2007-05-04 Tobias Burnus <burnus@net-b.de>
[official-gcc.git] / gcc / cfganal.c
blob467c399c84c5360d590ffbe44245c8603346c901
1 /* Control flow graph analysis code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* This file contains various simple utilities to analyze the CFG. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "obstack.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "toplev.h"
34 #include "tm_p.h"
35 #include "timevar.h"
37 /* Store the data structures necessary for depth-first search. */
38 struct depth_first_search_dsS {
39 /* stack for backtracking during the algorithm */
40 basic_block *stack;
42 /* number of edges in the stack. That is, positions 0, ..., sp-1
43 have edges. */
44 unsigned int sp;
46 /* record of basic blocks already seen by depth-first search */
47 sbitmap visited_blocks;
49 typedef struct depth_first_search_dsS *depth_first_search_ds;
51 static void flow_dfs_compute_reverse_init (depth_first_search_ds);
52 static void flow_dfs_compute_reverse_add_bb (depth_first_search_ds,
53 basic_block);
54 static basic_block flow_dfs_compute_reverse_execute (depth_first_search_ds,
55 basic_block);
56 static void flow_dfs_compute_reverse_finish (depth_first_search_ds);
57 static bool flow_active_insn_p (rtx);
59 /* Like active_insn_p, except keep the return value clobber around
60 even after reload. */
62 static bool
63 flow_active_insn_p (rtx insn)
65 if (active_insn_p (insn))
66 return true;
68 /* A clobber of the function return value exists for buggy
69 programs that fail to return a value. Its effect is to
70 keep the return value from being live across the entire
71 function. If we allow it to be skipped, we introduce the
72 possibility for register lifetime confusion. */
73 if (GET_CODE (PATTERN (insn)) == CLOBBER
74 && REG_P (XEXP (PATTERN (insn), 0))
75 && REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))
76 return true;
78 return false;
81 /* Return true if the block has no effect and only forwards control flow to
82 its single destination. */
84 bool
85 forwarder_block_p (basic_block bb)
87 rtx insn;
89 if (bb == EXIT_BLOCK_PTR || bb == ENTRY_BLOCK_PTR
90 || !single_succ_p (bb))
91 return false;
93 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
94 if (INSN_P (insn) && flow_active_insn_p (insn))
95 return false;
97 return (!INSN_P (insn)
98 || (JUMP_P (insn) && simplejump_p (insn))
99 || !flow_active_insn_p (insn));
102 /* Return nonzero if we can reach target from src by falling through. */
104 bool
105 can_fallthru (basic_block src, basic_block target)
107 rtx insn = BB_END (src);
108 rtx insn2;
109 edge e;
110 edge_iterator ei;
112 if (target == EXIT_BLOCK_PTR)
113 return true;
114 if (src->next_bb != target)
115 return 0;
116 FOR_EACH_EDGE (e, ei, src->succs)
117 if (e->dest == EXIT_BLOCK_PTR
118 && e->flags & EDGE_FALLTHRU)
119 return 0;
121 insn2 = BB_HEAD (target);
122 if (insn2 && !active_insn_p (insn2))
123 insn2 = next_active_insn (insn2);
125 /* ??? Later we may add code to move jump tables offline. */
126 return next_active_insn (insn) == insn2;
129 /* Return nonzero if we could reach target from src by falling through,
130 if the target was made adjacent. If we already have a fall-through
131 edge to the exit block, we can't do that. */
132 bool
133 could_fall_through (basic_block src, basic_block target)
135 edge e;
136 edge_iterator ei;
138 if (target == EXIT_BLOCK_PTR)
139 return true;
140 FOR_EACH_EDGE (e, ei, src->succs)
141 if (e->dest == EXIT_BLOCK_PTR
142 && e->flags & EDGE_FALLTHRU)
143 return 0;
144 return true;
147 /* Mark the back edges in DFS traversal.
