c++: only cache constexpr calls that are constant exprs
[official-gcc.git] / gcc / lcm.cc
blob94a3ed43aeab26f518137016f15c6161d05ca959
1 /* Generic partial redundancy elimination with lazy code motion support.
2 Copyright (C) 1998-2023 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* These routines are meant to be used by various optimization
21 passes which can be modeled as lazy code motion problems.
22 Including, but not limited to:
24 * Traditional partial redundancy elimination.
26 * Placement of caller/caller register save/restores.
28 * Load/store motion.
30 * Copy motion.
32 * Conversion of flat register files to a stacked register
33 model.
35 * Dead load/store elimination.
37 These routines accept as input:
39 * Basic block information (number of blocks, lists of
40 predecessors and successors). Note the granularity
41 does not need to be basic block, they could be statements
42 or functions.
44 * Bitmaps of local properties (computed, transparent and
45 anticipatable expressions).
47 The output of these routines is bitmap of redundant computations
48 and a bitmap of optimal placement points. */
51 #include "config.h"
52 #include "system.h"
53 #include "coretypes.h"
54 #include "backend.h"
55 #include "cfganal.h"
56 #include "lcm.h"
58 /* Edge based LCM routines. */
59 static void compute_antinout_edge (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
60 static void compute_earliest (struct edge_list *, int, sbitmap *, sbitmap *,
61 sbitmap *, sbitmap *, sbitmap *);
62 static void compute_laterin (struct edge_list *, sbitmap *, sbitmap *,
63 sbitmap *, sbitmap *);
64 static void compute_insert_delete (struct edge_list *edge_list, sbitmap *,
65 sbitmap *, sbitmap *, sbitmap *, sbitmap *);
67 /* Edge based LCM routines on a reverse flowgraph. */
68 static void compute_farthest (struct edge_list *, int, sbitmap *, sbitmap *,
69 sbitmap*, sbitmap *, sbitmap *);
70 static void compute_nearerout (struct edge_list *, sbitmap *, sbitmap *,
71 sbitmap *, sbitmap *);
72 static void compute_rev_insert_delete (struct edge_list *edge_list, sbitmap *,
73 sbitmap *, sbitmap *, sbitmap *,
74 sbitmap *);
76 /* Edge based lcm routines. */
78 /* Compute expression anticipatability at entrance and exit of each block.
79 This is done based on the flow graph, and not on the pred-succ lists.
80 Other than that, its pretty much identical to compute_antinout. */
82 static void
83 compute_antinout_edge (sbitmap *antloc, sbitmap *transp, sbitmap *antin,
84 sbitmap *antout)
86 basic_block bb;
87 edge e;
88 basic_block *worklist, *qin, *qout, *qend;
89 unsigned int qlen;
90 edge_iterator ei;
92 /* Allocate a worklist array/queue. Entries are only added to the
93 list if they were not already on the list. So the size is
94 bounded by the number of basic blocks. */
95 qin = qout = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
97 /* We want a maximal solution, so make an optimistic initialization of
98 ANTIN. */
99 bitmap_vector_ones (antin, last_basic_block_for_fn (cfun));
101 /* Put every block on the worklist; this is necessary because of the
102 optimistic initialization of ANTIN above. Use reverse postorder
103 on the inverted graph to make the backward dataflow problem require
104 less iterations. */
105 int *rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
106 int n = inverted_rev_post_order_compute (cfun, rpo);
107 for (int i = 0; i < n; ++i)
109 bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
110 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
111 || bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
112 continue;
113 *qin++ = bb;
114 bb->aux = bb;
116 free (rpo);
118 qin = worklist;
119 qend = &worklist[n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS];
120 qlen = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
122 /* Mark blocks which are predecessors of the exit block so that we
123 can easily identify them below. */
124 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
125 e->src->aux = EXIT_BLOCK_PTR_FOR_FN (cfun);
127 /* Iterate until the worklist is empty. */
128 while (qlen)
130 /* Take the first entry off the worklist. */
131 bb = *qout++;
132 qlen--;
134 if (qout >= qend)
135 qout = worklist;
