re PR fortran/30371 (kill suboutine accepts (invalid) array arguments.)
[official-gcc.git] / gcc / var-tracking.c
blob815facae1820e47b06f0c10b7aac1e6ecd781f7d
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
19 02110-1301, USA. */
21 /* This file contains the variable tracking pass. It computes where
22 variables are located (which registers or where in memory) at each position
23 in instruction stream and emits notes describing the locations.
24 Debug information (DWARF2 location lists) is finally generated from
25 these notes.
26 With this debug information, it is possible to show variables
27 even when debugging optimized code.
29 How does the variable tracking pass work?
31 First, it scans RTL code for uses, stores and clobbers (register/memory
32 references in instructions), for call insns and for stack adjustments
33 separately for each basic block and saves them to an array of micro
34 operations.
35 The micro operations of one instruction are ordered so that
36 pre-modifying stack adjustment < use < use with no var < call insn <
37 < set < clobber < post-modifying stack adjustment
39 Then, a forward dataflow analysis is performed to find out how locations
40 of variables change through code and to propagate the variable locations
41 along control flow graph.
42 The IN set for basic block BB is computed as a union of OUT sets of BB's
43 predecessors, the OUT set for BB is copied from the IN set for BB and
44 is changed according to micro operations in BB.
46 The IN and OUT sets for basic blocks consist of a current stack adjustment
47 (used for adjusting offset of variables addressed using stack pointer),
48 the table of structures describing the locations of parts of a variable
49 and for each physical register a linked list for each physical register.
50 The linked list is a list of variable parts stored in the register,
51 i.e. it is a list of triplets (reg, decl, offset) where decl is
52 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
53 effective deleting appropriate variable parts when we set or clobber the
54 register.
56 There may be more than one variable part in a register. The linked lists
57 should be pretty short so it is a good data structure here.
58 For example in the following code, register allocator may assign same
59 register to variables A and B, and both of them are stored in the same
60 register in CODE:
62 if (cond)
63 set A;
64 else
65 set B;
66 CODE;
67 if (cond)
68 use A;
69 else
70 use B;
72 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
73 are emitted to appropriate positions in RTL code. Each such a note describes
74 the location of one variable at the point in instruction stream where the
75 note is. There is no need to emit a note for each variable before each
76 instruction, we only emit these notes where the location of variable changes
77 (this means that we also emit notes for changes between the OUT set of the
78 previous block and the IN set of the current block).
80 The notes consist of two parts:
81 1. the declaration (from REG_EXPR or MEM_EXPR)
82 2. the location of a variable - it is either a simple register/memory
83 reference (for simple variables, for example int),
84 or a parallel of register/memory references (for a large variables
85 which consist of several parts, for example long long).
89 #include "config.h"
90 #include "system.h"
91 #include "coretypes.h"
92 #include "tm.h"
93 #include "rtl.h"
94 #include "tree.h"
95 #include "hard-reg-set.h"
96 #include "basic-block.h"
97 #include "flags.h"
98 #include "output.h"
99 #include "insn-config.h"
100 #include "reload.h"
101 #include "sbitmap.h"
102 #include "alloc-pool.h"
103 #include "fibheap.h"
104 #include "hashtab.h"
105 #include "regs.h"
106 #include "expr.h"
107 #include "timevar.h"
108 #include "tree-pass.h"
110 /* Type of micro operation. */
111 enum micro_operation_type
113 MO_USE, /* Use location (REG or MEM). */
114 MO_USE_NO_VAR,/* Use location which is not associated with a variable
115 or the variable is not trackable. */
116 MO_SET, /* Set location. */
117 MO_COPY, /* Copy the same portion of a variable from one
118 location to another. */
119 MO_CLOBBER, /* Clobber location. */
120 MO_CALL, /* Call insn. */
121 MO_ADJUST /* Adjust stack pointer. */
124 /* Where shall the note be emitted? BEFORE or AFTER the instruction. */
125 enum emit_note_where
127 EMIT_NOTE_BEFORE_INSN,
128 EMIT_NOTE_AFTER_INSN
131 /* Structure holding information about micro operation. */
132 typedef struct micro_operation_def
134 /* Type of micro operation. */
135 enum micro_operation_type type;
137 union {
138 /* Location. */
139 rtx loc;
141 /* Stack adjustment. */
142 HOST_WIDE_INT adjust;
143 } u;
145 /* The instruction which the micro operation is in, for MO_USE,
146 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
147 instruction or note in the original flow (before any var-tracking
148 notes are inserted, to simplify emission of notes), for MO_SET
149 and MO_CLOBBER. */
150 rtx insn;
151 } micro_operation;
153 /* Structure for passing some other parameters to function
154 emit_note_insn_var_location. */
155 typedef struct emit_note_data_def
157 /* The instruction which the note will be emitted before/after. */
158 rtx insn;
160 /* Where the note will be emitted (before/after insn)? */
161 enum emit_note_where where;
162 } emit_note_data;
164 /* Description of location of a part of a variable. The content of a physical
165 register is described by a chain of these structures.
166 The chains are pretty short (usually 1 or 2 elements) and thus
167 chain is the best data structure. */
168 typedef struct attrs_def
170 /* Pointer to next member of the list. */
171 struct attrs_def *next;
173 /* The rtx of register. */
174 rtx loc;
176 /* The declaration corresponding to LOC. */
177 tree decl;
179 /* Offset from start of DECL. */
180 HOST_WIDE_INT offset;
181 } *attrs;
183 /* Structure holding the IN or OUT set for a basic block. */
184 typedef struct dataflow_set_def
186 /* Adjustment of stack offset. */
187 HOST_WIDE_INT stack_adjust;
189 /* Attributes for registers (lists of attrs). */
190 attrs regs[FIRST_PSEUDO_REGISTER];
192 /* Variable locations. */
193 htab_t vars;
194 } dataflow_set;
196 /* The structure (one for each basic block) containing the information
197 needed for variable tracking. */
198 typedef struct variable_tracking_info_def
200 /* Number of micro operations stored in the MOS array. */
201 int n_mos;
203 /* The array of micro operations. */
204 micro_operation *mos;
206 /* The IN and OUT set for dataflow analysis. */
207 dataflow_set in;
208 dataflow_set out;
210 /* Has the block been visited in DFS? */
211 bool visited;
212 } *variable_tracking_info;
214 /* Structure for chaining the locations. */
215 typedef struct location_chain_def
217 /* Next element in the chain. */
218 struct location_chain_def *next;
220 /* The location (REG or MEM). */
221 rtx loc;
222 } *location_chain;
224 /* Structure describing one part of variable. */
225 typedef struct variable_part_def
227 /* Chain of locations of the part. */
228 location_chain loc_chain;
230 /* Location which was last emitted to location list. */
231 rtx cur_loc;
233 /* The offset in the variable. */
234 HOST_WIDE_INT offset;
235 } variable_part;
237 /* Maximum number of location parts. */
238 #define MAX_VAR_PARTS 16
240 /* Structure describing where the variable is located. */
241 typedef struct variable_def
243 /* The declaration of the variable. */
244 tree decl;
246 /* Reference count. */
247 int refcount;
249 /* Number of variable parts. */
250 int n_var_parts;
252 /* The variable parts. */
253 variable_part var_part[MAX_VAR_PARTS];
254 } *variable;
256 /* Hash function for DECL for VARIABLE_HTAB. */
257 #define VARIABLE_HASH_VAL(decl) (DECL_UID (decl))
259 /* Pointer to the BB's information specific to variable tracking pass. */
260 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
262 /* Alloc pool for struct attrs_def. */
263 static alloc_pool attrs_pool;
265 /* Alloc pool for struct variable_def. */
266 static alloc_pool var_pool;
268 /* Alloc pool for struct location_chain_def. */
269 static alloc_pool loc_chain_pool;
271 /* Changed variables, notes will be emitted for them. */
272 static htab_t changed_variables;
274 /* Shall notes be emitted? */
275 static bool emit_notes;
277 /* Local function prototypes. */
278 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
279 HOST_WIDE_INT *);
280 static void insn_stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
281 HOST_WIDE_INT *);
282 static void bb_stack_adjust_offset (basic_block);
283 static bool vt_stack_adjustments (void);
284 static rtx adjust_stack_reference (rtx, HOST_WIDE_INT);
285 static hashval_t variable_htab_hash (const void *);
286 static int variable_htab_eq (const void *, const void *);
287 static void variable_htab_free (void *);
289 static void init_attrs_list_set (attrs *);
290 static void attrs_list_clear (attrs *);
291 static attrs attrs_list_member (attrs, tree, HOST_WIDE_INT);
292 static void attrs_list_insert (attrs *, tree, HOST_WIDE_INT, rtx);
293 static void attrs_list_copy (attrs *, attrs);
294 static void attrs_list_union (attrs *, attrs);
296 static void vars_clear (htab_t);
297 static variable unshare_variable (dataflow_set *set, variable var);
298 static int vars_copy_1 (void **, void *);
299 static void vars_copy (htab_t, htab_t);
300 static tree var_debug_decl (tree);
301 static void var_reg_set (dataflow_set *, rtx);
302 static void var_reg_delete_and_set (dataflow_set *, rtx, bool);
303 static void var_reg_delete (dataflow_set *, rtx, bool);
304 static void var_regno_delete (dataflow_set *, int);
305 static void var_mem_set (dataflow_set *, rtx);
306 static void var_mem_delete_and_set (dataflow_set *, rtx, bool);
307 static void var_mem_delete (dataflow_set *, rtx, bool);
309 static void dataflow_set_init (dataflow_set *, int);
310 static void dataflow_set_clear (dataflow_set *);
311 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
312 static int variable_union_info_cmp_pos (const void *, const void *);
313 static int variable_union (void **, void *);
314 static void dataflow_set_union (dataflow_set *, dataflow_set *);
315 static bool variable_part_different_p (variable_part *, variable_part *);
316 static bool variable_different_p (variable, variable, bool);
317 static int dataflow_set_different_1 (void **, void *);
318 static int dataflow_set_different_2 (void **, void *);
319 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
320 static void dataflow_set_destroy (dataflow_set *);
322 static bool contains_symbol_ref (rtx);
323 static bool track_expr_p (tree);
324 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
325 static int count_uses (rtx *, void *);
326 static void count_uses_1 (rtx *, void *);
327 static void count_stores (rtx, rtx, void *);
328 static int add_uses (rtx *, void *);
329 static void add_uses_1 (rtx *, void *);
330 static void add_stores (rtx, rtx, void *);
331 static bool compute_bb_dataflow (basic_block);
332 static void vt_find_locations (void);
334 static void dump_attrs_list (attrs);
335 static int dump_variable (void **, void *);
336 static void dump_vars (htab_t);
337 static void dump_dataflow_set (dataflow_set *);
338 static void dump_dataflow_sets (void);
340 static void variable_was_changed (variable, htab_t);
341 static void set_variable_part (dataflow_set *, rtx, tree, HOST_WIDE_INT);
342 static void clobber_variable_part (dataflow_set *, rtx, tree, HOST_WIDE_INT);
343 static void delete_variable_part (dataflow_set *, rtx, tree, HOST_WIDE_INT);
344 static int emit_note_insn_var_location (void **, void *);
345 static void emit_notes_for_changes (rtx, enum emit_note_where);
346 static int emit_notes_for_differences_1 (void **, void *);
347 static int emit_notes_for_differences_2 (void **, void *);
348 static void emit_notes_for_differences (rtx, dataflow_set *, dataflow_set *);
349 static void emit_notes_in_bb (basic_block);
350 static void vt_emit_notes (void);
352 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
353 static void vt_add_function_parameters (void);
354 static void vt_initialize (void);
355 static void vt_finalize (void);