148 Return nonzero if a loop (natural or otherwise) is present.
149 Inspired by Depth_First_Search_PP described in:
151 Advanced Compiler Design and Implementation
152 Steven Muchnick
153 Morgan Kaufmann, 1997
155 and heavily borrowed from pre_and_rev_post_order_compute. */
157 bool
158 mark_dfs_back_edges (void)
160 edge_iterator *stack;
161 int *pre;
162 int *post;
163 int sp;
164 int prenum = 1;
165 int postnum = 1;
166 sbitmap visited;
167 bool found = false;
169 /* Allocate the preorder and postorder number arrays. */
170 pre = XCNEWVEC (int, last_basic_block);
171 post = XCNEWVEC (int, last_basic_block);
173 /* Allocate stack for back-tracking up CFG. */
174 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
175 sp = 0;
177 /* Allocate bitmap to track nodes that have been visited. */
178 visited = sbitmap_alloc (last_basic_block);
180 /* None of the nodes in the CFG have been visited yet. */
181 sbitmap_zero (visited);
183 /* Push the first edge on to the stack. */
184 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
186 while (sp)
188 edge_iterator ei;
189 basic_block src;
190 basic_block dest;
192 /* Look at the edge on the top of the stack. */
193 ei = stack[sp - 1];
194 src = ei_edge (ei)->src;
195 dest = ei_edge (ei)->dest;
196 ei_edge (ei)->flags &= ~EDGE_DFS_BACK;
198 /* Check if the edge destination has been visited yet. */
199 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
201 /* Mark that we have visited the destination. */
202 SET_BIT (visited, dest->index);
204 pre[dest->index] = prenum++;
205 if (EDGE_COUNT (dest->succs) > 0)
207 /* Since the DEST node has been visited for the first
208 time, check its successors. */
209 stack[sp++] = ei_start (dest->succs);
211 else
212 post[dest->index] = postnum++;
214 else
216 if (dest != EXIT_BLOCK_PTR && src != ENTRY_BLOCK_PTR
217 && pre[src->index] >= pre[dest->index]
218 && post[dest->index] == 0)
219 ei_edge (ei)->flags |= EDGE_DFS_BACK, found = true;
221 if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR)
222 post[src->index] = postnum++;
224 if (!ei_one_before_end_p (ei))
225 ei_next (&stack[sp - 1]);
226 else
227 sp--;
231 free (pre);
232 free (post);
233 free (stack);
234 sbitmap_free (visited);
236 return found;
239 /* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru. */
241 void
242 set_edge_can_fallthru_flag (void)
244 basic_block bb;
246 FOR_EACH_BB (bb)
248 edge e;
249 edge_iterator ei;
251 FOR_EACH_EDGE (e, ei, bb->succs)
253 e->flags &= ~EDGE_CAN_FALLTHRU;
255 /* The FALLTHRU edge is also CAN_FALLTHRU edge. */
256 if (e->flags & EDGE_FALLTHRU)
257 e->flags |= EDGE_CAN_FALLTHRU;
260 /* If the BB ends with an invertible condjump all (2) edges are
261 CAN_FALLTHRU edges. */
262 if (EDGE_COUNT (bb->succs) != 2)
263 continue;
264 if (!any_condjump_p (BB_END (bb)))
265 continue;
266 if (!invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0))
267 continue;
268 invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0);
269 EDGE_SUCC (bb, 0)->flags |= EDGE_CAN_FALLTHRU;
270 EDGE_SUCC (bb, 1)->flags |= EDGE_CAN_FALLTHRU;
274 /* Find unreachable blocks. An unreachable block will have 0 in
275 the reachable bit in block->flags. A nonzero value indicates the
276 block is reachable. */
278 void
279 find_unreachable_blocks (void)
281 edge e;
282 edge_iterator ei;
283 basic_block *tos, *worklist, bb;
285 tos = worklist = XNEWVEC (basic_block, n_basic_blocks);
287 /* Clear all the reachability flags. */
289 FOR_EACH_BB (bb)
290 bb->flags &= ~BB_REACHABLE;
292 /* Add our starting points to the worklist. Almost always there will
293 be only one. It isn't inconceivable that we might one day directly
294 support Fortran alternate entry points. */
296 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
298 *tos++ = e->dest;
300 /* Mark the block reachable. */
301 e->dest->flags |= BB_REACHABLE;
304 /* Iterate: find everything reachable from what we've already seen. */
306 while (tos != worklist)
308 basic_block b = *--tos;
310 FOR_EACH_EDGE (e, ei, b->succs)
312 basic_block dest = e->dest;
314 if (!(dest->flags & BB_REACHABLE))
316 *tos++ = dest;
317 dest->flags |= BB_REACHABLE;
322 free (worklist);
325 /* Functions to access an edge list with a vector representation.