137 if (bb->aux == EXIT_BLOCK_PTR_FOR_FN (cfun))
138 /* Do not clear the aux field for blocks which are predecessors of
139 the EXIT block. That way we never add then to the worklist
140 again. */
141 bitmap_clear (antout[bb->index]);
142 else
144 /* Clear the aux field of this block so that it can be added to
145 the worklist again if necessary. */
146 bb->aux = NULL;
147 bitmap_intersection_of_succs (antout[bb->index], antin, bb);
150 if (bitmap_or_and (antin[bb->index], antloc[bb->index],
151 transp[bb->index], antout[bb->index]))
152 /* If the in state of this block changed, then we need
153 to add the predecessors of this block to the worklist
154 if they are not already on the worklist. */
155 FOR_EACH_EDGE (e, ei, bb->preds)
156 if (!e->src->aux && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
158 *qin++ = e->src;
159 e->src->aux = e;
160 qlen++;
161 if (qin >= qend)
162 qin = worklist;
166 clear_aux_for_edges ();
167 clear_aux_for_blocks ();
168 free (worklist);
171 /* Compute the earliest vector for edge based lcm. */
173 static void
174 compute_earliest (struct edge_list *edge_list, int n_exprs, sbitmap *antin,
175 sbitmap *antout, sbitmap *avout, sbitmap *kill,
176 sbitmap *earliest)
178 int x, num_edges;
179 basic_block pred, succ;
181 num_edges = NUM_EDGES (edge_list);
183 auto_sbitmap difference (n_exprs), temp_bitmap (n_exprs);
184 for (x = 0; x < num_edges; x++)
186 pred = INDEX_EDGE_PRED_BB (edge_list, x);
187 succ = INDEX_EDGE_SUCC_BB (edge_list, x);
188 if (pred == ENTRY_BLOCK_PTR_FOR_FN (cfun))
189 bitmap_copy (earliest[x], antin[succ->index]);
190 else
192 if (succ == EXIT_BLOCK_PTR_FOR_FN (cfun))
193 bitmap_clear (earliest[x]);
194 else
196 bitmap_and_compl (difference, antin[succ->index],
197 avout[pred->index]);
198 bitmap_not (temp_bitmap, antout[pred->index]);
199 bitmap_and_or (earliest[x], difference,
200 kill[pred->index], temp_bitmap);
206 /* later(p,s) is dependent on the calculation of laterin(p).
207 laterin(p) is dependent on the calculation of later(p2,p).
209 laterin(ENTRY) is defined as all 0's
210 later(ENTRY, succs(ENTRY)) are defined using laterin(ENTRY)
211 laterin(succs(ENTRY)) is defined by later(ENTRY, succs(ENTRY)).
213 If we progress in this manner, starting with all basic blocks
214 in the work list, anytime we change later(bb), we need to add
215 succs(bb) to the worklist if they are not already on the worklist.
217 Boundary conditions:
219 We prime the worklist all the normal basic blocks. The ENTRY block can
220 never be added to the worklist since it is never the successor of any
221 block. We explicitly prevent the EXIT block from being added to the
222 worklist.
224 We optimistically initialize LATER. That is the only time this routine
225 will compute LATER for an edge out of the entry block since the entry
226 block is never on the worklist. Thus, LATERIN is neither used nor
227 computed for the ENTRY block.
229 Since the EXIT block is never added to the worklist, we will neither
230 use nor compute LATERIN for the exit block. Edges which reach the
231 EXIT block are handled in the normal fashion inside the loop. However,
232 the insertion/deletion computation needs LATERIN(EXIT), so we have
233 to compute it. */
235 static void
236 compute_laterin (struct edge_list *edge_list, sbitmap *earliest,
237 sbitmap *antloc, sbitmap *later, sbitmap *laterin)
239 int num_edges, i;
240 edge e;
241 basic_block *worklist, *qin, *qout, *qend, bb;
242 unsigned int qlen;
243 edge_iterator ei;
245 num_edges = NUM_EDGES (edge_list);
247 /* Allocate a worklist array/queue. Entries are only added to the
248 list if they were not already on the list. So the size is
249 bounded by the number of basic blocks. */
250 qin = qout = worklist
251 = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
253 /* Initialize a mapping from each edge to its index. */
254 for (i = 0; i < num_edges; i++)
255 INDEX_EDGE (edge_list, i)->aux = (void *) (size_t) i;
257 /* We want a maximal solution, so initially consider LATER true for
258 all edges. This allows propagation through a loop since the incoming
259 loop edge will have LATER set, so if all the other incoming edges
260 to the loop are set, then LATERIN will be set for the head of the
261 loop.
