1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 /* This file contains the variable tracking pass. It computes where
22 variables are located (which registers or where in memory) at each position
23 in instruction stream and emits notes describing the locations.
24 Debug information (DWARF2 location lists) is finally generated from
26 With this debug information, it is possible to show variables
27 even when debugging optimized code.
29 How does the variable tracking pass work?
31 First, it scans RTL code for uses, stores and clobbers (register/memory
32 references in instructions), for call insns and for stack adjustments
33 separately for each basic block and saves them to an array of micro
35 The micro operations of one instruction are ordered so that
36 pre-modifying stack adjustment < use < use with no var < call insn <
37 < set < clobber < post-modifying stack adjustment
39 Then, a forward dataflow analysis is performed to find out how locations
40 of variables change through code and to propagate the variable locations
41 along control flow graph.
42 The IN set for basic block BB is computed as a union of OUT sets of BB's
43 predecessors, the OUT set for BB is copied from the IN set for BB and
44 is changed according to micro operations in BB.
46 The IN and OUT sets for basic blocks consist of a current stack adjustment
47 (used for adjusting offset of variables addressed using stack pointer),
48 the table of structures describing the locations of parts of a variable
49 and for each physical register a linked list for each physical register.
50 The linked list is a list of variable parts stored in the register,
51 i.e. it is a list of triplets (reg, decl, offset) where decl is
52 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
53 effective deleting appropriate variable parts when we set or clobber the
56 There may be more than one variable part in a register. The linked lists
57 should be pretty short so it is a good data structure here.
58 For example in the following code, register allocator may assign same
59 register to variables A and B, and both of them are stored in the same
72 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
73 are emitted to appropriate positions in RTL code. Each such a note describes
74 the location of one variable at the point in instruction stream where the
75 note is. There is no need to emit a note for each variable before each
76 instruction, we only emit these notes where the location of variable changes
77 (this means that we also emit notes for changes between the OUT set of the
78 previous block and the IN set of the current block).
80 The notes consist of two parts:
81 1. the declaration (from REG_EXPR or MEM_EXPR)
82 2. the location of a variable - it is either a simple register/memory
83 reference (for simple variables, for example int),
84 or a parallel of register/memory references (for a large variables
85 which consist of several parts, for example long long).
91 #include "coretypes.h"
95 #include "hard-reg-set.h"
96 #include "basic-block.h"
99 #include "insn-config.h"
102 #include "alloc-pool.h"
108 #include "tree-pass.h"
110 /* Type of micro operation. */
111 enum micro_operation_type
113 MO_USE
, /* Use location (REG or MEM). */
114 MO_USE_NO_VAR
,/* Use location which is not associated with a variable
115 or the variable is not trackable. */
116 MO_SET
, /* Set location. */
117 MO_COPY
, /* Copy the same portion of a variable from one
118 location to another. */
119 MO_CLOBBER
, /* Clobber location. */
120 MO_CALL
, /* Call insn. */
121 MO_ADJUST
/* Adjust stack pointer. */
124 /* Where shall the note be emitted? BEFORE or AFTER the instruction. */
127 EMIT_NOTE_BEFORE_INSN
,
131 /* Structure holding information about micro operation. */
132 typedef struct micro_operation_def
134 /* Type of micro operation. */
135 enum micro_operation_type type
;
141 /* Stack adjustment. */
142 HOST_WIDE_INT adjust
;
145 /* The instruction which the micro operation is in, for MO_USE,
146 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
147 instruction or note in the original flow (before any var-tracking
148 notes are inserted, to simplify emission of notes), for MO_SET
153 /* Structure for passing some other parameters to function
154 emit_note_insn_var_location. */
155 typedef struct emit_note_data_def
157 /* The instruction which the note will be emitted before/after. */
160 /* Where the note will be emitted (before/after insn)? */
161 enum emit_note_where where
;
164 /* Description of location of a part of a variable. The content of a physical
165 register is described by a chain of these structures.
166 The chains are pretty short (usually 1 or 2 elements) and thus
167 chain is the best data structure. */
168 typedef struct attrs_def
170 /* Pointer to next member of the list. */
171 struct attrs_def
*next
;
173 /* The rtx of register. */
176 /* The declaration corresponding to LOC. */
179 /* Offset from start of DECL. */
180 HOST_WIDE_INT offset
;
183 /* Structure holding the IN or OUT set for a basic block. */
184 typedef struct dataflow_set_def
186 /* Adjustment of stack offset. */
187 HOST_WIDE_INT stack_adjust
;
189 /* Attributes for registers (lists of attrs). */
190 attrs regs
[FIRST_PSEUDO_REGISTER
];
192 /* Variable locations. */
196 /* The structure (one for each basic block) containing the information
197 needed for variable tracking. */
198 typedef struct variable_tracking_info_def
200 /* Number of micro operations stored in the MOS array. */
203 /* The array of micro operations. */
204 micro_operation
*mos
;
206 /* The IN and OUT set for dataflow analysis. */
210 /* Has the block been visited in DFS? */
212 } *variable_tracking_info
;
214 /* Structure for chaining the locations. */
215 typedef struct location_chain_def
217 /* Next element in the chain. */
218 struct location_chain_def
*next
;
220 /* The location (REG or MEM). */
224 /* Structure describing one part of variable. */
225 typedef struct variable_part_def
227 /* Chain of locations of the part. */
228 location_chain loc_chain
;
230 /* Location which was last emitted to location list. */
233 /* The offset in the variable. */
234 HOST_WIDE_INT offset
;
237 /* Maximum number of location parts. */
238 #define MAX_VAR_PARTS 16
240 /* Structure describing where the variable is located. */
241 typedef struct variable_def
243 /* The declaration of the variable. */
246 /* Reference count. */
249 /* Number of variable parts. */
252 /* The variable parts. */
253 variable_part var_part
[MAX_VAR_PARTS
];
256 /* Hash function for DECL for VARIABLE_HTAB. */
257 #define VARIABLE_HASH_VAL(decl) (DECL_UID (decl))
259 /* Pointer to the BB's information specific to variable tracking pass. */
260 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
262 /* Alloc pool for struct attrs_def. */
263 static alloc_pool attrs_pool
;
265 /* Alloc pool for struct variable_def. */
266 static alloc_pool var_pool
;
268 /* Alloc pool for struct location_chain_def. */
269 static alloc_pool loc_chain_pool
;
271 /* Changed variables, notes will be emitted for them. */
272 static htab_t changed_variables
;
274 /* Shall notes be emitted? */
275 static bool emit_notes
;
277 /* Local function prototypes. */
278 static void stack_adjust_offset_pre_post (rtx
, HOST_WIDE_INT
*,
280 static void insn_stack_adjust_offset_pre_post (rtx
, HOST_WIDE_INT
*,
282 static void bb_stack_adjust_offset (basic_block
);
283 static bool vt_stack_adjustments (void);
284 static rtx
adjust_stack_reference (rtx
, HOST_WIDE_INT
);
285 static hashval_t
variable_htab_hash (const void *);
286 static int variable_htab_eq (const void *, const void *);
287 static void variable_htab_free (void *);
289 static void init_attrs_list_set (attrs
*);
290 static void attrs_list_clear (attrs
*);
291 static attrs
attrs_list_member (attrs
, tree
, HOST_WIDE_INT
);
292 static void attrs_list_insert (attrs
*, tree
, HOST_WIDE_INT
, rtx
);
293 static void attrs_list_copy (attrs
*, attrs
);
294 static void attrs_list_union (attrs
*, attrs
);
296 static void vars_clear (htab_t
);
297 static variable
unshare_variable (dataflow_set
*set
, variable var
);
298 static int vars_copy_1 (void **, void *);
299 static void vars_copy (htab_t
, htab_t
);
300 static tree
var_debug_decl (tree
);
301 static void var_reg_set (dataflow_set
*, rtx
);
302 static void var_reg_delete_and_set (dataflow_set
*, rtx
, bool);
303 static void var_reg_delete (dataflow_set
*, rtx
, bool);
304 static void var_regno_delete (dataflow_set
*, int);
305 static void var_mem_set (dataflow_set
*, rtx
);
306 static void var_mem_delete_and_set (dataflow_set
*, rtx
, bool);
307 static void var_mem_delete (dataflow_set
*, rtx
, bool);
309 static void dataflow_set_init (dataflow_set
*, int);
310 static void dataflow_set_clear (dataflow_set
*);
311 static void dataflow_set_copy (dataflow_set
*, dataflow_set
*);
312 static int variable_union_info_cmp_pos (const void *, const void *);
313 static int variable_union (void **, void *);
314 static void dataflow_set_union (dataflow_set
*, dataflow_set
*);
315 static bool variable_part_different_p (variable_part
*, variable_part
*);
316 static bool variable_different_p (variable
, variable
, bool);
317 static int dataflow_set_different_1 (void **, void *);
318 static int dataflow_set_different_2 (void **, void *);
319 static bool dataflow_set_different (dataflow_set
*, dataflow_set
*);
320 static void dataflow_set_destroy (dataflow_set
*);
322 static bool contains_symbol_ref (rtx
);
323 static bool track_expr_p (tree
);
324 static bool same_variable_part_p (rtx
, tree
, HOST_WIDE_INT
);
325 static int count_uses (rtx
*, void *);
326 static void count_uses_1 (rtx
*, void *);
327 static void count_stores (rtx
, rtx
, void *);
328 static int add_uses (rtx
*, void *);
329 static void add_uses_1 (rtx
*, void *);
330 static void add_stores (rtx
, rtx
, void *);
331 static bool compute_bb_dataflow (basic_block
);
332 static void vt_find_locations (void);
334 static void dump_attrs_list (attrs
);
335 static int dump_variable (void **, void *);
336 static void dump_vars (htab_t
);
337 static void dump_dataflow_set (dataflow_set
*);
338 static void dump_dataflow_sets (void);
340 static void variable_was_changed (variable
, htab_t
);
341 static void set_variable_part (dataflow_set
*, rtx
, tree
, HOST_WIDE_INT
);
342 static void clobber_variable_part (dataflow_set
*, rtx
, tree
, HOST_WIDE_INT
);
343 static void delete_variable_part (dataflow_set
*, rtx
, tree
, HOST_WIDE_INT
);
344 static int emit_note_insn_var_location (void **, void *);
345 static void emit_notes_for_changes (rtx
, enum emit_note_where
);
346 static int emit_notes_for_differences_1 (void **, void *);
347 static int emit_notes_for_differences_2 (void **, void *);
348 static void emit_notes_for_differences (rtx
, dataflow_set
*, dataflow_set
*);
349 static void emit_notes_in_bb (basic_block
);
350 static void vt_emit_notes (void);
352 static bool vt_get_decl_and_offset (rtx
, tree
*, HOST_WIDE_INT
*);
353 static void vt_add_function_parameters (void);
354 static void vt_initialize (void);
355 static void vt_finalize (void);