326 Enough data is kept such that given an index number, the
327 pred and succ that edge represents can be determined, or
328 given a pred and a succ, its index number can be returned.
329 This allows algorithms which consume a lot of memory to
330 represent the normally full matrix of edge (pred,succ) with a
331 single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
332 wasted space in the client code due to sparse flow graphs. */
334 /* This functions initializes the edge list. Basically the entire
335 flowgraph is processed, and all edges are assigned a number,
336 and the data structure is filled in. */
338 struct edge_list *
339 create_edge_list (void)
341 struct edge_list *elist;
342 edge e;
343 int num_edges;
344 int block_count;
345 basic_block bb;
346 edge_iterator ei;
348 block_count = n_basic_blocks; /* Include the entry and exit blocks. */
350 num_edges = 0;
352 /* Determine the number of edges in the flow graph by counting successor
353 edges on each basic block. */
354 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
356 num_edges += EDGE_COUNT (bb->succs);
359 elist = XNEW (struct edge_list);
360 elist->num_blocks = block_count;
361 elist->num_edges = num_edges;
362 elist->index_to_edge = XNEWVEC (edge, num_edges);
364 num_edges = 0;
366 /* Follow successors of blocks, and register these edges. */
367 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
368 FOR_EACH_EDGE (e, ei, bb->succs)
369 elist->index_to_edge[num_edges++] = e;
371 return elist;
374 /* This function free's memory associated with an edge list. */
376 void
377 free_edge_list (struct edge_list *elist)
379 if (elist)
381 free (elist->index_to_edge);
382 free (elist);
386 /* This function provides debug output showing an edge list. */
388 void
389 print_edge_list (FILE *f, struct edge_list *elist)
391 int x;
393 fprintf (f, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
394 elist->num_blocks, elist->num_edges);
396 for (x = 0; x < elist->num_edges; x++)
398 fprintf (f, " %-4d - edge(", x);
399 if (INDEX_EDGE_PRED_BB (elist, x) == ENTRY_BLOCK_PTR)
400 fprintf (f, "entry,");
401 else
402 fprintf (f, "%d,", INDEX_EDGE_PRED_BB (elist, x)->index);
404 if (INDEX_EDGE_SUCC_BB (elist, x) == EXIT_BLOCK_PTR)
405 fprintf (f, "exit)\n");
406 else
407 fprintf (f, "%d)\n", INDEX_EDGE_SUCC_BB (elist, x)->index);
411 /* This function provides an internal consistency check of an edge list,
412 verifying that all edges are present, and that there are no
413 extra edges. */
415 void
416 verify_edge_list (FILE *f, struct edge_list *elist)
418 int pred, succ, index;
419 edge e;
420 basic_block bb, p, s;
421 edge_iterator ei;
423 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
425 FOR_EACH_EDGE (e, ei, bb->succs)
427 pred = e->src->index;
428 succ = e->dest->index;
429 index = EDGE_INDEX (elist, e->src, e->dest);
430 if (index == EDGE_INDEX_NO_EDGE)
432 fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
433 continue;
436 if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
437 fprintf (f, "*p* Pred for index %d should be %d not %d\n",
438 index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
439 if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
440 fprintf (f, "*p* Succ for index %d should be %d not %d\n",
441 index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
445 /* We've verified that all the edges are in the list, now lets make sure
446 there are no spurious edges in the list. */
448 FOR_BB_BETWEEN (p, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
449 FOR_BB_BETWEEN (s, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
451 int found_edge = 0;
453 FOR_EACH_EDGE (e, ei, p->succs)
454 if (e->dest == s)
456 found_edge = 1;
457 break;
460 FOR_EACH_EDGE (e, ei, s->preds)
461 if (e->src == p)
463 found_edge = 1;
464 break;
467 if (EDGE_INDEX (elist, p, s)
468 == EDGE_INDEX_NO_EDGE && found_edge != 0)
469 fprintf (f, "*** Edge (%d, %d) appears to not have an index\n",
470 p->index, s->index);
471 if (EDGE_INDEX (elist, p, s)
472 != EDGE_INDEX_NO_EDGE && found_edge == 0)
473 fprintf (f, "*** Edge (%d, %d) has index %d, but there is no edge\n",
474 p->index, s->index, EDGE_INDEX (elist, p, s));
478 /* Given PRED and SUCC blocks, return the edge which connects the blocks.
