Fix broken MinGW build of gcc.c
[official-gcc.git] / gcc / stor-layout.c
blob2275bfc3df129deabc0c316e339bde832920d759
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "stringpool.h"
31 #include "regs.h"
32 #include "emit-rtl.h"
33 #include "cgraph.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "varasm.h"
38 #include "print-tree.h"
39 #include "langhooks.h"
40 #include "tree-inline.h"
41 #include "dumpfile.h"
42 #include "gimplify.h"
43 #include "debug.h"
45 /* Data type for the expressions representing sizes of data types.
46 It is the first integer type laid out. */
47 tree sizetype_tab[(int) stk_type_kind_last];
49 /* If nonzero, this is an upper limit on alignment of structure fields.
50 The value is measured in bits. */
51 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
53 static tree self_referential_size (tree);
54 static void finalize_record_size (record_layout_info);
55 static void finalize_type_size (tree);
56 static void place_union_field (record_layout_info, tree);
57 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
58 HOST_WIDE_INT, tree);
59 extern void debug_rli (record_layout_info);
61 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
62 to serve as the actual size-expression for a type or decl. */
64 tree
65 variable_size (tree size)
67 /* Obviously. */
68 if (TREE_CONSTANT (size))
69 return size;
71 /* If the size is self-referential, we can't make a SAVE_EXPR (see
72 save_expr for the rationale). But we can do something else. */
73 if (CONTAINS_PLACEHOLDER_P (size))
74 return self_referential_size (size);
76 /* If we are in the global binding level, we can't make a SAVE_EXPR
77 since it may end up being shared across functions, so it is up
78 to the front-end to deal with this case. */
79 if (lang_hooks.decls.global_bindings_p ())
80 return size;
82 return save_expr (size);
85 /* An array of functions used for self-referential size computation. */
86 static GTY(()) vec<tree, va_gc> *size_functions;
88 /* Return true if T is a self-referential component reference. */
90 static bool
91 self_referential_component_ref_p (tree t)
93 if (TREE_CODE (t) != COMPONENT_REF)
94 return false;
96 while (REFERENCE_CLASS_P (t))
97 t = TREE_OPERAND (t, 0);
99 return (TREE_CODE (t) == PLACEHOLDER_EXPR);
102 /* Similar to copy_tree_r but do not copy component references involving
103 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
104 and substituted in substitute_in_expr. */
106 static tree
107 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
109 enum tree_code code = TREE_CODE (*tp);
111 /* Stop at types, decls, constants like copy_tree_r. */
112 if (TREE_CODE_CLASS (code) == tcc_type
113 || TREE_CODE_CLASS (code) == tcc_declaration
114 || TREE_CODE_CLASS (code) == tcc_constant)
116 *walk_subtrees = 0;
117 return NULL_TREE;
120 /* This is the pattern built in ada/make_aligning_type. */
121 else if (code == ADDR_EXPR
122 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
124 *walk_subtrees = 0;
125 return NULL_TREE;
128 /* Default case: the component reference. */
129 else if (self_referential_component_ref_p (*tp))
131 *walk_subtrees = 0;
132 return NULL_TREE;
135 /* We're not supposed to have them in self-referential size trees
136 because we wouldn't properly control when they are evaluated.
137 However, not creating superfluous SAVE_EXPRs requires accurate
138 tracking of readonly-ness all the way down to here, which we
139 cannot always guarantee in practice. So punt in this case. */
140 else if (code == SAVE_EXPR)
141 return error_mark_node;
143 else if (code == STATEMENT_LIST)
144 gcc_unreachable ();
146 return copy_tree_r (tp, walk_subtrees, data);
149 /* Given a SIZE expression that is self-referential, return an equivalent
150 expression to serve as the actual size expression for a type. */
152 static tree
153 self_referential_size (tree size)
155 static unsigned HOST_WIDE_INT fnno = 0;
156 vec<tree> self_refs = vNULL;
157 tree param_type_list = NULL, param_decl_list = NULL;
158 tree t, ref, return_type, fntype, fnname, fndecl;
159 unsigned int i;
160 char buf[128];
161 vec<tree, va_gc> *args = NULL;
163 /* Do not factor out simple operations. */
164 t = skip_simple_constant_arithmetic (size);
165 if (TREE_CODE (t) == CALL_EXPR || self_referential_component_ref_p (t))
166 return size;
168 /* Collect the list of self-references in the expression. */
169 find_placeholder_in_expr (size, &self_refs);
170 gcc_assert (self_refs.length () > 0);
172 /* Obtain a private copy of the expression. */
173 t = size;
174 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
175 return size;
176 size = t;
178 /* Build the parameter and argument lists in parallel; also
179 substitute the former for the latter in the expression. */
180 vec_alloc (args, self_refs.length ());
181 FOR_EACH_VEC_ELT (self_refs, i, ref)
183 tree subst, param_name, param_type, param_decl;
185 if (DECL_P (ref))
187 /* We shouldn't have true variables here. */
188 gcc_assert (TREE_READONLY (ref));
189 subst = ref;
191 /* This is the pattern built in ada/make_aligning_type. */
192 else if (TREE_CODE (ref) == ADDR_EXPR)
193 subst = ref;
194 /* Default case: the component reference. */
195 else
196 subst = TREE_OPERAND (ref, 1);
198 sprintf (buf, "p%d", i);
199 param_name = get_identifier (buf);
200 param_type = TREE_TYPE (ref);
201 param_decl
202 = build_decl (input_location, PARM_DECL, param_name, param_type);
203 DECL_ARG_TYPE (param_decl) = param_type;
204 DECL_ARTIFICIAL (param_decl) = 1;
205 TREE_READONLY (param_decl) = 1;
207 size = substitute_in_expr (size, subst, param_decl);
209 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
210 param_decl_list = chainon (param_decl, param_decl_list);
211 args->quick_push (ref);
214 self_refs.release ();
216 /* Append 'void' to indicate that the number of parameters is fixed. */
217 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
219 /* The 3 lists have been created in reverse order. */
220 param_type_list = nreverse (param_type_list);
221 param_decl_list = nreverse (param_decl_list);
223 /* Build the function type. */
224 return_type = TREE_TYPE (size);
225 fntype = build_function_type (return_type, param_type_list);
227 /* Build the function declaration. */
228 sprintf (buf, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
229 fnname = get_file_function_name (buf);
230 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
231 for (t = param_decl_list; t; t = DECL_CHAIN (t))
232 DECL_CONTEXT (t) = fndecl;
233 DECL_ARGUMENTS (fndecl) = param_decl_list;
234 DECL_RESULT (fndecl)
235 = build_decl (input_location, RESULT_DECL, 0, return_type);
236 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
238 /* The function has been created by the compiler and we don't
239 want to emit debug info for it. */
240 DECL_ARTIFICIAL (fndecl) = 1;
241 DECL_IGNORED_P (fndecl) = 1;
243 /* It is supposed to be "const" and never throw. */
244 TREE_READONLY (fndecl) = 1;
245 TREE_NOTHROW (fndecl) = 1;
247 /* We want it to be inlined when this is deemed profitable, as
248 well as discarded if every call has been integrated. */
249 DECL_DECLARED_INLINE_P (fndecl) = 1;
251 /* It is made up of a unique return statement. */
252 DECL_INITIAL (fndecl) = make_node (BLOCK);
253 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
254 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
255 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
256 TREE_STATIC (fndecl) = 1;
258 /* Put it onto the list of size functions. */
259 vec_safe_push (size_functions, fndecl);
261 /* Replace the original expression with a call to the size function. */
262 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
265 /* Take, queue and compile all the size functions. It is essential that
266 the size functions be gimplified at the very end of the compilation
267 in order to guarantee transparent handling of self-referential sizes.
268 Otherwise the GENERIC inliner would not be able to inline them back
269 at each of their call sites, thus creating artificial non-constant
270 size expressions which would trigger nasty problems later on. */
272 void
273 finalize_size_functions (void)
275 unsigned int i;
276 tree fndecl;
278 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
280 allocate_struct_function (fndecl, false);
281 set_cfun (NULL);
282 dump_function (TDI_original, fndecl);
284 /* As these functions are used to describe the layout of variable-length
285 structures, debug info generation needs their implementation. */
286 debug_hooks->size_function (fndecl);
287 gimplify_function_tree (fndecl);
288 cgraph_node::finalize_function (fndecl, false);
291 vec_free (size_functions);
294 /* Return the machine mode to use for a nonscalar of SIZE bits. The
295 mode must be in class MCLASS, and have exactly that many value bits;
296 it may have padding as well. If LIMIT is nonzero, modes of wider
297 than MAX_FIXED_MODE_SIZE will not be used. */
299 machine_mode
300 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
302 machine_mode mode;
303 int i;
305 if (limit && size > MAX_FIXED_MODE_SIZE)
306 return BLKmode;
308 /* Get the first mode which has this size, in the specified class. */
309 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
310 mode = GET_MODE_WIDER_MODE (mode))
311 if (GET_MODE_PRECISION (mode) == size)
312 return mode;
314 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
315 for (i = 0; i < NUM_INT_N_ENTS; i ++)
316 if (int_n_data[i].bitsize == size
317 && int_n_enabled_p[i])
318 return int_n_data[i].m;
320 return BLKmode;
323 /* Similar, except passed a tree node. */
325 machine_mode
326 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
328 unsigned HOST_WIDE_INT uhwi;
329 unsigned int ui;
331 if (!tree_fits_uhwi_p (size))
332 return BLKmode;
333 uhwi = tree_to_uhwi (size);
334 ui = uhwi;
335 if (uhwi != ui)
336 return BLKmode;
337 return mode_for_size (ui, mclass, limit);
340 /* Similar, but never return BLKmode; return the narrowest mode that
341 contains at least the requested number of value bits. */
343 machine_mode
344 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
346 machine_mode mode = VOIDmode;
347 int i;
349 /* Get the first mode which has at least this size, in the
350 specified class. */
351 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
352 mode = GET_MODE_WIDER_MODE (mode))
353 if (GET_MODE_PRECISION (mode) >= size)
354 break;
356 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
357 for (i = 0; i < NUM_INT_N_ENTS; i ++)
358 if (int_n_data[i].bitsize >= size
359 && int_n_data[i].bitsize < GET_MODE_PRECISION (mode)
360 && int_n_enabled_p[i])
361 mode = int_n_data[i].m;
363 if (mode == VOIDmode)
364 gcc_unreachable ();
366 return mode;
369 /* Find an integer mode of the exact same size, or BLKmode on failure. */
371 machine_mode
372 int_mode_for_mode (machine_mode mode)
374 switch (GET_MODE_CLASS (mode))
376 case MODE_INT:
377 case MODE_PARTIAL_INT:
378 break;
380 case MODE_COMPLEX_INT:
381 case MODE_COMPLEX_FLOAT:
382 case MODE_FLOAT:
383 case MODE_DECIMAL_FLOAT:
384 case MODE_VECTOR_INT:
385 case MODE_VECTOR_FLOAT:
386 case MODE_FRACT:
387 case MODE_ACCUM:
388 case MODE_UFRACT:
389 case MODE_UACCUM:
390 case MODE_VECTOR_FRACT:
391 case MODE_VECTOR_ACCUM:
392 case MODE_VECTOR_UFRACT:
393 case MODE_VECTOR_UACCUM:
394 case MODE_POINTER_BOUNDS:
395 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
396 break;
398 case MODE_RANDOM:
399 if (mode == BLKmode)
400 break;
402 /* fall through */
404 case MODE_CC:
405 default:
406 gcc_unreachable ();
409 return mode;
412 /* Find a mode that can be used for efficient bitwise operations on MODE.
