2007-05-04 Tobias Burnus <burnus@net-b.de>
[official-gcc.git] / gcc / tree-ssa-dse.c
blobbb5d14d78f9731371f5881e9dd74ae019f7978cd
1 /* Dead store elimination
2 Copyright (C) 2004, 2005, 2006 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to
18 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
19 Boston, MA 02110-1301, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "basic-block.h"
30 #include "timevar.h"
31 #include "diagnostic.h"
32 #include "tree-flow.h"
33 #include "tree-pass.h"
34 #include "tree-dump.h"
35 #include "domwalk.h"
36 #include "flags.h"
37 #include "hashtab.h"
38 #include "sbitmap.h"
40 /* This file implements dead store elimination.
42 A dead store is a store into a memory location which will later be
43 overwritten by another store without any intervening loads. In this
44 case the earlier store can be deleted.
46 In our SSA + virtual operand world we use immediate uses of virtual
47 operands to detect dead stores. If a store's virtual definition
48 is used precisely once by a later store to the same location which
49 post dominates the first store, then the first store is dead.
51 The single use of the store's virtual definition ensures that
52 there are no intervening aliased loads and the requirement that
53 the second load post dominate the first ensures that if the earlier
54 store executes, then the later stores will execute before the function
55 exits.
57 It may help to think of this as first moving the earlier store to
58 the point immediately before the later store. Again, the single
59 use of the virtual definition and the post-dominance relationship
60 ensure that such movement would be safe. Clearly if there are
61 back to back stores, then the second is redundant.
63 Reviewing section 10.7.2 in Morgan's "Building an Optimizing Compiler"
64 may also help in understanding this code since it discusses the
65 relationship between dead store and redundant load elimination. In
66 fact, they are the same transformation applied to different views of
67 the CFG. */
70 /* Given an aggregate, this records the parts of it which have been
71 stored into. */
72 struct aggregate_vardecl_d
74 /* The aggregate. */
75 tree decl;
77 /* Some aggregates are too big for us to handle or never get stored
78 to as a whole. If this field is TRUE, we don't care about this
79 aggregate. */
80 bool ignore;
82 /* Number of parts in the whole. */
83 unsigned nparts;
85 /* A bitmap of parts of the aggregate that have been set. If part N
86 of an aggregate has been stored to, bit N should be on. */
87 sbitmap parts_set;
90 struct dse_global_data
92 /* This is the global bitmap for store statements.
94 Each statement has a unique ID. When we encounter a store statement
95 that we want to record, set the bit corresponding to the statement's
96 unique ID in this bitmap. */
97 bitmap stores;
99 /* A hash table containing the parts of an aggregate which have been
100 stored to. */
101 htab_t aggregate_vardecl;
104 /* We allocate a bitmap-per-block for stores which are encountered
105 during the scan of that block. This allows us to restore the
106 global bitmap of stores when we finish processing a block. */
107 struct dse_block_local_data
109 bitmap stores;
112 /* Basic blocks of the potentially dead store and the following
113 store, for memory_address_same. */
114 struct address_walk_data
116 basic_block store1_bb, store2_bb;
119 static bool gate_dse (void);
120 static unsigned int tree_ssa_dse (void);
121 static void dse_initialize_block_local_data (struct dom_walk_data *,
122 basic_block,
123 bool);
124 static void dse_optimize_stmt (struct dom_walk_data *,
125 basic_block,
126 block_stmt_iterator);