479 If no such edge exists, return NULL. */
481 edge
482 find_edge (basic_block pred, basic_block succ)
484 edge e;
485 edge_iterator ei;
487 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
489 FOR_EACH_EDGE (e, ei, pred->succs)
490 if (e->dest == succ)
491 return e;
493 else
495 FOR_EACH_EDGE (e, ei, succ->preds)
496 if (e->src == pred)
497 return e;
500 return NULL;
503 /* This routine will determine what, if any, edge there is between
504 a specified predecessor and successor. */
507 find_edge_index (struct edge_list *edge_list, basic_block pred, basic_block succ)
509 int x;
511 for (x = 0; x < NUM_EDGES (edge_list); x++)
512 if (INDEX_EDGE_PRED_BB (edge_list, x) == pred
513 && INDEX_EDGE_SUCC_BB (edge_list, x) == succ)
514 return x;
516 return (EDGE_INDEX_NO_EDGE);
519 /* Dump the list of basic blocks in the bitmap NODES. */
521 void
522 flow_nodes_print (const char *str, const sbitmap nodes, FILE *file)
524 unsigned int node = 0;
525 sbitmap_iterator sbi;
527 if (! nodes)
528 return;
530 fprintf (file, "%s { ", str);
531 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, sbi)
532 fprintf (file, "%d ", node);
533 fputs ("}\n", file);
536 /* Dump the list of edges in the array EDGE_LIST. */
538 void
539 flow_edge_list_print (const char *str, const edge *edge_list, int num_edges, FILE *file)
541 int i;
543 if (! edge_list)
544 return;
546 fprintf (file, "%s { ", str);
547 for (i = 0; i < num_edges; i++)
548 fprintf (file, "%d->%d ", edge_list[i]->src->index,
549 edge_list[i]->dest->index);
551 fputs ("}\n", file);
555 /* This routine will remove any fake predecessor edges for a basic block.
556 When the edge is removed, it is also removed from whatever successor
557 list it is in. */
559 static void
560 remove_fake_predecessors (basic_block bb)
562 edge e;
563 edge_iterator ei;
565 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
567 if ((e->flags & EDGE_FAKE) == EDGE_FAKE)
568 remove_edge (e);
569 else
570 ei_next (&ei);
574 /* This routine will remove all fake edges from the flow graph. If
575 we remove all fake successors, it will automatically remove all
576 fake predecessors. */
578 void
579 remove_fake_edges (void)
581 basic_block bb;
583 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
584 remove_fake_predecessors (bb);
587 /* This routine will remove all fake edges to the EXIT_BLOCK. */
589 void
590 remove_fake_exit_edges (void)
592 remove_fake_predecessors (EXIT_BLOCK_PTR);
596 /* This function will add a fake edge between any block which has no
597 successors, and the exit block. Some data flow equations require these
598 edges to exist. */
600 void
601 add_noreturn_fake_exit_edges (void)
603 basic_block bb;
605 FOR_EACH_BB (bb)
606 if (EDGE_COUNT (bb->succs) == 0)
607 make_single_succ_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
610 /* This function adds a fake edge between any infinite loops to the
611 exit block. Some optimizations require a path from each node to
612 the exit node.
614 See also Morgan, Figure 3.10, pp. 82-83.
616 The current implementation is ugly, not attempting to minimize the
617 number of inserted fake edges. To reduce the number of fake edges
618 to insert, add fake edges from _innermost_ loops containing only
619 nodes not reachable from the exit block. */
621 void
622 connect_infinite_loops_to_exit (void)
624 basic_block unvisited_block = EXIT_BLOCK_PTR;
625 struct depth_first_search_dsS dfs_ds;
627 /* Perform depth-first search in the reverse graph to find nodes
628 reachable from the exit block. */
629 flow_dfs_compute_reverse_init (&dfs_ds);
630 flow_dfs_compute_reverse_add_bb (&dfs_ds, EXIT_BLOCK_PTR);
632 /* Repeatedly add fake edges, updating the unreachable nodes. */
633 while (1)
635 unvisited_block = flow_dfs_compute_reverse_execute (&dfs_ds,
636 unvisited_block);
637 if (!unvisited_block)
638 break;
640 make_edge (unvisited_block, EXIT_BLOCK_PTR, EDGE_FAKE);
641 flow_dfs_compute_reverse_add_bb (&dfs_ds, unvisited_block);
644 flow_dfs_compute_reverse_finish (&dfs_ds);
645 return;
648 /* Compute reverse top sort order.
