c++: only cache constexpr calls that are constant exprs
[official-gcc.git] / gcc / value-range.cc
blob2abf57bcee8055ec8b297c3d624e54621a7b5eef
1 /* Support routines for value ranges.
2 Copyright (C) 2019-2023 Free Software Foundation, Inc.
3 Major hacks by Aldy Hernandez <aldyh@redhat.com> and
4 Andrew MacLeod <amacleod@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "ssa.h"
29 #include "tree-pretty-print.h"
30 #include "value-range-pretty-print.h"
31 #include "fold-const.h"
32 #include "gimple-range.h"
34 void
35 irange::accept (const vrange_visitor &v) const
37 v.visit (*this);
40 void
41 unsupported_range::accept (const vrange_visitor &v) const
43 v.visit (*this);
46 // Convenience function only available for integers and pointers.
48 wide_int
49 Value_Range::lower_bound () const
51 if (is_a <irange> (*m_vrange))
52 return as_a <irange> (*m_vrange).lower_bound ();
53 gcc_unreachable ();
56 // Convenience function only available for integers and pointers.
58 wide_int
59 Value_Range::upper_bound () const
61 if (is_a <irange> (*m_vrange))
62 return as_a <irange> (*m_vrange).upper_bound ();
63 gcc_unreachable ();
66 void
67 Value_Range::dump (FILE *out) const
69 if (m_vrange)
70 m_vrange->dump (out);
71 else
72 fprintf (out, "NULL");
75 DEBUG_FUNCTION void
76 debug (const Value_Range &r)
78 r.dump (stderr);
79 fprintf (stderr, "\n");
82 DEBUG_FUNCTION void
83 debug (const irange_bitmask &bm)
85 bm.dump (stderr);
86 fprintf (stderr, "\n");
89 // Default vrange definitions.
91 bool
92 vrange::contains_p (tree) const
94 return varying_p ();
97 bool
98 vrange::singleton_p (tree *) const
100 return false;
103 void
104 vrange::set (tree min, tree, value_range_kind)
106 set_varying (TREE_TYPE (min));
109 tree
110 vrange::type () const
112 return void_type_node;
115 bool
116 vrange::supports_type_p (const_tree) const
118 return false;
121 void
122 vrange::set_undefined ()
124 m_kind = VR_UNDEFINED;
127 void
128 vrange::set_varying (tree)
130 m_kind = VR_VARYING;
133 bool
134 vrange::union_ (const vrange &r)
136 if (r.undefined_p () || varying_p ())
137 return false;
138 if (undefined_p () || r.varying_p ())
140 operator= (r);
141 return true;
143 gcc_unreachable ();
144 return false;
147 bool
148 vrange::intersect (const vrange &r)
150 if (undefined_p () || r.varying_p ())
151 return false;
152 if (r.undefined_p ())
154 set_undefined ();
155 return true;
157 if (varying_p ())
159 operator= (r);
160 return true;
162 gcc_unreachable ();
163 return false;
166 bool
167 vrange::zero_p () const
169 return false;
172 bool
173 vrange::nonzero_p () const
175 return false;
178 void
179 vrange::set_nonzero (tree type)
181 set_varying (type);
184 void
185 vrange::set_zero (tree type)
187 set_varying (type);
190 void
191 vrange::set_nonnegative (tree type)
193 set_varying (type);
196 bool
197 vrange::fits_p (const vrange &) const
199 return true;
202 // Assignment operator for generic ranges. Copying incompatible types
203 // is not allowed.
205 vrange &
206 vrange::operator= (const vrange &src)
208 if (is_a <irange> (src))
209 as_a <irange> (*this) = as_a <irange> (src);
210 else if (is_a <frange> (src))
211 as_a <frange> (*this) = as_a <frange> (src);
212 else
214 gcc_checking_assert (is_a <unsupported_range> (src));
215 m_kind = src.m_kind;
217 return *this;
220 // Equality operator for generic ranges.
222 bool
223 vrange::operator== (const vrange &src) const
225 if (is_a <irange> (src))
226 return as_a <irange> (*this) == as_a <irange> (src);
227 if (is_a <frange> (src))
228 return as_a <frange> (*this) == as_a <frange> (src);
229 gcc_unreachable ();
232 // Wrapper for vrange_printer to dump a range to a file.
234 void
235 vrange::dump (FILE *file) const
237 pretty_printer buffer;
238 pp_needs_newline (&buffer) = true;
239 buffer.buffer->stream = file;
240 vrange_printer vrange_pp (&buffer);
241 this->accept (vrange_pp);
242 pp_flush (&buffer);
245 void
246 irange_bitmask::dump (FILE *file) const
248 char buf[WIDE_INT_PRINT_BUFFER_SIZE];
249 pretty_printer buffer;
251 pp_needs_newline (&buffer) = true;
252 buffer.buffer->stream = file;
253 pp_string (&buffer, "MASK ");
254 print_hex (m_mask, buf);
255 pp_string (&buffer, buf);
256 pp_string (&buffer, " VALUE ");
257 print_hex (m_value, buf);
258 pp_string (&buffer, buf);
259 pp_flush (&buffer);
262 namespace inchash
265 void
266 add_vrange (const vrange &v, inchash::hash &hstate,
267 unsigned int)
269 if (v.undefined_p ())
271 hstate.add_int (VR_UNDEFINED);
272 return;
274 // Types are ignored throughout to inhibit two ranges being equal
275 // but having different hash values. This can happen when two
276 // ranges are equal and their types are different (but
277 // types_compatible_p is true).
278 if (is_a <irange> (v))
280 const irange &r = as_a <irange> (v);
281 if (r.varying_p ())
282 hstate.add_int (VR_VARYING);
283 else
284 hstate.add_int (VR_RANGE);
285 for (unsigned i = 0; i < r.num_pairs (); ++i)
287 hstate.add_wide_int (r.lower_bound (i));
288 hstate.add_wide_int (r.upper_bound (i));
290 irange_bitmask bm = r.get_bitmask ();
291 hstate.add_wide_int (bm.value ());
292 hstate.add_wide_int (bm.mask ());
293 return;
295 if (is_a <frange> (v))
297 const frange &r = as_a <frange> (v);
298 if (r.known_isnan ())
299 hstate.add_int (VR_NAN);
300 else
302 hstate.add_int (r.varying_p () ? VR_VARYING : VR_RANGE);
303 hstate.add_real_value (r.lower_bound ());
304 hstate.add_real_value (r.upper_bound ());
306 nan_state nan = r.get_nan_state ();
307 hstate.add_int (nan.pos_p ());
308 hstate.add_int (nan.neg_p ());
309 return;
311 gcc_unreachable ();
314 } //namespace inchash
316 bool
317 irange::supports_type_p (const_tree type) const
319 return supports_p (type);
322 // Return TRUE if R fits in THIS.
324 bool
325 irange::fits_p (const vrange &r) const
327 return m_max_ranges >= as_a <irange> (r).num_pairs ();
330 void
331 irange::set_nonnegative (tree type)
333 set (type,
334 wi::zero (TYPE_PRECISION (type)),
335 wi::to_wide (TYPE_MAX_VALUE (type)));
338 void
339 frange::accept (const vrange_visitor &v) const
341 v.visit (*this);
344 // Flush denormal endpoints to the appropriate 0.0.
346 void
347 frange::flush_denormals_to_zero ()
349 if (undefined_p () || known_isnan ())
350 return;
352 machine_mode mode = TYPE_MODE (type ());
353 // Flush [x, -DENORMAL] to [x, -0.0].
354 if (real_isdenormal (&m_max, mode) && real_isneg (&m_max))
356 if (HONOR_SIGNED_ZEROS (m_type))
357 m_max = dconstm0;
358 else
359 m_max = dconst0;
361 // Flush [+DENORMAL, x] to [+0.0, x].
362 if (real_isdenormal (&m_min, mode) && !real_isneg (&m_min))
363 m_min = dconst0;
366 // Setter for franges.
368 void
369 frange::set (tree type,
370 const REAL_VALUE_TYPE &min, const REAL_VALUE_TYPE &max,
371 const nan_state &nan, value_range_kind kind)
373 switch (kind)
375 case VR_UNDEFINED:
376 set_undefined ();
377 return;
378 case VR_VARYING:
379 case VR_ANTI_RANGE:
380 set_varying (type);
381 return;
382 case VR_RANGE:
383 break;
384 default:
385 gcc_unreachable ();
388 gcc_checking_assert (!real_isnan (&min) && !real_isnan (&max));
390 m_kind = kind;
391 m_type = type;
392 m_min = min;
393 m_max = max;
394 if (HONOR_NANS (m_type))
396 m_pos_nan = nan.pos_p ();
397 m_neg_nan = nan.neg_p ();
399 else
401 m_pos_nan = false;
402 m_neg_nan = false;
405 if (!MODE_HAS_SIGNED_ZEROS (TYPE_MODE (m_type)))
407 if (real_iszero (&m_min, 1))
408 m_min.sign = 0;
409 if (real_iszero (&m_max, 1))
410 m_max.sign = 0;
412 else if (!HONOR_SIGNED_ZEROS (m_type))
414 if (real_iszero (&m_max, 1))
415 m_max.sign = 0;
416 if (real_iszero (&m_min, 0))
417 m_min.sign = 1;
420 // For -ffinite-math-only we can drop ranges outside the
421 // representable numbers to min/max for the type.
422 if (!HONOR_INFINITIES (m_type))
424 REAL_VALUE_TYPE min_repr = frange_val_min (m_type);
425 REAL_VALUE_TYPE max_repr = frange_val_max (m_type);
426 if (real_less (&m_min, &min_repr))
427 m_min = min_repr;
428 else if (real_less (&max_repr, &m_min))
429 m_min = max_repr;
430 if (real_less (&max_repr, &m_max))
431 m_max = max_repr;
432 else if (real_less (&m_max, &min_repr))
433 m_max = min_repr;
436 // Check for swapped ranges.
437 gcc_checking_assert (real_compare (LE_EXPR, &min, &max));
439 normalize_kind ();
442 // Setter for an frange defaulting the NAN possibility to +-NAN when
443 // HONOR_NANS.
445 void
446 frange::set (tree type,
447 const REAL_VALUE_TYPE &min, const REAL_VALUE_TYPE &max,
448 value_range_kind kind)
450 set (type, min, max, nan_state (true), kind);
453 void
454 frange::set (tree min, tree max, value_range_kind kind)
456 set (TREE_TYPE (min),
457 *TREE_REAL_CST_PTR (min), *TREE_REAL_CST_PTR (max), kind);
460 // Normalize range to VARYING or UNDEFINED, or vice versa. Return
461 // TRUE if anything changed.
463 // A range with no known properties can be dropped to VARYING.
464 // Similarly, a VARYING with any properties should be dropped to a
465 // VR_RANGE. Normalizing ranges upon changing them ensures there is
466 // only one representation for a given range.
468 bool
469 frange::normalize_kind ()
471 if (m_kind == VR_RANGE
472 && frange_val_is_min (m_min, m_type)
473 && frange_val_is_max (m_max, m_type))
475 if (!HONOR_NANS (m_type) || (m_pos_nan && m_neg_nan))
477 set_varying (m_type);
478 return true;
481 else if (m_kind == VR_VARYING)
483 if (HONOR_NANS (m_type) && (!m_pos_nan || !m_neg_nan))
485 m_kind = VR_RANGE;
486 m_min = frange_val_min (m_type);
487 m_max = frange_val_max (m_type);
488 if (flag_checking)
489 verify_range ();
490 return true;
493 else if (m_kind == VR_NAN && !m_pos_nan && !m_neg_nan)
494 set_undefined ();
495 return false;
498 // Union or intersect the zero endpoints of two ranges. For example:
499 // [-0, x] U [+0, x] => [-0, x]
500 // [ x, -0] U [ x, +0] => [ x, +0]
501 // [-0, x] ^ [+0, x] => [+0, x]
502 // [ x, -0] ^ [ x, +0] => [ x, -0]
504 // UNION_P is true when performing a union, or false when intersecting.
