1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2006, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
25 ------------------------------------------------------------------------------
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Debug
; use Debug
;
30 with Einfo
; use Einfo
;
31 with Errout
; use Errout
;
32 with Exp_Aggr
; use Exp_Aggr
;
33 with Exp_Ch4
; use Exp_Ch4
;
34 with Exp_Ch6
; use Exp_Ch6
;
35 with Exp_Ch7
; use Exp_Ch7
;
36 with Exp_Ch9
; use Exp_Ch9
;
37 with Exp_Ch11
; use Exp_Ch11
;
38 with Exp_Disp
; use Exp_Disp
;
39 with Exp_Dist
; use Exp_Dist
;
40 with Exp_Smem
; use Exp_Smem
;
41 with Exp_Strm
; use Exp_Strm
;
42 with Exp_Tss
; use Exp_Tss
;
43 with Exp_Util
; use Exp_Util
;
44 with Freeze
; use Freeze
;
45 with Hostparm
; use Hostparm
;
46 with Nlists
; use Nlists
;
47 with Nmake
; use Nmake
;
49 with Restrict
; use Restrict
;
50 with Rident
; use Rident
;
51 with Rtsfind
; use Rtsfind
;
53 with Sem_Attr
; use Sem_Attr
;
54 with Sem_Cat
; use Sem_Cat
;
55 with Sem_Ch3
; use Sem_Ch3
;
56 with Sem_Ch8
; use Sem_Ch8
;
57 with Sem_Disp
; use Sem_Disp
;
58 with Sem_Eval
; use Sem_Eval
;
59 with Sem_Mech
; use Sem_Mech
;
60 with Sem_Res
; use Sem_Res
;
61 with Sem_Util
; use Sem_Util
;
62 with Sinfo
; use Sinfo
;
63 with Stand
; use Stand
;
64 with Snames
; use Snames
;
65 with Tbuild
; use Tbuild
;
66 with Ttypes
; use Ttypes
;
67 with Validsw
; use Validsw
;
69 package body Exp_Ch3
is
71 -----------------------
72 -- Local Subprograms --
73 -----------------------
75 procedure Adjust_Discriminants
(Rtype
: Entity_Id
);
76 -- This is used when freezing a record type. It attempts to construct
77 -- more restrictive subtypes for discriminants so that the max size of
78 -- the record can be calculated more accurately. See the body of this
79 -- procedure for details.
81 procedure Build_Array_Init_Proc
(A_Type
: Entity_Id
; Nod
: Node_Id
);
82 -- Build initialization procedure for given array type. Nod is a node
83 -- used for attachment of any actions required in its construction.
84 -- It also supplies the source location used for the procedure.
86 function Build_Discriminant_Formals
88 Use_Dl
: Boolean) return List_Id
;
89 -- This function uses the discriminants of a type to build a list of
90 -- formal parameters, used in the following function. If the flag Use_Dl
91 -- is set, the list is built using the already defined discriminals
92 -- of the type. Otherwise new identifiers are created, with the source
93 -- names of the discriminants.
95 procedure Build_Record_Init_Proc
(N
: Node_Id
; Pe
: Entity_Id
);
96 -- Build record initialization procedure. N is the type declaration
97 -- node, and Pe is the corresponding entity for the record type.
99 procedure Build_Slice_Assignment
(Typ
: Entity_Id
);
100 -- Build assignment procedure for one-dimensional arrays of controlled
101 -- types. Other array and slice assignments are expanded in-line, but
102 -- the code expansion for controlled components (when control actions
103 -- are active) can lead to very large blocks that GCC3 handles poorly.
105 procedure Build_Variant_Record_Equality
(Typ
: Entity_Id
);
106 -- Create An Equality function for the non-tagged variant record 'Typ'
107 -- and attach it to the TSS list
109 procedure Check_Stream_Attributes
(Typ
: Entity_Id
);
110 -- Check that if a limited extension has a parent with user-defined
111 -- stream attributes, and does not itself have user-definer
112 -- stream-attributes, then any limited component of the extension also
113 -- has the corresponding user-defined stream attributes.
115 procedure Clean_Task_Names
117 Proc_Id
: Entity_Id
);
118 -- If an initialization procedure includes calls to generate names
119 -- for task subcomponents, indicate that secondary stack cleanup is
120 -- needed after an initialization. Typ is the component type, and Proc_Id
121 -- the initialization procedure for the enclosing composite type.
123 procedure Expand_Tagged_Root
(T
: Entity_Id
);
124 -- Add a field _Tag at the beginning of the record. This field carries
125 -- the value of the access to the Dispatch table. This procedure is only
126 -- called on root type, the _Tag field being inherited by the descendants.
128 procedure Expand_Record_Controller
(T
: Entity_Id
);
129 -- T must be a record type that Has_Controlled_Component. Add a field
130 -- _controller of type Record_Controller or Limited_Record_Controller
133 procedure Freeze_Array_Type
(N
: Node_Id
);
134 -- Freeze an array type. Deals with building the initialization procedure,
135 -- creating the packed array type for a packed array and also with the
136 -- creation of the controlling procedures for the controlled case. The
137 -- argument N is the N_Freeze_Entity node for the type.
139 procedure Freeze_Enumeration_Type
(N
: Node_Id
);
140 -- Freeze enumeration type with non-standard representation. Builds the
141 -- array and function needed to convert between enumeration pos and
142 -- enumeration representation values. N is the N_Freeze_Entity node
145 procedure Freeze_Record_Type
(N
: Node_Id
);
146 -- Freeze record type. Builds all necessary discriminant checking
147 -- and other ancillary functions, and builds dispatch tables where
148 -- needed. The argument N is the N_Freeze_Entity node. This processing
149 -- applies only to E_Record_Type entities, not to class wide types,
150 -- record subtypes, or private types.
152 procedure Freeze_Stream_Operations
(N
: Node_Id
; Typ
: Entity_Id
);
153 -- Treat user-defined stream operations as renaming_as_body if the
154 -- subprogram they rename is not frozen when the type is frozen.
156 function Init_Formals
(Typ
: Entity_Id
) return List_Id
;
157 -- This function builds the list of formals for an initialization routine.
158 -- The first formal is always _Init with the given type. For task value
159 -- record types and types containing tasks, three additional formals are
162 -- _Master : Master_Id
163 -- _Chain : in out Activation_Chain
164 -- _Task_Name : String
166 -- The caller must append additional entries for discriminants if required.
168 function In_Runtime
(E
: Entity_Id
) return Boolean;
169 -- Check if E is defined in the RTL (in a child of Ada or System). Used
170 -- to avoid to bring in the overhead of _Input, _Output for tagged types.
172 function Make_Eq_Case
175 Discr
: Entity_Id
:= Empty
) return List_Id
;
176 -- Building block for variant record equality. Defined to share the
177 -- code between the tagged and non-tagged case. Given a Component_List
178 -- node CL, it generates an 'if' followed by a 'case' statement that
179 -- compares all components of local temporaries named X and Y (that
180 -- are declared as formals at some upper level). E provides the Sloc to be
181 -- used for the generated code. Discr is used as the case statement switch
182 -- in the case of Unchecked_Union equality.
186 L
: List_Id
) return Node_Id
;
187 -- Building block for variant record equality. Defined to share the
188 -- code between the tagged and non-tagged case. Given the list of
189 -- components (or discriminants) L, it generates a return statement
190 -- that compares all components of local temporaries named X and Y
191 -- (that are declared as formals at some upper level). E provides the Sloc
192 -- to be used for the generated code.
194 procedure Make_Predefined_Primitive_Specs
195 (Tag_Typ
: Entity_Id
;
196 Predef_List
: out List_Id
;
197 Renamed_Eq
: out Node_Id
);
198 -- Create a list with the specs of the predefined primitive operations.
199 -- The following entries are present for all tagged types, and provide
200 -- the results of the corresponding attribute applied to the object.
201 -- Dispatching is required in general, since the result of the attribute
202 -- will vary with the actual object subtype.
204 -- _alignment provides result of 'Alignment attribute
205 -- _size provides result of 'Size attribute
206 -- typSR provides result of 'Read attribute
207 -- typSW provides result of 'Write attribute
208 -- typSI provides result of 'Input attribute
209 -- typSO provides result of 'Output attribute
211 -- The following entries are additionally present for non-limited
212 -- tagged types, and implement additional dispatching operations
213 -- for predefined operations:
215 -- _equality implements "=" operator
216 -- _assign implements assignment operation
217 -- typDF implements deep finalization
218 -- typDA implements deep adust
220 -- The latter two are empty procedures unless the type contains some
221 -- controlled components that require finalization actions (the deep
222 -- in the name refers to the fact that the action applies to components).
224 -- The list is returned in Predef_List. The Parameter Renamed_Eq
225 -- either returns the value Empty, or else the defining unit name
226 -- for the predefined equality function in the case where the type
227 -- has a primitive operation that is a renaming of predefined equality
228 -- (but only if there is also an overriding user-defined equality
229 -- function). The returned Renamed_Eq will be passed to the
230 -- corresponding parameter of Predefined_Primitive_Bodies.
232 function Has_New_Non_Standard_Rep
(T
: Entity_Id
) return Boolean;
233 -- returns True if there are representation clauses for type T that
234 -- are not inherited. If the result is false, the init_proc and the
235 -- discriminant_checking functions of the parent can be reused by
238 procedure Make_Controlling_Function_Wrappers
239 (Tag_Typ
: Entity_Id
;
240 Decl_List
: out List_Id
;
241 Body_List
: out List_Id
);
242 -- Ada 2005 (AI-391): Makes specs and bodies for the wrapper functions
243 -- associated with inherited functions with controlling results which
244 -- are not overridden. The body of each wrapper function consists solely
245 -- of a return statement whose expression is an extension aggregate
246 -- invoking the inherited subprogram's parent subprogram and extended
247 -- with a null association list.
249 procedure Make_Null_Procedure_Specs
250 (Tag_Typ
: Entity_Id
;
251 Decl_List
: out List_Id
);
252 -- Ada 2005 (AI-251): Makes specs for null procedures associated with any
253 -- null procedures inherited from an interface type that have not been
254 -- overridden. Only one null procedure will be created for a given set of
255 -- inherited null procedures with homographic profiles.
257 function Predef_Spec_Or_Body
262 Ret_Type
: Entity_Id
:= Empty
;
263 For_Body
: Boolean := False) return Node_Id
;
264 -- This function generates the appropriate expansion for a predefined
265 -- primitive operation specified by its name, parameter profile and
266 -- return type (Empty means this is a procedure). If For_Body is false,
267 -- then the returned node is a subprogram declaration. If For_Body is
268 -- true, then the returned node is a empty subprogram body containing
269 -- no declarations and no statements.
271 function Predef_Stream_Attr_Spec
274 Name
: TSS_Name_Type
;
275 For_Body
: Boolean := False) return Node_Id
;
276 -- Specialized version of Predef_Spec_Or_Body that apply to read, write,
277 -- input and output attribute whose specs are constructed in Exp_Strm.
279 function Predef_Deep_Spec
282 Name
: TSS_Name_Type
;
283 For_Body
: Boolean := False) return Node_Id
;
284 -- Specialized version of Predef_Spec_Or_Body that apply to _deep_adjust
285 -- and _deep_finalize
287 function Predefined_Primitive_Bodies
288 (Tag_Typ
: Entity_Id
;
289 Renamed_Eq
: Node_Id
) return List_Id
;
290 -- Create the bodies of the predefined primitives that are described in
291 -- Predefined_Primitive_Specs. When not empty, Renamed_Eq must denote
292 -- the defining unit name of the type's predefined equality as returned
293 -- by Make_Predefined_Primitive_Specs.
295 function Predefined_Primitive_Freeze
(Tag_Typ
: Entity_Id
) return List_Id
;
296 -- Freeze entities of all predefined primitive operations. This is needed
297 -- because the bodies of these operations do not normally do any freezeing.
299 function Stream_Operation_OK
301 Operation
: TSS_Name_Type
) return Boolean;
302 -- Check whether the named stream operation must be emitted for a given
303 -- type. The rules for inheritance of stream attributes by type extensions
304 -- are enforced by this function. Furthermore, various restrictions prevent
305 -- the generation of these operations, as a useful optimization or for
306 -- certification purposes.
308 --------------------------
309 -- Adjust_Discriminants --
310 --------------------------
312 -- This procedure attempts to define subtypes for discriminants that
313 -- are more restrictive than those declared. Such a replacement is
314 -- possible if we can demonstrate that values outside the restricted
315 -- range would cause constraint errors in any case. The advantage of
316 -- restricting the discriminant types in this way is tha the maximum
317 -- size of the variant record can be calculated more conservatively.
319 -- An example of a situation in which we can perform this type of
320 -- restriction is the following:
322 -- subtype B is range 1 .. 10;
323 -- type Q is array (B range <>) of Integer;
325 -- type V (N : Natural) is record
329 -- In this situation, we can restrict the upper bound of N to 10, since
330 -- any larger value would cause a constraint error in any case.
332 -- There are many situations in which such restriction is possible, but
333 -- for now, we just look for cases like the above, where the component
334 -- in question is a one dimensional array whose upper bound is one of
335 -- the record discriminants. Also the component must not be part of
336 -- any variant part, since then the component does not always exist.
338 procedure Adjust_Discriminants
(Rtype
: Entity_Id
) is
339 Loc
: constant Source_Ptr
:= Sloc
(Rtype
);
356 Comp
:= First_Component
(Rtype
);
357 while Present
(Comp
) loop
359 -- If our parent is a variant, quit, we do not look at components
360 -- that are in variant parts, because they may not always exist.
362 P
:= Parent
(Comp
); -- component declaration
363 P
:= Parent
(P
); -- component list
365 exit when Nkind
(Parent
(P
)) = N_Variant
;
367 -- We are looking for a one dimensional array type
369 Ctyp
:= Etype
(Comp
);
371 if not Is_Array_Type
(Ctyp
)
372 or else Number_Dimensions
(Ctyp
) > 1
377 -- The lower bound must be constant, and the upper bound is a
378 -- discriminant (which is a discriminant of the current record).
380 Ityp
:= Etype
(First_Index
(Ctyp
));
381 Lo
:= Type_Low_Bound
(Ityp
);
382 Hi
:= Type_High_Bound
(Ityp
);
384 if not Compile_Time_Known_Value
(Lo
)
385 or else Nkind
(Hi
) /= N_Identifier
386 or else No
(Entity
(Hi
))
387 or else Ekind
(Entity
(Hi
)) /= E_Discriminant
392 -- We have an array with appropriate bounds
394 Loval
:= Expr_Value
(Lo
);
395 Discr
:= Entity
(Hi
);
396 Dtyp
:= Etype
(Discr
);
398 -- See if the discriminant has a known upper bound
400 Dhi
:= Type_High_Bound
(Dtyp
);
402 if not Compile_Time_Known_Value
(Dhi
) then
406 Dhiv
:= Expr_Value
(Dhi
);
408 -- See if base type of component array has known upper bound
410 Ahi
:= Type_High_Bound
(Etype
(First_Index
(Base_Type
(Ctyp
))));
412 if not Compile_Time_Known_Value
(Ahi
) then
416 Ahiv
:= Expr_Value
(Ahi
);
418 -- The condition for doing the restriction is that the high bound
419 -- of the discriminant is greater than the low bound of the array,
420 -- and is also greater than the high bound of the base type index.
422 if Dhiv
> Loval
and then Dhiv
> Ahiv
then
424 -- We can reset the upper bound of the discriminant type to
425 -- whichever is larger, the low bound of the component, or
426 -- the high bound of the base type array index.
428 -- We build a subtype that is declared as
430 -- subtype Tnn is discr_type range discr_type'First .. max;
432 -- And insert this declaration into the tree. The type of the
433 -- discriminant is then reset to this more restricted subtype.
435 Tnn
:= Make_Defining_Identifier
(Loc
, New_Internal_Name
('T'));
437 Insert_Action
(Declaration_Node
(Rtype
),
438 Make_Subtype_Declaration
(Loc
,
439 Defining_Identifier
=> Tnn
,
440 Subtype_Indication
=>
441 Make_Subtype_Indication
(Loc
,
442 Subtype_Mark
=> New_Occurrence_Of
(Dtyp
, Loc
),
444 Make_Range_Constraint
(Loc
,
448 Make_Attribute_Reference
(Loc
,
449 Attribute_Name
=> Name_First
,
450 Prefix
=> New_Occurrence_Of
(Dtyp
, Loc
)),
452 Make_Integer_Literal
(Loc
,
453 Intval
=> UI_Max
(Loval
, Ahiv
)))))));
455 Set_Etype
(Discr
, Tnn
);
459 Next_Component
(Comp
);
461 end Adjust_Discriminants
;
463 ---------------------------
464 -- Build_Array_Init_Proc --
465 ---------------------------
467 procedure Build_Array_Init_Proc
(A_Type
: Entity_Id
; Nod
: Node_Id
) is
468 Loc
: constant Source_Ptr
:= Sloc
(Nod
);
469 Comp_Type
: constant Entity_Id
:= Component_Type
(A_Type
);
470 Index_List
: List_Id
;
472 Body_Stmts
: List_Id
;
474 function Init_Component
return List_Id
;
475 -- Create one statement to initialize one array component, designated
476 -- by a full set of indices.
478 function Init_One_Dimension
(N
: Int
) return List_Id
;
479 -- Create loop to initialize one dimension of the array. The single
480 -- statement in the loop body initializes the inner dimensions if any,
481 -- or else the single component. Note that this procedure is called
482 -- recursively, with N being the dimension to be initialized. A call
483 -- with N greater than the number of dimensions simply generates the
484 -- component initialization, terminating the recursion.
490 function Init_Component
return List_Id
is
495 Make_Indexed_Component
(Loc
,
496 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
497 Expressions
=> Index_List
);
499 if Needs_Simple_Initialization
(Comp_Type
) then
500 Set_Assignment_OK
(Comp
);
502 Make_Assignment_Statement
(Loc
,
506 (Comp_Type
, Loc
, Component_Size
(A_Type
))));
509 Clean_Task_Names
(Comp_Type
, Proc_Id
);
511 Build_Initialization_Call
(Loc
, Comp
, Comp_Type
, True, A_Type
);
515 ------------------------
516 -- Init_One_Dimension --
517 ------------------------
519 function Init_One_Dimension
(N
: Int
) return List_Id
is
523 -- If the component does not need initializing, then there is nothing
524 -- to do here, so we return a null body. This occurs when generating
525 -- the dummy Init_Proc needed for Initialize_Scalars processing.