649 This is computing a post order numbering of the graph. */
652 post_order_compute (int *post_order, bool include_entry_exit)
654 edge_iterator *stack;
655 int sp;
656 int post_order_num = 0;
657 sbitmap visited;
659 if (include_entry_exit)
660 post_order[post_order_num++] = EXIT_BLOCK;
662 /* Allocate stack for back-tracking up CFG. */
663 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
664 sp = 0;
666 /* Allocate bitmap to track nodes that have been visited. */
667 visited = sbitmap_alloc (last_basic_block);
669 /* None of the nodes in the CFG have been visited yet. */
670 sbitmap_zero (visited);
672 /* Push the first edge on to the stack. */
673 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
675 while (sp)
677 edge_iterator ei;
678 basic_block src;
679 basic_block dest;
681 /* Look at the edge on the top of the stack. */
682 ei = stack[sp - 1];
683 src = ei_edge (ei)->src;
684 dest = ei_edge (ei)->dest;
686 /* Check if the edge destination has been visited yet. */
687 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
689 /* Mark that we have visited the destination. */
690 SET_BIT (visited, dest->index);
692 if (EDGE_COUNT (dest->succs) > 0)
693 /* Since the DEST node has been visited for the first
694 time, check its successors. */
695 stack[sp++] = ei_start (dest->succs);
696 else
697 post_order[post_order_num++] = dest->index;
699 else
701 if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR)
702 post_order[post_order_num++] = src->index;
704 if (!ei_one_before_end_p (ei))
705 ei_next (&stack[sp - 1]);
706 else
707 sp--;
711 if (include_entry_exit)
712 post_order[post_order_num++] = ENTRY_BLOCK;
714 free (stack);
715 sbitmap_free (visited);
716 return post_order_num;
719 /* Compute the depth first search order and store in the array
720 PRE_ORDER if nonzero, marking the nodes visited in VISITED. If
721 REV_POST_ORDER is nonzero, return the reverse completion number for each
722 node. Returns the number of nodes visited. A depth first search
723 tries to get as far away from the starting point as quickly as
724 possible.
726 pre_order is a really a preorder numbering of the graph.
727 rev_post_order is really a reverse postorder numbering of the graph.
731 pre_and_rev_post_order_compute (int *pre_order, int *rev_post_order,
732 bool include_entry_exit)
734 edge_iterator *stack;
735 int sp;
736 int pre_order_num = 0;
737 int rev_post_order_num = n_basic_blocks - 1;
738 sbitmap visited;
740 /* Allocate stack for back-tracking up CFG. */
741 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
742 sp = 0;
744 if (include_entry_exit)
746 if (pre_order)
747 pre_order[pre_order_num] = ENTRY_BLOCK;
748 pre_order_num++;
749 if (rev_post_order)
750 rev_post_order[rev_post_order_num--] = ENTRY_BLOCK;
752 else
753 rev_post_order_num -= NUM_FIXED_BLOCKS;
755 /* Allocate bitmap to track nodes that have been visited. */
756 visited = sbitmap_alloc (last_basic_block);
758 /* None of the nodes in the CFG have been visited yet. */
759 sbitmap_zero (visited);
761 /* Push the first edge on to the stack. */
762 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
764 while (sp)
766 edge_iterator ei;
767 basic_block src;
768 basic_block dest;
770 /* Look at the edge on the top of the stack. */
771 ei = stack[sp - 1];
772 src = ei_edge (ei)->src;
773 dest = ei_edge (ei)->dest;
775 /* Check if the edge destination has been visited yet. */
776 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
778 /* Mark that we have visited the destination. */
779 SET_BIT (visited, dest->index);
781 if (pre_order)
782 pre_order[pre_order_num] = dest->index;
784 pre_order_num++;
786 if (EDGE_COUNT (dest->succs) > 0)
787 /* Since the DEST node has been visited for the first
788 time, check its successors. */
789 stack[sp++] = ei_start (dest->succs);
790 else if (rev_post_order)
791 /* There are no successors for the DEST node so assign
792 its reverse completion number. */
793 rev_post_order[rev_post_order_num--] = dest->index;
795 else
797 if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR
798 && rev_post_order)
799 /* There are no more successors for the SRC node
800 so assign its reverse completion number. */
801 rev_post_order[rev_post_order_num--] = src->index;
803 if (!ei_one_before_end_p (ei))
804 ei_next (&stack[sp - 1]);
805 else
806 sp--;
810 free (stack);
811 sbitmap_free (visited);
813 if (include_entry_exit)
815 if (pre_order)
816 pre_order[pre_order_num] = EXIT_BLOCK;
817 pre_order_num++;
818 if (rev_post_order)
819 rev_post_order[rev_post_order_num--] = EXIT_BLOCK;
820 /* The number of nodes visited should be the number of blocks. */
821 gcc_assert (pre_order_num == n_basic_blocks);
823 else
824 /* The number of nodes visited should be the number of blocks minus
825 the entry and exit blocks which are not visited here. */
826 gcc_assert (pre_order_num == n_basic_blocks - NUM_FIXED_BLOCKS);
828 return pre_order_num;
831 /* Compute the depth first search order on the _reverse_ graph and
832 store in the array DFS_ORDER, marking the nodes visited in VISITED.