413 Return BLKmode if no such mode exists. */
415 machine_mode
416 bitwise_mode_for_mode (machine_mode mode)
418 /* Quick exit if we already have a suitable mode. */
419 unsigned int bitsize = GET_MODE_BITSIZE (mode);
420 if (SCALAR_INT_MODE_P (mode) && bitsize <= MAX_FIXED_MODE_SIZE)
421 return mode;
423 /* Reuse the sanity checks from int_mode_for_mode. */
424 gcc_checking_assert ((int_mode_for_mode (mode), true));
426 /* Try to replace complex modes with complex modes. In general we
427 expect both components to be processed independently, so we only
428 care whether there is a register for the inner mode. */
429 if (COMPLEX_MODE_P (mode))
431 machine_mode trial = mode;
432 if (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT)
433 trial = mode_for_size (bitsize, MODE_COMPLEX_INT, false);
434 if (trial != BLKmode
435 && have_regs_of_mode[GET_MODE_INNER (trial)])
436 return trial;
439 /* Try to replace vector modes with vector modes. Also try using vector
440 modes if an integer mode would be too big. */
441 if (VECTOR_MODE_P (mode) || bitsize > MAX_FIXED_MODE_SIZE)
443 machine_mode trial = mode;
444 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
445 trial = mode_for_size (bitsize, MODE_VECTOR_INT, 0);
446 if (trial != BLKmode
447 && have_regs_of_mode[trial]
448 && targetm.vector_mode_supported_p (trial))
449 return trial;
452 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
453 return mode_for_size (bitsize, MODE_INT, true);
456 /* Find a type that can be used for efficient bitwise operations on MODE.
457 Return null if no such mode exists. */
459 tree
460 bitwise_type_for_mode (machine_mode mode)
462 mode = bitwise_mode_for_mode (mode);
463 if (mode == BLKmode)
464 return NULL_TREE;
466 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
467 tree inner_type = build_nonstandard_integer_type (inner_size, true);
469 if (VECTOR_MODE_P (mode))
470 return build_vector_type_for_mode (inner_type, mode);
472 if (COMPLEX_MODE_P (mode))
473 return build_complex_type (inner_type);
475 gcc_checking_assert (GET_MODE_INNER (mode) == mode);
476 return inner_type;
479 /* Find a mode that is suitable for representing a vector with
480 NUNITS elements of mode INNERMODE. Returns BLKmode if there
481 is no suitable mode. */
483 machine_mode
484 mode_for_vector (machine_mode innermode, unsigned nunits)
486 machine_mode mode;
488 /* First, look for a supported vector type. */
489 if (SCALAR_FLOAT_MODE_P (innermode))
490 mode = MIN_MODE_VECTOR_FLOAT;
491 else if (SCALAR_FRACT_MODE_P (innermode))
492 mode = MIN_MODE_VECTOR_FRACT;
493 else if (SCALAR_UFRACT_MODE_P (innermode))
494 mode = MIN_MODE_VECTOR_UFRACT;
495 else if (SCALAR_ACCUM_MODE_P (innermode))
496 mode = MIN_MODE_VECTOR_ACCUM;
497 else if (SCALAR_UACCUM_MODE_P (innermode))
498 mode = MIN_MODE_VECTOR_UACCUM;
499 else
500 mode = MIN_MODE_VECTOR_INT;
502 /* Do not check vector_mode_supported_p here. We'll do that
503 later in vector_type_mode. */
504 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
505 if (GET_MODE_NUNITS (mode) == nunits
506 && GET_MODE_INNER (mode) == innermode)
507 break;
509 /* For integers, try mapping it to a same-sized scalar mode. */
510 if (mode == VOIDmode
511 && GET_MODE_CLASS (innermode) == MODE_INT)
512 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
513 MODE_INT, 0);
515 if (mode == VOIDmode
516 || (GET_MODE_CLASS (mode) == MODE_INT
517 && !have_regs_of_mode[mode]))
518 return BLKmode;
520 return mode;
523 /* Return the alignment of MODE. This will be bounded by 1 and
524 BIGGEST_ALIGNMENT. */
526 unsigned int
527 get_mode_alignment (machine_mode mode)
529 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
532 /* Return the natural mode of an array, given that it is SIZE bytes in
533 total and has elements of type ELEM_TYPE. */
535 static machine_mode
536 mode_for_array (tree elem_type, tree size)
538 tree elem_size;
539 unsigned HOST_WIDE_INT int_size, int_elem_size;
540 bool limit_p;
542 /* One-element arrays get the component type's mode. */
543 elem_size = TYPE_SIZE (elem_type);
544 if (simple_cst_equal (size, elem_size))
545 return TYPE_MODE (elem_type);
547 limit_p = true;
548 if (tree_fits_uhwi_p (size) && tree_fits_uhwi_p (elem_size))
550 int_size = tree_to_uhwi (size);
551 int_elem_size = tree_to_uhwi (elem_size);
552 if (int_elem_size > 0
553 && int_size % int_elem_size == 0
554 && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
555 int_size / int_elem_size))
556 limit_p = false;
558 return mode_for_size_tree (size, MODE_INT, limit_p);
561 /* Subroutine of layout_decl: Force alignment required for the data type.
562 But if the decl itself wants greater alignment, don't override that. */
564 static inline void
565 do_type_align (tree type, tree decl)
567 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
569 SET_DECL_ALIGN (decl, TYPE_ALIGN (type));
570 if (TREE_CODE (decl) == FIELD_DECL)
571 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
573 if (TYPE_WARN_IF_NOT_ALIGN (type) > DECL_WARN_IF_NOT_ALIGN (decl))
574 SET_DECL_WARN_IF_NOT_ALIGN (decl, TYPE_WARN_IF_NOT_ALIGN (type));
577 /* Set the size, mode and alignment of a ..._DECL node.
578 TYPE_DECL does need this for C++.
579 Note that LABEL_DECL and CONST_DECL nodes do not need this,
580 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
581 Don't call layout_decl for them.
583 KNOWN_ALIGN is the amount of alignment we can assume this
584 decl has with no special effort. It is relevant only for FIELD_DECLs
585 and depends on the previous fields.
586 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
587 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
588 the record will be aligned to suit. */
590 void
591 layout_decl (tree decl, unsigned int known_align)
593 tree type = TREE_TYPE (decl);
594 enum tree_code code = TREE_CODE (decl);
595 rtx rtl = NULL_RTX;
596 location_t loc = DECL_SOURCE_LOCATION (decl);
598 if (code == CONST_DECL)
599 return;
601 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
602 || code == TYPE_DECL || code == FIELD_DECL);
604 rtl = DECL_RTL_IF_SET (decl);
606 if (type == error_mark_node)
607 type = void_type_node;
609 /* Usually the size and mode come from the data type without change,
610 however, the front-end may set the explicit width of the field, so its
611 size may not be the same as the size of its type. This happens with
612 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
613 also happens with other fields. For example, the C++ front-end creates
614 zero-sized fields corresponding to empty base classes, and depends on
615 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
616 size in bytes from the size in bits. If we have already set the mode,
617 don't set it again since we can be called twice for FIELD_DECLs. */
619 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
620 if (DECL_MODE (decl) == VOIDmode)
621 SET_DECL_MODE (decl, TYPE_MODE (type));
623 if (DECL_SIZE (decl) == 0)
625 DECL_SIZE (decl) = TYPE_SIZE (type);
626 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
628 else if (DECL_SIZE_UNIT (decl) == 0)
629 DECL_SIZE_UNIT (decl)
630 = fold_convert_loc (loc, sizetype,
631 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
632 bitsize_unit_node));
634 if (code != FIELD_DECL)
635 /* For non-fields, update the alignment from the type. */
636 do_type_align (type, decl);
637 else
638 /* For fields, it's a bit more complicated... */
640 bool old_user_align = DECL_USER_ALIGN (decl);
641 bool zero_bitfield = false;
642 bool packed_p = DECL_PACKED (decl);
643 unsigned int mfa;
645 if (DECL_BIT_FIELD (decl))
647 DECL_BIT_FIELD_TYPE (decl) = type;
649 /* A zero-length bit-field affects the alignment of the next
650 field. In essence such bit-fields are not influenced by
651 any packing due to #pragma pack or attribute packed. */
652 if (integer_zerop (DECL_SIZE (decl))
653 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
655 zero_bitfield = true;
656 packed_p = false;
657 if (PCC_BITFIELD_TYPE_MATTERS)
658 do_type_align (type, decl);
659 else
661 #ifdef EMPTY_FIELD_BOUNDARY
662 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
664 SET_DECL_ALIGN (decl, EMPTY_FIELD_BOUNDARY);
665 DECL_USER_ALIGN (decl) = 0;
667 #endif
671 /* See if we can use an ordinary integer mode for a bit-field.
672 Conditions are: a fixed size that is correct for another mode,
673 occupying a complete byte or bytes on proper boundary. */
674 if (TYPE_SIZE (type) != 0
675 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
676 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
678 machine_mode xmode
679 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
680 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
682 if (xmode != BLKmode
683 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
684 && (known_align == 0 || known_align >= xalign))
686 SET_DECL_ALIGN (decl, MAX (xalign, DECL_ALIGN (decl)));
687 SET_DECL_MODE (decl, xmode);
688 DECL_BIT_FIELD (decl) = 0;
692 /* Turn off DECL_BIT_FIELD if we won't need it set. */
693 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
694 && known_align >= TYPE_ALIGN (type)
695 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
696 DECL_BIT_FIELD (decl) = 0;
698 else if (packed_p && DECL_USER_ALIGN (decl))
699 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
700 round up; we'll reduce it again below. We want packing to
701 supersede USER_ALIGN inherited from the type, but defer to
702 alignment explicitly specified on the field decl. */;
703 else
704 do_type_align (type, decl);
706 /* If the field is packed and not explicitly aligned, give it the
707 minimum alignment. Note that do_type_align may set
708 DECL_USER_ALIGN, so we need to check old_user_align instead. */
709 if (packed_p
710 && !old_user_align)
711 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), BITS_PER_UNIT));
713 if (! packed_p && ! DECL_USER_ALIGN (decl))
715 /* Some targets (i.e. i386, VMS) limit struct field alignment
716 to a lower boundary than alignment of variables unless
717 it was overridden by attribute aligned. */
718 #ifdef BIGGEST_FIELD_ALIGNMENT
719 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl),
720 (unsigned) BIGGEST_FIELD_ALIGNMENT));
721 #endif
722 #ifdef ADJUST_FIELD_ALIGN
723 SET_DECL_ALIGN (decl, ADJUST_FIELD_ALIGN (decl, TREE_TYPE (decl),
724 DECL_ALIGN (decl)));
725 #endif
728 if (zero_bitfield)
729 mfa = initial_max_fld_align * BITS_PER_UNIT;
730 else
731 mfa = maximum_field_alignment;
732 /* Should this be controlled by DECL_USER_ALIGN, too? */
733 if (mfa != 0)
734 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), mfa));
737 /* Evaluate nonconstant size only once, either now or as soon as safe. */
738 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
739 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
740 if (DECL_SIZE_UNIT (decl) != 0
741 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
742 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
744 /* If requested, warn about definitions of large data objects. */
745 if (warn_larger_than
746 && (code == VAR_DECL || code == PARM_DECL)
747 && ! DECL_EXTERNAL (decl))
749 tree size = DECL_SIZE_UNIT (decl);
751 if (size != 0 && TREE_CODE (size) == INTEGER_CST
752 && compare_tree_int (size, larger_than_size) > 0)
754 int size_as_int = TREE_INT_CST_LOW (size);
756 if (compare_tree_int (size, size_as_int) == 0)
757 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
758 else
759 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
760 decl, larger_than_size);
764 /* If the RTL was already set, update its mode and mem attributes. */
765 if (rtl)
767 PUT_MODE (rtl, DECL_MODE (decl));
768 SET_DECL_RTL (decl, 0);
769 if (MEM_P (rtl))
770 set_mem_attributes (rtl, decl, 1);
771 SET_DECL_RTL (decl, rtl);
775 /* Given a VAR_DECL, PARM_DECL, RESULT_DECL, or FIELD_DECL, clears the
776 results of a previous call to layout_decl and calls it again. */
778 void
779 relayout_decl (tree decl)
781 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
782 SET_DECL_MODE (decl, VOIDmode);
783 if (!DECL_USER_ALIGN (decl))
784 SET_DECL_ALIGN (decl, 0);
785 if (DECL_RTL_SET_P (decl))
786 SET_DECL_RTL (decl, 0);
788 layout_decl (decl, 0);
791 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
792 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
793 is to be passed to all other layout functions for this record. It is the
794 responsibility of the caller to call `free' for the storage returned.