506 bool
507 frange::combine_zeros (const frange &r, bool union_p)
509 gcc_checking_assert (!undefined_p () && !known_isnan ());
511 bool changed = false;
512 if (real_iszero (&m_min) && real_iszero (&r.m_min)
513 && real_isneg (&m_min) != real_isneg (&r.m_min))
515 m_min.sign = union_p;
516 changed = true;
518 if (real_iszero (&m_max) && real_iszero (&r.m_max)
519 && real_isneg (&m_max) != real_isneg (&r.m_max))
521 m_max.sign = !union_p;
522 changed = true;
524 // If the signs are swapped, the resulting range is empty.
525 if (m_min.sign == 0 && m_max.sign == 1)
527 if (maybe_isnan ())
528 m_kind = VR_NAN;
529 else
530 set_undefined ();
531 changed = true;
533 return changed;
536 // Union two ranges when one is known to be a NAN.
538 bool
539 frange::union_nans (const frange &r)
541 gcc_checking_assert (known_isnan () || r.known_isnan ());
543 if (known_isnan ())
545 m_kind = r.m_kind;
546 m_min = r.m_min;
547 m_max = r.m_max;
549 m_pos_nan |= r.m_pos_nan;
550 m_neg_nan |= r.m_neg_nan;
551 normalize_kind ();
552 return true;
555 bool
556 frange::union_ (const vrange &v)
558 const frange &r = as_a <frange> (v);
560 if (r.undefined_p () || varying_p ())
561 return false;
562 if (undefined_p () || r.varying_p ())
564 *this = r;
565 return true;
568 // Combine NAN info.
569 if (known_isnan () || r.known_isnan ())
570 return union_nans (r);
571 bool changed = false;
572 if (m_pos_nan != r.m_pos_nan || m_neg_nan != r.m_neg_nan)
574 m_pos_nan |= r.m_pos_nan;
575 m_neg_nan |= r.m_neg_nan;
576 changed = true;
579 // Combine endpoints.
580 if (real_less (&r.m_min, &m_min))
582 m_min = r.m_min;
583 changed = true;
585 if (real_less (&m_max, &r.m_max))
587 m_max = r.m_max;
588 changed = true;
591 if (HONOR_SIGNED_ZEROS (m_type))
592 changed |= combine_zeros (r, true);
594 changed |= normalize_kind ();
595 return changed;
598 // Intersect two ranges when one is known to be a NAN.
600 bool
601 frange::intersect_nans (const frange &r)
603 gcc_checking_assert (known_isnan () || r.known_isnan ());
605 m_pos_nan &= r.m_pos_nan;
606 m_neg_nan &= r.m_neg_nan;
607 if (maybe_isnan ())
608 m_kind = VR_NAN;
609 else
610 set_undefined ();
611 if (flag_checking)
612 verify_range ();
613 return true;
616 bool
617 frange::intersect (const vrange &v)
619 const frange &r = as_a <frange> (v);
621 if (undefined_p () || r.varying_p ())
622 return false;
623 if (r.undefined_p ())
625 set_undefined ();
626 return true;
628 if (varying_p ())
630 *this = r;
631 return true;
634 // Combine NAN info.
635 if (known_isnan () || r.known_isnan ())
636 return intersect_nans (r);
637 bool changed = false;
638 if (m_pos_nan != r.m_pos_nan || m_neg_nan != r.m_neg_nan)
640 m_pos_nan &= r.m_pos_nan;
641 m_neg_nan &= r.m_neg_nan;
642 changed = true;
645 // Combine endpoints.
646 if (real_less (&m_min, &r.m_min))
648 m_min = r.m_min;
649 changed = true;
651 if (real_less (&r.m_max, &m_max))
653 m_max = r.m_max;
654 changed = true;
656 // If the endpoints are swapped, the resulting range is empty.
657 if (real_less (&m_max, &m_min))
659 if (maybe_isnan ())
660 m_kind = VR_NAN;
661 else
662 set_undefined ();
663 if (flag_checking)
664 verify_range ();
665 return true;
668 if (HONOR_SIGNED_ZEROS (m_type))
669 changed |= combine_zeros (r, false);
671 changed |= normalize_kind ();
672 return changed;
675 frange &
676 frange::operator= (const frange &src)
678 m_kind = src.m_kind;
679 m_type = src.m_type;
680 m_min = src.m_min;
681 m_max = src.m_max;
682 m_pos_nan = src.m_pos_nan;
683 m_neg_nan = src.m_neg_nan;
685 if (flag_checking)
686 verify_range ();
687 return *this;
690 bool
691 frange::operator== (const frange &src) const
693 if (m_kind == src.m_kind)
695 if (undefined_p ())
696 return true;
698 if (varying_p ())
699 return types_compatible_p (m_type, src.m_type);
701 bool nan1 = known_isnan ();
702 bool nan2 = src.known_isnan ();
703 if (nan1 || nan2)
705 if (nan1 && nan2)
706 return (m_pos_nan == src.m_pos_nan
707 && m_neg_nan == src.m_neg_nan);
708 return false;
711 return (real_identical (&m_min, &src.m_min)
712 && real_identical (&m_max, &src.m_max)
713 && m_pos_nan == src.m_pos_nan
714 && m_neg_nan == src.m_neg_nan
715 && types_compatible_p (m_type, src.m_type));
717 return false;
720 // Return TRUE if range contains R.
722 bool
723 frange::contains_p (const REAL_VALUE_TYPE &r) const
725 gcc_checking_assert (m_kind != VR_ANTI_RANGE);
727 if (undefined_p ())
728 return false;
730 if (varying_p ())
731 return true;
733 if (real_isnan (&r))
735 // No NAN in range.
736 if (!m_pos_nan && !m_neg_nan)
737 return false;
738 // Both +NAN and -NAN are present.
739 if (m_pos_nan && m_neg_nan)
740 return true;
741 return m_neg_nan == r.sign;
743 if (known_isnan ())
744 return false;
746 if (real_compare (GE_EXPR, &r, &m_min) && real_compare (LE_EXPR, &r, &m_max))
748 // Make sure the signs are equal for signed zeros.
749 if (HONOR_SIGNED_ZEROS (m_type) && real_iszero (&r))
750 return r.sign == m_min.sign || r.sign == m_max.sign;
751 return true;
753 return false;
756 // If range is a singleton, place it in RESULT and return TRUE. If
757 // RESULT is NULL, just return TRUE.
759 // A NAN can never be a singleton.
761 bool
762 frange::internal_singleton_p (REAL_VALUE_TYPE *result) const
764 if (m_kind == VR_RANGE && real_identical (&m_min, &m_max))
766 // Return false for any singleton that may be a NAN.
767 if (HONOR_NANS (m_type) && maybe_isnan ())
768 return false;
770 if (MODE_COMPOSITE_P (TYPE_MODE (m_type)))
772 // For IBM long doubles, if the value is +-Inf or is exactly
773 // representable in double, the other double could be +0.0
774 // or -0.0. Since this means there is more than one way to
775 // represent a value, return false to avoid propagating it.
776 // See libgcc/config/rs6000/ibm-ldouble-format for details.
777 if (real_isinf (&m_min))
778 return false;
779 REAL_VALUE_TYPE r;
780 real_convert (&r, DFmode, &m_min);
781 if (real_identical (&r, &m_min))
782 return false;
785 if (result)
786 *result = m_min;
787 return true;
789 return false;
792 bool
793 frange::singleton_p (tree *result) const
795 if (internal_singleton_p ())
797 if (result)
798 *result = build_real (m_type, m_min);
799 return true;
801 return false;
804 bool
805 frange::singleton_p (REAL_VALUE_TYPE &r) const
807 return internal_singleton_p (&r);
810 bool
811 frange::supports_type_p (const_tree type) const
813 return supports_p (type);
816 void
817 frange::verify_range ()
819 if (!undefined_p ())
820 gcc_checking_assert (HONOR_NANS (m_type) || !maybe_isnan ());
821 switch (m_kind)
823 case VR_UNDEFINED:
824 gcc_checking_assert (!m_type);
825 return;
826 case VR_VARYING:
827 gcc_checking_assert (m_type);
828 gcc_checking_assert (frange_val_is_min (m_min, m_type));
829 gcc_checking_assert (frange_val_is_max (m_max, m_type));
830 if (HONOR_NANS (m_type))
831 gcc_checking_assert (m_pos_nan && m_neg_nan);
832 else
833 gcc_checking_assert (!m_pos_nan && !m_neg_nan);
834 return;
835 case VR_RANGE:
836 gcc_checking_assert (m_type);
837 break;
838 case VR_NAN:
839 gcc_checking_assert (m_type);
840 gcc_checking_assert (m_pos_nan || m_neg_nan);
841 return;
842 default:
843 gcc_unreachable ();
846 // NANs cannot appear in the endpoints of a range.
847 gcc_checking_assert (!real_isnan (&m_min) && !real_isnan (&m_max));
849 // Make sure we don't have swapped ranges.
850 gcc_checking_assert (!real_less (&m_max, &m_min));
852 // [ +0.0, -0.0 ] is nonsensical.
853 gcc_checking_assert (!(real_iszero (&m_min, 0) && real_iszero (&m_max, 1)));
855 // If all the properties are clear, we better not span the entire
856 // domain, because that would make us varying.
857 if (m_pos_nan && m_neg_nan)
858 gcc_checking_assert (!frange_val_is_min (m_min, m_type)
859 || !frange_val_is_max (m_max, m_type));
862 // We can't do much with nonzeros yet.
863 void
864 frange::set_nonzero (tree type)
866 set_varying (type);
869 // We can't do much with nonzeros yet.
870 bool
871 frange::nonzero_p () const
873 return false;
876 // Set range to [+0.0, +0.0] if honoring signed zeros, or [0.0, 0.0]
877 // otherwise.
879 void
880 frange::set_zero (tree type)
882 if (HONOR_SIGNED_ZEROS (type))
884 set (type, dconstm0, dconst0);
885 clear_nan ();
887 else
888 set (type, dconst0, dconst0);
891 // Return TRUE for any zero regardless of sign.
893 bool
894 frange::zero_p () const
896 return (m_kind == VR_RANGE
897 && real_iszero (&m_min)
898 && real_iszero (&m_max));
901 // Set the range to non-negative numbers, that is [+0.0, +INF].
903 // The NAN in the resulting range (if HONOR_NANS) has a varying sign
904 // as there are no guarantees in IEEE 754 wrt to the sign of a NAN,
905 // except for copy, abs, and copysign. It is the responsibility of
906 // the caller to set the NAN's sign if desired.
908 void
909 frange::set_nonnegative (tree type)
911 set (type, dconst0, frange_val_max (type));
914 // Here we copy between any two irange's.
916 irange &
917 irange::operator= (const irange &src)
919 int needed = src.num_pairs ();
920 maybe_resize (needed);
922 unsigned x;
923 unsigned lim = src.m_num_ranges;
924 if (lim > m_max_ranges)
925 lim = m_max_ranges;
927 for (x = 0; x < lim * 2; ++x)
928 m_base[x] = src.m_base[x];
930 // If the range didn't fit, the last range should cover the rest.