127 static void dse_record_phis (struct dom_walk_data *, basic_block);
128 static void dse_finalize_block (struct dom_walk_data *, basic_block);
129 static void record_voperand_set (bitmap, bitmap *, unsigned int);
130 static void dse_record_partial_aggregate_store (tree, struct dse_global_data *);
132 static unsigned max_stmt_uid; /* Maximal uid of a statement. Uids to phi
133 nodes are assigned using the versions of
134 ssa names they define. */
136 /* Returns uid of statement STMT. */
138 static unsigned
139 get_stmt_uid (tree stmt)
141 if (TREE_CODE (stmt) == PHI_NODE)
142 return SSA_NAME_VERSION (PHI_RESULT (stmt)) + max_stmt_uid;
144 return stmt_ann (stmt)->uid;
147 /* Set bit UID in bitmaps GLOBAL and *LOCAL, creating *LOCAL as needed. */
149 static void
150 record_voperand_set (bitmap global, bitmap *local, unsigned int uid)
152 /* Lazily allocate the bitmap. Note that we do not get a notification
153 when the block local data structures die, so we allocate the local
154 bitmap backed by the GC system. */
155 if (*local == NULL)
156 *local = BITMAP_GGC_ALLOC ();
158 /* Set the bit in the local and global bitmaps. */
159 bitmap_set_bit (*local, uid);
160 bitmap_set_bit (global, uid);
163 /* Initialize block local data structures. */
165 static void
166 dse_initialize_block_local_data (struct dom_walk_data *walk_data,
167 basic_block bb ATTRIBUTE_UNUSED,
168 bool recycled)
170 struct dse_block_local_data *bd
171 = VEC_last (void_p, walk_data->block_data_stack);
173 /* If we are given a recycled block local data structure, ensure any
174 bitmap associated with the block is cleared. */
175 if (recycled)
177 if (bd->stores)
178 bitmap_clear (bd->stores);
182 /* Helper function for memory_address_same via walk_tree. Returns
183 non-NULL if it finds an SSA_NAME which is part of the address,
184 such that the definition of the SSA_NAME post-dominates the store
185 we want to delete but not the store that we believe makes it
186 redundant. This indicates that the address may change between
187 the two stores. */
189 static tree
190 memory_ssa_name_same (tree *expr_p, int *walk_subtrees ATTRIBUTE_UNUSED,
191 void *data)
193 struct address_walk_data *walk_data = data;
194 tree expr = *expr_p;
195 tree def_stmt;
196 basic_block def_bb;
198 if (TREE_CODE (expr) != SSA_NAME)
199 return NULL_TREE;
201 /* If we've found a default definition, then there's no problem. Both
202 stores will post-dominate it. And def_bb will be NULL. */
203 if (SSA_NAME_IS_DEFAULT_DEF (expr))
204 return NULL_TREE;
206 def_stmt = SSA_NAME_DEF_STMT (expr);
207 def_bb = bb_for_stmt (def_stmt);
209 /* DEF_STMT must dominate both stores. So if it is in the same
210 basic block as one, it does not post-dominate that store. */
211 if (walk_data->store1_bb != def_bb
212 && dominated_by_p (CDI_POST_DOMINATORS, walk_data->store1_bb, def_bb))
214 if (walk_data->store2_bb == def_bb
215 || !dominated_by_p (CDI_POST_DOMINATORS, walk_data->store2_bb,
216 def_bb))
217 /* Return non-NULL to stop the walk. */
218 return def_stmt;
221 return NULL_TREE;
224 /* Return TRUE if the destination memory address in STORE1 and STORE2
225 might be modified after STORE1, before control reaches STORE2. */
227 static bool
228 memory_address_same (tree store1, tree store2)
230 struct address_walk_data walk_data;
232 walk_data.store1_bb = bb_for_stmt (store1);
233 walk_data.store2_bb = bb_for_stmt (store2);
235 return (walk_tree (&GIMPLE_STMT_OPERAND (store1, 0), memory_ssa_name_same,
236 &walk_data, NULL)
237 == NULL);
241 /* A helper of dse_optimize_stmt.
242 Given a GIMPLE_MODIFY_STMT in STMT, check that each VDEF has one
243 use, and that one use is another VDEF clobbering the first one.