263 If the optimistic setting of LATER on that edge was incorrect (for
264 example the expression is ANTLOC in a block within the loop) then
265 this algorithm will detect it when we process the block at the head
266 of the optimistic edge. That will requeue the affected blocks. */
267 bitmap_vector_ones (later, num_edges);
269 /* Note that even though we want an optimistic setting of LATER, we
270 do not want to be overly optimistic. Consider an outgoing edge from
271 the entry block. That edge should always have a LATER value the
272 same as EARLIEST for that edge. */
273 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
274 bitmap_copy (later[(size_t) e->aux], earliest[(size_t) e->aux]);
276 /* Add all the blocks to the worklist. This prevents an early exit from
277 the loop given our optimistic initialization of LATER above. */
278 int *rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
279 int n = pre_and_rev_post_order_compute_fn (cfun, NULL, rpo, false);
280 for (int i = 0; i < n; ++i)
282 bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
283 *qin++ = bb;
284 bb->aux = bb;
286 free (rpo);
288 /* Note that we do not use the last allocated element for our queue,
289 as EXIT_BLOCK is never inserted into it. */
290 qin = worklist;
291 qend = &worklist[n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS];
292 qlen = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
294 /* Iterate until the worklist is empty. */
295 while (qlen)
297 /* Take the first entry off the worklist. */
298 bb = *qout++;
299 bb->aux = NULL;
300 qlen--;
301 if (qout >= qend)
302 qout = worklist;
304 /* Compute LATERIN as the intersection of LATER for each incoming
305 edge to BB. */
306 bitmap_ones (laterin[bb->index]);
307 FOR_EACH_EDGE (e, ei, bb->preds)
308 bitmap_and (laterin[bb->index], laterin[bb->index],
309 later[(size_t)e->aux]);
311 /* Calculate LATER for all outgoing edges of BB. */
312 FOR_EACH_EDGE (e, ei, bb->succs)
313 if (bitmap_ior_and_compl (later[(size_t) e->aux],
314 earliest[(size_t) e->aux],
315 laterin[bb->index],
316 antloc[bb->index])
317 /* If LATER for an outgoing edge was changed, then we need
318 to add the target of the outgoing edge to the worklist. */
319 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && e->dest->aux == 0)
321 *qin++ = e->dest;
322 e->dest->aux = e;
323 qlen++;
324 if (qin >= qend)
325 qin = worklist;
329 /* Computation of insertion and deletion points requires computing LATERIN
330 for the EXIT block. We allocated an extra entry in the LATERIN array
331 for just this purpose. */
332 bitmap_ones (laterin[last_basic_block_for_fn (cfun)]);
333 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
334 bitmap_and (laterin[last_basic_block_for_fn (cfun)],
335 laterin[last_basic_block_for_fn (cfun)],
336 later[(size_t) e->aux]);
338 clear_aux_for_edges ();
339 free (worklist);
342 /* Compute the insertion and deletion points for edge based LCM. */
344 static void
345 compute_insert_delete (struct edge_list *edge_list, sbitmap *antloc,
346 sbitmap *later, sbitmap *laterin, sbitmap *insert,
347 sbitmap *del)
349 int x;
350 basic_block bb;
352 FOR_EACH_BB_FN (bb, cfun)
353 bitmap_and_compl (del[bb->index], antloc[bb->index],
354 laterin[bb->index]);
356 for (x = 0; x < NUM_EDGES (edge_list); x++)
358 basic_block b = INDEX_EDGE_SUCC_BB (edge_list, x);
360 if (b == EXIT_BLOCK_PTR_FOR_FN (cfun))
361 bitmap_and_compl (insert[x], later[x],
362 laterin[last_basic_block_for_fn (cfun)]);
363 else
364 bitmap_and_compl (insert[x], later[x], laterin[b->index]);
368 /* Given local properties TRANSP, ANTLOC, AVLOC, KILL return the insert and
369 delete vectors for edge based LCM and return the AVIN, AVOUT bitmap.