357 /* Given a SET, calculate the amount of stack adjustment it contains
358 PRE- and POST-modifying stack pointer.
359 This function is similar to stack_adjust_offset. */
362 stack_adjust_offset_pre_post (rtx pattern
, HOST_WIDE_INT
*pre
,
365 rtx src
= SET_SRC (pattern
);
366 rtx dest
= SET_DEST (pattern
);
369 if (dest
== stack_pointer_rtx
)
371 /* (set (reg sp) (plus (reg sp) (const_int))) */
372 code
= GET_CODE (src
);
373 if (! (code
== PLUS
|| code
== MINUS
)
374 || XEXP (src
, 0) != stack_pointer_rtx
375 || GET_CODE (XEXP (src
, 1)) != CONST_INT
)
379 *post
+= INTVAL (XEXP (src
, 1));
381 *post
-= INTVAL (XEXP (src
, 1));
383 else if (MEM_P (dest
))
385 /* (set (mem (pre_dec (reg sp))) (foo)) */
386 src
= XEXP (dest
, 0);
387 code
= GET_CODE (src
);
393 if (XEXP (src
, 0) == stack_pointer_rtx
)
395 rtx val
= XEXP (XEXP (src
, 1), 1);
396 /* We handle only adjustments by constant amount. */
397 gcc_assert (GET_CODE (XEXP (src
, 1)) == PLUS
&&
398 GET_CODE (val
) == CONST_INT
);
400 if (code
== PRE_MODIFY
)
401 *pre
-= INTVAL (val
);
403 *post
-= INTVAL (val
);
409 if (XEXP (src
, 0) == stack_pointer_rtx
)
411 *pre
+= GET_MODE_SIZE (GET_MODE (dest
));
417 if (XEXP (src
, 0) == stack_pointer_rtx
)
419 *post
+= GET_MODE_SIZE (GET_MODE (dest
));
425 if (XEXP (src
, 0) == stack_pointer_rtx
)
427 *pre
-= GET_MODE_SIZE (GET_MODE (dest
));
433 if (XEXP (src
, 0) == stack_pointer_rtx
)
435 *post
-= GET_MODE_SIZE (GET_MODE (dest
));
446 /* Given an INSN, calculate the amount of stack adjustment it contains
447 PRE- and POST-modifying stack pointer. */
450 insn_stack_adjust_offset_pre_post (rtx insn
, HOST_WIDE_INT
*pre
,
456 if (GET_CODE (PATTERN (insn
)) == SET
)
457 stack_adjust_offset_pre_post (PATTERN (insn
), pre
, post
);
458 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
459 || GET_CODE (PATTERN (insn
)) == SEQUENCE
)
463 /* There may be stack adjustments inside compound insns. Search
465 for ( i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
466 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == SET
)
467 stack_adjust_offset_pre_post (XVECEXP (PATTERN (insn
), 0, i
),
472 /* Compute stack adjustment in basic block BB. */
475 bb_stack_adjust_offset (basic_block bb
)
477 HOST_WIDE_INT offset
;
480 offset
= VTI (bb
)->in
.stack_adjust
;
481 for (i
= 0; i
< VTI (bb
)->n_mos
; i
++)
483 if (VTI (bb
)->mos
[i
].type
== MO_ADJUST
)
484 offset
+= VTI (bb
)->mos
[i
].u
.adjust
;
485 else if (VTI (bb
)->mos
[i
].type
!= MO_CALL
)
487 if (MEM_P (VTI (bb
)->mos
[i
].u
.loc
))
489 VTI (bb
)->mos
[i
].u
.loc
490 = adjust_stack_reference (VTI (bb
)->mos
[i
].u
.loc
, -offset
);
494 VTI (bb
)->out
.stack_adjust
= offset
;
497 /* Compute stack adjustments for all blocks by traversing DFS tree.
498 Return true when the adjustments on all incoming edges are consistent.
499 Heavily borrowed from pre_and_rev_post_order_compute. */
502 vt_stack_adjustments (void)
504 edge_iterator
*stack
;
507 /* Initialize entry block. */
508 VTI (ENTRY_BLOCK_PTR
)->visited
= true;
509 VTI (ENTRY_BLOCK_PTR
)->out
.stack_adjust
= INCOMING_FRAME_SP_OFFSET
;
511 /* Allocate stack for back-tracking up CFG. */
512 stack
= XNEWVEC (edge_iterator
, n_basic_blocks
+ 1);
515 /* Push the first edge on to the stack. */
516 stack
[sp
++] = ei_start (ENTRY_BLOCK_PTR
->succs
);
524 /* Look at the edge on the top of the stack. */
526 src
= ei_edge (ei
)->src
;
527 dest
= ei_edge (ei
)->dest
;
529 /* Check if the edge destination has been visited yet. */
530 if (!VTI (dest
)->visited
)
532 VTI (dest
)->visited
= true;
533 VTI (dest
)->in
.stack_adjust
= VTI (src
)->out
.stack_adjust
;
534 bb_stack_adjust_offset (dest
);
536 if (EDGE_COUNT (dest
->succs
) > 0)
537 /* Since the DEST node has been visited for the first
538 time, check its successors. */
539 stack
[sp
++] = ei_start (dest
->succs
);
543 /* Check whether the adjustments on the edges are the same. */
544 if (VTI (dest
)->in
.stack_adjust
!= VTI (src
)->out
.stack_adjust
)
550 if (! ei_one_before_end_p (ei
))
551 /* Go to the next edge. */
552 ei_next (&stack
[sp
- 1]);
554 /* Return to previous level if there are no more edges. */
563 /* Adjust stack reference MEM by ADJUSTMENT bytes and make it relative
564 to the argument pointer. Return the new rtx. */
567 adjust_stack_reference (rtx mem
, HOST_WIDE_INT adjustment
)
571 #ifdef FRAME_POINTER_CFA_OFFSET
572 adjustment
-= FRAME_POINTER_CFA_OFFSET (current_function_decl
);
573 cfa
= plus_constant (frame_pointer_rtx
, adjustment
);
575 adjustment
-= ARG_POINTER_CFA_OFFSET (current_function_decl
);
576 cfa
= plus_constant (arg_pointer_rtx
, adjustment
);
579 addr
= replace_rtx (copy_rtx (XEXP (mem
, 0)), stack_pointer_rtx
, cfa
);
580 tmp
= simplify_rtx (addr
);
584 return replace_equiv_address_nv (mem
, addr
);
587 /* The hash function for variable_htab, computes the hash value
588 from the declaration of variable X. */
591 variable_htab_hash (const void *x
)
593 const variable v
= (const variable
) x
;
595 return (VARIABLE_HASH_VAL (v
->decl
));
598 /* Compare the declaration of variable X with declaration Y. */
601 variable_htab_eq (const void *x
, const void *y
)
603 const variable v
= (const variable
) x
;
604 const tree decl
= (const tree
) y
;
606 return (VARIABLE_HASH_VAL (v
->decl
) == VARIABLE_HASH_VAL (decl
));
609 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
612 variable_htab_free (void *elem
)
615 variable var
= (variable
) elem
;
616 location_chain node
, next
;
618 gcc_assert (var
->refcount
> 0);
621 if (var
->refcount
> 0)
624 for (i
= 0; i
< var
->n_var_parts
; i
++)
626 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= next
)
629 pool_free (loc_chain_pool
, node
);
631 var
->var_part
[i
].loc_chain
= NULL
;
633 pool_free (var_pool
, var
);
636 /* Initialize the set (array) SET of attrs to empty lists. */
639 init_attrs_list_set (attrs
*set
)
643 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
647 /* Make the list *LISTP empty. */
650 attrs_list_clear (attrs
*listp
)
654 for (list
= *listp
; list
; list
= next
)
657 pool_free (attrs_pool
, list
);
662 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
665 attrs_list_member (attrs list
, tree decl
, HOST_WIDE_INT offset
)
667 for (; list
; list
= list
->next
)
668 if (list
->decl
== decl
&& list
->offset
== offset
)
673 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
676 attrs_list_insert (attrs
*listp
, tree decl
, HOST_WIDE_INT offset
, rtx loc
)
680 list
= pool_alloc (attrs_pool
);
683 list
->offset
= offset
;
688 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
691 attrs_list_copy (attrs
*dstp
, attrs src
)
695 attrs_list_clear (dstp
);
696 for (; src
; src
= src
->next
)
698 n
= pool_alloc (attrs_pool
);
701 n
->offset
= src
->offset
;
707 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
710 attrs_list_union (attrs
*dstp
, attrs src
)
712 for (; src
; src
= src
->next
)
714 if (!attrs_list_member (*dstp
, src
->decl
, src
->offset
))
715 attrs_list_insert (dstp
, src
->decl
, src
->offset
, src
->loc
);
719 /* Delete all variables from hash table VARS. */
722 vars_clear (htab_t vars
)
727 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
730 unshare_variable (dataflow_set
*set
, variable var
)
736 new_var
= pool_alloc (var_pool
);
737 new_var
->decl
= var
->decl
;
738 new_var
->refcount
= 1;
740 new_var
->n_var_parts
= var
->n_var_parts
;
742 for (i
= 0; i
< var
->n_var_parts
; i
++)
745 location_chain
*nextp
;
747 new_var
->var_part
[i
].offset
= var
->var_part
[i
].offset
;
748 nextp
= &new_var
->var_part
[i
].loc_chain
;
749 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
751 location_chain new_lc
;
753 new_lc
= pool_alloc (loc_chain_pool
);
755 new_lc
->loc
= node
->loc
;
758 nextp
= &new_lc
->next
;
761 /* We are at the basic block boundary when copying variable description
762 so set the CUR_LOC to be the first element of the chain. */
763 if (new_var
->var_part
[i
].loc_chain
)
764 new_var
->var_part
[i
].cur_loc
= new_var
->var_part
[i
].loc_chain
->loc
;
766 new_var
->var_part
[i
].cur_loc
= NULL
;
769 slot
= htab_find_slot_with_hash (set
->vars
, new_var
->decl
,
770 VARIABLE_HASH_VAL (new_var
->decl
),
776 /* Add a variable from *SLOT to hash table DATA and increase its reference
780 vars_copy_1 (void **slot
, void *data
)
782 htab_t dst
= (htab_t
) data
;
785 src
= *(variable
*) slot
;
788 dstp
= (variable
*) htab_find_slot_with_hash (dst
, src
->decl
,
789 VARIABLE_HASH_VAL (src