795 Note that garbage collection is not permitted until we finish laying
796 out the record. */
798 record_layout_info
799 start_record_layout (tree t)
801 record_layout_info rli = XNEW (struct record_layout_info_s);
803 rli->t = t;
805 /* If the type has a minimum specified alignment (via an attribute
806 declaration, for example) use it -- otherwise, start with a
807 one-byte alignment. */
808 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
809 rli->unpacked_align = rli->record_align;
810 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
812 #ifdef STRUCTURE_SIZE_BOUNDARY
813 /* Packed structures don't need to have minimum size. */
814 if (! TYPE_PACKED (t))
816 unsigned tmp;
818 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
819 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
820 if (maximum_field_alignment != 0)
821 tmp = MIN (tmp, maximum_field_alignment);
822 rli->record_align = MAX (rli->record_align, tmp);
824 #endif
826 rli->offset = size_zero_node;
827 rli->bitpos = bitsize_zero_node;
828 rli->prev_field = 0;
829 rli->pending_statics = 0;
830 rli->packed_maybe_necessary = 0;
831 rli->remaining_in_alignment = 0;
833 return rli;
836 /* Return the combined bit position for the byte offset OFFSET and the
837 bit position BITPOS.
839 These functions operate on byte and bit positions present in FIELD_DECLs
840 and assume that these expressions result in no (intermediate) overflow.
841 This assumption is necessary to fold the expressions as much as possible,
842 so as to avoid creating artificially variable-sized types in languages
843 supporting variable-sized types like Ada. */
845 tree
846 bit_from_pos (tree offset, tree bitpos)
848 if (TREE_CODE (offset) == PLUS_EXPR)
849 offset = size_binop (PLUS_EXPR,
850 fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
851 fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
852 else
853 offset = fold_convert (bitsizetype, offset);
854 return size_binop (PLUS_EXPR, bitpos,
855 size_binop (MULT_EXPR, offset, bitsize_unit_node));
858 /* Return the combined truncated byte position for the byte offset OFFSET and
859 the bit position BITPOS. */
861 tree
862 byte_from_pos (tree offset, tree bitpos)
864 tree bytepos;
865 if (TREE_CODE (bitpos) == MULT_EXPR
866 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
867 bytepos = TREE_OPERAND (bitpos, 0);
868 else
869 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
870 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
873 /* Split the bit position POS into a byte offset *POFFSET and a bit
874 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
876 void
877 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
878 tree pos)
880 tree toff_align = bitsize_int (off_align);
881 if (TREE_CODE (pos) == MULT_EXPR
882 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
884 *poffset = size_binop (MULT_EXPR,
885 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
886 size_int (off_align / BITS_PER_UNIT));
887 *pbitpos = bitsize_zero_node;
889 else
891 *poffset = size_binop (MULT_EXPR,
892 fold_convert (sizetype,
893 size_binop (FLOOR_DIV_EXPR, pos,
894 toff_align)),
895 size_int (off_align / BITS_PER_UNIT));
896 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
900 /* Given a pointer to bit and byte offsets and an offset alignment,
901 normalize the offsets so they are within the alignment. */
903 void
904 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
906 /* If the bit position is now larger than it should be, adjust it
907 downwards. */
908 if (compare_tree_int (*pbitpos, off_align) >= 0)
910 tree offset, bitpos;
911 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
912 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
913 *pbitpos = bitpos;
917 /* Print debugging information about the information in RLI. */
919 DEBUG_FUNCTION void
920 debug_rli (record_layout_info rli)
922 print_node_brief (stderr, "type", rli->t, 0);
923 print_node_brief (stderr, "\noffset", rli->offset, 0);
924 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
926 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
927 rli->record_align, rli->unpacked_align,
928 rli->offset_align);
930 /* The ms_struct code is the only that uses this. */
931 if (targetm.ms_bitfield_layout_p (rli->t))
932 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
934 if (rli->packed_maybe_necessary)
935 fprintf (stderr, "packed may be necessary\n");
937 if (!vec_safe_is_empty (rli->pending_statics))
939 fprintf (stderr, "pending statics:\n");
940 debug_vec_tree (rli->pending_statics);
944 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
945 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
947 void
948 normalize_rli (record_layout_info rli)
950 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
953 /* Returns the size in bytes allocated so far. */
955 tree
956 rli_size_unit_so_far (record_layout_info rli)
958 return byte_from_pos (rli->offset, rli->bitpos);
961 /* Returns the size in bits allocated so far. */
963 tree
964 rli_size_so_far (record_layout_info rli)
966 return bit_from_pos (rli->offset, rli->bitpos);
969 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
970 the next available location within the record is given by KNOWN_ALIGN.
971 Update the variable alignment fields in RLI, and return the alignment
972 to give the FIELD. */
974 unsigned int
975 update_alignment_for_field (record_layout_info rli, tree field,
976 unsigned int known_align)
978 /* The alignment required for FIELD. */
979 unsigned int desired_align;
980 /* The type of this field. */
981 tree type = TREE_TYPE (field);
982 /* True if the field was explicitly aligned by the user. */
983 bool user_align;
984 bool is_bitfield;
986 /* Do not attempt to align an ERROR_MARK node */
987 if (TREE_CODE (type) == ERROR_MARK)
988 return 0;
990 /* Lay out the field so we know what alignment it needs. */
991 layout_decl (field, known_align);
992 desired_align = DECL_ALIGN (field);
993 user_align = DECL_USER_ALIGN (field);
995 is_bitfield = (type != error_mark_node
996 && DECL_BIT_FIELD_TYPE (field)
997 && ! integer_zerop (TYPE_SIZE (type)));
999 /* Record must have at least as much alignment as any field.
1000 Otherwise, the alignment of the field within the record is
1001 meaningless. */
1002 if (targetm.ms_bitfield_layout_p (rli->t))
1004 /* Here, the alignment of the underlying type of a bitfield can
1005 affect the alignment of a record; even a zero-sized field
1006 can do this. The alignment should be to the alignment of
1007 the type, except that for zero-size bitfields this only
1008 applies if there was an immediately prior, nonzero-size
1009 bitfield. (That's the way it is, experimentally.) */
1010 if ((!is_bitfield && !DECL_PACKED (field))
1011 || ((DECL_SIZE (field) == NULL_TREE
1012 || !integer_zerop (DECL_SIZE (field)))
1013 ? !DECL_PACKED (field)
1014 : (rli->prev_field
1015 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1016 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1018 unsigned int type_align = TYPE_ALIGN (type);
1019 type_align = MAX (type_align, desired_align);
1020 if (maximum_field_alignment != 0)
1021 type_align = MIN (type_align, maximum_field_alignment);
1022 rli->record_align = MAX (rli->record_align, type_align);
1023 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1026 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1028 /* Named bit-fields cause the entire structure to have the
1029 alignment implied by their type. Some targets also apply the same
1030 rules to unnamed bitfields. */
1031 if (DECL_NAME (field) != 0
1032 || targetm.align_anon_bitfield ())
1034 unsigned int type_align = TYPE_ALIGN (type);
1036 #ifdef ADJUST_FIELD_ALIGN
1037 if (! TYPE_USER_ALIGN (type))
1038 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1039 #endif
1041 /* Targets might chose to handle unnamed and hence possibly
1042 zero-width bitfield. Those are not influenced by #pragmas
1043 or packed attributes. */
1044 if (integer_zerop (DECL_SIZE (field)))
1046 if (initial_max_fld_align)
1047 type_align = MIN (type_align,
1048 initial_max_fld_align * BITS_PER_UNIT);
1050 else if (maximum_field_alignment != 0)
1051 type_align = MIN (type_align, maximum_field_alignment);
1052 else if (DECL_PACKED (field))
1053 type_align = MIN (type_align, BITS_PER_UNIT);
1055 /* The alignment of the record is increased to the maximum
1056 of the current alignment, the alignment indicated on the
1057 field (i.e., the alignment specified by an __aligned__
1058 attribute), and the alignment indicated by the type of
1059 the field. */
1060 rli->record_align = MAX (rli->record_align, desired_align);
1061 rli->record_align = MAX (rli->record_align, type_align);
1063 if (warn_packed)
1064 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1065 user_align |= TYPE_USER_ALIGN (type);
1068 else
1070 rli->record_align = MAX (rli->record_align, desired_align);
1071 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1074 TYPE_USER_ALIGN (rli->t) |= user_align;
1076 return desired_align;
1079 /* Issue a warning if the record alignment, RECORD_ALIGN, is less than
1080 the field alignment of FIELD or FIELD isn't aligned. */
1082 static void
1083 handle_warn_if_not_align (tree field, unsigned int record_align)
1085 tree type = TREE_TYPE (field);
1087 if (type == error_mark_node)
1088 return;
1090 unsigned int warn_if_not_align = 0;
1092 int opt_w = 0;
1094 if (warn_if_not_aligned)
1096 warn_if_not_align = DECL_WARN_IF_NOT_ALIGN (field);
1097 if (!warn_if_not_align)
1098 warn_if_not_align = TYPE_WARN_IF_NOT_ALIGN (type);
1099 if (warn_if_not_align)
1100 opt_w = OPT_Wif_not_aligned;
1103 if (!warn_if_not_align
1104 && warn_packed_not_aligned
1105 && TYPE_USER_ALIGN (type))
1107 warn_if_not_align = TYPE_ALIGN (type);
1108 opt_w = OPT_Wpacked_not_aligned;
1111 if (!warn_if_not_align)
1112 return;
1114 tree context = DECL_CONTEXT (field);
1116 warn_if_not_align /= BITS_PER_UNIT;
1117 record_align /= BITS_PER_UNIT;
1118 if ((record_align % warn_if_not_align) != 0)
1119 warning (opt_w, "alignment %u of %qT is less than %u",
1120 record_align, context, warn_if_not_align);
1122 unsigned HOST_WIDE_INT off
1123 = (tree_to_uhwi (DECL_FIELD_OFFSET (field))
1124 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)) / BITS_PER_UNIT);
1125 if ((off % warn_if_not_align) != 0)
1126 warning (opt_w, "%q+D offset %wu in %qT isn't aligned to %u",
1127 field, off, context, warn_if_not_align);
1130 /* Called from place_field to handle unions. */
1132 static void
1133 place_union_field (record_layout_info rli, tree field)
1135 update_alignment_for_field (rli, field, /*known_align=*/0);
1137 DECL_FIELD_OFFSET (field) = size_zero_node;
1138 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1139 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1140 handle_warn_if_not_align (field, rli->record_align);
1142 /* If this is an ERROR_MARK return *after* having set the
1143 field at the start of the union. This helps when parsing
1144 invalid fields. */
1145 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1146 return;
1148 if (AGGREGATE_TYPE_P (TREE_TYPE (field))
1149 && TYPE_TYPELESS_STORAGE (TREE_TYPE (field)))
1150 TYPE_TYPELESS_STORAGE (rli->t) = 1;
1152 /* We assume the union's size will be a multiple of a byte so we don't
1153 bother with BITPOS. */
1154 if (TREE_CODE (rli->t) == UNION_TYPE)
1155 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1156 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1157 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1158 DECL_SIZE_UNIT (field), rli->offset);
