1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
34 #include "coretypes.h"
47 #include "langhooks.h"
49 /* obstack.[ch] explicitly declined to prototype this. */
50 extern int _obstack_allocated_p
PARAMS ((struct obstack
*h
, PTR obj
));
52 #ifdef GATHER_STATISTICS
53 /* Statistics-gathering stuff. */
73 int tree_node_counts
[(int) all_kinds
];
74 int tree_node_sizes
[(int) all_kinds
];
76 static const char * const tree_node_kind_names
[] = {
92 #endif /* GATHER_STATISTICS */
94 /* Unique id for next decl created. */
95 static GTY(()) int next_decl_uid
;
96 /* Unique id for next type created. */
97 static GTY(()) int next_type_uid
= 1;
99 /* Since we cannot rehash a type after it is in the table, we have to
100 keep the hash code. */
102 struct type_hash
GTY(())
108 /* Initial size of the hash table (rounded to next prime). */
109 #define TYPE_HASH_INITIAL_SIZE 1000
111 /* Now here is the hash table. When recording a type, it is added to
112 the slot whose index is the hash code. Note that the hash table is
113 used for several kinds of types (function types, array types and
114 array index range types, for now). While all these live in the
115 same table, they are completely independent, and the hash code is
116 computed differently for each of these. */
118 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash
)))
119 htab_t type_hash_table
;
121 static void set_type_quals
PARAMS ((tree
, int));
122 static void append_random_chars
PARAMS ((char *));
123 static int type_hash_eq
PARAMS ((const void *, const void *));
124 static hashval_t type_hash_hash
PARAMS ((const void *));
125 static void print_type_hash_statistics
PARAMS((void));
126 static void finish_vector_type
PARAMS((tree
));
127 static tree make_vector
PARAMS ((enum machine_mode
, tree
, int));
128 static int type_hash_marked_p
PARAMS ((const void *));
130 tree global_trees
[TI_MAX
];
131 tree integer_types
[itk_none
];
138 /* Initialize the hash table of types. */
139 type_hash_table
= htab_create_ggc (TYPE_HASH_INITIAL_SIZE
, type_hash_hash
,
144 /* The name of the object as the assembler will see it (but before any
145 translations made by ASM_OUTPUT_LABELREF). Often this is the same
146 as DECL_NAME. It is an IDENTIFIER_NODE. */
148 decl_assembler_name (decl
)
151 if (!DECL_ASSEMBLER_NAME_SET_P (decl
))
152 (*lang_hooks
.set_decl_assembler_name
) (decl
);
153 return DECL_CHECK (decl
)->decl
.assembler_name
;
156 /* Compute the number of bytes occupied by 'node'. This routine only
157 looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
162 enum tree_code code
= TREE_CODE (node
);
164 switch (TREE_CODE_CLASS (code
))
166 case 'd': /* A decl node */
167 return sizeof (struct tree_decl
);
169 case 't': /* a type node */
170 return sizeof (struct tree_type
);
172 case 'b': /* a lexical block node */
173 return sizeof (struct tree_block
);
175 case 'r': /* a reference */
176 case 'e': /* an expression */
177 case 's': /* an expression with side effects */
178 case '<': /* a comparison expression */
179 case '1': /* a unary arithmetic expression */
180 case '2': /* a binary arithmetic expression */
181 return (sizeof (struct tree_exp
)
182 + TREE_CODE_LENGTH (code
) * sizeof (char *) - sizeof (char *));
184 case 'c': /* a constant */
187 case INTEGER_CST
: return sizeof (struct tree_int_cst
);
188 case REAL_CST
: return sizeof (struct tree_real_cst
);
189 case COMPLEX_CST
: return sizeof (struct tree_complex
);
190 case VECTOR_CST
: return sizeof (struct tree_vector
);
191 case STRING_CST
: return sizeof (struct tree_string
);
193 return (*lang_hooks
.tree_size
) (code
);
196 case 'x': /* something random, like an identifier. */
199 case IDENTIFIER_NODE
: return lang_hooks
.identifier_size
;
200 case TREE_LIST
: return sizeof (struct tree_list
);
201 case TREE_VEC
: return (sizeof (struct tree_vec
)
202 + TREE_VEC_LENGTH(node
) * sizeof(char *)
206 case PLACEHOLDER_EXPR
: return sizeof (struct tree_common
);
209 return (*lang_hooks
.tree_size
) (code
);
217 /* Return a newly allocated node of code CODE.
218 For decl and type nodes, some other fields are initialized.
219 The rest of the node is initialized to zero.
221 Achoo! I got a code in the node. */
228 int type
= TREE_CODE_CLASS (code
);
230 #ifdef GATHER_STATISTICS
233 struct tree_common ttmp
;
235 /* We can't allocate a TREE_VEC without knowing how many elements
237 if (code
== TREE_VEC
)
240 TREE_SET_CODE ((tree
)&ttmp
, code
);
241 length
= tree_size ((tree
)&ttmp
);
243 #ifdef GATHER_STATISTICS
246 case 'd': /* A decl node */
250 case 't': /* a type node */
254 case 'b': /* a lexical block */
258 case 's': /* an expression with side effects */
262 case 'r': /* a reference */
266 case 'e': /* an expression */
267 case '<': /* a comparison expression */
268 case '1': /* a unary arithmetic expression */
269 case '2': /* a binary arithmetic expression */
273 case 'c': /* a constant */
277 case 'x': /* something random, like an identifier. */
278 if (code
== IDENTIFIER_NODE
)
280 else if (code
== TREE_VEC
)
290 tree_node_counts
[(int) kind
]++;
291 tree_node_sizes
[(int) kind
] += length
;
294 t
= ggc_alloc_tree (length
);
296 memset ((PTR
) t
, 0, length
);
298 TREE_SET_CODE (t
, code
);
303 TREE_SIDE_EFFECTS (t
) = 1;
307 if (code
!= FUNCTION_DECL
)
309 DECL_USER_ALIGN (t
) = 0;
310 DECL_IN_SYSTEM_HEADER (t
) = in_system_header
;
311 DECL_SOURCE_LINE (t
) = lineno
;
312 DECL_SOURCE_FILE (t
) =
313 (input_filename
) ? input_filename
: "<built-in>";
314 DECL_UID (t
) = next_decl_uid
++;
316 /* We have not yet computed the alias set for this declaration. */
317 DECL_POINTER_ALIAS_SET (t
) = -1;
321 TYPE_UID (t
) = next_type_uid
++;
322 TYPE_ALIGN (t
) = char_type_node
? TYPE_ALIGN (char_type_node
) : 0;
323 TYPE_USER_ALIGN (t
) = 0;
324 TYPE_MAIN_VARIANT (t
) = t
;
326 /* Default to no attributes for type, but let target change that. */
327 TYPE_ATTRIBUTES (t
) = NULL_TREE
;
328 (*targetm
.set_default_type_attributes
) (t
);
330 /* We have not yet computed the alias set for this type. */
331 TYPE_ALIAS_SET (t
) = -1;
335 TREE_CONSTANT (t
) = 1;
345 case PREDECREMENT_EXPR
:
346 case PREINCREMENT_EXPR
:
347 case POSTDECREMENT_EXPR
:
348 case POSTINCREMENT_EXPR
:
349 /* All of these have side-effects, no matter what their
351 TREE_SIDE_EFFECTS (t
) = 1;
363 /* Return a new node with the same contents as NODE except that its
364 TREE_CHAIN is zero and it has a fresh uid. */
371 enum tree_code code
= TREE_CODE (node
);
374 length
= tree_size (node
);
375 t
= ggc_alloc_tree (length
);
376 memcpy (t
, node
, length
);
379 TREE_ASM_WRITTEN (t
) = 0;
381 if (TREE_CODE_CLASS (code
) == 'd')
382 DECL_UID (t
) = next_decl_uid
++;
383 else if (TREE_CODE_CLASS (code
) == 't')
385 TYPE_UID (t
) = next_type_uid
++;
386 /* The following is so that the debug code for
387 the copy is different from the original type.
388 The two statements usually duplicate each other
389 (because they clear fields of the same union),
390 but the optimizer should catch that. */
391 TYPE_SYMTAB_POINTER (t
) = 0;
392 TYPE_SYMTAB_ADDRESS (t
) = 0;
398 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
399 For example, this can copy a list made of TREE_LIST nodes. */
411 head
= prev
= copy_node (list
);
412 next
= TREE_CHAIN (list
);
415 TREE_CHAIN (prev
) = copy_node (next
);
416 prev
= TREE_CHAIN (prev
);
417 next
= TREE_CHAIN (next
);
423 /* Return a newly constructed INTEGER_CST node whose constant value
424 is specified by the two ints LOW and HI.
425 The TREE_TYPE is set to `int'.
427 This function should be used via the `build_int_2' macro. */
430 build_int_2_wide (low
, hi
)
431 unsigned HOST_WIDE_INT low
;
434 tree t
= make_node (INTEGER_CST
);
436 TREE_INT_CST_LOW (t
) = low
;
437 TREE_INT_CST_HIGH (t
) = hi
;
438 TREE_TYPE (t
) = integer_type_node
;
442 /* Return a new VECTOR_CST node whose type is TYPE and whose values
443 are in a list pointed by VALS. */
446 build_vector (type
, vals
)
449 tree v
= make_node (VECTOR_CST
);
450 int over1
= 0, over2
= 0;
453 TREE_VECTOR_CST_ELTS (v
) = vals
;
454 TREE_TYPE (v
) = type
;
456 /* Iterate through elements and check for overflow. */
457 for (link
= vals
; link
; link
= TREE_CHAIN (link
))
459 tree value
= TREE_VALUE (link
);
461 over1
|= TREE_OVERFLOW (value
);
462 over2
|= TREE_CONSTANT_OVERFLOW (value
);
465 TREE_OVERFLOW (v
) = over1
;
466 TREE_CONSTANT_OVERFLOW (v
) = over2
;
471 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
472 are in a list pointed to by VALS. */
474 build_constructor (type
, vals
)
477 tree c
= make_node (CONSTRUCTOR
);
478 TREE_TYPE (c
) = type
;
479 CONSTRUCTOR_ELTS (c
) = vals
;
481 /* ??? May not be necessary. Mirrors what build does. */
484 TREE_SIDE_EFFECTS (c
) = TREE_SIDE_EFFECTS (vals
);
485 TREE_READONLY (c
) = TREE_READONLY (vals
);
486 TREE_CONSTANT (c
) = TREE_CONSTANT (vals
);
489 TREE_CONSTANT (c
) = 0; /* safe side */
494 /* Return a new REAL_CST node whose type is TYPE and value is D. */
505 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
506 Consider doing it via real_convert now. */
508 v
= make_node (REAL_CST
);
509 dp
= ggc_alloc (sizeof (REAL_VALUE_TYPE
));
510 memcpy (dp
, &d
, sizeof (REAL_VALUE_TYPE
));
512 TREE_TYPE (v
) = type
;
513 TREE_REAL_CST_PTR (v
) = dp
;
514 TREE_OVERFLOW (v
) = TREE_CONSTANT_OVERFLOW (v
) = overflow
;
518 /* Return a new REAL_CST node whose type is TYPE
519 and whose value is the integer value of the INTEGER_CST node I. */
522 real_value_from_int_cst (type
, i
)
523 tree type ATTRIBUTE_UNUSED
, i
;
527 /* Clear all bits of the real value type so that we can later do
528 bitwise comparisons to see if two values are the same. */
529 memset ((char *) &d
, 0, sizeof d
);
531 if (! TREE_UNSIGNED (TREE_TYPE (i
)))
532 REAL_VALUE_FROM_INT (d
, TREE_INT_CST_LOW (i
), TREE_INT_CST_HIGH (i
),
535 REAL_VALUE_FROM_UNSIGNED_INT (d
, TREE_INT_CST_LOW (i
),
536 TREE_INT_CST_HIGH (i
), TYPE_MODE (type
));
540 /* Given a tree representing an integer constant I, return a tree
541 representing the same value as a floating-point constant of type TYPE. */
544 build_real_from_int_cst (type
, i
)
549 int overflow
= TREE_OVERFLOW (i
);
551 v
= build_real (type
, real_value_from_int_cst (type
, i
));
553 TREE_OVERFLOW (v
) |= overflow
;
554 TREE_CONSTANT_OVERFLOW (v
) |= overflow
;
558 /* Return a newly constructed STRING_CST node whose value is
559 the LEN characters at STR.
560 The TREE_TYPE is not initialized. */
563 build_string (len
, str
)
567 tree s
= make_node (STRING_CST
);
569 TREE_STRING_LENGTH (s
) = len
;
570 TREE_STRING_POINTER (s
) = ggc_alloc_string (str
, len
);
575 /* Return a newly constructed COMPLEX_CST node whose value is
576 specified by the real and imaginary parts REAL and IMAG.