527 if not Has_Non_Null_Base_Init_Proc
(Comp_Type
)
528 and then not Needs_Simple_Initialization
(Comp_Type
)
529 and then not Has_Task
(Comp_Type
)
531 return New_List
(Make_Null_Statement
(Loc
));
533 -- If all dimensions dealt with, we simply initialize the component
535 elsif N
> Number_Dimensions
(A_Type
) then
536 return Init_Component
;
538 -- Here we generate the required loop
542 Make_Defining_Identifier
(Loc
, New_External_Name
('J', N
));
544 Append
(New_Reference_To
(Index
, Loc
), Index_List
);
547 Make_Implicit_Loop_Statement
(Nod
,
550 Make_Iteration_Scheme
(Loc
,
551 Loop_Parameter_Specification
=>
552 Make_Loop_Parameter_Specification
(Loc
,
553 Defining_Identifier
=> Index
,
554 Discrete_Subtype_Definition
=>
555 Make_Attribute_Reference
(Loc
,
556 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
557 Attribute_Name
=> Name_Range
,
558 Expressions
=> New_List
(
559 Make_Integer_Literal
(Loc
, N
))))),
560 Statements
=> Init_One_Dimension
(N
+ 1)));
562 end Init_One_Dimension
;
564 -- Start of processing for Build_Array_Init_Proc
567 if Suppress_Init_Proc
(A_Type
) then
571 Index_List
:= New_List
;
573 -- We need an initialization procedure if any of the following is true:
575 -- 1. The component type has an initialization procedure
576 -- 2. The component type needs simple initialization
577 -- 3. Tasks are present
578 -- 4. The type is marked as a publc entity
580 -- The reason for the public entity test is to deal properly with the
581 -- Initialize_Scalars pragma. This pragma can be set in the client and
582 -- not in the declaring package, this means the client will make a call
583 -- to the initialization procedure (because one of conditions 1-3 must
584 -- apply in this case), and we must generate a procedure (even if it is
585 -- null) to satisfy the call in this case.
587 -- Exception: do not build an array init_proc for a type whose root
588 -- type is Standard.String or Standard.Wide_[Wide_]String, since there
589 -- is no place to put the code, and in any case we handle initialization
590 -- of such types (in the Initialize_Scalars case, that's the only time
591 -- the issue arises) in a special manner anyway which does not need an
594 if Has_Non_Null_Base_Init_Proc
(Comp_Type
)
595 or else Needs_Simple_Initialization
(Comp_Type
)
596 or else Has_Task
(Comp_Type
)
597 or else (not Restriction_Active
(No_Initialize_Scalars
)
598 and then Is_Public
(A_Type
)
599 and then Root_Type
(A_Type
) /= Standard_String
600 and then Root_Type
(A_Type
) /= Standard_Wide_String
601 and then Root_Type
(A_Type
) /= Standard_Wide_Wide_String
)
604 Make_Defining_Identifier
(Loc
, Make_Init_Proc_Name
(A_Type
));
606 Body_Stmts
:= Init_One_Dimension
(1);
609 Make_Subprogram_Body
(Loc
,
611 Make_Procedure_Specification
(Loc
,
612 Defining_Unit_Name
=> Proc_Id
,
613 Parameter_Specifications
=> Init_Formals
(A_Type
)),
614 Declarations
=> New_List
,
615 Handled_Statement_Sequence
=>
616 Make_Handled_Sequence_Of_Statements
(Loc
,
617 Statements
=> Body_Stmts
)));
619 Set_Ekind
(Proc_Id
, E_Procedure
);
620 Set_Is_Public
(Proc_Id
, Is_Public
(A_Type
));
621 Set_Is_Internal
(Proc_Id
);
622 Set_Has_Completion
(Proc_Id
);
624 if not Debug_Generated_Code
then
625 Set_Debug_Info_Off
(Proc_Id
);
628 -- Set inlined unless controlled stuff or tasks around, in which
629 -- case we do not want to inline, because nested stuff may cause
630 -- difficulties in interunit inlining, and furthermore there is
631 -- in any case no point in inlining such complex init procs.
633 if not Has_Task
(Proc_Id
)
634 and then not Controlled_Type
(Proc_Id
)
636 Set_Is_Inlined
(Proc_Id
);
639 -- Associate Init_Proc with type, and determine if the procedure
640 -- is null (happens because of the Initialize_Scalars pragma case,
641 -- where we have to generate a null procedure in case it is called
642 -- by a client with Initialize_Scalars set). Such procedures have
643 -- to be generated, but do not have to be called, so we mark them
644 -- as null to suppress the call.
646 Set_Init_Proc
(A_Type
, Proc_Id
);
648 if List_Length
(Body_Stmts
) = 1
649 and then Nkind
(First
(Body_Stmts
)) = N_Null_Statement
651 Set_Is_Null_Init_Proc
(Proc_Id
);
654 end Build_Array_Init_Proc
;
656 -----------------------------
657 -- Build_Class_Wide_Master --
658 -----------------------------
660 procedure Build_Class_Wide_Master
(T
: Entity_Id
) is
661 Loc
: constant Source_Ptr
:= Sloc
(T
);
668 -- Nothing to do if there is no task hierarchy
670 if Restriction_Active
(No_Task_Hierarchy
) then
674 -- Find declaration that created the access type: either a
675 -- type declaration, or an object declaration with an
676 -- access definition, in which case the type is anonymous.
679 P
:= Associated_Node_For_Itype
(T
);
684 -- Nothing to do if we already built a master entity for this scope
686 if not Has_Master_Entity
(Scope
(T
)) then
688 -- first build the master entity
689 -- _Master : constant Master_Id := Current_Master.all;
690 -- and insert it just before the current declaration
693 Make_Object_Declaration
(Loc
,
694 Defining_Identifier
=>
695 Make_Defining_Identifier
(Loc
, Name_uMaster
),
696 Constant_Present
=> True,
697 Object_Definition
=> New_Reference_To
(Standard_Integer
, Loc
),
699 Make_Explicit_Dereference
(Loc
,
700 New_Reference_To
(RTE
(RE_Current_Master
), Loc
)));
702 Insert_Before
(P
, Decl
);
704 Set_Has_Master_Entity
(Scope
(T
));
706 -- Now mark the containing scope as a task master
709 while Nkind
(Par
) /= N_Compilation_Unit
loop
712 -- If we fall off the top, we are at the outer level, and the
713 -- environment task is our effective master, so nothing to mark.
715 if Nkind
(Par
) = N_Task_Body
716 or else Nkind
(Par
) = N_Block_Statement
717 or else Nkind
(Par
) = N_Subprogram_Body
719 Set_Is_Task_Master
(Par
, True);
725 -- Now define the renaming of the master_id
728 Make_Defining_Identifier
(Loc
,
729 New_External_Name
(Chars
(T
), 'M'));
732 Make_Object_Renaming_Declaration
(Loc
,
733 Defining_Identifier
=> M_Id
,
734 Subtype_Mark
=> New_Reference_To
(Standard_Integer
, Loc
),
735 Name
=> Make_Identifier
(Loc
, Name_uMaster
));
736 Insert_Before
(P
, Decl
);
739 Set_Master_Id
(T
, M_Id
);
742 when RE_Not_Available
=>
744 end Build_Class_Wide_Master
;
746 --------------------------------
747 -- Build_Discr_Checking_Funcs --
748 --------------------------------
750 procedure Build_Discr_Checking_Funcs
(N
: Node_Id
) is
753 Enclosing_Func_Id
: Entity_Id
;
758 function Build_Case_Statement
759 (Case_Id
: Entity_Id
;
760 Variant
: Node_Id
) return Node_Id
;
761 -- Build a case statement containing only two alternatives. The
762 -- first alternative corresponds exactly to the discrete choices
763 -- given on the variant with contains the components that we are
764 -- generating the checks for. If the discriminant is one of these
765 -- return False. The second alternative is an OTHERS choice that
766 -- will return True indicating the discriminant did not match.
768 function Build_Dcheck_Function
769 (Case_Id
: Entity_Id
;
770 Variant
: Node_Id
) return Entity_Id
;
771 -- Build the discriminant checking function for a given variant
773 procedure Build_Dcheck_Functions
(Variant_Part_Node
: Node_Id
);
774 -- Builds the discriminant checking function for each variant of the
775 -- given variant part of the record type.
777 --------------------------
778 -- Build_Case_Statement --
779 --------------------------
781 function Build_Case_Statement
782 (Case_Id
: Entity_Id
;
783 Variant
: Node_Id
) return Node_Id
785 Alt_List
: constant List_Id
:= New_List
;
786 Actuals_List
: List_Id
;
788 Case_Alt_Node
: Node_Id
;
790 Choice_List
: List_Id
;
792 Return_Node
: Node_Id
;
795 Case_Node
:= New_Node
(N_Case_Statement
, Loc
);
797 -- Replace the discriminant which controls the variant, with the
798 -- name of the formal of the checking function.
800 Set_Expression
(Case_Node
,
801 Make_Identifier
(Loc
, Chars
(Case_Id
)));
803 Choice
:= First
(Discrete_Choices
(Variant
));
805 if Nkind
(Choice
) = N_Others_Choice
then
806 Choice_List
:= New_Copy_List
(Others_Discrete_Choices
(Choice
));
808 Choice_List
:= New_Copy_List
(Discrete_Choices
(Variant
));
811 if not Is_Empty_List
(Choice_List
) then
812 Case_Alt_Node
:= New_Node
(N_Case_Statement_Alternative
, Loc
);
813 Set_Discrete_Choices
(Case_Alt_Node
, Choice_List
);
815 -- In case this is a nested variant, we need to return the result
816 -- of the discriminant checking function for the immediately
817 -- enclosing variant.
819 if Present
(Enclosing_Func_Id
) then
820 Actuals_List
:= New_List
;
822 D
:= First_Discriminant
(Rec_Id
);
823 while Present
(D
) loop
824 Append
(Make_Identifier
(Loc
, Chars
(D
)), Actuals_List
);
825 Next_Discriminant
(D
);
829 Make_Return_Statement
(Loc
,
831 Make_Function_Call
(Loc
,
833 New_Reference_To
(Enclosing_Func_Id
, Loc
),
834 Parameter_Associations
=>
839 Make_Return_Statement
(Loc
,
841 New_Reference_To
(Standard_False
, Loc
));
844 Set_Statements
(Case_Alt_Node
, New_List
(Return_Node
));
845 Append
(Case_Alt_Node
, Alt_List
);
848 Case_Alt_Node
:= New_Node
(N_Case_Statement_Alternative
, Loc
);
849 Choice_List
:= New_List
(New_Node
(N_Others_Choice
, Loc
));
850 Set_Discrete_Choices
(Case_Alt_Node
, Choice_List
);
853 Make_Return_Statement
(Loc
,
855 New_Reference_To
(Standard_True
, Loc
));
857 Set_Statements
(Case_Alt_Node
, New_List
(Return_Node
));
858 Append
(Case_Alt_Node
, Alt_List
);
860 Set_Alternatives
(Case_Node
, Alt_List
);
862 end Build_Case_Statement
;
864 ---------------------------
865 -- Build_Dcheck_Function --
866 ---------------------------
868 function Build_Dcheck_Function
869 (Case_Id
: Entity_Id
;
870 Variant
: Node_Id
) return Entity_Id
874 Parameter_List
: List_Id
;
878 Body_Node
:= New_Node
(N_Subprogram_Body
, Loc
);
879 Sequence
:= Sequence
+ 1;
882 Make_Defining_Identifier
(Loc
,
883 Chars
=> New_External_Name
(Chars
(Rec_Id
), 'D', Sequence
));
885 Spec_Node
:= New_Node
(N_Function_Specification
, Loc
);
886 Set_Defining_Unit_Name
(Spec_Node
, Func_Id
);
888 Parameter_List
:= Build_Discriminant_Formals
(Rec_Id
, False);
890 Set_Parameter_Specifications
(Spec_Node
, Parameter_List
);
891 Set_Result_Definition
(Spec_Node
,
892 New_Reference_To
(Standard_Boolean
, Loc
));
893 Set_Specification
(Body_Node
, Spec_Node
);
894 Set_Declarations
(Body_Node
, New_List
);
896 Set_Handled_Statement_Sequence
(Body_Node
,
897 Make_Handled_Sequence_Of_Statements
(Loc
,
898 Statements
=> New_List
(
899 Build_Case_Statement
(Case_Id
, Variant
))));
901 Set_Ekind
(Func_Id
, E_Function
);
902 Set_Mechanism
(Func_Id
, Default_Mechanism
);
903 Set_Is_Inlined
(Func_Id
, True);
904 Set_Is_Pure
(Func_Id
, True);
905 Set_Is_Public
(Func_Id
, Is_Public
(Rec_Id
));
906 Set_Is_Internal
(Func_Id
, True);
908 if not Debug_Generated_Code
then
909 Set_Debug_Info_Off
(Func_Id
);
914 Append_Freeze_Action
(Rec_Id
, Body_Node
);
915 Set_Dcheck_Function
(Variant
, Func_Id
);
917 end Build_Dcheck_Function
;
919 ----------------------------
920 -- Build_Dcheck_Functions --
921 ----------------------------
923 procedure Build_Dcheck_Functions
(Variant_Part_Node
: Node_Id
) is
924 Component_List_Node
: Node_Id
;
926 Discr_Name
: Entity_Id
;
929 Saved_Enclosing_Func_Id
: Entity_Id
;
932 -- Build the discriminant checking function for each variant, label
933 -- all components of that variant with the function's name.
935 Discr_Name
:= Entity
(Name
(Variant_Part_Node
));
936 Variant
:= First_Non_Pragma
(Variants
(Variant_Part_Node
));
938 while Present
(Variant
) loop
939 Func_Id
:= Build_Dcheck_Function
(Discr_Name
, Variant
);
940 Component_List_Node
:= Component_List
(Variant
);
942 if not Null_Present
(Component_List_Node
) then
944 First_Non_Pragma
(Component_Items
(Component_List_Node
));
946 while Present
(Decl
) loop
947 Set_Discriminant_Checking_Func
948 (Defining_Identifier
(Decl
), Func_Id
);
950 Next_Non_Pragma
(Decl
);
953 if Present
(Variant_Part
(Component_List_Node
)) then
954 Saved_Enclosing_Func_Id
:= Enclosing_Func_Id
;
955 Enclosing_Func_Id
:= Func_Id
;
956 Build_Dcheck_Functions
(Variant_Part
(Component_List_Node
));
957 Enclosing_Func_Id
:= Saved_Enclosing_Func_Id
;
961 Next_Non_Pragma
(Variant
);
963 end Build_Dcheck_Functions
;
965 -- Start of processing for Build_Discr_Checking_Funcs
968 -- Only build if not done already
970 if not Discr_Check_Funcs_Built
(N
) then
971 Type_Def
:= Type_Definition
(N
);
973 if Nkind
(Type_Def
) = N_Record_Definition
then
974 if No
(Component_List
(Type_Def
)) then -- null record.
977 V
:= Variant_Part
(Component_List
(Type_Def
));
980 else pragma Assert
(Nkind
(Type_Def
) = N_Derived_Type_Definition
);
981 if No
(Component_List
(Record_Extension_Part
(Type_Def
))) then
985 (Component_List
(Record_Extension_Part
(Type_Def
)));
989 Rec_Id
:= Defining_Identifier
(N
);
991 if Present
(V
) and then not Is_Unchecked_Union
(Rec_Id
) then
993 Enclosing_Func_Id
:= Empty
;
994 Build_Dcheck_Functions
(V
);
997 Set_Discr_Check_Funcs_Built
(N
);
999 end Build_Discr_Checking_Funcs
;
1001 --------------------------------
1002 -- Build_Discriminant_Formals --
1003 --------------------------------
1005 function Build_Discriminant_Formals
1006 (Rec_Id
: Entity_Id
;
1007 Use_Dl
: Boolean) return List_Id
1009 Loc
: Source_Ptr
:= Sloc
(Rec_Id
);
1010 Parameter_List
: constant List_Id
:= New_List
;
1013 Param_Spec_Node
: Node_Id
;
1016 if Has_Discriminants
(Rec_Id
) then
1017 D
:= First_Discriminant
(Rec_Id
);
1018 while Present
(D
) loop
1022 Formal
:= Discriminal
(D
);
1024 Formal
:= Make_Defining_Identifier
(Loc
, Chars
(D
));
1028 Make_Parameter_Specification
(Loc
,
1029 Defining_Identifier
=> Formal
,
1031 New_Reference_To
(Etype
(D
), Loc
));
1032 Append
(Param_Spec_Node
, Parameter_List
);
1033 Next_Discriminant
(D
);
1037 return Parameter_List
;
1038 end Build_Discriminant_Formals
;
1040 -------------------------------
1041 -- Build_Initialization_Call --
1042 -------------------------------
1044 -- References to a discriminant inside the record type declaration
1045 -- can appear either in the subtype_indication to constrain a
1046 -- record or an array, or as part of a larger expression given for
1047 -- the initial value of a component. In both of these cases N appears
1048 -- in the record initialization procedure and needs to be replaced by
1049 -- the formal parameter of the initialization procedure which
1050 -- corresponds to that discriminant.
1052 -- In the example below, references to discriminants D1 and D2 in proc_1
1053 -- are replaced by references to formals with the same name
1056 -- A similar replacement is done for calls to any record
1057 -- initialization procedure for any components that are themselves
1058 -- of a record type.