1161 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1162 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1163 units of alignment than the underlying TYPE. */
1164 static int
1165 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1166 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1168 /* Note that the calculation of OFFSET might overflow; we calculate it so
1169 that we still get the right result as long as ALIGN is a power of two. */
1170 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1172 offset = offset % align;
1173 return ((offset + size + align - 1) / align
1174 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1177 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1178 is a FIELD_DECL to be added after those fields already present in
1179 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1180 callers that desire that behavior must manually perform that step.) */
1182 void
1183 place_field (record_layout_info rli, tree field)
1185 /* The alignment required for FIELD. */
1186 unsigned int desired_align;
1187 /* The alignment FIELD would have if we just dropped it into the
1188 record as it presently stands. */
1189 unsigned int known_align;
1190 unsigned int actual_align;
1191 /* The type of this field. */
1192 tree type = TREE_TYPE (field);
1194 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1196 /* If FIELD is static, then treat it like a separate variable, not
1197 really like a structure field. If it is a FUNCTION_DECL, it's a
1198 method. In both cases, all we do is lay out the decl, and we do
1199 it *after* the record is laid out. */
1200 if (VAR_P (field))
1202 vec_safe_push (rli->pending_statics, field);
1203 return;
1206 /* Enumerators and enum types which are local to this class need not
1207 be laid out. Likewise for initialized constant fields. */
1208 else if (TREE_CODE (field) != FIELD_DECL)
1209 return;
1211 /* Unions are laid out very differently than records, so split
1212 that code off to another function. */
1213 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1215 place_union_field (rli, field);
1216 return;
1219 else if (TREE_CODE (type) == ERROR_MARK)
1221 /* Place this field at the current allocation position, so we
1222 maintain monotonicity. */
1223 DECL_FIELD_OFFSET (field) = rli->offset;
1224 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1225 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1226 handle_warn_if_not_align (field, rli->record_align);
1227 return;
1230 if (AGGREGATE_TYPE_P (type)
1231 && TYPE_TYPELESS_STORAGE (type))
1232 TYPE_TYPELESS_STORAGE (rli->t) = 1;
1234 /* Work out the known alignment so far. Note that A & (-A) is the
1235 value of the least-significant bit in A that is one. */
1236 if (! integer_zerop (rli->bitpos))
1237 known_align = least_bit_hwi (tree_to_uhwi (rli->bitpos));
1238 else if (integer_zerop (rli->offset))
1239 known_align = 0;
1240 else if (tree_fits_uhwi_p (rli->offset))
1241 known_align = (BITS_PER_UNIT
1242 * least_bit_hwi (tree_to_uhwi (rli->offset)));
1243 else
1244 known_align = rli->offset_align;
1246 desired_align = update_alignment_for_field (rli, field, known_align);
1247 if (known_align == 0)
1248 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1250 if (warn_packed && DECL_PACKED (field))
1252 if (known_align >= TYPE_ALIGN (type))
1254 if (TYPE_ALIGN (type) > desired_align)
1256 if (STRICT_ALIGNMENT)
1257 warning (OPT_Wattributes, "packed attribute causes "
1258 "inefficient alignment for %q+D", field);
1259 /* Don't warn if DECL_PACKED was set by the type. */
1260 else if (!TYPE_PACKED (rli->t))
1261 warning (OPT_Wattributes, "packed attribute is "
1262 "unnecessary for %q+D", field);
1265 else
1266 rli->packed_maybe_necessary = 1;
1269 /* Does this field automatically have alignment it needs by virtue
1270 of the fields that precede it and the record's own alignment? */
1271 if (known_align < desired_align)
1273 /* No, we need to skip space before this field.
1274 Bump the cumulative size to multiple of field alignment. */
1276 if (!targetm.ms_bitfield_layout_p (rli->t)
1277 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1278 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1280 /* If the alignment is still within offset_align, just align
1281 the bit position. */
1282 if (desired_align < rli->offset_align)
1283 rli->bitpos = round_up (rli->bitpos, desired_align);
1284 else
1286 /* First adjust OFFSET by the partial bits, then align. */
1287 rli->offset
1288 = size_binop (PLUS_EXPR, rli->offset,
1289 fold_convert (sizetype,
1290 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1291 bitsize_unit_node)));
1292 rli->bitpos = bitsize_zero_node;
1294 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1297 if (! TREE_CONSTANT (rli->offset))
1298 rli->offset_align = desired_align;
1299 if (targetm.ms_bitfield_layout_p (rli->t))
1300 rli->prev_field = NULL;
1303 /* Handle compatibility with PCC. Note that if the record has any
1304 variable-sized fields, we need not worry about compatibility. */
1305 if (PCC_BITFIELD_TYPE_MATTERS
1306 && ! targetm.ms_bitfield_layout_p (rli->t)
1307 && TREE_CODE (field) == FIELD_DECL
1308 && type != error_mark_node
1309 && DECL_BIT_FIELD (field)
1310 && (! DECL_PACKED (field)
1311 /* Enter for these packed fields only to issue a warning. */
1312 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1313 && maximum_field_alignment == 0
1314 && ! integer_zerop (DECL_SIZE (field))
1315 && tree_fits_uhwi_p (DECL_SIZE (field))
1316 && tree_fits_uhwi_p (rli->offset)
1317 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1319 unsigned int type_align = TYPE_ALIGN (type);
1320 tree dsize = DECL_SIZE (field);
1321 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1322 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1323 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1325 #ifdef ADJUST_FIELD_ALIGN
1326 if (! TYPE_USER_ALIGN (type))
1327 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1328 #endif
1330 /* A bit field may not span more units of alignment of its type
1331 than its type itself. Advance to next boundary if necessary. */
1332 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1334 if (DECL_PACKED (field))
1336 if (warn_packed_bitfield_compat == 1)
1337 inform
1338 (input_location,
1339 "offset of packed bit-field %qD has changed in GCC 4.4",
1340 field);
1342 else
1343 rli->bitpos = round_up (rli->bitpos, type_align);
1346 if (! DECL_PACKED (field))
1347 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1349 SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1350 TYPE_WARN_IF_NOT_ALIGN (type));
1353 #ifdef BITFIELD_NBYTES_LIMITED
1354 if (BITFIELD_NBYTES_LIMITED
1355 && ! targetm.ms_bitfield_layout_p (rli->t)
1356 && TREE_CODE (field) == FIELD_DECL
1357 && type != error_mark_node
1358 && DECL_BIT_FIELD_TYPE (field)
1359 && ! DECL_PACKED (field)
1360 && ! integer_zerop (DECL_SIZE (field))
1361 && tree_fits_uhwi_p (DECL_SIZE (field))
1362 && tree_fits_uhwi_p (rli->offset)
1363 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1365 unsigned int type_align = TYPE_ALIGN (type);
1366 tree dsize = DECL_SIZE (field);
1367 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1368 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1369 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1371 #ifdef ADJUST_FIELD_ALIGN
1372 if (! TYPE_USER_ALIGN (type))
1373 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1374 #endif
1376 if (maximum_field_alignment != 0)
1377 type_align = MIN (type_align, maximum_field_alignment);
1378 /* ??? This test is opposite the test in the containing if
1379 statement, so this code is unreachable currently. */
1380 else if (DECL_PACKED (field))
1381 type_align = MIN (type_align, BITS_PER_UNIT);
1383 /* A bit field may not span the unit of alignment of its type.
1384 Advance to next boundary if necessary. */
1385 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1386 rli->bitpos = round_up (rli->bitpos, type_align);
1388 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1389 SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1390 TYPE_WARN_IF_NOT_ALIGN (type));
1392 #endif
1394 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1395 A subtlety:
1396 When a bit field is inserted into a packed record, the whole
1397 size of the underlying type is used by one or more same-size
1398 adjacent bitfields. (That is, if its long:3, 32 bits is
1399 used in the record, and any additional adjacent long bitfields are
1400 packed into the same chunk of 32 bits. However, if the size
1401 changes, a new field of that size is allocated.) In an unpacked
1402 record, this is the same as using alignment, but not equivalent
1403 when packing.
1405 Note: for compatibility, we use the type size, not the type alignment
1406 to determine alignment, since that matches the documentation */
1408 if (targetm.ms_bitfield_layout_p (rli->t))
1410 tree prev_saved = rli->prev_field;
1411 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1413 /* This is a bitfield if it exists. */
1414 if (rli->prev_field)
1416 /* If both are bitfields, nonzero, and the same size, this is
1417 the middle of a run. Zero declared size fields are special
1418 and handled as "end of run". (Note: it's nonzero declared
1419 size, but equal type sizes!) (Since we know that both
1420 the current and previous fields are bitfields by the
1421 time we check it, DECL_SIZE must be present for both.) */
1422 if (DECL_BIT_FIELD_TYPE (field)
1423 && !integer_zerop (DECL_SIZE (field))
1424 && !integer_zerop (DECL_SIZE (rli->prev_field))
1425 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1426 && tree_fits_uhwi_p (TYPE_SIZE (type))
1427 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1429 /* We're in the middle of a run of equal type size fields; make
1430 sure we realign if we run out of bits. (Not decl size,
1431 type size!) */
1432 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1434 if (rli->remaining_in_alignment < bitsize)
1436 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1438 /* out of bits; bump up to next 'word'. */
1439 rli->bitpos
1440 = size_binop (PLUS_EXPR, rli->bitpos,
1441 bitsize_int (rli->remaining_in_alignment));
1442 rli->prev_field = field;
1443 if (typesize < bitsize)
1444 rli->remaining_in_alignment = 0;
1445 else
1446 rli->remaining_in_alignment = typesize - bitsize;
1448 else
1449 rli->remaining_in_alignment -= bitsize;
1451 else
1453 /* End of a run: if leaving a run of bitfields of the same type
1454 size, we have to "use up" the rest of the bits of the type
1455 size.
1457 Compute the new position as the sum of the size for the prior
1458 type and where we first started working on that type.
1459 Note: since the beginning of the field was aligned then
1460 of course the end will be too. No round needed. */
1462 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1464 rli->bitpos
1465 = size_binop (PLUS_EXPR, rli->bitpos,
1466 bitsize_int (rli->remaining_in_alignment));
1468 else
1469 /* We "use up" size zero fields; the code below should behave
1470 as if the prior field was not a bitfield. */
1471 prev_saved = NULL;
1473 /* Cause a new bitfield to be captured, either this time (if
1474 currently a bitfield) or next time we see one. */
1475 if (!DECL_BIT_FIELD_TYPE (field)
1476 || integer_zerop (DECL_SIZE (field)))
1477 rli->prev_field = NULL;
1480 normalize_rli (rli);
1483 /* If we're starting a new run of same type size bitfields
1484 (or a run of non-bitfields), set up the "first of the run"
1485 fields.