931 if (lim != src.m_num_ranges)
932 m_base[x - 1] = src.m_base[src.m_num_ranges * 2 - 1];
934 m_num_ranges = lim;
935 m_type = src.m_type;
936 m_kind = src.m_kind;
937 m_bitmask = src.m_bitmask;
938 if (m_max_ranges == 1)
939 normalize_kind ();
940 if (flag_checking)
941 verify_range ();
942 return *this;
945 value_range_kind
946 get_legacy_range (const irange &r, tree &min, tree &max)
948 if (r.undefined_p ())
950 min = NULL_TREE;
951 max = NULL_TREE;
952 return VR_UNDEFINED;
955 tree type = r.type ();
956 if (r.varying_p ())
958 min = wide_int_to_tree (type, r.lower_bound ());
959 max = wide_int_to_tree (type, r.upper_bound ());
960 return VR_VARYING;
963 unsigned int precision = TYPE_PRECISION (type);
964 signop sign = TYPE_SIGN (type);
965 if (r.num_pairs () > 1
966 && precision > 1
967 && r.lower_bound () == wi::min_value (precision, sign)
968 && r.upper_bound () == wi::max_value (precision, sign))
970 int_range<3> inv (r);
971 inv.invert ();
972 min = wide_int_to_tree (type, inv.lower_bound (0));
973 max = wide_int_to_tree (type, inv.upper_bound (0));
974 return VR_ANTI_RANGE;
977 min = wide_int_to_tree (type, r.lower_bound ());
978 max = wide_int_to_tree (type, r.upper_bound ());
979 return VR_RANGE;
982 /* Set value range to the canonical form of {VRTYPE, MIN, MAX, EQUIV}.
983 This means adjusting VRTYPE, MIN and MAX representing the case of a
984 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
985 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
986 In corner cases where MAX+1 or MIN-1 wraps this will fall back
987 to varying.
988 This routine exists to ease canonicalization in the case where we
989 extract ranges from var + CST op limit. */
991 void
992 irange::set (tree type, const wide_int &min, const wide_int &max,
993 value_range_kind kind)
995 unsigned prec = TYPE_PRECISION (type);
996 signop sign = TYPE_SIGN (type);
997 wide_int min_value = wi::min_value (prec, sign);
998 wide_int max_value = wi::max_value (prec, sign);
1000 m_type = type;
1001 m_bitmask.set_unknown (prec);
1003 if (kind == VR_RANGE)
1005 m_base[0] = min;
1006 m_base[1] = max;
1007 m_num_ranges = 1;
1008 if (min == min_value && max == max_value)
1009 m_kind = VR_VARYING;
1010 else
1011 m_kind = VR_RANGE;
1013 else
1015 gcc_checking_assert (kind == VR_ANTI_RANGE);
1016 gcc_checking_assert (m_max_ranges > 1);
1018 m_kind = VR_UNDEFINED;
1019 m_num_ranges = 0;
1020 wi::overflow_type ovf;
1021 wide_int lim;
1022 if (sign == SIGNED)
1023 lim = wi::add (min, -1, sign, &ovf);
1024 else
1025 lim = wi::sub (min, 1, sign, &ovf);
1027 if (!ovf)
1029 m_kind = VR_RANGE;
1030 m_base[0] = min_value;
1031 m_base[1] = lim;
1032 ++m_num_ranges;
1034 if (sign == SIGNED)
1035 lim = wi::sub (max, -1, sign, &ovf);
1036 else
1037 lim = wi::add (max, 1, sign, &ovf);
1038 if (!ovf)
1040 m_kind = VR_RANGE;
1041 m_base[m_num_ranges * 2] = lim;
1042 m_base[m_num_ranges * 2 + 1] = max_value;
1043 ++m_num_ranges;
1047 if (flag_checking)
1048 verify_range ();
1051 void
1052 irange::set (tree min, tree max, value_range_kind kind)
1054 if (POLY_INT_CST_P (min) || POLY_INT_CST_P (max))
1056 set_varying (TREE_TYPE (min));
1057 return;
1060 gcc_checking_assert (TREE_CODE (min) == INTEGER_CST);
1061 gcc_checking_assert (TREE_CODE (max) == INTEGER_CST);
1063 return set (TREE_TYPE (min), wi::to_wide (min), wi::to_wide (max), kind);
1066 // Check the validity of the range.
1068 void
1069 irange::verify_range ()
1071 gcc_checking_assert (m_discriminator == VR_IRANGE);
1072 if (m_kind == VR_UNDEFINED)
1074 gcc_checking_assert (m_num_ranges == 0);
1075 return;
1077 gcc_checking_assert (m_num_ranges <= m_max_ranges);
1079 // Legacy allowed these to represent VARYING for unknown types.
1080 // Leave this in for now, until all users are converted. Eventually
1081 // we should abort in set_varying.
1082 if (m_kind == VR_VARYING && m_type == error_mark_node)
1083 return;
1085 unsigned prec = TYPE_PRECISION (m_type);
1086 if (m_kind == VR_VARYING)
1088 gcc_checking_assert (m_bitmask.unknown_p ());
1089 gcc_checking_assert (m_num_ranges == 1);
1090 gcc_checking_assert (varying_compatible_p ());
1091 gcc_checking_assert (lower_bound ().get_precision () == prec);
1092 gcc_checking_assert (upper_bound ().get_precision () == prec);
1093 return;
1095 gcc_checking_assert (m_num_ranges != 0);
1096 gcc_checking_assert (!varying_compatible_p ());
1097 for (unsigned i = 0; i < m_num_ranges; ++i)
1099 wide_int lb = lower_bound (i);
1100 wide_int ub = upper_bound (i);
1101 gcc_checking_assert (lb.get_precision () == prec);
1102 gcc_checking_assert (ub.get_precision () == prec);
1103 int c = wi::cmp (lb, ub, TYPE_SIGN (m_type));
1104 gcc_checking_assert (c == 0 || c == -1);
1106 m_bitmask.verify_mask ();
1109 bool
1110 irange::operator== (const irange &other) const
1112 if (m_num_ranges != other.m_num_ranges)
1113 return false;
1115 if (m_num_ranges == 0)
1116 return true;
1118 signop sign1 = TYPE_SIGN (type ());
1119 signop sign2 = TYPE_SIGN (other.type ());
1121 for (unsigned i = 0; i < m_num_ranges; ++i)
1123 widest_int lb = widest_int::from (lower_bound (i), sign1);
1124 widest_int ub = widest_int::from (upper_bound (i), sign1);
1125 widest_int lb_other = widest_int::from (other.lower_bound (i), sign2);
1126 widest_int ub_other = widest_int::from (other.upper_bound (i), sign2);
1127 if (lb != lb_other || ub != ub_other)
1128 return false;
1131 irange_bitmask bm1 = get_bitmask ();
1132 irange_bitmask bm2 = other.get_bitmask ();
1133 widest_int tmp1 = widest_int::from (bm1.mask (), sign1);
1134 widest_int tmp2 = widest_int::from (bm2.mask (), sign2);
1135 if (tmp1 != tmp2)
1136 return false;
1137 if (bm1.unknown_p ())
1138 return true;
1139 tmp1 = widest_int::from (bm1.value (), sign1);
1140 tmp2 = widest_int::from (bm2.value (), sign2);
1141 return tmp1 == tmp2;
1144 /* If range is a singleton, place it in RESULT and return TRUE. */
1146 bool
1147 irange::singleton_p (tree *result) const
1149 if (num_pairs () == 1 && lower_bound () == upper_bound ())
1151 if (result)
1152 *result = wide_int_to_tree (type (), lower_bound ());
1153 return true;
1155 return false;
1158 bool
1159 irange::singleton_p (wide_int &w) const
1161 if (num_pairs () == 1 && lower_bound () == upper_bound ())
1163 w = lower_bound ();
1164 return true;
1166 return false;
1169 /* Return 1 if CST is inside value range.
1170 0 if CST is not inside value range.
1172 Benchmark compile/20001226-1.c compilation time after changing this
1173 function. */
1175 bool
1176 irange::contains_p (const wide_int &cst) const
1178 if (undefined_p ())
1179 return false;
1181 // See if we can exclude CST based on the known 0 bits.
1182 if (!m_bitmask.unknown_p ()
1183 && cst != 0
1184 && wi::bit_and (m_bitmask.get_nonzero_bits (), cst) == 0)
1185 return false;
1187 signop sign = TYPE_SIGN (type ());
1188 for (unsigned r = 0; r < m_num_ranges; ++r)
1190 if (wi::lt_p (cst, lower_bound (r), sign))
1191 return false;
1192 if (wi::le_p (cst, upper_bound (r), sign))
1193 return true;
1196 return false;
1199 // Perform an efficient union with R when both ranges have only a single pair.
1200 // Excluded are VARYING and UNDEFINED ranges.
1202 bool
1203 irange::irange_single_pair_union (const irange &r)
1205 gcc_checking_assert (!undefined_p () && !varying_p ());
1206 gcc_checking_assert (!r.undefined_p () && !varying_p ());
1208 signop sign = TYPE_SIGN (m_type);
1209 // Check if current lower bound is also the new lower bound.
1210 if (wi::le_p (m_base[0], r.m_base[0], sign))
1212 // If current upper bound is new upper bound, we're done.
1213 if (wi::le_p (r.m_base[1], m_base[1], sign))
1214 return union_bitmask (r);
1215 // Otherwise R has the new upper bound.
1216 // Check for overlap/touching ranges, or single target range.
1217 if (m_max_ranges == 1
1218 || (widest_int::from (m_base[1], sign) + 1
1219 >= widest_int::from (r.m_base[0], TYPE_SIGN (r.m_type))))
1220 m_base[1] = r.m_base[1];
1221 else
1223 // This is a dual range result.
1224 m_base[2] = r.m_base[0];
1225 m_base[3] = r.m_base[1];
1226 m_num_ranges = 2;
1228 // The range has been altered, so normalize it even if nothing
1229 // changed in the mask.
1230 if (!union_bitmask (r))
1231 normalize_kind ();
1232 if (flag_checking)
1233 verify_range ();
1234 return true;
1237 // Set the new lower bound to R's lower bound.
1238 wide_int lb = m_base[0];
1239 m_base[0] = r.m_base[0];
1241 // If R fully contains THIS range, just set the upper bound.
1242 if (wi::ge_p (r.m_base[1], m_base[1], sign))
1243 m_base[1] = r.m_base[1];
1244 // Check for overlapping ranges, or target limited to a single range.
1245 else if (m_max_ranges == 1
1246 || (widest_int::from (r.m_base[1], TYPE_SIGN (r.m_type)) + 1
1247 >= widest_int::from (lb, sign)))
1249 else
1251 // Left with 2 pairs.
1252 m_num_ranges = 2;
1253 m_base[2] = lb;
1254 m_base[3] = m_base[1];
1255 m_base[1] = r.m_base[1];
1257 // The range has been altered, so normalize it even if nothing
1258 // changed in the mask.
1259 if (!union_bitmask (r))
1260 normalize_kind ();
1261 if (flag_checking)
1262 verify_range ();
1263 return true;
1266 // Return TRUE if anything changes.
1268 bool
1269 irange::union_ (const vrange &v)
1271 const irange &r = as_a <irange> (v);
1273 if (r.undefined_p ())
1274 return false;
1276 if (undefined_p ())
1278 operator= (r);
1279 if (flag_checking)
1280 verify_range ();
1281 return true;
1284 if (varying_p ())
1285 return false;
1287 if (r.varying_p ())
1289 set_varying (type ());
1290 return true;
1293 // Special case one range union one range.
1294 if (m_num_ranges == 1 && r.m_num_ranges == 1)
1295 return irange_single_pair_union (r);
1297 // If this ranges fully contains R, then we need do nothing.
1298 if (irange_contains_p (r))
1299 return union_bitmask (r);
1301 // Do not worry about merging and such by reserving twice as many
1302 // pairs as needed, and then simply sort the 2 ranges into this
1303 // intermediate form.
1305 // The intermediate result will have the property that the beginning
1306 // of each range is <= the beginning of the next range. There may
1307 // be overlapping ranges at this point. I.e. this would be valid
1308 // [-20, 10], [-10, 0], [0, 20], [40, 90] as it satisfies this
1309 // constraint : -20 < -10 < 0 < 40. When the range is rebuilt into r,
1310 // the merge is performed.
1312 // [Xi,Yi]..[Xn,Yn] U [Xj,Yj]..[Xm,Ym] --> [Xk,Yk]..[Xp,Yp]
1313 auto_vec<wide_int, 20> res (m_num_ranges * 2 + r.m_num_ranges * 2);
1314 unsigned i = 0, j = 0, k = 0;
1315 signop sign = TYPE_SIGN (m_type);
1317 while (i < m_num_ranges * 2 && j < r.m_num_ranges * 2)
1319 // lower of Xi and Xj is the lowest point.