357 /* Given a SET, calculate the amount of stack adjustment it contains
358 PRE- and POST-modifying stack pointer.
359 This function is similar to stack_adjust_offset. */
361 static void
362 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
363 HOST_WIDE_INT *post)
365 rtx src = SET_SRC (pattern);
366 rtx dest = SET_DEST (pattern);
367 enum rtx_code code;
369 if (dest == stack_pointer_rtx)
371 /* (set (reg sp) (plus (reg sp) (const_int))) */
372 code = GET_CODE (src);
373 if (! (code == PLUS || code == MINUS)
374 || XEXP (src, 0) != stack_pointer_rtx
375 || GET_CODE (XEXP (src, 1)) != CONST_INT)
376 return;
378 if (code == MINUS)
379 *post += INTVAL (XEXP (src, 1));
380 else
381 *post -= INTVAL (XEXP (src, 1));
383 else if (MEM_P (dest))
385 /* (set (mem (pre_dec (reg sp))) (foo)) */
386 src = XEXP (dest, 0);
387 code = GET_CODE (src);
389 switch (code)
391 case PRE_MODIFY:
392 case POST_MODIFY:
393 if (XEXP (src, 0) == stack_pointer_rtx)
395 rtx val = XEXP (XEXP (src, 1), 1);
396 /* We handle only adjustments by constant amount. */
397 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS &&
398 GET_CODE (val) == CONST_INT);
400 if (code == PRE_MODIFY)
401 *pre -= INTVAL (val);
402 else
403 *post -= INTVAL (val);
404 break;
406 return;
408 case PRE_DEC:
409 if (XEXP (src, 0) == stack_pointer_rtx)
411 *pre += GET_MODE_SIZE (GET_MODE (dest));
412 break;
414 return;
416 case POST_DEC:
417 if (XEXP (src, 0) == stack_pointer_rtx)
419 *post += GET_MODE_SIZE (GET_MODE (dest));
420 break;
422 return;
424 case PRE_INC:
425 if (XEXP (src, 0) == stack_pointer_rtx)
427 *pre -= GET_MODE_SIZE (GET_MODE (dest));
428 break;
430 return;
432 case POST_INC:
433 if (XEXP (src, 0) == stack_pointer_rtx)
435 *post -= GET_MODE_SIZE (GET_MODE (dest));
436 break;
438 return;
440 default:
441 return;
446 /* Given an INSN, calculate the amount of stack adjustment it contains
447 PRE- and POST-modifying stack pointer. */
449 static void
450 insn_stack_adjust_offset_pre_post (rtx insn, HOST_WIDE_INT *pre,
451 HOST_WIDE_INT *post)
453 *pre = 0;
454 *post = 0;
456 if (GET_CODE (PATTERN (insn)) == SET)
457 stack_adjust_offset_pre_post (PATTERN (insn), pre, post);
458 else if (GET_CODE (PATTERN (insn)) == PARALLEL
459 || GET_CODE (PATTERN (insn)) == SEQUENCE)
461 int i;
463 /* There may be stack adjustments inside compound insns. Search
464 for them. */
465 for ( i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
466 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
467 stack_adjust_offset_pre_post (XVECEXP (PATTERN (insn), 0, i),
468 pre, post);
472 /* Compute stack adjustment in basic block BB. */
474 static void
475 bb_stack_adjust_offset (basic_block bb)
477 HOST_WIDE_INT offset;
478 int i;
480 offset = VTI (bb)->in.stack_adjust;
481 for (i = 0; i < VTI (bb)->n_mos; i++)
483 if (VTI (bb)->mos[i].type == MO_ADJUST)
484 offset += VTI (bb)->mos[i].u.adjust;
485 else if (VTI (bb)->mos[i].type != MO_CALL)
487 if (MEM_P (VTI (bb)->mos[i].u.loc))
489 VTI (bb)->mos[i].u.loc
490 = adjust_stack_reference (VTI (bb)->mos[i].u.loc, -offset);
494 VTI (bb)->out.stack_adjust = offset;
497 /* Compute stack adjustments for all blocks by traversing DFS tree.
498 Return true when the adjustments on all incoming edges are consistent.
499 Heavily borrowed from pre_and_rev_post_order_compute. */
501 static bool
502 vt_stack_adjustments (void)
504 edge_iterator *stack;
505 int sp;
507 /* Initialize entry block. */
508 VTI (ENTRY_BLOCK_PTR)->visited = true;
509 VTI (ENTRY_BLOCK_PTR)->out.stack_adjust = INCOMING_FRAME_SP_OFFSET;
511 /* Allocate stack for back-tracking up CFG. */
512 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
513 sp = 0;
515 /* Push the first edge on to the stack. */
516 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
518 while (sp)
520 edge_iterator ei;
521 basic_block src;
522 basic_block dest;
524 /* Look at the edge on the top of the stack. */
525 ei = stack[sp - 1];
526 src = ei_edge (ei)->src;
527 dest = ei_edge (ei)->dest;
529 /* Check if the edge destination has been visited yet. */
530 if (!VTI (dest)->visited)
532 VTI (dest)->visited = true;
533 VTI (dest)->in.stack_adjust = VTI (src)->out.stack_adjust;
534 bb_stack_adjust_offset (dest);
536 if (EDGE_COUNT (dest->succs) > 0)
537 /* Since the DEST node has been visited for the first
538 time, check its successors. */
539 stack[sp++] = ei_start (dest->succs);
541 else
543 /* Check whether the adjustments on the edges are the same. */
544 if (VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
546 free (stack);
547 return false;
550 if (! ei_one_before_end_p (ei))
551 /* Go to the next edge. */
552 ei_next (&stack[sp - 1]);
553 else
554 /* Return to previous level if there are no more edges. */
555 sp--;
559 free (stack);
560 return true;
563 /* Adjust stack reference MEM by ADJUSTMENT bytes and make it relative
564 to the argument pointer. Return the new rtx. */
566 static rtx
567 adjust_stack_reference (rtx mem, HOST_WIDE_INT adjustment)
569 rtx addr, cfa, tmp;
571 #ifdef FRAME_POINTER_CFA_OFFSET
572 adjustment -= FRAME_POINTER_CFA_OFFSET (current_function_decl);
573 cfa = plus_constant (frame_pointer_rtx, adjustment);
574 #else
575 adjustment -= ARG_POINTER_CFA_OFFSET (current_function_decl);
576 cfa = plus_constant (arg_pointer_rtx, adjustment);
577 #endif
579 addr = replace_rtx (copy_rtx (XEXP (mem, 0)), stack_pointer_rtx, cfa);
580 tmp = simplify_rtx (addr);
581 if (tmp)
582 addr = tmp;
584 return replace_equiv_address_nv (mem, addr);
587 /* The hash function for variable_htab, computes the hash value
588 from the declaration of variable X. */
590 static hashval_t
591 variable_htab_hash (const void *x)
593 const variable v = (const variable) x;
595 return (VARIABLE_HASH_VAL (v->decl));
598 /* Compare the declaration of variable X with declaration Y. */
600 static int
601 variable_htab_eq (const void *x, const void *y)
603 const variable v = (const variable) x;
604 const tree decl = (const tree) y;
606 return (VARIABLE_HASH_VAL (v->decl) == VARIABLE_HASH_VAL (decl));
609 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
611 static void
612 variable_htab_free (void *elem)
614 int i;
615 variable var = (variable) elem;
616 location_chain node, next;
618 gcc_assert (var->refcount > 0);
620 var->refcount--;
621 if (var->refcount > 0)
622 return;
624 for (i = 0; i < var->n_var_parts; i++)
626 for (node = var->var_part[i].loc_chain; node; node = next)
628 next = node->next;
629 pool_free (loc_chain_pool, node);
631 var->var_part[i].loc_chain = NULL;
633 pool_free (var_pool, var);
636 /* Initialize the set (array) SET of attrs to empty lists. */
638 static void
639 init_attrs_list_set (attrs *set)
641 int i;
643 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
644 set[i] = NULL;
647 /* Make the list *LISTP empty. */
649 static void
650 attrs_list_clear (attrs *listp)
652 attrs list, next;
654 for (list = *listp; list; list = next)
656 next = list->next;
657 pool_free (attrs_pool, list);
659 *listp = NULL;
662 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
664 static attrs
665 attrs_list_member (attrs list, tree decl, HOST_WIDE_INT offset)
667 for (; list; list = list->next)
668 if (list->decl == decl && list->offset == offset)
669 return list;
670 return NULL;
673 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
675 static void
676 attrs_list_insert (attrs *listp, tree decl, HOST_WIDE_INT offset, rtx loc)
678 attrs list;
680 list = pool_alloc (attrs_pool);
681 list->loc = loc;
682 list->decl = decl;
683 list->offset = offset;
684 list->next = *listp;
685 *listp = list;
688 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
690 static void
691 attrs_list_copy (attrs *dstp, attrs src)
693 attrs n;
695 attrs_list_clear (dstp);
696 for (; src; src = src->next)
698 n = pool_alloc (attrs_pool);
699 n->loc = src->loc;
700 n->decl = src->decl;
701 n->offset = src->offset;
702 n->next = *dstp;
703 *dstp = n;
707 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
709 static void
710 attrs_list_union (attrs *dstp, attrs src)
712 for (; src; src = src->next)
714 if (!attrs_list_member (*dstp, src->decl, src->offset))
715 attrs_list_insert (dstp, src->decl, src->offset, src->loc);
719 /* Delete all variables from hash table VARS. */
721 static void
722 vars_clear (htab_t vars)
724 htab_empty (vars);
727 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
729 static variable
730 unshare_variable (dataflow_set *set, variable var)
732 void **slot;
733 variable new_var;
734 int i;
736 new_var = pool_alloc (var_pool);
737 new_var->decl = var->decl;
738 new_var->refcount = 1;
739 var->refcount--;
740 new_var->n_var_parts = var->n_var_parts;
742 for (i = 0; i < var->n_var_parts; i++)
744 location_chain node;
745 location_chain *nextp;
747 new_var->var_part[i].offset = var->var_part[i].offset;
748 nextp = &new_var->var_part[i].loc_chain;
749 for (node = var->var_part[i].loc_chain; node; node = node->next)
751 location_chain new_lc;
753 new_lc = pool_alloc (loc_chain_pool);
754 new_lc->next = NULL;
755 new_lc->loc = node->loc;
757 *nextp = new_lc;
758 nextp = &new_lc->next;
761 /* We are at the basic block boundary when copying variable description
762 so set the CUR_LOC to be the first element of the chain. */
763 if (new_var->var_part[i].loc_chain)
764 new_var->var_part[i].cur_loc = new_var->var_part[i].loc_chain->loc;
765 else
766 new_var->var_part[i].cur_loc = NULL;
769 slot = htab_find_slot_with_hash (set->vars, new_var->decl,
770 VARIABLE_HASH_VAL (new_var->decl),
771 INSERT);
772 *slot = new_var;
773 return new_var;
