compiler: set captured variable address to nonescape until further flooded
[official-gcc.git] / contrib / analyze_brprob.py
blobe03d1da1cdea004d98b67feab1b66cd2569b3bd6
1 #!/usr/bin/env python3
3 # Script to analyze results of our branch prediction heuristics
5 # This file is part of GCC.
7 # GCC is free software; you can redistribute it and/or modify it under
8 # the terms of the GNU General Public License as published by the Free
9 # Software Foundation; either version 3, or (at your option) any later
10 # version.
12 # GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 # WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 # for more details.
17 # You should have received a copy of the GNU General Public License
18 # along with GCC; see the file COPYING3. If not see
19 # <http://www.gnu.org/licenses/>. */
23 # This script is used to calculate two basic properties of the branch prediction
24 # heuristics - coverage and hitrate. Coverage is number of executions
25 # of a given branch matched by the heuristics and hitrate is probability
26 # that once branch is predicted as taken it is really taken.
28 # These values are useful to determine the quality of given heuristics.
29 # Hitrate may be directly used in predict.def.
31 # Usage:
32 # Step 1: Compile and profile your program. You need to use -fprofile-generate
33 # flag to get the profiles.
34 # Step 2: Make a reference run of the intrumented application.
35 # Step 3: Compile the program with collected profile and dump IPA profiles
36 # (-fprofile-use -fdump-ipa-profile-details)
37 # Step 4: Collect all generated dump files:
38 # find . -name '*.profile' | xargs cat > dump_file
39 # Step 5: Run the script:
40 # ./analyze_brprob.py dump_file
41 # and read results. Basically the following table is printed:
43 # HEURISTICS BRANCHES (REL) HITRATE COVERAGE (REL)
44 # early return (on trees) 3 0.2% 35.83% / 93.64% 66360 0.0%
45 # guess loop iv compare 8 0.6% 53.35% / 53.73% 11183344 0.0%
46 # call 18 1.4% 31.95% / 69.95% 51880179 0.2%
47 # loop guard 23 1.8% 84.13% / 84.85% 13749065956 42.2%
48 # opcode values positive (on trees) 42 3.3% 15.71% / 84.81% 6771097902 20.8%
49 # opcode values nonequal (on trees) 226 17.6% 72.48% / 72.84% 844753864 2.6%
50 # loop exit 231 18.0% 86.97% / 86.98% 8952666897 27.5%
51 # loop iterations 239 18.6% 91.10% / 91.10% 3062707264 9.4%
52 # DS theory 281 21.9% 82.08% / 83.39% 7787264075 23.9%
53 # no prediction 293 22.9% 46.92% / 70.70% 2293267840 7.0%
54 # guessed loop iterations 313 24.4% 76.41% / 76.41% 10782750177 33.1%
55 # first match 708 55.2% 82.30% / 82.31% 22489588691 69.0%
56 # combined 1282 100.0% 79.76% / 81.75% 32570120606 100.0%
59 # The heuristics called "first match" is a heuristics used by GCC branch
60 # prediction pass and it predicts 55.2% branches correctly. As you can,
61 # the heuristics has very good covertage (69.05%). On the other hand,
62 # "opcode values nonequal (on trees)" heuristics has good hirate, but poor
63 # coverage.
65 import sys
66 import os
67 import re
68 import argparse
70 from math import *
72 counter_aggregates = set(['combined', 'first match', 'DS theory',
73 'no prediction'])
75 def percentage(a, b):
76 return 100.0 * a / b
78 def average(values):
79 return 1.0 * sum(values) / len(values)
81 def average_cutoff(values, cut):
82 l = len(values)
83 skip = floor(l * cut / 2)
84 if skip > 0:
85 values.sort()
86 values = values[skip:-skip]
87 return average(values)
89 def median(values):
90 values.sort()
91 return values[int(len(values) / 2)]
93 class PredictDefFile:
94 def __init__(self, path):
95 self.path = path
96 self.predictors = {}
98 def parse_and_modify(self, heuristics, write_def_file):
99 lines = [x.rstrip() for x in open(self.path).readlines()]
101 p = None
102 modified_lines = []
103 for l in lines:
104 if l.startswith('DEF_PREDICTOR'):
105 m = re.match('.*"(.*)".*', l)
106 p = m.group(1)
107 elif l == '':
108 p = None
110 if p != None:
111 heuristic = [x for x in heuristics if x.name == p]
112 heuristic = heuristic[0] if len(heuristic) == 1 else None
114 m = re.match('.*HITRATE \(([^)]*)\).*', l)
115 if (m != None):
116 self.predictors[p] = int(m.group(1))
118 # modify the line
119 if heuristic != None:
120 new_line = (l[:m.start(1)]
121 + str(round(heuristic.get_hitrate()))
122 + l[m.end(1):])
123 l = new_line
124 p = None
125 elif 'PROB_VERY_LIKELY' in l:
126 self.predictors[p] = 100
127 modified_lines.append(l)
129 # save the file
130 if write_def_file:
131 with open(self.path, 'w+') as f:
132 for l in modified_lines:
133 f.write(l + '\n')
135 class Summary:
136 def __init__(self, name):
137 self.name = name
138 self.branches = 0
139 self.successfull_branches = 0
140 self.count = 0
141 self.hits = 0
142 self.fits = 0