245 Return TRUE if the above conditions are met, otherwise FALSE. */
247 static bool
248 dse_possible_dead_store_p (tree stmt,
249 use_operand_p *first_use_p,
250 use_operand_p *use_p,
251 tree *use_stmt,
252 struct dse_global_data *dse_gd,
253 struct dse_block_local_data *bd)
255 ssa_op_iter op_iter;
256 bool fail = false;
257 def_operand_p var1;
258 vuse_vec_p vv;
259 tree defvar = NULL_TREE, temp;
260 tree prev_defvar = NULL_TREE;
261 stmt_ann_t ann = stmt_ann (stmt);
263 /* We want to verify that each virtual definition in STMT has
264 precisely one use and that all the virtual definitions are
265 used by the same single statement. When complete, we
266 want USE_STMT to refer to the one statement which uses
267 all of the virtual definitions from STMT. */
268 *use_stmt = NULL;
269 FOR_EACH_SSA_VDEF_OPERAND (var1, vv, stmt, op_iter)
271 defvar = DEF_FROM_PTR (var1);
273 /* If this virtual def does not have precisely one use, then
274 we will not be able to eliminate STMT. */
275 if (!has_single_use (defvar))
277 fail = true;
278 break;
281 /* Get the one and only immediate use of DEFVAR. */
282 single_imm_use (defvar, use_p, &temp);
283 gcc_assert (*use_p != NULL_USE_OPERAND_P);
284 *first_use_p = *use_p;
286 /* In the case of memory partitions, we may get:
288 # MPT.764_162 = VDEF <MPT.764_161(D)>
289 x = {};
290 # MPT.764_167 = VDEF <MPT.764_162>
291 y = {};
293 So we must make sure we're talking about the same LHS.
295 if (TREE_CODE (temp) == GIMPLE_MODIFY_STMT)
297 tree base1 = get_base_address (GIMPLE_STMT_OPERAND (stmt, 0));
298 tree base2 = get_base_address (GIMPLE_STMT_OPERAND (temp, 0));
300 while (base1 && INDIRECT_REF_P (base1))
301 base1 = TREE_OPERAND (base1, 0);
302 while (base2 && INDIRECT_REF_P (base2))
303 base2 = TREE_OPERAND (base2, 0);
305 if (base1 != base2)
307 fail = true;
308 break;
312 /* If the immediate use of DEF_VAR is not the same as the
313 previously find immediate uses, then we will not be able
314 to eliminate STMT. */
315 if (*use_stmt == NULL)
317 *use_stmt = temp;
318 prev_defvar = defvar;
320 else if (temp != *use_stmt)
322 /* The immediate use and the previously found immediate use
323 must be the same, except... if they're uses of different
324 parts of the whole. */
325 if (TREE_CODE (defvar) == SSA_NAME
326 && TREE_CODE (SSA_NAME_VAR (defvar)) == STRUCT_FIELD_TAG
327 && TREE_CODE (prev_defvar) == SSA_NAME
328 && TREE_CODE (SSA_NAME_VAR (prev_defvar)) == STRUCT_FIELD_TAG
329 && (SFT_PARENT_VAR (SSA_NAME_VAR (defvar))
330 == SFT_PARENT_VAR (SSA_NAME_VAR (prev_defvar))))
332 else
334 fail = true;
335 break;
340 if (fail)
342 record_voperand_set (dse_gd->stores, &bd->stores, ann->uid);
343 dse_record_partial_aggregate_store (stmt, dse_gd);
344 return false;
347 /* Skip through any PHI nodes we have already seen if the PHI
348 represents the only use of this store.
350 Note this does not handle the case where the store has
351 multiple VDEFs which all reach a set of PHI nodes in the same block. */
352 while (*use_p != NULL_USE_OPERAND_P
353 && TREE_CODE (*use_stmt) == PHI_NODE
354 && bitmap_bit_p (dse_gd->stores, get_stmt_uid (*use_stmt)))
356 /* A PHI node can both define and use the same SSA_NAME if
357 the PHI is at the top of a loop and the PHI_RESULT is
358 a loop invariant and copies have not been fully propagated.