1487 That is, if the current field is not a bitfield, or if there
1488 was a prior bitfield the type sizes differ, or if there wasn't
1489 a prior bitfield the size of the current field is nonzero.
1491 Note: we must be sure to test ONLY the type size if there was
1492 a prior bitfield and ONLY for the current field being zero if
1493 there wasn't. */
1495 if (!DECL_BIT_FIELD_TYPE (field)
1496 || (prev_saved != NULL
1497 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1498 : !integer_zerop (DECL_SIZE (field)) ))
1500 /* Never smaller than a byte for compatibility. */
1501 unsigned int type_align = BITS_PER_UNIT;
1503 /* (When not a bitfield), we could be seeing a flex array (with
1504 no DECL_SIZE). Since we won't be using remaining_in_alignment
1505 until we see a bitfield (and come by here again) we just skip
1506 calculating it. */
1507 if (DECL_SIZE (field) != NULL
1508 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1509 && tree_fits_uhwi_p (DECL_SIZE (field)))
1511 unsigned HOST_WIDE_INT bitsize
1512 = tree_to_uhwi (DECL_SIZE (field));
1513 unsigned HOST_WIDE_INT typesize
1514 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1516 if (typesize < bitsize)
1517 rli->remaining_in_alignment = 0;
1518 else
1519 rli->remaining_in_alignment = typesize - bitsize;
1522 /* Now align (conventionally) for the new type. */
1523 type_align = TYPE_ALIGN (TREE_TYPE (field));
1525 if (maximum_field_alignment != 0)
1526 type_align = MIN (type_align, maximum_field_alignment);
1528 rli->bitpos = round_up (rli->bitpos, type_align);
1530 /* If we really aligned, don't allow subsequent bitfields
1531 to undo that. */
1532 rli->prev_field = NULL;
1536 /* Offset so far becomes the position of this field after normalizing. */
1537 normalize_rli (rli);
1538 DECL_FIELD_OFFSET (field) = rli->offset;
1539 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1540 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1541 handle_warn_if_not_align (field, rli->record_align);
1543 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1544 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1545 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1547 /* If this field ended up more aligned than we thought it would be (we
1548 approximate this by seeing if its position changed), lay out the field
1549 again; perhaps we can use an integral mode for it now. */
1550 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1551 actual_align = least_bit_hwi (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1552 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1553 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1554 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1555 actual_align = (BITS_PER_UNIT
1556 * least_bit_hwi (tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1557 else
1558 actual_align = DECL_OFFSET_ALIGN (field);
1559 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1560 store / extract bit field operations will check the alignment of the
1561 record against the mode of bit fields. */
1563 if (known_align != actual_align)
1564 layout_decl (field, actual_align);
1566 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1567 rli->prev_field = field;
1569 /* Now add size of this field to the size of the record. If the size is
1570 not constant, treat the field as being a multiple of bytes and just
1571 adjust the offset, resetting the bit position. Otherwise, apportion the
1572 size amongst the bit position and offset. First handle the case of an
1573 unspecified size, which can happen when we have an invalid nested struct
1574 definition, such as struct j { struct j { int i; } }. The error message
1575 is printed in finish_struct. */
1576 if (DECL_SIZE (field) == 0)
1577 /* Do nothing. */;
1578 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1579 || TREE_OVERFLOW (DECL_SIZE (field)))
1581 rli->offset
1582 = size_binop (PLUS_EXPR, rli->offset,
1583 fold_convert (sizetype,
1584 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1585 bitsize_unit_node)));
1586 rli->offset
1587 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1588 rli->bitpos = bitsize_zero_node;
1589 rli->offset_align = MIN (rli->offset_align, desired_align);
1591 else if (targetm.ms_bitfield_layout_p (rli->t))
1593 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1595 /* If we ended a bitfield before the full length of the type then
1596 pad the struct out to the full length of the last type. */
1597 if ((DECL_CHAIN (field) == NULL
1598 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1599 && DECL_BIT_FIELD_TYPE (field)
1600 && !integer_zerop (DECL_SIZE (field)))
1601 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1602 bitsize_int (rli->remaining_in_alignment));
1604 normalize_rli (rli);
1606 else
1608 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1609 normalize_rli (rli);
1613 /* Assuming that all the fields have been laid out, this function uses
1614 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1615 indicated by RLI. */
1617 static void
1618 finalize_record_size (record_layout_info rli)
1620 tree unpadded_size, unpadded_size_unit;
1622 /* Now we want just byte and bit offsets, so set the offset alignment
1623 to be a byte and then normalize. */
1624 rli->offset_align = BITS_PER_UNIT;
1625 normalize_rli (rli);
1627 /* Determine the desired alignment. */
1628 #ifdef ROUND_TYPE_ALIGN
1629 SET_TYPE_ALIGN (rli->t, ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1630 rli->record_align));
1631 #else
1632 SET_TYPE_ALIGN (rli->t, MAX (TYPE_ALIGN (rli->t), rli->record_align));
1633 #endif
1635 /* Compute the size so far. Be sure to allow for extra bits in the
1636 size in bytes. We have guaranteed above that it will be no more
1637 than a single byte. */
1638 unpadded_size = rli_size_so_far (rli);
1639 unpadded_size_unit = rli_size_unit_so_far (rli);
1640 if (! integer_zerop (rli->bitpos))
1641 unpadded_size_unit
1642 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1644 /* Round the size up to be a multiple of the required alignment. */
1645 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1646 TYPE_SIZE_UNIT (rli->t)
1647 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1649 if (TREE_CONSTANT (unpadded_size)
1650 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1651 && input_location != BUILTINS_LOCATION)
1652 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1654 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1655 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1656 && TREE_CONSTANT (unpadded_size))
1658 tree unpacked_size;
1660 #ifdef ROUND_TYPE_ALIGN
1661 rli->unpacked_align
1662 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1663 #else
1664 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1665 #endif
1667 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1668 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1670 if (TYPE_NAME (rli->t))
1672 tree name;
1674 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1675 name = TYPE_NAME (rli->t);
1676 else
1677 name = DECL_NAME (TYPE_NAME (rli->t));
1679 if (STRICT_ALIGNMENT)
1680 warning (OPT_Wpacked, "packed attribute causes inefficient "
1681 "alignment for %qE", name);
1682 else
1683 warning (OPT_Wpacked,
1684 "packed attribute is unnecessary for %qE", name);
1686 else
1688 if (STRICT_ALIGNMENT)
1689 warning (OPT_Wpacked,
1690 "packed attribute causes inefficient alignment");
1691 else
1692 warning (OPT_Wpacked, "packed attribute is unnecessary");
1698 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1700 void
1701 compute_record_mode (tree type)
1703 tree field;
1704 machine_mode mode = VOIDmode;
1706 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1707 However, if possible, we use a mode that fits in a register
1708 instead, in order to allow for better optimization down the
1709 line. */
1710 SET_TYPE_MODE (type, BLKmode);
1712 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1713 return;
1715 /* A record which has any BLKmode members must itself be
1716 BLKmode; it can't go in a register. Unless the member is
1717 BLKmode only because it isn't aligned. */
1718 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1720 if (TREE_CODE (field) != FIELD_DECL)
1721 continue;
1723 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1724 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1725 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1726 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1727 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1728 || ! tree_fits_uhwi_p (bit_position (field))
1729 || DECL_SIZE (field) == 0
1730 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1731 return;
1733 /* If this field is the whole struct, remember its mode so
1734 that, say, we can put a double in a class into a DF
1735 register instead of forcing it to live in the stack. */
1736 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1737 mode = DECL_MODE (field);
1739 /* With some targets, it is sub-optimal to access an aligned
1740 BLKmode structure as a scalar. */
1741 if (targetm.member_type_forces_blk (field, mode))
1742 return;
1745 /* If we only have one real field; use its mode if that mode's size
1746 matches the type's size. This only applies to RECORD_TYPE. This
1747 does not apply to unions. */
1748 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1749 && tree_fits_uhwi_p (TYPE_SIZE (type))
1750 && GET_MODE_BITSIZE (mode) == tree_to_uhwi (TYPE_SIZE (type)))
1751 SET_TYPE_MODE (type, mode);
1752 else
1753 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1755 /* If structure's known alignment is less than what the scalar
1756 mode would need, and it matters, then stick with BLKmode. */
1757 if (TYPE_MODE (type) != BLKmode
1758 && STRICT_ALIGNMENT
1759 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1760 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1762 /* If this is the only reason this type is BLKmode, then
1763 don't force containing types to be BLKmode. */
1764 TYPE_NO_FORCE_BLK (type) = 1;
1765 SET_TYPE_MODE (type, BLKmode);
1769 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1770 out. */
1772 static void
1773 finalize_type_size (tree type)
1775 /* Normally, use the alignment corresponding to the mode chosen.
1776 However, where strict alignment is not required, avoid
1777 over-aligning structures, since most compilers do not do this
1778 alignment. */
1779 if (TYPE_MODE (type) != BLKmode
1780 && TYPE_MODE (type) != VOIDmode
1781 && (STRICT_ALIGNMENT || !AGGREGATE_TYPE_P (type)))
1783 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1785 /* Don't override a larger alignment requirement coming from a user
1786 alignment of one of the fields. */
1787 if (mode_align >= TYPE_ALIGN (type))
1789 SET_TYPE_ALIGN (type, mode_align);
1790 TYPE_USER_ALIGN (type) = 0;
1794 /* Do machine-dependent extra alignment. */
1795 #ifdef ROUND_TYPE_ALIGN
1796 SET_TYPE_ALIGN (type,
1797 ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT));
1798 #endif
1800 /* If we failed to find a simple way to calculate the unit size
1801 of the type, find it by division. */
1802 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1803 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1804 result will fit in sizetype. We will get more efficient code using
1805 sizetype, so we force a conversion. */
1806 TYPE_SIZE_UNIT (type)
1807 = fold_convert (sizetype,
1808 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1809 bitsize_unit_node));
1811 if (TYPE_SIZE (type) != 0)
1813 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1814 TYPE_SIZE_UNIT (type)
1815 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1818 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1819 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1820 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1821 if (TYPE_SIZE_UNIT (type) != 0
1822 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1823 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1825 /* Also layout any other variants of the type. */
1826 if (TYPE_NEXT_VARIANT (type)
1827 || type != TYPE_MAIN_VARIANT (type))
1829 tree variant;
1830 /* Record layout info of this variant. */
1831 tree size = TYPE_SIZE (type);
1832 tree size_unit = TYPE_SIZE_UNIT (type);
1833 unsigned int align = TYPE_ALIGN (type);
1834 unsigned int precision = TYPE_PRECISION (type);
1835 unsigned int user_align = TYPE_USER_ALIGN (type);
1836 machine_mode mode = TYPE_MODE (type);
1838 /* Copy it into all variants. */
1839 for (variant = TYPE_MAIN_VARIANT (type);
1840 variant != 0;
1841 variant = TYPE_NEXT_VARIANT (variant))
1843 TYPE_SIZE (variant) = size;
1844 TYPE_SIZE_UNIT (variant) = size_unit;
1845 unsigned valign = align;
1846 if (TYPE_USER_ALIGN (variant))
1847 valign = MAX (valign, TYPE_ALIGN (variant));
1848 else
1849 TYPE_USER_ALIGN (variant) = user_align;
1850 SET_TYPE_ALIGN (variant, valign);
1851 TYPE_PRECISION (variant) = precision;
1852 SET_TYPE_MODE (variant, mode);
1857 /* Return a new underlying object for a bitfield started with FIELD. */
1859 static tree
1860 start_bitfield_representative (tree field)
1862 tree repr = make_node (FIELD_DECL);
1863 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1864 /* Force the representative to begin at a BITS_PER_UNIT aligned
1865 boundary - C++ may use tail-padding of a base object to
1866 continue packing bits so the bitfield region does not start
1867 at bit zero (see g++.dg/abi/bitfield5.C for example).