370 map the insert vector to what edge an expression should be inserted on. */
372 struct edge_list *
373 pre_edge_lcm_avs (int n_exprs, sbitmap *transp,
374 sbitmap *avloc, sbitmap *antloc, sbitmap *kill,
375 sbitmap *avin, sbitmap *avout,
376 sbitmap **insert, sbitmap **del)
378 sbitmap *antin, *antout, *earliest;
379 sbitmap *later, *laterin;
380 struct edge_list *edge_list;
381 int num_edges;
383 edge_list = create_edge_list ();
384 num_edges = NUM_EDGES (edge_list);
386 #ifdef LCM_DEBUG_INFO
387 if (dump_file)
389 fprintf (dump_file, "Edge List:\n");
390 verify_edge_list (dump_file, edge_list);
391 print_edge_list (dump_file, edge_list);
392 dump_bitmap_vector (dump_file, "transp", "", transp,
393 last_basic_block_for_fn (cfun));
394 dump_bitmap_vector (dump_file, "antloc", "", antloc,
395 last_basic_block_for_fn (cfun));
396 dump_bitmap_vector (dump_file, "avloc", "", avloc,
397 last_basic_block_for_fn (cfun));
398 dump_bitmap_vector (dump_file, "kill", "", kill,
399 last_basic_block_for_fn (cfun));
401 #endif
403 /* Compute global availability. */
404 compute_available (avloc, kill, avout, avin);
406 /* Compute global anticipatability. */
407 antin = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
408 antout = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
409 compute_antinout_edge (antloc, transp, antin, antout);
411 #ifdef LCM_DEBUG_INFO
412 if (dump_file)
414 dump_bitmap_vector (dump_file, "antin", "", antin,
415 last_basic_block_for_fn (cfun));
416 dump_bitmap_vector (dump_file, "antout", "", antout,
417 last_basic_block_for_fn (cfun));
419 #endif
421 /* Compute earliestness. */
422 earliest = sbitmap_vector_alloc (num_edges, n_exprs);
423 compute_earliest (edge_list, n_exprs, antin, antout, avout, kill, earliest);
425 #ifdef LCM_DEBUG_INFO
426 if (dump_file)
427 dump_bitmap_vector (dump_file, "earliest", "", earliest, num_edges);
428 #endif
430 sbitmap_vector_free (antout);
431 sbitmap_vector_free (antin);
433 later = sbitmap_vector_alloc (num_edges, n_exprs);
435 /* Allocate an extra element for the exit block in the laterin vector. */
436 laterin = sbitmap_vector_alloc (last_basic_block_for_fn (cfun) + 1,
437 n_exprs);
438 compute_laterin (edge_list, earliest, antloc, later, laterin);
440 #ifdef LCM_DEBUG_INFO
441 if (dump_file)
443 dump_bitmap_vector (dump_file, "laterin", "", laterin,
444 last_basic_block_for_fn (cfun) + 1);
445 dump_bitmap_vector (dump_file, "later", "", later, num_edges);
447 #endif
449 sbitmap_vector_free (earliest);
451 *insert = sbitmap_vector_alloc (num_edges, n_exprs);
452 *del = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
453 bitmap_vector_clear (*insert, num_edges);
454 bitmap_vector_clear (*del, last_basic_block_for_fn (cfun));
455 compute_insert_delete (edge_list, antloc, later, laterin, *insert, *del);
457 sbitmap_vector_free (laterin);
458 sbitmap_vector_free (later);
460 #ifdef LCM_DEBUG_INFO
461 if (dump_file)
463 dump_bitmap_vector (dump_file, "pre_insert_map", "", *insert, num_edges);
464 dump_bitmap_vector (dump_file, "pre_delete_map", "", *del,
465 last_basic_block_for_fn (cfun));
467 #endif
469 return edge_list;
472 /* Wrapper to allocate avin/avout and call pre_edge_lcm_avs. */
474 struct edge_list *
475 pre_edge_lcm (int n_exprs, sbitmap *transp,
476 sbitmap *avloc, sbitmap *antloc, sbitmap *kill,
477 sbitmap **insert, sbitmap **del)
479 struct edge_list *edge_list;
480 sbitmap *avin, *avout;
482 avin = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
483 avout = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
485 edge_list = pre_edge_lcm_avs (n_exprs, transp, avloc, antloc, kill,
486 avin, avout, insert, del);
488 sbitmap_vector_free (avout);
489 sbitmap_vector_free (avin);
491 return edge_list;
494 /* Compute the AVIN and AVOUT vectors from the AVLOC and KILL vectors.