->decl
),
793 /* Continue traversing the hash table. */
797 /* Copy all variables from hash table SRC to hash table DST. */
800 vars_copy (htab_t dst
, htab_t src
)
803 htab_traverse (src
, vars_copy_1
, dst
);
806 /* Map a decl to its main debug decl. */
809 var_debug_decl (tree decl
)
811 if (decl
&& DECL_P (decl
)
812 && DECL_DEBUG_EXPR_IS_FROM (decl
) && DECL_DEBUG_EXPR (decl
)
813 && DECL_P (DECL_DEBUG_EXPR (decl
)))
814 decl
= DECL_DEBUG_EXPR (decl
);
819 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
822 var_reg_set (dataflow_set
*set
, rtx loc
)
824 tree decl
= REG_EXPR (loc
);
825 HOST_WIDE_INT offset
= REG_OFFSET (loc
);
828 decl
= var_debug_decl (decl
);
830 for (node
= set
->regs
[REGNO (loc
)]; node
; node
= node
->next
)
831 if (node
->decl
== decl
&& node
->offset
== offset
)
834 attrs_list_insert (&set
->regs
[REGNO (loc
)], decl
, offset
, loc
);
835 set_variable_part (set
, loc
, decl
, offset
);
838 /* Delete current content of register LOC in dataflow set SET and set
839 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
840 MODIFY is true, any other live copies of the same variable part are
841 also deleted from the dataflow set, otherwise the variable part is
842 assumed to be copied from another location holding the same
846 var_reg_delete_and_set (dataflow_set
*set
, rtx loc
, bool modify
)
848 tree decl
= REG_EXPR (loc
);
849 HOST_WIDE_INT offset
= REG_OFFSET (loc
);
853 decl
= var_debug_decl (decl
);
855 nextp
= &set
->regs
[REGNO (loc
)];
856 for (node
= *nextp
; node
; node
= next
)
859 if (node
->decl
!= decl
|| node
->offset
!= offset
)
861 delete_variable_part (set
, node
->loc
, node
->decl
, node
->offset
);
862 pool_free (attrs_pool
, node
);
872 clobber_variable_part (set
, loc
, decl
, offset
);
873 var_reg_set (set
, loc
);
876 /* Delete current content of register LOC in dataflow set SET. If
877 CLOBBER is true, also delete any other live copies of the same
881 var_reg_delete (dataflow_set
*set
, rtx loc
, bool clobber
)
883 attrs
*reg
= &set
->regs
[REGNO (loc
)];
888 tree decl
= REG_EXPR (loc
);
889 HOST_WIDE_INT offset
= REG_OFFSET (loc
);
891 decl
= var_debug_decl (decl
);
893 clobber_variable_part (set
, NULL
, decl
, offset
);
896 for (node
= *reg
; node
; node
= next
)
899 delete_variable_part (set
, node
->loc
, node
->decl
, node
->offset
);
900 pool_free (attrs_pool
, node
);
905 /* Delete content of register with number REGNO in dataflow set SET. */
908 var_regno_delete (dataflow_set
*set
, int regno
)
910 attrs
*reg
= &set
->regs
[regno
];
913 for (node
= *reg
; node
; node
= next
)
916 delete_variable_part (set
, node
->loc
, node
->decl
, node
->offset
);
917 pool_free (attrs_pool
, node
);
922 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
924 Adjust the address first if it is stack pointer based. */
927 var_mem_set (dataflow_set
*set
, rtx loc
)
929 tree decl
= MEM_EXPR (loc
);
930 HOST_WIDE_INT offset
= MEM_OFFSET (loc
) ? INTVAL (MEM_OFFSET (loc
)) : 0;
932 decl
= var_debug_decl (decl
);
934 set_variable_part (set
, loc
, decl
, offset
);
937 /* Delete and set the location part of variable MEM_EXPR (LOC) in
938 dataflow set SET to LOC. If MODIFY is true, any other live copies
939 of the same variable part are also deleted from the dataflow set,
940 otherwise the variable part is assumed to be copied from another
941 location holding the same part.
942 Adjust the address first if it is stack pointer based. */
945 var_mem_delete_and_set (dataflow_set
*set
, rtx loc
, bool modify
)
947 tree decl
= MEM_EXPR (loc
);
948 HOST_WIDE_INT offset
= MEM_OFFSET (loc
) ? INTVAL (MEM_OFFSET (loc
)) : 0;
950 decl
= var_debug_decl (decl
);
953 clobber_variable_part (set
, NULL
, decl
, offset
);
954 var_mem_set (set
, loc
);
957 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
958 true, also delete any other live copies of the same variable part.
959 Adjust the address first if it is stack pointer based. */
962 var_mem_delete (dataflow_set
*set
, rtx loc
, bool clobber
)
964 tree decl
= MEM_EXPR (loc
);
965 HOST_WIDE_INT offset
= MEM_OFFSET (loc
) ? INTVAL (MEM_OFFSET (loc
)) : 0;
967 decl
= var_debug_decl (decl
);
969 clobber_variable_part (set
, NULL
, decl
, offset
);
970 delete_variable_part (set
, loc
, decl
, offset
);
973 /* Initialize dataflow set SET to be empty.
974 VARS_SIZE is the initial size of hash table VARS. */
977 dataflow_set_init (dataflow_set
*set
, int vars_size
)
979 init_attrs_list_set (set
->regs
);
980 set
->vars
= htab_create (vars_size
, variable_htab_hash
, variable_htab_eq
,
982 set
->stack_adjust
= 0;
985 /* Delete the contents of dataflow set SET. */
988 dataflow_set_clear (dataflow_set
*set
)
992 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
993 attrs_list_clear (&set
->regs
[i
]);
995 vars_clear (set
->vars
);
998 /* Copy the contents of dataflow set SRC to DST. */
1001 dataflow_set_copy (dataflow_set
*dst
, dataflow_set
*src
)
1005 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1006 attrs_list_copy (&dst
->regs
[i
], src
->regs
[i
]);
1008 vars_copy (dst
->vars
, src
->vars
);
1009 dst
->stack_adjust
= src
->stack_adjust
;
1012 /* Information for merging lists of locations for a given offset of variable.
1014 struct variable_union_info
1016 /* Node of the location chain. */
1019 /* The sum of positions in the input chains. */
1022 /* The position in the chains of SRC and DST dataflow sets. */
1027 /* Compare function for qsort, order the structures by POS element. */
1030 variable_union_info_cmp_pos (const void *n1
, const void *n2
)
1032 const struct variable_union_info
*i1
= n1
;
1033 const struct variable_union_info
*i2
= n2
;
1035 if (i1
->pos
!= i2
->pos
)
1036 return i1
->pos
- i2
->pos
;
1038 return (i1
->pos_dst
- i2
->pos_dst
);
1041 /* Compute union of location parts of variable *SLOT and the same variable
1042 from hash table DATA. Compute "sorted" union of the location chains
1043 for common offsets, i.e. the locations of a variable part are sorted by
1044 a priority where the priority is the sum of the positions in the 2 chains
1045 (if a location is only in one list the position in the second list is
1046 defined to be larger than the length of the chains).
1047 When we are updating the location parts the newest location is in the
1048 beginning of the chain, so when we do the described "sorted" union
1049 we keep the newest locations in the beginning. */
1052 variable_union (void **slot
, void *data
)
1054 variable src
, dst
, *dstp
;
1055 dataflow_set
*set
= (dataflow_set
*) data
;
1058 src
= *(variable
*) slot
;
1059 dstp
= (variable
*) htab_find_slot_with_hash (set
->vars
, src
->decl
,
1060 VARIABLE_HASH_VAL (src
->decl
),
1066 /* If CUR_LOC of some variable part is not the first element of
1067 the location chain we are going to change it so we have to make
1068 a copy of the variable. */
1069 for (k
= 0; k
< src
->n_var_parts
; k
++)
1071 gcc_assert (!src
->var_part
[k
].loc_chain
1072 == !src
->var_part
[k
].cur_loc
);
1073 if (src
->var_part
[k
].loc_chain
)
1075 gcc_assert (src
->var_part
[k
].cur_loc
);
1076 if (src
->var_part
[k
].cur_loc
!= src
->var_part
[k
].loc_chain
->loc
)
1080 if (k
< src
->n_var_parts
)
1081 unshare_variable (set
, src
);
1085 /* Continue traversing the hash table. */
1091 gcc_assert (src
->n_var_parts
);
1093 /* Count the number of location parts, result is K. */
1094 for (i
= 0, j
= 0, k
= 0;
1095 i
< src
->n_var_parts
&& j
< dst
->n_var_parts
; k
++)
1097 if (src
->var_part
[i
].offset
== dst
->var_part
[j
].offset
)
1102 else if (src
->var_part
[i
].offset
< dst
->var_part
[j
].offset
)
1107 k
+= src
->n_var_parts
- i
;
1108 k
+= dst
->n_var_parts
- j
;
1110 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
1111 thus there are at most MAX_VAR_PARTS different offsets. */
1112 gcc_assert (k
<= MAX_VAR_PARTS
);
1114 if (dst
->refcount
> 1 && dst
->n_var_parts
!= k
)
1115 dst
= unshare_variable (set
, dst
);
1117 i
= src
->n_var_parts
- 1;
1118 j
= dst
->n_var_parts
- 1;
1119 dst
->n_var_parts
= k
;
1121 for (k
--; k
>= 0; k
--)
1123 location_chain node
, node2
;
1125 if (i
>= 0 && j
>= 0
1126 && src
->var_part
[i
].offset
== dst
->var_part
[j
].offset
)
1128 /* Compute the "sorted" union of the chains, i.e. the locations which
1129 are in both chains go first, they are sorted by the sum of
1130 positions in the chains. */
1133 struct variable_union_info
*vui
;
1135 /* If DST is shared compare the location chains.