144 def get_hitrate(self):
145 return 100.0 * self.hits / self.count
147 def get_branch_hitrate(self):
148 return 100.0 * self.successfull_branches / self.branches
150 def count_formatted(self):
151 v = self.count
152 for unit in ['', 'k', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y']:
153 if v < 1000:
154 return "%3.2f%s" % (v, unit)
155 v /= 1000.0
156 return "%.1f%s" % (v, 'Y')
158 def print(self, branches_max, count_max, predict_def):
159 predicted_as = None
160 if predict_def != None and self.name in predict_def.predictors:
161 predicted_as = predict_def.predictors[self.name]
163 print('%-40s %8i %5.1f%% %11.2f%% %7.2f%% / %6.2f%% %14i %8s %5.1f%%' %
164 (self.name, self.branches,
165 percentage(self.branches, branches_max),
166 self.get_branch_hitrate(),
167 self.get_hitrate(),
168 percentage(self.fits, self.count),
169 self.count, self.count_formatted(),
170 percentage(self.count, count_max)), end = '')
172 if predicted_as != None:
173 print('%12i%% %5.1f%%' % (predicted_as,
174 self.get_hitrate() - predicted_as), end = '')
175 print()
177 class Profile:
178 def __init__(self, filename):
179 self.filename = filename
180 self.heuristics = {}
181 self.niter_vector = []
183 def add(self, name, prediction, count, hits):
184 if not name in self.heuristics:
185 self.heuristics[name] = Summary(name)
187 s = self.heuristics[name]
188 s.branches += 1
190 s.count += count
191 if prediction < 50:
192 hits = count - hits
193 remaining = count - hits
194 if hits >= remaining:
195 s.successfull_branches += 1
197 s.hits += hits
198 s.fits += max(hits, remaining)
200 def add_loop_niter(self, niter):
201 if niter > 0:
202 self.niter_vector.append(niter)
204 def branches_max(self):
205 return max([v.branches for k, v in self.heuristics.items()])
207 def count_max(self):
208 return max([v.count for k, v in self.heuristics.items()])
210 def print_group(self, sorting, group_name, heuristics, predict_def):
211 count_max = self.count_max()
212 branches_max = self.branches_max()
214 sorter = lambda x: x.branches
215 if sorting == 'branch-hitrate':
216 sorter = lambda x: x.get_branch_hitrate()
217 elif sorting == 'hitrate':
218 sorter = lambda x: x.get_hitrate()
219 elif sorting == 'coverage':
220 sorter = lambda x: x.count
221 elif sorting == 'name':
222 sorter = lambda x: x.name.lower()
224 print('%-40s %8s %6s %12s %18s %14s %8s %6s %12s %6s' %
225 ('HEURISTICS', 'BRANCHES', '(REL)',
226 'BR. HITRATE', 'HITRATE', 'COVERAGE', 'COVERAGE', '(REL)',
227 'predict.def', '(REL)'))
228 for h in sorted(heuristics, key = sorter):
229 h.print(branches_max, count_max, predict_def)
231 def dump(self, sorting):
232 heuristics = self.heuristics.values()
233 if len(heuristics) == 0:
234 print('No heuristics available')
235 return
237 predict_def = None
238 if args.def_file != None:
239 predict_def = PredictDefFile(args.def_file)
240 predict_def.parse_and_modify(heuristics, args.write_def_file)
242 special = list(filter(lambda x: x.name in counter_aggregates,
243 heuristics))
244 normal = list(filter(lambda x: x.name not in counter_aggregates,
245 heuristics))
247 self.print_group(sorting, 'HEURISTICS', normal, predict_def)
248 print()
249 self.print_group(sorting, 'HEURISTIC AGGREGATES', special, predict_def)
251 if len(self.niter_vector) > 0:
252 print ('\nLoop count: %d' % len(self.niter_vector)),
253 print(' avg. # of iter: %.2f' % average(self.niter_vector))
254 print(' median # of iter: %.2f' % median(self.niter_vector))
255 for v in [1, 5, 10, 20, 30]:
256 cut = 0.01 * v
257 print(' avg. (%d%% cutoff) # of iter: %.2f'
258 % (v, average_cutoff(self.niter_vector, cut)))
260 parser = argparse.ArgumentParser()
261 parser.add_argument('dump_file', metavar = 'dump_file',
262 help = 'IPA profile dump file')
263 parser.add_argument('-s', '--sorting', dest = 'sorting',
264 choices = ['branches', 'branch-hitrate', 'hitrate', 'coverage', 'name'],
265 default = 'branches')
266 parser.add_argument('-d', '--def-file', help = 'path to predict.def')
267 parser.add_argument('-w', '--write-def-file', action = 'store_true',
268 help = 'Modify predict.def file in order to set new numbers')
270 args = parser.parse_args()
272 profile = Profile(args.dump_file)
273 r = re.compile(' (.*) heuristics( of edge [0-9]*->[0-9]*)?( \\(.*\\))?: (.*)%.*exec ([0-9]*) hit ([0-9]*)')
274 loop_niter_str = ';; profile-based iteration count: '
275 for l in open(args.dump_file):
276 m = r.match(l)
277 if m != None and m.group(3) == None:
278 name = m.group(1)
279 prediction = float(m.group(4))
280 count = int(m.group(5))
281 hits = int(m.group(6))
283 profile.add(name, prediction, count, hits)
284 elif l.startswith(loop_niter_str):
285 v = int(l[len(loop_niter_str):])
286 profile.add_loop_niter(v)
288 profile.dump(args.sorting)