833 Returns the number of nodes visited.
835 The computation is split into three pieces:
837 flow_dfs_compute_reverse_init () creates the necessary data
838 structures.
840 flow_dfs_compute_reverse_add_bb () adds a basic block to the data
841 structures. The block will start the search.
843 flow_dfs_compute_reverse_execute () continues (or starts) the
844 search using the block on the top of the stack, stopping when the
845 stack is empty.
847 flow_dfs_compute_reverse_finish () destroys the necessary data
848 structures.
850 Thus, the user will probably call ..._init(), call ..._add_bb() to
851 add a beginning basic block to the stack, call ..._execute(),
852 possibly add another bb to the stack and again call ..._execute(),
853 ..., and finally call _finish(). */
855 /* Initialize the data structures used for depth-first search on the
856 reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
857 added to the basic block stack. DATA is the current depth-first
858 search context. If INITIALIZE_STACK is nonzero, there is an
859 element on the stack. */
861 static void
862 flow_dfs_compute_reverse_init (depth_first_search_ds data)
864 /* Allocate stack for back-tracking up CFG. */
865 data->stack = XNEWVEC (basic_block, n_basic_blocks);
866 data->sp = 0;
868 /* Allocate bitmap to track nodes that have been visited. */
869 data->visited_blocks = sbitmap_alloc (last_basic_block);
871 /* None of the nodes in the CFG have been visited yet. */
872 sbitmap_zero (data->visited_blocks);
874 return;
877 /* Add the specified basic block to the top of the dfs data
878 structures. When the search continues, it will start at the
879 block. */
881 static void
882 flow_dfs_compute_reverse_add_bb (depth_first_search_ds data, basic_block bb)
884 data->stack[data->sp++] = bb;
885 SET_BIT (data->visited_blocks, bb->index);
888 /* Continue the depth-first search through the reverse graph starting with the
889 block at the stack's top and ending when the stack is empty. Visited nodes
890 are marked. Returns an unvisited basic block, or NULL if there is none
891 available. */
893 static basic_block
894 flow_dfs_compute_reverse_execute (depth_first_search_ds data,
895 basic_block last_unvisited)
897 basic_block bb;
898 edge e;
899 edge_iterator ei;
901 while (data->sp > 0)
903 bb = data->stack[--data->sp];
905 /* Perform depth-first search on adjacent vertices. */
906 FOR_EACH_EDGE (e, ei, bb->preds)
907 if (!TEST_BIT (data->visited_blocks, e->src->index))
908 flow_dfs_compute_reverse_add_bb (data, e->src);
911 /* Determine if there are unvisited basic blocks. */
912 FOR_BB_BETWEEN (bb, last_unvisited, NULL, prev_bb)
913 if (!TEST_BIT (data->visited_blocks, bb->index))
914 return bb;
916 return NULL;
919 /* Destroy the data structures needed for depth-first search on the
920 reverse graph. */
922 static void
923 flow_dfs_compute_reverse_finish (depth_first_search_ds data)
925 free (data->stack);
926 sbitmap_free (data->visited_blocks);
929 /* Performs dfs search from BB over vertices satisfying PREDICATE;
930 if REVERSE, go against direction of edges. Returns number of blocks
931 found and their list in RSLT. RSLT can contain at most RSLT_MAX items. */
933 dfs_enumerate_from (basic_block bb, int reverse,
934 bool (*predicate) (basic_block, void *),
935 basic_block *rslt, int rslt_max, void *data)
937 basic_block *st, lbb;
938 int sp = 0, tv = 0;
939 unsigned size;