1136 If they are different we will modify the chain in DST with
1137 high probability so make a copy of DST. */
1138 if (dst
->refcount
> 1)
1140 for (node
= src
->var_part
[i
].loc_chain
,
1141 node2
= dst
->var_part
[j
].loc_chain
; node
&& node2
;
1142 node
= node
->next
, node2
= node2
->next
)
1144 if (!((REG_P (node2
->loc
)
1145 && REG_P (node
->loc
)
1146 && REGNO (node2
->loc
) == REGNO (node
->loc
))
1147 || rtx_equal_p (node2
->loc
, node
->loc
)))
1151 dst
= unshare_variable (set
, dst
);
1155 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
1158 for (node
= dst
->var_part
[j
].loc_chain
; node
; node
= node
->next
)
1160 vui
= XCNEWVEC (struct variable_union_info
, src_l
+ dst_l
);
1162 /* Fill in the locations from DST. */
1163 for (node
= dst
->var_part
[j
].loc_chain
, jj
= 0; node
;
1164 node
= node
->next
, jj
++)
1167 vui
[jj
].pos_dst
= jj
;
1169 /* Value larger than a sum of 2 valid positions. */
1170 vui
[jj
].pos_src
= src_l
+ dst_l
;
1173 /* Fill in the locations from SRC. */
1175 for (node
= src
->var_part
[i
].loc_chain
, ii
= 0; node
;
1176 node
= node
->next
, ii
++)
1178 /* Find location from NODE. */
1179 for (jj
= 0; jj
< dst_l
; jj
++)
1181 if ((REG_P (vui
[jj
].lc
->loc
)
1182 && REG_P (node
->loc
)
1183 && REGNO (vui
[jj
].lc
->loc
) == REGNO (node
->loc
))
1184 || rtx_equal_p (vui
[jj
].lc
->loc
, node
->loc
))
1186 vui
[jj
].pos_src
= ii
;
1190 if (jj
>= dst_l
) /* The location has not been found. */
1192 location_chain new_node
;
1194 /* Copy the location from SRC. */
1195 new_node
= pool_alloc (loc_chain_pool
);
1196 new_node
->loc
= node
->loc
;
1197 vui
[n
].lc
= new_node
;
1198 vui
[n
].pos_src
= ii
;
1199 vui
[n
].pos_dst
= src_l
+ dst_l
;
1204 for (ii
= 0; ii
< src_l
+ dst_l
; ii
++)
1205 vui
[ii
].pos
= vui
[ii
].pos_src
+ vui
[ii
].pos_dst
;
1207 qsort (vui
, n
, sizeof (struct variable_union_info
),
1208 variable_union_info_cmp_pos
);
1210 /* Reconnect the nodes in sorted order. */
1211 for (ii
= 1; ii
< n
; ii
++)
1212 vui
[ii
- 1].lc
->next
= vui
[ii
].lc
;
1213 vui
[n
- 1].lc
->next
= NULL
;
1215 dst
->var_part
[k
].loc_chain
= vui
[0].lc
;
1216 dst
->var_part
[k
].offset
= dst
->var_part
[j
].offset
;
1222 else if ((i
>= 0 && j
>= 0
1223 && src
->var_part
[i
].offset
< dst
->var_part
[j
].offset
)
1226 dst
->var_part
[k
] = dst
->var_part
[j
];
1229 else if ((i
>= 0 && j
>= 0
1230 && src
->var_part
[i
].offset
> dst
->var_part
[j
].offset
)
1233 location_chain
*nextp
;
1235 /* Copy the chain from SRC. */
1236 nextp
= &dst
->var_part
[k
].loc_chain
;
1237 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
1239 location_chain new_lc
;
1241 new_lc
= pool_alloc (loc_chain_pool
);
1242 new_lc
->next
= NULL
;
1243 new_lc
->loc
= node
->loc
;
1246 nextp
= &new_lc
->next
;
1249 dst
->var_part
[k
].offset
= src
->var_part
[i
].offset
;
1253 /* We are at the basic block boundary when computing union
1254 so set the CUR_LOC to be the first element of the chain. */
1255 if (dst
->var_part
[k
].loc_chain
)
1256 dst
->var_part
[k
].cur_loc
= dst
->var_part
[k
].loc_chain
->loc
;
1258 dst
->var_part
[k
].cur_loc
= NULL
;
1261 /* Continue traversing the hash table. */
1265 /* Compute union of dataflow sets SRC and DST and store it to DST. */
1268 dataflow_set_union (dataflow_set
*dst
, dataflow_set
*src
)
1272 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1273 attrs_list_union (&dst
->regs
[i
], src
->regs
[i
]);
1275 htab_traverse (src
->vars
, variable_union
, dst
);
1278 /* Flag whether two dataflow sets being compared contain different data. */
1280 dataflow_set_different_value
;
1283 variable_part_different_p (variable_part
*vp1
, variable_part
*vp2
)
1285 location_chain lc1
, lc2
;
1287 for (lc1
= vp1
->loc_chain
; lc1
; lc1
= lc1
->next
)
1289 for (lc2
= vp2
->loc_chain
; lc2
; lc2
= lc2
->next
)
1291 if (REG_P (lc1
->loc
) && REG_P (lc2
->loc
))
1293 if (REGNO (lc1
->loc
) == REGNO (lc2
->loc
))
1296 if (rtx_equal_p (lc1
->loc
, lc2
->loc
))
1305 /* Return true if variables VAR1 and VAR2 are different.
1306 If COMPARE_CURRENT_LOCATION is true compare also the cur_loc of each
1310 variable_different_p (variable var1
, variable var2
,
1311 bool compare_current_location
)
1318 if (var1
->n_var_parts
!= var2
->n_var_parts
)
1321 for (i
= 0; i
< var1
->n_var_parts
; i
++)
1323 if (var1
->var_part
[i
].offset
!= var2
->var_part
[i
].offset
)
1325 if (compare_current_location
)
1327 if (!((REG_P (var1
->var_part
[i
].cur_loc
)
1328 && REG_P (var2
->var_part
[i
].cur_loc
)
1329 && (REGNO (var1
->var_part
[i
].cur_loc
)
1330 == REGNO (var2
->var_part
[i
].cur_loc
)))
1331 || rtx_equal_p (var1
->var_part
[i
].cur_loc
,
1332 var2
->var_part
[i
].cur_loc
)))
1335 if (variable_part_different_p (&var1
->var_part
[i
], &var2
->var_part
[i
]))
1337 if (variable_part_different_p (&var2
->var_part
[i
], &var1
->var_part
[i
]))
1343 /* Compare variable *SLOT with the same variable in hash table DATA
1344 and set DATAFLOW_SET_DIFFERENT_VALUE if they are different. */
1347 dataflow_set_different_1 (void **slot
, void *data
)
1349 htab_t htab
= (htab_t
) data
;
1350 variable var1
, var2
;
1352 var1
= *(variable
*) slot
;
1353 var2
= htab_find_with_hash (htab
, var1
->decl
,
1354 VARIABLE_HASH_VAL (var1
->decl
));
1357 dataflow_set_different_value
= true;
1359 /* Stop traversing the hash table. */
1363 if (variable_different_p (var1
, var2
, false))
1365 dataflow_set_different_value
= true;
1367 /* Stop traversing the hash table. */
1371 /* Continue traversing the hash table. */
1375 /* Compare variable *SLOT with the same variable in hash table DATA
1376 and set DATAFLOW_SET_DIFFERENT_VALUE if they are different. */
1379 dataflow_set_different_2 (void **slot
, void *data
)
1381 htab_t htab
= (htab_t
) data
;
1382 variable var1
, var2
;
1384 var1
= *(variable
*) slot
;
1385 var2
= htab_find_with_hash (htab
, var1
->decl
,
1386 VARIABLE_HASH_VAL (var1
->decl
));
1389 dataflow_set_different_value
= true;
1391 /* Stop traversing the hash table. */
1395 /* If both variables are defined they have been already checked for
1397 gcc_assert (!variable_different_p (var1
, var2
, false));
1399 /* Continue traversing the hash table. */
1403 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
1406 dataflow_set_different (dataflow_set
*old_set
, dataflow_set
*new_set
)
1408 dataflow_set_different_value
= false;
1410 htab_traverse (old_set
->vars
, dataflow_set_different_1
, new_set
->vars
);
1411 if (!dataflow_set_different_value
)
1413 /* We have compared the variables which are in both hash tables
1414 so now only check whether there are some variables in NEW_SET->VARS
1415 which are not in OLD_SET->VARS. */
1416 htab_traverse (new_set
->vars
, dataflow_set_different_2
, old_set
->vars
);
1418 return dataflow_set_different_value
;
1421 /* Free the contents of dataflow set SET. */
1424 dataflow_set_destroy (dataflow_set
*set
)
1428 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1429 attrs_list_clear (&set
->regs
[i
]);
1431 htab_delete (set
->vars
);
1435 /* Return true if RTL X contains a SYMBOL_REF. */
1438 contains_symbol_ref (rtx x
)
1447 code
= GET_CODE (x
);
1448 if (code
== SYMBOL_REF
)
1451 fmt
= GET_RTX_FORMAT (code
);
1452 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1456 if (contains_symbol_ref (XEXP (x
, i
)))
1459 else if (fmt
[i
] == 'E')
1462 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1463 if (contains_symbol_ref (XVECEXP (x
, i
, j
)))
1471 /* Shall EXPR be tracked? */
1474 track_expr_p (tree expr
)
1479 /* If EXPR is not a parameter or a variable do not track it. */
1480 if (TREE_CODE (expr
) != VAR_DECL
&& TREE_CODE (expr
) != PARM_DECL
)
1483 /* It also must have a name... */
1484 if (!DECL_NAME (expr
))
1487 /* ... and a RTL assigned to it. */
1488 decl_rtl
= DECL_RTL_IF_SET (expr
);
1492 /* If this expression is really a debug alias of some other declaration, we
1493 don't need to track this expression if the ultimate declaration is
1496 if (DECL_DEBUG_EXPR_IS_FROM (realdecl
) && DECL_DEBUG_EXPR (realdecl
))
1498 realdecl
= DECL_DEBUG_EXPR (realdecl
);
1499 /* ??? We don't yet know how to emit DW_OP_piece for variable
1500 that has been SRA'ed. */
1501 if (!DECL_P (realdecl
))
1505 /* Do not track EXPR if REALDECL it should be ignored for debugging
1507 if (DECL_IGNORED_P (realdecl
))
1510 /* Do not track global variables until we are able to emit correct location
1512 if (TREE_STATIC (realdecl
))
1515 /* When the EXPR is a DECL for alias of some variable (see example)