577 Both REAL and IMAG should be constant nodes. TYPE, if specified,
578 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
581 build_complex (type
, real
, imag
)
585 tree t
= make_node (COMPLEX_CST
);
587 TREE_REALPART (t
) = real
;
588 TREE_IMAGPART (t
) = imag
;
589 TREE_TYPE (t
) = type
? type
: build_complex_type (TREE_TYPE (real
));
590 TREE_OVERFLOW (t
) = TREE_OVERFLOW (real
) | TREE_OVERFLOW (imag
);
591 TREE_CONSTANT_OVERFLOW (t
)
592 = TREE_CONSTANT_OVERFLOW (real
) | TREE_CONSTANT_OVERFLOW (imag
);
596 /* Build a newly constructed TREE_VEC node of length LEN. */
603 int length
= (len
- 1) * sizeof (tree
) + sizeof (struct tree_vec
);
605 #ifdef GATHER_STATISTICS
606 tree_node_counts
[(int) vec_kind
]++;
607 tree_node_sizes
[(int) vec_kind
] += length
;
610 t
= ggc_alloc_tree (length
);
612 memset ((PTR
) t
, 0, length
);
613 TREE_SET_CODE (t
, TREE_VEC
);
614 TREE_VEC_LENGTH (t
) = len
;
619 /* Return 1 if EXPR is the integer constant zero or a complex constant
628 return ((TREE_CODE (expr
) == INTEGER_CST
629 && ! TREE_CONSTANT_OVERFLOW (expr
)
630 && TREE_INT_CST_LOW (expr
) == 0
631 && TREE_INT_CST_HIGH (expr
) == 0)
632 || (TREE_CODE (expr
) == COMPLEX_CST
633 && integer_zerop (TREE_REALPART (expr
))
634 && integer_zerop (TREE_IMAGPART (expr
))));
637 /* Return 1 if EXPR is the integer constant one or the corresponding
646 return ((TREE_CODE (expr
) == INTEGER_CST
647 && ! TREE_CONSTANT_OVERFLOW (expr
)
648 && TREE_INT_CST_LOW (expr
) == 1
649 && TREE_INT_CST_HIGH (expr
) == 0)
650 || (TREE_CODE (expr
) == COMPLEX_CST
651 && integer_onep (TREE_REALPART (expr
))
652 && integer_zerop (TREE_IMAGPART (expr
))));
655 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
656 it contains. Likewise for the corresponding complex constant. */
659 integer_all_onesp (expr
)
667 if (TREE_CODE (expr
) == COMPLEX_CST
668 && integer_all_onesp (TREE_REALPART (expr
))
669 && integer_zerop (TREE_IMAGPART (expr
)))
672 else if (TREE_CODE (expr
) != INTEGER_CST
673 || TREE_CONSTANT_OVERFLOW (expr
))
676 uns
= TREE_UNSIGNED (TREE_TYPE (expr
));
678 return (TREE_INT_CST_LOW (expr
) == ~(unsigned HOST_WIDE_INT
) 0
679 && TREE_INT_CST_HIGH (expr
) == -1);
681 /* Note that using TYPE_PRECISION here is wrong. We care about the
682 actual bits, not the (arbitrary) range of the type. */
683 prec
= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr
)));
684 if (prec
>= HOST_BITS_PER_WIDE_INT
)
686 HOST_WIDE_INT high_value
;
689 shift_amount
= prec
- HOST_BITS_PER_WIDE_INT
;
691 if (shift_amount
> HOST_BITS_PER_WIDE_INT
)
692 /* Can not handle precisions greater than twice the host int size. */
694 else if (shift_amount
== HOST_BITS_PER_WIDE_INT
)
695 /* Shifting by the host word size is undefined according to the ANSI
696 standard, so we must handle this as a special case. */
699 high_value
= ((HOST_WIDE_INT
) 1 << shift_amount
) - 1;
701 return (TREE_INT_CST_LOW (expr
) == ~(unsigned HOST_WIDE_INT
) 0
702 && TREE_INT_CST_HIGH (expr
) == high_value
);
705 return TREE_INT_CST_LOW (expr
) == ((unsigned HOST_WIDE_INT
) 1 << prec
) - 1;
708 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
716 HOST_WIDE_INT high
, low
;
720 if (TREE_CODE (expr
) == COMPLEX_CST
721 && integer_pow2p (TREE_REALPART (expr
))
722 && integer_zerop (TREE_IMAGPART (expr
)))
725 if (TREE_CODE (expr
) != INTEGER_CST
|| TREE_CONSTANT_OVERFLOW (expr
))
728 prec
= (POINTER_TYPE_P (TREE_TYPE (expr
))
729 ? POINTER_SIZE
: TYPE_PRECISION (TREE_TYPE (expr
)));
730 high
= TREE_INT_CST_HIGH (expr
);
731 low
= TREE_INT_CST_LOW (expr
);
733 /* First clear all bits that are beyond the type's precision in case
734 we've been sign extended. */
736 if (prec
== 2 * HOST_BITS_PER_WIDE_INT
)
738 else if (prec
> HOST_BITS_PER_WIDE_INT
)
739 high
&= ~((HOST_WIDE_INT
) (-1) << (prec
- HOST_BITS_PER_WIDE_INT
));
743 if (prec
< HOST_BITS_PER_WIDE_INT
)
744 low
&= ~((HOST_WIDE_INT
) (-1) << prec
);
747 if (high
== 0 && low
== 0)
750 return ((high
== 0 && (low
& (low
- 1)) == 0)
751 || (low
== 0 && (high
& (high
- 1)) == 0));
754 /* Return 1 if EXPR is an integer constant other than zero or a
755 complex constant other than zero. */
758 integer_nonzerop (expr
)
763 return ((TREE_CODE (expr
) == INTEGER_CST
764 && ! TREE_CONSTANT_OVERFLOW (expr
)
765 && (TREE_INT_CST_LOW (expr
) != 0
766 || TREE_INT_CST_HIGH (expr
) != 0))
767 || (TREE_CODE (expr
) == COMPLEX_CST
768 && (integer_nonzerop (TREE_REALPART (expr
))
769 || integer_nonzerop (TREE_IMAGPART (expr
)))));
772 /* Return the power of two represented by a tree node known to be a
780 HOST_WIDE_INT high
, low
;
784 if (TREE_CODE (expr
) == COMPLEX_CST
)
785 return tree_log2 (TREE_REALPART (expr
));
787 prec
= (POINTER_TYPE_P (TREE_TYPE (expr
))
788 ? POINTER_SIZE
: TYPE_PRECISION (TREE_TYPE (expr
)));
790 high
= TREE_INT_CST_HIGH (expr
);
791 low
= TREE_INT_CST_LOW (expr
);
793 /* First clear all bits that are beyond the type's precision in case
794 we've been sign extended. */
796 if (prec
== 2 * HOST_BITS_PER_WIDE_INT
)
798 else if (prec
> HOST_BITS_PER_WIDE_INT
)
799 high
&= ~((HOST_WIDE_INT
) (-1) << (prec
- HOST_BITS_PER_WIDE_INT
));
803 if (prec
< HOST_BITS_PER_WIDE_INT
)
804 low
&= ~((HOST_WIDE_INT
) (-1) << prec
);
807 return (high
!= 0 ? HOST_BITS_PER_WIDE_INT
+ exact_log2 (high
)
811 /* Similar, but return the largest integer Y such that 2 ** Y is less
812 than or equal to EXPR. */
815 tree_floor_log2 (expr
)
819 HOST_WIDE_INT high
, low
;
823 if (TREE_CODE (expr
) == COMPLEX_CST
)
824 return tree_log2 (TREE_REALPART (expr
));
826 prec
= (POINTER_TYPE_P (TREE_TYPE (expr
))
827 ? POINTER_SIZE
: TYPE_PRECISION (TREE_TYPE (expr
)));
829 high
= TREE_INT_CST_HIGH (expr
);
830 low
= TREE_INT_CST_LOW (expr
);
832 /* First clear all bits that are beyond the type's precision in case
833 we've been sign extended. Ignore if type's precision hasn't been set
834 since what we are doing is setting it. */
836 if (prec
== 2 * HOST_BITS_PER_WIDE_INT
|| prec
== 0)
838 else if (prec
> HOST_BITS_PER_WIDE_INT
)
839 high
&= ~((HOST_WIDE_INT
) (-1) << (prec
- HOST_BITS_PER_WIDE_INT
));
843 if (prec
< HOST_BITS_PER_WIDE_INT
)
844 low
&= ~((HOST_WIDE_INT
) (-1) << prec
);
847 return (high
!= 0 ? HOST_BITS_PER_WIDE_INT
+ floor_log2 (high
)
851 /* Return 1 if EXPR is the real constant zero. */
859 return ((TREE_CODE (expr
) == REAL_CST
860 && ! TREE_CONSTANT_OVERFLOW (expr
)
861 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr
), dconst0
))
862 || (TREE_CODE (expr
) == COMPLEX_CST
863 && real_zerop (TREE_REALPART (expr
))
864 && real_zerop (TREE_IMAGPART (expr
))));
867 /* Return 1 if EXPR is the real constant one in real or complex form. */
875 return ((TREE_CODE (expr
) == REAL_CST
876 && ! TREE_CONSTANT_OVERFLOW (expr
)
877 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr
), dconst1
))
878 || (TREE_CODE (expr
) == COMPLEX_CST
879 && real_onep (TREE_REALPART (expr
))
880 && real_zerop (TREE_IMAGPART (expr
))));
883 /* Return 1 if EXPR is the real constant two. */
891 return ((TREE_CODE (expr
) == REAL_CST
892 && ! TREE_CONSTANT_OVERFLOW (expr
)
893 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr
), dconst2
))
894 || (TREE_CODE (expr
) == COMPLEX_CST
895 && real_twop (TREE_REALPART (expr
))
896 && real_zerop (TREE_IMAGPART (expr
))));
899 /* Return 1 if EXPR is the real constant minus one. */
902 real_minus_onep (expr
)
907 return ((TREE_CODE (expr
) == REAL_CST
908 && ! TREE_CONSTANT_OVERFLOW (expr
)
909 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr
), dconstm1
))
910 || (TREE_CODE (expr
) == COMPLEX_CST
911 && real_minus_onep (TREE_REALPART (expr
))
912 && real_zerop (TREE_IMAGPART (expr
))));
915 /* Nonzero if EXP is a constant or a cast of a constant. */
918 really_constant_p (exp
)
921 /* This is not quite the same as STRIP_NOPS. It does more. */
922 while (TREE_CODE (exp
) == NOP_EXPR
923 || TREE_CODE (exp
) == CONVERT_EXPR
924 || TREE_CODE (exp
) == NON_LVALUE_EXPR
)
925 exp
= TREE_OPERAND (exp
, 0);
926 return TREE_CONSTANT (exp
);
929 /* Return first list element whose TREE_VALUE is ELEM.
930 Return 0 if ELEM is not in LIST. */
933 value_member (elem
, list
)
938 if (elem
== TREE_VALUE (list
))
940 list
= TREE_CHAIN (list
);
945 /* Return first list element whose TREE_PURPOSE is ELEM.
946 Return 0 if ELEM is not in LIST. */
949 purpose_member (elem
, list
)
954 if (elem
== TREE_PURPOSE (list
))
956 list
= TREE_CHAIN (list
);
961 /* Return first list element whose BINFO_TYPE is ELEM.
962 Return 0 if ELEM is not in LIST. */
965 binfo_member (elem
, list
)
970 if (elem
== BINFO_TYPE (list
))
972 list
= TREE_CHAIN (list
);
977 /* Return nonzero if ELEM is part of the chain CHAIN. */
980 chain_member (elem
, chain
)
987 chain
= TREE_CHAIN (chain
);
993 /* Return the length of a chain of nodes chained through TREE_CHAIN.
994 We expect a null pointer to mark the end of the chain.
995 This is the Lisp primitive `length'. */
1004 for (tail
= t
; tail
; tail
= TREE_CHAIN (tail
))
1010 /* Returns the number of FIELD_DECLs in TYPE. */
1013 fields_length (type
)
1016 tree t
= TYPE_FIELDS (type
);
1019 for (; t
; t
= TREE_CHAIN (t
))
1020 if (TREE_CODE (t
) == FIELD_DECL
)
1026 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1027 by modifying the last node in chain 1 to point to chain 2.
1028 This is the Lisp primitive `nconc'. */
1038 #ifdef ENABLE_TREE_CHECKING
1042 for (t1
= op1
; TREE_CHAIN (t1
); t1
= TREE_CHAIN (t1
))
1044 TREE_CHAIN (t1
) = op2
;
1045 #ifdef ENABLE_TREE_CHECKING
1046 for (t2
= op2
; t2
; t2
= TREE_CHAIN (t2
))
1048 abort (); /* Circularity created. */
1056 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1064 while ((next
= TREE_CHAIN (chain
)))
1069 /* Reverse the order of elements in the chain T,
1070 and return the new head of the chain (old last element). */
1076 tree prev
= 0, decl
, next
;
1077 for (decl
= t
; decl
; decl
= next
)
1079 next
= TREE_CHAIN (decl
);
1080 TREE_CHAIN (decl
) = prev
;
1086 /* Return a newly created TREE_LIST node whose
1087 purpose and value fields are PARM and VALUE. */
1090 build_tree_list (parm
, value
)
1093 tree t
= make_node (TREE_LIST
);
1094 TREE_PURPOSE (t
) = parm
;
1095 TREE_VALUE (t
) = value
;
1099 /* Return a newly created TREE_LIST node whose
1100 purpose and value fields are PURPOSE and VALUE
1101 and whose TREE_CHAIN is CHAIN. */
1104 tree_cons (purpose
, value
, chain
)
1105 tree purpose
, value
, chain
;
1109 node
= ggc_alloc_tree (sizeof (struct tree_list
));
1111 memset (node
, 0, sizeof (struct tree_common
));
1113 #ifdef GATHER_STATISTICS
1114 tree_node_counts
[(int) x_kind
]++;
1115 tree_node_sizes
[(int) x_kind
] += sizeof (struct tree_list
);
1118 TREE_SET_CODE (node
, TREE_LIST
);
1119 TREE_CHAIN (node
) = chain
;
1120 TREE_PURPOSE (node
) = purpose
;
1121 TREE_VALUE (node
) = value
;
1126 /* Return the size nominally occupied by an object of type TYPE
1127 when it resides in memory. The value is measured in units of bytes,
1128 and its data type is that normally used for type sizes
1129 (which is the first type created by make_signed_type or
1130 make_unsigned_type). */
1133 size_in_bytes (type
)
1138 if (type
== error_mark_node
)
1139 return integer_zero_node
;
1141 type
= TYPE_MAIN_VARIANT (type
);
1142 t
= TYPE_SIZE_UNIT (type
);
1146 (*lang_hooks
.types
.incomplete_type_error
) (NULL_TREE
, type
);
1147 return size_zero_node
;
1150 if (TREE_CODE (t
) == INTEGER_CST
)
1151 force_fit_type (t
, 0);
1156 /* Return the size of TYPE (in bytes) as a wide integer
1157 or return -1 if the size can vary or is larger than an integer. */
1160 int_size_in_bytes (type
)
1165 if (type
== error_mark_node
)
1168 type
= TYPE_MAIN_VARIANT (type
);
1169 t
= TYPE_SIZE_UNIT (type
);
1171 || TREE_CODE (t
) != INTEGER_CST
1172 || TREE_OVERFLOW (t
)
1173 || TREE_INT_CST_HIGH (t
) != 0
1174 /* If the result would appear negative, it's too big to represent. */
1175 || (HOST_WIDE_INT
) TREE_INT_CST_LOW (t
) < 0)
1178 return TREE_INT_CST_LOW (t
);
1181 /* Return the bit position of FIELD, in bits from the start of the record.
1182 This is a tree of type bitsizetype. */
1185 bit_position (field
)
1189 return bit_from_pos (DECL_FIELD_OFFSET (field
),
1190 DECL_FIELD_BIT_OFFSET (field
));
1193 /* Likewise, but return as an integer. Abort if it cannot be represented
1194 in that way (since it could be a signed value, we don't have the option
1195 of returning -1 like int_size_in_byte can. */
1198 int_bit_position (field
)
1201 return tree_low_cst (bit_position (field
), 0);
1204 /* Return the byte position of FIELD, in bytes from the start of the record.
1205 This is a tree of type sizetype. */
1208 byte_position (field
)
1211 return byte_from_pos (DECL_FIELD_OFFSET (field
),
1212 DECL_FIELD_BIT_OFFSET (field
));
1215 /* Likewise, but return as an integer. Abort if it cannot be represented
1216 in that way (since it could be a signed value, we don't have the option
1217 of returning -1 like int_size_in_byte can. */
1220 int_byte_position (field
)
1223 return tree_low_cst (byte_position (field
), 0);
1226 /* Return the strictest alignment, in bits, that T is known to have. */
1232 unsigned int align0
, align1
;
1234 switch (TREE_CODE (t
))
1236 case NOP_EXPR
: case CONVERT_EXPR
: case NON_LVALUE_EXPR
:
1237 /* If we have conversions, we know that the alignment of the
1238 object must meet each of the alignments of the types. */
1239 align0
= expr_align (TREE_OPERAND (t
, 0));
1240 align1
= TYPE_ALIGN (TREE_TYPE (t
));
1241 return MAX (align0
, align1
);
1243 case SAVE_EXPR
: case COMPOUND_EXPR
: case MODIFY_EXPR
:
1244 case INIT_EXPR
: case TARGET_EXPR
: case WITH_CLEANUP_EXPR
:
1245 case WITH_RECORD_EXPR
: case CLEANUP_POINT_EXPR
: case UNSAVE_EXPR
:
1246 /* These don't change the alignment of an object. */
1247 return expr_align (TREE_OPERAND (t
, 0));
1250 /* The best we can do is say that the alignment is the least aligned
1252 align0
= expr_align (TREE_OPERAND (t
, 1));
1253 align1
= expr_align (TREE_OPERAND (t
, 2));
1254 return MIN (align0
, align1
);
1256 case LABEL_DECL
: case CONST_DECL
:
1257 case VAR_DECL
: case PARM_DECL
: case RESULT_DECL
:
1258 if (DECL_ALIGN (t
) != 0)
1259 return DECL_ALIGN (t
);
1263 return FUNCTION_BOUNDARY
;
1269 /* Otherwise take the alignment from that of the type. */
1270 return TYPE_ALIGN (TREE_TYPE (t
));
1273 /* Return, as a tree node, the number of elements for TYPE (which is an
1274 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1277 array_type_nelts (type
)
1280 tree index_type
, min
, max
;
1282 /* If they did it with unspecified bounds, then we should have already
1283 given an error about it before we got here. */
1284 if (! TYPE_DOMAIN (type
))
1285 return error_mark_node
;
1287 index_type
= TYPE_DOMAIN (type
);
1288 min
= TYPE_MIN_VALUE (index_type
);
1289 max
= TYPE_MAX_VALUE (index_type
);
1291 return (integer_zerop (min
)
1293 : fold (build (MINUS_EXPR
, TREE_TYPE (max
), max
, min
)));
1296 /* Return nonzero if arg is static -- a reference to an object in
1297 static storage. This is not the same as the C meaning of `static'. */
1303 switch (TREE_CODE (arg
))
1306 /* Nested functions aren't static, since taking their address
1307 involves a trampoline. */
1308 return ((decl_function_context (arg
) == 0 || DECL_NO_STATIC_CHAIN (arg
))
1309 && ! DECL_NON_ADDR_CONST_P (arg
));
1312 return ((TREE_STATIC (arg
) || DECL_EXTERNAL (arg
))
1313 && ! DECL_THREAD_LOCAL (arg
)
1314 && ! DECL_NON_ADDR_CONST_P (arg
));
1317 return TREE_STATIC (arg
);
1323 /* If we are referencing a bitfield, we can't evaluate an
1324 ADDR_EXPR at compile time and so it isn't a constant. */
1326 return (! DECL_BIT_FIELD (TREE_OPERAND (arg
, 1))
1327 && staticp (TREE_OPERAND (arg
, 0)));
1333 /* This case is technically correct, but results in setting
1334 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
1337 return TREE_CONSTANT (TREE_OPERAND (arg
, 0));
1341 case ARRAY_RANGE_REF
:
1342 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg
))) == INTEGER_CST
1343 && TREE_CODE (TREE_OPERAND (arg
, 1)) == INTEGER_CST
)
1344 return staticp (TREE_OPERAND (arg
, 0));
1347 if ((unsigned int) TREE_CODE (arg
)
1348 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE
)
1349 return (*lang_hooks
.staticp
) (arg
);
1355 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1356 Do this to any expression which may be used in more than one place,
1357 but must be evaluated only once.
1359 Normally, expand_expr would reevaluate the expression each time.
1360 Calling save_expr produces something that is evaluated and recorded
1361 the first time expand_expr is called on it. Subsequent calls to
1362 expand_expr just reuse the recorded value.
1364 The call to expand_expr that generates code that actually computes
1365 the value is the first call *at compile time*. Subsequent calls
1366 *at compile time* generate code to use the saved value.
1367 This produces correct result provided that *at run time* control
1368 always flows through the insns made by the first expand_expr
1369 before reaching the other places where the save_expr was evaluated.