1060 -- type R (D1, D2 : Integer) is record
1061 -- X : Integer := F * D1;
1062 -- Y : Integer := F * D2;
1065 -- procedure proc_1 (Out_2 : out R; D1 : Integer; D2 : Integer) is
1069 -- Out_2.X := F * D1;
1070 -- Out_2.Y := F * D2;
1073 function Build_Initialization_Call
1077 In_Init_Proc
: Boolean := False;
1078 Enclos_Type
: Entity_Id
:= Empty
;
1079 Discr_Map
: Elist_Id
:= New_Elmt_List
;
1080 With_Default_Init
: Boolean := False) return List_Id
1082 First_Arg
: Node_Id
;
1088 Proc
: constant Entity_Id
:= Base_Init_Proc
(Typ
);
1089 Init_Type
: constant Entity_Id
:= Etype
(First_Formal
(Proc
));
1090 Full_Init_Type
: constant Entity_Id
:= Underlying_Type
(Init_Type
);
1091 Res
: constant List_Id
:= New_List
;
1092 Full_Type
: Entity_Id
:= Typ
;
1093 Controller_Typ
: Entity_Id
;
1096 -- Nothing to do if the Init_Proc is null, unless Initialize_Scalars
1097 -- is active (in which case we make the call anyway, since in the
1098 -- actual compiled client it may be non null).
1100 if Is_Null_Init_Proc
(Proc
) and then not Init_Or_Norm_Scalars
then
1104 -- Go to full view if private type. In the case of successive
1105 -- private derivations, this can require more than one step.
1107 while Is_Private_Type
(Full_Type
)
1108 and then Present
(Full_View
(Full_Type
))
1110 Full_Type
:= Full_View
(Full_Type
);
1113 -- If Typ is derived, the procedure is the initialization procedure for
1114 -- the root type. Wrap the argument in an conversion to make it type
1115 -- honest. Actually it isn't quite type honest, because there can be
1116 -- conflicts of views in the private type case. That is why we set
1117 -- Conversion_OK in the conversion node.
1119 if (Is_Record_Type
(Typ
)
1120 or else Is_Array_Type
(Typ
)
1121 or else Is_Private_Type
(Typ
))
1122 and then Init_Type
/= Base_Type
(Typ
)
1124 First_Arg
:= OK_Convert_To
(Etype
(Init_Type
), Id_Ref
);
1125 Set_Etype
(First_Arg
, Init_Type
);
1128 First_Arg
:= Id_Ref
;
1131 Args
:= New_List
(Convert_Concurrent
(First_Arg
, Typ
));
1133 -- In the tasks case, add _Master as the value of the _Master parameter
1134 -- and _Chain as the value of the _Chain parameter. At the outer level,
1135 -- these will be variables holding the corresponding values obtained
1136 -- from GNARL. At inner levels, they will be the parameters passed down
1137 -- through the outer routines.
1139 if Has_Task
(Full_Type
) then
1140 if Restriction_Active
(No_Task_Hierarchy
) then
1142 -- See comments in System.Tasking.Initialization.Init_RTS
1143 -- for the value 3 (should be rtsfindable constant ???)
1145 Append_To
(Args
, Make_Integer_Literal
(Loc
, 3));
1147 Append_To
(Args
, Make_Identifier
(Loc
, Name_uMaster
));
1150 Append_To
(Args
, Make_Identifier
(Loc
, Name_uChain
));
1152 -- Ada 2005 (AI-287): In case of default initialized components
1153 -- with tasks, we generate a null string actual parameter.
1154 -- This is just a workaround that must be improved later???
1156 if With_Default_Init
then
1158 Make_String_Literal
(Loc
,
1163 Build_Task_Image_Decls
(Loc
, Id_Ref
, Enclos_Type
, In_Init_Proc
);
1164 Decl
:= Last
(Decls
);
1167 New_Occurrence_Of
(Defining_Identifier
(Decl
), Loc
));
1168 Append_List
(Decls
, Res
);
1176 -- Add discriminant values if discriminants are present
1178 if Has_Discriminants
(Full_Init_Type
) then
1179 Discr
:= First_Discriminant
(Full_Init_Type
);
1181 while Present
(Discr
) loop
1183 -- If this is a discriminated concurrent type, the init_proc
1184 -- for the corresponding record is being called. Use that
1185 -- type directly to find the discriminant value, to handle
1186 -- properly intervening renamed discriminants.
1189 T
: Entity_Id
:= Full_Type
;
1192 if Is_Protected_Type
(T
) then
1193 T
:= Corresponding_Record_Type
(T
);
1195 elsif Is_Private_Type
(T
)
1196 and then Present
(Underlying_Full_View
(T
))
1197 and then Is_Protected_Type
(Underlying_Full_View
(T
))
1199 T
:= Corresponding_Record_Type
(Underlying_Full_View
(T
));
1203 Get_Discriminant_Value
(
1206 Discriminant_Constraint
(Full_Type
));
1209 if In_Init_Proc
then
1211 -- Replace any possible references to the discriminant in the
1212 -- call to the record initialization procedure with references
1213 -- to the appropriate formal parameter.
1215 if Nkind
(Arg
) = N_Identifier
1216 and then Ekind
(Entity
(Arg
)) = E_Discriminant
1218 Arg
:= New_Reference_To
(Discriminal
(Entity
(Arg
)), Loc
);
1220 -- Case of access discriminants. We replace the reference
1221 -- to the type by a reference to the actual object
1223 elsif Nkind
(Arg
) = N_Attribute_Reference
1224 and then Is_Access_Type
(Etype
(Arg
))
1225 and then Is_Entity_Name
(Prefix
(Arg
))
1226 and then Is_Type
(Entity
(Prefix
(Arg
)))
1229 Make_Attribute_Reference
(Loc
,
1230 Prefix
=> New_Copy
(Prefix
(Id_Ref
)),
1231 Attribute_Name
=> Name_Unrestricted_Access
);
1233 -- Otherwise make a copy of the default expression. Note
1234 -- that we use the current Sloc for this, because we do not
1235 -- want the call to appear to be at the declaration point.
1236 -- Within the expression, replace discriminants with their
1241 New_Copy_Tree
(Arg
, Map
=> Discr_Map
, New_Sloc
=> Loc
);
1245 if Is_Constrained
(Full_Type
) then
1246 Arg
:= Duplicate_Subexpr_No_Checks
(Arg
);
1248 -- The constraints come from the discriminant default
1249 -- exps, they must be reevaluated, so we use New_Copy_Tree
1250 -- but we ensure the proper Sloc (for any embedded calls).
1252 Arg
:= New_Copy_Tree
(Arg
, New_Sloc
=> Loc
);
1256 -- Ada 2005 (AI-287) In case of default initialized components,
1257 -- we need to generate the corresponding selected component node
1258 -- to access the discriminant value. In other cases this is not
1259 -- required because we are inside the init proc and we use the
1260 -- corresponding formal.
1262 if With_Default_Init
1263 and then Nkind
(Id_Ref
) = N_Selected_Component
1264 and then Nkind
(Arg
) = N_Identifier
1267 Make_Selected_Component
(Loc
,
1268 Prefix
=> New_Copy_Tree
(Prefix
(Id_Ref
)),
1269 Selector_Name
=> Arg
));
1271 Append_To
(Args
, Arg
);
1274 Next_Discriminant
(Discr
);
1278 -- If this is a call to initialize the parent component of a derived
1279 -- tagged type, indicate that the tag should not be set in the parent.
1281 if Is_Tagged_Type
(Full_Init_Type
)
1282 and then not Is_CPP_Class
(Full_Init_Type
)
1283 and then Nkind
(Id_Ref
) = N_Selected_Component
1284 and then Chars
(Selector_Name
(Id_Ref
)) = Name_uParent
1286 Append_To
(Args
, New_Occurrence_Of
(Standard_False
, Loc
));
1290 Make_Procedure_Call_Statement
(Loc
,
1291 Name
=> New_Occurrence_Of
(Proc
, Loc
),
1292 Parameter_Associations
=> Args
));
1294 if Controlled_Type
(Typ
)
1295 and then Nkind
(Id_Ref
) = N_Selected_Component
1297 if Chars
(Selector_Name
(Id_Ref
)) /= Name_uParent
then
1298 Append_List_To
(Res
,
1300 Ref
=> New_Copy_Tree
(First_Arg
),
1303 Find_Final_List
(Typ
, New_Copy_Tree
(First_Arg
)),
1304 With_Attach
=> Make_Integer_Literal
(Loc
, 1)));
1306 -- If the enclosing type is an extension with new controlled
1307 -- components, it has his own record controller. If the parent
1308 -- also had a record controller, attach it to the new one.
1309 -- Build_Init_Statements relies on the fact that in this specific
1310 -- case the last statement of the result is the attach call to
1311 -- the controller. If this is changed, it must be synchronized.
1313 elsif Present
(Enclos_Type
)
1314 and then Has_New_Controlled_Component
(Enclos_Type
)
1315 and then Has_Controlled_Component
(Typ
)
1317 if Is_Inherently_Limited_Type
(Typ
) then
1318 Controller_Typ
:= RTE
(RE_Limited_Record_Controller
);
1320 Controller_Typ
:= RTE
(RE_Record_Controller
);
1323 Append_List_To
(Res
,
1326 Make_Selected_Component
(Loc
,
1327 Prefix
=> New_Copy_Tree
(First_Arg
),
1328 Selector_Name
=> Make_Identifier
(Loc
, Name_uController
)),
1329 Typ
=> Controller_Typ
,
1330 Flist_Ref
=> Find_Final_List
(Typ
, New_Copy_Tree
(First_Arg
)),
1331 With_Attach
=> Make_Integer_Literal
(Loc
, 1)));
1338 when RE_Not_Available
=>
1340 end Build_Initialization_Call
;
1342 ---------------------------
1343 -- Build_Master_Renaming --
1344 ---------------------------
1346 procedure Build_Master_Renaming
(N
: Node_Id
; T
: Entity_Id
) is
1347 Loc
: constant Source_Ptr
:= Sloc
(N
);
1352 -- Nothing to do if there is no task hierarchy
1354 if Restriction_Active
(No_Task_Hierarchy
) then
1359 Make_Defining_Identifier
(Loc
,
1360 New_External_Name
(Chars
(T
), 'M'));
1363 Make_Object_Renaming_Declaration
(Loc
,
1364 Defining_Identifier
=> M_Id
,
1365 Subtype_Mark
=> New_Reference_To
(RTE
(RE_Master_Id
), Loc
),
1366 Name
=> Make_Identifier
(Loc
, Name_uMaster
));
1367 Insert_Before
(N
, Decl
);
1370 Set_Master_Id
(T
, M_Id
);
1373 when RE_Not_Available
=>
1375 end Build_Master_Renaming
;
1377 ----------------------------
1378 -- Build_Record_Init_Proc --
1379 ----------------------------
1381 procedure Build_Record_Init_Proc
(N
: Node_Id
; Pe
: Entity_Id
) is
1382 Loc
: Source_Ptr
:= Sloc
(N
);
1383 Discr_Map
: constant Elist_Id
:= New_Elmt_List
;
1384 Proc_Id
: Entity_Id
;
1385 Rec_Type
: Entity_Id
;
1386 Set_Tag
: Entity_Id
:= Empty
;
1388 function Build_Assignment
(Id
: Entity_Id
; N
: Node_Id
) return List_Id
;
1389 -- Build a assignment statement node which assigns to record
1390 -- component its default expression if defined. The left hand side
1391 -- of the assignment is marked Assignment_OK so that initialization
1392 -- of limited private records works correctly, Return also the
1393 -- adjustment call for controlled objects
1395 procedure Build_Discriminant_Assignments
(Statement_List
: List_Id
);
1396 -- If the record has discriminants, adds assignment statements to
1397 -- statement list to initialize the discriminant values from the
1398 -- arguments of the initialization procedure.
1400 function Build_Init_Statements
(Comp_List
: Node_Id
) return List_Id
;
1401 -- Build a list representing a sequence of statements which initialize
1402 -- components of the given component list. This may involve building
1403 -- case statements for the variant parts.
1405 function Build_Init_Call_Thru
(Parameters
: List_Id
) return List_Id
;
1406 -- Given a non-tagged type-derivation that declares discriminants,
1409 -- type R (R1, R2 : Integer) is record ... end record;
1411 -- type D (D1 : Integer) is new R (1, D1);
1413 -- we make the _init_proc of D be
1415 -- procedure _init_proc(X : D; D1 : Integer) is
1417 -- _init_proc( R(X), 1, D1);
1420 -- This function builds the call statement in this _init_proc.
1422 procedure Build_Init_Procedure
;
1423 -- Build the tree corresponding to the procedure specification and body
1424 -- of the initialization procedure (by calling all the preceding
1425 -- auxiliary routines), and install it as the _init TSS.
1427 procedure Build_Offset_To_Top_Functions
;
1428 -- Ada 2005 (AI-251): Build the tree corresponding to the procedure spec
1429 -- and body of the Offset_To_Top function that is generated when the
1430 -- parent of a type with discriminants has secondary dispatch tables.
1432 procedure Build_Record_Checks
(S
: Node_Id
; Check_List
: List_Id
);
1433 -- Add range checks to components of disciminated records. S is a
1434 -- subtype indication of a record component. Check_List is a list
1435 -- to which the check actions are appended.
1437 function Component_Needs_Simple_Initialization
1438 (T
: Entity_Id
) return Boolean;
1439 -- Determines if a component needs simple initialization, given its type
1440 -- T. This is the same as Needs_Simple_Initialization except for the
1441 -- following difference: the types Tag, Interface_Tag, and Vtable_Ptr
1442 -- which are access types which would normally require simple
1443 -- initialization to null, do not require initialization as components,
1444 -- since they are explicitly initialized by other means.
1446 procedure Constrain_Array
1448 Check_List
: List_Id
);
1449 -- Called from Build_Record_Checks.
1450 -- Apply a list of index constraints to an unconstrained array type.
1451 -- The first parameter is the entity for the resulting subtype.
1452 -- Check_List is a list to which the check actions are appended.
1454 procedure Constrain_Index
1457 Check_List
: List_Id
);
1458 -- Called from Build_Record_Checks.
1459 -- Process an index constraint in a constrained array declaration.
1460 -- The constraint can be a subtype name, or a range with or without
1461 -- an explicit subtype mark. The index is the corresponding index of the
1462 -- unconstrained array. S is the range expression. Check_List is a list
1463 -- to which the check actions are appended.
1465 function Parent_Subtype_Renaming_Discrims
return Boolean;
1466 -- Returns True for base types N that rename discriminants, else False
1468 function Requires_Init_Proc
(Rec_Id
: Entity_Id
) return Boolean;
1469 -- Determines whether a record initialization procedure needs to be
1470 -- generated for the given record type.
1472 ----------------------
1473 -- Build_Assignment --
1474 ----------------------
1476 function Build_Assignment
(Id
: Entity_Id
; N
: Node_Id
) return List_Id
is
1479 Typ
: constant Entity_Id
:= Underlying_Type
(Etype
(Id
));
1480 Kind
: Node_Kind
:= Nkind
(N
);
1486 Make_Selected_Component
(Loc
,
1487 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
1488 Selector_Name
=> New_Occurrence_Of
(Id
, Loc
));
1489 Set_Assignment_OK
(Lhs
);
1491 -- Case of an access attribute applied to the current instance.
1492 -- Replace the reference to the type by a reference to the actual
1493 -- object. (Note that this handles the case of the top level of
1494 -- the expression being given by such an attribute, but does not
1495 -- cover uses nested within an initial value expression. Nested
1496 -- uses are unlikely to occur in practice, but are theoretically
1497 -- possible. It is not clear how to handle them without fully
1498 -- traversing the expression. ???
1500 if Kind
= N_Attribute_Reference
1501 and then (Attribute_Name
(N
) = Name_Unchecked_Access
1503 Attribute_Name
(N
) = Name_Unrestricted_Access
)
1504 and then Is_Entity_Name
(Prefix
(N
))
1505 and then Is_Type
(Entity
(Prefix
(N
)))
1506 and then Entity
(Prefix
(N
)) = Rec_Type
1509 Make_Attribute_Reference
(Loc
,
1510 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
1511 Attribute_Name
=> Name_Unrestricted_Access
);
1514 -- Ada 2005 (AI-231): Add the run-time check if required
1516 if Ada_Version
>= Ada_05
1517 and then Can_Never_Be_Null
(Etype
(Id
)) -- Lhs
1519 if Nkind
(Exp
) = N_Null
then
1521 Make_Raise_Constraint_Error
(Sloc
(Exp
),
1522 Reason
=> CE_Null_Not_Allowed
));
1524 elsif Present
(Etype
(Exp
))
1525 and then not Can_Never_Be_Null
(Etype
(Exp
))
1527 Install_Null_Excluding_Check
(Exp
);
1531 -- Take a copy of Exp to ensure that later copies of this
1532 -- component_declaration in derived types see the original tree,
1533 -- not a node rewritten during expansion of the init_proc.
1535 Exp
:= New_Copy_Tree
(Exp
);
1538 Make_Assignment_Statement
(Loc
,
1540 Expression
=> Exp
));
1542 Set_No_Ctrl_Actions
(First
(Res
));
1544 -- Adjust the tag if tagged (because of possible view conversions).
1545 -- Suppress the tag adjustment when Java_VM because JVM tags are
1546 -- represented implicitly in objects.
1548 if Is_Tagged_Type
(Typ
) and then not Java_VM
then
1550 Make_Assignment_Statement
(Loc
,
1552 Make_Selected_Component
(Loc
,
1553 Prefix
=> New_Copy_Tree
(Lhs
),
1555 New_Reference_To
(First_Tag_Component
(Typ
), Loc
)),
1558 Unchecked_Convert_To
(RTE
(RE_Tag
),
1560 (Node
(First_Elmt
(Access_Disp_Table
(Typ
))), Loc
))));
1563 -- Adjust the component if controlled except if it is an
1564 -- aggregate that will be expanded inline
1566 if Kind
= N_Qualified_Expression
then
1567 Kind
:= Nkind
(Expression
(N
));
1570 if Controlled_Type
(Typ
)
1571 and then not (Kind
= N_Aggregate
or else Kind
= N_Extension_Aggregate
)
1573 Append_List_To
(Res
,
1575 Ref
=> New_Copy_Tree
(Lhs
),
1578 Find_Final_List
(Etype
(Id
), New_Copy_Tree
(Lhs
)),
1579 With_Attach
=> Make_Integer_Literal
(Loc
, 1)));
1585 when RE_Not_Available
=>
1587 end Build_Assignment
;
1589 ------------------------------------
1590 -- Build_Discriminant_Assignments --
1591 ------------------------------------
1593 procedure Build_Discriminant_Assignments
(Statement_List
: List_Id
) is
1595 Is_Tagged
: constant Boolean := Is_Tagged_Type
(Rec_Type
);
1598 if Has_Discriminants
(Rec_Type
)
1599 and then not Is_Unchecked_Union
(Rec_Type
)
1601 D
:= First_Discriminant
(Rec_Type
);
1603 while Present
(D
) loop
1604 -- Don't generate the assignment for discriminants in derived
1605 -- tagged types if the discriminant is a renaming of some
1606 -- ancestor discriminant. This initialization will be done
1607 -- when initializing the _parent field of the derived record.