1516 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
1517 DECL_RTL contains SYMBOL_REF.
1520 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
1523 if (MEM_P (decl_rtl
)
1524 && contains_symbol_ref (XEXP (decl_rtl
, 0)))
1527 /* If RTX is a memory it should not be very large (because it would be
1528 an array or struct). */
1529 if (MEM_P (decl_rtl
))
1531 /* Do not track structures and arrays. */
1532 if (GET_MODE (decl_rtl
) == BLKmode
)
1534 if (MEM_SIZE (decl_rtl
)
1535 && INTVAL (MEM_SIZE (decl_rtl
)) > MAX_VAR_PARTS
)
1542 /* Determine whether a given LOC refers to the same variable part as
1546 same_variable_part_p (rtx loc
, tree expr
, HOST_WIDE_INT offset
)
1549 HOST_WIDE_INT offset2
;
1551 if (! DECL_P (expr
))
1556 expr2
= REG_EXPR (loc
);
1557 offset2
= REG_OFFSET (loc
);
1559 else if (MEM_P (loc
))
1561 expr2
= MEM_EXPR (loc
);
1562 offset2
= MEM_OFFSET (loc
) ? INTVAL (MEM_OFFSET (loc
)) : 0;
1567 if (! expr2
|| ! DECL_P (expr2
))
1570 expr
= var_debug_decl (expr
);
1571 expr2
= var_debug_decl (expr2
);
1573 return (expr
== expr2
&& offset
== offset2
);
1577 /* Count uses (register and memory references) LOC which will be tracked.
1578 INSN is instruction which the LOC is part of. */
1581 count_uses (rtx
*loc
, void *insn
)
1583 basic_block bb
= BLOCK_FOR_INSN ((rtx
) insn
);
1587 gcc_assert (REGNO (*loc
) < FIRST_PSEUDO_REGISTER
);
1590 else if (MEM_P (*loc
)
1592 && track_expr_p (MEM_EXPR (*loc
)))
1600 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
1603 count_uses_1 (rtx
*x
, void *insn
)
1605 for_each_rtx (x
, count_uses
, insn
);
1608 /* Count stores (register and memory references) LOC which will be tracked.
1609 INSN is instruction which the LOC is part of. */
1612 count_stores (rtx loc
, rtx expr ATTRIBUTE_UNUSED
, void *insn
)
1614 count_uses (&loc
, insn
);
1617 /* Add uses (register and memory references) LOC which will be tracked
1618 to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
1621 add_uses (rtx
*loc
, void *insn
)
1625 basic_block bb
= BLOCK_FOR_INSN ((rtx
) insn
);
1626 micro_operation
*mo
= VTI (bb
)->mos
+ VTI (bb
)->n_mos
++;
1628 mo
->type
= ((REG_EXPR (*loc
) && track_expr_p (REG_EXPR (*loc
)))
1629 ? MO_USE
: MO_USE_NO_VAR
);
1631 mo
->insn
= (rtx
) insn
;
1633 else if (MEM_P (*loc
)
1635 && track_expr_p (MEM_EXPR (*loc
)))
1637 basic_block bb
= BLOCK_FOR_INSN ((rtx
) insn
);
1638 micro_operation
*mo
= VTI (bb
)->mos
+ VTI (bb
)->n_mos
++;
1642 mo
->insn
= (rtx
) insn
;
1648 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
1651 add_uses_1 (rtx
*x
, void *insn
)
1653 for_each_rtx (x
, add_uses
, insn
);
1656 /* Add stores (register and memory references) LOC which will be tracked
1657 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
1658 INSN is instruction which the LOC is part of. */
1661 add_stores (rtx loc
, rtx expr
, void *insn
)
1665 basic_block bb
= BLOCK_FOR_INSN ((rtx
) insn
);
1666 micro_operation
*mo
= VTI (bb
)->mos
+ VTI (bb
)->n_mos
++;
1668 if (GET_CODE (expr
) == CLOBBER
1670 || ! track_expr_p (REG_EXPR (loc
)))
1671 mo
->type
= MO_CLOBBER
;
1672 else if (GET_CODE (expr
) == SET
1673 && SET_DEST (expr
) == loc
1674 && same_variable_part_p (SET_SRC (expr
),
1681 mo
->insn
= NEXT_INSN ((rtx
) insn
);
1683 else if (MEM_P (loc
)
1685 && track_expr_p (MEM_EXPR (loc
)))
1687 basic_block bb
= BLOCK_FOR_INSN ((rtx
) insn
);
1688 micro_operation
*mo
= VTI (bb
)->mos
+ VTI (bb
)->n_mos
++;
1690 if (GET_CODE (expr
) == CLOBBER
)
1691 mo
->type
= MO_CLOBBER
;
1692 else if (GET_CODE (expr
) == SET
1693 && SET_DEST (expr
) == loc
1694 && same_variable_part_p (SET_SRC (expr
),
1697 ? INTVAL (MEM_OFFSET (loc
)) : 0))
1702 mo
->insn
= NEXT_INSN ((rtx
) insn
);
1706 /* Compute the changes of variable locations in the basic block BB. */
1709 compute_bb_dataflow (basic_block bb
)
1713 dataflow_set old_out
;
1714 dataflow_set
*in
= &VTI (bb
)->in
;
1715 dataflow_set
*out
= &VTI (bb
)->out
;
1717 dataflow_set_init (&old_out
, htab_elements (VTI (bb
)->out
.vars
) + 3);
1718 dataflow_set_copy (&old_out
, out
);
1719 dataflow_set_copy (out
, in
);
1721 n
= VTI (bb
)->n_mos
;
1722 for (i
= 0; i
< n
; i
++)
1724 switch (VTI (bb
)->mos
[i
].type
)
1727 for (r
= 0; r
< FIRST_PSEUDO_REGISTER
; r
++)
1728 if (TEST_HARD_REG_BIT (call_used_reg_set
, r
))
1729 var_regno_delete (out
, r
);
1734 rtx loc
= VTI (bb
)->mos
[i
].u
.loc
;
1736 if (GET_CODE (loc
) == REG
)
1737 var_reg_set (out
, loc
);
1738 else if (GET_CODE (loc
) == MEM
)
1739 var_mem_set (out
, loc
);
1745 rtx loc
= VTI (bb
)->mos
[i
].u
.loc
;
1748 var_reg_delete_and_set (out
, loc
, true);
1749 else if (MEM_P (loc
))
1750 var_mem_delete_and_set (out
, loc
, true);
1756 rtx loc
= VTI (bb
)->mos
[i
].u
.loc
;
1759 var_reg_delete_and_set (out
, loc
, false);
1760 else if (MEM_P (loc
))
1761 var_mem_delete_and_set (out
, loc
, false);
1767 rtx loc
= VTI (bb
)->mos
[i
].u
.loc
;
1770 var_reg_delete (out
, loc
, false);
1771 else if (MEM_P (loc
))
1772 var_mem_delete (out
, loc
, false);
1778 rtx loc
= VTI (bb
)->mos
[i
].u
.loc
;
1781 var_reg_delete (out
, loc
, true);
1782 else if (MEM_P (loc
))
1783 var_mem_delete (out
, loc
, true);
1788 out
->stack_adjust
+= VTI (bb
)->mos
[i
].u
.adjust
;
1793 changed
= dataflow_set_different (&old_out
, out
);
1794 dataflow_set_destroy (&old_out
);
1798 /* Find the locations of variables in the whole function. */
1801 vt_find_locations (void)
1803 fibheap_t worklist
, pending
, fibheap_swap
;
1804 sbitmap visited
, in_worklist
, in_pending
, sbitmap_swap
;
1811 /* Compute reverse completion order of depth first search of the CFG
1812 so that the data-flow runs faster. */
1813 rc_order
= XNEWVEC (int, n_basic_blocks
- NUM_FIXED_BLOCKS
);
1814 bb_order
= XNEWVEC (int, last_basic_block
);
1815 pre_and_rev_post_order_compute (NULL
, rc_order
, false);
1816 for (i
= 0; i
< n_basic_blocks
- NUM_FIXED_BLOCKS
; i
++)
1817 bb_order
[rc_order
[i
]] = i
;
1820 worklist
= fibheap_new ();
1821 pending
= fibheap_new ();
1822 visited
= sbitmap_alloc (last_basic_block
);
1823 in_worklist
= sbitmap_alloc (last_basic_block
);
1824 in_pending
= sbitmap_alloc (last_basic_block
);
1825 sbitmap_zero (in_worklist
);
1828 fibheap_insert (pending
, bb_order
[bb
->index
], bb
);
1829 sbitmap_ones (in_pending
);
1831 while (!fibheap_empty (pending
))
1833 fibheap_swap
= pending
;
1835 worklist
= fibheap_swap
;
1836 sbitmap_swap
= in_pending
;
1837 in_pending
= in_worklist
;
1838 in_worklist
= sbitmap_swap
;
1840 sbitmap_zero (visited
);
1842 while (!fibheap_empty (worklist
))
1844 bb
= fibheap_extract_min (worklist
);
1845 RESET_BIT (in_worklist
, bb
->index
);
1846 if (!TEST_BIT (visited
, bb
->index
))
1851 SET_BIT (visited
, bb
->index
);
1853 /* Calculate the IN set as union of predecessor OUT sets. */
1854 dataflow_set_clear (&VTI (bb
)->in
);