360 The safe thing to do is exit assuming no optimization is
361 possible. */
362 if (SSA_NAME_DEF_STMT (PHI_RESULT (*use_stmt)) == *use_stmt)
363 return false;
365 /* Skip past this PHI and loop again in case we had a PHI
366 chain. */
367 single_imm_use (PHI_RESULT (*use_stmt), use_p, use_stmt);
370 return true;
374 /* Given a DECL, return its AGGREGATE_VARDECL_D entry. If no entry is
375 found and INSERT is TRUE, add a new entry. */
377 static struct aggregate_vardecl_d *
378 get_aggregate_vardecl (tree decl, struct dse_global_data *dse_gd, bool insert)
380 struct aggregate_vardecl_d av, *av_p;
381 void **slot;
383 av.decl = decl;
384 slot = htab_find_slot (dse_gd->aggregate_vardecl, &av, insert ? INSERT : NO_INSERT);
387 /* Not found, and we don't want to insert. */
388 if (slot == NULL)
389 return NULL;
391 /* Create new entry. */
392 if (*slot == NULL)
394 av_p = XNEW (struct aggregate_vardecl_d);
395 av_p->decl = decl;
397 /* Record how many parts the whole has. */
398 if (TREE_CODE (TREE_TYPE (decl)) == COMPLEX_TYPE)
399 av_p->nparts = 2;
400 else if (TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
402 tree fields;
404 /* Count the number of fields. */
405 fields = TYPE_FIELDS (TREE_TYPE (decl));
406 av_p->nparts = 0;
407 while (fields)
409 av_p->nparts++;
410 fields = TREE_CHAIN (fields);
413 else
414 abort ();
416 av_p->ignore = true;
417 av_p->parts_set = sbitmap_alloc (HOST_BITS_PER_LONG);
418 sbitmap_zero (av_p->parts_set);
419 *slot = av_p;
421 else
422 av_p = (struct aggregate_vardecl_d *) *slot;
424 return av_p;
428 /* If STMT is a partial store into an aggregate, record which part got set. */
430 static void
431 dse_record_partial_aggregate_store (tree stmt, struct dse_global_data *dse_gd)
433 tree lhs, decl;
434 enum tree_code code;
435 struct aggregate_vardecl_d *av_p;
436 int part;
438 gcc_assert (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT);
440 lhs = GIMPLE_STMT_OPERAND (stmt, 0);
441 code = TREE_CODE (lhs);
442 if (code != IMAGPART_EXPR
443 && code != REALPART_EXPR
444 && code != COMPONENT_REF)
445 return;
446 decl = TREE_OPERAND (lhs, 0);
447 /* Early bail on things like nested COMPONENT_REFs. */
448 if (TREE_CODE (decl) != VAR_DECL)
449 return;
450 /* Early bail on unions. */
451 if (code == COMPONENT_REF
452 && TREE_CODE (TREE_TYPE (TREE_OPERAND (lhs, 0))) != RECORD_TYPE)
453 return;
455 av_p = get_aggregate_vardecl (decl, dse_gd, /*insert=*/false);
456 /* Run away, this isn't an aggregate we care about. */
457 if (!av_p || av_p->ignore)
458 return;
460 switch (code)
462 case IMAGPART_EXPR:
463 part = 0;
464 break;
465 case REALPART_EXPR:
466 part = 1;
467 break;
468 case COMPONENT_REF:
470 tree orig_field, fields;
471 tree record_type = TREE_TYPE (TREE_OPERAND (lhs, 0));
473 /* Get FIELD_DECL. */
474 orig_field = TREE_OPERAND (lhs, 1);
476 /* FIXME: Eeech, do this more efficiently. Perhaps
477 calculate bit/byte offsets. */
478 part = -1;
479 fields = TYPE_FIELDS (record_type);
480 while (fields)
482 ++part;
483 if (fields == orig_field)
484 break;
485 fields = TREE_CHAIN (fields);
487 gcc_assert (part >= 0);
489 break;
490 default:
491 return;
494 /* Record which part was set. */
495 SET_BIT (av_p->parts_set, part);
499 /* Return TRUE if all parts in an AGGREGATE_VARDECL have been set. */
501 static inline bool
502 dse_whole_aggregate_clobbered_p (struct aggregate_vardecl_d *av_p)
504 unsigned int i;
505 sbitmap_iterator sbi;
506 int nbits_set = 0;
508 /* Count the number of partial stores (bits set). */
509 EXECUTE_IF_SET_IN_SBITMAP (av_p->parts_set, 0, i, sbi)
510 nbits_set++;