1370 You, the caller of save_expr, must make sure this is so.
1372 Constants, and certain read-only nodes, are returned with no
1373 SAVE_EXPR because that is safe. Expressions containing placeholders
1374 are not touched; see tree.def for an explanation of what these
1381 tree t
= fold (expr
);
1384 /* We don't care about whether this can be used as an lvalue in this
1386 while (TREE_CODE (t
) == NON_LVALUE_EXPR
)
1387 t
= TREE_OPERAND (t
, 0);
1389 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1390 a constant, it will be more efficient to not make another SAVE_EXPR since
1391 it will allow better simplification and GCSE will be able to merge the
1392 computations if they actually occur. */
1396 if (TREE_CODE_CLASS (TREE_CODE (inner
)) == '1')
1397 inner
= TREE_OPERAND (inner
, 0);
1398 else if (TREE_CODE_CLASS (TREE_CODE (inner
)) == '2')
1400 if (TREE_CONSTANT (TREE_OPERAND (inner
, 1)))
1401 inner
= TREE_OPERAND (inner
, 0);
1402 else if (TREE_CONSTANT (TREE_OPERAND (inner
, 0)))
1403 inner
= TREE_OPERAND (inner
, 1);
1411 /* If the tree evaluates to a constant, then we don't want to hide that
1412 fact (i.e. this allows further folding, and direct checks for constants).
1413 However, a read-only object that has side effects cannot be bypassed.
1414 Since it is no problem to reevaluate literals, we just return the
1416 if (TREE_CONSTANT (inner
)
1417 || (TREE_READONLY (inner
) && ! TREE_SIDE_EFFECTS (inner
))
1418 || TREE_CODE (inner
) == SAVE_EXPR
1419 || TREE_CODE (inner
) == ERROR_MARK
)
1422 /* If T contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1423 it means that the size or offset of some field of an object depends on
1424 the value within another field.
1426 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1427 and some variable since it would then need to be both evaluated once and
1428 evaluated more than once. Front-ends must assure this case cannot
1429 happen by surrounding any such subexpressions in their own SAVE_EXPR
1430 and forcing evaluation at the proper time. */
1431 if (contains_placeholder_p (t
))
1434 t
= build (SAVE_EXPR
, TREE_TYPE (expr
), t
, current_function_decl
, NULL_TREE
);
1436 /* This expression might be placed ahead of a jump to ensure that the
1437 value was computed on both sides of the jump. So make sure it isn't
1438 eliminated as dead. */
1439 TREE_SIDE_EFFECTS (t
) = 1;
1440 TREE_READONLY (t
) = 1;
1444 /* Arrange for an expression to be expanded multiple independent
1445 times. This is useful for cleanup actions, as the backend can
1446 expand them multiple times in different places. */
1454 /* If this is already protected, no sense in protecting it again. */
1455 if (TREE_CODE (expr
) == UNSAVE_EXPR
)
1458 t
= build1 (UNSAVE_EXPR
, TREE_TYPE (expr
), expr
);
1459 TREE_SIDE_EFFECTS (t
) = TREE_SIDE_EFFECTS (expr
);
1463 /* Returns the index of the first non-tree operand for CODE, or the number
1464 of operands if all are trees. */
1468 enum tree_code code
;
1474 case GOTO_SUBROUTINE_EXPR
:
1477 case WITH_CLEANUP_EXPR
:
1479 case METHOD_CALL_EXPR
:
1482 return TREE_CODE_LENGTH (code
);
1486 /* Return which tree structure is used by T. */
1488 enum tree_node_structure_enum
1489 tree_node_structure (t
)
1492 enum tree_code code
= TREE_CODE (t
);
1494 switch (TREE_CODE_CLASS (code
))
1496 case 'd': return TS_DECL
;
1497 case 't': return TS_TYPE
;
1498 case 'b': return TS_BLOCK
;
1499 case 'r': case '<': case '1': case '2': case 'e': case 's':
1501 default: /* 'c' and 'x' */
1507 case INTEGER_CST
: return TS_INT_CST
;
1508 case REAL_CST
: return TS_REAL_CST
;
1509 case COMPLEX_CST
: return TS_COMPLEX
;
1510 case VECTOR_CST
: return TS_VECTOR
;
1511 case STRING_CST
: return TS_STRING
;
1513 case ERROR_MARK
: return TS_COMMON
;
1514 case IDENTIFIER_NODE
: return TS_IDENTIFIER
;
1515 case TREE_LIST
: return TS_LIST
;
1516 case TREE_VEC
: return TS_VEC
;
1517 case PLACEHOLDER_EXPR
: return TS_COMMON
;
1524 /* Perform any modifications to EXPR required when it is unsaved. Does
1525 not recurse into EXPR's subtrees. */
1528 unsave_expr_1 (expr
)
1531 switch (TREE_CODE (expr
))
1534 if (! SAVE_EXPR_PERSISTENT_P (expr
))
1535 SAVE_EXPR_RTL (expr
) = 0;
1539 /* Don't mess with a TARGET_EXPR that hasn't been expanded.
1540 It's OK for this to happen if it was part of a subtree that
1541 isn't immediately expanded, such as operand 2 of another
1543 if (TREE_OPERAND (expr
, 1))
1546 TREE_OPERAND (expr
, 1) = TREE_OPERAND (expr
, 3);
1547 TREE_OPERAND (expr
, 3) = NULL_TREE
;
1551 /* I don't yet know how to emit a sequence multiple times. */
1552 if (RTL_EXPR_SEQUENCE (expr
) != 0)
1561 /* Default lang hook for "unsave_expr_now". */
1564 lhd_unsave_expr_now (expr
)
1567 enum tree_code code
;
1569 /* There's nothing to do for NULL_TREE. */
1573 unsave_expr_1 (expr
);
1575 code
= TREE_CODE (expr
);
1576 switch (TREE_CODE_CLASS (code
))
1578 case 'c': /* a constant */
1579 case 't': /* a type node */
1580 case 'd': /* A decl node */
1581 case 'b': /* A block node */
1584 case 'x': /* miscellaneous: e.g., identifier, TREE_LIST or ERROR_MARK. */
1585 if (code
== TREE_LIST
)
1587 lhd_unsave_expr_now (TREE_VALUE (expr
));
1588 lhd_unsave_expr_now (TREE_CHAIN (expr
));
1592 case 'e': /* an expression */
1593 case 'r': /* a reference */
1594 case 's': /* an expression with side effects */
1595 case '<': /* a comparison expression */
1596 case '2': /* a binary arithmetic expression */
1597 case '1': /* a unary arithmetic expression */
1601 for (i
= first_rtl_op (code
) - 1; i
>= 0; i
--)
1602 lhd_unsave_expr_now (TREE_OPERAND (expr
, i
));
1613 /* Return 0 if it is safe to evaluate EXPR multiple times,
1614 return 1 if it is safe if EXPR is unsaved afterward, or
1615 return 2 if it is completely unsafe.
1617 This assumes that CALL_EXPRs and TARGET_EXPRs are never replicated in
1618 an expression tree, so that it safe to unsave them and the surrounding
1619 context will be correct.
1621 SAVE_EXPRs basically *only* appear replicated in an expression tree,
1622 occasionally across the whole of a function. It is therefore only
1623 safe to unsave a SAVE_EXPR if you know that all occurrences appear
1624 below the UNSAVE_EXPR.
1626 RTL_EXPRs consume their rtl during evaluation. It is therefore
1627 never possible to unsave them. */
1630 unsafe_for_reeval (expr
)
1634 enum tree_code code
;
1639 if (expr
== NULL_TREE
)
1642 code
= TREE_CODE (expr
);
1643 first_rtl
= first_rtl_op (code
);
1652 for (exp
= expr
; exp
!= 0; exp
= TREE_CHAIN (exp
))
1654 tmp
= unsafe_for_reeval (TREE_VALUE (exp
));
1655 unsafeness
= MAX (tmp
, unsafeness
);
1661 tmp2
= unsafe_for_reeval (TREE_OPERAND (expr
, 0));
1662 tmp
= unsafe_for_reeval (TREE_OPERAND (expr
, 1));
1663 return MAX (MAX (tmp
, 1), tmp2
);
1670 tmp
= (*lang_hooks
.unsafe_for_reeval
) (expr
);
1676 switch (TREE_CODE_CLASS (code
))
1678 case 'c': /* a constant */
1679 case 't': /* a type node */
1680 case 'x': /* something random, like an identifier or an ERROR_MARK. */
1681 case 'd': /* A decl node */
1682 case 'b': /* A block node */
1685 case 'e': /* an expression */
1686 case 'r': /* a reference */
1687 case 's': /* an expression with side effects */
1688 case '<': /* a comparison expression */
1689 case '2': /* a binary arithmetic expression */
1690 case '1': /* a unary arithmetic expression */
1691 for (i
= first_rtl
- 1; i
>= 0; i
--)
1693 tmp
= unsafe_for_reeval (TREE_OPERAND (expr
, i
));
1694 unsafeness
= MAX (tmp
, unsafeness
);
1704 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1705 or offset that depends on a field within a record. */
1708 contains_placeholder_p (exp
)
1711 enum tree_code code
;
1717 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
1718 in it since it is supplying a value for it. */
1719 code
= TREE_CODE (exp
);
1720 if (code
== WITH_RECORD_EXPR
)
1722 else if (code
== PLACEHOLDER_EXPR
)
1725 switch (TREE_CODE_CLASS (code
))
1728 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1729 position computations since they will be converted into a
1730 WITH_RECORD_EXPR involving the reference, which will assume
1731 here will be valid. */
1732 return contains_placeholder_p (TREE_OPERAND (exp
, 0));
1735 if (code
== TREE_LIST
)
1736 return (contains_placeholder_p (TREE_VALUE (exp
))
1737 || (TREE_CHAIN (exp
) != 0
1738 && contains_placeholder_p (TREE_CHAIN (exp
))));
1747 /* Ignoring the first operand isn't quite right, but works best. */
1748 return contains_placeholder_p (TREE_OPERAND (exp
, 1));
1755 return (contains_placeholder_p (TREE_OPERAND (exp
, 0))
1756 || contains_placeholder_p (TREE_OPERAND (exp
, 1))
1757 || contains_placeholder_p (TREE_OPERAND (exp
, 2)));
1760 /* If we already know this doesn't have a placeholder, don't
1762 if (SAVE_EXPR_NOPLACEHOLDER (exp
) || SAVE_EXPR_RTL (exp
) != 0)
1765 SAVE_EXPR_NOPLACEHOLDER (exp
) = 1;
1766 result
= contains_placeholder_p (TREE_OPERAND (exp
, 0));
1768 SAVE_EXPR_NOPLACEHOLDER (exp
) = 0;
1773 return (TREE_OPERAND (exp
, 1) != 0
1774 && contains_placeholder_p (TREE_OPERAND (exp
, 1)));
1780 switch (TREE_CODE_LENGTH (code
))
1783 return contains_placeholder_p (TREE_OPERAND (exp
, 0));
1785 return (contains_placeholder_p (TREE_OPERAND (exp
, 0))
1786 || contains_placeholder_p (TREE_OPERAND (exp
, 1)));
1797 /* Return 1 if EXP contains any expressions that produce cleanups for an
1798 outer scope to deal with. Used by fold. */
1806 if (! TREE_SIDE_EFFECTS (exp
))
1809 switch (TREE_CODE (exp
))
1812 case GOTO_SUBROUTINE_EXPR
:
1813 case WITH_CLEANUP_EXPR
:
1816 case CLEANUP_POINT_EXPR
:
1820 for (exp
= TREE_OPERAND (exp
, 1); exp
; exp
= TREE_CHAIN (exp
))
1822 cmp
= has_cleanups (TREE_VALUE (exp
));
1832 /* This general rule works for most tree codes. All exceptions should be
1833 handled above. If this is a language-specific tree code, we can't
1834 trust what might be in the operand, so say we don't know
1836 if ((int) TREE_CODE (exp
) >= (int) LAST_AND_UNUSED_TREE_CODE
)
1839 nops
= first_rtl_op (TREE_CODE (exp
));
1840 for (i
= 0; i
< nops
; i
++)
1841 if (TREE_OPERAND (exp
, i
) != 0)
1843 int type
= TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp
, i
)));
1844 if (type
== 'e' || type
== '<' || type
== '1' || type
== '2'
1845 || type
== 'r' || type
== 's')
1847 cmp
= has_cleanups (TREE_OPERAND (exp
, i
));
1856 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1857 return a tree with all occurrences of references to F in a
1858 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1859 contains only arithmetic expressions or a CALL_EXPR with a
1860 PLACEHOLDER_EXPR occurring only in its arglist. */
1863 substitute_in_expr (exp
, f
, r
)
1868 enum tree_code code
= TREE_CODE (exp
);
1873 switch (TREE_CODE_CLASS (code
))
1880 if (code
== PLACEHOLDER_EXPR
)
1882 else if (code
== TREE_LIST
)
1884 op0
= (TREE_CHAIN (exp
) == 0
1885 ? 0 : substitute_in_expr (TREE_CHAIN (exp
), f
, r
));
1886 op1
= substitute_in_expr (TREE_VALUE (exp
), f
, r
);
1887 if (op0
== TREE_CHAIN (exp
) && op1
== TREE_VALUE (exp
))
1890 return tree_cons (TREE_PURPOSE (exp
), op1
, op0
);
1899 switch (TREE_CODE_LENGTH (code
))
1902 op0
= substitute_in_expr (TREE_OPERAND (exp
, 0), f
, r
);
1903 if (op0
== TREE_OPERAND (exp
, 0))
1906 if (code
== NON_LVALUE_EXPR
)
1909 new = fold (build1 (code
, TREE_TYPE (exp
), op0
));
1913 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
1914 could, but we don't support it. */
1915 if (code
== RTL_EXPR
)
1917 else if (code
== CONSTRUCTOR
)
1920 op0
= TREE_OPERAND (exp
, 0);
1921 op1
= TREE_OPERAND (exp
, 1);
1922 if (contains_placeholder_p (op0
))
1923 op0
= substitute_in_expr (op0
, f
, r
);
1924 if (contains_placeholder_p (op1
))
1925 op1
= substitute_in_expr (op1
, f
, r
);
1927 if (op0
== TREE_OPERAND (exp
, 0) && op1
== TREE_OPERAND (exp
, 1))
1930 new = fold (build (code
, TREE_TYPE (exp
), op0
, op1
));
1934 /* It cannot be that anything inside a SAVE_EXPR contains a
1935 PLACEHOLDER_EXPR. */
1936 if (code
== SAVE_EXPR
)
1939 else if (code
== CALL_EXPR
)
1941 op1
= substitute_in_expr (TREE_OPERAND (exp
, 1), f
, r
);
1942 if (op1
== TREE_OPERAND (exp
, 1))
1945 return build (code
, TREE_TYPE (exp
),
1946 TREE_OPERAND (exp
, 0), op1
, NULL_TREE
);
1949 else if (code
!= COND_EXPR
)
1952 op0
= TREE_OPERAND (exp
, 0);
1953 op1
= TREE_OPERAND (exp
, 1);
1954 op2
= TREE_OPERAND (exp
, 2);
1956 if (contains_placeholder_p (op0
))
1957 op0
= substitute_in_expr (op0
, f
, r
);
1958 if (contains_placeholder_p (op1
))
1959 op1
= substitute_in_expr (op1
, f
, r
);
1960 if (contains_placeholder_p (op2
))
1961 op2
= substitute_in_expr (op2
, f
, r
);
1963 if (op0
== TREE_OPERAND (exp
, 0) && op1
== TREE_OPERAND (exp
, 1)
1964 && op2
== TREE_OPERAND (exp
, 2))
1967 new = fold (build (code
, TREE_TYPE (exp
), op0
, op1
, op2
));
1980 /* If this expression is getting a value from a PLACEHOLDER_EXPR
1981 and it is the right field, replace it with R. */
1982 for (inner
= TREE_OPERAND (exp
, 0);
1983 TREE_CODE_CLASS (TREE_CODE (inner
)) == 'r';
1984 inner
= TREE_OPERAND (inner
, 0))
1986 if (TREE_CODE (inner
) == PLACEHOLDER_EXPR
1987 && TREE_OPERAND (exp
, 1) == f
)
1990 /* If this expression hasn't been completed let, leave it
1992 if (TREE_CODE (inner
) == PLACEHOLDER_EXPR
1993 && TREE_TYPE (inner
) == 0)
1996 op0
= substitute_in_expr (TREE_OPERAND (exp
, 0), f
, r
);
1997 if (op0
== TREE_OPERAND (exp
, 0))
2000 new = fold (build (code
, TREE_TYPE (exp
), op0
,
2001 TREE_OPERAND (exp
, 1)));
2005 op0
= substitute_in_expr (TREE_OPERAND (exp
, 0), f
, r
);
2006 op1
= substitute_in_expr (TREE_OPERAND (exp
, 1), f
, r
);
2007 op2
= substitute_in_expr (TREE_OPERAND (exp
, 2), f
, r
);
2008 if (op0
== TREE_OPERAND (exp
, 0) && op1
== TREE_OPERAND (exp
, 1)
2009 && op2
== TREE_OPERAND (exp
, 2))
2012 new = fold (build (code
, TREE_TYPE (exp
), op0
, op1
, op2
));
2017 op0
= substitute_in_expr (TREE_OPERAND (exp
, 0), f
, r
);
2018 if (op0
== TREE_OPERAND (exp
, 0))
2021 new = fold (build1 (code
, TREE_TYPE (exp
), op0
));
2033 TREE_READONLY (new) = TREE_READONLY (exp
);
2037 /* Stabilize a reference so that we can use it any number of times
2038 without causing its operands to be evaluated more than once.