1868 Unallocated bits may happen for other reasons as well,
1869 for example Ada which allows explicit bit-granular structure layout. */
1870 DECL_FIELD_BIT_OFFSET (repr)
1871 = size_binop (BIT_AND_EXPR,
1872 DECL_FIELD_BIT_OFFSET (field),
1873 bitsize_int (~(BITS_PER_UNIT - 1)));
1874 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1875 DECL_SIZE (repr) = DECL_SIZE (field);
1876 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1877 DECL_PACKED (repr) = DECL_PACKED (field);
1878 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1879 /* There are no indirect accesses to this field. If we introduce
1880 some then they have to use the record alias set. This makes
1881 sure to properly conflict with [indirect] accesses to addressable
1882 fields of the bitfield group. */
1883 DECL_NONADDRESSABLE_P (repr) = 1;
1884 return repr;
1887 /* Finish up a bitfield group that was started by creating the underlying
1888 object REPR with the last field in the bitfield group FIELD. */
1890 static void
1891 finish_bitfield_representative (tree repr, tree field)
1893 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1894 machine_mode mode;
1895 tree nextf, size;
1897 size = size_diffop (DECL_FIELD_OFFSET (field),
1898 DECL_FIELD_OFFSET (repr));
1899 while (TREE_CODE (size) == COMPOUND_EXPR)
1900 size = TREE_OPERAND (size, 1);
1901 gcc_assert (tree_fits_uhwi_p (size));
1902 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
1903 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1904 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
1905 + tree_to_uhwi (DECL_SIZE (field)));
1907 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1908 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1910 /* Now nothing tells us how to pad out bitsize ... */
1911 nextf = DECL_CHAIN (field);
1912 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1913 nextf = DECL_CHAIN (nextf);
1914 if (nextf)
1916 tree maxsize;
1917 /* If there was an error, the field may be not laid out
1918 correctly. Don't bother to do anything. */
1919 if (TREE_TYPE (nextf) == error_mark_node)
1920 return;
1921 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1922 DECL_FIELD_OFFSET (repr));
1923 if (tree_fits_uhwi_p (maxsize))
1925 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1926 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
1927 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1928 /* If the group ends within a bitfield nextf does not need to be
1929 aligned to BITS_PER_UNIT. Thus round up. */
1930 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1932 else
1933 maxbitsize = bitsize;
1935 else
1937 /* Note that if the C++ FE sets up tail-padding to be re-used it
1938 creates a as-base variant of the type with TYPE_SIZE adjusted
1939 accordingly. So it is safe to include tail-padding here. */
1940 tree aggsize = lang_hooks.types.unit_size_without_reusable_padding
1941 (DECL_CONTEXT (field));
1942 tree maxsize = size_diffop (aggsize, DECL_FIELD_OFFSET (repr));
1943 /* We cannot generally rely on maxsize to fold to an integer constant,
1944 so use bitsize as fallback for this case. */
1945 if (tree_fits_uhwi_p (maxsize))
1946 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1947 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1948 else
1949 maxbitsize = bitsize;
1952 /* Only if we don't artificially break up the representative in
1953 the middle of a large bitfield with different possibly
1954 overlapping representatives. And all representatives start
1955 at byte offset. */
1956 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1958 /* Find the smallest nice mode to use. */
1959 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1960 mode = GET_MODE_WIDER_MODE (mode))
1961 if (GET_MODE_BITSIZE (mode) >= bitsize)
1962 break;
1963 if (mode != VOIDmode
1964 && (GET_MODE_BITSIZE (mode) > maxbitsize
1965 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE))
1966 mode = VOIDmode;
1968 if (mode == VOIDmode)
1970 /* We really want a BLKmode representative only as a last resort,
1971 considering the member b in
1972 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1973 Otherwise we simply want to split the representative up
1974 allowing for overlaps within the bitfield region as required for
1975 struct { int a : 7; int b : 7;
1976 int c : 10; int d; } __attribute__((packed));
1977 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1978 DECL_SIZE (repr) = bitsize_int (bitsize);
1979 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
1980 SET_DECL_MODE (repr, BLKmode);
1981 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
1982 bitsize / BITS_PER_UNIT);
1984 else
1986 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
1987 DECL_SIZE (repr) = bitsize_int (modesize);
1988 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
1989 SET_DECL_MODE (repr, mode);
1990 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
1993 /* Remember whether the bitfield group is at the end of the
1994 structure or not. */
1995 DECL_CHAIN (repr) = nextf;
1998 /* Compute and set FIELD_DECLs for the underlying objects we should
1999 use for bitfield access for the structure T. */
2001 void
2002 finish_bitfield_layout (tree t)
2004 tree field, prev;
2005 tree repr = NULL_TREE;
2007 /* Unions would be special, for the ease of type-punning optimizations
2008 we could use the underlying type as hint for the representative
2009 if the bitfield would fit and the representative would not exceed
2010 the union in size. */
2011 if (TREE_CODE (t) != RECORD_TYPE)
2012 return;
2014 for (prev = NULL_TREE, field = TYPE_FIELDS (t);
2015 field; field = DECL_CHAIN (field))
2017 if (TREE_CODE (field) != FIELD_DECL)
2018 continue;
2020 /* In the C++ memory model, consecutive bit fields in a structure are
2021 considered one memory location and updating a memory location
2022 may not store into adjacent memory locations. */
2023 if (!repr
2024 && DECL_BIT_FIELD_TYPE (field))
2026 /* Start new representative. */
2027 repr = start_bitfield_representative (field);
2029 else if (repr
2030 && ! DECL_BIT_FIELD_TYPE (field))
2032 /* Finish off new representative. */
2033 finish_bitfield_representative (repr, prev);
2034 repr = NULL_TREE;
2036 else if (DECL_BIT_FIELD_TYPE (field))
2038 gcc_assert (repr != NULL_TREE);
2040 /* Zero-size bitfields finish off a representative and
2041 do not have a representative themselves. This is
2042 required by the C++ memory model. */
2043 if (integer_zerop (DECL_SIZE (field)))
2045 finish_bitfield_representative (repr, prev);
2046 repr = NULL_TREE;
2049 /* We assume that either DECL_FIELD_OFFSET of the representative
2050 and each bitfield member is a constant or they are equal.
2051 This is because we need to be able to compute the bit-offset
2052 of each field relative to the representative in get_bit_range
2053 during RTL expansion.
2054 If these constraints are not met, simply force a new
2055 representative to be generated. That will at most
2056 generate worse code but still maintain correctness with
2057 respect to the C++ memory model. */
2058 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
2059 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
2060 || operand_equal_p (DECL_FIELD_OFFSET (repr),
2061 DECL_FIELD_OFFSET (field), 0)))
2063 finish_bitfield_representative (repr, prev);
2064 repr = start_bitfield_representative (field);
2067 else
2068 continue;
2070 if (repr)
2071 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2073 prev = field;
2076 if (repr)
2077 finish_bitfield_representative (repr, prev);
2080 /* Do all of the work required to layout the type indicated by RLI,
2081 once the fields have been laid out. This function will call `free'
2082 for RLI, unless FREE_P is false. Passing a value other than false
2083 for FREE_P is bad practice; this option only exists to support the
2084 G++ 3.2 ABI. */
2086 void
2087 finish_record_layout (record_layout_info rli, int free_p)
2089 tree variant;
2091 /* Compute the final size. */
2092 finalize_record_size (rli);
2094 /* Compute the TYPE_MODE for the record. */
2095 compute_record_mode (rli->t);
2097 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2098 finalize_type_size (rli->t);
2100 /* Compute bitfield representatives. */
2101 finish_bitfield_layout (rli->t);
2103 /* Propagate TYPE_PACKED and TYPE_REVERSE_STORAGE_ORDER to variants.
2104 With C++ templates, it is too early to do this when the attribute
2105 is being parsed. */
2106 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2107 variant = TYPE_NEXT_VARIANT (variant))
2109 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2110 TYPE_REVERSE_STORAGE_ORDER (variant)
2111 = TYPE_REVERSE_STORAGE_ORDER (rli->t);
2114 /* Lay out any static members. This is done now because their type
2115 may use the record's type. */
2116 while (!vec_safe_is_empty (rli->pending_statics))
2117 layout_decl (rli->pending_statics->pop (), 0);
2119 /* Clean up. */
2120 if (free_p)
2122 vec_free (rli->pending_statics);
2123 free (rli);
2128 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2129 NAME, its fields are chained in reverse on FIELDS.
2131 If ALIGN_TYPE is non-null, it is given the same alignment as
2132 ALIGN_TYPE. */
2134 void
2135 finish_builtin_struct (tree type, const char *name, tree fields,
2136 tree align_type)
2138 tree tail, next;
2140 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2142 DECL_FIELD_CONTEXT (fields) = type;
2143 next = DECL_CHAIN (fields);
2144 DECL_CHAIN (fields) = tail;
2146 TYPE_FIELDS (type) = tail;
2148 if (align_type)
2150 SET_TYPE_ALIGN (type, TYPE_ALIGN (align_type));
2151 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2152 SET_TYPE_WARN_IF_NOT_ALIGN (type,
2153 TYPE_WARN_IF_NOT_ALIGN (align_type));
2156 layout_type (type);
2157 #if 0 /* not yet, should get fixed properly later */
2158 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2159 #else
2160 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2161 TYPE_DECL, get_identifier (name), type);
2162 #endif
2163 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2164 layout_decl (TYPE_NAME (type), 0);
2167 /* Calculate the mode, size, and alignment for TYPE.
2168 For an array type, calculate the element separation as well.
2169 Record TYPE on the chain of permanent or temporary types
2170 so that dbxout will find out about it.
2172 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2173 layout_type does nothing on such a type.
