_growth_cache[edge->uid].size = size + (size >= 0);
3718 hints |= simple_edge_hints (edge);
3719 edge_growth_cache[edge->uid].hints = hints + 1;
3721 return time;
3725 /* Return estimated callee growth after inlining EDGE.
3726 Only to be called via estimate_edge_size. */
3729 do_estimate_edge_size (struct cgraph_edge *edge)
3731 int size;
3732 struct cgraph_node *callee;
3733 clause_t clause;
3734 vec<tree> known_vals;
3735 vec<ipa_polymorphic_call_context> known_contexts;
3736 vec<ipa_agg_jump_function_p> known_aggs;
3738 /* When we do caching, use do_estimate_edge_time to populate the entry. */
3740 if (edge_growth_cache.exists ())
3742 do_estimate_edge_time (edge);
3743 size = edge_growth_cache[edge->uid].size;
3744 gcc_checking_assert (size);
3745 return size - (size > 0);
3748 callee = edge->callee->ultimate_alias_target ();
3750 /* Early inliner runs without caching, go ahead and do the dirty work. */
3751 gcc_checking_assert (edge->inline_failed);
3752 evaluate_properties_for_edge (edge, true,
3753 &clause, &known_vals, &known_contexts,
3754 &known_aggs);
3755 estimate_node_size_and_time (callee, clause, known_vals, known_contexts,
3756 known_aggs, &size, NULL, NULL, NULL, vNULL);
3757 known_vals.release ();
3758 known_contexts.release ();
3759 known_aggs.release ();
3760 return size;
3764 /* Estimate the growth of the caller when inlining EDGE.
3765 Only to be called via estimate_edge_size. */
3767 inline_hints
3768 do_estimate_edge_hints (struct cgraph_edge *edge)
3770 inline_hints hints;
3771 struct cgraph_node *callee;
3772 clause_t clause;
3773 vec<tree> known_vals;
3774 vec<ipa_polymorphic_call_context> known_contexts;
3775 vec<ipa_agg_jump_function_p> known_aggs;
3777 /* When we do caching, use do_estimate_edge_time to populate the entry. */
3779 if (edge_growth_cache.exists ())
3781 do_estimate_edge_time (edge);
3782 hints = edge_growth_cache[edge->uid].hints;
3783 gcc_checking_assert (hints);
3784 return hints - 1;
3787 callee = edge->callee->ultimate_alias_target ();
3789 /* Early inliner runs without caching, go ahead and do the dirty work. */
3790 gcc_checking_assert (edge->inline_failed);
3791 evaluate_properties_for_edge (edge, true,
3792 &clause, &known_vals, &known_contexts,
3793 &known_aggs);
3794 estimate_node_size_and_time (callee, clause, known_vals, known_contexts,
3795 known_aggs, NULL, NULL, NULL, &hints, vNULL);
3796 known_vals.release ();
3797 known_contexts.release ();
3798 known_aggs.release ();
3799 hints |= simple_edge_hints (edge);
3800 return hints;
3804 /* Estimate self time of the function NODE after inlining EDGE. */
3807 estimate_time_after_inlining (struct cgraph_node *node,
3808 struct cgraph_edge *edge)
3810 struct inline_edge_summary *es = inline_edge_summary (edge);
3811 if (!es->predicate || !false_predicate_p (es->predicate))
3813 gcov_type time =
3814 inline_summary (node)->time + estimate_edge_time (edge);
3815 if (time < 0)
3816 time = 0;
3817 if (time > MAX_TIME)
3818 time = MAX_TIME;
3819 return time;
3821 return inline_summary (node)->time;
3825 /* Estimate the size of NODE after inlining EDGE which should be an
3826 edge to either NODE or a call inlined into NODE. */
3829 estimate_size_after_inlining (struct cgraph_node *node,
3830 struct cgraph_edge *edge)
3832 struct inline_edge_summary *es = inline_edge_summary (edge);
3833 if (!es->predicate || !false_predicate_p (es->predicate))
3835 int size = inline_summary (node)->size + estimate_edge_growth (edge);
3836 gcc_assert (size >= 0);
3837 return size;
3839 return inline_summary (node)->size;
3843 struct growth_data
3845 struct cgraph_node *node;
3846 bool self_recursive;
3847 int growth;
3851 /* Worker for do_estimate_growth. Collect growth for all callers. */
3853 static bool
3854 do_estimate_growth_1 (struct cgraph_node *node, void *data)
3856 struct cgraph_edge *e;
3857 struct growth_data *d = (struct growth_data *) data;
3859 for (e = node->callers; e; e = e->next_caller)
3861 gcc_checking_assert (e->inline_failed);
3863 if (e->caller == d->node
3864 || (e->caller->global.inlined_to
3865 && e->caller->global.inlined_to == d->node))
3866 d->self_recursive = true;
3867 d->growth += estimate_edge_growth (e);
3869 return false;
3873 /* Estimate the growth caused by inlining NODE into all callees. */
3876 do_estimate_growth (struct cgraph_node *node)
3878 struct growth_data d = { node, 0, false };
3879 struct inline_summary *info = inline_summary (node);
3881 node->call_for_symbol_thunks_and_aliases (do_estimate_growth_1, &d, true);
3883 /* For self recursive functions the growth estimation really should be
3884 infinity. We don't want to return very large values because the growth
3885 plays various roles in badness computation fractions. Be sure to not
3886 return zero or negative growths. */
3887 if (d.self_recursive)
3888 d.growth = d.growth < info->size ? info->size : d.growth;
3889 else if (DECL_EXTERNAL (node->decl))
3891 else
3893 if (node->will_be_removed_from_program_if_no_direct_calls_p ())
3894 d.growth -= info->size;
3895 /* COMDAT functions are very often not shared across multiple units
3896 since they come from various template instantiations.