2039 Returns the stabilized reference. This works by means of save_expr,
2040 so see the caveats in the comments about save_expr.
2042 Also allows conversion expressions whose operands are references.
2043 Any other kind of expression is returned unchanged. */
2046 stabilize_reference (ref
)
2050 enum tree_code code
= TREE_CODE (ref
);
2057 /* No action is needed in this case. */
2063 case FIX_TRUNC_EXPR
:
2064 case FIX_FLOOR_EXPR
:
2065 case FIX_ROUND_EXPR
:
2067 result
= build_nt (code
, stabilize_reference (TREE_OPERAND (ref
, 0)));
2071 result
= build_nt (INDIRECT_REF
,
2072 stabilize_reference_1 (TREE_OPERAND (ref
, 0)));
2076 result
= build_nt (COMPONENT_REF
,
2077 stabilize_reference (TREE_OPERAND (ref
, 0)),
2078 TREE_OPERAND (ref
, 1));
2082 result
= build_nt (BIT_FIELD_REF
,
2083 stabilize_reference (TREE_OPERAND (ref
, 0)),
2084 stabilize_reference_1 (TREE_OPERAND (ref
, 1)),
2085 stabilize_reference_1 (TREE_OPERAND (ref
, 2)));
2089 result
= build_nt (ARRAY_REF
,
2090 stabilize_reference (TREE_OPERAND (ref
, 0)),
2091 stabilize_reference_1 (TREE_OPERAND (ref
, 1)));
2094 case ARRAY_RANGE_REF
:
2095 result
= build_nt (ARRAY_RANGE_REF
,
2096 stabilize_reference (TREE_OPERAND (ref
, 0)),
2097 stabilize_reference_1 (TREE_OPERAND (ref
, 1)));
2101 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2102 it wouldn't be ignored. This matters when dealing with
2104 return stabilize_reference_1 (ref
);
2107 result
= build1 (INDIRECT_REF
, TREE_TYPE (ref
),
2108 save_expr (build1 (ADDR_EXPR
,
2109 build_pointer_type (TREE_TYPE (ref
)),
2113 /* If arg isn't a kind of lvalue we recognize, make no change.
2114 Caller should recognize the error for an invalid lvalue. */
2119 return error_mark_node
;
2122 TREE_TYPE (result
) = TREE_TYPE (ref
);
2123 TREE_READONLY (result
) = TREE_READONLY (ref
);
2124 TREE_SIDE_EFFECTS (result
) = TREE_SIDE_EFFECTS (ref
);
2125 TREE_THIS_VOLATILE (result
) = TREE_THIS_VOLATILE (ref
);
2130 /* Subroutine of stabilize_reference; this is called for subtrees of
2131 references. Any expression with side-effects must be put in a SAVE_EXPR
2132 to ensure that it is only evaluated once.
2134 We don't put SAVE_EXPR nodes around everything, because assigning very
2135 simple expressions to temporaries causes us to miss good opportunities
2136 for optimizations. Among other things, the opportunity to fold in the
2137 addition of a constant into an addressing mode often gets lost, e.g.
2138 "y[i+1] += x;". In general, we take the approach that we should not make
2139 an assignment unless we are forced into it - i.e., that any non-side effect
2140 operator should be allowed, and that cse should take care of coalescing
2141 multiple utterances of the same expression should that prove fruitful. */
2144 stabilize_reference_1 (e
)
2148 enum tree_code code
= TREE_CODE (e
);
2150 /* We cannot ignore const expressions because it might be a reference
2151 to a const array but whose index contains side-effects. But we can
2152 ignore things that are actual constant or that already have been
2153 handled by this function. */
2155 if (TREE_CONSTANT (e
) || code
== SAVE_EXPR
)
2158 switch (TREE_CODE_CLASS (code
))
2168 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2169 so that it will only be evaluated once. */
2170 /* The reference (r) and comparison (<) classes could be handled as
2171 below, but it is generally faster to only evaluate them once. */
2172 if (TREE_SIDE_EFFECTS (e
))
2173 return save_expr (e
);
2177 /* Constants need no processing. In fact, we should never reach
2182 /* Division is slow and tends to be compiled with jumps,
2183 especially the division by powers of 2 that is often
2184 found inside of an array reference. So do it just once. */
2185 if (code
== TRUNC_DIV_EXPR
|| code
== TRUNC_MOD_EXPR
2186 || code
== FLOOR_DIV_EXPR
|| code
== FLOOR_MOD_EXPR
2187 || code
== CEIL_DIV_EXPR
|| code
== CEIL_MOD_EXPR
2188 || code
== ROUND_DIV_EXPR
|| code
== ROUND_MOD_EXPR
)
2189 return save_expr (e
);
2190 /* Recursively stabilize each operand. */
2191 result
= build_nt (code
, stabilize_reference_1 (TREE_OPERAND (e
, 0)),
2192 stabilize_reference_1 (TREE_OPERAND (e
, 1)));
2196 /* Recursively stabilize each operand. */
2197 result
= build_nt (code
, stabilize_reference_1 (TREE_OPERAND (e
, 0)));
2204 TREE_TYPE (result
) = TREE_TYPE (e
);
2205 TREE_READONLY (result
) = TREE_READONLY (e
);
2206 TREE_SIDE_EFFECTS (result
) = TREE_SIDE_EFFECTS (e
);
2207 TREE_THIS_VOLATILE (result
) = TREE_THIS_VOLATILE (e
);
2212 /* Low-level constructors for expressions. */
2214 /* Build an expression of code CODE, data type TYPE,
2215 and operands as specified by the arguments ARG1 and following arguments.
2216 Expressions and reference nodes can be created this way.
2217 Constants, decls, types and misc nodes cannot be. */
2220 build
VPARAMS ((enum tree_code code
, tree tt
, ...))
2229 VA_FIXEDARG (p
, enum tree_code
, code
);
2230 VA_FIXEDARG (p
, tree
, tt
);
2232 t
= make_node (code
);
2233 length
= TREE_CODE_LENGTH (code
);
2236 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2237 result based on those same flags for the arguments. But if the
2238 arguments aren't really even `tree' expressions, we shouldn't be trying
2240 fro
= first_rtl_op (code
);
2242 /* Expressions without side effects may be constant if their
2243 arguments are as well. */
2244 constant
= (TREE_CODE_CLASS (code
) == '<'
2245 || TREE_CODE_CLASS (code
) == '1'
2246 || TREE_CODE_CLASS (code
) == '2'
2247 || TREE_CODE_CLASS (code
) == 'c');
2251 /* This is equivalent to the loop below, but faster. */
2252 tree arg0
= va_arg (p
, tree
);
2253 tree arg1
= va_arg (p
, tree
);
2255 TREE_OPERAND (t
, 0) = arg0
;
2256 TREE_OPERAND (t
, 1) = arg1
;
2257 TREE_READONLY (t
) = 1;
2258 if (arg0
&& fro
> 0)
2260 if (TREE_SIDE_EFFECTS (arg0
))
2261 TREE_SIDE_EFFECTS (t
) = 1;
2262 if (!TREE_READONLY (arg0
))
2263 TREE_READONLY (t
) = 0;
2264 if (!TREE_CONSTANT (arg0
))
2268 if (arg1
&& fro
> 1)
2270 if (TREE_SIDE_EFFECTS (arg1
))
2271 TREE_SIDE_EFFECTS (t
) = 1;
2272 if (!TREE_READONLY (arg1
))
2273 TREE_READONLY (t
) = 0;
2274 if (!TREE_CONSTANT (arg1
))
2278 else if (length
== 1)
2280 tree arg0
= va_arg (p
, tree
);
2282 /* The only one-operand cases we handle here are those with side-effects.
2283 Others are handled with build1. So don't bother checked if the
2284 arg has side-effects since we'll already have set it.
2286 ??? This really should use build1 too. */
2287 if (TREE_CODE_CLASS (code
) != 's')
2289 TREE_OPERAND (t
, 0) = arg0
;
2293 for (i
= 0; i
< length
; i
++)
2295 tree operand
= va_arg (p
, tree
);
2297 TREE_OPERAND (t
, i
) = operand
;
2298 if (operand
&& fro
> i
)
2300 if (TREE_SIDE_EFFECTS (operand
))
2301 TREE_SIDE_EFFECTS (t
) = 1;
2302 if (!TREE_CONSTANT (operand
))
2309 TREE_CONSTANT (t
) = constant
;
2313 /* Same as above, but only builds for unary operators.
2314 Saves lions share of calls to `build'; cuts down use
2315 of varargs, which is expensive for RISC machines. */
2318 build1 (code
, type
, node
)
2319 enum tree_code code
;
2323 int length
= sizeof (struct tree_exp
);
2324 #ifdef GATHER_STATISTICS
2325 tree_node_kind kind
;
2329 #ifdef GATHER_STATISTICS
2330 switch (TREE_CODE_CLASS (code
))
2332 case 's': /* an expression with side effects */
2335 case 'r': /* a reference */
2343 tree_node_counts
[(int) kind
]++;
2344 tree_node_sizes
[(int) kind
] += length
;
2347 #ifdef ENABLE_CHECKING
2348 if (TREE_CODE_CLASS (code
) == '2'
2349 || TREE_CODE_CLASS (code
) == '<'
2350 || TREE_CODE_LENGTH (code
) != 1)
2352 #endif /* ENABLE_CHECKING */
2354 t
= ggc_alloc_tree (length
);
2356 memset ((PTR
) t
, 0, sizeof (struct tree_common
));
2358 TREE_SET_CODE (t
, code
);
2360 TREE_TYPE (t
) = type
;
2361 TREE_COMPLEXITY (t
) = 0;
2362 TREE_OPERAND (t
, 0) = node
;
2363 if (node
&& first_rtl_op (code
) != 0)
2365 TREE_SIDE_EFFECTS (t
) = TREE_SIDE_EFFECTS (node
);
2366 TREE_READONLY (t
) = TREE_READONLY (node
);
2369 if (TREE_CODE_CLASS (code
) == 's')
2370 TREE_SIDE_EFFECTS (t
) = 1;
2377 case PREDECREMENT_EXPR
:
2378 case PREINCREMENT_EXPR
:
2379 case POSTDECREMENT_EXPR
:
2380 case POSTINCREMENT_EXPR
:
2381 /* All of these have side-effects, no matter what their
2383 TREE_SIDE_EFFECTS (t
) = 1;
2384 TREE_READONLY (t
) = 0;
2388 /* Whether a dereference is readonly has nothing to do with whether
2389 its operand is readonly. */
2390 TREE_READONLY (t
) = 0;
2394 if (TREE_CODE_CLASS (code
) == '1' && node
&& TREE_CONSTANT (node
))
2395 TREE_CONSTANT (t
) = 1;
2402 /* Similar except don't specify the TREE_TYPE
2403 and leave the TREE_SIDE_EFFECTS as 0.
2404 It is permissible for arguments to be null,
2405 or even garbage if their values do not matter. */
2408 build_nt
VPARAMS ((enum tree_code code
, ...))
2415 VA_FIXEDARG (p
, enum tree_code
, code
);
2417 t
= make_node (code
);
2418 length
= TREE_CODE_LENGTH (code
);
2420 for (i
= 0; i
< length
; i
++)
2421 TREE_OPERAND (t
, i
) = va_arg (p
, tree
);
2427 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2428 We do NOT enter this node in any sort of symbol table.
2430 layout_decl is used to set up the decl's storage layout.
2431 Other slots are initialized to 0 or null pointers. */
2434 build_decl (code
, name
, type
)
2435 enum tree_code code
;
2440 t
= make_node (code
);
2442 /* if (type == error_mark_node)
2443 type = integer_type_node; */
2444 /* That is not done, deliberately, so that having error_mark_node
2445 as the type can suppress useless errors in the use of this variable. */
2447 DECL_NAME (t
) = name
;
2448 TREE_TYPE (t
) = type
;
2450 if (code
== VAR_DECL
|| code
== PARM_DECL
|| code
== RESULT_DECL
)
2452 else if (code
== FUNCTION_DECL
)
2453 DECL_MODE (t
) = FUNCTION_MODE
;
2458 /* BLOCK nodes are used to represent the structure of binding contours
2459 and declarations, once those contours have been exited and their contents
2460 compiled. This information is used for outputting debugging info. */
2463 build_block (vars
, tags
, subblocks
, supercontext
, chain
)
2464 tree vars
, tags ATTRIBUTE_UNUSED
, subblocks
, supercontext
, chain
;
2466 tree block
= make_node (BLOCK
);
2468 BLOCK_VARS (block
) = vars
;
2469 BLOCK_SUBBLOCKS (block
) = subblocks
;
2470 BLOCK_SUPERCONTEXT (block
) = supercontext
;
2471 BLOCK_CHAIN (block
) = chain
;
2475 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
2476 location where an expression or an identifier were encountered. It
2477 is necessary for languages where the frontend parser will handle
2478 recursively more than one file (Java is one of them). */
2481 build_expr_wfl (node
, file
, line
, col
)
2486 static const char *last_file
= 0;
2487 static tree last_filenode
= NULL_TREE
;
2488 tree wfl
= make_node (EXPR_WITH_FILE_LOCATION
);
2490 EXPR_WFL_NODE (wfl
) = node
;
2491 EXPR_WFL_SET_LINECOL (wfl
, line
, col
);
2492 if (file
!= last_file
)
2495 last_filenode
= file
? get_identifier (file
) : NULL_TREE
;
2498 EXPR_WFL_FILENAME_NODE (wfl
) = last_filenode
;
2501 TREE_SIDE_EFFECTS (wfl
) = TREE_SIDE_EFFECTS (node
);
2502 TREE_TYPE (wfl
) = TREE_TYPE (node
);
2508 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2512 build_decl_attribute_variant (ddecl
, attribute
)
2513 tree ddecl
, attribute
;
2515 DECL_ATTRIBUTES (ddecl
) = attribute
;
2519 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2522 Record such modified types already made so we don't make duplicates. */
2525 build_type_attribute_variant (ttype
, attribute
)
2526 tree ttype
, attribute
;
2528 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype
), attribute
))
2530 unsigned int hashcode
;
2533 ntype
= copy_node (ttype
);
2535 TYPE_POINTER_TO (ntype
) = 0;
2536 TYPE_REFERENCE_TO (ntype
) = 0;
2537 TYPE_ATTRIBUTES (ntype
) = attribute
;
2539 /* Create a new main variant of TYPE. */
2540 TYPE_MAIN_VARIANT (ntype
) = ntype
;
2541 TYPE_NEXT_VARIANT (ntype
) = 0;
2542 set_type_quals (ntype
, TYPE_UNQUALIFIED
);
2544 hashcode
= (TYPE_HASH (TREE_CODE (ntype
))
2545 + TYPE_HASH (TREE_TYPE (ntype
))
2546 + attribute_hash_list (attribute
));
2548 switch (TREE_CODE (ntype
))
2551 hashcode
+= TYPE_HASH (TYPE_ARG_TYPES (ntype
));
2554 hashcode
+= TYPE_HASH (TYPE_DOMAIN (ntype
));
2557 hashcode
+= TYPE_HASH (TYPE_MAX_VALUE (ntype
));
2560 hashcode
+= TYPE_HASH (TYPE_PRECISION (ntype
));
2566 ntype
= type_hash_canon (hashcode
, ntype
);
2567 ttype
= build_qualified_type (ntype
, TYPE_QUALS (ttype
));
2573 /* Return nonzero if IDENT is a valid name for attribute ATTR,
2576 We try both `text' and `__text__', ATTR may be either one. */
2577 /* ??? It might be a reasonable simplification to require ATTR to be only
2578 `text'. One might then also require attribute lists to be stored in
2579 their canonicalized form. */
2582 is_attribute_p (attr
, ident
)
2586 int ident_len
, attr_len
;
2589 if (TREE_CODE (ident
) != IDENTIFIER_NODE
)
2592 if (strcmp (attr
, IDENTIFIER_POINTER (ident
)) == 0)
2595 p
= IDENTIFIER_POINTER (ident
);
2596 ident_len
= strlen (p
);
2597 attr_len
= strlen (attr
);
2599 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2603 || attr
[attr_len
- 2] != '_'
2604 || attr
[attr_len
- 1] != '_')
2606 if (ident_len
== attr_len
- 4
2607 && strncmp (attr
+ 2, p
, attr_len
- 4) == 0)
2612 if (ident_len
== attr_len
+ 4
2613 && p
[0] == '_' && p
[1] == '_'
2614 && p
[ident_len
- 2] == '_' && p
[ident_len
- 1] == '_'
2615 && strncmp (attr
, p
+ 2, attr_len
) == 0)
2622 /* Given an attribute name and a list of attributes, return a pointer to the
2623 attribute's list element if the attribute is part of the list, or NULL_TREE
2624 if not found. If the attribute appears more than once, this only
2625 returns the first occurrence; the TREE_CHAIN of the return value should
2626 be passed back in if further occurrences are wanted. */
2629 lookup_attribute (attr_name
, list
)
2630 const char *attr_name
;
2635 for (l
= list
; l
; l
= TREE_CHAIN (l
))
2637 if (TREE_CODE (TREE_PURPOSE (l
)) != IDENTIFIER_NODE
)
2639 if (is_attribute_p (attr_name
, TREE_PURPOSE (l
)))
2646 /* Return an attribute list that is the union of a1 and a2. */
2649 merge_attributes (a1
, a2
)
2654 /* Either one unset? Take the set one. */
2656 if ((attributes
= a1
) == 0)
2659 /* One that completely contains the other? Take it. */
2661 else if (a2
!= 0 && ! attribute_list_contained (a1
, a2
))
2663 if (attribute_list_contained (a2
, a1
))
2667 /* Pick the longest list, and hang on the other list. */
2669 if (list_length (a1
) < list_length (a2
))
2670 attributes
= a2
, a2
= a1
;
2672 for (; a2
!= 0; a2
= TREE_CHAIN (a2
))
2675 for (a
= lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2
)),
2678 a
= lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2
)),
2681 if (simple_cst_equal (TREE_VALUE (a
), TREE_VALUE (a2
)) == 1)
2686 a1
= copy_node (a2
);
2687 TREE_CHAIN (a1
) = attributes
;
2696 /* Given types T1 and T2, merge their attributes and return
2700 merge_type_attributes (t1
, t2
)
2703 return merge_attributes (TYPE_ATTRIBUTES (t1
),
2704 TYPE_ATTRIBUTES (t2
));
2707 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
2711 merge_decl_attributes (olddecl
, newdecl
)
2712 tree olddecl
, newdecl
;
2714 return merge_attributes (DECL_ATTRIBUTES (olddecl
),
2715 DECL_ATTRIBUTES (newdecl
));
2718 #ifdef TARGET_DLLIMPORT_DECL_ATTRIBUTES
2720 /* Specialization of merge_decl_attributes for various Windows targets.