495 Return the number of passes we performed to iterate to a solution. */
497 void
498 compute_available (sbitmap *avloc, sbitmap *kill, sbitmap *avout,
499 sbitmap *avin)
501 edge e;
502 basic_block *worklist, *qin, *qout, *qend, bb;
503 unsigned int qlen;
504 edge_iterator ei;
506 /* Allocate a worklist array/queue. Entries are only added to the
507 list if they were not already on the list. So the size is
508 bounded by the number of basic blocks. */
509 qin = qout = worklist =
510 XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
512 /* We want a maximal solution. */
513 bitmap_vector_ones (avout, last_basic_block_for_fn (cfun));
515 /* Put every block on the worklist; this is necessary because of the
516 optimistic initialization of AVOUT above. Use reverse postorder
517 to make the forward dataflow problem require less iterations. */
518 int *rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
519 int n = pre_and_rev_post_order_compute_fn (cfun, NULL, rpo, false);
520 for (int i = 0; i < n; ++i)
522 bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
523 *qin++ = bb;
524 bb->aux = bb;
526 free (rpo);
528 qin = worklist;
529 qend = &worklist[n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS];
530 qlen = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
532 /* Mark blocks which are successors of the entry block so that we
533 can easily identify them below. */
534 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
535 e->dest->aux = ENTRY_BLOCK_PTR_FOR_FN (cfun);
537 /* Iterate until the worklist is empty. */
538 while (qlen)
540 /* Take the first entry off the worklist. */
541 bb = *qout++;
542 qlen--;
544 if (qout >= qend)
545 qout = worklist;
547 /* If one of the predecessor blocks is the ENTRY block, then the
548 intersection of avouts is the null set. We can identify such blocks
549 by the special value in the AUX field in the block structure. */
550 if (bb->aux == ENTRY_BLOCK_PTR_FOR_FN (cfun))
551 /* Do not clear the aux field for blocks which are successors of the
552 ENTRY block. That way we never add then to the worklist again. */
553 bitmap_clear (avin[bb->index]);
554 else
556 /* Clear the aux field of this block so that it can be added to
557 the worklist again if necessary. */
558 bb->aux = NULL;
559 bitmap_intersection_of_preds (avin[bb->index], avout, bb);
562 if (bitmap_ior_and_compl (avout[bb->index], avloc[bb->index],
563 avin[bb->index], kill[bb->index]))
564 /* If the out state of this block changed, then we need
565 to add the successors of this block to the worklist
566 if they are not already on the worklist. */
567 FOR_EACH_EDGE (e, ei, bb->succs)
568 if (!e->dest->aux && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
570 *qin++ = e->dest;
571 e->dest->aux = e;
572 qlen++;
574 if (qin >= qend)
575 qin = worklist;
579 clear_aux_for_edges ();
580 clear_aux_for_blocks ();
581 free (worklist);
584 /* Compute the farthest vector for edge based lcm. */
586 static void
587 compute_farthest (struct edge_list *edge_list, int n_exprs,
588 sbitmap *st_avout, sbitmap *st_avin, sbitmap *st_antin,
589 sbitmap *kill, sbitmap *farthest)
591 int x, num_edges;
592 basic_block pred, succ;
594 num_edges = NUM_EDGES (edge_list);
596 auto_sbitmap difference (n_exprs), temp_bitmap (n_exprs);
597 for (x = 0; x < num_edges; x++)
599 pred = INDEX_EDGE_PRED_BB (edge_list, x);
600 succ = INDEX_EDGE_SUCC_BB (edge_list, x);
601 if (succ == EXIT_BLOCK_PTR_FOR_FN (cfun))
602 bitmap_copy (farthest[x], st_avout[pred->index]);
603 else
605 if (pred == ENTRY_BLOCK_PTR_FOR_FN (cfun))
606 bitmap_clear (farthest[x]);
607 else
609 bitmap_and_compl (difference, st_avout[pred->index],
610 st_antin[succ->index]);
611 bitmap_not (temp_bitmap, st_avin[succ->index]);
612 bitmap_and_or (farthest[x], difference,
613 kill[succ->index], temp_bitmap);
619 /* Compute nearer and nearerout vectors for edge based lcm.