2175 If the type is incomplete, its TYPE_SIZE remains zero. */
2177 void
2178 layout_type (tree type)
2180 gcc_assert (type);
2182 if (type == error_mark_node)
2183 return;
2185 /* We don't want finalize_type_size to copy an alignment attribute to
2186 variants that don't have it. */
2187 type = TYPE_MAIN_VARIANT (type);
2189 /* Do nothing if type has been laid out before. */
2190 if (TYPE_SIZE (type))
2191 return;
2193 switch (TREE_CODE (type))
2195 case LANG_TYPE:
2196 /* This kind of type is the responsibility
2197 of the language-specific code. */
2198 gcc_unreachable ();
2200 case BOOLEAN_TYPE:
2201 case INTEGER_TYPE:
2202 case ENUMERAL_TYPE:
2203 SET_TYPE_MODE (type,
2204 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
2205 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2206 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2207 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2208 break;
2210 case REAL_TYPE:
2211 /* Allow the caller to choose the type mode, which is how decimal
2212 floats are distinguished from binary ones. */
2213 if (TYPE_MODE (type) == VOIDmode)
2214 SET_TYPE_MODE (type,
2215 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
2216 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2217 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2218 break;
2220 case FIXED_POINT_TYPE:
2221 /* TYPE_MODE (type) has been set already. */
2222 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2223 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2224 break;
2226 case COMPLEX_TYPE:
2227 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2228 SET_TYPE_MODE (type,
2229 GET_MODE_COMPLEX_MODE (TYPE_MODE (TREE_TYPE (type))));
2231 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2232 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2233 break;
2235 case VECTOR_TYPE:
2237 int nunits = TYPE_VECTOR_SUBPARTS (type);
2238 tree innertype = TREE_TYPE (type);
2240 gcc_assert (!(nunits & (nunits - 1)));
2242 /* Find an appropriate mode for the vector type. */
2243 if (TYPE_MODE (type) == VOIDmode)
2244 SET_TYPE_MODE (type,
2245 mode_for_vector (TYPE_MODE (innertype), nunits));
2247 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2248 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2249 /* Several boolean vector elements may fit in a single unit. */
2250 if (VECTOR_BOOLEAN_TYPE_P (type)
2251 && type->type_common.mode != BLKmode)
2252 TYPE_SIZE_UNIT (type)
2253 = size_int (GET_MODE_SIZE (type->type_common.mode));
2254 else
2255 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2256 TYPE_SIZE_UNIT (innertype),
2257 size_int (nunits));
2258 TYPE_SIZE (type) = int_const_binop (MULT_EXPR,
2259 TYPE_SIZE (innertype),
2260 bitsize_int (nunits));
2262 /* For vector types, we do not default to the mode's alignment.
2263 Instead, query a target hook, defaulting to natural alignment.
2264 This prevents ABI changes depending on whether or not native
2265 vector modes are supported. */
2266 SET_TYPE_ALIGN (type, targetm.vector_alignment (type));
2268 /* However, if the underlying mode requires a bigger alignment than
2269 what the target hook provides, we cannot use the mode. For now,
2270 simply reject that case. */
2271 gcc_assert (TYPE_ALIGN (type)
2272 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2273 break;
2276 case VOID_TYPE:
2277 /* This is an incomplete type and so doesn't have a size. */
2278 SET_TYPE_ALIGN (type, 1);
2279 TYPE_USER_ALIGN (type) = 0;
2280 SET_TYPE_MODE (type, VOIDmode);
2281 break;
2283 case POINTER_BOUNDS_TYPE:
2284 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2285 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2286 break;
2288 case OFFSET_TYPE:
2289 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2290 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2291 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2292 integral, which may be an __intN. */
2293 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
2294 TYPE_PRECISION (type) = POINTER_SIZE;
2295 break;
2297 case FUNCTION_TYPE:
2298 case METHOD_TYPE:
2299 /* It's hard to see what the mode and size of a function ought to
2300 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2301 make it consistent with that. */
2302 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
2303 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2304 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2305 break;
2307 case POINTER_TYPE:
2308 case REFERENCE_TYPE:
2310 machine_mode mode = TYPE_MODE (type);
2311 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2312 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2313 TYPE_UNSIGNED (type) = 1;
2314 TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2316 break;
2318 case ARRAY_TYPE:
2320 tree index = TYPE_DOMAIN (type);
2321 tree element = TREE_TYPE (type);
2323 /* We need to know both bounds in order to compute the size. */
2324 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2325 && TYPE_SIZE (element))
2327 tree ub = TYPE_MAX_VALUE (index);
2328 tree lb = TYPE_MIN_VALUE (index);
2329 tree element_size = TYPE_SIZE (element);
2330 tree length;
2332 /* Make sure that an array of zero-sized element is zero-sized
2333 regardless of its extent. */
2334 if (integer_zerop (element_size))
2335 length = size_zero_node;
2337 /* The computation should happen in the original signedness so
2338 that (possible) negative values are handled appropriately
2339 when determining overflow. */
2340 else
2342 /* ??? When it is obvious that the range is signed
2343 represent it using ssizetype. */
2344 if (TREE_CODE (lb) == INTEGER_CST
2345 && TREE_CODE (ub) == INTEGER_CST
2346 && TYPE_UNSIGNED (TREE_TYPE (lb))
2347 && tree_int_cst_lt (ub, lb))
2349 lb = wide_int_to_tree (ssizetype,
2350 offset_int::from (lb, SIGNED));
2351 ub = wide_int_to_tree (ssizetype,
2352 offset_int::from (ub, SIGNED));
2354 length
2355 = fold_convert (sizetype,
2356 size_binop (PLUS_EXPR,
2357 build_int_cst (TREE_TYPE (lb), 1),
2358 size_binop (MINUS_EXPR, ub, lb)));
2361 /* ??? We have no way to distinguish a null-sized array from an
2362 array spanning the whole sizetype range, so we arbitrarily
2363 decide that [0, -1] is the only valid representation. */
2364 if (integer_zerop (length)
2365 && TREE_OVERFLOW (length)
2366 && integer_zerop (lb))
2367 length = size_zero_node;
2369 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2370 fold_convert (bitsizetype,
2371 length));
2373 /* If we know the size of the element, calculate the total size
2374 directly, rather than do some division thing below. This
2375 optimization helps Fortran assumed-size arrays (where the
2376 size of the array is determined at runtime) substantially. */
2377 if (TYPE_SIZE_UNIT (element))
2378 TYPE_SIZE_UNIT (type)
2379 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2382 /* Now round the alignment and size,
2383 using machine-dependent criteria if any. */
2385 unsigned align = TYPE_ALIGN (element);
2386 if (TYPE_USER_ALIGN (type))
2387 align = MAX (align, TYPE_ALIGN (type));
2388 else
2389 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2390 if (!TYPE_WARN_IF_NOT_ALIGN (type))
2391 SET_TYPE_WARN_IF_NOT_ALIGN (type,
2392 TYPE_WARN_IF_NOT_ALIGN (element));
2393 #ifdef ROUND_TYPE_ALIGN
2394 align = ROUND_TYPE_ALIGN (type, align, BITS_PER_UNIT);
2395 #else
2396 align = MAX (align, BITS_PER_UNIT);
2397 #endif
2398 SET_TYPE_ALIGN (type, align);
2399 SET_TYPE_MODE (type, BLKmode);
2400 if (TYPE_SIZE (type) != 0
2401 && ! targetm.member_type_forces_blk (type, VOIDmode)
2402 /* BLKmode elements force BLKmode aggregate;
2403 else extract/store fields may lose. */
2404 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2405 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2407 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2408 TYPE_SIZE (type)));
2409 if (TYPE_MODE (type) != BLKmode
2410 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2411 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2413 TYPE_NO_FORCE_BLK (type) = 1;
2414 SET_TYPE_MODE (type, BLKmode);
2417 if (AGGREGATE_TYPE_P (element))
2418 TYPE_TYPELESS_STORAGE (type) = TYPE_TYPELESS_STORAGE (element);
2419 /* When the element size is constant, check that it is at least as
2420 large as the element alignment. */
2421 if (TYPE_SIZE_UNIT (element)
2422 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2423 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2424 TYPE_ALIGN_UNIT. */
2425 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2426 && !integer_zerop (TYPE_SIZE_UNIT (element))
2427 && compare_tree_int (TYPE_SIZE_UNIT (element),
2428 TYPE_ALIGN_UNIT (element)) < 0)
2429 error ("alignment of array elements is greater than element size");
2430 break;
2433 case RECORD_TYPE:
2434 case UNION_TYPE:
2435 case QUAL_UNION_TYPE:
2437 tree field;
2438 record_layout_info rli;
2440 /* Initialize the layout information. */
2441 rli = start_record_layout (type);
2443 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2444 in the reverse order in building the COND_EXPR that denotes
2445 its size. We reverse them again later. */
2446 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2447 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2449 /* Place all the fields. */
2450 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2451 place_field (rli, field);
2453 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2454 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2456 /* Finish laying out the record. */
2457 finish_record_layout (rli, /*free_p=*/true);
2459 break;
2461 default:
2462 gcc_unreachable ();
2465 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2466 records and unions, finish_record_layout already called this
2467 function. */
2468 if (!RECORD_OR_UNION_TYPE_P (type))
2469 finalize_type_size (type);
2471 /* We should never see alias sets on incomplete aggregates. And we
2472 should not call layout_type on not incomplete aggregates. */
2473 if (AGGREGATE_TYPE_P (type))
2474 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2477 /* Return the least alignment required for type TYPE. */
2479 unsigned int
2480 min_align_of_type (tree type)
2482 unsigned int align = TYPE_ALIGN (type);
2483 if (!TYPE_USER_ALIGN (type))
2485 align = MIN (align, BIGGEST_ALIGNMENT);
2486 #ifdef BIGGEST_FIELD_ALIGNMENT
2487 align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2488 #endif
2489 unsigned int field_align = align;
2490 #ifdef ADJUST_FIELD_ALIGN
2491 field_align = ADJUST_FIELD_ALIGN (NULL_TREE, type, field_align);
2492 #endif
2493 align = MIN (align, field_align);
2495 return align / BITS_PER_UNIT;
2498 /* Create and return a type for signed integers of PRECISION bits. */
2500 tree
2501 make_signed_type (int precision)
2503 tree type = make_node (INTEGER_TYPE);
2505 TYPE_PRECISION (type) = precision;
2507 fixup_signed_type (type);
2508 return type;
2511 /* Create and return a type for unsigned integers of PRECISION bits. */
2513 tree
2514 make_unsigned_type (int precision)
2516 tree type = make_node (INTEGER_TYPE);
2518 TYPE_PRECISION (type) = precision;
2520 fixup_unsigned_type (type);
2521 return type;
2524 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2525 and SATP. */
2527 tree
2528 make_fract_type (int precision, int unsignedp, int satp)
2530 tree type = make_node (FIXED_POINT_TYPE);
2532 TYPE_PRECISION (type) = precision;
2534 if (satp)
2535 TYPE_SATURATING (type) = 1;
2537 /* Lay out the type: set its alignment, size, etc. */
2538 if (unsignedp)
2540 TYPE_UNSIGNED (type) = 1;
2541 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
2543 else
2544 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
2545 layout_type (type);
2547 return type;
2550 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2551 and SATP. */
2553 tree
2554 make_accum_type (int precision, int unsignedp, int satp)
2556 tree type = make_node (FIXED_POINT_TYPE);
2558 TYPE_PRECISION (type) = precision;
2560 if (satp)
2561 TYPE_SATURATING (type) = 1;
2563 /* Lay out the type: set its alignment, size, etc. */
2564 if (unsignedp)
2566 TYPE_UNSIGNED (type) = 1;
2567 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
2569 else
2570 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
2571 layout_type (type);
2573 return type;
2576 /* Initialize sizetypes so layout_type can use them. */
2578 void
2579 initialize_sizetypes (void)
2581 int precision, bprecision;
2583 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2584 if (strcmp (SIZETYPE, "unsigned int") == 0)
2585 precision = INT_TYPE_SIZE;
2586 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2587 precision = LONG_TYPE_SIZE;
2588 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2589 precision = LONG_LONG_TYPE_SIZE;
2590 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2591 precision = SHORT_TYPE_SIZE;
2592 else
2594 int i;
2596 precision = -1;
2597 for (i = 0; i < NUM_INT_N_ENTS; i++)
2598 if (int_n_enabled_p[i])
2600 char name[50];
2601 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2603 if (strcmp (name, SIZETYPE) == 0)
2605 precision = int_n_data[i].bitsize;
2608 if (precision == -1)
2609 gcc_unreachable ();
2612 bprecision
2613 = MIN (precision + LOG2_BITS_PER_UNIT + 1, MAX_FIXED_MODE_SIZE);
2614 bprecision
2615 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision, MODE_INT));
2616 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2617 bprecision = HOST_BITS_PER_DOUBLE_INT;
2619 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2620 sizetype = make_node (INTEGER_TYPE);
2621 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2622 TYPE_PRECISION (sizetype) = precision;
2623 TYPE_UNSIGNED (sizetype) = 1;
2624 bitsizetype = make_node (INTEGER_TYPE);
2625 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2626 TYPE_PRECISION (bitsizetype) = bprecision;
2627 TYPE_UNSIGNED (bitsizetype) = 1;
2629 /* Now layout both types manually. */
2630 SET_TYPE_MODE (sizetype, smallest_mode_for_size (precision, MODE_INT));
2631 SET_TYPE_ALIGN (sizetype, GET_MODE_ALIGNMENT (TYPE_MODE (sizetype)));
2632 TYPE_SIZE (sizetype) = bitsize_int (precision);
2633 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype)));
2634 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2636 SET_TYPE_MODE (bitsizetype, smallest_mode_for_size (bprecision, MODE_INT));
2637 SET_TYPE_ALIGN (bitsizetype, GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype)));
2638 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2639 TYPE_SIZE_UNIT (bitsizetype)
2640 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype)));
2641 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2643 /* Create the signed variants of *sizetype. */
2644 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2645 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2646 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2647 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2650 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2651 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2652 for TYPE, based on the PRECISION and whether or not the TYPE
2653 IS_UNSIGNED. PRECISION need not correspond to a width supported
2654 natively by the hardware; for example, on a machine with 8-bit,
2655 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2656 61. */
2658 void
2659 set_min_and_max_values_for_integral_type (tree type,
2660 int precision,
2661 signop sgn)
2663 /* For bitfields with zero width we end up creating integer types
2664 with zero precision. Don't assign any minimum/maximum values
2665 to those types, they don't have any valid value. */
2666 if (precision < 1)
2667 return;
2669 TYPE_MIN_VALUE (type)
2670 = wide_int_to_tree (type, wi::min_value (precision, sgn));
2671 TYPE_MAX_VALUE (type)
2672 = wide_int_to_tree (type, wi::max_value (precision, sgn));
2675 /* Set the extreme values of TYPE based on its precision in bits,
2676 then lay it out. Used when make_signed_type won't do
2677 because the tree code is not INTEGER_TYPE. */
2679 void
2680 fixup_signed_type (tree type)
2682 int precision = TYPE_PRECISION (type);
2684 set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2686 /* Lay out the type: set its alignment, size, etc. */
2687 layout_type (type);
2690 /* Set the extreme values of TYPE based on its precision in bits,
2691 then lay it out. This is used both in `make_unsigned_type'
2692 and for enumeral types. */
2694 void
2695 fixup_unsigned_type (tree type)
2697 int precision = TYPE_PRECISION (type);
2699 TYPE_UNSIGNED (type) = 1;
2701 set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2703 /* Lay out the type: set its alignment, size, etc. */
2704 layout_type (type);
2707 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2708 starting at BITPOS.