2722 This handles the following situation:
2724 __declspec (dllimport) int foo;
2727 The second instance of `foo' nullifies the dllimport. */
2730 merge_dllimport_decl_attributes (old
, new)
2735 int delete_dllimport_p
;
2737 old
= DECL_ATTRIBUTES (old
);
2738 new = DECL_ATTRIBUTES (new);
2740 /* What we need to do here is remove from `old' dllimport if it doesn't
2741 appear in `new'. dllimport behaves like extern: if a declaration is
2742 marked dllimport and a definition appears later, then the object
2743 is not dllimport'd. */
2744 if (lookup_attribute ("dllimport", old
) != NULL_TREE
2745 && lookup_attribute ("dllimport", new) == NULL_TREE
)
2746 delete_dllimport_p
= 1;
2748 delete_dllimport_p
= 0;
2750 a
= merge_attributes (old
, new);
2752 if (delete_dllimport_p
)
2756 /* Scan the list for dllimport and delete it. */
2757 for (prev
= NULL_TREE
, t
= a
; t
; prev
= t
, t
= TREE_CHAIN (t
))
2759 if (is_attribute_p ("dllimport", TREE_PURPOSE (t
)))
2761 if (prev
== NULL_TREE
)
2764 TREE_CHAIN (prev
) = TREE_CHAIN (t
);
2773 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
2775 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
2776 of the various TYPE_QUAL values. */
2779 set_type_quals (type
, type_quals
)
2783 TYPE_READONLY (type
) = (type_quals
& TYPE_QUAL_CONST
) != 0;
2784 TYPE_VOLATILE (type
) = (type_quals
& TYPE_QUAL_VOLATILE
) != 0;
2785 TYPE_RESTRICT (type
) = (type_quals
& TYPE_QUAL_RESTRICT
) != 0;
2788 /* Return a version of the TYPE, qualified as indicated by the
2789 TYPE_QUALS, if one exists. If no qualified version exists yet,
2790 return NULL_TREE. */
2793 get_qualified_type (type
, type_quals
)
2799 /* Search the chain of variants to see if there is already one there just
2800 like the one we need to have. If so, use that existing one. We must
2801 preserve the TYPE_NAME, since there is code that depends on this. */
2802 for (t
= TYPE_MAIN_VARIANT (type
); t
; t
= TYPE_NEXT_VARIANT (t
))
2803 if (TYPE_QUALS (t
) == type_quals
&& TYPE_NAME (t
) == TYPE_NAME (type
)
2804 && TYPE_CONTEXT (t
) == TYPE_CONTEXT (type
))
2810 /* Like get_qualified_type, but creates the type if it does not
2811 exist. This function never returns NULL_TREE. */
2814 build_qualified_type (type
, type_quals
)
2820 /* See if we already have the appropriate qualified variant. */
2821 t
= get_qualified_type (type
, type_quals
);
2823 /* If not, build it. */
2826 t
= build_type_copy (type
);
2827 set_type_quals (t
, type_quals
);
2833 /* Create a new variant of TYPE, equivalent but distinct.
2834 This is so the caller can modify it. */
2837 build_type_copy (type
)
2840 tree t
, m
= TYPE_MAIN_VARIANT (type
);
2842 t
= copy_node (type
);
2844 TYPE_POINTER_TO (t
) = 0;
2845 TYPE_REFERENCE_TO (t
) = 0;
2847 /* Add this type to the chain of variants of TYPE. */
2848 TYPE_NEXT_VARIANT (t
) = TYPE_NEXT_VARIANT (m
);
2849 TYPE_NEXT_VARIANT (m
) = t
;
2854 /* Hashing of types so that we don't make duplicates.
2855 The entry point is `type_hash_canon'. */
2857 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
2858 with types in the TREE_VALUE slots), by adding the hash codes
2859 of the individual types. */
2862 type_hash_list (list
)
2865 unsigned int hashcode
;
2868 for (hashcode
= 0, tail
= list
; tail
; tail
= TREE_CHAIN (tail
))
2869 hashcode
+= TYPE_HASH (TREE_VALUE (tail
));
2874 /* These are the Hashtable callback functions. */
2876 /* Returns true if the types are equal. */
2879 type_hash_eq (va
, vb
)
2883 const struct type_hash
*a
= va
, *b
= vb
;
2884 if (a
->hash
== b
->hash
2885 && TREE_CODE (a
->type
) == TREE_CODE (b
->type
)
2886 && TREE_TYPE (a
->type
) == TREE_TYPE (b
->type
)
2887 && attribute_list_equal (TYPE_ATTRIBUTES (a
->type
),
2888 TYPE_ATTRIBUTES (b
->type
))
2889 && TYPE_ALIGN (a
->type
) == TYPE_ALIGN (b
->type
)
2890 && (TYPE_MAX_VALUE (a
->type
) == TYPE_MAX_VALUE (b
->type
)
2891 || tree_int_cst_equal (TYPE_MAX_VALUE (a
->type
),
2892 TYPE_MAX_VALUE (b
->type
)))
2893 && (TYPE_MIN_VALUE (a
->type
) == TYPE_MIN_VALUE (b
->type
)
2894 || tree_int_cst_equal (TYPE_MIN_VALUE (a
->type
),
2895 TYPE_MIN_VALUE (b
->type
)))
2896 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
2897 && (TYPE_DOMAIN (a
->type
) == TYPE_DOMAIN (b
->type
)
2898 || (TYPE_DOMAIN (a
->type
)
2899 && TREE_CODE (TYPE_DOMAIN (a
->type
)) == TREE_LIST
2900 && TYPE_DOMAIN (b
->type
)
2901 && TREE_CODE (TYPE_DOMAIN (b
->type
)) == TREE_LIST
2902 && type_list_equal (TYPE_DOMAIN (a
->type
),
2903 TYPE_DOMAIN (b
->type
)))))
2908 /* Return the cached hash value. */
2911 type_hash_hash (item
)
2914 return ((const struct type_hash
*) item
)->hash
;
2917 /* Look in the type hash table for a type isomorphic to TYPE.
2918 If one is found, return it. Otherwise return 0. */
2921 type_hash_lookup (hashcode
, type
)
2922 unsigned int hashcode
;
2925 struct type_hash
*h
, in
;
2927 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
2928 must call that routine before comparing TYPE_ALIGNs. */
2934 h
= htab_find_with_hash (type_hash_table
, &in
, hashcode
);
2940 /* Add an entry to the type-hash-table
2941 for a type TYPE whose hash code is HASHCODE. */
2944 type_hash_add (hashcode
, type
)
2945 unsigned int hashcode
;
2948 struct type_hash
*h
;
2951 h
= (struct type_hash
*) ggc_alloc (sizeof (struct type_hash
));
2954 loc
= htab_find_slot_with_hash (type_hash_table
, h
, hashcode
, INSERT
);
2955 *(struct type_hash
**) loc
= h
;
2958 /* Given TYPE, and HASHCODE its hash code, return the canonical
2959 object for an identical type if one already exists.
2960 Otherwise, return TYPE, and record it as the canonical object
2961 if it is a permanent object.
2963 To use this function, first create a type of the sort you want.
2964 Then compute its hash code from the fields of the type that
2965 make it different from other similar types.
2966 Then call this function and use the value.
2967 This function frees the type you pass in if it is a duplicate. */
2969 /* Set to 1 to debug without canonicalization. Never set by program. */
2970 int debug_no_type_hash
= 0;
2973 type_hash_canon (hashcode
, type
)
2974 unsigned int hashcode
;
2979 if (debug_no_type_hash
)
2982 /* See if the type is in the hash table already. If so, return it.
2983 Otherwise, add the type. */
2984 t1
= type_hash_lookup (hashcode
, type
);
2987 #ifdef GATHER_STATISTICS
2988 tree_node_counts
[(int) t_kind
]--;
2989 tree_node_sizes
[(int) t_kind
] -= sizeof (struct tree_type
);
2995 type_hash_add (hashcode
, type
);
3000 /* See if the data pointed to by the type hash table is marked. We consider
3001 it marked if the type is marked or if a debug type number or symbol
3002 table entry has been made for the type. This reduces the amount of
3003 debugging output and eliminates that dependency of the debug output on
3004 the number of garbage collections. */
3007 type_hash_marked_p (p
)
3010 tree type
= ((struct type_hash
*) p
)->type
;
3012 return ggc_marked_p (type
) || TYPE_SYMTAB_POINTER (type
);
3016 print_type_hash_statistics ()
3018 fprintf (stderr
, "Type hash: size %ld, %ld elements, %f collisions\n",
3019 (long) htab_size (type_hash_table
),
3020 (long) htab_elements (type_hash_table
),
3021 htab_collisions (type_hash_table
));
3024 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3025 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3026 by adding the hash codes of the individual attributes. */
3029 attribute_hash_list (list
)
3032 unsigned int hashcode
;
3035 for (hashcode
= 0, tail
= list
; tail
; tail
= TREE_CHAIN (tail
))
3036 /* ??? Do we want to add in TREE_VALUE too? */
3037 hashcode
+= TYPE_HASH (TREE_PURPOSE (tail
));
3041 /* Given two lists of attributes, return true if list l2 is
3042 equivalent to l1. */
3045 attribute_list_equal (l1
, l2
)
3048 return attribute_list_contained (l1
, l2
)
3049 && attribute_list_contained (l2
, l1
);
3052 /* Given two lists of attributes, return true if list L2 is
3053 completely contained within L1. */
3054 /* ??? This would be faster if attribute names were stored in a canonicalized
3055 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3056 must be used to show these elements are equivalent (which they are). */
3057 /* ??? It's not clear that attributes with arguments will always be handled
3061 attribute_list_contained (l1
, l2
)
3066 /* First check the obvious, maybe the lists are identical. */
3070 /* Maybe the lists are similar. */
3071 for (t1
= l1
, t2
= l2
;
3073 && TREE_PURPOSE (t1
) == TREE_PURPOSE (t2
)
3074 && TREE_VALUE (t1
) == TREE_VALUE (t2
);
3075 t1
= TREE_CHAIN (t1
), t2
= TREE_CHAIN (t2
));
3077 /* Maybe the lists are equal. */
3078 if (t1
== 0 && t2
== 0)
3081 for (; t2
!= 0; t2
= TREE_CHAIN (t2
))
3084 for (attr
= lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2
)), l1
);
3086 attr
= lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2
)),
3089 if (simple_cst_equal (TREE_VALUE (t2
), TREE_VALUE (attr
)) == 1)
3096 if (simple_cst_equal (TREE_VALUE (t2
), TREE_VALUE (attr
)) != 1)
3103 /* Given two lists of types
3104 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3105 return 1 if the lists contain the same types in the same order.
3106 Also, the TREE_PURPOSEs must match. */
3109 type_list_equal (l1
, l2
)
3114 for (t1
= l1
, t2
= l2
; t1
&& t2
; t1
= TREE_CHAIN (t1
), t2
= TREE_CHAIN (t2
))
3115 if (TREE_VALUE (t1
) != TREE_VALUE (t2
)
3116 || (TREE_PURPOSE (t1
) != TREE_PURPOSE (t2
)
3117 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1
), TREE_PURPOSE (t2
))
3118 && (TREE_TYPE (TREE_PURPOSE (t1
))
3119 == TREE_TYPE (TREE_PURPOSE (t2
))))))
3125 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3126 given by TYPE. If the argument list accepts variable arguments,
3127 then this function counts only the ordinary arguments. */
3130 type_num_arguments (type
)
3136 for (t
= TYPE_ARG_TYPES (type
); t
; t
= TREE_CHAIN (t
))
3137 /* If the function does not take a variable number of arguments,
3138 the last element in the list will have type `void'. */
3139 if (VOID_TYPE_P (TREE_VALUE (t
)))
3147 /* Nonzero if integer constants T1 and T2
3148 represent the same constant value. */
3151 tree_int_cst_equal (t1
, t2
)
3157 if (t1
== 0 || t2
== 0)
3160 if (TREE_CODE (t1
) == INTEGER_CST
3161 && TREE_CODE (t2
) == INTEGER_CST
3162 && TREE_INT_CST_LOW (t1
) == TREE_INT_CST_LOW (t2
)
3163 && TREE_INT_CST_HIGH (t1
) == TREE_INT_CST_HIGH (t2
))
3169 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3170 The precise way of comparison depends on their data type. */
3173 tree_int_cst_lt (t1
, t2
)
3179 if (TREE_UNSIGNED (TREE_TYPE (t1
)) != TREE_UNSIGNED (TREE_TYPE (t2
)))
3181 int t1_sgn
= tree_int_cst_sgn (t1
);
3182 int t2_sgn
= tree_int_cst_sgn (t2
);
3184 if (t1_sgn
< t2_sgn
)
3186 else if (t1_sgn
> t2_sgn
)
3188 /* Otherwise, both are non-negative, so we compare them as
3189 unsigned just in case one of them would overflow a signed
3192 else if (! TREE_UNSIGNED (TREE_TYPE (t1
)))
3193 return INT_CST_LT (t1
, t2
);
3195 return INT_CST_LT_UNSIGNED (t1
, t2
);
3198 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3201 tree_int_cst_compare (t1
, t2
)
3205 if (tree_int_cst_lt (t1
, t2
))
3207 else if (tree_int_cst_lt (t2
, t1
))
3213 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
3214 the host. If POS is zero, the value can be represented in a single
3215 HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
3216 be represented in a single unsigned HOST_WIDE_INT. */
3219 host_integerp (t
, pos
)
3223 return (TREE_CODE (t
) == INTEGER_CST
3224 && ! TREE_OVERFLOW (t
)
3225 && ((TREE_INT_CST_HIGH (t
) == 0
3226 && (HOST_WIDE_INT
) TREE_INT_CST_LOW (t
) >= 0)
3227 || (! pos
&& TREE_INT_CST_HIGH (t
) == -1
3228 && (HOST_WIDE_INT
) TREE_INT_CST_LOW (t
) < 0
3229 && ! TREE_UNSIGNED (TREE_TYPE (t
)))
3230 || (pos
&& TREE_INT_CST_HIGH (t
) == 0)));
3233 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3234 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3235 be positive. Abort if we cannot satisfy the above conditions. */
3238 tree_low_cst (t
, pos
)
3242 if (host_integerp (t
, pos
))
3243 return TREE_INT_CST_LOW (t
);
3248 /* Return the most significant bit of the integer constant T. */
3251 tree_int_cst_msb (t
)
3256 unsigned HOST_WIDE_INT l
;
3258 /* Note that using TYPE_PRECISION here is wrong. We care about the
3259 actual bits, not the (arbitrary) range of the type. */
3260 prec
= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t
))) - 1;
3261 rshift_double (TREE_INT_CST_LOW (t
), TREE_INT_CST_HIGH (t
), prec
,
3262 2 * HOST_BITS_PER_WIDE_INT
, &l
, &h
, 0);
3263 return (l
& 1) == 1;
3266 /* Return an indication of the sign of the integer constant T.
3267 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3268 Note that -1 will never be returned it T's type is unsigned. */
3271 tree_int_cst_sgn (t
)
3274 if (TREE_INT_CST_LOW (t
) == 0 && TREE_INT_CST_HIGH (t
) == 0)
3276 else if (TREE_UNSIGNED (TREE_TYPE (t
)))
3278 else if (TREE_INT_CST_HIGH (t
) < 0)
3284 /* Compare two constructor-element-type constants. Return 1 if the lists
3285 are known to be equal; otherwise return 0. */
3288 simple_cst_list_equal (l1
, l2
)
3291 while (l1
!= NULL_TREE
&& l2
!= NULL_TREE
)
3293 if (simple_cst_equal (TREE_VALUE (l1
), TREE_VALUE (l2
)) != 1)
3296 l1
= TREE_CHAIN (l1
);
3297 l2
= TREE_CHAIN (l2
);
3303 /* Return truthvalue of whether T1 is the same tree structure as T2.