1855 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1857 dataflow_set_union (&VTI (bb
)->in
, &VTI (e
->src
)->out
);
1860 changed
= compute_bb_dataflow (bb
);
1863 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1865 if (e
->dest
== EXIT_BLOCK_PTR
)
1871 if (TEST_BIT (visited
, e
->dest
->index
))
1873 if (!TEST_BIT (in_pending
, e
->dest
->index
))
1875 /* Send E->DEST to next round. */
1876 SET_BIT (in_pending
, e
->dest
->index
);
1877 fibheap_insert (pending
,
1878 bb_order
[e
->dest
->index
],
1882 else if (!TEST_BIT (in_worklist
, e
->dest
->index
))
1884 /* Add E->DEST to current round. */
1885 SET_BIT (in_worklist
, e
->dest
->index
);
1886 fibheap_insert (worklist
, bb_order
[e
->dest
->index
],
1896 fibheap_delete (worklist
);
1897 fibheap_delete (pending
);
1898 sbitmap_free (visited
);
1899 sbitmap_free (in_worklist
);
1900 sbitmap_free (in_pending
);
1903 /* Print the content of the LIST to dump file. */
1906 dump_attrs_list (attrs list
)
1908 for (; list
; list
= list
->next
)
1910 print_mem_expr (dump_file
, list
->decl
);
1911 fprintf (dump_file
, "+" HOST_WIDE_INT_PRINT_DEC
, list
->offset
);
1913 fprintf (dump_file
, "\n");
1916 /* Print the information about variable *SLOT to dump file. */
1919 dump_variable (void **slot
, void *data ATTRIBUTE_UNUSED
)
1921 variable var
= *(variable
*) slot
;
1923 location_chain node
;
1925 fprintf (dump_file
, " name: %s\n",
1926 IDENTIFIER_POINTER (DECL_NAME (var
->decl
)));
1927 for (i
= 0; i
< var
->n_var_parts
; i
++)
1929 fprintf (dump_file
, " offset %ld\n",
1930 (long) var
->var_part
[i
].offset
);
1931 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
1933 fprintf (dump_file
, " ");
1934 print_rtl_single (dump_file
, node
->loc
);
1938 /* Continue traversing the hash table. */
1942 /* Print the information about variables from hash table VARS to dump file. */
1945 dump_vars (htab_t vars
)
1947 if (htab_elements (vars
) > 0)
1949 fprintf (dump_file
, "Variables:\n");
1950 htab_traverse (vars
, dump_variable
, NULL
);
1954 /* Print the dataflow set SET to dump file. */
1957 dump_dataflow_set (dataflow_set
*set
)
1961 fprintf (dump_file
, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC
"\n",
1963 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1967 fprintf (dump_file
, "Reg %d:", i
);
1968 dump_attrs_list (set
->regs
[i
]);
1971 dump_vars (set
->vars
);
1972 fprintf (dump_file
, "\n");
1975 /* Print the IN and OUT sets for each basic block to dump file. */
1978 dump_dataflow_sets (void)
1984 fprintf (dump_file
, "\nBasic block %d:\n", bb
->index
);
1985 fprintf (dump_file
, "IN:\n");
1986 dump_dataflow_set (&VTI (bb
)->in
);
1987 fprintf (dump_file
, "OUT:\n");
1988 dump_dataflow_set (&VTI (bb
)->out
);
1992 /* Add variable VAR to the hash table of changed variables and
1993 if it has no locations delete it from hash table HTAB. */
1996 variable_was_changed (variable var
, htab_t htab
)
1998 hashval_t hash
= VARIABLE_HASH_VAL (var
->decl
);
2004 slot
= (variable
*) htab_find_slot_with_hash (changed_variables
,
2005 var
->decl
, hash
, INSERT
);
2007 if (htab
&& var
->n_var_parts
== 0)
2012 empty_var
= pool_alloc (var_pool
);
2013 empty_var
->decl
= var
->decl
;
2014 empty_var
->refcount
= 1;
2015 empty_var
->n_var_parts
= 0;
2018 old
= htab_find_slot_with_hash (htab
, var
->decl
, hash
,
2021 htab_clear_slot (htab
, old
);
2031 if (var
->n_var_parts
== 0)
2033 void **slot
= htab_find_slot_with_hash (htab
, var
->decl
, hash
,
2036 htab_clear_slot (htab
, slot
);
2041 /* Look for the index in VAR->var_part corresponding to OFFSET.
2042 Return -1 if not found. If INSERTION_POINT is non-NULL, the
2043 referenced int will be set to the index that the part has or should
2044 have, if it should be inserted. */
2047 find_variable_location_part (variable var
, HOST_WIDE_INT offset
,
2048 int *insertion_point
)
2052 /* Find the location part. */
2054 high
= var
->n_var_parts
;
2057 pos
= (low
+ high
) / 2;
2058 if (var
->var_part
[pos
].offset
< offset
)
2065 if (insertion_point
)
2066 *insertion_point
= pos
;
2068 if (pos
< var
->n_var_parts
&& var
->var_part
[pos
].offset
== offset
)
2074 /* Set the part of variable's location in the dataflow set SET. The variable
2075 part is specified by variable's declaration DECL and offset OFFSET and the
2076 part's location by LOC. */
2079 set_variable_part (dataflow_set
*set
, rtx loc
, tree decl
, HOST_WIDE_INT offset
)
2082 location_chain node
, next
;
2083 location_chain
*nextp
;
2087 slot
= htab_find_slot_with_hash (set
->vars
, decl
,
2088 VARIABLE_HASH_VAL (decl
), INSERT
);
2091 /* Create new variable information. */
2092 var
= pool_alloc (var_pool
);
2095 var
->n_var_parts
= 1;
2096 var
->var_part
[0].offset
= offset
;
2097 var
->var_part
[0].loc_chain
= NULL
;
2098 var
->var_part
[0].cur_loc
= NULL
;
2106 var
= (variable
) *slot
;
2108 pos
= find_variable_location_part (var
, offset
, &inspos
);
2112 node
= var
->var_part
[pos
].loc_chain
;
2115 && ((REG_P (node
->loc
) && REG_P (loc
)
2116 && REGNO (node
->loc
) == REGNO (loc
))
2117 || rtx_equal_p (node
->loc
, loc
)))
2119 /* LOC is in the beginning of the chain so we have nothing
2125 /* We have to make a copy of a shared variable. */
2126 if (var
->refcount
> 1)
2127 var
= unshare_variable (set
, var
);
2132 /* We have not found the location part, new one will be created. */
2134 /* We have to make a copy of the shared variable. */
2135 if (var
->refcount
> 1)
2136 var
= unshare_variable (set
, var
);
2138 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2139 thus there are at most MAX_VAR_PARTS different offsets. */
2140 gcc_assert (var
->n_var_parts
< MAX_VAR_PARTS
);
2142 /* We have to move the elements of array starting at index
2143 inspos to the next position. */
2144 for (pos
= var
->n_var_parts
; pos
> inspos
; pos
--)
2145 var
->var_part
[pos
] = var
->var_part
[pos
- 1];
2148 var
->var_part
[pos
].offset
= offset
;
2149 var
->var_part
[pos
].loc_chain
= NULL
;
2150 var
->var_part
[pos
].cur_loc
= NULL
;
2154 /* Delete the location from the list. */
2155 nextp
= &var
->var_part
[pos
].loc_chain
;
2156 for (node
= var
->var_part
[pos
].loc_chain
; node
; node
= next
)
2159 if ((REG_P (node
->loc
) && REG_P (loc
)
2160 && REGNO (node
->loc
) == REGNO (loc
))
2161 || rtx_equal_p (node
->loc
, loc
))
2163 pool_free (loc_chain_pool
, node
);
2168 nextp
= &node
->next
;
2171 /* Add the location to the beginning. */
2172 node
= pool_alloc (loc_chain_pool
);
2174 node
->next
= var
->var_part
[pos
].loc_chain
;
2175 var
->var_part
[pos
].loc_chain
= node
;
2177 /* If no location was emitted do so. */
2178 if (var
->var_part
[pos
].cur_loc
== NULL
)
2180 var
->var_part
[pos
].cur_loc
= loc
;
2181 variable_was_changed (var
, set
->vars
);
2185 /* Remove all recorded register locations for the given variable part
2186 from dataflow set SET, except for those that are identical to loc.