1320 if (widest_int::from (m_base[i], sign)
1321 <= widest_int::from (r.m_base[j], sign))
1323 res.quick_push (m_base[i]);
1324 res.quick_push (m_base[i + 1]);
1325 k += 2;
1326 i += 2;
1328 else
1330 res.quick_push (r.m_base[j]);
1331 res.quick_push (r.m_base[j + 1]);
1332 k += 2;
1333 j += 2;
1336 for ( ; i < m_num_ranges * 2; i += 2)
1338 res.quick_push (m_base[i]);
1339 res.quick_push (m_base[i + 1]);
1340 k += 2;
1342 for ( ; j < r.m_num_ranges * 2; j += 2)
1344 res.quick_push (r.m_base[j]);
1345 res.quick_push (r.m_base[j + 1]);
1346 k += 2;
1349 // Now normalize the vector removing any overlaps.
1350 i = 2;
1351 for (j = 2; j < k ; j += 2)
1353 // Current upper+1 is >= lower bound next pair, then we merge ranges.
1354 if (widest_int::from (res[i - 1], sign) + 1
1355 >= widest_int::from (res[j], sign))
1357 // New upper bounds is greater of current or the next one.
1358 if (widest_int::from (res[j + 1], sign)
1359 > widest_int::from (res[i - 1], sign))
1360 res[i - 1] = res[j + 1];
1362 else
1364 // This is a new distinct range, but no point in copying it
1365 // if it is already in the right place.
1366 if (i != j)
1368 res[i++] = res[j];
1369 res[i++] = res[j + 1];
1371 else
1372 i += 2;
1376 // At this point, the vector should have i ranges, none overlapping.
1377 // Now it simply needs to be copied, and if there are too many
1378 // ranges, merge some. We wont do any analysis as to what the
1379 // "best" merges are, simply combine the final ranges into one.
1380 maybe_resize (i / 2);
1381 if (i > m_max_ranges * 2)
1383 res[m_max_ranges * 2 - 1] = res[i - 1];
1384 i = m_max_ranges * 2;
1387 for (j = 0; j < i ; j++)
1388 m_base[j] = res [j];
1389 m_num_ranges = i / 2;
1391 m_kind = VR_RANGE;
1392 // The range has been altered, so normalize it even if nothing
1393 // changed in the mask.
1394 if (!union_bitmask (r))
1395 normalize_kind ();
1396 if (flag_checking)
1397 verify_range ();
1398 return true;
1401 // Return TRUE if THIS fully contains R. No undefined or varying cases.
1403 bool
1404 irange::irange_contains_p (const irange &r) const
1406 gcc_checking_assert (!undefined_p () && !varying_p ());
1407 gcc_checking_assert (!r.undefined_p () && !varying_p ());
1409 // In order for THIS to fully contain R, all of the pairs within R must
1410 // be fully contained by the pairs in this object.
1411 signop sign = TYPE_SIGN (m_type);
1412 unsigned ri = 0;
1413 unsigned i = 0;
1414 wide_int rl = r.m_base[0];
1415 wide_int ru = r.m_base[1];
1416 wide_int l = m_base[0];
1417 wide_int u = m_base[1];
1418 while (1)
1420 // If r is contained within this range, move to the next R
1421 if (wi::ge_p (rl, l, sign)
1422 && wi::le_p (ru, u, sign))
1424 // This pair is OK, Either done, or bump to the next.
1425 if (++ri >= r.num_pairs ())
1426 return true;
1427 rl = r.m_base[ri * 2];
1428 ru = r.m_base[ri * 2 + 1];
1429 continue;
1431 // Otherwise, check if this's pair occurs before R's.
1432 if (wi::lt_p (u, rl, sign))
1434 // There's still at least one pair of R left.
1435 if (++i >= num_pairs ())
1436 return false;
1437 l = m_base[i * 2];
1438 u = m_base[i * 2 + 1];
1439 continue;
1441 return false;
1443 return false;
1447 // Return TRUE if anything changes.
1449 bool
1450 irange::intersect (const vrange &v)
1452 const irange &r = as_a <irange> (v);
1453 gcc_checking_assert (undefined_p () || r.undefined_p ()
1454 || range_compatible_p (type (), r.type ()));
1456 if (undefined_p ())
1457 return false;
1458 if (r.undefined_p ())
1460 set_undefined ();
1461 return true;
1463 if (r.varying_p ())
1464 return false;
1465 if (varying_p ())
1467 operator= (r);
1468 return true;
1471 if (r.num_pairs () == 1)
1473 bool res = intersect (r.lower_bound (), r.upper_bound ());
1474 if (undefined_p ())
1475 return true;
1477 res |= intersect_bitmask (r);
1478 if (res)
1479 normalize_kind ();
1480 return res;
1483 // If R fully contains this, then intersection will change nothing.
1484 if (r.irange_contains_p (*this))
1485 return intersect_bitmask (r);
1487 // ?? We could probably come up with something smarter than the
1488 // worst case scenario here.
1489 int needed = num_pairs () + r.num_pairs ();
1490 maybe_resize (needed);
1492 signop sign = TYPE_SIGN (m_type);
1493 unsigned bld_pair = 0;
1494 unsigned bld_lim = m_max_ranges;
1495 int_range_max r2 (*this);
1496 unsigned r2_lim = r2.num_pairs ();
1497 unsigned i2 = 0;
1498 for (unsigned i = 0; i < r.num_pairs (); )
1500 // If r1's upper is < r2's lower, we can skip r1's pair.
1501 wide_int ru = r.m_base[i * 2 + 1];
1502 wide_int r2l = r2.m_base[i2 * 2];
1503 if (wi::lt_p (ru, r2l, sign))
1505 i++;
1506 continue;
1508 // Likewise, skip r2's pair if its excluded.
1509 wide_int r2u = r2.m_base[i2 * 2 + 1];
1510 wide_int rl = r.m_base[i * 2];
1511 if (wi::lt_p (r2u, rl, sign))
1513 i2++;
1514 if (i2 < r2_lim)
1515 continue;
1516 // No more r2, break.
1517 break;
1520 // Must be some overlap. Find the highest of the lower bounds,
1521 // and set it, unless the build limits lower bounds is already
1522 // set.
1523 if (bld_pair < bld_lim)
1525 if (wi::ge_p (rl, r2l, sign))
1526 m_base[bld_pair * 2] = rl;
1527 else
1528 m_base[bld_pair * 2] = r2l;
1530 else
1531 // Decrease and set a new upper.
1532 bld_pair--;
1534 // ...and choose the lower of the upper bounds.
1535 if (wi::le_p (ru, r2u, sign))
1537 m_base[bld_pair * 2 + 1] = ru;
1538 bld_pair++;
1539 // Move past the r1 pair and keep trying.
1540 i++;
1541 continue;
1543 else
1545 m_base[bld_pair * 2 + 1] = r2u;
1546 bld_pair++;
1547 i2++;
1548 if (i2 < r2_lim)
1549 continue;
1550 // No more r2, break.
1551 break;
1553 // r2 has the higher lower bound.
1556 // At the exit of this loop, it is one of 2 things:
1557 // ran out of r1, or r2, but either means we are done.
1558 m_num_ranges = bld_pair;
1559 if (m_num_ranges == 0)
1561 set_undefined ();
1562 return true;
1565 m_kind = VR_RANGE;
1566 // The range has been altered, so normalize it even if nothing
1567 // changed in the mask.
1568 if (!intersect_bitmask (r))
1569 normalize_kind ();
1570 if (flag_checking)
1571 verify_range ();
1572 return true;
1576 // Multirange intersect for a specified wide_int [lb, ub] range.
1577 // Return TRUE if intersect changed anything.
1579 // NOTE: It is the caller's responsibility to intersect the mask.
1581 bool
1582 irange::intersect (const wide_int& lb, const wide_int& ub)
1584 // Undefined remains undefined.
1585 if (undefined_p ())
1586 return false;
1588 tree range_type = type();
1589 signop sign = TYPE_SIGN (range_type);
1591 gcc_checking_assert (TYPE_PRECISION (range_type) == wi::get_precision (lb));
1592 gcc_checking_assert (TYPE_PRECISION (range_type) == wi::get_precision (ub));
1594 // If this range is fully contained, then intersection will do nothing.
1595 if (wi::ge_p (lower_bound (), lb, sign)
1596 && wi::le_p (upper_bound (), ub, sign))
1597 return false;
1599 unsigned bld_index = 0;
1600 unsigned pair_lim = num_pairs ();
1601 for (unsigned i = 0; i < pair_lim; i++)
1603 wide_int pairl = m_base[i * 2];
1604 wide_int pairu = m_base[i * 2 + 1];
1605 // Once UB is less than a pairs lower bound, we're done.
1606 if (wi::lt_p (ub, pairl, sign))
1607 break;
1608 // if LB is greater than this pairs upper, this pair is excluded.
1609 if (wi::lt_p (pairu, lb, sign))
1610 continue;
1612 // Must be some overlap. Find the highest of the lower bounds,
1613 // and set it
1614 if (wi::gt_p (lb, pairl, sign))
1615 m_base[bld_index * 2] = lb;
1616 else
1617 m_base[bld_index * 2] = pairl;
1619 // ...and choose the lower of the upper bounds and if the base pair
1620 // has the lower upper bound, need to check next pair too.
1621 if (wi::lt_p (ub, pairu, sign))
1623 m_base[bld_index++ * 2 + 1] = ub;
1624 break;
1626 else
1627 m_base[bld_index++ * 2 + 1] = pairu;
1630 m_num_ranges = bld_index;
1631 if (m_num_ranges == 0)
1633 set_undefined ();
1634 return true;
1637 m_kind = VR_RANGE;
1638 // The caller must normalize and verify the range, as the bitmask
1639 // still needs to be handled.
1640 return true;
1644 // Signed 1-bits are strange. You can't subtract 1, because you can't
1645 // represent the number 1. This works around that for the invert routine.
1647 static wide_int inline
1648 subtract_one (const wide_int &x, tree type, wi::overflow_type &overflow)
1650 if (TYPE_SIGN (type) == SIGNED)
1651 return wi::add (x, -1, SIGNED, &overflow);
1652 else
1653 return wi::sub (x, 1, UNSIGNED, &overflow);
1656 // The analogous function for adding 1.
1658 static wide_int inline
1659 add_one (const wide_int &x, tree type, wi::overflow_type &overflow)
1661 if (TYPE_SIGN (type) == SIGNED)
1662 return wi::sub (x, -1, SIGNED, &overflow);
1663 else
1664 return wi::add (x, 1, UNSIGNED, &overflow);
1667 // Return the inverse of a range.
1669 void
1670 irange::invert ()
1672 gcc_checking_assert (!undefined_p () && !varying_p ());
1674 // We always need one more set of bounds to represent an inverse, so
1675 // if we're at the limit, we can't properly represent things.
1677 // For instance, to represent the inverse of a 2 sub-range set
1678 // [5, 10][20, 30], we would need a 3 sub-range set
1679 // [-MIN, 4][11, 19][31, MAX].
1681 // In this case, return the most conservative thing.
1683 // However, if any of the extremes of the range are -MIN/+MAX, we
1684 // know we will not need an extra bound. For example:
1686 // INVERT([-MIN,20][30,40]) => [21,29][41,+MAX]
1687 // INVERT([-MIN,20][30,MAX]) => [21,29]
1688 tree ttype = type ();
1689 unsigned prec = TYPE_PRECISION (ttype);
1690 signop sign = TYPE_SIGN (ttype);
1691 wide_int type_min = wi::min_value (prec, sign);
1692 wide_int type_max = wi::max_value (prec, sign);
1693 m_bitmask.set_unknown (prec);
1695 // At this point, we need one extra sub-range to represent the
1696 // inverse.