3304 Return 1 if they are the same.
3305 Return 0 if they are understandably different.
3306 Return -1 if either contains tree structure not understood by
3310 simple_cst_equal (t1
, t2
)
3313 enum tree_code code1
, code2
;
3319 if (t1
== 0 || t2
== 0)
3322 code1
= TREE_CODE (t1
);
3323 code2
= TREE_CODE (t2
);
3325 if (code1
== NOP_EXPR
|| code1
== CONVERT_EXPR
|| code1
== NON_LVALUE_EXPR
)
3327 if (code2
== NOP_EXPR
|| code2
== CONVERT_EXPR
3328 || code2
== NON_LVALUE_EXPR
)
3329 return simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
3331 return simple_cst_equal (TREE_OPERAND (t1
, 0), t2
);
3334 else if (code2
== NOP_EXPR
|| code2
== CONVERT_EXPR
3335 || code2
== NON_LVALUE_EXPR
)
3336 return simple_cst_equal (t1
, TREE_OPERAND (t2
, 0));
3344 return (TREE_INT_CST_LOW (t1
) == TREE_INT_CST_LOW (t2
)
3345 && TREE_INT_CST_HIGH (t1
) == TREE_INT_CST_HIGH (t2
));
3348 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1
), TREE_REAL_CST (t2
));
3351 return (TREE_STRING_LENGTH (t1
) == TREE_STRING_LENGTH (t2
)
3352 && ! memcmp (TREE_STRING_POINTER (t1
), TREE_STRING_POINTER (t2
),
3353 TREE_STRING_LENGTH (t1
)));
3356 if (CONSTRUCTOR_ELTS (t1
) == CONSTRUCTOR_ELTS (t2
))
3362 return simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
3365 cmp
= simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
3369 simple_cst_list_equal (TREE_OPERAND (t1
, 1), TREE_OPERAND (t2
, 1));
3372 /* Special case: if either target is an unallocated VAR_DECL,
3373 it means that it's going to be unified with whatever the
3374 TARGET_EXPR is really supposed to initialize, so treat it
3375 as being equivalent to anything. */
3376 if ((TREE_CODE (TREE_OPERAND (t1
, 0)) == VAR_DECL
3377 && DECL_NAME (TREE_OPERAND (t1
, 0)) == NULL_TREE
3378 && !DECL_RTL_SET_P (TREE_OPERAND (t1
, 0)))
3379 || (TREE_CODE (TREE_OPERAND (t2
, 0)) == VAR_DECL
3380 && DECL_NAME (TREE_OPERAND (t2
, 0)) == NULL_TREE
3381 && !DECL_RTL_SET_P (TREE_OPERAND (t2
, 0))))
3384 cmp
= simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
3389 return simple_cst_equal (TREE_OPERAND (t1
, 1), TREE_OPERAND (t2
, 1));
3391 case WITH_CLEANUP_EXPR
:
3392 cmp
= simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
3396 return simple_cst_equal (TREE_OPERAND (t1
, 1), TREE_OPERAND (t1
, 1));
3399 if (TREE_OPERAND (t1
, 1) == TREE_OPERAND (t2
, 1))
3400 return simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
3414 /* This general rule works for most tree codes. All exceptions should be
3415 handled above. If this is a language-specific tree code, we can't
3416 trust what might be in the operand, so say we don't know
3418 if ((int) code1
>= (int) LAST_AND_UNUSED_TREE_CODE
)
3421 switch (TREE_CODE_CLASS (code1
))
3430 for (i
= 0; i
< TREE_CODE_LENGTH (code1
); i
++)
3432 cmp
= simple_cst_equal (TREE_OPERAND (t1
, i
), TREE_OPERAND (t2
, i
));
3444 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3445 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3446 than U, respectively. */
3449 compare_tree_int (t
, u
)
3451 unsigned HOST_WIDE_INT u
;
3453 if (tree_int_cst_sgn (t
) < 0)
3455 else if (TREE_INT_CST_HIGH (t
) != 0)
3457 else if (TREE_INT_CST_LOW (t
) == u
)
3459 else if (TREE_INT_CST_LOW (t
) < u
)
3465 /* Constructors for pointer, array and function types.
3466 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3467 constructed by language-dependent code, not here.) */
3469 /* Construct, lay out and return the type of pointers to TO_TYPE
3470 with mode MODE. If such a type has already been constructed,
3474 build_pointer_type_for_mode (to_type
, mode
)
3476 enum machine_mode mode
;
3478 tree t
= TYPE_POINTER_TO (to_type
);
3480 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3481 if (t
!= 0 && mode
== ptr_mode
)
3484 t
= make_node (POINTER_TYPE
);
3486 TREE_TYPE (t
) = to_type
;
3487 TYPE_MODE (t
) = mode
;
3489 /* Record this type as the pointer to TO_TYPE. */
3490 if (mode
== ptr_mode
)
3491 TYPE_POINTER_TO (to_type
) = t
;
3493 /* Lay out the type. This function has many callers that are concerned
3494 with expression-construction, and this simplifies them all.
3495 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
3501 /* By default build pointers in ptr_mode. */
3504 build_pointer_type (to_type
)
3507 return build_pointer_type_for_mode (to_type
, ptr_mode
);
3510 /* Construct, lay out and return the type of references to TO_TYPE
3511 with mode MODE. If such a type has already been constructed,
3515 build_reference_type_for_mode (to_type
, mode
)
3517 enum machine_mode mode
;
3519 tree t
= TYPE_REFERENCE_TO (to_type
);
3521 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3522 if (t
!= 0 && mode
== ptr_mode
)
3525 t
= make_node (REFERENCE_TYPE
);
3527 TREE_TYPE (t
) = to_type
;
3528 TYPE_MODE (t
) = mode
;
3530 /* Record this type as the pointer to TO_TYPE. */
3531 if (mode
== ptr_mode
)
3532 TYPE_REFERENCE_TO (to_type
) = t
;
3540 /* Build the node for the type of references-to-TO_TYPE by default
3544 build_reference_type (to_type
)
3547 return build_reference_type_for_mode (to_type
, ptr_mode
);
3550 /* Build a type that is compatible with t but has no cv quals anywhere
3553 const char *const *const * -> char ***. */
3556 build_type_no_quals (t
)
3559 switch (TREE_CODE (t
))
3562 return build_pointer_type (build_type_no_quals (TREE_TYPE (t
)));
3563 case REFERENCE_TYPE
:
3564 return build_reference_type (build_type_no_quals (TREE_TYPE (t
)));
3566 return TYPE_MAIN_VARIANT (t
);
3570 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
3571 MAXVAL should be the maximum value in the domain
3572 (one less than the length of the array).
3574 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
3575 We don't enforce this limit, that is up to caller (e.g. language front end).
3576 The limit exists because the result is a signed type and we don't handle
3577 sizes that use more than one HOST_WIDE_INT. */
3580 build_index_type (maxval
)
3583 tree itype
= make_node (INTEGER_TYPE
);
3585 TREE_TYPE (itype
) = sizetype
;
3586 TYPE_PRECISION (itype
) = TYPE_PRECISION (sizetype
);
3587 TYPE_MIN_VALUE (itype
) = size_zero_node
;
3588 TYPE_MAX_VALUE (itype
) = convert (sizetype
, maxval
);
3589 TYPE_MODE (itype
) = TYPE_MODE (sizetype
);
3590 TYPE_SIZE (itype
) = TYPE_SIZE (sizetype
);
3591 TYPE_SIZE_UNIT (itype
) = TYPE_SIZE_UNIT (sizetype
);
3592 TYPE_ALIGN (itype
) = TYPE_ALIGN (sizetype
);
3593 TYPE_USER_ALIGN (itype
) = TYPE_USER_ALIGN (sizetype
);
3595 if (host_integerp (maxval
, 1))
3596 return type_hash_canon (tree_low_cst (maxval
, 1), itype
);
3601 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
3602 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
3603 low bound LOWVAL and high bound HIGHVAL.
3604 if TYPE==NULL_TREE, sizetype is used. */
3607 build_range_type (type
, lowval
, highval
)
3608 tree type
, lowval
, highval
;
3610 tree itype
= make_node (INTEGER_TYPE
);
3612 TREE_TYPE (itype
) = type
;
3613 if (type
== NULL_TREE
)
3616 TYPE_MIN_VALUE (itype
) = convert (type
, lowval
);
3617 TYPE_MAX_VALUE (itype
) = highval
? convert (type
, highval
) : NULL
;
3619 TYPE_PRECISION (itype
) = TYPE_PRECISION (type
);
3620 TYPE_MODE (itype
) = TYPE_MODE (type
);
3621 TYPE_SIZE (itype
) = TYPE_SIZE (type
);
3622 TYPE_SIZE_UNIT (itype
) = TYPE_SIZE_UNIT (type
);
3623 TYPE_ALIGN (itype
) = TYPE_ALIGN (type
);
3624 TYPE_USER_ALIGN (itype
) = TYPE_USER_ALIGN (type
);
3626 if (host_integerp (lowval
, 0) && highval
!= 0 && host_integerp (highval
, 0))
3627 return type_hash_canon (tree_low_cst (highval
, 0)
3628 - tree_low_cst (lowval
, 0),
3634 /* Just like build_index_type, but takes lowval and highval instead
3635 of just highval (maxval). */
3638 build_index_2_type (lowval
, highval
)
3639 tree lowval
, highval
;
3641 return build_range_type (sizetype
, lowval
, highval
);
3644 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
3645 and number of elements specified by the range of values of INDEX_TYPE.
3646 If such a type has already been constructed, reuse it. */
3649 build_array_type (elt_type
, index_type
)
3650 tree elt_type
, index_type
;
3653 unsigned int hashcode
;
3655 if (TREE_CODE (elt_type
) == FUNCTION_TYPE
)
3657 error ("arrays of functions are not meaningful");
3658 elt_type
= integer_type_node
;
3661 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
3662 build_pointer_type (elt_type
);
3664 /* Allocate the array after the pointer type,
3665 in case we free it in type_hash_canon. */
3666 t
= make_node (ARRAY_TYPE
);
3667 TREE_TYPE (t
) = elt_type
;
3668 TYPE_DOMAIN (t
) = index_type
;
3670 if (index_type
== 0)
3675 hashcode
= TYPE_HASH (elt_type
) + TYPE_HASH (index_type
);
3676 t
= type_hash_canon (hashcode
, t
);
3678 if (!COMPLETE_TYPE_P (t
))
3683 /* Return the TYPE of the elements comprising
3684 the innermost dimension of ARRAY. */
3687 get_inner_array_type (array
)
3690 tree type
= TREE_TYPE (array
);
3692 while (TREE_CODE (type
) == ARRAY_TYPE
)
3693 type
= TREE_TYPE (type
);
3698 /* Construct, lay out and return
3699 the type of functions returning type VALUE_TYPE
3700 given arguments of types ARG_TYPES.
3701 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
3702 are data type nodes for the arguments of the function.
3703 If such a type has already been constructed, reuse it. */
3706 build_function_type (value_type
, arg_types
)
3707 tree value_type
, arg_types
;
3710 unsigned int hashcode
;
3712 if (TREE_CODE (value_type
) == FUNCTION_TYPE
)
3714 error ("function return type cannot be function");
3715 value_type
= integer_type_node
;
3718 /* Make a node of the sort we want. */
3719 t
= make_node (FUNCTION_TYPE
);
3720 TREE_TYPE (t
) = value_type
;
3721 TYPE_ARG_TYPES (t
) = arg_types
;
3723 /* If we already have such a type, use the old one and free this one. */
3724 hashcode
= TYPE_HASH (value_type
) + type_hash_list (arg_types
);
3725 t
= type_hash_canon (hashcode
, t
);
3727 if (!COMPLETE_TYPE_P (t
))
3732 /* Build a function type. The RETURN_TYPE is the type retured by the
3733 function. If additional arguments are provided, they are
3734 additional argument types. The list of argument types must always
3735 be terminated by NULL_TREE. */
3738 build_function_type_list
VPARAMS ((tree return_type
, ...))
3742 VA_OPEN (p
, return_type
);
3743 VA_FIXEDARG (p
, tree
, return_type
);
3745 t
= va_arg (p
, tree
);
3746 for (args
= NULL_TREE
; t
!= NULL_TREE
; t
= va_arg (p
, tree
))
3747 args
= tree_cons (NULL_TREE
, t
, args
);
3750 args
= nreverse (args
);
3751 TREE_CHAIN (last
) = void_list_node
;
3752 args
= build_function_type (return_type
, args
);
3758 /* Construct, lay out and return the type of methods belonging to class
3759 BASETYPE and whose arguments and values are described by TYPE.
3760 If that type exists already, reuse it.
3761 TYPE must be a FUNCTION_TYPE node. */
3764 build_method_type (basetype
, type
)
3765 tree basetype
, type
;
3768 unsigned int hashcode
;
3770 /* Make a node of the sort we want. */
3771 t
= make_node (METHOD_TYPE
);
3773 if (TREE_CODE (type
) != FUNCTION_TYPE
)
3776 TYPE_METHOD_BASETYPE (t
) = TYPE_MAIN_VARIANT (basetype
);
3777 TREE_TYPE (t
) = TREE_TYPE (type
);
3779 /* The actual arglist for this function includes a "hidden" argument
3780 which is "this". Put it into the list of argument types. */
3783 = tree_cons (NULL_TREE
,
3784 build_pointer_type (basetype
), TYPE_ARG_TYPES (type
));
3786 /* If we already have such a type, use the old one and free this one. */
3787 hashcode
= TYPE_HASH (basetype
) + TYPE_HASH (type
);
3788 t
= type_hash_canon (hashcode
, t
);
3790 if (!COMPLETE_TYPE_P (t
))
3796 /* Construct, lay out and return the type of offsets to a value
3797 of type TYPE, within an object of type BASETYPE.
3798 If a suitable offset type exists already, reuse it. */
3801 build_offset_type (basetype
, type
)
3802 tree basetype
, type
;
3805 unsigned int hashcode
;
3807 /* Make a node of the sort we want. */
3808 t
= make_node (OFFSET_TYPE
);
3810 TYPE_OFFSET_BASETYPE (t
) = TYPE_MAIN_VARIANT (basetype
);
3811 TREE_TYPE (t
) = type
;
3813 /* If we already have such a type, use the old one and free this one. */
3814 hashcode
= TYPE_HASH (basetype
) + TYPE_HASH (type
);
3815 t
= type_hash_canon (hashcode
, t
);
3817 if (!COMPLETE_TYPE_P (t
))
3823 /* Create a complex type whose components are COMPONENT_TYPE. */
3826 build_complex_type (component_type
)
3827 tree component_type
;
3830 unsigned int hashcode
;
3832 /* Make a node of the sort we want. */
3833 t
= make_node (COMPLEX_TYPE
);
3835 TREE_TYPE (t
) = TYPE_MAIN_VARIANT (component_type
);
3836 set_type_quals (t
, TYPE_QUALS (component_type
));
3838 /* If we already have such a type, use the old one and free this one. */
3839 hashcode
= TYPE_HASH (component_type
);
3840 t
= type_hash_canon (hashcode
, t
);
3842 if (!COMPLETE_TYPE_P (t
))
3845 /* If we are writing Dwarf2 output we need to create a name,
3846 since complex is a fundamental type. */
3847 if ((write_symbols
== DWARF2_DEBUG
|| write_symbols
== VMS_AND_DWARF2_DEBUG
)
3851 if (component_type
== char_type_node
)
3852 name
= "complex char";
3853 else if (component_type
== signed_char_type_node
)
3854 name
= "complex signed char";
3855 else if (component_type
== unsigned_char_type_node
)
3856 name
= "complex unsigned char";
3857 else if (component_type
== short_integer_type_node
)
3858 name
= "complex short int";
3859 else if (component_type
== short_unsigned_type_node
)
3860 name
= "complex short unsigned int";
3861 else if (component_type
== integer_type_node
)
3862 name
= "complex int";
3863 else if (component_type
== unsigned_type_node
)
3864 name
= "complex unsigned int";
3865 else if (component_type
== long_integer_type_node
)
3866 name
= "complex long int";
3867 else if (component_type
== long_unsigned_type_node
)
3868 name
= "complex long unsigned int";
3869 else if (component_type
== long_long_integer_type_node
)
3870 name
= "complex long long int";
3871 else if (component_type
== long_long_unsigned_type_node
)
3872 name
= "complex long long unsigned int";
3877 TYPE_NAME (t
) = get_identifier (name
);
3883 /* Return OP, stripped of any conversions to wider types as much as is safe.
3884 Converting the value back to OP's type makes a value equivalent to OP.
3886 If FOR_TYPE is nonzero, we return a value which, if converted to
3887 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
3889 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
3890 narrowest type that can hold the value, even if they don't exactly fit.