776 /* Add a variable from *SLOT to hash table DATA and increase its reference
777 count. */
779 static int
780 vars_copy_1 (void **slot, void *data)
782 htab_t dst = (htab_t) data;
783 variable src, *dstp;
785 src = *(variable *) slot;
786 src->refcount++;
788 dstp = (variable *) htab_find_slot_with_hash (dst, src->decl,
789 VARIABLE_HASH_VAL (src->decl),
790 INSERT);
791 *dstp = src;
793 /* Continue traversing the hash table. */
794 return 1;
797 /* Copy all variables from hash table SRC to hash table DST. */
799 static void
800 vars_copy (htab_t dst, htab_t src)
802 vars_clear (dst);
803 htab_traverse (src, vars_copy_1, dst);
806 /* Map a decl to its main debug decl. */
808 static inline tree
809 var_debug_decl (tree decl)
811 if (decl && DECL_P (decl)
812 && DECL_DEBUG_EXPR_IS_FROM (decl) && DECL_DEBUG_EXPR (decl)
813 && DECL_P (DECL_DEBUG_EXPR (decl)))
814 decl = DECL_DEBUG_EXPR (decl);
816 return decl;
819 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
821 static void
822 var_reg_set (dataflow_set *set, rtx loc)
824 tree decl = REG_EXPR (loc);
825 HOST_WIDE_INT offset = REG_OFFSET (loc);
826 attrs node;
828 decl = var_debug_decl (decl);
830 for (node = set->regs[REGNO (loc)]; node; node = node->next)
831 if (node->decl == decl && node->offset == offset)
832 break;
833 if (!node)
834 attrs_list_insert (&set->regs[REGNO (loc)], decl, offset, loc);
835 set_variable_part (set, loc, decl, offset);
838 /* Delete current content of register LOC in dataflow set SET and set
839 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
840 MODIFY is true, any other live copies of the same variable part are
841 also deleted from the dataflow set, otherwise the variable part is
842 assumed to be copied from another location holding the same
843 part. */
845 static void
846 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify)
848 tree decl = REG_EXPR (loc);
849 HOST_WIDE_INT offset = REG_OFFSET (loc);
850 attrs node, next;
851 attrs *nextp;
853 decl = var_debug_decl (decl);
855 nextp = &set->regs[REGNO (loc)];
856 for (node = *nextp; node; node = next)
858 next = node->next;
859 if (node->decl != decl || node->offset != offset)
861 delete_variable_part (set, node->loc, node->decl, node->offset);
862 pool_free (attrs_pool, node);
863 *nextp = next;
865 else
867 node->loc = loc;
868 nextp = &node->next;
871 if (modify)
872 clobber_variable_part (set, loc, decl, offset);
873 var_reg_set (set, loc);
876 /* Delete current content of register LOC in dataflow set SET. If
877 CLOBBER is true, also delete any other live copies of the same
878 variable part. */
880 static void
881 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
883 attrs *reg = &set->regs[REGNO (loc)];
884 attrs node, next;
886 if (clobber)
888 tree decl = REG_EXPR (loc);
889 HOST_WIDE_INT offset = REG_OFFSET (loc);
891 decl = var_debug_decl (decl);
893 clobber_variable_part (set, NULL, decl, offset);
896 for (node = *reg; node; node = next)
898 next = node->next;
899 delete_variable_part (set, node->loc, node->decl, node->offset);
900 pool_free (attrs_pool, node);
902 *reg = NULL;
905 /* Delete content of register with number REGNO in dataflow set SET. */
907 static void
908 var_regno_delete (dataflow_set *set, int regno)
910 attrs *reg = &set->regs[regno];
911 attrs node, next;
913 for (node = *reg; node; node = next)
915 next = node->next;
916 delete_variable_part (set, node->loc, node->decl, node->offset);
917 pool_free (attrs_pool, node);
919 *reg = NULL;
922 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
923 SET to LOC.
924 Adjust the address first if it is stack pointer based. */
926 static void
927 var_mem_set (dataflow_set *set, rtx loc)
929 tree decl = MEM_EXPR (loc);
930 HOST_WIDE_INT offset = MEM_OFFSET (loc) ? INTVAL (MEM_OFFSET (loc)) : 0;
932 decl = var_debug_decl (decl);
934 set_variable_part (set, loc, decl, offset);
937 /* Delete and set the location part of variable MEM_EXPR (LOC) in
938 dataflow set SET to LOC. If MODIFY is true, any other live copies
939 of the same variable part are also deleted from the dataflow set,
940 otherwise the variable part is assumed to be copied from another
941 location holding the same part.
942 Adjust the address first if it is stack pointer based. */
944 static void
945 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify)
947 tree decl = MEM_EXPR (loc);
948 HOST_WIDE_INT offset = MEM_OFFSET (loc) ? INTVAL (MEM_OFFSET (loc)) : 0;
950 decl = var_debug_decl (decl);
952 if (modify)
953 clobber_variable_part (set, NULL, decl, offset);
954 var_mem_set (set, loc);
957 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
958 true, also delete any other live copies of the same variable part.
959 Adjust the address first if it is stack pointer based. */
961 static void
962 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
964 tree decl = MEM_EXPR (loc);
965 HOST_WIDE_INT offset = MEM_OFFSET (loc) ? INTVAL (MEM_OFFSET (loc)) : 0;
967 decl = var_debug_decl (decl);
968 if (clobber)
969 clobber_variable_part (set, NULL, decl, offset);
970 delete_variable_part (set, loc, decl, offset);
973 /* Initialize dataflow set SET to be empty.
974 VARS_SIZE is the initial size of hash table VARS. */
976 static void
977 dataflow_set_init (dataflow_set *set, int vars_size)
979 init_attrs_list_set (set->regs);
980 set->vars = htab_create (vars_size, variable_htab_hash, variable_htab_eq,
981 variable_htab_free);
982 set->stack_adjust = 0;
985 /* Delete the contents of dataflow set SET. */
987 static void
988 dataflow_set_clear (dataflow_set *set)
990 int i;
992 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
993 attrs_list_clear (&set->regs[i]);
995 vars_clear (set->vars);
998 /* Copy the contents of dataflow set SRC to DST. */
1000 static void
1001 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
1003 int i;
1005 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1006 attrs_list_copy (&dst->regs[i], src->regs[i]);
1008 vars_copy (dst->vars, src->vars);
1009 dst->stack_adjust = src->stack_adjust;
1012 /* Information for merging lists of locations for a given offset of variable.
1014 struct variable_union_info
1016 /* Node of the location chain. */
1017 location_chain lc;
1019 /* The sum of positions in the input chains. */
1020 int pos;
1022 /* The position in the chains of SRC and DST dataflow sets. */
1023 int pos_src;
1024 int pos_dst;
1027 /* Compare function for qsort, order the structures by POS element. */
1029 static int
1030 variable_union_info_cmp_pos (const void *n1, const void *n2)
1032 const struct variable_union_info *i1 = n1;
1033 const struct variable_union_info *i2 = n2;
1035 if (i1->pos != i2->pos)
1036 return i1->pos - i2->pos;
1038 return (i1->pos_dst - i2->pos_dst);
1041 /* Compute union of location parts of variable *SLOT and the same variable
1042 from hash table DATA. Compute "sorted" union of the location chains
1043 for common offsets, i.e. the locations of a variable part are sorted by
1044 a priority where the priority is the sum of the positions in the 2 chains
1045 (if a location is only in one list the position in the second list is
1046 defined to be larger than the length of the chains).
1047 When we are updating the location parts the newest location is in the
1048 beginning of the chain, so when we do the described "sorted" union
1049 we keep the newest locations in the beginning. */
1051 static int
1052 variable_union (void **slot, void *data)
1054 variable src, dst, *dstp;
1055 dataflow_set *set = (dataflow_set *) data;
1056 int i, j, k;
1058 src = *(variable *) slot;
1059 dstp = (variable *) htab_find_slot_with_hash (set->vars, src->decl,
1060 VARIABLE_HASH_VAL (src->decl),
1061 INSERT);
1062 if (!*dstp)
1064 src->refcount++;
1066 /* If CUR_LOC of some variable part is not the first element of
1067 the location chain we are going to change it so we have to make
1068 a copy of the variable. */
1069 for (k = 0; k < src->n_var_parts; k++)
1071 gcc_assert (!src->var_part[k].loc_chain
1072 == !src->var_part[k].cur_loc);
1073 if (src->var_part[k].loc_chain)
1075 gcc_assert (src->var_part[k].cur_loc);
1076 if (src->var_part[k].cur_loc != src->var_part[k].loc_chain->loc)
1077 break;
1080 if (k < src->n_var_parts)
1081 unshare_variable (set, src);
1082 else
1083 *dstp = src;
1085 /* Continue traversing the hash table. */
1086 return 1;
1088 else
1089 dst = *dstp;
1091 gcc_assert (src->n_var_parts);
1093 /* Count the number of location parts, result is K. */
1094 for (i = 0, j = 0, k = 0;
1095 i < src->n_var_parts && j < dst->n_var_parts; k++)
1097 if (src->var_part[i].offset == dst->var_part[j].offset)
1099 i++;
1100 j++;
1102 else if (src->var_part[i].offset < dst->var_part[j].offset)
1103 i++;
1104 else
1105 j++;
1107 k += src->n_var_parts - i;
1108 k += dst->n_var_parts - j;
1110 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
1111 thus there are at most MAX_VAR_PARTS different offsets. */
1112 gcc_assert (k <= MAX_VAR_PARTS);
1114 if (dst->refcount > 1 && dst->n_var_parts != k)
1115 dst = unshare_variable (set, dst);
1117 i = src->n_var_parts - 1;
1118 j = dst->n_var_parts - 1;
1119 dst->n_var_parts = k;
1121 for (k--; k >= 0; k--)
1123 location_chain node, node2;
1125 if (i >= 0 && j >= 0
1126 && src->var_part[i].offset == dst->var_part[j].offset)
1128 /* Compute the "sorted" union of the chains, i.e. the locations which
1129 are in both chains go first, they are sorted by the sum of
1130 positions in the chains. */
1131 int dst_l, src_l;
1132 int ii, jj, n;
1133 struct variable_union_info *vui;
1135 /* If DST is shared compare the location chains.