2710 BITREGION_START is the bit position of the first bit in this
2711 sequence of bit fields. BITREGION_END is the last bit in this
2712 sequence. If these two fields are non-zero, we should restrict the
2713 memory access to that range. Otherwise, we are allowed to touch
2714 any adjacent non bit-fields.
2716 ALIGN is the alignment of the underlying object in bits.
2717 VOLATILEP says whether the bitfield is volatile. */
2719 bit_field_mode_iterator
2720 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2721 HOST_WIDE_INT bitregion_start,
2722 HOST_WIDE_INT bitregion_end,
2723 unsigned int align, bool volatilep)
2724 : m_mode (GET_CLASS_NARROWEST_MODE (MODE_INT)), m_bitsize (bitsize),
2725 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2726 m_bitregion_end (bitregion_end), m_align (align),
2727 m_volatilep (volatilep), m_count (0)
2729 if (!m_bitregion_end)
2731 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2732 the bitfield is mapped and won't trap, provided that ALIGN isn't
2733 too large. The cap is the biggest required alignment for data,
2734 or at least the word size. And force one such chunk at least. */
2735 unsigned HOST_WIDE_INT units
2736 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2737 if (bitsize <= 0)
2738 bitsize = 1;
2739 m_bitregion_end = bitpos + bitsize + units - 1;
2740 m_bitregion_end -= m_bitregion_end % units + 1;
2744 /* Calls to this function return successively larger modes that can be used
2745 to represent the bitfield. Return true if another bitfield mode is
2746 available, storing it in *OUT_MODE if so. */
2748 bool
2749 bit_field_mode_iterator::next_mode (machine_mode *out_mode)
2751 for (; m_mode != VOIDmode; m_mode = GET_MODE_WIDER_MODE (m_mode))
2753 unsigned int unit = GET_MODE_BITSIZE (m_mode);
2755 /* Skip modes that don't have full precision. */
2756 if (unit != GET_MODE_PRECISION (m_mode))
2757 continue;
2759 /* Stop if the mode is too wide to handle efficiently. */
2760 if (unit > MAX_FIXED_MODE_SIZE)
2761 break;
2763 /* Don't deliver more than one multiword mode; the smallest one
2764 should be used. */
2765 if (m_count > 0 && unit > BITS_PER_WORD)
2766 break;
2768 /* Skip modes that are too small. */
2769 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2770 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2771 if (subend > unit)
2772 continue;
2774 /* Stop if the mode goes outside the bitregion. */
2775 HOST_WIDE_INT start = m_bitpos - substart;
2776 if (m_bitregion_start && start < m_bitregion_start)
2777 break;
2778 HOST_WIDE_INT end = start + unit;
2779 if (end > m_bitregion_end + 1)
2780 break;
2782 /* Stop if the mode requires too much alignment. */
2783 if (GET_MODE_ALIGNMENT (m_mode) > m_align
2784 && SLOW_UNALIGNED_ACCESS (m_mode, m_align))
2785 break;
2787 *out_mode = m_mode;
2788 m_mode = GET_MODE_WIDER_MODE (m_mode);
2789 m_count++;
2790 return true;
2792 return false;
2795 /* Return true if smaller modes are generally preferred for this kind
2796 of bitfield. */
2798 bool
2799 bit_field_mode_iterator::prefer_smaller_modes ()
2801 return (m_volatilep
2802 ? targetm.narrow_volatile_bitfield ()
2803 : !SLOW_BYTE_ACCESS);
2806 /* Find the best machine mode to use when referencing a bit field of length
2807 BITSIZE bits starting at BITPOS.
2809 BITREGION_START is the bit position of the first bit in this
2810 sequence of bit fields. BITREGION_END is the last bit in this
2811 sequence. If these two fields are non-zero, we should restrict the
2812 memory access to that range. Otherwise, we are allowed to touch
2813 any adjacent non bit-fields.
2815 The underlying object is known to be aligned to a boundary of ALIGN bits.
2816 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2817 larger than LARGEST_MODE (usually SImode).
2819 If no mode meets all these conditions, we return VOIDmode.
2821 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2822 smallest mode meeting these conditions.
2824 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2825 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2826 all the conditions.
2828 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2829 decide which of the above modes should be used. */
2831 machine_mode
2832 get_best_mode (int bitsize, int bitpos,
2833 unsigned HOST_WIDE_INT bitregion_start,
2834 unsigned HOST_WIDE_INT bitregion_end,
2835 unsigned int align,
2836 machine_mode largest_mode, bool volatilep)
2838 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2839 bitregion_end, align, volatilep);
2840 machine_mode widest_mode = VOIDmode;
2841 machine_mode mode;
2842 while (iter.next_mode (&mode)
2843 /* ??? For historical reasons, reject modes that would normally
2844 receive greater alignment, even if unaligned accesses are
2845 acceptable. This has both advantages and disadvantages.
2846 Removing this check means that something like:
2848 struct s { unsigned int x; unsigned int y; };
2849 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2851 can be implemented using a single load and compare on
2852 64-bit machines that have no alignment restrictions.
2853 For example, on powerpc64-linux-gnu, we would generate:
2855 ld 3,0(3)
2856 cntlzd 3,3
2857 srdi 3,3,6
2860 rather than:
2862 lwz 9,0(3)
2863 cmpwi 7,9,0
2864 bne 7,.L3
2865 lwz 3,4(3)
2866 cntlzw 3,3
2867 srwi 3,3,5
2868 extsw 3,3
2870 .p2align 4,,15
2871 .L3:
2872 li 3,0
2875 However, accessing more than one field can make life harder
2876 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2877 has a series of unsigned short copies followed by a series of
2878 unsigned short comparisons. With this check, both the copies
2879 and comparisons remain 16-bit accesses and FRE is able
2880 to eliminate the latter. Without the check, the comparisons
2881 can be done using 2 64-bit operations, which FRE isn't able
2882 to handle in the same way.
2884 Either way, it would probably be worth disabling this check
2885 during expand. One particular example where removing the
2886 check would help is the get_best_mode call in store_bit_field.
2887 If we are given a memory bitregion of 128 bits that is aligned
2888 to a 64-bit boundary, and the bitfield we want to modify is
2889 in the second half of the bitregion, this check causes
2890 store_bitfield to turn the memory into a 64-bit reference
2891 to the _first_ half of the region. We later use
2892 adjust_bitfield_address to get a reference to the correct half,
2893 but doing so looks to adjust_bitfield_address as though we are
2894 moving past the end of the original object, so it drops the
2895 associated MEM_EXPR and MEM_OFFSET. Removing the check
2896 causes store_bit_field to keep a 128-bit memory reference,
2897 so that the final bitfield reference still has a MEM_EXPR
2898 and MEM_OFFSET. */
2899 && GET_MODE_ALIGNMENT (mode) <= align
2900 && (largest_mode == VOIDmode
2901 || GET_MODE_SIZE (mode) <= GET_MODE_SIZE (largest_mode)))
2903 widest_mode = mode;
2904 if (iter.prefer_smaller_modes ())
2905 break;
2907 return widest_mode;
2910 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2911 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2913 void
2914 get_mode_bounds (machine_mode mode, int sign,
2915 machine_mode target_mode,
2916 rtx *mmin, rtx *mmax)
2918 unsigned size = GET_MODE_PRECISION (mode);
2919 unsigned HOST_WIDE_INT min_val, max_val;
2921 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2923 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
2924 if (mode == BImode)
2926 if (STORE_FLAG_VALUE < 0)
2928 min_val = STORE_FLAG_VALUE;
2929 max_val = 0;
2931 else
2933 min_val = 0;
2934 max_val = STORE_FLAG_VALUE;
2937 else if (sign)
2939 min_val = -(HOST_WIDE_INT_1U << (size - 1));
2940 max_val = (HOST_WIDE_INT_1U << (size - 1)) - 1;
2942 else
2944 min_val = 0;
2945 max_val = (HOST_WIDE_INT_1U << (size - 1) << 1) - 1;
2948 *mmin = gen_int_mode (min_val, target_mode);
2949 *mmax = gen_int_mode (max_val, target_mode);
2952 #include "gt-stor-layout.h"