621 This is the mirror of compute_laterin, additional comments on the
622 implementation can be found before compute_laterin. */
624 static void
625 compute_nearerout (struct edge_list *edge_list, sbitmap *farthest,
626 sbitmap *st_avloc, sbitmap *nearer, sbitmap *nearerout)
628 int num_edges, i;
629 edge e;
630 basic_block *worklist, *tos, bb;
631 edge_iterator ei;
633 num_edges = NUM_EDGES (edge_list);
635 /* Allocate a worklist array/queue. Entries are only added to the
636 list if they were not already on the list. So the size is
637 bounded by the number of basic blocks. */
638 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
640 /* Initialize NEARER for each edge and build a mapping from an edge to
641 its index. */
642 for (i = 0; i < num_edges; i++)
643 INDEX_EDGE (edge_list, i)->aux = (void *) (size_t) i;
645 /* We want a maximal solution. */
646 bitmap_vector_ones (nearer, num_edges);
648 /* Note that even though we want an optimistic setting of NEARER, we
649 do not want to be overly optimistic. Consider an incoming edge to
650 the exit block. That edge should always have a NEARER value the
651 same as FARTHEST for that edge. */
652 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
653 bitmap_copy (nearer[(size_t)e->aux], farthest[(size_t)e->aux]);
655 /* Add all the blocks to the worklist. This prevents an early exit
656 from the loop given our optimistic initialization of NEARER. */
657 FOR_EACH_BB_FN (bb, cfun)
659 *tos++ = bb;
660 bb->aux = bb;
663 /* Iterate until the worklist is empty. */
664 while (tos != worklist)
666 /* Take the first entry off the worklist. */
667 bb = *--tos;
668 bb->aux = NULL;
670 /* Compute the intersection of NEARER for each outgoing edge from B. */
671 bitmap_ones (nearerout[bb->index]);
672 FOR_EACH_EDGE (e, ei, bb->succs)
673 bitmap_and (nearerout[bb->index], nearerout[bb->index],
674 nearer[(size_t) e->aux]);
676 /* Calculate NEARER for all incoming edges. */
677 FOR_EACH_EDGE (e, ei, bb->preds)
678 if (bitmap_ior_and_compl (nearer[(size_t) e->aux],
679 farthest[(size_t) e->aux],
680 nearerout[e->dest->index],
681 st_avloc[e->dest->index])
682 /* If NEARER for an incoming edge was changed, then we need
683 to add the source of the incoming edge to the worklist. */
684 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun) && e->src->aux == 0)
686 *tos++ = e->src;
687 e->src->aux = e;
691 /* Computation of insertion and deletion points requires computing NEAREROUT
692 for the ENTRY block. We allocated an extra entry in the NEAREROUT array
693 for just this purpose. */
694 bitmap_ones (nearerout[last_basic_block_for_fn (cfun)]);
695 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
696 bitmap_and (nearerout[last_basic_block_for_fn (cfun)],
697 nearerout[last_basic_block_for_fn (cfun)],
698 nearer[(size_t) e->aux]);
700 clear_aux_for_edges ();
701 free (tos);
704 /* Compute the insertion and deletion points for edge based LCM. */
706 static void
707 compute_rev_insert_delete (struct edge_list *edge_list, sbitmap *st_avloc,
708 sbitmap *nearer, sbitmap *nearerout,
709 sbitmap *insert, sbitmap *del)
711 int x;
712 basic_block bb;
714 FOR_EACH_BB_FN (bb, cfun)
715 bitmap_and_compl (del[bb->index], st_avloc[bb->index],
716 nearerout[bb->index]);
718 for (x = 0; x < NUM_EDGES (edge_list); x++)
720 basic_block b = INDEX_EDGE_PRED_BB (edge_list, x);
721 if (b == ENTRY_BLOCK_PTR_FOR_FN (cfun))
722 bitmap_and_compl (insert[x], nearer[x],
723 nearerout[last_basic_block_for_fn (cfun)]);
724 else
725 bitmap_and_compl (insert[x], nearer[x], nearerout[b->index]);
729 /* Given local properties TRANSP, ST_AVLOC, ST_ANTLOC, KILL return the