1136 If they are different we will modify the chain in DST with
1137 high probability so make a copy of DST. */
1138 if (dst->refcount > 1)
1140 for (node = src->var_part[i].loc_chain,
1141 node2 = dst->var_part[j].loc_chain; node && node2;
1142 node = node->next, node2 = node2->next)
1144 if (!((REG_P (node2->loc)
1145 && REG_P (node->loc)
1146 && REGNO (node2->loc) == REGNO (node->loc))
1147 || rtx_equal_p (node2->loc, node->loc)))
1148 break;
1150 if (node || node2)
1151 dst = unshare_variable (set, dst);
1154 src_l = 0;
1155 for (node = src->var_part[i].loc_chain; node; node = node->next)
1156 src_l++;
1157 dst_l = 0;
1158 for (node = dst->var_part[j].loc_chain; node; node = node->next)
1159 dst_l++;
1160 vui = XCNEWVEC (struct variable_union_info, src_l + dst_l);
1162 /* Fill in the locations from DST. */
1163 for (node = dst->var_part[j].loc_chain, jj = 0; node;
1164 node = node->next, jj++)
1166 vui[jj].lc = node;
1167 vui[jj].pos_dst = jj;
1169 /* Value larger than a sum of 2 valid positions. */
1170 vui[jj].pos_src = src_l + dst_l;
1173 /* Fill in the locations from SRC. */
1174 n = dst_l;
1175 for (node = src->var_part[i].loc_chain, ii = 0; node;
1176 node = node->next, ii++)
1178 /* Find location from NODE. */
1179 for (jj = 0; jj < dst_l; jj++)
1181 if ((REG_P (vui[jj].lc->loc)
1182 && REG_P (node->loc)
1183 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
1184 || rtx_equal_p (vui[jj].lc->loc, node->loc))
1186 vui[jj].pos_src = ii;
1187 break;
1190 if (jj >= dst_l) /* The location has not been found. */
1192 location_chain new_node;
1194 /* Copy the location from SRC. */
1195 new_node = pool_alloc (loc_chain_pool);
1196 new_node->loc = node->loc;
1197 vui[n].lc = new_node;
1198 vui[n].pos_src = ii;
1199 vui[n].pos_dst = src_l + dst_l;
1200 n++;
1204 for (ii = 0; ii < src_l + dst_l; ii++)
1205 vui[ii].pos = vui[ii].pos_src + vui[ii].pos_dst;
1207 qsort (vui, n, sizeof (struct variable_union_info),
1208 variable_union_info_cmp_pos);
1210 /* Reconnect the nodes in sorted order. */
1211 for (ii = 1; ii < n; ii++)
1212 vui[ii - 1].lc->next = vui[ii].lc;
1213 vui[n - 1].lc->next = NULL;
1215 dst->var_part[k].loc_chain = vui[0].lc;
1216 dst->var_part[k].offset = dst->var_part[j].offset;
1218 free (vui);
1219 i--;
1220 j--;
1222 else if ((i >= 0 && j >= 0
1223 && src->var_part[i].offset < dst->var_part[j].offset)
1224 || i < 0)
1226 dst->var_part[k] = dst->var_part[j];
1227 j--;
1229 else if ((i >= 0 && j >= 0
1230 && src->var_part[i].offset > dst->var_part[j].offset)
1231 || j < 0)
1233 location_chain *nextp;
1235 /* Copy the chain from SRC. */
1236 nextp = &dst->var_part[k].loc_chain;
1237 for (node = src->var_part[i].loc_chain; node; node = node->next)
1239 location_chain new_lc;
1241 new_lc = pool_alloc (loc_chain_pool);
1242 new_lc->next = NULL;
1243 new_lc->loc = node->loc;
1245 *nextp = new_lc;
1246 nextp = &new_lc->next;
1249 dst->var_part[k].offset = src->var_part[i].offset;
1250 i--;
1253 /* We are at the basic block boundary when computing union
1254 so set the CUR_LOC to be the first element of the chain. */
1255 if (dst->var_part[k].loc_chain)
1256 dst->var_part[k].cur_loc = dst->var_part[k].loc_chain->loc;
1257 else
1258 dst->var_part[k].cur_loc = NULL;
1261 /* Continue traversing the hash table. */
1262 return 1;
1265 /* Compute union of dataflow sets SRC and DST and store it to DST. */
1267 static void
1268 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
1270 int i;
1272 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1273 attrs_list_union (&dst->regs[i], src->regs[i]);
1275 htab_traverse (src->vars, variable_union, dst);
1278 /* Flag whether two dataflow sets being compared contain different data. */
1279 static bool
1280 dataflow_set_different_value;
1282 static bool
1283 variable_part_different_p (variable_part *vp1, variable_part *vp2)
1285 location_chain lc1, lc2;
1287 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
1289 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
1291 if (REG_P (lc1->loc) && REG_P (lc2->loc))
1293 if (REGNO (lc1->loc) == REGNO (lc2->loc))
1294 break;
1296 if (rtx_equal_p (lc1->loc, lc2->loc))
1297 break;
1299 if (!lc2)
1300 return true;
1302 return false;
1305 /* Return true if variables VAR1 and VAR2 are different.
1306 If COMPARE_CURRENT_LOCATION is true compare also the cur_loc of each
1307 variable part. */
1309 static bool
1310 variable_different_p (variable var1, variable var2,
1311 bool compare_current_location)
1313 int i;
1315 if (var1 == var2)
1316 return false;
1318 if (var1->n_var_parts != var2->n_var_parts)
1319 return true;
1321 for (i = 0; i < var1->n_var_parts; i++)
1323 if (var1->var_part[i].offset != var2->var_part[i].offset)
1324 return true;
1325 if (compare_current_location)
1327 if (!((REG_P (var1->var_part[i].cur_loc)
1328 && REG_P (var2->var_part[i].cur_loc)
1329 && (REGNO (var1->var_part[i].cur_loc)
1330 == REGNO (var2->var_part[i].cur_loc)))
1331 || rtx_equal_p (var1->var_part[i].cur_loc,
1332 var2->var_part[i].cur_loc)))
1333 return true;
1335 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
1336 return true;
1337 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
1338 return true;
1340 return false;
1343 /* Compare variable *SLOT with the same variable in hash table DATA
1344 and set DATAFLOW_SET_DIFFERENT_VALUE if they are different. */
1346 static int
1347 dataflow_set_different_1 (void **slot, void *data)
1349 htab_t htab = (htab_t) data;
1350 variable var1, var2;
1352 var1 = *(variable *) slot;
1353 var2 = htab_find_with_hash (htab, var1->decl,
1354 VARIABLE_HASH_VAL (var1->decl));
1355 if (!var2)
1357 dataflow_set_different_value = true;
1359 /* Stop traversing the hash table. */
1360 return 0;
1363 if (variable_different_p (var1, var2, false))
1365 dataflow_set_different_value = true;
1367 /* Stop traversing the hash table. */
1368 return 0;
1371 /* Continue traversing the hash table. */
1372 return 1;
1375 /* Compare variable *SLOT with the same variable in hash table DATA
1376 and set DATAFLOW_SET_DIFFERENT_VALUE if they are different. */
1378 static int
1379 dataflow_set_different_2 (void **slot, void *data)
1381 htab_t htab = (htab_t) data;
1382 variable var1, var2;
1384 var1 = *(variable *) slot;
1385 var2 = htab_find_with_hash (htab, var1->decl,
1386 VARIABLE_HASH_VAL (var1->decl));
1387 if (!var2)
1389 dataflow_set_different_value = true;
1391 /* Stop traversing the hash table. */
1392 return 0;
1395 /* If both variables are defined they have been already checked for
1396 equivalence. */
1397 gcc_assert (!variable_different_p (var1, var2, false));
1399 /* Continue traversing the hash table. */
1400 return 1;
1403 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
1405 static bool
1406 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
1408 dataflow_set_different_value = false;
1410 htab_traverse (old_set->vars, dataflow_set_different_1, new_set->vars);
1411 if (!dataflow_set_different_value)
1413 /* We have compared the variables which are in both hash tables
1414 so now only check whether there are some variables in NEW_SET->VARS
1415 which are not in OLD_SET->VARS. */
1416 htab_traverse (new_set->vars, dataflow_set_different_2, old_set->vars);
1418 return dataflow_set_different_value;
1421 /* Free the contents of dataflow set SET. */
1423 static void
1424 dataflow_set_destroy (dataflow_set *set)
1426 int i;
1428 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1429 attrs_list_clear (&set->regs[i]);
1431 htab_delete (set->vars);
1432 set->vars = NULL;
1435 /* Return true if RTL X contains a SYMBOL_REF. */
1437 static bool
1438 contains_symbol_ref (rtx x)
1440 const char *fmt;
1441 RTX_CODE code;
1442 int i;
1444 if (!x)
1445 return false;
1447 code = GET_CODE (x);
1448 if (code == SYMBOL_REF)
1449 return true;
1451 fmt = GET_RTX_FORMAT (code);
1452 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1454 if (fmt[i] == 'e')
1456 if (contains_symbol_ref (XEXP (x, i)))
1457 return true;
1459 else if (fmt[i] == 'E')
1461 int j;
1462 for (j = 0; j < XVECLEN (x, i); j++)
1463 if (contains_symbol_ref (XVECEXP (x, i, j)))
1464 return true;
1468 return false;
1471 /* Shall EXPR be tracked? */
1473 static bool
1474 track_expr_p (tree expr)
1476 rtx decl_rtl;
1477 tree realdecl;
1479 /* If EXPR is not a parameter or a variable do not track it. */
1480 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
1481 return 0;
1483 /* It also must have a name... */
1484 if (!DECL_NAME (expr))
1485 return 0;
1487 /* ... and a RTL assigned to it. */
1488 decl_rtl = DECL_RTL_IF_SET (expr);
1489 if (!decl_rtl)
1490 return 0;
1492 /* If this expression is really a debug alias of some other declaration, we
1493 don't need to track this expression if the ultimate declaration is
1494 ignored. */
1495 realdecl = expr;
1496 if (DECL_DEBUG_EXPR_IS_FROM (realdecl) && DECL_DEBUG_EXPR (realdecl))
1498 realdecl = DECL_DEBUG_EXPR (realdecl);
1499 /* ??? We don't yet know how to emit DW_OP_piece for variable
1500 that has been SRA'ed. */
1501 if (!DECL_P (realdecl))
1502 return 0;
1505 /* Do not track EXPR if REALDECL it should be ignored for debugging
1506 purposes. */
1507 if (DECL_IGNORED_P (realdecl))
1508 return 0;
1510 /* Do not track global variables until we are able to emit correct location
1511 list for them. */
1512 if (TREE_STATIC (realdecl))
1513 return 0;
1515 /* When the EXPR is a DECL for alias of some variable (see example)