511 return ((unsigned) nbits_set == av_p->nparts);
515 /* Return TRUE if STMT is a store into a whole aggregate whose parts we
516 have already seen and recorded. */
518 static bool
519 dse_partial_kill_p (tree stmt, struct dse_global_data *dse_gd)
521 tree decl;
522 struct aggregate_vardecl_d *av_p;
524 /* Make sure this is a store into the whole. */
525 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
527 enum tree_code code;
529 decl = GIMPLE_STMT_OPERAND (stmt, 0);
530 code = TREE_CODE (TREE_TYPE (decl));
532 if (code != COMPLEX_TYPE && code != RECORD_TYPE)
533 return false;
535 if (TREE_CODE (decl) != VAR_DECL)
536 return false;
538 else
539 return false;
541 av_p = get_aggregate_vardecl (decl, dse_gd, /*insert=*/false);
542 gcc_assert (av_p != NULL);
544 return dse_whole_aggregate_clobbered_p (av_p);
548 /* Attempt to eliminate dead stores in the statement referenced by BSI.
550 A dead store is a store into a memory location which will later be
551 overwritten by another store without any intervening loads. In this
552 case the earlier store can be deleted.
554 In our SSA + virtual operand world we use immediate uses of virtual
555 operands to detect dead stores. If a store's virtual definition
556 is used precisely once by a later store to the same location which
557 post dominates the first store, then the first store is dead. */
559 static void
560 dse_optimize_stmt (struct dom_walk_data *walk_data,
561 basic_block bb ATTRIBUTE_UNUSED,
562 block_stmt_iterator bsi)
564 struct dse_block_local_data *bd
565 = VEC_last (void_p, walk_data->block_data_stack);
566 struct dse_global_data *dse_gd = walk_data->global_data;
567 tree stmt = bsi_stmt (bsi);
568 stmt_ann_t ann = stmt_ann (stmt);
570 /* If this statement has no virtual defs, then there is nothing
571 to do. */
572 if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VDEF))
573 return;
575 /* We know we have virtual definitions. If this is a GIMPLE_MODIFY_STMT
576 that's not also a function call, then record it into our table. */
577 if (get_call_expr_in (stmt))
578 return;
580 if (ann->has_volatile_ops)
581 return;
583 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
585 use_operand_p first_use_p = NULL_USE_OPERAND_P;
586 use_operand_p use_p = NULL;
587 tree use_stmt;
589 if (!dse_possible_dead_store_p (stmt, &first_use_p, &use_p, &use_stmt,
590 dse_gd, bd))
591 return;
593 /* If this is a partial store into an aggregate, record it. */
594 dse_record_partial_aggregate_store (stmt, dse_gd);
596 /* If we have precisely one immediate use at this point, then we may
597 have found redundant store. Make sure that the stores are to
598 the same memory location. This includes checking that any
599 SSA-form variables in the address will have the same values. */
600 if (use_p != NULL_USE_OPERAND_P
601 && bitmap_bit_p (dse_gd->stores, get_stmt_uid (use_stmt))
602 && (operand_equal_p (GIMPLE_STMT_OPERAND (stmt, 0),
603 GIMPLE_STMT_OPERAND (use_stmt, 0), 0)
604 || dse_partial_kill_p (stmt, dse_gd))
605 && memory_address_same (stmt, use_stmt))
607 ssa_op_iter op_iter;
608 def_operand_p var1;
609 vuse_vec_p vv;
610 tree stmt_lhs;
612 if (dump_file && (dump_flags & TDF_DETAILS))
614 fprintf (dump_file, " Deleted dead store '");
615 print_generic_expr (dump_file, bsi_stmt (bsi), dump_flags);
616 fprintf (dump_file, "'\n");
619 /* Then we need to fix the operand of the consuming stmt. */
620 stmt_lhs = USE_FROM_PTR (first_use_p);
621 FOR_EACH_SSA_VDEF_OPERAND (var1, vv, stmt, op_iter)
623 tree usevar, temp;
625 single_imm_use (DEF_FROM_PTR (var1), &use_p, &temp);