1697 maybe_resize (m_num_ranges + 1);
1699 // The algorithm is as follows. To calculate INVERT ([a,b][c,d]), we
1700 // generate [-MIN, a-1][b+1, c-1][d+1, MAX].
1702 // If there is an over/underflow in the calculation for any
1703 // sub-range, we eliminate that subrange. This allows us to easily
1704 // calculate INVERT([-MIN, 5]) with: [-MIN, -MIN-1][6, MAX]. And since
1705 // we eliminate the underflow, only [6, MAX] remains.
1706 unsigned i = 0;
1707 wi::overflow_type ovf;
1708 // Construct leftmost range.
1709 int_range_max orig_range (*this);
1710 unsigned nitems = 0;
1711 wide_int tmp;
1712 // If this is going to underflow on the MINUS 1, don't even bother
1713 // checking. This also handles subtracting one from an unsigned 0,
1714 // which doesn't set the underflow bit.
1715 if (type_min != orig_range.lower_bound ())
1717 m_base[nitems++] = type_min;
1718 tmp = subtract_one (orig_range.lower_bound (), ttype, ovf);
1719 m_base[nitems++] = tmp;
1720 if (ovf)
1721 nitems = 0;
1723 i++;
1724 // Construct middle ranges if applicable.
1725 if (orig_range.num_pairs () > 1)
1727 unsigned j = i;
1728 for (; j < (orig_range.num_pairs () * 2) - 1; j += 2)
1730 // The middle ranges cannot have MAX/MIN, so there's no need
1731 // to check for unsigned overflow on the +1 and -1 here.
1732 tmp = wi::add (orig_range.m_base[j], 1, sign, &ovf);
1733 m_base[nitems++] = tmp;
1734 tmp = subtract_one (orig_range.m_base[j + 1], ttype, ovf);
1735 m_base[nitems++] = tmp;
1736 if (ovf)
1737 nitems -= 2;
1739 i = j;
1741 // Construct rightmost range.
1743 // However, if this will overflow on the PLUS 1, don't even bother.
1744 // This also handles adding one to an unsigned MAX, which doesn't
1745 // set the overflow bit.
1746 if (type_max != orig_range.m_base[i])
1748 tmp = add_one (orig_range.m_base[i], ttype, ovf);
1749 m_base[nitems++] = tmp;
1750 m_base[nitems++] = type_max;
1751 if (ovf)
1752 nitems -= 2;
1754 m_num_ranges = nitems / 2;
1756 // We disallow undefined or varying coming in, so the result can
1757 // only be a VR_RANGE.
1758 gcc_checking_assert (m_kind == VR_RANGE);
1760 if (flag_checking)
1761 verify_range ();
1764 // Return the bitmask inherent in the range.
1766 irange_bitmask
1767 irange::get_bitmask_from_range () const
1769 unsigned prec = TYPE_PRECISION (type ());
1770 wide_int min = lower_bound ();
1771 wide_int max = upper_bound ();
1773 // All the bits of a singleton are known.
1774 if (min == max)
1776 wide_int mask = wi::zero (prec);
1777 wide_int value = lower_bound ();
1778 return irange_bitmask (value, mask);
1781 wide_int xorv = min ^ max;
1783 if (xorv != 0)
1784 xorv = wi::mask (prec - wi::clz (xorv), false, prec);
1786 return irange_bitmask (wi::zero (prec), min | xorv);
1789 // If the the mask can be trivially converted to a range, do so and
1790 // return TRUE.
1792 bool
1793 irange::set_range_from_bitmask ()
1795 gcc_checking_assert (!undefined_p ());
1796 if (m_bitmask.unknown_p ())
1797 return false;
1799 // If all the bits are known, this is a singleton.
1800 if (m_bitmask.mask () == 0)
1802 set (m_type, m_bitmask.value (), m_bitmask.value ());
1803 return true;
1806 unsigned popcount = wi::popcount (m_bitmask.get_nonzero_bits ());
1808 // If we have only one bit set in the mask, we can figure out the
1809 // range immediately.
1810 if (popcount == 1)
1812 // Make sure we don't pessimize the range.
1813 if (!contains_p (m_bitmask.get_nonzero_bits ()))
1814 return false;
1816 bool has_zero = contains_zero_p (*this);
1817 wide_int nz = m_bitmask.get_nonzero_bits ();
1818 set (m_type, nz, nz);
1819 m_bitmask.set_nonzero_bits (nz);
1820 if (has_zero)
1822 int_range<2> zero;
1823 zero.set_zero (type ());
1824 union_ (zero);
1826 if (flag_checking)
1827 verify_range ();
1828 return true;
1830 else if (popcount == 0)
1832 set_zero (type ());
1833 return true;
1835 return false;
1838 void
1839 irange::update_bitmask (const irange_bitmask &bm)
1841 gcc_checking_assert (!undefined_p ());
1843 // Drop VARYINGs with known bits to a plain range.
1844 if (m_kind == VR_VARYING && !bm.unknown_p ())
1845 m_kind = VR_RANGE;
1847 m_bitmask = bm;
1848 if (!set_range_from_bitmask ())
1849 normalize_kind ();
1850 if (flag_checking)
1851 verify_range ();
1854 // Return the bitmask of known bits that includes the bitmask inherent
1855 // in the range.
1857 irange_bitmask
1858 irange::get_bitmask () const
1860 gcc_checking_assert (!undefined_p ());
1862 // The mask inherent in the range is calculated on-demand. For
1863 // example, [0,255] does not have known bits set by default. This
1864 // saves us considerable time, because setting it at creation incurs
1865 // a large penalty for irange::set. At the time of writing there
1866 // was a 5% slowdown in VRP if we kept the mask precisely up to date
1867 // at all times. Instead, we default to -1 and set it when
1868 // explicitly requested. However, this function will always return
1869 // the correct mask.
1871 // This also means that the mask may have a finer granularity than
1872 // the range and thus contradict it. Think of the mask as an
1873 // enhancement to the range. For example:
1875 // [3, 1000] MASK 0xfffffffe VALUE 0x0
1877 // 3 is in the range endpoints, but is excluded per the known 0 bits
1878 // in the mask.
1879 irange_bitmask bm = get_bitmask_from_range ();
1880 if (!m_bitmask.unknown_p ())
1881 bm.intersect (m_bitmask);
1882 return bm;
1885 // Set the nonzero bits in R into THIS. Return TRUE and
1886 // normalize the range if anything changed.
1888 void
1889 irange::set_nonzero_bits (const wide_int &bits)
1891 gcc_checking_assert (!undefined_p ());
1892 irange_bitmask bm (wi::zero (TYPE_PRECISION (type ())), bits);
1893 update_bitmask (bm);
1896 // Return the nonzero bits in R.
1898 wide_int
1899 irange::get_nonzero_bits () const
1901 gcc_checking_assert (!undefined_p ());
1902 irange_bitmask bm = get_bitmask ();
1903 return bm.value () | bm.mask ();
1906 // Intersect the bitmask in R into THIS and normalize the range.
1907 // Return TRUE if the intersection changed anything.
1909 bool
1910 irange::intersect_bitmask (const irange &r)
1912 gcc_checking_assert (!undefined_p () && !r.undefined_p ());
1914 if (m_bitmask == r.m_bitmask)
1915 return false;
1917 irange_bitmask bm = get_bitmask ();
1918 if (!bm.intersect (r.get_bitmask ()))
1919 return false;
1921 m_bitmask = bm;
1922 if (!set_range_from_bitmask ())
1923 normalize_kind ();
1924 if (flag_checking)
1925 verify_range ();
1926 return true;
1929 // Union the bitmask in R into THIS. Return TRUE and normalize the
1930 // range if anything changed.
1932 bool
1933 irange::union_bitmask (const irange &r)
1935 gcc_checking_assert (!undefined_p () && !r.undefined_p ());
1937 if (m_bitmask == r.m_bitmask)
1938 return false;
1940 irange_bitmask bm = get_bitmask ();
1941 if (!bm.union_ (r.get_bitmask ()))
1942 return false;
1944 m_bitmask = bm;
1945 // No need to call set_range_from_mask, because we'll never
1946 // narrow the range. Besides, it would cause endless recursion
1947 // because of the union_ in set_range_from_mask.
1948 normalize_kind ();
1949 return true;
1952 void
1953 irange_bitmask::verify_mask () const
1955 gcc_assert (m_value.get_precision () == m_mask.get_precision ());
1958 void
1959 dump_value_range (FILE *file, const vrange *vr)
1961 vr->dump (file);
1964 DEBUG_FUNCTION void
1965 debug (const vrange *vr)
1967 dump_value_range (stderr, vr);
1968 fprintf (stderr, "\n");
1971 DEBUG_FUNCTION void
1972 debug (const vrange &vr)
1974 debug (&vr);
1977 DEBUG_FUNCTION void
1978 debug (const value_range *vr)
1980 dump_value_range (stderr, vr);
1981 fprintf (stderr, "\n");
1984 DEBUG_FUNCTION void
1985 debug (const value_range &vr)
1987 dump_value_range (stderr, &vr);
1988 fprintf (stderr, "\n");
1991 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
1993 bool
1994 vrp_operand_equal_p (const_tree val1, const_tree val2)
1996 if (val1 == val2)
1997 return true;
1998 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
1999 return false;
2000 return true;
2003 void
2004 gt_ggc_mx (irange *x)
2006 if (!x->undefined_p ())
2007 gt_ggc_mx (x->m_type);
2010 void
2011 gt_pch_nx (irange *x)
2013 if (!x->undefined_p ())
2014 gt_pch_nx (x->m_type);
2017 void
2018 gt_pch_nx (irange *x, gt_pointer_operator op, void *cookie)
2020 for (unsigned i = 0; i < x->m_num_ranges; ++i)
2022 op (&x->m_base[i * 2], NULL, cookie);
2023 op (&x->m_base[i * 2 + 1], NULL, cookie);
2027 void
2028 gt_ggc_mx (frange *x)
2030 gt_ggc_mx (x->m_type);
2033 void
2034 gt_pch_nx (frange *x)
2036 gt_pch_nx (x->m_type);
2039 void
2040 gt_pch_nx (frange *x, gt_pointer_operator op, void *cookie)
2042 op (&x->m_type, NULL, cookie);
2045 void
2046 gt_ggc_mx (vrange *x)
2048 if (is_a <irange> (*x))
2049 return gt_ggc_mx ((irange *) x);
2050 if (is_a <frange> (*x))
2051 return gt_ggc_mx ((frange *) x);
2052 gcc_unreachable ();
2055 void
2056 gt_pch_nx (vrange *x)
2058 if (is_a <irange> (*x))
2059 return gt_pch_nx ((irange *) x);
2060 if (is_a <frange> (*x))
2061 return gt_pch_nx ((frange *) x);
2062 gcc_unreachable ();
2065 void
2066 gt_pch_nx (vrange *x, gt_pointer_operator op, void *cookie)
2068 if (is_a <irange> (*x))
2069 gt_pch_nx ((irange *) x, op, cookie);
2070 else if (is_a <frange> (*x))
2071 gt_pch_nx ((frange *) x, op, cookie);
2072 else
2073 gcc_unreachable ();
2076 #define DEFINE_INT_RANGE_INSTANCE(N) \
2077 template int_range<N>::int_range(tree_node *, \
2078 const wide_int &, \
2079 const wide_int &, \
2080 value_range_kind); \
2081 template int_range<N>::int_range(tree); \
2082 template int_range<N>::int_range(const irange &); \
2083 template int_range<N>::int_range(const int_range &); \
2084 template int_range<N>& int_range<N>::operator= (const int_range &);
2086 DEFINE_INT_RANGE_INSTANCE(1)
2087 DEFINE_INT_RANGE_INSTANCE(2)
2088 DEFINE_INT_RANGE_INSTANCE(3)
2089 DEFINE_INT_RANGE_INSTANCE(255)
2091 #if CHECKING_P
2092 #include "selftest.h"
2094 #define INT(x) wi::shwi ((x), TYPE_PRECISION (integer_type_node))
2095 #define UINT(x) wi::uhwi ((x), TYPE_PRECISION (unsigned_type_node))
2096 #define SCHAR(x) wi::shwi ((x), TYPE_PRECISION (signed_char_type_node))
2098 namespace selftest
2101 static int_range<2>
2102 range (tree type, int a, int b, value_range_kind kind = VR_RANGE)
2104 wide_int w1, w2;
2105 if (TYPE_UNSIGNED (type))
2107 w1 = wi::uhwi (a, TYPE_PRECISION (type));
2108 w2 = wi::uhwi (b, TYPE_PRECISION (type));
2110 else
2112 w1 = wi::shwi (a, TYPE_PRECISION (type));
2113 w2 = wi::shwi (b, TYPE_PRECISION (type));
2115 return int_range<2> (type, w1, w2, kind);
2118 static int_range<2>
2119 range_int (int a, int b, value_range_kind kind = VR_RANGE)
2121 return range (integer_type_node, a, b, kind);
2124 static int_range<2>
2125 range_uint (int a, int b, value_range_kind kind = VR_RANGE)
2127 return range (unsigned_type_node, a, b, kind);
2130 static int_range<2>
2131 range_uint128 (int a, int b, value_range_kind kind = VR_RANGE)
2133 tree u128_type_node = build_nonstandard_integer_type (128, 1);
2134 return range (u128_type_node, a, b, kind);
2137 static int_range<2>
2138 range_uchar (int a, int b, value_range_kind kind = VR_RANGE)
2140 return range (unsigned_char_type_node, a, b, kind);
2143 static int_range<2>
2144 range_char (int a, int b, value_range_kind kind = VR_RANGE)
2146 return range (signed_char_type_node, a, b, kind);
2149 static int_range<3>
2150 build_range3 (int a, int b, int c, int d, int e, int f)
2152 int_range<3> i1 = range_int (a, b);
2153 int_range<3> i2 = range_int (c, d);
2154 int_range<3> i3 = range_int (e, f);
2155 i1.union_ (i2);
2156 i1.union_ (i3);
2157 return i1;
2160 static void
2161 range_tests_irange3 ()
2163 int_range<3> r0, r1, r2;
2164 int_range<3> i1, i2, i3;
2166 // ([10,20] U [5,8]) U [1,3] ==> [1,3][5,8][10,20].