1516 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
1517 DECL_RTL contains SYMBOL_REF.
1519 Example:
1520 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
1521 char **_dl_argv;
1523 if (MEM_P (decl_rtl)
1524 && contains_symbol_ref (XEXP (decl_rtl, 0)))
1525 return 0;
1527 /* If RTX is a memory it should not be very large (because it would be
1528 an array or struct). */
1529 if (MEM_P (decl_rtl))
1531 /* Do not track structures and arrays. */
1532 if (GET_MODE (decl_rtl) == BLKmode)
1533 return 0;
1534 if (MEM_SIZE (decl_rtl)
1535 && INTVAL (MEM_SIZE (decl_rtl)) > MAX_VAR_PARTS)
1536 return 0;
1539 return 1;
1542 /* Determine whether a given LOC refers to the same variable part as
1543 EXPR+OFFSET. */
1545 static bool
1546 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
1548 tree expr2;
1549 HOST_WIDE_INT offset2;
1551 if (! DECL_P (expr))
1552 return false;
1554 if (REG_P (loc))
1556 expr2 = REG_EXPR (loc);
1557 offset2 = REG_OFFSET (loc);
1559 else if (MEM_P (loc))
1561 expr2 = MEM_EXPR (loc);
1562 offset2 = MEM_OFFSET (loc) ? INTVAL (MEM_OFFSET (loc)) : 0;
1564 else
1565 return false;
1567 if (! expr2 || ! DECL_P (expr2))
1568 return false;
1570 expr = var_debug_decl (expr);
1571 expr2 = var_debug_decl (expr2);
1573 return (expr == expr2 && offset == offset2);
1577 /* Count uses (register and memory references) LOC which will be tracked.
1578 INSN is instruction which the LOC is part of. */
1580 static int
1581 count_uses (rtx *loc, void *insn)
1583 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1585 if (REG_P (*loc))
1587 gcc_assert (REGNO (*loc) < FIRST_PSEUDO_REGISTER);
1588 VTI (bb)->n_mos++;
1590 else if (MEM_P (*loc)
1591 && MEM_EXPR (*loc)
1592 && track_expr_p (MEM_EXPR (*loc)))
1594 VTI (bb)->n_mos++;
1597 return 0;
1600 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
1602 static void
1603 count_uses_1 (rtx *x, void *insn)
1605 for_each_rtx (x, count_uses, insn);
1608 /* Count stores (register and memory references) LOC which will be tracked.
1609 INSN is instruction which the LOC is part of. */
1611 static void
1612 count_stores (rtx loc, rtx expr ATTRIBUTE_UNUSED, void *insn)
1614 count_uses (&loc, insn);
1617 /* Add uses (register and memory references) LOC which will be tracked
1618 to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
1620 static int
1621 add_uses (rtx *loc, void *insn)
1623 if (REG_P (*loc))
1625 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1626 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
1628 mo->type = ((REG_EXPR (*loc) && track_expr_p (REG_EXPR (*loc)))
1629 ? MO_USE : MO_USE_NO_VAR);
1630 mo->u.loc = *loc;
1631 mo->insn = (rtx) insn;
1633 else if (MEM_P (*loc)
1634 && MEM_EXPR (*loc)
1635 && track_expr_p (MEM_EXPR (*loc)))
1637 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1638 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
1640 mo->type = MO_USE;
1641 mo->u.loc = *loc;
1642 mo->insn = (rtx) insn;
1645 return 0;
1648 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
1650 static void
1651 add_uses_1 (rtx *x, void *insn)
1653 for_each_rtx (x, add_uses, insn);
1656 /* Add stores (register and memory references) LOC which will be tracked
1657 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
1658 INSN is instruction which the LOC is part of. */
1660 static void
1661 add_stores (rtx loc, rtx expr, void *insn)
1663 if (REG_P (loc))
1665 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1666 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
1668 if (GET_CODE (expr) == CLOBBER
1669 || ! REG_EXPR (loc)
1670 || ! track_expr_p (REG_EXPR (loc)))
1671 mo->type = MO_CLOBBER;
1672 else if (GET_CODE (expr) == SET
1673 && SET_DEST (expr) == loc
1674 && same_variable_part_p (SET_SRC (expr),
1675 REG_EXPR (loc),
1676 REG_OFFSET (loc)))
1677 mo->type = MO_COPY;
1678 else
1679 mo->type = MO_SET;
1680 mo->u.loc = loc;
1681 mo->insn = NEXT_INSN ((rtx) insn);
1683 else if (MEM_P (loc)
1684 && MEM_EXPR (loc)
1685 && track_expr_p (MEM_EXPR (loc)))
1687 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1688 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
1690 if (GET_CODE (expr) == CLOBBER)
1691 mo->type = MO_CLOBBER;
1692 else if (GET_CODE (expr) == SET
1693 && SET_DEST (expr) == loc
1694 && same_variable_part_p (SET_SRC (expr),
1695 MEM_EXPR (loc),
1696 MEM_OFFSET (loc)
1697 ? INTVAL (MEM_OFFSET (loc)) : 0))
1698 mo->type = MO_COPY;
1699 else
1700 mo->type = MO_SET;
1701 mo->u.loc = loc;
1702 mo->insn = NEXT_INSN ((rtx) insn);
1706 /* Compute the changes of variable locations in the basic block BB. */
1708 static bool
1709 compute_bb_dataflow (basic_block bb)
1711 int i, n, r;
1712 bool changed;
1713 dataflow_set old_out;
1714 dataflow_set *in = &VTI (bb)->in;
1715 dataflow_set *out = &VTI (bb)->out;
1717 dataflow_set_init (&old_out, htab_elements (VTI (bb)->out.vars) + 3);
1718 dataflow_set_copy (&old_out, out);
1719 dataflow_set_copy (out, in);
1721 n = VTI (bb)->n_mos;
1722 for (i = 0; i < n; i++)
1724 switch (VTI (bb)->mos[i].type)
1726 case MO_CALL:
1727 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1728 if (TEST_HARD_REG_BIT (call_used_reg_set, r))
1729 var_regno_delete (out, r);
1730 break;
1732 case MO_USE:
1734 rtx loc = VTI (bb)->mos[i].u.loc;
1736 if (GET_CODE (loc) == REG)
1737 var_reg_set (out, loc);
1738 else if (GET_CODE (loc) == MEM)
1739 var_mem_set (out, loc);
1741 break;
1743 case MO_SET:
1745 rtx loc = VTI (bb)->mos[i].u.loc;
1747 if (REG_P (loc))
1748 var_reg_delete_and_set (out, loc, true);
1749 else if (MEM_P (loc))
1750 var_mem_delete_and_set (out, loc, true);
1752 break;
1754 case MO_COPY:
1756 rtx loc = VTI (bb)->mos[i].u.loc;
1758 if (REG_P (loc))
1759 var_reg_delete_and_set (out, loc, false);
1760 else if (MEM_P (loc))
1761 var_mem_delete_and_set (out, loc, false);
1763 break;
1765 case MO_USE_NO_VAR:
1767 rtx loc = VTI (bb)->mos[i].u.loc;
1769 if (REG_P (loc))
1770 var_reg_delete (out, loc, false);
1771 else if (MEM_P (loc))
1772 var_mem_delete (out, loc, false);
1774 break;
1776 case MO_CLOBBER:
1778 rtx loc = VTI (bb)->mos[i].u.loc;
1780 if (REG_P (loc))
1781 var_reg_delete (out, loc, true);
1782 else if (MEM_P (loc))
1783 var_mem_delete (out, loc, true);
1785 break;
1787 case MO_ADJUST:
1788 out->stack_adjust += VTI (bb)->mos[i].u.adjust;
1789 break;
1793 changed = dataflow_set_different (&old_out, out);
1794 dataflow_set_destroy (&old_out);
1795 return changed;
1798 /* Find the locations of variables in the whole function. */
1800 static void
1801 vt_find_locations (void)
1803 fibheap_t worklist, pending, fibheap_swap;
1804 sbitmap visited, in_worklist, in_pending, sbitmap_swap;
1805 basic_block bb;
1806 edge e;
1807 int *bb_order;
1808 int *rc_order;
1809 int i;
1811 /* Compute reverse completion order of depth first search of the CFG
1812 so that the data-flow runs faster. */
1813 rc_order = XNEWVEC (int, n_basic_blocks - NUM_FIXED_BLOCKS);
1814 bb_order = XNEWVEC (int, last_basic_block);
1815 pre_and_rev_post_order_compute (NULL, rc_order, false);
1816 for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; i++)
1817 bb_order[rc_order[i]] = i;
1818 free (rc_order);
1820 worklist = fibheap_new ();
1821 pending = fibheap_new ();
1822 visited = sbitmap_alloc (last_basic_block);
1823 in_worklist = sbitmap_alloc (last_basic_block);
1824 in_pending = sbitmap_alloc (last_basic_block);
1825 sbitmap_zero (in_worklist);
1827 FOR_EACH_BB (bb)
1828 fibheap_insert (pending, bb_order[bb->index], bb);
1829 sbitmap_ones (in_pending);
1831 while (!fibheap_empty (pending))
1833 fibheap_swap = pending;
1834 pending = worklist;
1835 worklist = fibheap_swap;
1836 sbitmap_swap = in_pending;
1837 in_pending = in_worklist;
1838 in_worklist = sbitmap_swap;
1840 sbitmap_zero (visited);
1842 while (!fibheap_empty (worklist))
1844 bb = fibheap_extract_min (worklist);
1845 RESET_BIT (in_worklist, bb->index);
1846 if (!TEST_BIT (visited, bb->index))