3891 Otherwise, bit-field references are changed to a narrower type
3892 only if they can be fetched directly from memory in that type.
3894 OP must have integer, real or enumeral type. Pointers are not allowed!
3896 There are some cases where the obvious value we could return
3897 would regenerate to OP if converted to OP's type,
3898 but would not extend like OP to wider types.
3899 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
3900 For example, if OP is (unsigned short)(signed char)-1,
3901 we avoid returning (signed char)-1 if FOR_TYPE is int,
3902 even though extending that to an unsigned short would regenerate OP,
3903 since the result of extending (signed char)-1 to (int)
3904 is different from (int) OP. */
3907 get_unwidened (op
, for_type
)
3911 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
3912 tree type
= TREE_TYPE (op
);
3914 = TYPE_PRECISION (for_type
!= 0 ? for_type
: type
);
3916 = (for_type
!= 0 && for_type
!= type
3917 && final_prec
> TYPE_PRECISION (type
)
3918 && TREE_UNSIGNED (type
));
3921 while (TREE_CODE (op
) == NOP_EXPR
)
3924 = TYPE_PRECISION (TREE_TYPE (op
))
3925 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op
, 0)));
3927 /* Truncations are many-one so cannot be removed.
3928 Unless we are later going to truncate down even farther. */
3930 && final_prec
> TYPE_PRECISION (TREE_TYPE (op
)))
3933 /* See what's inside this conversion. If we decide to strip it,
3935 op
= TREE_OPERAND (op
, 0);
3937 /* If we have not stripped any zero-extensions (uns is 0),
3938 we can strip any kind of extension.
3939 If we have previously stripped a zero-extension,
3940 only zero-extensions can safely be stripped.
3941 Any extension can be stripped if the bits it would produce
3942 are all going to be discarded later by truncating to FOR_TYPE. */
3946 if (! uns
|| final_prec
<= TYPE_PRECISION (TREE_TYPE (op
)))
3948 /* TREE_UNSIGNED says whether this is a zero-extension.
3949 Let's avoid computing it if it does not affect WIN
3950 and if UNS will not be needed again. */
3951 if ((uns
|| TREE_CODE (op
) == NOP_EXPR
)
3952 && TREE_UNSIGNED (TREE_TYPE (op
)))
3960 if (TREE_CODE (op
) == COMPONENT_REF
3961 /* Since type_for_size always gives an integer type. */
3962 && TREE_CODE (type
) != REAL_TYPE
3963 /* Don't crash if field not laid out yet. */
3964 && DECL_SIZE (TREE_OPERAND (op
, 1)) != 0
3965 && host_integerp (DECL_SIZE (TREE_OPERAND (op
, 1)), 1))
3967 unsigned int innerprec
3968 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op
, 1)), 1);
3969 int unsignedp
= TREE_UNSIGNED (TREE_OPERAND (op
, 1));
3970 type
= (*lang_hooks
.types
.type_for_size
) (innerprec
, unsignedp
);
3972 /* We can get this structure field in the narrowest type it fits in.
3973 If FOR_TYPE is 0, do this only for a field that matches the
3974 narrower type exactly and is aligned for it
3975 The resulting extension to its nominal type (a fullword type)
3976 must fit the same conditions as for other extensions. */
3978 if (innerprec
< TYPE_PRECISION (TREE_TYPE (op
))
3979 && (for_type
|| ! DECL_BIT_FIELD (TREE_OPERAND (op
, 1)))
3980 && (! uns
|| final_prec
<= innerprec
|| unsignedp
)
3983 win
= build (COMPONENT_REF
, type
, TREE_OPERAND (op
, 0),
3984 TREE_OPERAND (op
, 1));
3985 TREE_SIDE_EFFECTS (win
) = TREE_SIDE_EFFECTS (op
);
3986 TREE_THIS_VOLATILE (win
) = TREE_THIS_VOLATILE (op
);
3993 /* Return OP or a simpler expression for a narrower value
3994 which can be sign-extended or zero-extended to give back OP.
3995 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
3996 or 0 if the value should be sign-extended. */
3999 get_narrower (op
, unsignedp_ptr
)
4007 while (TREE_CODE (op
) == NOP_EXPR
)
4010 = (TYPE_PRECISION (TREE_TYPE (op
))
4011 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op
, 0))));
4013 /* Truncations are many-one so cannot be removed. */
4017 /* See what's inside this conversion. If we decide to strip it,
4022 op
= TREE_OPERAND (op
, 0);
4023 /* An extension: the outermost one can be stripped,
4024 but remember whether it is zero or sign extension. */
4026 uns
= TREE_UNSIGNED (TREE_TYPE (op
));
4027 /* Otherwise, if a sign extension has been stripped,
4028 only sign extensions can now be stripped;
4029 if a zero extension has been stripped, only zero-extensions. */
4030 else if (uns
!= TREE_UNSIGNED (TREE_TYPE (op
)))
4034 else /* bitschange == 0 */
4036 /* A change in nominal type can always be stripped, but we must
4037 preserve the unsignedness. */
4039 uns
= TREE_UNSIGNED (TREE_TYPE (op
));
4041 op
= TREE_OPERAND (op
, 0);
4047 if (TREE_CODE (op
) == COMPONENT_REF
4048 /* Since type_for_size always gives an integer type. */
4049 && TREE_CODE (TREE_TYPE (op
)) != REAL_TYPE
4050 /* Ensure field is laid out already. */
4051 && DECL_SIZE (TREE_OPERAND (op
, 1)) != 0)
4053 unsigned HOST_WIDE_INT innerprec
4054 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op
, 1)), 1);
4055 tree type
= (*lang_hooks
.types
.type_for_size
) (innerprec
,
4056 TREE_UNSIGNED (op
));
4058 /* We can get this structure field in a narrower type that fits it,
4059 but the resulting extension to its nominal type (a fullword type)
4060 must satisfy the same conditions as for other extensions.
4062 Do this only for fields that are aligned (not bit-fields),
4063 because when bit-field insns will be used there is no
4064 advantage in doing this. */
4066 if (innerprec
< TYPE_PRECISION (TREE_TYPE (op
))
4067 && ! DECL_BIT_FIELD (TREE_OPERAND (op
, 1))
4068 && (first
|| uns
== TREE_UNSIGNED (TREE_OPERAND (op
, 1)))
4072 uns
= TREE_UNSIGNED (TREE_OPERAND (op
, 1));
4073 win
= build (COMPONENT_REF
, type
, TREE_OPERAND (op
, 0),
4074 TREE_OPERAND (op
, 1));
4075 TREE_SIDE_EFFECTS (win
) = TREE_SIDE_EFFECTS (op
);
4076 TREE_THIS_VOLATILE (win
) = TREE_THIS_VOLATILE (op
);
4079 *unsignedp_ptr
= uns
;
4083 /* Nonzero if integer constant C has a value that is permissible
4084 for type TYPE (an INTEGER_TYPE). */
4087 int_fits_type_p (c
, type
)
4090 tree type_low_bound
= TYPE_MIN_VALUE (type
);
4091 tree type_high_bound
= TYPE_MAX_VALUE (type
);
4092 int ok_for_low_bound
, ok_for_high_bound
;
4094 /* Perform some generic filtering first, which may allow making a decision
4095 even if the bounds are not constant. First, negative integers never fit
4096 in unsigned types, */
4097 if ((TREE_UNSIGNED (type
) && tree_int_cst_sgn (c
) < 0)
4098 /* Also, unsigned integers with top bit set never fit signed types. */
4099 || (! TREE_UNSIGNED (type
)
4100 && TREE_UNSIGNED (TREE_TYPE (c
)) && tree_int_cst_msb (c
)))
4103 /* If at least one bound of the type is a constant integer, we can check
4104 ourselves and maybe make a decision. If no such decision is possible, but
4105 this type is a subtype, try checking against that. Otherwise, use
4106 force_fit_type, which checks against the precision.
4108 Compute the status for each possibly constant bound, and return if we see
4109 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
4110 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
4111 for "constant known to fit". */
4113 ok_for_low_bound
= -1;
4114 ok_for_high_bound
= -1;
4116 /* Check if C >= type_low_bound. */
4117 if (type_low_bound
&& TREE_CODE (type_low_bound
) == INTEGER_CST
)
4119 ok_for_low_bound
= ! tree_int_cst_lt (c
, type_low_bound
);
4120 if (! ok_for_low_bound
)
4124 /* Check if c <= type_high_bound. */
4125 if (type_high_bound
&& TREE_CODE (type_high_bound
) == INTEGER_CST
)
4127 ok_for_high_bound
= ! tree_int_cst_lt (type_high_bound
, c
);
4128 if (! ok_for_high_bound
)
4132 /* If the constant fits both bounds, the result is known. */
4133 if (ok_for_low_bound
== 1 && ok_for_high_bound
== 1)
4136 /* If we haven't been able to decide at this point, there nothing more we
4137 can check ourselves here. Look at the base type if we have one. */
4138 else if (TREE_CODE (type
) == INTEGER_TYPE
&& TREE_TYPE (type
) != 0)
4139 return int_fits_type_p (c
, TREE_TYPE (type
));
4141 /* Or to force_fit_type, if nothing else. */
4145 TREE_TYPE (c
) = type
;
4146 return !force_fit_type (c
, 0);
4150 /* Returns true if T is, contains, or refers to a type with variable
4151 size. This concept is more general than that of C99 'variably
4152 modified types': in C99, a struct type is never variably modified
4153 because a VLA may not appear as a structure member. However, in
4156 struct S { int i[f()]; };
4158 is valid, and other languages may define similar constructs. */
4161 variably_modified_type_p (type
)
4164 if (type
== error_mark_node
)
4167 /* If TYPE itself has variable size, it is variably modified.
4169 We do not yet have a representation of the C99 '[*]' syntax.
4170 When a representation is chosen, this function should be modified
4171 to test for that case as well. */
4172 if (TYPE_SIZE (type
)
4173 && TYPE_SIZE (type
) != error_mark_node
4174 && TREE_CODE (TYPE_SIZE (type
)) != INTEGER_CST
)
4177 /* If TYPE is a pointer or reference, it is variably modified if
4178 the type pointed to is variably modified. */
4179 if ((TREE_CODE (type
) == POINTER_TYPE
4180 || TREE_CODE (type
) == REFERENCE_TYPE
)
4181 && variably_modified_type_p (TREE_TYPE (type
)))
4184 /* If TYPE is an array, it is variably modified if the array
4185 elements are. (Note that the VLA case has already been checked
4187 if (TREE_CODE (type
) == ARRAY_TYPE
4188 && variably_modified_type_p (TREE_TYPE (type
)))
4191 /* If TYPE is a function type, it is variably modified if any of the
4192 parameters or the return type are variably modified. */
4193 if (TREE_CODE (type
) == FUNCTION_TYPE
4194 || TREE_CODE (type
) == METHOD_TYPE
)
4198 if (variably_modified_type_p (TREE_TYPE (type
)))
4200 for (parm
= TYPE_ARG_TYPES (type
);
4201 parm
&& parm
!= void_list_node
;
4202 parm
= TREE_CHAIN (parm
))
4203 if (variably_modified_type_p (TREE_VALUE (parm
)))
4207 /* The current language may have other cases to check, but in general,
4208 all other types are not variably modified. */
4209 return (*lang_hooks
.tree_inlining
.var_mod_type_p
) (type
);
4212 /* Given a DECL or TYPE, return the scope in which it was declared, or
4213 NULL_TREE if there is no containing scope. */
4216 get_containing_scope (t
)
4219 return (TYPE_P (t
) ? TYPE_CONTEXT (t
) : DECL_CONTEXT (t
));
4222 /* Return the innermost context enclosing DECL that is
4223 a FUNCTION_DECL, or zero if none. */
4226 decl_function_context (decl
)
4231 if (TREE_CODE (decl
) == ERROR_MARK
)
4234 if (TREE_CODE (decl
) == SAVE_EXPR
)
4235 context
= SAVE_EXPR_CONTEXT (decl
);
4237 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4238 where we look up the function at runtime. Such functions always take
4239 a first argument of type 'pointer to real context'.
4241 C++ should really be fixed to use DECL_CONTEXT for the real context,
4242 and use something else for the "virtual context". */
4243 else if (TREE_CODE (decl
) == FUNCTION_DECL
&& DECL_VINDEX (decl
))
4246 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl
)))));
4248 context
= DECL_CONTEXT (decl
);
4250 while (context
&& TREE_CODE (context
) != FUNCTION_DECL
)
4252 if (TREE_CODE (context
) == BLOCK
)
4253 context
= BLOCK_SUPERCONTEXT (context
);
4255 context
= get_containing_scope (context
);
4261 /* Return the innermost context enclosing DECL that is
4262 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4263 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4266 decl_type_context (decl
)
4269 tree context
= DECL_CONTEXT (decl
);
4273 if (TREE_CODE (context
) == NAMESPACE_DECL
)
4276 if (TREE_CODE (context
) == RECORD_TYPE
4277 || TREE_CODE (context
) == UNION_TYPE
4278 || TREE_CODE (context
) == QUAL_UNION_TYPE
)
4281 if (TREE_CODE (context
) == TYPE_DECL
4282 || TREE_CODE (context
) == FUNCTION_DECL
)
4283 context
= DECL_CONTEXT (context
);
4285 else if (TREE_CODE (context
) == BLOCK
)
4286 context
= BLOCK_SUPERCONTEXT (context
);
4289 /* Unhandled CONTEXT!? */
4295 /* CALL is a CALL_EXPR. Return the declaration for the function
4296 called, or NULL_TREE if the called function cannot be
4300 get_callee_fndecl (call
)
4305 /* It's invalid to call this function with anything but a
4307 if (TREE_CODE (call
) != CALL_EXPR
)
4310 /* The first operand to the CALL is the address of the function
4312 addr
= TREE_OPERAND (call
, 0);
4316 /* If this is a readonly function pointer, extract its initial value. */
4317 if (DECL_P (addr
) && TREE_CODE (addr
) != FUNCTION_DECL
4318 && TREE_READONLY (addr
) && ! TREE_THIS_VOLATILE (addr
)
4319 && DECL_INITIAL (addr
))
4320 addr
= DECL_INITIAL (addr
);
4322 /* If the address is just `&f' for some function `f', then we know
4323 that `f' is being called. */
4324 if (TREE_CODE (addr
) == ADDR_EXPR
4325 && TREE_CODE (TREE_OPERAND (addr
, 0)) == FUNCTION_DECL
)
4326 return TREE_OPERAND (addr
, 0);
4328 /* We couldn't figure out what was being called. */
4332 /* Print debugging information about tree nodes generated during the compile,
4333 and any language-specific information. */
4336 dump_tree_statistics ()
4338 #ifdef GATHER_STATISTICS
4340 int total_nodes
, total_bytes
;
4343 fprintf (stderr
, "\n??? tree nodes created\n\n");
4344 #ifdef GATHER_STATISTICS
4345 fprintf (stderr
, "Kind Nodes Bytes\n");
4346 fprintf (stderr
, "-------------------------------------\n");
4347 total_nodes
= total_bytes
= 0;
4348 for (i
= 0; i
< (int) all_kinds
; i
++)
4350 fprintf (stderr
, "%-20s %6d %9d\n", tree_node_kind_names
[i
],
4351 tree_node_counts
[i
], tree_node_sizes
[i
]);
4352 total_nodes
+= tree_node_counts
[i
];
4353 total_bytes
+= tree_node_sizes
[i
];
4355 fprintf (stderr
, "-------------------------------------\n");
4356 fprintf (stderr
, "%-20s %6d %9d\n", "Total", total_nodes
, total_bytes
);
4357 fprintf (stderr
, "-------------------------------------\n");
4359 fprintf (stderr
, "(No per-node statistics)\n");
4361 print_type_hash_statistics ();
4362 (*lang_hooks
.print_statistics
) ();
4365 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4367 const char *flag_random_seed
;
4369 /* Set up a default flag_random_seed value, if there wasn't one already. */
4372 default_flag_random_seed (void)
4374 unsigned HOST_WIDE_INT value
;
4375 char *new_random_seed
;
4377 if (flag_random_seed
!= NULL
)
4380 /* Get some more or less random data. */
4381 #ifdef HAVE_GETTIMEOFDAY
4385 gettimeofday (&tv
, NULL
);
4386 value
= (((unsigned HOST_WIDE_INT
) tv
.tv_usec
<< 16)
4387 ^ tv
.tv_sec
^ getpid ());
4393 /* This slightly overestimates the space required. */
4394 new_random_seed
= xmalloc (HOST_BITS_PER_WIDE_INT
/ 3 + 2);
4395 sprintf (new_random_seed
, HOST_WIDE_INT_PRINT_UNSIGNED
, value
);
4396 flag_random_seed
= new_random_seed
;
4399 /* Appends 6 random characters to TEMPLATE to (hopefully) avoid name
4400 clashes in cases where we can't reliably choose a unique name.