2167 r0 = range_int (10, 20);
2168 r1 = range_int (5, 8);
2169 r0.union_ (r1);
2170 r1 = range_int (1, 3);
2171 r0.union_ (r1);
2172 ASSERT_TRUE (r0 == build_range3 (1, 3, 5, 8, 10, 20));
2174 // [1,3][5,8][10,20] U [-5,0] => [-5,3][5,8][10,20].
2175 r1 = range_int (-5, 0);
2176 r0.union_ (r1);
2177 ASSERT_TRUE (r0 == build_range3 (-5, 3, 5, 8, 10, 20));
2179 // [10,20][30,40] U [50,60] ==> [10,20][30,40][50,60].
2180 r1 = range_int (50, 60);
2181 r0 = range_int (10, 20);
2182 r0.union_ (range_int (30, 40));
2183 r0.union_ (r1);
2184 ASSERT_TRUE (r0 == build_range3 (10, 20, 30, 40, 50, 60));
2185 // [10,20][30,40][50,60] U [70, 80] ==> [10,20][30,40][50,60][70,80].
2186 r1 = range_int (70, 80);
2187 r0.union_ (r1);
2189 r2 = build_range3 (10, 20, 30, 40, 50, 60);
2190 r2.union_ (range_int (70, 80));
2191 ASSERT_TRUE (r0 == r2);
2193 // [10,20][30,40][50,60] U [6,35] => [6,40][50,60].
2194 r0 = build_range3 (10, 20, 30, 40, 50, 60);
2195 r1 = range_int (6, 35);
2196 r0.union_ (r1);
2197 r1 = range_int (6, 40);
2198 r1.union_ (range_int (50, 60));
2199 ASSERT_TRUE (r0 == r1);
2201 // [10,20][30,40][50,60] U [6,60] => [6,60].
2202 r0 = build_range3 (10, 20, 30, 40, 50, 60);
2203 r1 = range_int (6, 60);
2204 r0.union_ (r1);
2205 ASSERT_TRUE (r0 == range_int (6, 60));
2207 // [10,20][30,40][50,60] U [6,70] => [6,70].
2208 r0 = build_range3 (10, 20, 30, 40, 50, 60);
2209 r1 = range_int (6, 70);
2210 r0.union_ (r1);
2211 ASSERT_TRUE (r0 == range_int (6, 70));
2213 // [10,20][30,40][50,60] U [35,70] => [10,20][30,70].
2214 r0 = build_range3 (10, 20, 30, 40, 50, 60);
2215 r1 = range_int (35, 70);
2216 r0.union_ (r1);
2217 r1 = range_int (10, 20);
2218 r1.union_ (range_int (30, 70));
2219 ASSERT_TRUE (r0 == r1);
2221 // [10,20][30,40][50,60] U [15,35] => [10,40][50,60].
2222 r0 = build_range3 (10, 20, 30, 40, 50, 60);
2223 r1 = range_int (15, 35);
2224 r0.union_ (r1);
2225 r1 = range_int (10, 40);
2226 r1.union_ (range_int (50, 60));
2227 ASSERT_TRUE (r0 == r1);
2229 // [10,20][30,40][50,60] U [35,35] => [10,20][30,40][50,60].
2230 r0 = build_range3 (10, 20, 30, 40, 50, 60);
2231 r1 = range_int (35, 35);
2232 r0.union_ (r1);
2233 ASSERT_TRUE (r0 == build_range3 (10, 20, 30, 40, 50, 60));
2236 static void
2237 range_tests_int_range_max ()
2239 int_range_max big;
2240 unsigned int nrange;
2242 // Build a huge multi-range range.
2243 for (nrange = 0; nrange < 50; ++nrange)
2245 int_range<1> tmp = range_int (nrange*10, nrange *10 + 5);
2246 big.union_ (tmp);
2248 ASSERT_TRUE (big.num_pairs () == nrange);
2250 // Verify that we can copy it without loosing precision.
2251 int_range_max copy (big);
2252 ASSERT_TRUE (copy.num_pairs () == nrange);
2254 // Inverting it should produce one more sub-range.
2255 big.invert ();
2256 ASSERT_TRUE (big.num_pairs () == nrange + 1);
2258 int_range<1> tmp = range_int (5, 37);
2259 big.intersect (tmp);
2260 ASSERT_TRUE (big.num_pairs () == 4);
2262 // Test that [10,10][20,20] does NOT contain 15.
2264 int_range_max i1 = range_int (10, 10);
2265 int_range_max i2 = range_int (20, 20);
2266 i1.union_ (i2);
2267 ASSERT_FALSE (i1.contains_p (INT (15)));
2271 // Simulate -fstrict-enums where the domain of a type is less than the
2272 // underlying type.
2274 static void
2275 range_tests_strict_enum ()
2277 // The enum can only hold [0, 3].
2278 tree rtype = copy_node (unsigned_type_node);
2279 TYPE_MIN_VALUE (rtype) = build_int_cstu (rtype, 0);
2280 TYPE_MAX_VALUE (rtype) = build_int_cstu (rtype, 3);
2282 // Test that even though vr1 covers the strict enum domain ([0, 3]),
2283 // it does not cover the domain of the underlying type.
2284 int_range<1> vr1 = range (rtype, 0, 1);
2285 int_range<1> vr2 = range (rtype, 2, 3);
2286 vr1.union_ (vr2);
2287 ASSERT_TRUE (vr1 == range (rtype, 0, 3));
2288 ASSERT_FALSE (vr1.varying_p ());
2290 // Test that copying to a multi-range does not change things.
2291 int_range<2> ir1 (vr1);
2292 ASSERT_TRUE (ir1 == vr1);
2293 ASSERT_FALSE (ir1.varying_p ());
2295 // The same test as above, but using TYPE_{MIN,MAX}_VALUE instead of [0,3].
2296 vr1 = int_range<2> (rtype,
2297 wi::to_wide (TYPE_MIN_VALUE (rtype)),
2298 wi::to_wide (TYPE_MAX_VALUE (rtype)));
2299 ir1 = vr1;
2300 ASSERT_TRUE (ir1 == vr1);
2301 ASSERT_FALSE (ir1.varying_p ());
2304 static void
2305 range_tests_misc ()
2307 tree u128_type = build_nonstandard_integer_type (128, /*unsigned=*/1);
2308 int_range<2> i1, i2, i3;
2309 int_range<2> r0, r1, rold;
2311 // Test 1-bit signed integer union.
2312 // [-1,-1] U [0,0] = VARYING.
2313 tree one_bit_type = build_nonstandard_integer_type (1, 0);
2314 wide_int one_bit_min = irange_val_min (one_bit_type);
2315 wide_int one_bit_max = irange_val_max (one_bit_type);
2317 int_range<2> min = int_range<2> (one_bit_type, one_bit_min, one_bit_min);
2318 int_range<2> max = int_range<2> (one_bit_type, one_bit_max, one_bit_max);
2319 max.union_ (min);
2320 ASSERT_TRUE (max.varying_p ());
2322 // Test that we can set a range of true+false for a 1-bit signed int.
2323 r0 = range_true_and_false (one_bit_type);
2325 // Test inversion of 1-bit signed integers.
2327 int_range<2> min = int_range<2> (one_bit_type, one_bit_min, one_bit_min);
2328 int_range<2> max = int_range<2> (one_bit_type, one_bit_max, one_bit_max);
2329 int_range<2> t;
2330 t = min;
2331 t.invert ();
2332 ASSERT_TRUE (t == max);
2333 t = max;
2334 t.invert ();
2335 ASSERT_TRUE (t == min);
2338 // Test that NOT(255) is [0..254] in 8-bit land.
2339 int_range<1> not_255 = range_uchar (255, 255, VR_ANTI_RANGE);
2340 ASSERT_TRUE (not_255 == range_uchar (0, 254));
2342 // Test that NOT(0) is [1..255] in 8-bit land.
2343 int_range<2> not_zero = range_nonzero (unsigned_char_type_node);
2344 ASSERT_TRUE (not_zero == range_uchar (1, 255));
2346 // Check that [0,127][0x..ffffff80,0x..ffffff]
2347 // => ~[128, 0x..ffffff7f].
2348 r0 = range_uint128 (0, 127);
2349 wide_int high = wi::minus_one (128);
2350 // low = -1 - 127 => 0x..ffffff80.
2351 wide_int low = wi::sub (high, wi::uhwi (127, 128));
2352 r1 = int_range<1> (u128_type, low, high); // [0x..ffffff80, 0x..ffffffff]
2353 // r0 = [0,127][0x..ffffff80,0x..fffffff].
2354 r0.union_ (r1);
2355 // r1 = [128, 0x..ffffff7f].
2356 r1 = int_range<1> (u128_type,
2357 wi::uhwi (128, 128),
2358 wi::sub (wi::minus_one (128), wi::uhwi (128, 128)));
2359 r0.invert ();
2360 ASSERT_TRUE (r0 == r1);
2362 r0.set_varying (integer_type_node);
2363 wide_int minint = r0.lower_bound ();
2364 wide_int maxint = r0.upper_bound ();
2366 r0.set_varying (short_integer_type_node);
2368 r0.set_varying (unsigned_type_node);
2369 wide_int maxuint = r0.upper_bound ();
2371 // Check that ~[0,5] => [6,MAX] for unsigned int.
2372 r0 = range_uint (0, 5);
2373 r0.invert ();
2374 ASSERT_TRUE (r0 == int_range<1> (unsigned_type_node,
2375 wi::uhwi (6, TYPE_PRECISION (unsigned_type_node)),
2376 maxuint));
2378 // Check that ~[10,MAX] => [0,9] for unsigned int.