1609 if Is_Tagged
and then
1610 Present
(Corresponding_Discriminant
(D
))
1616 Append_List_To
(Statement_List
,
1617 Build_Assignment
(D
,
1618 New_Reference_To
(Discriminal
(D
), Loc
)));
1621 Next_Discriminant
(D
);
1624 end Build_Discriminant_Assignments
;
1626 --------------------------
1627 -- Build_Init_Call_Thru --
1628 --------------------------
1630 function Build_Init_Call_Thru
(Parameters
: List_Id
) return List_Id
is
1631 Parent_Proc
: constant Entity_Id
:=
1632 Base_Init_Proc
(Etype
(Rec_Type
));
1634 Parent_Type
: constant Entity_Id
:=
1635 Etype
(First_Formal
(Parent_Proc
));
1637 Uparent_Type
: constant Entity_Id
:=
1638 Underlying_Type
(Parent_Type
);
1640 First_Discr_Param
: Node_Id
;
1642 Parent_Discr
: Entity_Id
;
1643 First_Arg
: Node_Id
;
1649 -- First argument (_Init) is the object to be initialized.
1650 -- ??? not sure where to get a reasonable Loc for First_Arg
1653 OK_Convert_To
(Parent_Type
,
1654 New_Reference_To
(Defining_Identifier
(First
(Parameters
)), Loc
));
1656 Set_Etype
(First_Arg
, Parent_Type
);
1658 Args
:= New_List
(Convert_Concurrent
(First_Arg
, Rec_Type
));
1660 -- In the tasks case,
1661 -- add _Master as the value of the _Master parameter
1662 -- add _Chain as the value of the _Chain parameter.
1663 -- add _Task_Name as the value of the _Task_Name parameter.
1664 -- At the outer level, these will be variables holding the
1665 -- corresponding values obtained from GNARL or the expander.
1667 -- At inner levels, they will be the parameters passed down through
1668 -- the outer routines.
1670 First_Discr_Param
:= Next
(First
(Parameters
));
1672 if Has_Task
(Rec_Type
) then
1673 if Restriction_Active
(No_Task_Hierarchy
) then
1675 -- See comments in System.Tasking.Initialization.Init_RTS
1678 Append_To
(Args
, Make_Integer_Literal
(Loc
, 3));
1680 Append_To
(Args
, Make_Identifier
(Loc
, Name_uMaster
));
1683 Append_To
(Args
, Make_Identifier
(Loc
, Name_uChain
));
1684 Append_To
(Args
, Make_Identifier
(Loc
, Name_uTask_Name
));
1685 First_Discr_Param
:= Next
(Next
(Next
(First_Discr_Param
)));
1688 -- Append discriminant values
1690 if Has_Discriminants
(Uparent_Type
) then
1691 pragma Assert
(not Is_Tagged_Type
(Uparent_Type
));
1693 Parent_Discr
:= First_Discriminant
(Uparent_Type
);
1694 while Present
(Parent_Discr
) loop
1696 -- Get the initial value for this discriminant
1697 -- ??? needs to be cleaned up to use parent_Discr_Constr
1701 Discr_Value
: Elmt_Id
:=
1703 (Stored_Constraint
(Rec_Type
));
1705 Discr
: Entity_Id
:=
1706 First_Stored_Discriminant
(Uparent_Type
);
1708 while Original_Record_Component
(Parent_Discr
) /= Discr
loop
1709 Next_Stored_Discriminant
(Discr
);
1710 Next_Elmt
(Discr_Value
);
1713 Arg
:= Node
(Discr_Value
);
1716 -- Append it to the list
1718 if Nkind
(Arg
) = N_Identifier
1719 and then Ekind
(Entity
(Arg
)) = E_Discriminant
1722 New_Reference_To
(Discriminal
(Entity
(Arg
)), Loc
));
1724 -- Case of access discriminants. We replace the reference
1725 -- to the type by a reference to the actual object.
1727 -- Is above comment right??? Use of New_Copy below seems mighty
1731 Append_To
(Args
, New_Copy
(Arg
));
1734 Next_Discriminant
(Parent_Discr
);
1740 Make_Procedure_Call_Statement
(Loc
,
1741 Name
=> New_Occurrence_Of
(Parent_Proc
, Loc
),
1742 Parameter_Associations
=> Args
));
1745 end Build_Init_Call_Thru
;
1747 -----------------------------------
1748 -- Build_Offset_To_Top_Functions --
1749 -----------------------------------
1751 procedure Build_Offset_To_Top_Functions
is
1753 Body_Node
: Node_Id
;
1754 Func_Id
: Entity_Id
;
1755 Spec_Node
: Node_Id
;
1758 procedure Build_Offset_To_Top_Internal
(Typ
: Entity_Id
);
1759 -- Internal subprogram used to recursively traverse all the ancestors
1761 ----------------------------------
1762 -- Build_Offset_To_Top_Internal --
1763 ----------------------------------
1765 procedure Build_Offset_To_Top_Internal
(Typ
: Entity_Id
) is
1767 -- Climb to the ancestor (if any) handling private types
1769 if Present
(Full_View
(Etype
(Typ
))) then
1770 if Full_View
(Etype
(Typ
)) /= Typ
then
1771 Build_Offset_To_Top_Internal
(Full_View
(Etype
(Typ
)));
1774 elsif Etype
(Typ
) /= Typ
then
1775 Build_Offset_To_Top_Internal
(Etype
(Typ
));
1778 if Present
(Abstract_Interfaces
(Typ
))
1779 and then not Is_Empty_Elmt_List
(Abstract_Interfaces
(Typ
))
1781 E
:= First_Entity
(Typ
);
1782 while Present
(E
) loop
1784 and then Chars
(E
) /= Name_uTag
1786 if Typ
= Rec_Type
then
1787 Body_Node
:= New_Node
(N_Subprogram_Body
, Loc
);
1789 Func_Id
:= Make_Defining_Identifier
(Loc
,
1790 New_Internal_Name
('F'));
1792 Set_DT_Offset_To_Top_Func
(E
, Func_Id
);
1794 Spec_Node
:= New_Node
(N_Function_Specification
, Loc
);
1795 Set_Defining_Unit_Name
(Spec_Node
, Func_Id
);
1796 Set_Parameter_Specifications
(Spec_Node
, New_List
(
1797 Make_Parameter_Specification
(Loc
,
1798 Defining_Identifier
=>
1799 Make_Defining_Identifier
(Loc
, Name_uO
),
1801 Parameter_Type
=> New_Reference_To
(Typ
, Loc
))));
1802 Set_Result_Definition
(Spec_Node
,
1803 New_Reference_To
(RTE
(RE_Storage_Offset
), Loc
));
1805 Set_Specification
(Body_Node
, Spec_Node
);
1806 Set_Declarations
(Body_Node
, New_List
);
1807 Set_Handled_Statement_Sequence
(Body_Node
,
1808 Make_Handled_Sequence_Of_Statements
(Loc
,
1809 Statements
=> New_List
(
1810 Make_Return_Statement
(Loc
,
1812 Make_Attribute_Reference
(Loc
,
1814 Make_Selected_Component
(Loc
,
1815 Prefix
=> Make_Identifier
(Loc
,
1817 Selector_Name
=> New_Reference_To
1819 Attribute_Name
=> Name_Position
)))));
1821 Set_Ekind
(Func_Id
, E_Function
);
1822 Set_Mechanism
(Func_Id
, Default_Mechanism
);
1823 Set_Is_Internal
(Func_Id
, True);
1825 if not Debug_Generated_Code
then
1826 Set_Debug_Info_Off
(Func_Id
);
1829 Analyze
(Body_Node
);
1831 Append_Freeze_Action
(Rec_Type
, Body_Node
);
1840 end Build_Offset_To_Top_Internal
;
1842 -- Start of processing for Build_Offset_To_Top_Functions
1845 if Etype
(Rec_Type
) = Rec_Type
1846 or else not Has_Discriminants
(Etype
(Rec_Type
))
1847 or else No
(Abstract_Interfaces
(Rec_Type
))
1848 or else Is_Empty_Elmt_List
(Abstract_Interfaces
(Rec_Type
))
1853 -- Skip the first _Tag, which is the main tag of the
1854 -- tagged type. Following tags correspond with abstract
1857 ADT
:= Next_Elmt
(First_Elmt
(Access_Disp_Table
(Rec_Type
)));
1859 -- Handle private types
1861 if Present
(Full_View
(Rec_Type
)) then
1862 Build_Offset_To_Top_Internal
(Full_View
(Rec_Type
));
1864 Build_Offset_To_Top_Internal
(Rec_Type
);
1866 end Build_Offset_To_Top_Functions
;
1868 --------------------------
1869 -- Build_Init_Procedure --
1870 --------------------------
1872 procedure Build_Init_Procedure
is
1873 Body_Node
: Node_Id
;
1874 Handled_Stmt_Node
: Node_Id
;
1875 Parameters
: List_Id
;
1876 Proc_Spec_Node
: Node_Id
;
1877 Body_Stmts
: List_Id
;
1878 Record_Extension_Node
: Node_Id
;
1882 Body_Stmts
:= New_List
;
1883 Body_Node
:= New_Node
(N_Subprogram_Body
, Loc
);
1886 Make_Defining_Identifier
(Loc
,
1887 Chars
=> Make_Init_Proc_Name
(Rec_Type
));
1888 Set_Ekind
(Proc_Id
, E_Procedure
);
1890 Proc_Spec_Node
:= New_Node
(N_Procedure_Specification
, Loc
);
1891 Set_Defining_Unit_Name
(Proc_Spec_Node
, Proc_Id
);
1893 Parameters
:= Init_Formals
(Rec_Type
);
1894 Append_List_To
(Parameters
,
1895 Build_Discriminant_Formals
(Rec_Type
, True));
1897 -- For tagged types, we add a flag to indicate whether the routine
1898 -- is called to initialize a parent component in the init_proc of
1899 -- a type extension. If the flag is false, we do not set the tag
1900 -- because it has been set already in the extension.
1902 if Is_Tagged_Type
(Rec_Type
)
1903 and then not Is_CPP_Class
(Rec_Type
)
1906 Make_Defining_Identifier
(Loc
, New_Internal_Name
('P'));
1908 Append_To
(Parameters
,
1909 Make_Parameter_Specification
(Loc
,
1910 Defining_Identifier
=> Set_Tag
,
1911 Parameter_Type
=> New_Occurrence_Of
(Standard_Boolean
, Loc
),
1912 Expression
=> New_Occurrence_Of
(Standard_True
, Loc
)));
1915 Set_Parameter_Specifications
(Proc_Spec_Node
, Parameters
);
1916 Set_Specification
(Body_Node
, Proc_Spec_Node
);
1917 Set_Declarations
(Body_Node
, New_List
);
1919 if Parent_Subtype_Renaming_Discrims
then
1921 -- N is a Derived_Type_Definition that renames the parameters
1922 -- of the ancestor type. We initialize it by expanding our
1923 -- discriminants and call the ancestor _init_proc with a
1924 -- type-converted object
1926 Append_List_To
(Body_Stmts
,
1927 Build_Init_Call_Thru
(Parameters
));
1929 elsif Nkind
(Type_Definition
(N
)) = N_Record_Definition
then
1930 Build_Discriminant_Assignments
(Body_Stmts
);
1932 if not Null_Present
(Type_Definition
(N
)) then
1933 Append_List_To
(Body_Stmts
,
1934 Build_Init_Statements
(
1935 Component_List
(Type_Definition
(N
))));
1939 -- N is a Derived_Type_Definition with a possible non-empty
1940 -- extension. The initialization of a type extension consists
1941 -- in the initialization of the components in the extension.
1943 Build_Discriminant_Assignments
(Body_Stmts
);
1945 Record_Extension_Node
:=
1946 Record_Extension_Part
(Type_Definition
(N
));
1948 if not Null_Present
(Record_Extension_Node
) then
1950 Stmts
: constant List_Id
:=
1951 Build_Init_Statements
(
1952 Component_List
(Record_Extension_Node
));
1955 -- The parent field must be initialized first because
1956 -- the offset of the new discriminants may depend on it
1958 Prepend_To
(Body_Stmts
, Remove_Head
(Stmts
));
1959 Append_List_To
(Body_Stmts
, Stmts
);
1964 -- Add here the assignment to instantiate the Tag
1966 -- The assignement corresponds to the code:
1968 -- _Init._Tag := Typ'Tag;
1970 -- Suppress the tag assignment when Java_VM because JVM tags are
1971 -- represented implicitly in objects. It is also suppressed in
1972 -- case of CPP_Class types because in this case the tag is
1973 -- initialized in the C++ side.
1975 if Is_Tagged_Type
(Rec_Type
)
1976 and then not Is_CPP_Class
(Rec_Type
)
1977 and then not Java_VM
1980 Make_Assignment_Statement
(Loc
,
1982 Make_Selected_Component
(Loc
,
1983 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
1985 New_Reference_To
(First_Tag_Component
(Rec_Type
), Loc
)),
1989 (Node
(First_Elmt
(Access_Disp_Table
(Rec_Type
))), Loc
));
1991 -- The tag must be inserted before the assignments to other
1992 -- components, because the initial value of the component may
1993 -- depend ot the tag (eg. through a dispatching operation on
1994 -- an access to the current type). The tag assignment is not done
1995 -- when initializing the parent component of a type extension,
1996 -- because in that case the tag is set in the extension.
1997 -- Extensions of imported C++ classes add a final complication,
1998 -- because we cannot inhibit tag setting in the constructor for
1999 -- the parent. In that case we insert the tag initialization
2000 -- after the calls to initialize the parent.
2002 if not Is_CPP_Class
(Etype
(Rec_Type
)) then
2004 Make_If_Statement
(Loc
,
2005 Condition
=> New_Occurrence_Of
(Set_Tag
, Loc
),
2006 Then_Statements
=> New_List
(Init_Tag
));
2008 Prepend_To
(Body_Stmts
, Init_Tag
);
2012 Nod
: Node_Id
:= First
(Body_Stmts
);
2017 -- We assume the first init_proc call is for the parent
2019 while Present
(Next
(Nod
))
2020 and then (Nkind
(Nod
) /= N_Procedure_Call_Statement
2021 or else not Is_Init_Proc
(Name
(Nod
)))
2027 -- ancestor_constructor (_init.parent);
2029 -- _init._tag := new_dt;
2032 if Debug_Flag_QQ
then
2034 Make_If_Statement
(Loc
,
2035 Condition
=> New_Occurrence_Of
(Set_Tag
, Loc
),
2036 Then_Statements
=> New_List
(Init_Tag
));
2037 Insert_After
(Nod
, Init_Tag
);
2040 -- ancestor_constructor (_init.parent);
2042 -- inherit_dt (_init._tag, new_dt, num_prims);
2043 -- _init._tag := new_dt;
2048 Make_Selected_Component
(Loc
,
2049 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
2052 (First_Tag_Component
(Rec_Type
), Loc
)),
2056 (Node
(First_Elmt
(Access_Disp_Table
(Rec_Type
))),
2060 Make_Integer_Literal
(Loc
,
2061 DT_Entry_Count
(First_Tag_Component
(Rec_Type
))));
2064 Make_Procedure_Call_Statement
(Loc
,
2065 Name
=> New_Reference_To
(RTE
(RE_Inherit_CPP_DT
),
2067 Parameter_Associations
=> Args
);
2070 Make_If_Statement
(Loc
,
2071 Condition
=> New_Occurrence_Of
(Set_Tag
, Loc
),
2072 Then_Statements
=> New_List
(New_N
, Init_Tag
));
2074 Insert_After
(Nod
, Init_Tag
);
2076 -- We have inherited the whole contents of the DT table
2077 -- from the CPP side. Therefore all our previous initia-
2078 -- lization has been lost and we must refill entries
2079 -- associated with Ada primitives. This needs more work
2080 -- to avoid its execution each time an object is
2088 E
:= First_Elmt
(Primitive_Operations
(Rec_Type
));
2089 while Present
(E
) loop
2092 if not Is_Imported
(Prim
)
2093 and then Convention
(Prim
) = Convention_CPP
2094 and then not Present
(Abstract_Interface_Alias
2097 Insert_After
(Init_Tag
,
2098 Fill_DT_Entry
(Loc
, Prim
));
2108 -- Ada 2005 (AI-251): Initialization of all the tags
2109 -- corresponding with abstract interfaces
2111 if Ada_Version
>= Ada_05
2112 and then not Is_Interface
(Rec_Type
)
2116 Target
=> Make_Identifier
(Loc
, Name_uInit
),
2117 Stmts_List
=> Body_Stmts
);
2121 Handled_Stmt_Node
:= New_Node
(N_Handled_Sequence_Of_Statements
, Loc
);
2122 Set_Statements
(Handled_Stmt_Node
, Body_Stmts
);
2123 Set_Exception_Handlers
(Handled_Stmt_Node
, No_List
);
2124 Set_Handled_Statement_Sequence
(Body_Node
, Handled_Stmt_Node
);
2126 if not Debug_Generated_Code
then
2127 Set_Debug_Info_Off
(Proc_Id
);
2130 -- Associate Init_Proc with type, and determine if the procedure
2131 -- is null (happens because of the Initialize_Scalars pragma case,
2132 -- where we have to generate a null procedure in case it is called
2133 -- by a client with Initialize_Scalars set). Such procedures have
2134 -- to be generated, but do not have to be called, so we mark them
2135 -- as null to suppress the call.