4402 Derived from mkstemp.c in libiberty. */
4405 append_random_chars (template)
4408 static const char letters
[]
4409 = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
4410 unsigned HOST_WIDE_INT v
;
4413 default_flag_random_seed ();
4415 /* This isn't a very good hash, but it does guarantee no collisions
4416 when the random string is generated by the code above and the time
4419 for (i
= 0; i
< strlen (flag_random_seed
); i
++)
4420 v
= (v
<< 4) ^ (v
>> (HOST_BITS_PER_WIDE_INT
- 4)) ^ flag_random_seed
[i
];
4422 template += strlen (template);
4424 /* Fill in the random bits. */
4425 template[0] = letters
[v
% 62];
4427 template[1] = letters
[v
% 62];
4429 template[2] = letters
[v
% 62];
4431 template[3] = letters
[v
% 62];
4433 template[4] = letters
[v
% 62];
4435 template[5] = letters
[v
% 62];
4440 /* P is a string that will be used in a symbol. Mask out any characters
4441 that are not valid in that context. */
4444 clean_symbol_name (p
)
4449 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4452 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4459 /* Generate a name for a function unique to this translation unit.
4460 TYPE is some string to identify the purpose of this function to the
4461 linker or collect2. */
4464 get_file_function_name_long (type
)
4471 if (first_global_object_name
)
4472 p
= first_global_object_name
;
4475 /* We don't have anything that we know to be unique to this translation
4476 unit, so use what we do have and throw in some randomness. */
4478 const char *name
= weak_global_object_name
;
4479 const char *file
= main_input_filename
;
4484 file
= input_filename
;
4486 q
= (char *) alloca (7 + strlen (name
) + strlen (file
));
4488 sprintf (q
, "%s%s", name
, file
);
4489 append_random_chars (q
);
4493 buf
= (char *) alloca (sizeof (FILE_FUNCTION_FORMAT
) + strlen (p
)
4496 /* Set up the name of the file-level functions we may need.
4497 Use a global object (which is already required to be unique over
4498 the program) rather than the file name (which imposes extra
4500 sprintf (buf
, FILE_FUNCTION_FORMAT
, type
, p
);
4502 /* Don't need to pull weird characters out of global names. */
4503 if (p
!= first_global_object_name
)
4504 clean_symbol_name (buf
+ 11);
4506 return get_identifier (buf
);
4509 /* If KIND=='I', return a suitable global initializer (constructor) name.
4510 If KIND=='D', return a suitable global clean-up (destructor) name. */
4513 get_file_function_name (kind
)
4521 return get_file_function_name_long (p
);
4524 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4525 The result is placed in BUFFER (which has length BIT_SIZE),
4526 with one bit in each char ('\000' or '\001').
4528 If the constructor is constant, NULL_TREE is returned.
4529 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4532 get_set_constructor_bits (init
, buffer
, bit_size
)
4539 HOST_WIDE_INT domain_min
4540 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init
))), 0);
4541 tree non_const_bits
= NULL_TREE
;
4543 for (i
= 0; i
< bit_size
; i
++)
4546 for (vals
= TREE_OPERAND (init
, 1);
4547 vals
!= NULL_TREE
; vals
= TREE_CHAIN (vals
))
4549 if (!host_integerp (TREE_VALUE (vals
), 0)
4550 || (TREE_PURPOSE (vals
) != NULL_TREE
4551 && !host_integerp (TREE_PURPOSE (vals
), 0)))
4553 = tree_cons (TREE_PURPOSE (vals
), TREE_VALUE (vals
), non_const_bits
);
4554 else if (TREE_PURPOSE (vals
) != NULL_TREE
)
4556 /* Set a range of bits to ones. */
4557 HOST_WIDE_INT lo_index
4558 = tree_low_cst (TREE_PURPOSE (vals
), 0) - domain_min
;
4559 HOST_WIDE_INT hi_index
4560 = tree_low_cst (TREE_VALUE (vals
), 0) - domain_min
;
4562 if (lo_index
< 0 || lo_index
>= bit_size
4563 || hi_index
< 0 || hi_index
>= bit_size
)
4565 for (; lo_index
<= hi_index
; lo_index
++)
4566 buffer
[lo_index
] = 1;
4570 /* Set a single bit to one. */
4572 = tree_low_cst (TREE_VALUE (vals
), 0) - domain_min
;
4573 if (index
< 0 || index
>= bit_size
)
4575 error ("invalid initializer for bit string");
4581 return non_const_bits
;
4584 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4585 The result is placed in BUFFER (which is an array of bytes).
4586 If the constructor is constant, NULL_TREE is returned.
4587 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4590 get_set_constructor_bytes (init
, buffer
, wd_size
)
4592 unsigned char *buffer
;
4596 int set_word_size
= BITS_PER_UNIT
;
4597 int bit_size
= wd_size
* set_word_size
;
4599 unsigned char *bytep
= buffer
;
4600 char *bit_buffer
= (char *) alloca (bit_size
);
4601 tree non_const_bits
= get_set_constructor_bits (init
, bit_buffer
, bit_size
);
4603 for (i
= 0; i
< wd_size
; i
++)
4606 for (i
= 0; i
< bit_size
; i
++)
4610 if (BYTES_BIG_ENDIAN
)
4611 *bytep
|= (1 << (set_word_size
- 1 - bit_pos
));
4613 *bytep
|= 1 << bit_pos
;
4616 if (bit_pos
>= set_word_size
)
4617 bit_pos
= 0, bytep
++;
4619 return non_const_bits
;
4622 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4623 /* Complain that the tree code of NODE does not match the expected CODE.
4624 FILE, LINE, and FUNCTION are of the caller. */
4627 tree_check_failed (node
, code
, file
, line
, function
)
4629 enum tree_code code
;
4632 const char *function
;
4634 internal_error ("tree check: expected %s, have %s in %s, at %s:%d",
4635 tree_code_name
[code
], tree_code_name
[TREE_CODE (node
)],
4636 function
, trim_filename (file
), line
);
4639 /* Similar to above, except that we check for a class of tree
4640 code, given in CL. */
4643 tree_class_check_failed (node
, cl
, file
, line
, function
)
4648 const char *function
;
4651 ("tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
4652 cl
, TREE_CODE_CLASS (TREE_CODE (node
)),
4653 tree_code_name
[TREE_CODE (node
)], function
, trim_filename (file
), line
);
4656 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
4657 (dynamically sized) vector. */
4660 tree_vec_elt_check_failed (idx
, len
, file
, line
, function
)
4665 const char *function
;
4668 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
4669 idx
+ 1, len
, function
, trim_filename (file
), line
);
4672 /* Similar to above, except that the check is for the bounds of the operand
4673 vector of an expression node. */
4676 tree_operand_check_failed (idx
, code
, file
, line
, function
)
4678 enum tree_code code
;
4681 const char *function
;
4684 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
4685 idx
+ 1, tree_code_name
[code
], TREE_CODE_LENGTH (code
),
4686 function
, trim_filename (file
), line
);
4688 #endif /* ENABLE_TREE_CHECKING */
4690 /* For a new vector type node T, build the information necessary for
4691 debugging output. */
4694 finish_vector_type (t
)
4700 tree index
= build_int_2 (TYPE_VECTOR_SUBPARTS (t
) - 1, 0);
4701 tree array
= build_array_type (TREE_TYPE (t
),
4702 build_index_type (index
));
4703 tree rt
= make_node (RECORD_TYPE
);
4705 TYPE_FIELDS (rt
) = build_decl (FIELD_DECL
, get_identifier ("f"), array
);
4706 DECL_CONTEXT (TYPE_FIELDS (rt
)) = rt
;
4708 TYPE_DEBUG_REPRESENTATION_TYPE (t
) = rt
;
4709 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
4710 the representation type, and we want to find that die when looking up
4711 the vector type. This is most easily achieved by making the TYPE_UID
4713 TYPE_UID (rt
) = TYPE_UID (t
);
4717 /* Create nodes for all integer types (and error_mark_node) using the sizes
4718 of C datatypes. The caller should call set_sizetype soon after calling
4719 this function to select one of the types as sizetype. */
4722 build_common_tree_nodes (signed_char
)
4725 error_mark_node
= make_node (ERROR_MARK
);
4726 TREE_TYPE (error_mark_node
) = error_mark_node
;
4728 initialize_sizetypes ();
4730 /* Define both `signed char' and `unsigned char'. */
4731 signed_char_type_node
= make_signed_type (CHAR_TYPE_SIZE
);
4732 unsigned_char_type_node
= make_unsigned_type (CHAR_TYPE_SIZE
);
4734 /* Define `char', which is like either `signed char' or `unsigned char'
4735 but not the same as either. */
4738 ? make_signed_type (CHAR_TYPE_SIZE
)
4739 : make_unsigned_type (CHAR_TYPE_SIZE
));
4741 short_integer_type_node
= make_signed_type (SHORT_TYPE_SIZE
);
4742 short_unsigned_type_node
= make_unsigned_type (SHORT_TYPE_SIZE
);
4743 integer_type_node
= make_signed_type (INT_TYPE_SIZE
);
4744 unsigned_type_node
= make_unsigned_type (INT_TYPE_SIZE
);
4745 long_integer_type_node
= make_signed_type (LONG_TYPE_SIZE
);
4746 long_unsigned_type_node
= make_unsigned_type (LONG_TYPE_SIZE
);
4747 long_long_integer_type_node
= make_signed_type (LONG_LONG_TYPE_SIZE
);
4748 long_long_unsigned_type_node
= make_unsigned_type (LONG_LONG_TYPE_SIZE
);
4750 intQI_type_node
= make_signed_type (GET_MODE_BITSIZE (QImode
));
4751 intHI_type_node
= make_signed_type (GET_MODE_BITSIZE (HImode
));
4752 intSI_type_node
= make_signed_type (GET_MODE_BITSIZE (SImode
));
4753 intDI_type_node
= make_signed_type (GET_MODE_BITSIZE (DImode
));
4754 intTI_type_node
= make_signed_type (GET_MODE_BITSIZE (TImode
));
4756 unsigned_intQI_type_node
= make_unsigned_type (GET_MODE_BITSIZE (QImode
));
4757 unsigned_intHI_type_node
= make_unsigned_type (GET_MODE_BITSIZE (HImode
));
4758 unsigned_intSI_type_node
= make_unsigned_type (GET_MODE_BITSIZE (SImode
));
4759 unsigned_intDI_type_node
= make_unsigned_type (GET_MODE_BITSIZE (DImode
));
4760 unsigned_intTI_type_node
= make_unsigned_type (GET_MODE_BITSIZE (TImode
));
4763 /* Call this function after calling build_common_tree_nodes and set_sizetype.
4764 It will create several other common tree nodes. */
4767 build_common_tree_nodes_2 (short_double
)
4770 /* Define these next since types below may used them. */
4771 integer_zero_node
= build_int_2 (0, 0);
4772 integer_one_node
= build_int_2 (1, 0);
4773 integer_minus_one_node
= build_int_2 (-1, -1);
4775 size_zero_node
= size_int (0);
4776 size_one_node
= size_int (1);
4777 bitsize_zero_node
= bitsize_int (0);
4778 bitsize_one_node
= bitsize_int (1);
4779 bitsize_unit_node
= bitsize_int (BITS_PER_UNIT
);
4781 void_type_node
= make_node (VOID_TYPE
);
4782 layout_type (void_type_node
);
4784 /* We are not going to have real types in C with less than byte alignment,
4785 so we might as well not have any types that claim to have it. */
4786 TYPE_ALIGN (void_type_node
) = BITS_PER_UNIT
;
4787 TYPE_USER_ALIGN (void_type_node
) = 0;
4789 null_pointer_node
= build_int_2 (0, 0);
4790 TREE_TYPE (null_pointer_node
) = build_pointer_type (void_type_node
);
4791 layout_type (TREE_TYPE (null_pointer_node
));
4793 ptr_type_node
= build_pointer_type (void_type_node
);
4795 = build_pointer_type (build_type_variant (void_type_node
, 1, 0));
4797 float_type_node
= make_node (REAL_TYPE
);
4798 TYPE_PRECISION (float_type_node
) = FLOAT_TYPE_SIZE
;
4799 layout_type (float_type_node
);
4801 double_type_node
= make_node (REAL_TYPE
);
4803 TYPE_PRECISION (double_type_node
) = FLOAT_TYPE_SIZE
;
4805 TYPE_PRECISION (double_type_node
) = DOUBLE_TYPE_SIZE
;
4806 layout_type (double_type_node
);
4808 long_double_type_node
= make_node (REAL_TYPE
);
4809 TYPE_PRECISION (long_double_type_node
) = LONG_DOUBLE_TYPE_SIZE
;
4810 layout_type (long_double_type_node
);
4812 complex_integer_type_node
= make_node (COMPLEX_TYPE
);
4813 TREE_TYPE (complex_integer_type_node
) = integer_type_node
;
4814 layout_type (complex_integer_type_node
);
4816 complex_float_type_node
= make_node (COMPLEX_TYPE
);
4817 TREE_TYPE (complex_float_type_node
) = float_type_node
;
4818 layout_type (complex_float_type_node
);
4820 complex_double_type_node
= make_node (COMPLEX_TYPE
);
4821 TREE_TYPE (complex_double_type_node
) = double_type_node
;
4822 layout_type (complex_double_type_node
);
4824 complex_long_double_type_node
= make_node (COMPLEX_TYPE
);
4825 TREE_TYPE (complex_long_double_type_node
) = long_double_type_node
;
4826 layout_type (complex_long_double_type_node
);
4830 BUILD_VA_LIST_TYPE (t
);
4832 /* Many back-ends define record types without seting TYPE_NAME.
4833 If we copied the record type here, we'd keep the original
4834 record type without a name. This breaks name mangling. So,
4835 don't copy record types and let c_common_nodes_and_builtins()
4836 declare the type to be __builtin_va_list. */
4837 if (TREE_CODE (t
) != RECORD_TYPE
)
4838 t
= build_type_copy (t
);
4840 va_list_type_node
= t
;
4843 unsigned_V4SI_type_node
4844 = make_vector (V4SImode
, unsigned_intSI_type_node
, 1);
4845 unsigned_V2HI_type_node
4846 = make_vector (V2HImode
, unsigned_intHI_type_node
, 1);
4847 unsigned_V2SI_type_node
4848 = make_vector (V2SImode
, unsigned_intSI_type_node
, 1);
4849 unsigned_V2DI_type_node
4850 = make_vector (V2DImode
, unsigned_intDI_type_node
, 1);
4851 unsigned_V4HI_type_node
4852 = make_vector (V4HImode
, unsigned_intHI_type_node
, 1);
4853 unsigned_V8QI_type_node
4854 = make_vector (V8QImode
, unsigned_intQI_type_node
, 1);
4855 unsigned_V8HI_type_node
4856 = make_vector (V8HImode
, unsigned_intHI_type_node
, 1);
4857 unsigned_V16QI_type_node
4858 = make_vector (V16QImode
, unsigned_intQI_type_node
, 1);
4859 unsigned_V1DI_type_node
4860 = make_vector (V1DImode
, unsigned_intDI_type_node
, 1);
4862 V16SF_type_node
= make_vector (V16SFmode
, float_type_node
, 0);
4863 V4SF_type_node
= make_vector (V4SFmode
, float_type_node
, 0);
4864 V4SI_type_node
= make_vector (V4SImode
, intSI_type_node
, 0);
4865 V2HI_type_node
= make_vector (V2HImode
, intHI_type_node
, 0);
4866 V2SI_type_node
= make_vector (V2SImode
, intSI_type_node
, 0);
4867 V2DI_type_node
= make_vector (V2DImode
, intDI_type_node
, 0);
4868 V4HI_type_node
= make_vector (V4HImode
, intHI_type_node
, 0);
4869 V8QI_type_node
= make_vector (V8QImode
, intQI_type_node
, 0);
4870 V8HI_type_node
= make_vector (V8HImode
, intHI_type_node
, 0);
4871 V2SF_type_node
= make_vector (V2SFmode
, float_type_node
, 0);
4872 V2DF_type_node
= make_vector (V2DFmode
, double_type_node
, 0);
4873 V16QI_type_node
= make_vector (V16QImode
, intQI_type_node
, 0);
4874 V1DI_type_node
= make_vector (V1DImode
, intDI_type_node
, 0);
4877 /* Returns a vector tree node given a vector mode, the inner type, and
4881 make_vector (mode
, innertype
, unsignedp
)
4882 enum machine_mode mode
;
4888 t
= make_node (VECTOR_TYPE
);
4889 TREE_TYPE (t
) = innertype
;
4890 TYPE_MODE (t
) = mode
;
4891 TREE_UNSIGNED (TREE_TYPE (t
)) = unsignedp
;
4892 finish_vector_type (t
);
4897 /* Given an initializer INIT, return TRUE if INIT is zero or some
4898 aggregate of zeros. Otherwise return FALSE. */
4901 initializer_zerop (init
)
4906 switch (TREE_CODE (init
))
4909 return integer_zerop (init
);
4911 return real_zerop (init
)
4912 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init
));
4914 return integer_zerop (init
)
4915 || (real_zerop (init
)
4916 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init
)))
4917 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init
))));
4920 if (AGGREGATE_TYPE_P (TREE_TYPE (init
)))
4922 tree aggr_init
= CONSTRUCTOR_ELTS (init
);
4926 if (! initializer_zerop (TREE_VALUE (aggr_init
)))
4928 aggr_init
= TREE_CHAIN (aggr_init
);
4939 #include "gt-tree.h"