730 insert and delete vectors for edge based reverse LCM. Returns an
731 edgelist which is used to map the insert vector to what edge
732 an expression should be inserted on. */
734 struct edge_list *
735 pre_edge_rev_lcm (int n_exprs, sbitmap *transp,
736 sbitmap *st_avloc, sbitmap *st_antloc, sbitmap *kill,
737 sbitmap **insert, sbitmap **del)
739 sbitmap *st_antin, *st_antout;
740 sbitmap *st_avout, *st_avin, *farthest;
741 sbitmap *nearer, *nearerout;
742 struct edge_list *edge_list;
743 int num_edges;
745 edge_list = create_edge_list ();
746 num_edges = NUM_EDGES (edge_list);
748 st_antin = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
749 st_antout = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
750 bitmap_vector_clear (st_antin, last_basic_block_for_fn (cfun));
751 bitmap_vector_clear (st_antout, last_basic_block_for_fn (cfun));
752 compute_antinout_edge (st_antloc, transp, st_antin, st_antout);
754 /* Compute global anticipatability. */
755 st_avout = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
756 st_avin = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
757 compute_available (st_avloc, kill, st_avout, st_avin);
759 #ifdef LCM_DEBUG_INFO
760 if (dump_file)
762 fprintf (dump_file, "Edge List:\n");
763 verify_edge_list (dump_file, edge_list);
764 print_edge_list (dump_file, edge_list);
765 dump_bitmap_vector (dump_file, "transp", "", transp,
766 last_basic_block_for_fn (cfun));
767 dump_bitmap_vector (dump_file, "st_avloc", "", st_avloc,
768 last_basic_block_for_fn (cfun));
769 dump_bitmap_vector (dump_file, "st_antloc", "", st_antloc,
770 last_basic_block_for_fn (cfun));
771 dump_bitmap_vector (dump_file, "st_antin", "", st_antin,
772 last_basic_block_for_fn (cfun));
773 dump_bitmap_vector (dump_file, "st_antout", "", st_antout,
774 last_basic_block_for_fn (cfun));
775 dump_bitmap_vector (dump_file, "st_kill", "", kill,
776 last_basic_block_for_fn (cfun));
778 #endif
780 #ifdef LCM_DEBUG_INFO
781 if (dump_file)
783 dump_bitmap_vector (dump_file, "st_avout", "", st_avout, last_basic_block_for_fn (cfun));
784 dump_bitmap_vector (dump_file, "st_avin", "", st_avin, last_basic_block_for_fn (cfun));
786 #endif
788 /* Compute farthestness. */
789 farthest = sbitmap_vector_alloc (num_edges, n_exprs);
790 compute_farthest (edge_list, n_exprs, st_avout, st_avin, st_antin,
791 kill, farthest);
793 #ifdef LCM_DEBUG_INFO
794 if (dump_file)
795 dump_bitmap_vector (dump_file, "farthest", "", farthest, num_edges);
796 #endif
798 sbitmap_vector_free (st_antin);
799 sbitmap_vector_free (st_antout);
801 sbitmap_vector_free (st_avin);
802 sbitmap_vector_free (st_avout);
804 nearer = sbitmap_vector_alloc (num_edges, n_exprs);
806 /* Allocate an extra element for the entry block. */
807 nearerout = sbitmap_vector_alloc (last_basic_block_for_fn (cfun) + 1,
808 n_exprs);
809 compute_nearerout (edge_list, farthest, st_avloc, nearer, nearerout);
811 #ifdef LCM_DEBUG_INFO
812 if (dump_file)
814 dump_bitmap_vector (dump_file, "nearerout", "", nearerout,
815 last_basic_block_for_fn (cfun) + 1);
816 dump_bitmap_vector (dump_file, "nearer", "", nearer, num_edges);
818 #endif
820 sbitmap_vector_free (farthest);
822 *insert = sbitmap_vector_alloc (num_edges, n_exprs);
823 *del = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs);
824 compute_rev_insert_delete (edge_list, st_avloc, nearer, nearerout,
825 *insert, *del);
827 sbitmap_vector_free (nearerout);
828 sbitmap_vector_free (nearer);
830 #ifdef LCM_DEBUG_INFO
831 if (dump_file)
833 dump_bitmap_vector (dump_file, "pre_insert_map", "", *insert, num_edges);
834 dump_bitmap_vector (dump_file, "pre_delete_map", "", *del,
835 last_basic_block_for_fn (cfun));
837 #endif
838 return edge_list;