941 /* A bitmap to keep track of visited blocks. Allocating it each time
942 this function is called is not possible, since dfs_enumerate_from
943 is often used on small (almost) disjoint parts of cfg (bodies of
944 loops), and allocating a large sbitmap would lead to quadratic
945 behavior. */
946 static sbitmap visited;
947 static unsigned v_size;
949 #define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index))
950 #define UNMARK_VISITED(BB) (RESET_BIT (visited, (BB)->index))
951 #define VISITED_P(BB) (TEST_BIT (visited, (BB)->index))
953 /* Resize the VISITED sbitmap if necessary. */
954 size = last_basic_block;
955 if (size < 10)
956 size = 10;
958 if (!visited)
961 visited = sbitmap_alloc (size);
962 sbitmap_zero (visited);
963 v_size = size;
965 else if (v_size < size)
967 /* Ensure that we increase the size of the sbitmap exponentially. */
968 if (2 * v_size > size)
969 size = 2 * v_size;
971 visited = sbitmap_resize (visited, size, 0);
972 v_size = size;
975 st = XCNEWVEC (basic_block, rslt_max);
976 rslt[tv++] = st[sp++] = bb;
977 MARK_VISITED (bb);
978 while (sp)
980 edge e;
981 edge_iterator ei;
982 lbb = st[--sp];
983 if (reverse)
985 FOR_EACH_EDGE (e, ei, lbb->preds)
986 if (!VISITED_P (e->src) && predicate (e->src, data))
988 gcc_assert (tv != rslt_max);
989 rslt[tv++] = st[sp++] = e->src;
990 MARK_VISITED (e->src);
993 else
995 FOR_EACH_EDGE (e, ei, lbb->succs)
996 if (!VISITED_P (e->dest) && predicate (e->dest, data))
998 gcc_assert (tv != rslt_max);
999 rslt[tv++] = st[sp++] = e->dest;
1000 MARK_VISITED (e->dest);
1004 free (st);
1005 for (sp = 0; sp < tv; sp++)
1006 UNMARK_VISITED (rslt[sp]);
1007 return tv;
1008 #undef MARK_VISITED
1009 #undef UNMARK_VISITED
1010 #undef VISITED_P
1014 /* Compute dominance frontiers, ala Harvey, Ferrante, et al.
1016 This algorithm can be found in Timothy Harvey's PhD thesis, at
1017 http://www.cs.rice.edu/~harv/dissertation.pdf in the section on iterative
1018 dominance algorithms.
1020 First, we identify each join point, j (any node with more than one
1021 incoming edge is a join point).
1023 We then examine each predecessor, p, of j and walk up the dominator tree
1024 starting at p.
1026 We stop the walk when we reach j's immediate dominator - j is in the
1027 dominance frontier of each of the nodes in the walk, except for j's
1028 immediate dominator. Intuitively, all of the rest of j's dominators are
1029 shared by j's predecessors as well.
1030 Since they dominate j, they will not have j in their dominance frontiers.
1032 The number of nodes touched by this algorithm is equal to the size
1033 of the dominance frontiers, no more, no less.
1037 static void
1038 compute_dominance_frontiers_1 (bitmap *frontiers)
1040 edge p;
1041 edge_iterator ei;
1042 basic_block b;
1043 FOR_EACH_BB (b)
1045 if (EDGE_COUNT (b->preds) >= 2)
1047 FOR_EACH_EDGE (p, ei, b->preds)
1049 basic_block runner = p->src;
1050 basic_block domsb;
1051 if (runner == ENTRY_BLOCK_PTR)
1052 continue;
1054 domsb = get_immediate_dominator (CDI_DOMINATORS, b);
1055 while (runner != domsb)
1057 if (bitmap_bit_p (frontiers[runner->index], b->index))
1058 break;
1059 bitmap_set_bit (frontiers[runner->index],
1060 b->index);
1061 runner = get_immediate_dominator (CDI_DOMINATORS,
1062 runner);
1070 void
1071 compute_dominance_frontiers (bitmap *frontiers)
1073 timevar_push (TV_DOM_FRONTIERS);
1075 compute_dominance_frontiers_1 (frontiers);
1077 timevar_pop (TV_DOM_FRONTIERS);