626 gcc_assert (VUSE_VECT_NUM_ELEM (*vv) == 1);
627 usevar = VUSE_ELEMENT_VAR (*vv, 0);
628 SET_USE (use_p, usevar);
630 /* Make sure we propagate the ABNORMAL bit setting. */
631 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (stmt_lhs))
632 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (usevar) = 1;
635 /* Remove the dead store. */
636 bsi_remove (&bsi, true);
638 /* And release any SSA_NAMEs set in this statement back to the
639 SSA_NAME manager. */
640 release_defs (stmt);
643 record_voperand_set (dse_gd->stores, &bd->stores, ann->uid);
647 /* Record that we have seen the PHIs at the start of BB which correspond
648 to virtual operands. */
649 static void
650 dse_record_phis (struct dom_walk_data *walk_data, basic_block bb)
652 struct dse_block_local_data *bd
653 = VEC_last (void_p, walk_data->block_data_stack);
654 struct dse_global_data *dse_gd = walk_data->global_data;
655 tree phi;
657 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
658 if (!is_gimple_reg (PHI_RESULT (phi)))
659 record_voperand_set (dse_gd->stores,
660 &bd->stores,
661 get_stmt_uid (phi));
664 static void
665 dse_finalize_block (struct dom_walk_data *walk_data,
666 basic_block bb ATTRIBUTE_UNUSED)
668 struct dse_block_local_data *bd
669 = VEC_last (void_p, walk_data->block_data_stack);
670 struct dse_global_data *dse_gd = walk_data->global_data;
671 bitmap stores = dse_gd->stores;
672 unsigned int i;
673 bitmap_iterator bi;
675 /* Unwind the stores noted in this basic block. */
676 if (bd->stores)
677 EXECUTE_IF_SET_IN_BITMAP (bd->stores, 0, i, bi)
679 bitmap_clear_bit (stores, i);
684 /* Hashing and equality functions for AGGREGATE_VARDECL. */
686 static hashval_t
687 aggregate_vardecl_hash (const void *p)
689 return htab_hash_pointer
690 ((const void *)((const struct aggregate_vardecl_d *)p)->decl);
693 static int
694 aggregate_vardecl_eq (const void *p1, const void *p2)
696 return ((const struct aggregate_vardecl_d *)p1)->decl
697 == ((const struct aggregate_vardecl_d *)p2)->decl;
701 /* Free memory allocated by one entry in AGGREGATE_VARDECL. */
703 static void
704 aggregate_vardecl_free (void *p)
706 struct aggregate_vardecl_d *entry = (struct aggregate_vardecl_d *) p;
707 sbitmap_free (entry->parts_set);
708 free (entry);
712 /* Return true if STMT is a store into an entire aggregate. */
714 static bool
715 aggregate_whole_store_p (tree stmt)
717 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
719 tree lhs = GIMPLE_STMT_OPERAND (stmt, 0);
720 enum tree_code code = TREE_CODE (TREE_TYPE (lhs));
722 if (code == COMPLEX_TYPE || code == RECORD_TYPE)
723 return true;
725 return false;
729 /* Main entry point. */
731 static unsigned int
732 tree_ssa_dse (void)
734 struct dom_walk_data walk_data;
735 struct dse_global_data dse_gd;
736 basic_block bb;
738 dse_gd.aggregate_vardecl =
739 htab_create (37, aggregate_vardecl_hash,
740 aggregate_vardecl_eq, aggregate_vardecl_free);
742 max_stmt_uid = 0;
743 FOR_EACH_BB (bb)
745 block_stmt_iterator bsi;
747 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
749 tree stmt = bsi_stmt (bsi);
751 /* Record aggregates which have been stored into as a whole. */
752 if (aggregate_whole_store_p (stmt))
754 tree lhs = GIMPLE_STMT_OPERAND (stmt, 0);
755 if (TREE_CODE (lhs) == VAR_DECL)
757 struct aggregate_vardecl_d *av_p;
759 av_p = get_aggregate_vardecl (lhs, &dse_gd, /*insert=*/true);
760 av_p->ignore = false;
762 /* Ignore aggregates with too many parts. */
763 if (av_p->nparts > HOST_BITS_PER_LONG)
764 av_p->ignore = true;
768 /* Create a UID for each statement in the function.