3897 Take this into account. */
3898 else if (DECL_COMDAT (node->decl)
3899 && node->can_remove_if_no_direct_calls_p ())
3900 d.growth -= (info->size
3901 * (100 - PARAM_VALUE (PARAM_COMDAT_SHARING_PROBABILITY))
3902 + 50) / 100;
3905 if (node_growth_cache.exists ())
3907 if ((int) node_growth_cache.length () <= node->uid)
3908 node_growth_cache.safe_grow_cleared (symtab->cgraph_max_uid);
3909 node_growth_cache[node->uid] = d.growth + (d.growth >= 0);
3911 return d.growth;
3915 /* Make cheap estimation if growth of NODE is likely positive knowing
3916 EDGE_GROWTH of one particular edge.
3917 We assume that most of other edges will have similar growth
3918 and skip computation if there are too many callers. */
3920 bool
3921 growth_likely_positive (struct cgraph_node *node, int edge_growth ATTRIBUTE_UNUSED)
3923 int max_callers;
3924 int ret;
3925 struct cgraph_edge *e;
3926 gcc_checking_assert (edge_growth > 0);
3928 /* Unlike for functions called once, we play unsafe with
3929 COMDATs. We can allow that since we know functions
3930 in consideration are small (and thus risk is small) and
3931 moreover grow estimates already accounts that COMDAT
3932 functions may or may not disappear when eliminated from
3933 current unit. With good probability making aggressive
3934 choice in all units is going to make overall program
3935 smaller.
3937 Consequently we ask cgraph_can_remove_if_no_direct_calls_p
3938 instead of
3939 cgraph_will_be_removed_from_program_if_no_direct_calls */
3940 if (DECL_EXTERNAL (node->decl)
3941 || !node->can_remove_if_no_direct_calls_p ())
3942 return true;
3944 /* If there is cached value, just go ahead. */
3945 if ((int)node_growth_cache.length () > node->uid
3946 && (ret = node_growth_cache[node->uid]))
3947 return ret > 0;
3948 if (!node->will_be_removed_from_program_if_no_direct_calls_p ()
3949 && (!DECL_COMDAT (node->decl)
3950 || !node->can_remove_if_no_direct_calls_p ()))
3951 return true;
3952 max_callers = inline_summary (node)->size * 4 / edge_growth + 2;
3954 for (e = node->callers; e; e = e->next_caller)
3956 max_callers--;
3957 if (!max_callers)
3958 return true;
3960 return estimate_growth (node) > 0;
3964 /* This function performs intraprocedural analysis in NODE that is required to
3965 inline indirect calls. */
3967 static void
3968 inline_indirect_intraprocedural_analysis (struct cgraph_node *node)
3970 ipa_analyze_node (node);
3971 if (dump_file && (dump_flags & TDF_DETAILS))
3973 ipa_print_node_params (dump_file, node);
3974 ipa_print_node_jump_functions (dump_file, node);
3979 /* Note function body size. */
3981 void
3982 inline_analyze_function (struct cgraph_node *node)
3984 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
3986 if (dump_file)
3987 fprintf (dump_file, "\nAnalyzing function: %s/%u\n",
3988 node->name (), node->order);
3989 if (optimize && !node->thunk.thunk_p)
3990 inline_indirect_intraprocedural_analysis (node);
3991 compute_inline_parameters (node, false);
3992 if (!optimize)
3994 struct cgraph_edge *e;
3995 for (e = node->callees; e; e = e->next_callee)
3997 if (e->inline_failed == CIF_FUNCTION_NOT_CONSIDERED)
3998 e->inline_failed = CIF_FUNCTION_NOT_OPTIMIZED;
3999 e->call_stmt_cannot_inline_p = true;
4001 for (e = node->indirect_calls; e; e = e->next_callee)
4003 if (e->inline_failed == CIF_FUNCTION_NOT_CONSIDERED)
4004 e->inline_failed = CIF_FUNCTION_NOT_OPTIMIZED;