2379 r0 = int_range<1> (unsigned_type_node,
2380 wi::uhwi (10, TYPE_PRECISION (unsigned_type_node)),
2381 maxuint);
2382 r0.invert ();
2383 ASSERT_TRUE (r0 == range_uint (0, 9));
2385 // Check that ~[0,5] => [6,MAX] for unsigned 128-bit numbers.
2386 r0 = range_uint128 (0, 5, VR_ANTI_RANGE);
2387 r1 = int_range<1> (u128_type, wi::uhwi (6, 128), wi::minus_one (128));
2388 ASSERT_TRUE (r0 == r1);
2390 // Check that [~5] is really [-MIN,4][6,MAX].
2391 r0 = range_int (5, 5, VR_ANTI_RANGE);
2392 r1 = int_range<1> (integer_type_node, minint, INT (4));
2393 r1.union_ (int_range<1> (integer_type_node, INT (6), maxint));
2394 ASSERT_FALSE (r1.undefined_p ());
2395 ASSERT_TRUE (r0 == r1);
2397 r1 = range_int (5, 5);
2398 int_range<2> r2 (r1);
2399 ASSERT_TRUE (r1 == r2);
2401 r1 = range_int (5, 10);
2403 r1 = range_int (5, 10);
2404 ASSERT_TRUE (r1.contains_p (INT (7)));
2406 r1 = range_char (0, 20);
2407 ASSERT_TRUE (r1.contains_p (SCHAR(15)));
2408 ASSERT_FALSE (r1.contains_p (SCHAR(300)));
2410 // NOT([10,20]) ==> [-MIN,9][21,MAX].
2411 r0 = r1 = range_int (10, 20);
2412 r2 = int_range<1> (integer_type_node, minint, INT(9));
2413 r2.union_ (int_range<1> (integer_type_node, INT(21), maxint));
2414 ASSERT_FALSE (r2.undefined_p ());
2415 r1.invert ();
2416 ASSERT_TRUE (r1 == r2);
2417 // Test that NOT(NOT(x)) == x.
2418 r2.invert ();
2419 ASSERT_TRUE (r0 == r2);
2421 // Test that booleans and their inverse work as expected.
2422 r0 = range_zero (boolean_type_node);
2423 ASSERT_TRUE (r0 == range_false ());
2424 r0.invert ();
2425 ASSERT_TRUE (r0 == range_true ());
2427 // Make sure NULL and non-NULL of pointer types work, and that
2428 // inverses of them are consistent.
2429 tree voidp = build_pointer_type (void_type_node);
2430 r0 = range_zero (voidp);
2431 r1 = r0;
2432 r0.invert ();
2433 r0.invert ();
2434 ASSERT_TRUE (r0 == r1);
2436 // [10,20] U [15, 30] => [10, 30].
2437 r0 = range_int (10, 20);
2438 r1 = range_int (15, 30);
2439 r0.union_ (r1);
2440 ASSERT_TRUE (r0 == range_int (10, 30));
2442 // [15,40] U [] => [15,40].
2443 r0 = range_int (15, 40);
2444 r1.set_undefined ();
2445 r0.union_ (r1);
2446 ASSERT_TRUE (r0 == range_int (15, 40));
2448 // [10,20] U [10,10] => [10,20].
2449 r0 = range_int (10, 20);
2450 r1 = range_int (10, 10);
2451 r0.union_ (r1);
2452 ASSERT_TRUE (r0 == range_int (10, 20));
2454 // [10,20] U [9,9] => [9,20].
2455 r0 = range_int (10, 20);
2456 r1 = range_int (9, 9);
2457 r0.union_ (r1);
2458 ASSERT_TRUE (r0 == range_int (9, 20));
2460 // [10,20] ^ [15,30] => [15,20].
2461 r0 = range_int (10, 20);
2462 r1 = range_int (15, 30);
2463 r0.intersect (r1);
2464 ASSERT_TRUE (r0 == range_int (15, 20));
2466 // Test the internal sanity of wide_int's wrt HWIs.
2467 ASSERT_TRUE (wi::max_value (TYPE_PRECISION (boolean_type_node),
2468 TYPE_SIGN (boolean_type_node))
2469 == wi::uhwi (1, TYPE_PRECISION (boolean_type_node)));
2471 // Test zero_p().
2472 r0 = range_int (0, 0);
2473 ASSERT_TRUE (r0.zero_p ());
2475 // Test nonzero_p().
2476 r0 = range_int (0, 0);
2477 r0.invert ();
2478 ASSERT_TRUE (r0.nonzero_p ());
2480 // r0 = ~[1,1]
2481 r0 = range_int (1, 1, VR_ANTI_RANGE);
2482 // r1 = ~[3,3]
2483 r1 = range_int (3, 3, VR_ANTI_RANGE);
2485 // vv = [0,0][2,2][4, MAX]
2486 int_range<3> vv = r0;
2487 vv.intersect (r1);
2489 ASSERT_TRUE (vv.contains_p (UINT (2)));
2490 ASSERT_TRUE (vv.num_pairs () == 3);
2492 r0 = range_int (1, 1);
2493 // And union it with [0,0][2,2][4,MAX] multi range
2494 r0.union_ (vv);
2495 // The result should be [0,2][4,MAX], or ~[3,3] but it must contain 2
2496 ASSERT_TRUE (r0.contains_p (INT (2)));
2499 static void
2500 range_tests_nonzero_bits ()
2502 int_range<2> r0, r1;
2504 // Adding nonzero bits to a varying drops the varying.
2505 r0.set_varying (integer_type_node);
2506 r0.set_nonzero_bits (INT (255));
2507 ASSERT_TRUE (!r0.varying_p ());
2508 // Dropping the nonzero bits brings us back to varying.
2509 r0.set_nonzero_bits (INT (-1));
2510 ASSERT_TRUE (r0.varying_p ());
2512 // Test contains_p with nonzero bits.
2513 r0.set_zero (integer_type_node);
2514 ASSERT_TRUE (r0.contains_p (INT (0)));
2515 ASSERT_FALSE (r0.contains_p (INT (1)));
2516 r0.set_nonzero_bits (INT (0xfe));
2517 ASSERT_FALSE (r0.contains_p (INT (0x100)));
2518 ASSERT_FALSE (r0.contains_p (INT (0x3)));
2520 // Union of nonzero bits.
2521 r0.set_varying (integer_type_node);
2522 r0.set_nonzero_bits (INT (0xf0));
2523 r1.set_varying (integer_type_node);
2524 r1.set_nonzero_bits (INT (0xf));
2525 r0.union_ (r1);
2526 ASSERT_TRUE (r0.get_nonzero_bits () == 0xff);
2528 // Intersect of nonzero bits.
2529 r0 = range_int (0, 255);
2530 r0.set_nonzero_bits (INT (0xfe));
2531 r1.set_varying (integer_type_node);
2532 r1.set_nonzero_bits (INT (0xf0));
2533 r0.intersect (r1);
2534 ASSERT_TRUE (r0.get_nonzero_bits () == 0xf0);
2536 // Intersect where the mask of nonzero bits is implicit from the range.
2537 r0.set_varying (integer_type_node);
2538 r1 = range_int (0, 255);
2539 r0.intersect (r1);
2540 ASSERT_TRUE (r0.get_nonzero_bits () == 0xff);
2542 // The union of a mask of 0xff..ffff00 with a mask of 0xff spans the
2543 // entire domain, and makes the range a varying.
2544 r0.set_varying (integer_type_node);
2545 wide_int x = wi::shwi (0xff, TYPE_PRECISION (integer_type_node));
2546 x = wi::bit_not (x);
2547 r0.set_nonzero_bits (x); // 0xff..ff00
2548 r1.set_varying (integer_type_node);
2549 r1.set_nonzero_bits (INT (0xff));
2550 r0.union_ (r1);
2551 ASSERT_TRUE (r0.varying_p ());
2553 // Test that setting a nonzero bit of 1 does not pessimize the range.
2554 r0.set_zero (integer_type_node);
2555 r0.set_nonzero_bits (INT (1));
2556 ASSERT_TRUE (r0.zero_p ());
2559 // Build an frange from string endpoints.
2561 static inline frange
2562 frange_float (const char *lb, const char *ub, tree type = float_type_node)
2564 REAL_VALUE_TYPE min, max;
2565 gcc_assert (real_from_string (&min, lb) == 0);
2566 gcc_assert (real_from_string (&max, ub) == 0);
2567 return frange (type, min, max);
2570 static void
2571 range_tests_nan ()
2573 frange r0, r1;
2574 REAL_VALUE_TYPE q, r;
2575 bool signbit;
2577 // Equal ranges but with differing NAN bits are not equal.
2578 if (HONOR_NANS (float_type_node))
2580 r1 = frange_float ("10", "12");
2581 r0 = r1;
2582 ASSERT_EQ (r0, r1);
2583 r0.clear_nan ();
2584 ASSERT_NE (r0, r1);
2585 r0.update_nan ();
2586 ASSERT_EQ (r0, r1);
2588 // [10, 20] NAN ^ [30, 40] NAN = NAN.
2589 r0 = frange_float ("10", "20");
2590 r1 = frange_float ("30", "40");
2591 r0.intersect (r1);
2592 ASSERT_TRUE (r0.known_isnan ());
2594 // [3,5] U [5,10] NAN = ... NAN
2595 r0 = frange_float ("3", "5");
2596 r0.clear_nan ();
2597 r1 = frange_float ("5", "10");
2598 r0.union_ (r1);
2599 ASSERT_TRUE (r0.maybe_isnan ());
2602 // [5,6] U NAN = [5,6] NAN.
2603 r0 = frange_float ("5", "6");
2604 r0.clear_nan ();
2605 r1.set_nan (float_type_node);
2606 r0.union_ (r1);
2607 real_from_string (&q, "5");
2608 real_from_string (&r, "6");
2609 ASSERT_TRUE (real_identical (&q, &r0.lower_bound ()));
2610 ASSERT_TRUE (real_identical (&r, &r0.upper_bound ()));
2611 ASSERT_TRUE (r0.maybe_isnan ());
2613 // NAN U NAN = NAN
2614 r0.set_nan (float_type_node);
2615 r1.set_nan (float_type_node);
2616 r0.union_ (r1);
2617 ASSERT_TRUE (r0.known_isnan ());
2619 // [INF, INF] NAN ^ NAN = NAN
2620 r0.set_nan (float_type_node);
2621 r1 = frange_float ("+Inf", "+Inf");
2622 if (!HONOR_NANS (float_type_node))
2623 r1.update_nan ();
2624 r0.intersect (r1);
2625 ASSERT_TRUE (r0.known_isnan ());
2627 // NAN ^ NAN = NAN
2628 r0.set_nan (float_type_node);
2629 r1.set_nan (float_type_node);
2630 r0.intersect (r1);
2631 ASSERT_TRUE (r0.known_isnan ());
2633 // +NAN ^ -NAN = UNDEFINED
2634 r0.set_nan (float_type_node, false);
2635 r1.set_nan (float_type_node, true);
2636 r0.intersect (r1);
2637 ASSERT_TRUE (r0.undefined_p ());
2639 // VARYING ^ NAN = NAN.
2640 r0.set_nan (float_type_node);
2641 r1.set_varying (float_type_node);
2642 r0.intersect (r1);
2643 ASSERT_TRUE (r0.known_isnan ());
2645 // [3,4] ^ NAN = UNDEFINED.
2646 r0 = frange_float ("3", "4");
2647 r0.clear_nan ();
2648 r1.set_nan (float_type_node);
2649 r0.intersect (r1);
2650 ASSERT_TRUE (r0.undefined_p ());
2652 // [-3, 5] ^ NAN = UNDEFINED
2653 r0 = frange_float ("-3", "5");
2654 r0.clear_nan ();
2655 r1.set_nan (float_type_node);
2656 r0.intersect (r1);
2657 ASSERT_TRUE (r0.undefined_p ());
2659 // Setting the NAN bit to yes does not make us a known NAN.
2660 r0.set_varying (float_type_node);
2661 r0.update_nan ();
2662 ASSERT_FALSE (r0.known_isnan ());
2664 // NAN is in a VARYING.