2187 The variable part is specified by variable's declaration DECL and
2191 clobber_variable_part (dataflow_set
*set
, rtx loc
, tree decl
,
2192 HOST_WIDE_INT offset
)
2196 if (! decl
|| ! DECL_P (decl
))
2199 slot
= htab_find_slot_with_hash (set
->vars
, decl
, VARIABLE_HASH_VAL (decl
),
2203 variable var
= (variable
) *slot
;
2204 int pos
= find_variable_location_part (var
, offset
, NULL
);
2208 location_chain node
, next
;
2210 /* Remove the register locations from the dataflow set. */
2211 next
= var
->var_part
[pos
].loc_chain
;
2212 for (node
= next
; node
; node
= next
)
2215 if (node
->loc
!= loc
)
2217 if (REG_P (node
->loc
))
2222 /* Remove the variable part from the register's
2223 list, but preserve any other variable parts
2224 that might be regarded as live in that same
2226 anextp
= &set
->regs
[REGNO (node
->loc
)];
2227 for (anode
= *anextp
; anode
; anode
= anext
)
2229 anext
= anode
->next
;
2230 if (anode
->decl
== decl
2231 && anode
->offset
== offset
)
2233 pool_free (attrs_pool
, anode
);
2239 delete_variable_part (set
, node
->loc
, decl
, offset
);
2246 /* Delete the part of variable's location from dataflow set SET. The variable
2247 part is specified by variable's declaration DECL and offset OFFSET and the
2248 part's location by LOC. */
2251 delete_variable_part (dataflow_set
*set
, rtx loc
, tree decl
,
2252 HOST_WIDE_INT offset
)
2256 slot
= htab_find_slot_with_hash (set
->vars
, decl
, VARIABLE_HASH_VAL (decl
),
2260 variable var
= (variable
) *slot
;
2261 int pos
= find_variable_location_part (var
, offset
, NULL
);
2265 location_chain node
, next
;
2266 location_chain
*nextp
;
2269 if (var
->refcount
> 1)
2271 /* If the variable contains the location part we have to
2272 make a copy of the variable. */
2273 for (node
= var
->var_part
[pos
].loc_chain
; node
;
2276 if ((REG_P (node
->loc
) && REG_P (loc
)
2277 && REGNO (node
->loc
) == REGNO (loc
))
2278 || rtx_equal_p (node
->loc
, loc
))
2280 var
= unshare_variable (set
, var
);
2286 /* Delete the location part. */
2287 nextp
= &var
->var_part
[pos
].loc_chain
;
2288 for (node
= *nextp
; node
; node
= next
)
2291 if ((REG_P (node
->loc
) && REG_P (loc
)
2292 && REGNO (node
->loc
) == REGNO (loc
))
2293 || rtx_equal_p (node
->loc
, loc
))
2295 pool_free (loc_chain_pool
, node
);
2300 nextp
= &node
->next
;
2303 /* If we have deleted the location which was last emitted
2304 we have to emit new location so add the variable to set
2305 of changed variables. */
2306 if (var
->var_part
[pos
].cur_loc
2308 && REG_P (var
->var_part
[pos
].cur_loc
)
2309 && REGNO (loc
) == REGNO (var
->var_part
[pos
].cur_loc
))
2310 || rtx_equal_p (loc
, var
->var_part
[pos
].cur_loc
)))
2313 if (var
->var_part
[pos
].loc_chain
)
2314 var
->var_part
[pos
].cur_loc
= var
->var_part
[pos
].loc_chain
->loc
;
2319 if (var
->var_part
[pos
].loc_chain
== NULL
)
2322 while (pos
< var
->n_var_parts
)
2324 var
->var_part
[pos
] = var
->var_part
[pos
+ 1];
2329 variable_was_changed (var
, set
->vars
);
2334 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
2335 additional parameters: WHERE specifies whether the note shall be emitted
2336 before of after instruction INSN. */
2339 emit_note_insn_var_location (void **varp
, void *data
)
2341 variable var
= *(variable
*) varp
;
2342 rtx insn
= ((emit_note_data
*)data
)->insn
;
2343 enum emit_note_where where
= ((emit_note_data
*)data
)->where
;
2345 int i
, j
, n_var_parts
;
2347 HOST_WIDE_INT last_limit
;
2348 tree type_size_unit
;
2349 HOST_WIDE_INT offsets
[MAX_VAR_PARTS
];
2350 rtx loc
[MAX_VAR_PARTS
];
2352 gcc_assert (var
->decl
);
2357 for (i
= 0; i
< var
->n_var_parts
; i
++)
2359 enum machine_mode mode
, wider_mode
;
2361 if (last_limit
< var
->var_part
[i
].offset
)
2366 else if (last_limit
> var
->var_part
[i
].offset
)
2368 offsets
[n_var_parts
] = var
->var_part
[i
].offset
;
2369 loc
[n_var_parts
] = var
->var_part
[i
].loc_chain
->loc
;
2370 mode
= GET_MODE (loc
[n_var_parts
]);
2371 last_limit
= offsets
[n_var_parts
] + GET_MODE_SIZE (mode
);
2373 /* Attempt to merge adjacent registers or memory. */
2374 wider_mode
= GET_MODE_WIDER_MODE (mode
);
2375 for (j
= i
+ 1; j
< var
->n_var_parts
; j
++)
2376 if (last_limit
<= var
->var_part
[j
].offset
)
2378 if (j
< var
->n_var_parts
2379 && wider_mode
!= VOIDmode
2380 && GET_CODE (loc
[n_var_parts
])
2381 == GET_CODE (var
->var_part
[j
].loc_chain
->loc
)
2382 && mode
== GET_MODE (var
->var_part
[j
].loc_chain
->loc
)
2383 && last_limit
== var
->var_part
[j
].offset
)
2386 rtx loc2
= var
->var_part
[j
].loc_chain
->loc
;
2388 if (REG_P (loc
[n_var_parts
])
2389 && hard_regno_nregs
[REGNO (loc
[n_var_parts
])][mode
] * 2
2390 == hard_regno_nregs
[REGNO (loc
[n_var_parts
])][wider_mode
]
2391 && REGNO (loc
[n_var_parts
])
2392 + hard_regno_nregs
[REGNO (loc
[n_var_parts
])][mode
]
2395 if (! WORDS_BIG_ENDIAN
&& ! BYTES_BIG_ENDIAN
)
2396 new_loc
= simplify_subreg (wider_mode
, loc
[n_var_parts
],
2398 else if (WORDS_BIG_ENDIAN
&& BYTES_BIG_ENDIAN
)
2399 new_loc
= simplify_subreg (wider_mode
, loc2
, mode
, 0);
2402 if (!REG_P (new_loc
)
2403 || REGNO (new_loc
) != REGNO (loc
[n_var_parts
]))
2406 REG_ATTRS (new_loc
) = REG_ATTRS (loc
[n_var_parts
]);
2409 else if (MEM_P (loc
[n_var_parts
])
2410 && GET_CODE (XEXP (loc2
, 0)) == PLUS
2411 && GET_CODE (XEXP (XEXP (loc2
, 0), 0)) == REG
2412 && GET_CODE (XEXP (XEXP (loc2
, 0), 1)) == CONST_INT
)
2414 if ((GET_CODE (XEXP (loc
[n_var_parts
], 0)) == REG
2415 && rtx_equal_p (XEXP (loc
[n_var_parts
], 0),
2416 XEXP (XEXP (loc2
, 0), 0))
2417 && INTVAL (XEXP (XEXP (loc2
, 0), 1))
2418 == GET_MODE_SIZE (mode
))
2419 || (GET_CODE (XEXP (loc
[n_var_parts
], 0)) == PLUS
2420 && GET_CODE (XEXP (XEXP (loc
[n_var_parts
], 0), 1))
2422 && rtx_equal_p (XEXP (XEXP (loc
[n_var_parts
], 0), 0),
2423 XEXP (XEXP (loc2
, 0), 0))
2424 && INTVAL (XEXP (XEXP (loc
[n_var_parts
], 0), 1))
2425 + GET_MODE_SIZE (mode
)
2426 == INTVAL (XEXP (XEXP (loc2
, 0), 1))))
2427 new_loc
= adjust_address_nv (loc
[n_var_parts
],
2433 loc
[n_var_parts
] = new_loc
;
2435 last_limit
= offsets
[n_var_parts
] + GET_MODE_SIZE (mode
);
2441 type_size_unit
= TYPE_SIZE_UNIT (TREE_TYPE (var
->decl
));
2442 if ((unsigned HOST_WIDE_INT
) last_limit
< TREE_INT_CST_LOW (type_size_unit
))
2445 if (where
== EMIT_NOTE_AFTER_INSN
)
2446 note
= emit_note_after (NOTE_INSN_VAR_LOCATION
, insn
);
2448 note
= emit_note_before (NOTE_INSN_VAR_LOCATION
, insn
);
2452 NOTE_VAR_LOCATION (note
) = gen_rtx_VAR_LOCATION (VOIDmode
, var
->decl
,
2455 else if (n_var_parts
== 1)
2458 = gen_rtx_EXPR_LIST (VOIDmode
, loc
[0], GEN_INT (offsets
[0]));
2460 NOTE_VAR_LOCATION (note
) = gen_rtx_VAR_LOCATION (VOIDmode
, var
->decl
,
2463 else if (n_var_parts
)
2467 for (i
= 0; i
< n_var_parts
; i
++)
2469 = gen_rtx_EXPR_LIST (VOIDmode
, loc
[i
], GEN_INT (offsets
[i
]));
2471 parallel
= gen_rtx_PARALLEL (VOIDmode
,
2472 gen_rtvec_v (n_var_parts
, loc
));
2473 NOTE_VAR_LOCATION (note
) = gen_rtx_VAR_LOCATION (VOIDmode
, var
->decl
,
2477 htab_clear_slot (changed_variables
, varp
);
2479 /* When there are no location parts the variable has been already
2480 removed from hash table and a new empty variable was created.