4005 e->call_stmt_cannot_inline_p = true;
4009 pop_cfun ();
4013 /* Called when new function is inserted to callgraph late. */
4015 static void
4016 add_new_function (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
4018 inline_analyze_function (node);
4022 /* Note function body size. */
4024 void
4025 inline_generate_summary (void)
4027 struct cgraph_node *node;
4029 /* When not optimizing, do not bother to analyze. Inlining is still done
4030 because edge redirection needs to happen there. */
4031 if (!optimize && !flag_generate_lto && !flag_wpa)
4032 return;
4034 function_insertion_hook_holder =
4035 symtab->add_cgraph_insertion_hook (&add_new_function, NULL);
4037 ipa_register_cgraph_hooks ();
4038 inline_free_summary ();
4040 FOR_EACH_DEFINED_FUNCTION (node)
4041 if (!node->alias)
4042 inline_analyze_function (node);
4046 /* Read predicate from IB. */
4048 static struct predicate
4049 read_predicate (struct lto_input_block *ib)
4051 struct predicate out;
4052 clause_t clause;
4053 int k = 0;
4057 gcc_assert (k <= MAX_CLAUSES);
4058 clause = out.clause[k++] = streamer_read_uhwi (ib);
4060 while (clause);
4062 /* Zero-initialize the remaining clauses in OUT. */
4063 while (k <= MAX_CLAUSES)
4064 out.clause[k++] = 0;
4066 return out;
4070 /* Write inline summary for edge E to OB. */
4072 static void
4073 read_inline_edge_summary (struct lto_input_block *ib, struct cgraph_edge *e)
4075 struct inline_edge_summary *es = inline_edge_summary (e);
4076 struct predicate p;
4077 int length, i;
4079 es->call_stmt_size = streamer_read_uhwi (ib);
4080 es->call_stmt_time = streamer_read_uhwi (ib);
4081 es->loop_depth = streamer_read_uhwi (ib);
4082 p = read_predicate (ib);
4083 edge_set_predicate (e, &p);
4084 length = streamer_read_uhwi (ib);
4085 if (length)
4087 es->param.safe_grow_cleared (length);
4088 for (i = 0; i < length; i++)
4089 es->param[i].change_prob = streamer_read_uhwi (ib);
4094 /* Stream in inline summaries from the section. */
4096 static void
4097 inline_read_section (struct lto_file_decl_data *file_data, const char *data,
4098 size_t len)
4100 const struct lto_function_header *header =
4101 (const struct lto_function_header *) data;
4102 const int cfg_offset = sizeof (struct lto_function_header);
4103 const int main_offset = cfg_offset + header->cfg_size;
4104 const int string_offset = main_offset + header->main_size;
4105 struct data_in *data_in;
4106 unsigned int i, count2, j;
4107 unsigned int f_count;
4109 lto_input_block ib ((const char *) data + main_offset, header->main_size);
4111 data_in =
4112 lto_data_in_create (file_data, (const char *) data + string_offset,
4113 header->string_size, vNULL);
4114 f_count = streamer_read_uhwi (&ib);
4115 for (i = 0; i < f_count; i++)
4117 unsigned int index;
4118 struct cgraph_node *node;
4119 struct inline_summary *info;
4120 lto_symtab_encoder_t encoder;
4121 struct bitpack_d bp;
4122 struct cgraph_edge *e;
4123 predicate p;
4125 index = streamer_read_uhwi (&ib);
4126 encoder = file_data->symtab_node_encoder;
4127 node = dyn_cast<cgraph_node *> (lto_symtab_encoder_deref (encoder,
4128 index));
4129 info = inline_summary (node);
4131 info->estimated_stack_size
4132 = info->estimated_self_stack_size = streamer_read_uhwi (&ib);
4133 info->size = info->self_size = streamer_read_uhwi (&ib);
4134 info->time = info->self_time = streamer_read_uhwi (&ib);
4136 bp = streamer_read_bitpack (&ib);