2665 r0.set_varying (float_type_node);
2666 real_nan (&r, "", 1, TYPE_MODE (float_type_node));
2667 REAL_VALUE_TYPE nan = r;
2668 ASSERT_TRUE (r0.contains_p (nan));
2670 // -NAN is in a VARYING.
2671 r0.set_varying (float_type_node);
2672 q = real_value_negate (&r);
2673 REAL_VALUE_TYPE neg_nan = q;
2674 ASSERT_TRUE (r0.contains_p (neg_nan));
2676 // Clearing the NAN on a [] NAN is the empty set.
2677 r0.set_nan (float_type_node);
2678 r0.clear_nan ();
2679 ASSERT_TRUE (r0.undefined_p ());
2681 // [10,20] NAN ^ [21,25] NAN = [NAN]
2682 r0 = frange_float ("10", "20");
2683 r0.update_nan ();
2684 r1 = frange_float ("21", "25");
2685 r1.update_nan ();
2686 r0.intersect (r1);
2687 ASSERT_TRUE (r0.known_isnan ());
2689 // NAN U [5,6] should be [5,6] +-NAN.
2690 r0.set_nan (float_type_node);
2691 r1 = frange_float ("5", "6");
2692 r1.clear_nan ();
2693 r0.union_ (r1);
2694 real_from_string (&q, "5");
2695 real_from_string (&r, "6");
2696 ASSERT_TRUE (real_identical (&q, &r0.lower_bound ()));
2697 ASSERT_TRUE (real_identical (&r, &r0.upper_bound ()));
2698 ASSERT_TRUE (!r0.signbit_p (signbit));
2699 ASSERT_TRUE (r0.maybe_isnan ());
2702 static void
2703 range_tests_signed_zeros ()
2705 REAL_VALUE_TYPE zero = dconst0;
2706 REAL_VALUE_TYPE neg_zero = zero;
2707 neg_zero.sign = 1;
2708 frange r0, r1;
2709 bool signbit;
2711 // [0,0] contains [0,0] but not [-0,-0] and vice versa.
2712 r0 = frange_float ("0.0", "0.0");
2713 r1 = frange_float ("-0.0", "-0.0");
2714 ASSERT_TRUE (r0.contains_p (zero));
2715 ASSERT_TRUE (!r0.contains_p (neg_zero));
2716 ASSERT_TRUE (r1.contains_p (neg_zero));
2717 ASSERT_TRUE (!r1.contains_p (zero));
2719 // Test contains_p() when we know the sign of the zero.
2720 r0 = frange_float ("0.0", "0.0");
2721 ASSERT_TRUE (r0.contains_p (zero));
2722 ASSERT_FALSE (r0.contains_p (neg_zero));
2723 r0 = frange_float ("-0.0", "-0.0");
2724 ASSERT_TRUE (r0.contains_p (neg_zero));
2725 ASSERT_FALSE (r0.contains_p (zero));
2727 r0 = frange_float ("-0.0", "0.0");
2728 ASSERT_TRUE (r0.contains_p (neg_zero));
2729 ASSERT_TRUE (r0.contains_p (zero));
2731 r0 = frange_float ("-3", "5");
2732 ASSERT_TRUE (r0.contains_p (neg_zero));
2733 ASSERT_TRUE (r0.contains_p (zero));
2735 // The intersection of zeros that differ in sign is a NAN (or
2736 // undefined if not honoring NANs).
2737 r0 = frange_float ("-0.0", "-0.0");
2738 r1 = frange_float ("0.0", "0.0");
2739 r0.intersect (r1);
2740 if (HONOR_NANS (float_type_node))
2741 ASSERT_TRUE (r0.known_isnan ());
2742 else
2743 ASSERT_TRUE (r0.undefined_p ());
2745 // The union of zeros that differ in sign is a zero with unknown sign.
2746 r0 = frange_float ("0.0", "0.0");
2747 r1 = frange_float ("-0.0", "-0.0");
2748 r0.union_ (r1);
2749 ASSERT_TRUE (r0.zero_p () && !r0.signbit_p (signbit));
2751 // [-0, +0] has an unknown sign.
2752 r0 = frange_float ("-0.0", "0.0");
2753 ASSERT_TRUE (r0.zero_p () && !r0.signbit_p (signbit));
2755 // [-0, +0] ^ [0, 0] is [0, 0]
2756 r0 = frange_float ("-0.0", "0.0");
2757 r1 = frange_float ("0.0", "0.0");
2758 r0.intersect (r1);
2759 ASSERT_TRUE (r0.zero_p ());
2761 r0 = frange_float ("+0", "5");
2762 r0.clear_nan ();
2763 ASSERT_TRUE (r0.signbit_p (signbit) && !signbit);
2765 r0 = frange_float ("-0", "5");
2766 r0.clear_nan ();
2767 ASSERT_TRUE (!r0.signbit_p (signbit));
2769 r0 = frange_float ("-0", "10");
2770 r1 = frange_float ("0", "5");
2771 r0.intersect (r1);
2772 ASSERT_TRUE (real_iszero (&r0.lower_bound (), false));
2774 r0 = frange_float ("-0", "5");
2775 r1 = frange_float ("0", "5");
2776 r0.union_ (r1);
2777 ASSERT_TRUE (real_iszero (&r0.lower_bound (), true));
2779 r0 = frange_float ("-5", "-0");
2780 r0.update_nan ();
2781 r1 = frange_float ("0", "0");
2782 r1.update_nan ();
2783 r0.intersect (r1);
2784 if (HONOR_NANS (float_type_node))
2785 ASSERT_TRUE (r0.known_isnan ());
2786 else
2787 ASSERT_TRUE (r0.undefined_p ());
2789 r0.set_nonnegative (float_type_node);
2790 if (HONOR_NANS (float_type_node))
2791 ASSERT_TRUE (r0.maybe_isnan ());
2793 // Numbers containing zero should have an unknown SIGNBIT.
2794 r0 = frange_float ("0", "10");
2795 r0.clear_nan ();
2796 ASSERT_TRUE (r0.signbit_p (signbit) && !signbit);
2799 static void
2800 range_tests_signbit ()
2802 frange r0, r1;
2803 bool signbit;
2805 // Negative numbers should have the SIGNBIT set.
2806 r0 = frange_float ("-5", "-1");
2807 r0.clear_nan ();
2808 ASSERT_TRUE (r0.signbit_p (signbit) && signbit);
2809 // Positive numbers should have the SIGNBIT clear.
2810 r0 = frange_float ("1", "10");
2811 r0.clear_nan ();
2812 ASSERT_TRUE (r0.signbit_p (signbit) && !signbit);
2813 // Numbers spanning both positive and negative should have an
2814 // unknown SIGNBIT.
2815 r0 = frange_float ("-10", "10");
2816 r0.clear_nan ();
2817 ASSERT_TRUE (!r0.signbit_p (signbit));
2818 r0.set_varying (float_type_node);
2819 ASSERT_TRUE (!r0.signbit_p (signbit));
2822 static void
2823 range_tests_floats ()
2825 frange r0, r1;
2827 if (HONOR_NANS (float_type_node))
2828 range_tests_nan ();
2829 range_tests_signbit ();
2831 if (HONOR_SIGNED_ZEROS (float_type_node))
2832 range_tests_signed_zeros ();
2834 // A range of [-INF,+INF] is actually VARYING if no other properties
2835 // are set.
2836 r0 = frange_float ("-Inf", "+Inf");
2837 ASSERT_TRUE (r0.varying_p ());
2838 // ...unless it has some special property...
2839 if (HONOR_NANS (r0.type ()))
2841 r0.clear_nan ();
2842 ASSERT_FALSE (r0.varying_p ());
2845 // For most architectures, where float and double are different
2846 // sizes, having the same endpoints does not necessarily mean the
2847 // ranges are equal.
2848 if (!types_compatible_p (float_type_node, double_type_node))
2850 r0 = frange_float ("3.0", "3.0", float_type_node);
2851 r1 = frange_float ("3.0", "3.0", double_type_node);
2852 ASSERT_NE (r0, r1);
2855 // [3,5] U [10,12] = [3,12].
2856 r0 = frange_float ("3", "5");
2857 r1 = frange_float ("10", "12");
2858 r0.union_ (r1);
2859 ASSERT_EQ (r0, frange_float ("3", "12"));
2861 // [5,10] U [4,8] = [4,10]
2862 r0 = frange_float ("5", "10");
2863 r1 = frange_float ("4", "8");
2864 r0.union_ (r1);
2865 ASSERT_EQ (r0, frange_float ("4", "10"));
2867 // [3,5] U [4,10] = [3,10]
2868 r0 = frange_float ("3", "5");
2869 r1 = frange_float ("4", "10");
2870 r0.union_ (r1);
2871 ASSERT_EQ (r0, frange_float ("3", "10"));
2873 // [4,10] U [5,11] = [4,11]
2874 r0 = frange_float ("4", "10");
2875 r1 = frange_float ("5", "11");
2876 r0.union_ (r1);
2877 ASSERT_EQ (r0, frange_float ("4", "11"));
2879 // [3,12] ^ [10,12] = [10,12].
2880 r0 = frange_float ("3", "12");
2881 r1 = frange_float ("10", "12");
2882 r0.intersect (r1);
2883 ASSERT_EQ (r0, frange_float ("10", "12"));
2885 // [10,12] ^ [11,11] = [11,11]
2886 r0 = frange_float ("10", "12");
2887 r1 = frange_float ("11", "11");
2888 r0.intersect (r1);
2889 ASSERT_EQ (r0, frange_float ("11", "11"));
2891 // [10,20] ^ [5,15] = [10,15]
2892 r0 = frange_float ("10", "20");
2893 r1 = frange_float ("5", "15");
2894 r0.intersect (r1);
2895 ASSERT_EQ (r0, frange_float ("10", "15"));
2897 // [10,20] ^ [15,25] = [15,20]
2898 r0 = frange_float ("10", "20");
2899 r1 = frange_float ("15", "25");
2900 r0.intersect (r1);
2901 ASSERT_EQ (r0, frange_float ("15", "20"));
2903 // [10,20] ^ [21,25] = []
2904 r0 = frange_float ("10", "20");
2905 r0.clear_nan ();
2906 r1 = frange_float ("21", "25");
2907 r1.clear_nan ();
2908 r0.intersect (r1);
2909 ASSERT_TRUE (r0.undefined_p ());
2911 if (HONOR_INFINITIES (float_type_node))
2913 // Make sure [-Inf, -Inf] doesn't get normalized.
2914 r0 = frange_float ("-Inf", "-Inf");
2915 ASSERT_TRUE (real_isinf (&r0.lower_bound (), true));
2916 ASSERT_TRUE (real_isinf (&r0.upper_bound (), true));
2919 // Test that reading back a global range yields the same result as
2920 // what we wrote into it.
2921 tree ssa = make_temp_ssa_name (float_type_node, NULL, "blah");
2922 r0.set_varying (float_type_node);
2923 r0.clear_nan ();
2924 set_range_info (ssa, r0);
2925 get_global_range_query ()->range_of_expr (r1, ssa);
2926 ASSERT_EQ (r0, r1);
2929 // Run floating range tests for various combinations of NAN and INF
2930 // support.
2932 static void
2933 range_tests_floats_various ()
2935 int save_finite_math_only = flag_finite_math_only;
2937 // Test -ffinite-math-only.
2938 flag_finite_math_only = 1;
2939 range_tests_floats ();
2940 // Test -fno-finite-math-only.
2941 flag_finite_math_only = 0;
2942 range_tests_floats ();
2944 flag_finite_math_only = save_finite_math_only;
2947 void
2948 range_tests ()
2950 range_tests_irange3 ();
2951 range_tests_int_range_max ();
2952 range_tests_strict_enum ();
2953 range_tests_nonzero_bits ();
2954 range_tests_floats_various ();
2955 range_tests_misc ();
2958 } // namespace selftest
2960 #endif // CHECKING_P