769 Ordering of the UIDs is not important for this pass. */
770 stmt_ann (stmt)->uid = max_stmt_uid++;
774 /* We might consider making this a property of each pass so that it
775 can be [re]computed on an as-needed basis. Particularly since
776 this pass could be seen as an extension of DCE which needs post
777 dominators. */
778 calculate_dominance_info (CDI_POST_DOMINATORS);
780 /* Dead store elimination is fundamentally a walk of the post-dominator
781 tree and a backwards walk of statements within each block. */
782 walk_data.walk_stmts_backward = true;
783 walk_data.dom_direction = CDI_POST_DOMINATORS;
784 walk_data.initialize_block_local_data = dse_initialize_block_local_data;
785 walk_data.before_dom_children_before_stmts = NULL;
786 walk_data.before_dom_children_walk_stmts = dse_optimize_stmt;
787 walk_data.before_dom_children_after_stmts = dse_record_phis;
788 walk_data.after_dom_children_before_stmts = NULL;
789 walk_data.after_dom_children_walk_stmts = NULL;
790 walk_data.after_dom_children_after_stmts = dse_finalize_block;
791 walk_data.interesting_blocks = NULL;
793 walk_data.block_local_data_size = sizeof (struct dse_block_local_data);
795 /* This is the main hash table for the dead store elimination pass. */
796 dse_gd.stores = BITMAP_ALLOC (NULL);
798 walk_data.global_data = &dse_gd;
800 /* Initialize the dominator walker. */
801 init_walk_dominator_tree (&walk_data);
803 /* Recursively walk the dominator tree. */
804 walk_dominator_tree (&walk_data, EXIT_BLOCK_PTR);
806 /* Finalize the dominator walker. */
807 fini_walk_dominator_tree (&walk_data);
809 /* Release unneeded data. */
810 BITMAP_FREE (dse_gd.stores);
811 htab_delete (dse_gd.aggregate_vardecl);
813 /* For now, just wipe the post-dominator information. */
814 free_dominance_info (CDI_POST_DOMINATORS);
815 return 0;
818 static bool
819 gate_dse (void)
821 return flag_tree_dse != 0;
824 struct tree_opt_pass pass_dse = {
825 "dse", /* name */
826 gate_dse, /* gate */
827 tree_ssa_dse, /* execute */
828 NULL, /* sub */
829 NULL, /* next */
830 0, /* static_pass_number */
831 TV_TREE_DSE, /* tv_id */
832 PROP_cfg
833 | PROP_ssa
834 | PROP_alias, /* properties_required */
835 0, /* properties_provided */
836 0, /* properties_destroyed */
837 0, /* todo_flags_start */
838 TODO_dump_func
839 | TODO_ggc_collect
840 | TODO_verify_ssa, /* todo_flags_finish */
841 0 /* letter */