4137 info->inlinable = bp_unpack_value (&bp, 1);
4139 count2 = streamer_read_uhwi (&ib);
4140 gcc_assert (!info->conds);
4141 for (j = 0; j < count2; j++)
4143 struct condition c;
4144 c.operand_num = streamer_read_uhwi (&ib);
4145 c.code = (enum tree_code) streamer_read_uhwi (&ib);
4146 c.val = stream_read_tree (&ib, data_in);
4147 bp = streamer_read_bitpack (&ib);
4148 c.agg_contents = bp_unpack_value (&bp, 1);
4149 c.by_ref = bp_unpack_value (&bp, 1);
4150 if (c.agg_contents)
4151 c.offset = streamer_read_uhwi (&ib);
4152 vec_safe_push (info->conds, c);
4154 count2 = streamer_read_uhwi (&ib);
4155 gcc_assert (!info->entry);
4156 for (j = 0; j < count2; j++)
4158 struct size_time_entry e;
4160 e.size = streamer_read_uhwi (&ib);
4161 e.time = streamer_read_uhwi (&ib);
4162 e.predicate = read_predicate (&ib);
4164 vec_safe_push (info->entry, e);
4167 p = read_predicate (&ib);
4168 set_hint_predicate (&info->loop_iterations, p);
4169 p = read_predicate (&ib);
4170 set_hint_predicate (&info->loop_stride, p);
4171 p = read_predicate (&ib);
4172 set_hint_predicate (&info->array_index, p);
4173 for (e = node->callees; e; e = e->next_callee)
4174 read_inline_edge_summary (&ib, e);
4175 for (e = node->indirect_calls; e; e = e->next_callee)
4176 read_inline_edge_summary (&ib, e);
4179 lto_free_section_data (file_data, LTO_section_inline_summary, NULL, data,
4180 len);
4181 lto_data_in_delete (data_in);
4185 /* Read inline summary. Jump functions are shared among ipa-cp
4186 and inliner, so when ipa-cp is active, we don't need to write them
4187 twice. */
4189 void
4190 inline_read_summary (void)
4192 struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
4193 struct lto_file_decl_data *file_data;
4194 unsigned int j = 0;
4196 inline_summary_alloc ();
4198 while ((file_data = file_data_vec[j++]))
4200 size_t len;
4201 const char *data = lto_get_section_data (file_data,
4202 LTO_section_inline_summary,
4203 NULL, &len);
4204 if (data)
4205 inline_read_section (file_data, data, len);
4206 else
4207 /* Fatal error here. We do not want to support compiling ltrans units
4208 with different version of compiler or different flags than the WPA
4209 unit, so this should never happen. */
4210 fatal_error ("ipa inline summary is missing in input file");
4212 if (optimize)
4214 ipa_register_cgraph_hooks ();
4215 if (!flag_ipa_cp)
4216 ipa_prop_read_jump_functions ();
4218 function_insertion_hook_holder =
4219 symtab->add_cgraph_insertion_hook (&add_new_function, NULL);
4223 /* Write predicate P to OB. */
4225 static void
4226 write_predicate (struct output_block *ob, struct predicate *p)
4228 int j;
4229 if (p)
4230 for (j = 0; p->clause[j]; j++)
4232 gcc_assert (j < MAX_CLAUSES);
4233 streamer_write_uhwi (ob, p->clause[j]);
4235 streamer_write_uhwi (ob, 0);
4239 /* Write inline summary for edge E to OB. */
4241 static void
4242 write_inline_edge_summary (struct output_block *ob, struct cgraph_edge *e)
4244 struct inline_edge_summary *es = inline_edge_summary (e);
4245 int i;
4247 streamer_write_uhwi (ob, es->call_stmt_size);
4248 streamer_write_uhwi (ob, es->call_stmt_time);
4249 streamer_write_uhwi (ob, es->loop_depth);
4250 write_predicate (ob, es->predicate);
4251 streamer_write_uhwi (ob, es->param.length ());
4252 for (i = 0; i < (int) es->param.length (); i++)
4253 streamer_write_uhwi (ob, es->param[i].change_prob);
4257 /* Write inline summary for node in SET.