2481 Free the empty variable. */
2482 if (var
->n_var_parts
== 0)
2484 pool_free (var_pool
, var
);
2487 /* Continue traversing the hash table. */
2491 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
2492 CHANGED_VARIABLES and delete this chain. WHERE specifies whether the notes
2493 shall be emitted before of after instruction INSN. */
2496 emit_notes_for_changes (rtx insn
, enum emit_note_where where
)
2498 emit_note_data data
;
2502 htab_traverse (changed_variables
, emit_note_insn_var_location
, &data
);
2505 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
2506 same variable in hash table DATA or is not there at all. */
2509 emit_notes_for_differences_1 (void **slot
, void *data
)
2511 htab_t new_vars
= (htab_t
) data
;
2512 variable old_var
, new_var
;
2514 old_var
= *(variable
*) slot
;
2515 new_var
= htab_find_with_hash (new_vars
, old_var
->decl
,
2516 VARIABLE_HASH_VAL (old_var
->decl
));
2520 /* Variable has disappeared. */
2523 empty_var
= pool_alloc (var_pool
);
2524 empty_var
->decl
= old_var
->decl
;
2525 empty_var
->refcount
= 1;
2526 empty_var
->n_var_parts
= 0;
2527 variable_was_changed (empty_var
, NULL
);
2529 else if (variable_different_p (old_var
, new_var
, true))
2531 variable_was_changed (new_var
, NULL
);
2534 /* Continue traversing the hash table. */
2538 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
2542 emit_notes_for_differences_2 (void **slot
, void *data
)
2544 htab_t old_vars
= (htab_t
) data
;
2545 variable old_var
, new_var
;
2547 new_var
= *(variable
*) slot
;
2548 old_var
= htab_find_with_hash (old_vars
, new_var
->decl
,
2549 VARIABLE_HASH_VAL (new_var
->decl
));
2552 /* Variable has appeared. */
2553 variable_was_changed (new_var
, NULL
);
2556 /* Continue traversing the hash table. */
2560 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
2564 emit_notes_for_differences (rtx insn
, dataflow_set
*old_set
,
2565 dataflow_set
*new_set
)
2567 htab_traverse (old_set
->vars
, emit_notes_for_differences_1
, new_set
->vars
);
2568 htab_traverse (new_set
->vars
, emit_notes_for_differences_2
, old_set
->vars
);
2569 emit_notes_for_changes (insn
, EMIT_NOTE_BEFORE_INSN
);
2572 /* Emit the notes for changes of location parts in the basic block BB. */
2575 emit_notes_in_bb (basic_block bb
)
2580 dataflow_set_init (&set
, htab_elements (VTI (bb
)->in
.vars
) + 3);
2581 dataflow_set_copy (&set
, &VTI (bb
)->in
);
2583 for (i
= 0; i
< VTI (bb
)->n_mos
; i
++)
2585 rtx insn
= VTI (bb
)->mos
[i
].insn
;
2587 switch (VTI (bb
)->mos
[i
].type
)
2593 for (r
= 0; r
< FIRST_PSEUDO_REGISTER
; r
++)
2594 if (TEST_HARD_REG_BIT (call_used_reg_set
, r
))
2596 var_regno_delete (&set
, r
);
2598 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_INSN
);
2604 rtx loc
= VTI (bb
)->mos
[i
].u
.loc
;
2606 if (GET_CODE (loc
) == REG
)
2607 var_reg_set (&set
, loc
);
2609 var_mem_set (&set
, loc
);
2611 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_INSN
);
2617 rtx loc
= VTI (bb
)->mos
[i
].u
.loc
;
2620 var_reg_delete_and_set (&set
, loc
, true);
2622 var_mem_delete_and_set (&set
, loc
, true);
2624 emit_notes_for_changes (insn
, EMIT_NOTE_BEFORE_INSN
);
2630 rtx loc
= VTI (bb
)->mos
[i
].u
.loc
;
2633 var_reg_delete_and_set (&set
, loc
, false);
2635 var_mem_delete_and_set (&set
, loc
, false);
2637 emit_notes_for_changes (insn
, EMIT_NOTE_BEFORE_INSN
);
2643 rtx loc
= VTI (bb
)->mos
[i
].u
.loc
;
2646 var_reg_delete (&set
, loc
, false);
2648 var_mem_delete (&set
, loc
, false);
2650 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_INSN
);
2656 rtx loc
= VTI (bb
)->mos
[i
].u
.loc
;
2659 var_reg_delete (&set
, loc
, true);
2661 var_mem_delete (&set
, loc
, true);
2663 emit_notes_for_changes (insn
, EMIT_NOTE_BEFORE_INSN
);
2668 set
.stack_adjust
+= VTI (bb
)->mos
[i
].u
.adjust
;
2672 dataflow_set_destroy (&set
);
2675 /* Emit notes for the whole function. */
2678 vt_emit_notes (void)
2681 dataflow_set
*last_out
;
2684 gcc_assert (!htab_elements (changed_variables
));
2686 /* Enable emitting notes by functions (mainly by set_variable_part and
2687 delete_variable_part). */
2690 dataflow_set_init (&empty
, 7);
2695 /* Emit the notes for changes of variable locations between two
2696 subsequent basic blocks. */
2697 emit_notes_for_differences (BB_HEAD (bb
), last_out
, &VTI (bb
)->in
);
2699 /* Emit the notes for the changes in the basic block itself. */
2700 emit_notes_in_bb (bb
);
2702 last_out
= &VTI (bb
)->out
;
2704 dataflow_set_destroy (&empty
);
2708 /* If there is a declaration and offset associated with register/memory RTL
2709 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
2712 vt_get_decl_and_offset (rtx rtl
, tree
*declp
, HOST_WIDE_INT
*offsetp
)
2716 if (REG_ATTRS (rtl
))
2718 *declp
= REG_EXPR (rtl
);
2719 *offsetp
= REG_OFFSET (rtl
);
2723 else if (MEM_P (rtl
))
2725 if (MEM_ATTRS (rtl
))
2727 *declp
= MEM_EXPR (rtl
);
2728 *offsetp
= MEM_OFFSET (rtl
) ? INTVAL (MEM_OFFSET (rtl
)) : 0;
2735 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
2738 vt_add_function_parameters (void)
2742 for (parm
= DECL_ARGUMENTS (current_function_decl
);
2743 parm
; parm
= TREE_CHAIN (parm
))
2745 rtx decl_rtl
= DECL_RTL_IF_SET (parm
);
2746 rtx incoming
= DECL_INCOMING_RTL (parm
);
2748 HOST_WIDE_INT offset
;
2751 if (TREE_CODE (parm
) != PARM_DECL
)
2754 if (!DECL_NAME (parm
))
2757 if (!decl_rtl
|| !incoming
)
2760 if (GET_MODE (decl_rtl
) == BLKmode
|| GET_MODE (incoming
) == BLKmode
)
2763 if (!vt_get_decl_and_offset (incoming
, &decl
, &offset
))
2764 if (!vt_get_decl_and_offset (decl_rtl
, &decl
, &offset
))
2770 gcc_assert (parm
== decl
);
2772 out
= &VTI (ENTRY_BLOCK_PTR
)->out
;
2774 if (REG_P (incoming
))
2776 gcc_assert (REGNO (incoming
) < FIRST_PSEUDO_REGISTER
);
2777 attrs_list_insert (&out
->regs
[REGNO (incoming
)],
2778 parm
, offset
, incoming
);
2779 set_variable_part (out
, incoming
, parm
, offset
);
2781 else if (MEM_P (incoming
))
2782 set_variable_part (out
, incoming
, parm
, offset
);
2786 /* Allocate and initialize the data structures for variable tracking
2787 and parse the RTL to get the micro operations. */
2790 vt_initialize (void)
2794 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def
));
2799 HOST_WIDE_INT pre
, post
= 0;
2801 /* Count the number of micro operations. */
2802 VTI (bb
)->n_mos
= 0;
2803 for (insn
= BB_HEAD (bb
); insn
!= NEXT_INSN (BB_END (bb
));
2804 insn
= NEXT_INSN (insn
))
2808 if (!frame_pointer_needed
)
2810 insn_stack_adjust_offset_pre_post (insn
, &pre
, &post
);
2816 note_uses (&PATTERN (insn
), count_uses_1
, insn
);
2817 note_stores (PATTERN (insn
), count_stores
, insn
);
2823 /* Add the micro-operations to the array. */
2824 VTI (bb
)->mos
= XNEWVEC (micro_operation
, VTI (bb
)->n_mos
);
2825 VTI (bb
)->n_mos
= 0;
2826 for (insn
= BB_HEAD (bb
); insn
!= NEXT_INSN (BB_END (bb
));
2827 insn
= NEXT_INSN (insn
))
2833 if (!frame_pointer_needed
)
2835 insn_stack_adjust_offset_pre_post (insn
, &pre
, &post
);
2838 micro_operation
*mo
= VTI (bb
)->mos
+ VTI (bb
)->n_mos
++;
2840 mo
->type
= MO_ADJUST
;
2846 n1
= VTI (bb
)->n_mos
;
2847 note_uses (&PATTERN (insn
), add_uses_1
, insn
);
2848 n2
= VTI (bb
)->n_mos
- 1;
2850 /* Order the MO_USEs to be before MO_USE_NO_VARs. */
2853 while (n1
< n2
&& VTI (bb
)->mos
[n1
].type
== MO_USE
)
2855 while (n1
< n2
&& VTI (bb
)->mos
[n2
].type
== MO_USE_NO_VAR
)
2861 sw
= VTI (bb
)->mos
[n1
];
2862 VTI (bb
)->mos
[n1
] = VTI (bb
)->mos
[n2
];
2863 VTI (bb
)->mos
[n2
] = sw
;
2869 micro_operation
*mo
= VTI (bb
)->mos
+ VTI (bb
)->n_mos
++;
2875 n1
= VTI (bb
)->n_mos
;
2876 /* This will record NEXT_INSN (insn), such that we can
2877 insert notes before it without worrying about any
2878 notes that MO_USEs might emit after the insn. */
2879 note_stores (PATTERN (insn
), add_stores
, insn
);
2880 n2
= VTI (bb
)->n_mos
- 1;
2882 /* Order the MO_CLOBBERs to be before MO_SETs. */
2885 while (n1
< n2
&& VTI (bb
)->mos
[n1
].type
== MO_CLOBBER
)
2887 while (n1
< n2
&& (VTI (bb
)->mos
[n2
].type
== MO_SET
2888 || VTI (bb
)->mos
[n2
].type
== MO_COPY
))
2894 sw
= VTI (bb
)->mos
[n1
];
2895 VTI (bb
)->mos
[n1
] = VTI (bb
)->mos
[n2
];
2896 VTI (bb
)->mos
[n2
] = sw
;
2900 if (!frame_pointer_needed
&& post
)
2902 micro_operation
*mo
= VTI (bb
)->mos
+ VTI (bb
)->n_mos
++;
2904 mo
->type
= MO_ADJUST
;
2905 mo
->u
.adjust
= post
;
2912 /* Init the IN and OUT sets. */
2915 VTI (bb
)->visited
= false;
2916 dataflow_set_init (&VTI (bb
)->in
, 7);
2917 dataflow_set_init (&VTI (bb
)->out
, 7);
2920 attrs_pool
= create_alloc_pool ("attrs_def pool",
2921 sizeof (struct attrs_def
), 1024);
2922 var_pool
= create_alloc_pool ("variable_def pool",
2923 sizeof (struct variable_def
), 64);
2924 loc_chain_pool
= create_alloc_pool ("location_chain_def pool",
2925 sizeof (struct location_chain_def
),
2927 changed_variables
= htab_create (10, variable_htab_hash
, variable_htab_eq
,
2929 vt_add_function_parameters ();
2932 /* Free the data structures needed for variable tracking. */
2941 free (VTI (bb
)->mos
);
2946 dataflow_set_destroy (&VTI (bb
)->in
);
2947 dataflow_set_destroy (&VTI (bb
)->out
);
2949 free_aux_for_blocks ();
2950 free_alloc_pool (attrs_pool
);
2951 free_alloc_pool (var_pool
);
2952 free_alloc_pool (loc_chain_pool
);
2953 htab_delete (changed_variables
);
2956 /* The entry point to variable tracking pass. */
2959 variable_tracking_main (void)
2961 if (n_basic_blocks
> 500 && n_edges
/ n_basic_blocks
>= 20)
2964 mark_dfs_back_edges ();
2966 if (!frame_pointer_needed
)
2968 if (!vt_stack_adjustments ())
2975 vt_find_locations ();
2978 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2980 dump_dataflow_sets ();
2981 dump_flow_info (dump_file
, dump_flags
);
2989 gate_handle_var_tracking (void)
2991 return (flag_var_tracking
);
2996 struct tree_opt_pass pass_variable_tracking
=
2998 "vartrack", /* name */
2999 gate_handle_var_tracking
, /* gate */
3000 variable_tracking_main
, /* execute */
3003 0, /* static_pass_number */
3004 TV_VAR_TRACKING
, /* tv_id */
3005 0, /* properties_required */
3006 0, /* properties_provided */
3007 0, /* properties_destroyed */
3008 0, /* todo_flags_start */
3009 TODO_dump_func
, /* todo_flags_finish */