2137 Set_Init_Proc
(Rec_Type
, Proc_Id
);
2139 if List_Length
(Body_Stmts
) = 1
2140 and then Nkind
(First
(Body_Stmts
)) = N_Null_Statement
2142 Set_Is_Null_Init_Proc
(Proc_Id
);
2144 end Build_Init_Procedure
;
2146 ---------------------------
2147 -- Build_Init_Statements --
2148 ---------------------------
2150 function Build_Init_Statements
(Comp_List
: Node_Id
) return List_Id
is
2151 Check_List
: constant List_Id
:= New_List
;
2153 Statement_List
: List_Id
;
2156 Per_Object_Constraint_Components
: Boolean;
2164 function Has_Access_Constraint
(E
: Entity_Id
) return Boolean;
2165 -- Components with access discriminants that depend on the current
2166 -- instance must be initialized after all other components.
2168 ---------------------------
2169 -- Has_Access_Constraint --
2170 ---------------------------
2172 function Has_Access_Constraint
(E
: Entity_Id
) return Boolean is
2174 T
: constant Entity_Id
:= Etype
(E
);
2177 if Has_Per_Object_Constraint
(E
)
2178 and then Has_Discriminants
(T
)
2180 Disc
:= First_Discriminant
(T
);
2181 while Present
(Disc
) loop
2182 if Is_Access_Type
(Etype
(Disc
)) then
2186 Next_Discriminant
(Disc
);
2193 end Has_Access_Constraint
;
2195 -- Start of processing for Build_Init_Statements
2198 if Null_Present
(Comp_List
) then
2199 return New_List
(Make_Null_Statement
(Loc
));
2202 Statement_List
:= New_List
;
2204 -- Loop through components, skipping pragmas, in 2 steps. The first
2205 -- step deals with regular components. The second step deals with
2206 -- components have per object constraints, and no explicit initia-
2209 Per_Object_Constraint_Components
:= False;
2211 -- First step : regular components
2213 Decl
:= First_Non_Pragma
(Component_Items
(Comp_List
));
2214 while Present
(Decl
) loop
2217 (Subtype_Indication
(Component_Definition
(Decl
)), Check_List
);
2219 Id
:= Defining_Identifier
(Decl
);
2222 if Has_Access_Constraint
(Id
)
2223 and then No
(Expression
(Decl
))
2225 -- Skip processing for now and ask for a second pass
2227 Per_Object_Constraint_Components
:= True;
2230 -- Case of explicit initialization
2232 if Present
(Expression
(Decl
)) then
2233 Stmts
:= Build_Assignment
(Id
, Expression
(Decl
));
2235 -- Case of composite component with its own Init_Proc
2237 elsif not Is_Interface
(Typ
)
2238 and then Has_Non_Null_Base_Init_Proc
(Typ
)
2241 Build_Initialization_Call
2243 Make_Selected_Component
(Loc
,
2244 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
2245 Selector_Name
=> New_Occurrence_Of
(Id
, Loc
)),
2249 Discr_Map
=> Discr_Map
);
2251 Clean_Task_Names
(Typ
, Proc_Id
);
2253 -- Case of component needing simple initialization
2255 elsif Component_Needs_Simple_Initialization
(Typ
) then
2258 (Id
, Get_Simple_Init_Val
(Typ
, Loc
, Esize
(Id
)));
2260 -- Nothing needed for this case
2266 if Present
(Check_List
) then
2267 Append_List_To
(Statement_List
, Check_List
);
2270 if Present
(Stmts
) then
2272 -- Add the initialization of the record controller before
2273 -- the _Parent field is attached to it when the attachment
2274 -- can occur. It does not work to simply initialize the
2275 -- controller first: it must be initialized after the parent
2276 -- if the parent holds discriminants that can be used
2277 -- to compute the offset of the controller. We assume here
2278 -- that the last statement of the initialization call is the
2279 -- attachement of the parent (see Build_Initialization_Call)
2281 if Chars
(Id
) = Name_uController
2282 and then Rec_Type
/= Etype
(Rec_Type
)
2283 and then Has_Controlled_Component
(Etype
(Rec_Type
))
2284 and then Has_New_Controlled_Component
(Rec_Type
)
2286 Insert_List_Before
(Last
(Statement_List
), Stmts
);
2288 Append_List_To
(Statement_List
, Stmts
);
2293 Next_Non_Pragma
(Decl
);
2296 if Per_Object_Constraint_Components
then
2298 -- Second pass: components with per-object constraints
2300 Decl
:= First_Non_Pragma
(Component_Items
(Comp_List
));
2302 while Present
(Decl
) loop
2304 Id
:= Defining_Identifier
(Decl
);
2307 if Has_Access_Constraint
(Id
)
2308 and then No
(Expression
(Decl
))
2310 if Has_Non_Null_Base_Init_Proc
(Typ
) then
2311 Append_List_To
(Statement_List
,
2312 Build_Initialization_Call
(Loc
,
2313 Make_Selected_Component
(Loc
,
2314 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
2315 Selector_Name
=> New_Occurrence_Of
(Id
, Loc
)),
2316 Typ
, True, Rec_Type
, Discr_Map
=> Discr_Map
));
2318 Clean_Task_Names
(Typ
, Proc_Id
);
2320 elsif Component_Needs_Simple_Initialization
(Typ
) then
2321 Append_List_To
(Statement_List
,
2323 (Id
, Get_Simple_Init_Val
(Typ
, Loc
, Esize
(Id
))));
2327 Next_Non_Pragma
(Decl
);
2331 -- Process the variant part
2333 if Present
(Variant_Part
(Comp_List
)) then
2334 Alt_List
:= New_List
;
2335 Variant
:= First_Non_Pragma
(Variants
(Variant_Part
(Comp_List
)));
2337 while Present
(Variant
) loop
2338 Loc
:= Sloc
(Variant
);
2339 Append_To
(Alt_List
,
2340 Make_Case_Statement_Alternative
(Loc
,
2342 New_Copy_List
(Discrete_Choices
(Variant
)),
2344 Build_Init_Statements
(Component_List
(Variant
))));
2346 Next_Non_Pragma
(Variant
);
2349 -- The expression of the case statement which is a reference
2350 -- to one of the discriminants is replaced by the appropriate
2351 -- formal parameter of the initialization procedure.
2353 Append_To
(Statement_List
,
2354 Make_Case_Statement
(Loc
,
2356 New_Reference_To
(Discriminal
(
2357 Entity
(Name
(Variant_Part
(Comp_List
)))), Loc
),
2358 Alternatives
=> Alt_List
));
2361 -- For a task record type, add the task create call and calls
2362 -- to bind any interrupt (signal) entries.
2364 if Is_Task_Record_Type
(Rec_Type
) then
2366 -- In the case of the restricted run time the ATCB has already
2367 -- been preallocated.
2369 if Restricted_Profile
then
2370 Append_To
(Statement_List
,
2371 Make_Assignment_Statement
(Loc
,
2372 Name
=> Make_Selected_Component
(Loc
,
2373 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
2374 Selector_Name
=> Make_Identifier
(Loc
, Name_uTask_Id
)),
2375 Expression
=> Make_Attribute_Reference
(Loc
,
2377 Make_Selected_Component
(Loc
,
2378 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
2380 Make_Identifier
(Loc
, Name_uATCB
)),
2381 Attribute_Name
=> Name_Unchecked_Access
)));
2384 Append_To
(Statement_List
, Make_Task_Create_Call
(Rec_Type
));
2387 Task_Type
: constant Entity_Id
:=
2388 Corresponding_Concurrent_Type
(Rec_Type
);
2389 Task_Decl
: constant Node_Id
:= Parent
(Task_Type
);
2390 Task_Def
: constant Node_Id
:= Task_Definition
(Task_Decl
);
2395 if Present
(Task_Def
) then
2396 Vis_Decl
:= First
(Visible_Declarations
(Task_Def
));
2397 while Present
(Vis_Decl
) loop
2398 Loc
:= Sloc
(Vis_Decl
);
2400 if Nkind
(Vis_Decl
) = N_Attribute_Definition_Clause
then
2401 if Get_Attribute_Id
(Chars
(Vis_Decl
)) =
2404 Ent
:= Entity
(Name
(Vis_Decl
));
2406 if Ekind
(Ent
) = E_Entry
then
2407 Append_To
(Statement_List
,
2408 Make_Procedure_Call_Statement
(Loc
,
2409 Name
=> New_Reference_To
(
2410 RTE
(RE_Bind_Interrupt_To_Entry
), Loc
),
2411 Parameter_Associations
=> New_List
(
2412 Make_Selected_Component
(Loc
,
2414 Make_Identifier
(Loc
, Name_uInit
),
2416 Make_Identifier
(Loc
, Name_uTask_Id
)),
2417 Entry_Index_Expression
(
2418 Loc
, Ent
, Empty
, Task_Type
),
2419 Expression
(Vis_Decl
))));
2430 -- For a protected type, add statements generated by
2431 -- Make_Initialize_Protection.
2433 if Is_Protected_Record_Type
(Rec_Type
) then
2434 Append_List_To
(Statement_List
,
2435 Make_Initialize_Protection
(Rec_Type
));
2438 -- If no initializations when generated for component declarations
2439 -- corresponding to this Statement_List, append a null statement
2440 -- to the Statement_List to make it a valid Ada tree.
2442 if Is_Empty_List
(Statement_List
) then
2443 Append
(New_Node
(N_Null_Statement
, Loc
), Statement_List
);
2446 return Statement_List
;
2449 when RE_Not_Available
=>
2451 end Build_Init_Statements
;
2453 -------------------------
2454 -- Build_Record_Checks --
2455 -------------------------
2457 procedure Build_Record_Checks
(S
: Node_Id
; Check_List
: List_Id
) is
2458 Subtype_Mark_Id
: Entity_Id
;
2461 if Nkind
(S
) = N_Subtype_Indication
then
2462 Find_Type
(Subtype_Mark
(S
));
2463 Subtype_Mark_Id
:= Entity
(Subtype_Mark
(S
));
2465 -- Remaining processing depends on type
2467 case Ekind
(Subtype_Mark_Id
) is
2470 Constrain_Array
(S
, Check_List
);
2476 end Build_Record_Checks
;
2478 -------------------------------------------
2479 -- Component_Needs_Simple_Initialization --
2480 -------------------------------------------
2482 function Component_Needs_Simple_Initialization
2483 (T
: Entity_Id
) return Boolean
2487 Needs_Simple_Initialization
(T
)
2488 and then not Is_RTE
(T
, RE_Tag
)
2489 and then not Is_RTE
(T
, RE_Vtable_Ptr
)
2491 -- Ada 2005 (AI-251): Check also the tag of abstract interfaces
2493 and then not Is_RTE
(T
, RE_Interface_Tag
);
2494 end Component_Needs_Simple_Initialization
;
2496 ---------------------
2497 -- Constrain_Array --
2498 ---------------------
2500 procedure Constrain_Array
2502 Check_List
: List_Id
)
2504 C
: constant Node_Id
:= Constraint
(SI
);
2505 Number_Of_Constraints
: Nat
:= 0;
2510 T
:= Entity
(Subtype_Mark
(SI
));
2512 if Ekind
(T
) in Access_Kind
then
2513 T
:= Designated_Type
(T
);
2516 S
:= First
(Constraints
(C
));
2518 while Present
(S
) loop
2519 Number_Of_Constraints
:= Number_Of_Constraints
+ 1;
2523 -- In either case, the index constraint must provide a discrete
2524 -- range for each index of the array type and the type of each
2525 -- discrete range must be the same as that of the corresponding
2526 -- index. (RM 3.6.1)
2528 S
:= First
(Constraints
(C
));
2529 Index
:= First_Index
(T
);
2532 -- Apply constraints to each index type
2534 for J
in 1 .. Number_Of_Constraints
loop
2535 Constrain_Index
(Index
, S
, Check_List
);
2540 end Constrain_Array
;
2542 ---------------------
2543 -- Constrain_Index --
2544 ---------------------
2546 procedure Constrain_Index
2549 Check_List
: List_Id
)
2551 T
: constant Entity_Id
:= Etype
(Index
);
2554 if Nkind
(S
) = N_Range
then
2555 Process_Range_Expr_In_Decl
(S
, T
, Check_List
);
2557 end Constrain_Index
;
2559 --------------------------------------
2560 -- Parent_Subtype_Renaming_Discrims --
2561 --------------------------------------
2563 function Parent_Subtype_Renaming_Discrims
return Boolean is
2568 if Base_Type
(Pe
) /= Pe
then
2573 or else not Has_Discriminants
(Pe
)
2574 or else Is_Constrained
(Pe
)
2575 or else Is_Tagged_Type
(Pe
)
2580 -- If there are no explicit stored discriminants we have inherited
2581 -- the root type discriminants so far, so no renamings occurred.
2583 if First_Discriminant
(Pe
) = First_Stored_Discriminant
(Pe
) then
2587 -- Check if we have done some trivial renaming of the parent
2588 -- discriminants, i.e. someting like
2590 -- type DT (X1,X2: int) is new PT (X1,X2);
2592 De
:= First_Discriminant
(Pe
);
2593 Dp
:= First_Discriminant
(Etype
(Pe
));
2595 while Present
(De
) loop
2596 pragma Assert
(Present
(Dp
));
2598 if Corresponding_Discriminant
(De
) /= Dp
then
2602 Next_Discriminant
(De
);
2603 Next_Discriminant
(Dp
);
2606 return Present
(Dp
);
2607 end Parent_Subtype_Renaming_Discrims
;
2609 ------------------------
2610 -- Requires_Init_Proc --
2611 ------------------------
2613 function Requires_Init_Proc
(Rec_Id
: Entity_Id
) return Boolean is
2614 Comp_Decl
: Node_Id
;
2619 -- Definitely do not need one if specifically suppressed
2621 if Suppress_Init_Proc
(Rec_Id
) then
2625 -- If it is a type derived from a type with unknown discriminants,
2626 -- we cannot build an initialization procedure for it.
2628 if Has_Unknown_Discriminants
(Rec_Id
) then
2632 -- Otherwise we need to generate an initialization procedure if
2633 -- Is_CPP_Class is False and at least one of the following applies:
2635 -- 1. Discriminants are present, since they need to be initialized
2636 -- with the appropriate discriminant constraint expressions.
2637 -- However, the discriminant of an unchecked union does not
2638 -- count, since the discriminant is not present.
2640 -- 2. The type is a tagged type, since the implicit Tag component
2641 -- needs to be initialized with a pointer to the dispatch table.
2643 -- 3. The type contains tasks
2645 -- 4. One or more components has an initial value
2647 -- 5. One or more components is for a type which itself requires
2648 -- an initialization procedure.
2650 -- 6. One or more components is a type that requires simple
2651 -- initialization (see Needs_Simple_Initialization), except
2652 -- that types Tag and Interface_Tag are excluded, since fields
2653 -- of these types are initialized by other means.
2655 -- 7. The type is the record type built for a task type (since at
2656 -- the very least, Create_Task must be called)
2658 -- 8. The type is the record type built for a protected type (since
2659 -- at least Initialize_Protection must be called)
2661 -- 9. The type is marked as a public entity. The reason we add this
2662 -- case (even if none of the above apply) is to properly handle
2663 -- Initialize_Scalars. If a package is compiled without an IS
2664 -- pragma, and the client is compiled with an IS pragma, then
2665 -- the client will think an initialization procedure is present
2666 -- and call it, when in fact no such procedure is required, but
2667 -- since the call is generated, there had better be a routine
2668 -- at the other end of the call, even if it does nothing!)
2670 -- Note: the reason we exclude the CPP_Class case is because in this
2671 -- case the initialization is performed in the C++ side.
2673 if Is_CPP_Class
(Rec_Id
) then
2676 elsif not Restriction_Active
(No_Initialize_Scalars
)
2677 and then Is_Public
(Rec_Id
)
2681 elsif (Has_Discriminants
(Rec_Id
)
2682 and then not Is_Unchecked_Union
(Rec_Id
))
2683 or else Is_Tagged_Type
(Rec_Id
)
2684 or else Is_Concurrent_Record_Type
(Rec_Id
)
2685 or else Has_Task
(Rec_Id
)
2690 Id
:= First_Component
(Rec_Id
);
2692 while Present
(Id
) loop
2693 Comp_Decl
:= Parent
(Id
);
2696 if Present
(Expression
(Comp_Decl
))
2697 or else Has_Non_Null_Base_Init_Proc
(Typ
)
2698 or else Component_Needs_Simple_Initialization
(Typ
)
2703 Next_Component
(Id
);
2707 end Requires_Init_Proc
;
2709 -- Start of processing for Build_Record_Init_Proc
2712 Rec_Type
:= Defining_Identifier
(N
);
2714 -- This may be full declaration of a private type, in which case
2715 -- the visible entity is a record, and the private entity has been
2716 -- exchanged with it in the private part of the current package.
2717 -- The initialization procedure is built for the record type, which
2718 -- is retrievable from the private entity.
2720 if Is_Incomplete_Or_Private_Type
(Rec_Type
) then
2721 Rec_Type
:= Underlying_Type
(Rec_Type
);
2724 -- If there are discriminants, build the discriminant map to replace
2725 -- discriminants by their discriminals in complex bound expressions.
2726 -- These only arise for the corresponding records of protected types.
2728 if Is_Concurrent_Record_Type
(Rec_Type
)
2729 and then Has_Discriminants
(Rec_Type
)
2734 Disc
:= First_Discriminant
(Rec_Type
);
2735 while Present
(Disc
) loop
2736 Append_Elmt
(Disc
, Discr_Map
);
2737 Append_Elmt
(Discriminal
(Disc
), Discr_Map
);
2738 Next_Discriminant
(Disc
);
2743 -- Derived types that have no type extension can use the initialization
2744 -- procedure of their parent and do not need a procedure of their own.
2745 -- This is only correct if there are no representation clauses for the
2746 -- type or its parent, and if the parent has in fact been frozen so
2747 -- that its initialization procedure exists.
2749 if Is_Derived_Type
(Rec_Type
)
2750 and then not Is_Tagged_Type
(Rec_Type
)
2751 and then not Is_Unchecked_Union
(Rec_Type
)
2752 and then not Has_New_Non_Standard_Rep
(Rec_Type
)
2753 and then not Parent_Subtype_Renaming_Discrims
2754 and then Has_Non_Null_Base_Init_Proc
(Etype
(Rec_Type
))
2756 Copy_TSS
(Base_Init_Proc
(Etype
(Rec_Type
)), Rec_Type
);
2758 -- Otherwise if we need an initialization procedure, then build one,
2759 -- mark it as public and inlinable and as having a completion.