1848 bool changed;
1849 edge_iterator ei;
1851 SET_BIT (visited, bb->index);
1853 /* Calculate the IN set as union of predecessor OUT sets. */
1854 dataflow_set_clear (&VTI (bb)->in);
1855 FOR_EACH_EDGE (e, ei, bb->preds)
1857 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
1860 changed = compute_bb_dataflow (bb);
1861 if (changed)
1863 FOR_EACH_EDGE (e, ei, bb->succs)
1865 if (e->dest == EXIT_BLOCK_PTR)
1866 continue;
1868 if (e->dest == bb)
1869 continue;
1871 if (TEST_BIT (visited, e->dest->index))
1873 if (!TEST_BIT (in_pending, e->dest->index))
1875 /* Send E->DEST to next round. */
1876 SET_BIT (in_pending, e->dest->index);
1877 fibheap_insert (pending,
1878 bb_order[e->dest->index],
1879 e->dest);
1882 else if (!TEST_BIT (in_worklist, e->dest->index))
1884 /* Add E->DEST to current round. */
1885 SET_BIT (in_worklist, e->dest->index);
1886 fibheap_insert (worklist, bb_order[e->dest->index],
1887 e->dest);
1895 free (bb_order);
1896 fibheap_delete (worklist);
1897 fibheap_delete (pending);
1898 sbitmap_free (visited);
1899 sbitmap_free (in_worklist);
1900 sbitmap_free (in_pending);
1903 /* Print the content of the LIST to dump file. */
1905 static void
1906 dump_attrs_list (attrs list)
1908 for (; list; list = list->next)
1910 print_mem_expr (dump_file, list->decl);
1911 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
1913 fprintf (dump_file, "\n");
1916 /* Print the information about variable *SLOT to dump file. */
1918 static int
1919 dump_variable (void **slot, void *data ATTRIBUTE_UNUSED)
1921 variable var = *(variable *) slot;
1922 int i;
1923 location_chain node;
1925 fprintf (dump_file, " name: %s\n",
1926 IDENTIFIER_POINTER (DECL_NAME (var->decl)));
1927 for (i = 0; i < var->n_var_parts; i++)
1929 fprintf (dump_file, " offset %ld\n",
1930 (long) var->var_part[i].offset);
1931 for (node = var->var_part[i].loc_chain; node; node = node->next)
1933 fprintf (dump_file, " ");
1934 print_rtl_single (dump_file, node->loc);
1938 /* Continue traversing the hash table. */
1939 return 1;
1942 /* Print the information about variables from hash table VARS to dump file. */
1944 static void
1945 dump_vars (htab_t vars)
1947 if (htab_elements (vars) > 0)
1949 fprintf (dump_file, "Variables:\n");
1950 htab_traverse (vars, dump_variable, NULL);
1954 /* Print the dataflow set SET to dump file. */
1956 static void
1957 dump_dataflow_set (dataflow_set *set)
1959 int i;
1961 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
1962 set->stack_adjust);
1963 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1965 if (set->regs[i])
1967 fprintf (dump_file, "Reg %d:", i);
1968 dump_attrs_list (set->regs[i]);
1971 dump_vars (set->vars);
1972 fprintf (dump_file, "\n");
1975 /* Print the IN and OUT sets for each basic block to dump file. */
1977 static void
1978 dump_dataflow_sets (void)
1980 basic_block bb;
1982 FOR_EACH_BB (bb)
1984 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
1985 fprintf (dump_file, "IN:\n");
1986 dump_dataflow_set (&VTI (bb)->in);
1987 fprintf (dump_file, "OUT:\n");
1988 dump_dataflow_set (&VTI (bb)->out);
1992 /* Add variable VAR to the hash table of changed variables and
1993 if it has no locations delete it from hash table HTAB. */
1995 static void
1996 variable_was_changed (variable var, htab_t htab)
1998 hashval_t hash = VARIABLE_HASH_VAL (var->decl);
2000 if (emit_notes)
2002 variable *slot;
2004 slot = (variable *) htab_find_slot_with_hash (changed_variables,
2005 var->decl, hash, INSERT);
2007 if (htab && var->n_var_parts == 0)
2009 variable empty_var;
2010 void **old;
2012 empty_var = pool_alloc (var_pool);
2013 empty_var->decl = var->decl;
2014 empty_var->refcount = 1;
2015 empty_var->n_var_parts = 0;
2016 *slot = empty_var;
2018 old = htab_find_slot_with_hash (htab, var->decl, hash,
2019 NO_INSERT);
2020 if (old)
2021 htab_clear_slot (htab, old);
2023 else
2025 *slot = var;
2028 else
2030 gcc_assert (htab);
2031 if (var->n_var_parts == 0)
2033 void **slot = htab_find_slot_with_hash (htab, var->decl, hash,
2034 NO_INSERT);
2035 if (slot)
2036 htab_clear_slot (htab, slot);
2041 /* Look for the index in VAR->var_part corresponding to OFFSET.
2042 Return -1 if not found. If INSERTION_POINT is non-NULL, the
2043 referenced int will be set to the index that the part has or should
2044 have, if it should be inserted. */
2046 static inline int
2047 find_variable_location_part (variable var, HOST_WIDE_INT offset,
2048 int *insertion_point)
2050 int pos, low, high;
2052 /* Find the location part. */
2053 low = 0;
2054 high = var->n_var_parts;
2055 while (low != high)
2057 pos = (low + high) / 2;
2058 if (var->var_part[pos].offset < offset)
2059 low = pos + 1;
2060 else
2061 high = pos;
2063 pos = low;
2065 if (insertion_point)
2066 *insertion_point = pos;
2068 if (pos < var->n_var_parts && var->var_part[pos].offset == offset)
2069 return pos;
2071 return -1;
2074 /* Set the part of variable's location in the dataflow set SET. The variable
2075 part is specified by variable's declaration DECL and offset OFFSET and the
2076 part's location by LOC. */
2078 static void
2079 set_variable_part (dataflow_set *set, rtx loc, tree decl, HOST_WIDE_INT offset)
2081 int pos;
2082 location_chain node, next;
2083 location_chain *nextp;
2084 variable var;
2085 void **slot;
2087 slot = htab_find_slot_with_hash (set->vars, decl,
2088 VARIABLE_HASH_VAL (decl), INSERT);
2089 if (!*slot)
2091 /* Create new variable information. */
2092 var = pool_alloc (var_pool);
2093 var->decl = decl;
2094 var->refcount = 1;
2095 var->n_var_parts = 1;
2096 var->var_part[0].offset = offset;
2097 var->var_part[0].loc_chain = NULL;
2098 var->var_part[0].cur_loc = NULL;
2099 *slot = var;
2100 pos = 0;
2102 else
2104 int inspos = 0;
2106 var = (variable) *slot;
2108 pos = find_variable_location_part (var, offset, &inspos);
2110 if (pos >= 0)
2112 node = var->var_part[pos].loc_chain;
2114 if (node
2115 && ((REG_P (node->loc) && REG_P (loc)
2116 && REGNO (node->loc) == REGNO (loc))
2117 || rtx_equal_p (node->loc, loc)))
2119 /* LOC is in the beginning of the chain so we have nothing
2120 to do. */
2121 return;
2123 else
2125 /* We have to make a copy of a shared variable. */
2126 if (var->refcount > 1)
2127 var = unshare_variable (set, var);
2130 else
2132 /* We have not found the location part, new one will be created. */
2134 /* We have to make a copy of the shared variable. */
2135 if (var->refcount > 1)
2136 var = unshare_variable (set, var);
2138 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2139 thus there are at most MAX_VAR_PARTS different offsets. */
2140 gcc_assert (var->n_var_parts < MAX_VAR_PARTS);
2142 /* We have to move the elements of array starting at index
2143 inspos to the next position. */
2144 for (pos = var->n_var_parts; pos > inspos; pos--)
2145 var->var_part[pos] = var->var_part[pos - 1];
2147 var->n_var_parts++;
2148 var->var_part[pos].offset = offset;
2149 var->var_part[pos].loc_chain = NULL;
2150 var->var_part[pos].cur_loc = NULL;
2154 /* Delete the location from the list. */
2155 nextp = &var->var_part[pos].loc_chain;
2156 for (node = var->var_part[pos].loc_chain; node; node = next)
2158 next = node->next;
2159 if ((REG_P (node->loc) && REG_P (loc)
2160 && REGNO (node->loc) == REGNO (loc))
2161 || rtx_equal_p (node->loc, loc))
2163 pool_free (loc_chain_pool, node);
2164 *nextp = next;
2165 break;
2167 else
2168 nextp = &node->next;
2171 /* Add the location to the beginning. */
2172 node = pool_alloc (loc_chain_pool);
2173 node->loc = loc;
2174 node->next = var->var_part[pos].loc_chain;
2175 var->var_part[pos].loc_chain = node;
2177 /* If no location was emitted do so. */
2178 if (var->var_part[pos].cur_loc == NULL)
2180 var->var_part[pos].cur_loc = loc;
2181 variable_was_changed (var, set->vars);
2185 /* Remove all recorded register locations for the given variable part
2186 from dataflow set SET, except for those that are identical to loc.