4258 Jump functions are shared among ipa-cp and inliner, so when ipa-cp is
4259 active, we don't need to write them twice. */
4261 void
4262 inline_write_summary (void)
4264 struct cgraph_node *node;
4265 struct output_block *ob = create_output_block (LTO_section_inline_summary);
4266 lto_symtab_encoder_t encoder = ob->decl_state->symtab_node_encoder;
4267 unsigned int count = 0;
4268 int i;
4270 for (i = 0; i < lto_symtab_encoder_size (encoder); i++)
4272 symtab_node *snode = lto_symtab_encoder_deref (encoder, i);
4273 cgraph_node *cnode = dyn_cast <cgraph_node *> (snode);
4274 if (cnode && cnode->definition && !cnode->alias)
4275 count++;
4277 streamer_write_uhwi (ob, count);
4279 for (i = 0; i < lto_symtab_encoder_size (encoder); i++)
4281 symtab_node *snode = lto_symtab_encoder_deref (encoder, i);
4282 cgraph_node *cnode = dyn_cast <cgraph_node *> (snode);
4283 if (cnode && (node = cnode)->definition && !node->alias)
4285 struct inline_summary *info = inline_summary (node);
4286 struct bitpack_d bp;
4287 struct cgraph_edge *edge;
4288 int i;
4289 size_time_entry *e;
4290 struct condition *c;
4292 streamer_write_uhwi (ob,
4293 lto_symtab_encoder_encode (encoder,
4295 node));
4296 streamer_write_hwi (ob, info->estimated_self_stack_size);
4297 streamer_write_hwi (ob, info->self_size);
4298 streamer_write_hwi (ob, info->self_time);
4299 bp = bitpack_create (ob->main_stream);
4300 bp_pack_value (&bp, info->inlinable, 1);
4301 streamer_write_bitpack (&bp);
4302 streamer_write_uhwi (ob, vec_safe_length (info->conds));
4303 for (i = 0; vec_safe_iterate (info->conds, i, &c); i++)
4305 streamer_write_uhwi (ob, c->operand_num);
4306 streamer_write_uhwi (ob, c->code);
4307 stream_write_tree (ob, c->val, true);
4308 bp = bitpack_create (ob->main_stream);
4309 bp_pack_value (&bp, c->agg_contents, 1);
4310 bp_pack_value (&bp, c->by_ref, 1);
4311 streamer_write_bitpack (&bp);
4312 if (c->agg_contents)
4313 streamer_write_uhwi (ob, c->offset);
4315 streamer_write_uhwi (ob, vec_safe_length (info->entry));
4316 for (i = 0; vec_safe_iterate (info->entry, i, &e); i++)
4318 streamer_write_uhwi (ob, e->size);
4319 streamer_write_uhwi (ob, e->time);
4320 write_predicate (ob, &e->predicate);
4322 write_predicate (ob, info->loop_iterations);
4323 write_predicate (ob, info->loop_stride);
4324 write_predicate (ob, info->array_index);
4325 for (edge = node->callees; edge; edge = edge->next_callee)
4326 write_inline_edge_summary (ob, edge);
4327 for (edge = node->indirect_calls; edge; edge = edge->next_callee)
4328 write_inline_edge_summary (ob, edge);
4331 streamer_write_char_stream (ob->main_stream, 0);
4332 produce_asm (ob, NULL);
4333 destroy_output_block (ob);
4335 if (optimize && !flag_ipa_cp)
4336 ipa_prop_write_jump_functions ();
4340 /* Release inline summary. */
4342 void
4343 inline_free_summary (void)
4345 struct cgraph_node *node;
4346 if (function_insertion_hook_holder)
4347 symtab->remove_cgraph_insertion_hook (function_insertion_hook_holder);
4348 function_insertion_hook_holder = NULL;
4349 if (node_removal_hook_holder)
4350 symtab->remove_cgraph_removal_hook (node_removal_hook_holder);
4351 node_removal_hook_holder = NULL;
4352 if (edge_removal_hook_holder)
4353 symtab->remove_edge_removal_hook (edge_removal_hook_holder);
4354 edge_removal_hook_holder = NULL;
4355 if (node_duplication_hook_holder)
4356 symtab->remove_cgraph_duplication_hook (node_duplication_hook_holder);
4357 node_duplication_hook_holder = NULL;
4358 if (edge_duplication_hook_holder)
4359 symtab->remove_edge_duplication_hook (edge_duplication_hook_holder);
4360 edge_duplication_hook_holder = NULL;
4361 if (!inline_edge_summary_vec.exists ())
4362 return;
4363 FOR_EACH_DEFINED_FUNCTION (node)
4364 if (!node->alias)
4365 reset_inline_summary (node);
4366 vec_free (inline_summary_vec);
4367 inline_edge_summary_vec.release ();
4368 if (edge_predicate_pool)
4369 free_alloc_pool (edge_predicate_pool);
4370 edge_predicate_pool = 0;