2761 elsif Requires_Init_Proc
(Rec_Type
)
2762 or else Is_Unchecked_Union
(Rec_Type
)
2764 Build_Offset_To_Top_Functions
;
2765 Build_Init_Procedure
;
2766 Set_Is_Public
(Proc_Id
, Is_Public
(Pe
));
2768 -- The initialization of protected records is not worth inlining.
2769 -- In addition, when compiled for another unit for inlining purposes,
2770 -- it may make reference to entities that have not been elaborated
2771 -- yet. The initialization of controlled records contains a nested
2772 -- clean-up procedure that makes it impractical to inline as well,
2773 -- and leads to undefined symbols if inlined in a different unit.
2774 -- Similar considerations apply to task types.
2776 if not Is_Concurrent_Type
(Rec_Type
)
2777 and then not Has_Task
(Rec_Type
)
2778 and then not Controlled_Type
(Rec_Type
)
2780 Set_Is_Inlined
(Proc_Id
);
2783 Set_Is_Internal
(Proc_Id
);
2784 Set_Has_Completion
(Proc_Id
);
2786 if not Debug_Generated_Code
then
2787 Set_Debug_Info_Off
(Proc_Id
);
2790 end Build_Record_Init_Proc
;
2792 ----------------------------
2793 -- Build_Slice_Assignment --
2794 ----------------------------
2796 -- Generates the following subprogram:
2799 -- (Source, Target : Array_Type,
2800 -- Left_Lo, Left_Hi, Right_Lo, Right_Hi : Index;
2817 -- exit when Li1 < Left_Lo;
2819 -- exit when Li1 > Left_Hi;
2822 -- Target (Li1) := Source (Ri1);
2825 -- Li1 := Index'pred (Li1);
2826 -- Ri1 := Index'pred (Ri1);
2828 -- Li1 := Index'succ (Li1);
2829 -- Ri1 := Index'succ (Ri1);
2834 procedure Build_Slice_Assignment
(Typ
: Entity_Id
) is
2835 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
2836 Index
: constant Entity_Id
:= Base_Type
(Etype
(First_Index
(Typ
)));
2838 -- Build formal parameters of procedure
2840 Larray
: constant Entity_Id
:=
2841 Make_Defining_Identifier
2842 (Loc
, Chars
=> New_Internal_Name
('A'));
2843 Rarray
: constant Entity_Id
:=
2844 Make_Defining_Identifier
2845 (Loc
, Chars
=> New_Internal_Name
('R'));
2846 Left_Lo
: constant Entity_Id
:=
2847 Make_Defining_Identifier
2848 (Loc
, Chars
=> New_Internal_Name
('L'));
2849 Left_Hi
: constant Entity_Id
:=
2850 Make_Defining_Identifier
2851 (Loc
, Chars
=> New_Internal_Name
('L'));
2852 Right_Lo
: constant Entity_Id
:=
2853 Make_Defining_Identifier
2854 (Loc
, Chars
=> New_Internal_Name
('R'));
2855 Right_Hi
: constant Entity_Id
:=
2856 Make_Defining_Identifier
2857 (Loc
, Chars
=> New_Internal_Name
('R'));
2858 Rev
: constant Entity_Id
:=
2859 Make_Defining_Identifier
2860 (Loc
, Chars
=> New_Internal_Name
('D'));
2861 Proc_Name
: constant Entity_Id
:=
2862 Make_Defining_Identifier
(Loc
,
2863 Chars
=> Make_TSS_Name
(Typ
, TSS_Slice_Assign
));
2865 Lnn
: constant Entity_Id
:=
2866 Make_Defining_Identifier
(Loc
, New_Internal_Name
('L'));
2867 Rnn
: constant Entity_Id
:=
2868 Make_Defining_Identifier
(Loc
, New_Internal_Name
('R'));
2869 -- Subscripts for left and right sides
2876 -- Build declarations for indices
2881 Make_Object_Declaration
(Loc
,
2882 Defining_Identifier
=> Lnn
,
2883 Object_Definition
=>
2884 New_Occurrence_Of
(Index
, Loc
)));
2887 Make_Object_Declaration
(Loc
,
2888 Defining_Identifier
=> Rnn
,
2889 Object_Definition
=>
2890 New_Occurrence_Of
(Index
, Loc
)));
2894 -- Build initializations for indices
2897 F_Init
: constant List_Id
:= New_List
;
2898 B_Init
: constant List_Id
:= New_List
;
2902 Make_Assignment_Statement
(Loc
,
2903 Name
=> New_Occurrence_Of
(Lnn
, Loc
),
2904 Expression
=> New_Occurrence_Of
(Left_Lo
, Loc
)));
2907 Make_Assignment_Statement
(Loc
,
2908 Name
=> New_Occurrence_Of
(Rnn
, Loc
),
2909 Expression
=> New_Occurrence_Of
(Right_Lo
, Loc
)));
2912 Make_Assignment_Statement
(Loc
,
2913 Name
=> New_Occurrence_Of
(Lnn
, Loc
),
2914 Expression
=> New_Occurrence_Of
(Left_Hi
, Loc
)));
2917 Make_Assignment_Statement
(Loc
,
2918 Name
=> New_Occurrence_Of
(Rnn
, Loc
),
2919 Expression
=> New_Occurrence_Of
(Right_Hi
, Loc
)));
2922 Make_If_Statement
(Loc
,
2923 Condition
=> New_Occurrence_Of
(Rev
, Loc
),
2924 Then_Statements
=> B_Init
,
2925 Else_Statements
=> F_Init
));
2928 -- Now construct the assignment statement
2931 Make_Loop_Statement
(Loc
,
2932 Statements
=> New_List
(
2933 Make_Assignment_Statement
(Loc
,
2935 Make_Indexed_Component
(Loc
,
2936 Prefix
=> New_Occurrence_Of
(Larray
, Loc
),
2937 Expressions
=> New_List
(New_Occurrence_Of
(Lnn
, Loc
))),
2939 Make_Indexed_Component
(Loc
,
2940 Prefix
=> New_Occurrence_Of
(Rarray
, Loc
),
2941 Expressions
=> New_List
(New_Occurrence_Of
(Rnn
, Loc
))))),
2942 End_Label
=> Empty
);
2944 -- Build exit condition
2947 F_Ass
: constant List_Id
:= New_List
;
2948 B_Ass
: constant List_Id
:= New_List
;
2952 Make_Exit_Statement
(Loc
,
2955 Left_Opnd
=> New_Occurrence_Of
(Lnn
, Loc
),
2956 Right_Opnd
=> New_Occurrence_Of
(Left_Hi
, Loc
))));
2959 Make_Exit_Statement
(Loc
,
2962 Left_Opnd
=> New_Occurrence_Of
(Lnn
, Loc
),
2963 Right_Opnd
=> New_Occurrence_Of
(Left_Lo
, Loc
))));
2965 Prepend_To
(Statements
(Loops
),
2966 Make_If_Statement
(Loc
,
2967 Condition
=> New_Occurrence_Of
(Rev
, Loc
),
2968 Then_Statements
=> B_Ass
,
2969 Else_Statements
=> F_Ass
));
2972 -- Build the increment/decrement statements
2975 F_Ass
: constant List_Id
:= New_List
;
2976 B_Ass
: constant List_Id
:= New_List
;
2980 Make_Assignment_Statement
(Loc
,
2981 Name
=> New_Occurrence_Of
(Lnn
, Loc
),
2983 Make_Attribute_Reference
(Loc
,
2985 New_Occurrence_Of
(Index
, Loc
),
2986 Attribute_Name
=> Name_Succ
,
2987 Expressions
=> New_List
(
2988 New_Occurrence_Of
(Lnn
, Loc
)))));
2991 Make_Assignment_Statement
(Loc
,
2992 Name
=> New_Occurrence_Of
(Rnn
, Loc
),
2994 Make_Attribute_Reference
(Loc
,
2996 New_Occurrence_Of
(Index
, Loc
),
2997 Attribute_Name
=> Name_Succ
,
2998 Expressions
=> New_List
(
2999 New_Occurrence_Of
(Rnn
, Loc
)))));
3002 Make_Assignment_Statement
(Loc
,
3003 Name
=> New_Occurrence_Of
(Lnn
, Loc
),
3005 Make_Attribute_Reference
(Loc
,
3007 New_Occurrence_Of
(Index
, Loc
),
3008 Attribute_Name
=> Name_Pred
,
3009 Expressions
=> New_List
(
3010 New_Occurrence_Of
(Lnn
, Loc
)))));
3013 Make_Assignment_Statement
(Loc
,
3014 Name
=> New_Occurrence_Of
(Rnn
, Loc
),
3016 Make_Attribute_Reference
(Loc
,
3018 New_Occurrence_Of
(Index
, Loc
),
3019 Attribute_Name
=> Name_Pred
,
3020 Expressions
=> New_List
(
3021 New_Occurrence_Of
(Rnn
, Loc
)))));
3023 Append_To
(Statements
(Loops
),
3024 Make_If_Statement
(Loc
,
3025 Condition
=> New_Occurrence_Of
(Rev
, Loc
),
3026 Then_Statements
=> B_Ass
,
3027 Else_Statements
=> F_Ass
));
3030 Append_To
(Stats
, Loops
);
3034 Formals
: List_Id
:= New_List
;
3037 Formals
:= New_List
(
3038 Make_Parameter_Specification
(Loc
,
3039 Defining_Identifier
=> Larray
,
3040 Out_Present
=> True,
3042 New_Reference_To
(Base_Type
(Typ
), Loc
)),
3044 Make_Parameter_Specification
(Loc
,
3045 Defining_Identifier
=> Rarray
,
3047 New_Reference_To
(Base_Type
(Typ
), Loc
)),
3049 Make_Parameter_Specification
(Loc
,
3050 Defining_Identifier
=> Left_Lo
,
3052 New_Reference_To
(Index
, Loc
)),
3054 Make_Parameter_Specification
(Loc
,
3055 Defining_Identifier
=> Left_Hi
,
3057 New_Reference_To
(Index
, Loc
)),
3059 Make_Parameter_Specification
(Loc
,
3060 Defining_Identifier
=> Right_Lo
,
3062 New_Reference_To
(Index
, Loc
)),
3064 Make_Parameter_Specification
(Loc
,
3065 Defining_Identifier
=> Right_Hi
,
3067 New_Reference_To
(Index
, Loc
)));
3070 Make_Parameter_Specification
(Loc
,
3071 Defining_Identifier
=> Rev
,
3073 New_Reference_To
(Standard_Boolean
, Loc
)));
3076 Make_Procedure_Specification
(Loc
,
3077 Defining_Unit_Name
=> Proc_Name
,
3078 Parameter_Specifications
=> Formals
);
3081 Make_Subprogram_Body
(Loc
,
3082 Specification
=> Spec
,
3083 Declarations
=> Decls
,
3084 Handled_Statement_Sequence
=>
3085 Make_Handled_Sequence_Of_Statements
(Loc
,
3086 Statements
=> Stats
)));
3089 Set_TSS
(Typ
, Proc_Name
);
3090 Set_Is_Pure
(Proc_Name
);
3091 end Build_Slice_Assignment
;
3093 ------------------------------------
3094 -- Build_Variant_Record_Equality --
3095 ------------------------------------
3099 -- function _Equality (X, Y : T) return Boolean is
3101 -- -- Compare discriminants
3103 -- if False or else X.D1 /= Y.D1 or else X.D2 /= Y.D2 then
3107 -- -- Compare components
3109 -- if False or else X.C1 /= Y.C1 or else X.C2 /= Y.C2 then
3113 -- -- Compare variant part
3117 -- if False or else X.C2 /= Y.C2 or else X.C3 /= Y.C3 then
3122 -- if False or else X.Cn /= Y.Cn then
3129 procedure Build_Variant_Record_Equality
(Typ
: Entity_Id
) is
3130 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
3132 F
: constant Entity_Id
:=
3133 Make_Defining_Identifier
(Loc
,
3134 Chars
=> Make_TSS_Name
(Typ
, TSS_Composite_Equality
));
3136 X
: constant Entity_Id
:=
3137 Make_Defining_Identifier
(Loc
,
3140 Y
: constant Entity_Id
:=
3141 Make_Defining_Identifier
(Loc
,
3144 Def
: constant Node_Id
:= Parent
(Typ
);
3145 Comps
: constant Node_Id
:= Component_List
(Type_Definition
(Def
));
3146 Stmts
: constant List_Id
:= New_List
;
3147 Pspecs
: constant List_Id
:= New_List
;
3150 -- Derived Unchecked_Union types no longer inherit the equality function
3153 if Is_Derived_Type
(Typ
)
3154 and then not Is_Unchecked_Union
(Typ
)
3155 and then not Has_New_Non_Standard_Rep
(Typ
)
3158 Parent_Eq
: constant Entity_Id
:=
3159 TSS
(Root_Type
(Typ
), TSS_Composite_Equality
);
3162 if Present
(Parent_Eq
) then
3163 Copy_TSS
(Parent_Eq
, Typ
);
3170 Make_Subprogram_Body
(Loc
,
3172 Make_Function_Specification
(Loc
,
3173 Defining_Unit_Name
=> F
,
3174 Parameter_Specifications
=> Pspecs
,
3175 Result_Definition
=> New_Reference_To
(Standard_Boolean
, Loc
)),
3176 Declarations
=> New_List
,
3177 Handled_Statement_Sequence
=>
3178 Make_Handled_Sequence_Of_Statements
(Loc
,
3179 Statements
=> Stmts
)));
3182 Make_Parameter_Specification
(Loc
,
3183 Defining_Identifier
=> X
,
3184 Parameter_Type
=> New_Reference_To
(Typ
, Loc
)));
3187 Make_Parameter_Specification
(Loc
,
3188 Defining_Identifier
=> Y
,
3189 Parameter_Type
=> New_Reference_To
(Typ
, Loc
)));
3191 -- Unchecked_Unions require additional machinery to support equality.
3192 -- Two extra parameters (A and B) are added to the equality function
3193 -- parameter list in order to capture the inferred values of the
3194 -- discriminants in later calls.
3196 if Is_Unchecked_Union
(Typ
) then
3198 Discr_Type
: constant Node_Id
:= Etype
(First_Discriminant
(Typ
));
3200 A
: constant Node_Id
:=
3201 Make_Defining_Identifier
(Loc
,
3204 B
: constant Node_Id
:=
3205 Make_Defining_Identifier
(Loc
,
3209 -- Add A and B to the parameter list
3212 Make_Parameter_Specification
(Loc
,
3213 Defining_Identifier
=> A
,
3214 Parameter_Type
=> New_Reference_To
(Discr_Type
, Loc
)));
3217 Make_Parameter_Specification
(Loc
,
3218 Defining_Identifier
=> B
,
3219 Parameter_Type
=> New_Reference_To
(Discr_Type
, Loc
)));
3221 -- Generate the following header code to compare the inferred
3229 Make_If_Statement
(Loc
,
3232 Left_Opnd
=> New_Reference_To
(A
, Loc
),
3233 Right_Opnd
=> New_Reference_To
(B
, Loc
)),
3234 Then_Statements
=> New_List
(
3235 Make_Return_Statement
(Loc
,
3236 Expression
=> New_Occurrence_Of
(Standard_False
, Loc
)))));
3238 -- Generate component-by-component comparison. Note that we must
3239 -- propagate one of the inferred discriminant formals to act as
3240 -- the case statement switch.
3242 Append_List_To
(Stmts
,
3243 Make_Eq_Case
(Typ
, Comps
, A
));
3247 -- Normal case (not unchecked union)
3252 Discriminant_Specifications
(Def
)));
3254 Append_List_To
(Stmts
,
3255 Make_Eq_Case
(Typ
, Comps
));
3259 Make_Return_Statement
(Loc
,
3260 Expression
=> New_Reference_To
(Standard_True
, Loc
)));
3265 if not Debug_Generated_Code
then
3266 Set_Debug_Info_Off
(F
);
3268 end Build_Variant_Record_Equality
;
3270 -----------------------------
3271 -- Check_Stream_Attributes --
3272 -----------------------------
3274 procedure Check_Stream_Attributes
(Typ
: Entity_Id
) is
3276 Par_Read
: constant Boolean :=
3277 Stream_Attribute_Available
(Typ
, TSS_Stream_Read
)
3278 and then not Has_Specified_Stream_Read
(Typ
);
3279 Par_Write
: constant Boolean :=
3280 Stream_Attribute_Available
(Typ
, TSS_Stream_Write
)
3281 and then not Has_Specified_Stream_Write
(Typ
);
3283 procedure Check_Attr
(Nam
: Name_Id
; TSS_Nam
: TSS_Name_Type
);
3284 -- Check that Comp has a user-specified Nam stream attribute
3290 procedure Check_Attr
(Nam
: Name_Id
; TSS_Nam
: TSS_Name_Type
) is
3292 if not Stream_Attribute_Available
(Etype
(Comp
), TSS_Nam
) then
3293 Error_Msg_Name_1
:= Nam
;
3295 ("|component& in limited extension must have% attribute", Comp
);
3299 -- Start of processing for Check_Stream_Attributes
3302 if Par_Read
or else Par_Write
then
3303 Comp
:= First_Component
(Typ
);
3304 while Present
(Comp
) loop
3305 if Comes_From_Source
(Comp
)
3306 and then Original_Record_Component
(Comp
) = Comp
3307 and then Is_Limited_Type
(Etype
(Comp
))
3310 Check_Attr
(Name_Read
, TSS_Stream_Read
);
3314 Check_Attr
(Name_Write
, TSS_Stream_Write
);
3318 Next_Component
(Comp
);
3321 end Check_Stream_Attributes
;
3323 -----------------------------
3324 -- Expand_Record_Extension --
3325 -----------------------------
3327 -- Add a field _parent at the beginning of the record extension. This is
3328 -- used to implement inheritance. Here are some examples of expansion:
3330 -- 1. no discriminants
3331 -- type T2 is new T1 with null record;
3333 -- type T2 is new T1 with record
3337 -- 2. renamed discriminants
3338 -- type T2 (B, C : Int) is new T1 (A => B) with record
3339 -- _Parent : T1 (A => B);
3343 -- 3. inherited discriminants
3344 -- type T2 is new T1 with record -- discriminant A inherited
3345 -- _Parent : T1 (A);
3349 procedure Expand_Record_Extension
(T
: Entity_Id
; Def
: Node_Id
) is
3350 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
3351 Loc
: constant Source_Ptr
:= Sloc
(Def
);
3352 Rec_Ext_Part
: Node_Id
:= Record_Extension_Part
(Def
);
3353 Par_Subtype
: Entity_Id
;
3354 Comp_List
: Node_Id
;
3355 Comp_Decl
: Node_Id
;
3358 List_Constr
: constant List_Id
:= New_List
;
3361 -- Expand_Record_Extension is called directly from the semantics, so
3362 -- we must check to see whether expansion is active before proceeding
3364 if not Expander_Active
then
3368 -- This may be a derivation of an untagged private type whose full
3369 -- view is tagged, in which case the Derived_Type_Definition has no
3370 -- extension part. Build an empty one now.