2187 The variable part is specified by variable's declaration DECL and
2188 offset OFFSET. */
2190 static void
2191 clobber_variable_part (dataflow_set *set, rtx loc, tree decl,
2192 HOST_WIDE_INT offset)
2194 void **slot;
2196 if (! decl || ! DECL_P (decl))
2197 return;
2199 slot = htab_find_slot_with_hash (set->vars, decl, VARIABLE_HASH_VAL (decl),
2200 NO_INSERT);
2201 if (slot)
2203 variable var = (variable) *slot;
2204 int pos = find_variable_location_part (var, offset, NULL);
2206 if (pos >= 0)
2208 location_chain node, next;
2210 /* Remove the register locations from the dataflow set. */
2211 next = var->var_part[pos].loc_chain;
2212 for (node = next; node; node = next)
2214 next = node->next;
2215 if (node->loc != loc)
2217 if (REG_P (node->loc))
2219 attrs anode, anext;
2220 attrs *anextp;
2222 /* Remove the variable part from the register's
2223 list, but preserve any other variable parts
2224 that might be regarded as live in that same
2225 register. */
2226 anextp = &set->regs[REGNO (node->loc)];
2227 for (anode = *anextp; anode; anode = anext)
2229 anext = anode->next;
2230 if (anode->decl == decl
2231 && anode->offset == offset)
2233 pool_free (attrs_pool, anode);
2234 *anextp = anext;
2239 delete_variable_part (set, node->loc, decl, offset);
2246 /* Delete the part of variable's location from dataflow set SET. The variable
2247 part is specified by variable's declaration DECL and offset OFFSET and the
2248 part's location by LOC. */
2250 static void
2251 delete_variable_part (dataflow_set *set, rtx loc, tree decl,
2252 HOST_WIDE_INT offset)
2254 void **slot;
2256 slot = htab_find_slot_with_hash (set->vars, decl, VARIABLE_HASH_VAL (decl),
2257 NO_INSERT);
2258 if (slot)
2260 variable var = (variable) *slot;
2261 int pos = find_variable_location_part (var, offset, NULL);
2263 if (pos >= 0)
2265 location_chain node, next;
2266 location_chain *nextp;
2267 bool changed;
2269 if (var->refcount > 1)
2271 /* If the variable contains the location part we have to
2272 make a copy of the variable. */
2273 for (node = var->var_part[pos].loc_chain; node;
2274 node = node->next)
2276 if ((REG_P (node->loc) && REG_P (loc)
2277 && REGNO (node->loc) == REGNO (loc))
2278 || rtx_equal_p (node->loc, loc))
2280 var = unshare_variable (set, var);
2281 break;
2286 /* Delete the location part. */
2287 nextp = &var->var_part[pos].loc_chain;
2288 for (node = *nextp; node; node = next)
2290 next = node->next;
2291 if ((REG_P (node->loc) && REG_P (loc)
2292 && REGNO (node->loc) == REGNO (loc))
2293 || rtx_equal_p (node->loc, loc))
2295 pool_free (loc_chain_pool, node);
2296 *nextp = next;
2297 break;
2299 else
2300 nextp = &node->next;
2303 /* If we have deleted the location which was last emitted
2304 we have to emit new location so add the variable to set
2305 of changed variables. */
2306 if (var->var_part[pos].cur_loc
2307 && ((REG_P (loc)
2308 && REG_P (var->var_part[pos].cur_loc)
2309 && REGNO (loc) == REGNO (var->var_part[pos].cur_loc))
2310 || rtx_equal_p (loc, var->var_part[pos].cur_loc)))
2312 changed = true;
2313 if (var->var_part[pos].loc_chain)
2314 var->var_part[pos].cur_loc = var->var_part[pos].loc_chain->loc;
2316 else
2317 changed = false;
2319 if (var->var_part[pos].loc_chain == NULL)
2321 var->n_var_parts--;
2322 while (pos < var->n_var_parts)
2324 var->var_part[pos] = var->var_part[pos + 1];
2325 pos++;
2328 if (changed)
2329 variable_was_changed (var, set->vars);
2334 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
2335 additional parameters: WHERE specifies whether the note shall be emitted
2336 before of after instruction INSN. */
2338 static int
2339 emit_note_insn_var_location (void **varp, void *data)
2341 variable var = *(variable *) varp;
2342 rtx insn = ((emit_note_data *)data)->insn;
2343 enum emit_note_where where = ((emit_note_data *)data)->where;
2344 rtx note;
2345 int i, j, n_var_parts;
2346 bool complete;
2347 HOST_WIDE_INT last_limit;
2348 tree type_size_unit;
2349 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
2350 rtx loc[MAX_VAR_PARTS];
2352 gcc_assert (var->decl);
2354 complete = true;
2355 last_limit = 0;
2356 n_var_parts = 0;
2357 for (i = 0; i < var->n_var_parts; i++)
2359 enum machine_mode mode, wider_mode;
2361 if (last_limit < var->var_part[i].offset)
2363 complete = false;
2364 break;
2366 else if (last_limit > var->var_part[i].offset)
2367 continue;
2368 offsets[n_var_parts] = var->var_part[i].offset;
2369 loc[n_var_parts] = var->var_part[i].loc_chain->loc;
2370 mode = GET_MODE (loc[n_var_parts]);
2371 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
2373 /* Attempt to merge adjacent registers or memory. */
2374 wider_mode = GET_MODE_WIDER_MODE (mode);
2375 for (j = i + 1; j < var->n_var_parts; j++)
2376 if (last_limit <= var->var_part[j].offset)
2377 break;
2378 if (j < var->n_var_parts
2379 && wider_mode != VOIDmode
2380 && GET_CODE (loc[n_var_parts])
2381 == GET_CODE (var->var_part[j].loc_chain->loc)
2382 && mode == GET_MODE (var->var_part[j].loc_chain->loc)
2383 && last_limit == var->var_part[j].offset)
2385 rtx new_loc = NULL;
2386 rtx loc2 = var->var_part[j].loc_chain->loc;
2388 if (REG_P (loc[n_var_parts])
2389 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
2390 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
2391 && REGNO (loc[n_var_parts])
2392 + hard_regno_nregs[REGNO (loc[n_var_parts])][mode]
2393 == REGNO (loc2))
2395 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
2396 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
2397 mode, 0);
2398 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
2399 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
2400 if (new_loc)
2402 if (!REG_P (new_loc)
2403 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
2404 new_loc = NULL;
2405 else
2406 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
2409 else if (MEM_P (loc[n_var_parts])
2410 && GET_CODE (XEXP (loc2, 0)) == PLUS
2411 && GET_CODE (XEXP (XEXP (loc2, 0), 0)) == REG
2412 && GET_CODE (XEXP (XEXP (loc2, 0), 1)) == CONST_INT)
2414 if ((GET_CODE (XEXP (loc[n_var_parts], 0)) == REG
2415 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
2416 XEXP (XEXP (loc2, 0), 0))
2417 && INTVAL (XEXP (XEXP (loc2, 0), 1))
2418 == GET_MODE_SIZE (mode))
2419 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
2420 && GET_CODE (XEXP (XEXP (loc[n_var_parts], 0), 1))
2421 == CONST_INT
2422 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
2423 XEXP (XEXP (loc2, 0), 0))
2424 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
2425 + GET_MODE_SIZE (mode)
2426 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
2427 new_loc = adjust_address_nv (loc[n_var_parts],
2428 wider_mode, 0);
2431 if (new_loc)
2433 loc[n_var_parts] = new_loc;
2434 mode = wider_mode;
2435 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
2436 i = j;
2439 ++n_var_parts;
2441 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (var->decl));
2442 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
2443 complete = false;
2445 if (where == EMIT_NOTE_AFTER_INSN)
2446 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
2447 else
2448 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
2450 if (!complete)
2452 NOTE_VAR_LOCATION (note) = gen_rtx_VAR_LOCATION (VOIDmode, var->decl,
2453 NULL_RTX);
2455 else if (n_var_parts == 1)
2457 rtx expr_list
2458 = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
2460 NOTE_VAR_LOCATION (note) = gen_rtx_VAR_LOCATION (VOIDmode, var->decl,
2461 expr_list);
2463 else if (n_var_parts)
2465 rtx parallel;
2467 for (i = 0; i < n_var_parts; i++)
2468 loc[i]
2469 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
2471 parallel = gen_rtx_PARALLEL (VOIDmode,
2472 gen_rtvec_v (n_var_parts, loc));
2473 NOTE_VAR_LOCATION (note) = gen_rtx_VAR_LOCATION (VOIDmode, var->decl,
2474 parallel);
2477 htab_clear_slot (changed_variables, varp);
2479 /* When there are no location parts the variable has been already
2480 removed from hash table and a new empty variable was created.
2481 Free the empty variable. */
2482 if (var->n_var_parts == 0)
2484 pool_free (var_pool, var);
2487 /* Continue traversing the hash table. */
2488 return 1;
2491 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
2492 CHANGED_VARIABLES and delete this chain. WHERE specifies whether the notes
2493 shall be emitted before of after instruction INSN. */
2495 static void
2496 emit_notes_for_changes (rtx insn, enum emit_note_where where)
2498 emit_note_data data;
2500 data.insn = insn;
2501 data.where = where;
2502 htab_traverse (changed_variables, emit_note_insn_var_location, &data);
2505 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
2506 same variable in hash table DATA or is not there at all. */
2508 static int
2509 emit_notes_for_differences_1 (void **slot, void *data)
2511 htab_t new_vars = (htab_t) data;
2512 variable old_var, new_var;
2514 old_var = *(variable *) slot;
2515 new_var = htab_find_with_hash (new_vars, old_var->decl,
2516 VARIABLE_HASH_VAL (old_var->decl));
2518 if (!new_var)
2520 /* Variable has disappeared. */
2521 variable empty_var;
2523 empty_var = pool_alloc (var_pool);
2524 empty_var->decl = old_var->decl;
2525 empty_var->refcount = 1;
2526 empty_var->n_var_parts = 0;
2527 variable_was_changed (empty_var, NULL);
2529 else if (variable_different_p (old_var, new_var, true))
2531 variable_was_changed (new_var, NULL);
2534 /* Continue traversing the hash table. */
2535 return 1;
2538 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
2539 table DATA. */
2541 static int
2542 emit_notes_for_differences_2 (void **slot, void *data)
2544 htab_t old_vars = (htab_t) data;
2545 variable old_var, new_var;
2547 new_var = *(variable *) slot;
2548 old_var = htab_find_with_hash (old_vars, new_var->decl,
2549 VARIABLE_HASH_VAL (new_var->decl));
2550 if (!old_var)
2552 /* Variable has appeared. */
2553 variable_was_changed (new_var, NULL);
2556 /* Continue traversing the hash table. */