3372 if No
(Rec_Ext_Part
) then
3374 Make_Record_Definition
(Loc
,
3376 Component_List
=> Empty
,
3377 Null_Present
=> True);
3379 Set_Record_Extension_Part
(Def
, Rec_Ext_Part
);
3380 Mark_Rewrite_Insertion
(Rec_Ext_Part
);
3383 Comp_List
:= Component_List
(Rec_Ext_Part
);
3385 Parent_N
:= Make_Defining_Identifier
(Loc
, Name_uParent
);
3387 -- If the derived type inherits its discriminants the type of the
3388 -- _parent field must be constrained by the inherited discriminants
3390 if Has_Discriminants
(T
)
3391 and then Nkind
(Indic
) /= N_Subtype_Indication
3392 and then not Is_Constrained
(Entity
(Indic
))
3394 D
:= First_Discriminant
(T
);
3395 while Present
(D
) loop
3396 Append_To
(List_Constr
, New_Occurrence_Of
(D
, Loc
));
3397 Next_Discriminant
(D
);
3402 Make_Subtype_Indication
(Loc
,
3403 Subtype_Mark
=> New_Reference_To
(Entity
(Indic
), Loc
),
3405 Make_Index_Or_Discriminant_Constraint
(Loc
,
3406 Constraints
=> List_Constr
)),
3409 -- Otherwise the original subtype_indication is just what is needed
3412 Par_Subtype
:= Process_Subtype
(New_Copy_Tree
(Indic
), Def
);
3415 Set_Parent_Subtype
(T
, Par_Subtype
);
3418 Make_Component_Declaration
(Loc
,
3419 Defining_Identifier
=> Parent_N
,
3420 Component_Definition
=>
3421 Make_Component_Definition
(Loc
,
3422 Aliased_Present
=> False,
3423 Subtype_Indication
=> New_Reference_To
(Par_Subtype
, Loc
)));
3425 if Null_Present
(Rec_Ext_Part
) then
3426 Set_Component_List
(Rec_Ext_Part
,
3427 Make_Component_List
(Loc
,
3428 Component_Items
=> New_List
(Comp_Decl
),
3429 Variant_Part
=> Empty
,
3430 Null_Present
=> False));
3431 Set_Null_Present
(Rec_Ext_Part
, False);
3433 elsif Null_Present
(Comp_List
)
3434 or else Is_Empty_List
(Component_Items
(Comp_List
))
3436 Set_Component_Items
(Comp_List
, New_List
(Comp_Decl
));
3437 Set_Null_Present
(Comp_List
, False);
3440 Insert_Before
(First
(Component_Items
(Comp_List
)), Comp_Decl
);
3443 Analyze
(Comp_Decl
);
3444 end Expand_Record_Extension
;
3446 ------------------------------------
3447 -- Expand_N_Full_Type_Declaration --
3448 ------------------------------------
3450 procedure Expand_N_Full_Type_Declaration
(N
: Node_Id
) is
3451 Def_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
3452 B_Id
: constant Entity_Id
:= Base_Type
(Def_Id
);
3457 if Is_Access_Type
(Def_Id
) then
3459 -- Anonymous access types are created for the components of the
3460 -- record parameter for an entry declaration. No master is created
3463 if Has_Task
(Designated_Type
(Def_Id
))
3464 and then Comes_From_Source
(N
)
3466 Build_Master_Entity
(Def_Id
);
3467 Build_Master_Renaming
(Parent
(Def_Id
), Def_Id
);
3469 -- Create a class-wide master because a Master_Id must be generated
3470 -- for access-to-limited-class-wide types whose root may be extended
3471 -- with task components, and for access-to-limited-interfaces because
3472 -- they can be used to reference tasks implementing such interface.
3474 elsif Is_Class_Wide_Type
(Designated_Type
(Def_Id
))
3475 and then (Is_Limited_Type
(Designated_Type
(Def_Id
))
3477 (Is_Interface
(Designated_Type
(Def_Id
))
3479 Is_Limited_Interface
(Designated_Type
(Def_Id
))))
3480 and then Tasking_Allowed
3482 -- Do not create a class-wide master for types whose convention is
3483 -- Java since these types cannot embed Ada tasks anyway. Note that
3484 -- the following test cannot catch the following case:
3486 -- package java.lang.Object is
3487 -- type Typ is tagged limited private;
3488 -- type Ref is access all Typ'Class;
3490 -- type Typ is tagged limited ...;
3491 -- pragma Convention (Typ, Java)
3494 -- Because the convention appears after we have done the
3495 -- processing for type Ref.
3497 and then Convention
(Designated_Type
(Def_Id
)) /= Convention_Java
3499 Build_Class_Wide_Master
(Def_Id
);
3501 elsif Ekind
(Def_Id
) = E_Access_Protected_Subprogram_Type
then
3502 Expand_Access_Protected_Subprogram_Type
(N
);
3505 elsif Has_Task
(Def_Id
) then
3506 Expand_Previous_Access_Type
(Def_Id
);
3509 Par_Id
:= Etype
(B_Id
);
3511 -- The parent type is private then we need to inherit
3512 -- any TSS operations from the full view.
3514 if Ekind
(Par_Id
) in Private_Kind
3515 and then Present
(Full_View
(Par_Id
))
3517 Par_Id
:= Base_Type
(Full_View
(Par_Id
));
3520 if Nkind
(Type_Definition
(Original_Node
(N
)))
3521 = N_Derived_Type_Definition
3522 and then not Is_Tagged_Type
(Def_Id
)
3523 and then Present
(Freeze_Node
(Par_Id
))
3524 and then Present
(TSS_Elist
(Freeze_Node
(Par_Id
)))
3526 Ensure_Freeze_Node
(B_Id
);
3527 FN
:= Freeze_Node
(B_Id
);
3529 if No
(TSS_Elist
(FN
)) then
3530 Set_TSS_Elist
(FN
, New_Elmt_List
);
3534 T_E
: constant Elist_Id
:= TSS_Elist
(FN
);
3538 Elmt
:= First_Elmt
(TSS_Elist
(Freeze_Node
(Par_Id
)));
3540 while Present
(Elmt
) loop
3541 if Chars
(Node
(Elmt
)) /= Name_uInit
then
3542 Append_Elmt
(Node
(Elmt
), T_E
);
3548 -- If the derived type itself is private with a full view, then
3549 -- associate the full view with the inherited TSS_Elist as well.
3551 if Ekind
(B_Id
) in Private_Kind
3552 and then Present
(Full_View
(B_Id
))
3554 Ensure_Freeze_Node
(Base_Type
(Full_View
(B_Id
)));
3556 (Freeze_Node
(Base_Type
(Full_View
(B_Id
))), TSS_Elist
(FN
));
3560 end Expand_N_Full_Type_Declaration
;
3562 ---------------------------------
3563 -- Expand_N_Object_Declaration --
3564 ---------------------------------
3566 -- First we do special processing for objects of a tagged type where this
3567 -- is the point at which the type is frozen. The creation of the dispatch
3568 -- table and the initialization procedure have to be deferred to this
3569 -- point, since we reference previously declared primitive subprograms.
3571 -- For all types, we call an initialization procedure if there is one
3573 procedure Expand_N_Object_Declaration
(N
: Node_Id
) is
3574 Def_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
3575 Typ
: constant Entity_Id
:= Etype
(Def_Id
);
3576 Loc
: constant Source_Ptr
:= Sloc
(N
);
3577 Expr
: constant Node_Id
:= Expression
(N
);
3584 -- Don't do anything for deferred constants. All proper actions will
3585 -- be expanded during the full declaration.
3587 if No
(Expr
) and Constant_Present
(N
) then
3591 -- Make shared memory routines for shared passive variable
3593 if Is_Shared_Passive
(Def_Id
) then
3594 Make_Shared_Var_Procs
(N
);
3597 -- If tasks being declared, make sure we have an activation chain
3598 -- defined for the tasks (has no effect if we already have one), and
3599 -- also that a Master variable is established and that the appropriate
3600 -- enclosing construct is established as a task master.
3602 if Has_Task
(Typ
) then
3603 Build_Activation_Chain_Entity
(N
);
3604 Build_Master_Entity
(Def_Id
);
3607 -- Default initialization required, and no expression present
3611 -- Expand Initialize call for controlled objects. One may wonder why
3612 -- the Initialize Call is not done in the regular Init procedure
3613 -- attached to the record type. That's because the init procedure is
3614 -- recursively called on each component, including _Parent, thus the
3615 -- Init call for a controlled object would generate not only one
3616 -- Initialize call as it is required but one for each ancestor of
3617 -- its type. This processing is suppressed if No_Initialization set.
3619 if not Controlled_Type
(Typ
)
3620 or else No_Initialization
(N
)
3624 elsif not Abort_Allowed
3625 or else not Comes_From_Source
(N
)
3627 Insert_Actions_After
(N
,
3629 Ref
=> New_Occurrence_Of
(Def_Id
, Loc
),
3630 Typ
=> Base_Type
(Typ
),
3631 Flist_Ref
=> Find_Final_List
(Def_Id
),
3632 With_Attach
=> Make_Integer_Literal
(Loc
, 1)));
3637 -- We need to protect the initialize call
3641 -- Initialize (...);
3643 -- Undefer_Abort.all;
3646 -- ??? this won't protect the initialize call for controlled
3647 -- components which are part of the init proc, so this block
3648 -- should probably also contain the call to _init_proc but this
3649 -- requires some code reorganization...
3652 L
: constant List_Id
:=
3654 Ref
=> New_Occurrence_Of
(Def_Id
, Loc
),
3655 Typ
=> Base_Type
(Typ
),
3656 Flist_Ref
=> Find_Final_List
(Def_Id
),
3657 With_Attach
=> Make_Integer_Literal
(Loc
, 1));
3659 Blk
: constant Node_Id
:=
3660 Make_Block_Statement
(Loc
,
3661 Handled_Statement_Sequence
=>
3662 Make_Handled_Sequence_Of_Statements
(Loc
, L
));
3665 Prepend_To
(L
, Build_Runtime_Call
(Loc
, RE_Abort_Defer
));
3666 Set_At_End_Proc
(Handled_Statement_Sequence
(Blk
),
3667 New_Occurrence_Of
(RTE
(RE_Abort_Undefer_Direct
), Loc
));
3668 Insert_Actions_After
(N
, New_List
(Blk
));
3669 Expand_At_End_Handler
3670 (Handled_Statement_Sequence
(Blk
), Entity
(Identifier
(Blk
)));
3674 -- Call type initialization procedure if there is one. We build the
3675 -- call and put it immediately after the object declaration, so that
3676 -- it will be expanded in the usual manner. Note that this will
3677 -- result in proper handling of defaulted discriminants. The call
3678 -- to the Init_Proc is suppressed if No_Initialization is set.
3680 if Has_Non_Null_Base_Init_Proc
(Typ
)
3681 and then not No_Initialization
(N
)
3683 -- The call to the initialization procedure does NOT freeze
3684 -- the object being initialized. This is because the call is
3685 -- not a source level call. This works fine, because the only
3686 -- possible statements depending on freeze status that can
3687 -- appear after the _Init call are rep clauses which can
3688 -- safely appear after actual references to the object.
3690 Id_Ref
:= New_Reference_To
(Def_Id
, Loc
);
3691 Set_Must_Not_Freeze
(Id_Ref
);
3692 Set_Assignment_OK
(Id_Ref
);
3694 Insert_Actions_After
(N
,
3695 Build_Initialization_Call
(Loc
, Id_Ref
, Typ
));
3697 -- If simple initialization is required, then set an appropriate
3698 -- simple initialization expression in place. This special
3699 -- initialization is required even though No_Init_Flag is present.
3701 -- An internally generated temporary needs no initialization because
3702 -- it will be assigned subsequently. In particular, there is no
3703 -- point in applying Initialize_Scalars to such a temporary.
3705 elsif Needs_Simple_Initialization
(Typ
)
3706 and then not Is_Internal
(Def_Id
)
3708 Set_No_Initialization
(N
, False);
3709 Set_Expression
(N
, Get_Simple_Init_Val
(Typ
, Loc
, Esize
(Def_Id
)));
3710 Analyze_And_Resolve
(Expression
(N
), Typ
);
3713 -- Generate attribute for Persistent_BSS if needed
3715 if Persistent_BSS_Mode
3716 and then Comes_From_Source
(N
)
3717 and then Is_Potentially_Persistent_Type
(Typ
)
3718 and then Is_Library_Level_Entity
(Def_Id
)
3724 Make_Linker_Section_Pragma
3725 (Def_Id
, Sloc
(N
), ".persistent.bss");
3726 Insert_After
(N
, Prag
);
3731 -- If access type, then we know it is null if not initialized
3733 if Is_Access_Type
(Typ
) then
3734 Set_Is_Known_Null
(Def_Id
);
3737 -- Explicit initialization present
3740 -- Obtain actual expression from qualified expression
3742 if Nkind
(Expr
) = N_Qualified_Expression
then
3743 Expr_Q
:= Expression
(Expr
);
3748 -- When we have the appropriate type of aggregate in the expression
3749 -- (it has been determined during analysis of the aggregate by
3750 -- setting the delay flag), let's perform in place assignment and
3751 -- thus avoid creating a temporary.
3753 if Is_Delayed_Aggregate
(Expr_Q
) then
3754 Convert_Aggr_In_Object_Decl
(N
);
3757 -- Ada 2005 (AI-318-02): If the initialization expression is a
3758 -- call to a build-in-place function, then access to the declared
3759 -- object must be passed to the function. Currently we limit such
3760 -- functions to those with constrained limited result subtypes,
3761 -- but eventually we plan to expand the allowed forms of funtions
3762 -- that are treated as build-in-place.
3764 if Ada_Version
>= Ada_05
3765 and then Is_Build_In_Place_Function_Call
(Expr_Q
)
3767 Make_Build_In_Place_Call_In_Object_Declaration
(N
, Expr_Q
);
3770 -- In most cases, we must check that the initial value meets any
3771 -- constraint imposed by the declared type. However, there is one
3772 -- very important exception to this rule. If the entity has an
3773 -- unconstrained nominal subtype, then it acquired its constraints
3774 -- from the expression in the first place, and not only does this
3775 -- mean that the constraint check is not needed, but an attempt to
3776 -- perform the constraint check can cause order order of
3777 -- elaboration problems.
3779 if not Is_Constr_Subt_For_U_Nominal
(Typ
) then
3781 -- If this is an allocator for an aggregate that has been
3782 -- allocated in place, delay checks until assignments are
3783 -- made, because the discriminants are not initialized.
3785 if Nkind
(Expr
) = N_Allocator
3786 and then No_Initialization
(Expr
)
3790 Apply_Constraint_Check
(Expr
, Typ
);
3794 -- If the type is controlled we attach the object to the final
3795 -- list and adjust the target after the copy. This
3796 -- ??? incomplete sentence
3798 -- Ada 2005 (AI-251): Do not register in the final list objects
3799 -- containing class-wide interfaces; otherwise we erroneously
3800 -- register the tag of the interface in the final list. Example:
3802 -- Obj1 : T; -- Controlled object that implements Iface
3803 -- Obj2 : Iface'Class := Iface'Class (Obj1);
3805 -- Obj1 is registered in the final list; Obj2 is not registered.
3807 if Controlled_Type
(Typ
)
3808 and then not (Is_Interface
(Typ
)
3809 and then Is_Class_Wide_Type
(Typ
))
3816 -- Attach the result to a dummy final list which will never
3817 -- be finalized if Delay_Finalize_Attachis set. It is
3818 -- important to attach to a dummy final list rather than not
3819 -- attaching at all in order to reset the pointers coming
3820 -- from the initial value. Equivalent code exists in the
3821 -- sec-stack case in Exp_Ch4.Expand_N_Allocator.
3823 if Delay_Finalize_Attach
(N
) then
3825 Make_Defining_Identifier
(Loc
, New_Internal_Name
('F'));
3827 Make_Object_Declaration
(Loc
,
3828 Defining_Identifier
=> F
,
3829 Object_Definition
=>
3830 New_Reference_To
(RTE
(RE_Finalizable_Ptr
), Loc
)));
3832 Flist
:= New_Reference_To
(F
, Loc
);
3835 Flist
:= Find_Final_List
(Def_Id
);
3838 -- Adjustment is only needed when the controlled type is not
3841 if not Is_Limited_Type
(Typ
) then
3842 Insert_Actions_After
(N
,
3844 Ref
=> New_Reference_To
(Def_Id
, Loc
),
3845 Typ
=> Base_Type
(Typ
),
3847 With_Attach
=> Make_Integer_Literal
(Loc
, 1)));
3852 -- For tagged types, when an init value is given, the tag has to
3853 -- be re-initialized separately in order to avoid the propagation
3854 -- of a wrong tag coming from a view conversion unless the type
3855 -- is class wide (in this case the tag comes from the init value).
3856 -- Suppress the tag assignment when Java_VM because JVM tags are
3857 -- represented implicitly in objects. Ditto for types that are
3858 -- CPP_CLASS, and for initializations that are aggregates, because
3859 -- they have to have the right tag.