2557 return 1;
2560 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
2561 NEW_SET. */
2563 static void
2564 emit_notes_for_differences (rtx insn, dataflow_set *old_set,
2565 dataflow_set *new_set)
2567 htab_traverse (old_set->vars, emit_notes_for_differences_1, new_set->vars);
2568 htab_traverse (new_set->vars, emit_notes_for_differences_2, old_set->vars);
2569 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN);
2572 /* Emit the notes for changes of location parts in the basic block BB. */
2574 static void
2575 emit_notes_in_bb (basic_block bb)
2577 int i;
2578 dataflow_set set;
2580 dataflow_set_init (&set, htab_elements (VTI (bb)->in.vars) + 3);
2581 dataflow_set_copy (&set, &VTI (bb)->in);
2583 for (i = 0; i < VTI (bb)->n_mos; i++)
2585 rtx insn = VTI (bb)->mos[i].insn;
2587 switch (VTI (bb)->mos[i].type)
2589 case MO_CALL:
2591 int r;
2593 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
2594 if (TEST_HARD_REG_BIT (call_used_reg_set, r))
2596 var_regno_delete (&set, r);
2598 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN);
2600 break;
2602 case MO_USE:
2604 rtx loc = VTI (bb)->mos[i].u.loc;
2606 if (GET_CODE (loc) == REG)
2607 var_reg_set (&set, loc);
2608 else
2609 var_mem_set (&set, loc);
2611 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN);
2613 break;
2615 case MO_SET:
2617 rtx loc = VTI (bb)->mos[i].u.loc;
2619 if (REG_P (loc))
2620 var_reg_delete_and_set (&set, loc, true);
2621 else
2622 var_mem_delete_and_set (&set, loc, true);
2624 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN);
2626 break;
2628 case MO_COPY:
2630 rtx loc = VTI (bb)->mos[i].u.loc;
2632 if (REG_P (loc))
2633 var_reg_delete_and_set (&set, loc, false);
2634 else
2635 var_mem_delete_and_set (&set, loc, false);
2637 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN);
2639 break;
2641 case MO_USE_NO_VAR:
2643 rtx loc = VTI (bb)->mos[i].u.loc;
2645 if (REG_P (loc))
2646 var_reg_delete (&set, loc, false);
2647 else
2648 var_mem_delete (&set, loc, false);
2650 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN);
2652 break;
2654 case MO_CLOBBER:
2656 rtx loc = VTI (bb)->mos[i].u.loc;
2658 if (REG_P (loc))
2659 var_reg_delete (&set, loc, true);
2660 else
2661 var_mem_delete (&set, loc, true);
2663 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN);
2665 break;
2667 case MO_ADJUST:
2668 set.stack_adjust += VTI (bb)->mos[i].u.adjust;
2669 break;
2672 dataflow_set_destroy (&set);
2675 /* Emit notes for the whole function. */
2677 static void
2678 vt_emit_notes (void)
2680 basic_block bb;
2681 dataflow_set *last_out;
2682 dataflow_set empty;
2684 gcc_assert (!htab_elements (changed_variables));
2686 /* Enable emitting notes by functions (mainly by set_variable_part and
2687 delete_variable_part). */
2688 emit_notes = true;
2690 dataflow_set_init (&empty, 7);
2691 last_out = &empty;
2693 FOR_EACH_BB (bb)
2695 /* Emit the notes for changes of variable locations between two
2696 subsequent basic blocks. */
2697 emit_notes_for_differences (BB_HEAD (bb), last_out, &VTI (bb)->in);
2699 /* Emit the notes for the changes in the basic block itself. */
2700 emit_notes_in_bb (bb);
2702 last_out = &VTI (bb)->out;
2704 dataflow_set_destroy (&empty);
2705 emit_notes = false;
2708 /* If there is a declaration and offset associated with register/memory RTL
2709 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
2711 static bool
2712 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
2714 if (REG_P (rtl))
2716 if (REG_ATTRS (rtl))
2718 *declp = REG_EXPR (rtl);
2719 *offsetp = REG_OFFSET (rtl);
2720 return true;
2723 else if (MEM_P (rtl))
2725 if (MEM_ATTRS (rtl))
2727 *declp = MEM_EXPR (rtl);
2728 *offsetp = MEM_OFFSET (rtl) ? INTVAL (MEM_OFFSET (rtl)) : 0;
2729 return true;
2732 return false;
2735 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
2737 static void
2738 vt_add_function_parameters (void)
2740 tree parm;
2742 for (parm = DECL_ARGUMENTS (current_function_decl);
2743 parm; parm = TREE_CHAIN (parm))
2745 rtx decl_rtl = DECL_RTL_IF_SET (parm);
2746 rtx incoming = DECL_INCOMING_RTL (parm);
2747 tree decl;
2748 HOST_WIDE_INT offset;
2749 dataflow_set *out;
2751 if (TREE_CODE (parm) != PARM_DECL)
2752 continue;
2754 if (!DECL_NAME (parm))
2755 continue;
2757 if (!decl_rtl || !incoming)
2758 continue;
2760 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
2761 continue;
2763 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
2764 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
2765 continue;
2767 if (!decl)
2768 continue;
2770 gcc_assert (parm == decl);
2772 out = &VTI (ENTRY_BLOCK_PTR)->out;
2774 if (REG_P (incoming))
2776 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
2777 attrs_list_insert (&out->regs[REGNO (incoming)],
2778 parm, offset, incoming);
2779 set_variable_part (out, incoming, parm, offset);
2781 else if (MEM_P (incoming))
2782 set_variable_part (out, incoming, parm, offset);
2786 /* Allocate and initialize the data structures for variable tracking
2787 and parse the RTL to get the micro operations. */
2789 static void
2790 vt_initialize (void)
2792 basic_block bb;
2794 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
2796 FOR_EACH_BB (bb)
2798 rtx insn;
2799 HOST_WIDE_INT pre, post = 0;
2801 /* Count the number of micro operations. */
2802 VTI (bb)->n_mos = 0;
2803 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
2804 insn = NEXT_INSN (insn))
2806 if (INSN_P (insn))
2808 if (!frame_pointer_needed)
2810 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
2811 if (pre)
2812 VTI (bb)->n_mos++;
2813 if (post)
2814 VTI (bb)->n_mos++;
2816 note_uses (&PATTERN (insn), count_uses_1, insn);
2817 note_stores (PATTERN (insn), count_stores, insn);
2818 if (CALL_P (insn))
2819 VTI (bb)->n_mos++;
2823 /* Add the micro-operations to the array. */
2824 VTI (bb)->mos = XNEWVEC (micro_operation, VTI (bb)->n_mos);
2825 VTI (bb)->n_mos = 0;
2826 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
2827 insn = NEXT_INSN (insn))
2829 if (INSN_P (insn))
2831 int n1, n2;
2833 if (!frame_pointer_needed)
2835 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
2836 if (pre)
2838 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
2840 mo->type = MO_ADJUST;
2841 mo->u.adjust = pre;
2842 mo->insn = insn;
2846 n1 = VTI (bb)->n_mos;
2847 note_uses (&PATTERN (insn), add_uses_1, insn);
2848 n2 = VTI (bb)->n_mos - 1;
2850 /* Order the MO_USEs to be before MO_USE_NO_VARs. */
2851 while (n1 < n2)
2853 while (n1 < n2 && VTI (bb)->mos[n1].type == MO_USE)
2854 n1++;
2855 while (n1 < n2 && VTI (bb)->mos[n2].type == MO_USE_NO_VAR)
2856 n2--;
2857 if (n1 < n2)
2859 micro_operation sw;
2861 sw = VTI (bb)->mos[n1];
2862 VTI (bb)->mos[n1] = VTI (bb)->mos[n2];
2863 VTI (bb)->mos[n2] = sw;
2867 if (CALL_P (insn))
2869 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
2871 mo->type = MO_CALL;
2872 mo->insn = insn;
2875 n1 = VTI (bb)->n_mos;
2876 /* This will record NEXT_INSN (insn), such that we can
2877 insert notes before it without worrying about any
2878 notes that MO_USEs might emit after the insn. */
2879 note_stores (PATTERN (insn), add_stores, insn);
2880 n2 = VTI (bb)->n_mos - 1;
2882 /* Order the MO_CLOBBERs to be before MO_SETs. */
2883 while (n1 < n2)
2885 while (n1 < n2 && VTI (bb)->mos[n1].type == MO_CLOBBER)
2886 n1++;
2887 while (n1 < n2 && (VTI (bb)->mos[n2].type == MO_SET
2888 || VTI (bb)->mos[n2].type == MO_COPY))
2889 n2--;
2890 if (n1 < n2)
2892 micro_operation sw;
2894 sw = VTI (bb)->mos[n1];
2895 VTI (bb)->mos[n1] = VTI (bb)->mos[n2];
2896 VTI (bb)->mos[n2] = sw;
2900 if (!frame_pointer_needed && post)
2902 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
2904 mo->type = MO_ADJUST;
2905 mo->u.adjust = post;
2906 mo->insn = insn;
2912 /* Init the IN and OUT sets. */
2913 FOR_ALL_BB (bb)
2915 VTI (bb)->visited = false;
2916 dataflow_set_init (&VTI (bb)->in, 7);
2917 dataflow_set_init (&VTI (bb)->out, 7);
2920 attrs_pool = create_alloc_pool ("attrs_def pool",
2921 sizeof (struct attrs_def), 1024);
2922 var_pool = create_alloc_pool ("variable_def pool",
2923 sizeof (struct variable_def), 64);
2924 loc_chain_pool = create_alloc_pool ("location_chain_def pool",
2925 sizeof (struct location_chain_def),
2926 1024);
2927 changed_variables = htab_create (10, variable_htab_hash, variable_htab_eq,
2928 NULL);
2929 vt_add_function_parameters ();
2932 /* Free the data structures needed for variable tracking. */
2934 static void
2935 vt_finalize (void)
2937 basic_block bb;
2939 FOR_EACH_BB (bb)
2941 free (VTI (bb)->mos);
2944 FOR_ALL_BB (bb)
2946 dataflow_set_destroy (&VTI (bb)->in);
2947 dataflow_set_destroy (&VTI (bb)->out);
2949 free_aux_for_blocks ();
2950 free_alloc_pool (attrs_pool);
2951 free_alloc_pool (var_pool);
2952 free_alloc_pool (loc_chain_pool);
2953 htab_delete (changed_variables);
2956 /* The entry point to variable tracking pass. */
2958 unsigned int
2959 variable_tracking_main (void)
2961 if (n_basic_blocks > 500 && n_edges / n_basic_blocks >= 20)
2962 return 0;
2964 mark_dfs_back_edges ();
2965 vt_initialize ();
2966 if (!frame_pointer_needed)
2968 if (!vt_stack_adjustments ())
2970 vt_finalize ();
2971 return 0;
2975 vt_find_locations ();
2976 vt_emit_notes ();
2978 if (dump_file && (dump_flags & TDF_DETAILS))
2980 dump_dataflow_sets ();
2981 dump_flow_info (dump_file, dump_flags);
2984 vt_finalize ();
2985 return 0;
2988 static bool
2989 gate_handle_var_tracking (void)
2991 return (flag_var_tracking);
2996 struct tree_opt_pass pass_variable_tracking =
2998 "vartrack", /* name */
2999 gate_handle_var_tracking, /* gate */
3000 variable_tracking_main, /* execute */
3001 NULL, /* sub */
3002 NULL, /* next */
3003 0, /* static_pass_number */
3004 TV_VAR_TRACKING, /* tv_id */
3005 0, /* properties_required */
3006 0, /* properties_provided */
3007 0, /* properties_destroyed */
3008 0, /* todo_flags_start */
3009 TODO_dump_func, /* todo_flags_finish */
3010 'V' /* letter */