3861 if Is_Tagged_Type
(Typ
)
3862 and then not Is_Class_Wide_Type
(Typ
)
3863 and then not Is_CPP_Class
(Typ
)
3864 and then not Java_VM
3865 and then Nkind
(Expr
) /= N_Aggregate
3867 -- The re-assignment of the tag has to be done even if the
3868 -- object is a constant.
3871 Make_Selected_Component
(Loc
,
3872 Prefix
=> New_Reference_To
(Def_Id
, Loc
),
3874 New_Reference_To
(First_Tag_Component
(Typ
), Loc
));
3876 Set_Assignment_OK
(New_Ref
);
3879 Make_Assignment_Statement
(Loc
,
3882 Unchecked_Convert_To
(RTE
(RE_Tag
),
3886 (Access_Disp_Table
(Base_Type
(Typ
)))),
3889 -- For discrete types, set the Is_Known_Valid flag if the
3890 -- initializing value is known to be valid.
3892 elsif Is_Discrete_Type
(Typ
) and then Expr_Known_Valid
(Expr
) then
3893 Set_Is_Known_Valid
(Def_Id
);
3895 elsif Is_Access_Type
(Typ
) then
3897 -- For access types set the Is_Known_Non_Null flag if the
3898 -- initializing value is known to be non-null. We can also set
3899 -- Can_Never_Be_Null if this is a constant.
3901 if Known_Non_Null
(Expr
) then
3902 Set_Is_Known_Non_Null
(Def_Id
, True);
3904 if Constant_Present
(N
) then
3905 Set_Can_Never_Be_Null
(Def_Id
);
3910 -- If validity checking on copies, validate initial expression
3912 if Validity_Checks_On
3913 and then Validity_Check_Copies
3915 Ensure_Valid
(Expr
);
3916 Set_Is_Known_Valid
(Def_Id
);
3920 -- Cases where the back end cannot handle the initialization directly
3921 -- In such cases, we expand an assignment that will be appropriately
3922 -- handled by Expand_N_Assignment_Statement.
3924 -- The exclusion of the unconstrained case is wrong, but for now it
3925 -- is too much trouble ???
3927 if (Is_Possibly_Unaligned_Slice
(Expr
)
3928 or else (Is_Possibly_Unaligned_Object
(Expr
)
3929 and then not Represented_As_Scalar
(Etype
(Expr
))))
3931 -- The exclusion of the unconstrained case is wrong, but for now
3932 -- it is too much trouble ???
3934 and then not (Is_Array_Type
(Etype
(Expr
))
3935 and then not Is_Constrained
(Etype
(Expr
)))
3938 Stat
: constant Node_Id
:=
3939 Make_Assignment_Statement
(Loc
,
3940 Name
=> New_Reference_To
(Def_Id
, Loc
),
3941 Expression
=> Relocate_Node
(Expr
));
3943 Set_Expression
(N
, Empty
);
3944 Set_No_Initialization
(N
);
3945 Set_Assignment_OK
(Name
(Stat
));
3946 Set_No_Ctrl_Actions
(Stat
);
3947 Insert_After
(N
, Stat
);
3953 -- For array type, check for size too large
3954 -- We really need this for record types too???
3956 if Is_Array_Type
(Typ
) then
3957 Apply_Array_Size_Check
(N
, Typ
);
3961 when RE_Not_Available
=>
3963 end Expand_N_Object_Declaration
;
3965 ---------------------------------
3966 -- Expand_N_Subtype_Indication --
3967 ---------------------------------
3969 -- Add a check on the range of the subtype. The static case is partially
3970 -- duplicated by Process_Range_Expr_In_Decl in Sem_Ch3, but we still need
3971 -- to check here for the static case in order to avoid generating
3972 -- extraneous expanded code. Also deal with validity checking.
3974 procedure Expand_N_Subtype_Indication
(N
: Node_Id
) is
3975 Ran
: constant Node_Id
:= Range_Expression
(Constraint
(N
));
3976 Typ
: constant Entity_Id
:= Entity
(Subtype_Mark
(N
));
3979 if Nkind
(Constraint
(N
)) = N_Range_Constraint
then
3980 Validity_Check_Range
(Range_Expression
(Constraint
(N
)));
3983 if Nkind
(Parent
(N
)) = N_Constrained_Array_Definition
3985 Nkind
(Parent
(N
)) = N_Slice
3988 Apply_Range_Check
(Ran
, Typ
);
3990 end Expand_N_Subtype_Indication
;
3992 ---------------------------
3993 -- Expand_N_Variant_Part --
3994 ---------------------------
3996 -- If the last variant does not contain the Others choice, replace it with
3997 -- an N_Others_Choice node since Gigi always wants an Others. Note that we
3998 -- do not bother to call Analyze on the modified variant part, since it's
3999 -- only effect would be to compute the contents of the
4000 -- Others_Discrete_Choices node laboriously, and of course we already know
4001 -- the list of choices that corresponds to the others choice (it's the
4002 -- list we are replacing!)
4004 procedure Expand_N_Variant_Part
(N
: Node_Id
) is
4005 Last_Var
: constant Node_Id
:= Last_Non_Pragma
(Variants
(N
));
4006 Others_Node
: Node_Id
;
4008 if Nkind
(First
(Discrete_Choices
(Last_Var
))) /= N_Others_Choice
then
4009 Others_Node
:= Make_Others_Choice
(Sloc
(Last_Var
));
4010 Set_Others_Discrete_Choices
4011 (Others_Node
, Discrete_Choices
(Last_Var
));
4012 Set_Discrete_Choices
(Last_Var
, New_List
(Others_Node
));
4014 end Expand_N_Variant_Part
;
4016 ---------------------------------
4017 -- Expand_Previous_Access_Type --
4018 ---------------------------------
4020 procedure Expand_Previous_Access_Type
(Def_Id
: Entity_Id
) is
4021 T
: Entity_Id
:= First_Entity
(Current_Scope
);
4024 -- Find all access types declared in the current scope, whose
4025 -- designated type is Def_Id.
4027 while Present
(T
) loop
4028 if Is_Access_Type
(T
)
4029 and then Designated_Type
(T
) = Def_Id
4031 Build_Master_Entity
(Def_Id
);
4032 Build_Master_Renaming
(Parent
(Def_Id
), T
);
4037 end Expand_Previous_Access_Type
;
4039 ------------------------------
4040 -- Expand_Record_Controller --
4041 ------------------------------
4043 procedure Expand_Record_Controller
(T
: Entity_Id
) is
4044 Def
: Node_Id
:= Type_Definition
(Parent
(T
));
4045 Comp_List
: Node_Id
;
4046 Comp_Decl
: Node_Id
;
4048 First_Comp
: Node_Id
;
4049 Controller_Type
: Entity_Id
;
4053 if Nkind
(Def
) = N_Derived_Type_Definition
then
4054 Def
:= Record_Extension_Part
(Def
);
4057 if Null_Present
(Def
) then
4058 Set_Component_List
(Def
,
4059 Make_Component_List
(Sloc
(Def
),
4060 Component_Items
=> Empty_List
,
4061 Variant_Part
=> Empty
,
4062 Null_Present
=> True));
4065 Comp_List
:= Component_List
(Def
);
4067 if Null_Present
(Comp_List
)
4068 or else Is_Empty_List
(Component_Items
(Comp_List
))
4070 Loc
:= Sloc
(Comp_List
);
4072 Loc
:= Sloc
(First
(Component_Items
(Comp_List
)));
4075 if Is_Inherently_Limited_Type
(T
) then
4076 Controller_Type
:= RTE
(RE_Limited_Record_Controller
);
4078 Controller_Type
:= RTE
(RE_Record_Controller
);
4081 Ent
:= Make_Defining_Identifier
(Loc
, Name_uController
);
4084 Make_Component_Declaration
(Loc
,
4085 Defining_Identifier
=> Ent
,
4086 Component_Definition
=>
4087 Make_Component_Definition
(Loc
,
4088 Aliased_Present
=> False,
4089 Subtype_Indication
=> New_Reference_To
(Controller_Type
, Loc
)));
4091 if Null_Present
(Comp_List
)
4092 or else Is_Empty_List
(Component_Items
(Comp_List
))
4094 Set_Component_Items
(Comp_List
, New_List
(Comp_Decl
));
4095 Set_Null_Present
(Comp_List
, False);
4098 -- The controller cannot be placed before the _Parent field since
4099 -- gigi lays out field in order and _parent must be first to
4100 -- preserve the polymorphism of tagged types.
4102 First_Comp
:= First
(Component_Items
(Comp_List
));
4104 if not Is_Tagged_Type
(T
) then
4105 Insert_Before
(First_Comp
, Comp_Decl
);
4107 -- if T is a tagged type, place controller declaration after
4108 -- parent field and after eventual tags of implemented
4109 -- interfaces, if present.
4112 while Present
(First_Comp
)
4114 (Chars
(Defining_Identifier
(First_Comp
)) = Name_uParent
4115 or else Is_Tag
(Defining_Identifier
(First_Comp
)))
4120 -- An empty tagged extension might consist only of the parent
4121 -- component. Otherwise insert the controller before the first
4122 -- component that is neither parent nor tag.
4124 if Present
(First_Comp
) then
4125 Insert_Before
(First_Comp
, Comp_Decl
);
4127 Append
(Comp_Decl
, Component_Items
(Comp_List
));
4133 Analyze
(Comp_Decl
);
4134 Set_Ekind
(Ent
, E_Component
);
4135 Init_Component_Location
(Ent
);
4137 -- Move the _controller entity ahead in the list of internal entities
4138 -- of the enclosing record so that it is selected instead of a
4139 -- potentially inherited one.
4142 E
: constant Entity_Id
:= Last_Entity
(T
);
4146 pragma Assert
(Chars
(E
) = Name_uController
);
4148 Set_Next_Entity
(E
, First_Entity
(T
));
4149 Set_First_Entity
(T
, E
);
4151 Comp
:= Next_Entity
(E
);
4152 while Next_Entity
(Comp
) /= E
loop
4156 Set_Next_Entity
(Comp
, Empty
);
4157 Set_Last_Entity
(T
, Comp
);
4163 when RE_Not_Available
=>
4165 end Expand_Record_Controller
;
4167 ------------------------
4168 -- Expand_Tagged_Root --
4169 ------------------------
4171 procedure Expand_Tagged_Root
(T
: Entity_Id
) is
4172 Def
: constant Node_Id
:= Type_Definition
(Parent
(T
));
4173 Comp_List
: Node_Id
;
4174 Comp_Decl
: Node_Id
;
4175 Sloc_N
: Source_Ptr
;
4178 if Null_Present
(Def
) then
4179 Set_Component_List
(Def
,
4180 Make_Component_List
(Sloc
(Def
),
4181 Component_Items
=> Empty_List
,
4182 Variant_Part
=> Empty
,
4183 Null_Present
=> True));
4186 Comp_List
:= Component_List
(Def
);
4188 if Null_Present
(Comp_List
)
4189 or else Is_Empty_List
(Component_Items
(Comp_List
))
4191 Sloc_N
:= Sloc
(Comp_List
);
4193 Sloc_N
:= Sloc
(First
(Component_Items
(Comp_List
)));
4197 Make_Component_Declaration
(Sloc_N
,
4198 Defining_Identifier
=> First_Tag_Component
(T
),
4199 Component_Definition
=>
4200 Make_Component_Definition
(Sloc_N
,
4201 Aliased_Present
=> False,
4202 Subtype_Indication
=> New_Reference_To
(RTE
(RE_Tag
), Sloc_N
)));
4204 if Null_Present
(Comp_List
)
4205 or else Is_Empty_List
(Component_Items
(Comp_List
))
4207 Set_Component_Items
(Comp_List
, New_List
(Comp_Decl
));
4208 Set_Null_Present
(Comp_List
, False);
4211 Insert_Before
(First
(Component_Items
(Comp_List
)), Comp_Decl
);
4214 -- We don't Analyze the whole expansion because the tag component has
4215 -- already been analyzed previously. Here we just insure that the tree
4216 -- is coherent with the semantic decoration
4218 Find_Type
(Subtype_Indication
(Component_Definition
(Comp_Decl
)));
4221 when RE_Not_Available
=>
4223 end Expand_Tagged_Root
;
4225 ----------------------
4226 -- Clean_Task_Names --
4227 ----------------------
4229 procedure Clean_Task_Names
4231 Proc_Id
: Entity_Id
)
4235 and then not Restriction_Active
(No_Implicit_Heap_Allocations
)
4236 and then not Global_Discard_Names
4238 Set_Uses_Sec_Stack
(Proc_Id
);
4240 end Clean_Task_Names
;
4242 -----------------------
4243 -- Freeze_Array_Type --
4244 -----------------------
4246 procedure Freeze_Array_Type
(N
: Node_Id
) is
4247 Typ
: constant Entity_Id
:= Entity
(N
);
4248 Base
: constant Entity_Id
:= Base_Type
(Typ
);
4251 if not Is_Bit_Packed_Array
(Typ
) then
4253 -- If the component contains tasks, so does the array type. This may
4254 -- not be indicated in the array type because the component may have
4255 -- been a private type at the point of definition. Same if component
4256 -- type is controlled.
4258 Set_Has_Task
(Base
, Has_Task
(Component_Type
(Typ
)));
4259 Set_Has_Controlled_Component
(Base
,
4260 Has_Controlled_Component
(Component_Type
(Typ
))
4261 or else Is_Controlled
(Component_Type
(Typ
)));
4263 if No
(Init_Proc
(Base
)) then
4265 -- If this is an anonymous array created for a declaration with
4266 -- an initial value, its init_proc will never be called. The
4267 -- initial value itself may have been expanded into assign-
4268 -- ments, in which case the object declaration is carries the
4269 -- No_Initialization flag.
4272 and then Nkind
(Associated_Node_For_Itype
(Base
)) =
4273 N_Object_Declaration
4274 and then (Present
(Expression
(Associated_Node_For_Itype
(Base
)))
4276 No_Initialization
(Associated_Node_For_Itype
(Base
)))
4280 -- We do not need an init proc for string or wide [wide] string,
4281 -- since the only time these need initialization in normalize or
4282 -- initialize scalars mode, and these types are treated specially
4283 -- and do not need initialization procedures.
4285 elsif Root_Type
(Base
) = Standard_String
4286 or else Root_Type
(Base
) = Standard_Wide_String
4287 or else Root_Type
(Base
) = Standard_Wide_Wide_String
4291 -- Otherwise we have to build an init proc for the subtype
4294 Build_Array_Init_Proc
(Base
, N
);
4298 if Typ
= Base
and then Has_Controlled_Component
(Base
) then
4299 Build_Controlling_Procs
(Base
);
4301 if not Is_Limited_Type
(Component_Type
(Typ
))
4302 and then Number_Dimensions
(Typ
) = 1
4304 Build_Slice_Assignment
(Typ
);
4308 -- For packed case, there is a default initialization, except if the
4309 -- component type is itself a packed structure with an initialization
4312 elsif Present
(Init_Proc
(Component_Type
(Base
)))
4313 and then No
(Base_Init_Proc
(Base
))
4315 Build_Array_Init_Proc
(Base
, N
);
4317 end Freeze_Array_Type
;
4319 -----------------------------
4320 -- Freeze_Enumeration_Type --
4321 -----------------------------
4323 procedure Freeze_Enumeration_Type
(N
: Node_Id
) is
4324 Typ
: constant Entity_Id
:= Entity
(N
);
4325 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
4332 Is_Contiguous
: Boolean;
4337 pragma Warnings
(Off
, Func
);
4340 -- Various optimization are possible if the given representation is
4343 Is_Contiguous
:= True;
4344 Ent
:= First_Literal
(Typ
);
4345 Last_Repval
:= Enumeration_Rep
(Ent
);
4348 while Present
(Ent
) loop
4349 if Enumeration_Rep
(Ent
) - Last_Repval
/= 1 then
4350 Is_Contiguous
:= False;
4353 Last_Repval
:= Enumeration_Rep
(Ent
);
4359 if Is_Contiguous
then
4360 Set_Has_Contiguous_Rep
(Typ
);
4361 Ent
:= First_Literal
(Typ
);
4363 Lst
:= New_List
(New_Reference_To
(Ent
, Sloc
(Ent
)));
4366 -- Build list of literal references
4371 Ent
:= First_Literal
(Typ
);
4372 while Present
(Ent
) loop
4373 Append_To
(Lst
, New_Reference_To
(Ent
, Sloc
(Ent
)));
4379 -- Now build an array declaration
4381 -- typA : array (Natural range 0 .. num - 1) of ctype :=
4382 -- (v, v, v, v, v, ....)
4384 -- where ctype is the corresponding integer type. If the representation
4385 -- is contiguous, we only keep the first literal, which provides the
4386 -- offset for Pos_To_Rep computations.
4389 Make_Defining_Identifier
(Loc
,
4390 Chars
=> New_External_Name
(Chars
(Typ
), 'A'));
4392 Append_Freeze_Action
(Typ
,
4393 Make_Object_Declaration
(Loc
,
4394 Defining_Identifier
=> Arr
,
4395 Constant_Present
=> True,
4397 Object_Definition
=>
4398 Make_Constrained_Array_Definition
(Loc
,
4399 Discrete_Subtype_Definitions
=> New_List
(
4400 Make_Subtype_Indication
(Loc
,
4401 Subtype_Mark
=> New_Reference_To
(Standard_Natural
, Loc
),
4403 Make_Range_Constraint
(Loc
,
4407 Make_Integer_Literal
(Loc
, 0),
4409 Make_Integer_Literal
(Loc
, Num
- 1))))),
4411 Component_Definition
=>
4412 Make_Component_Definition
(Loc
,
4413 Aliased_Present
=> False,
4414 Subtype_Indication
=> New_Reference_To
(Typ
, Loc
))),
4417 Make_Aggregate
(Loc
,
4418 Expressions
=> Lst
)));
4420 Set_Enum_Pos_To_Rep
(Typ
, Arr
);
4422 -- Now we build the function that converts representation values to
4423 -- position values. This function has the form:
4425 -- function _Rep_To_Pos (A : etype; F : Boolean) return Integer is
4428 -- when enum-lit'Enum_Rep => return posval;
4429 -- when enum-lit'Enum_Rep => return posval;
4432 -- [raise Constraint_Error when F "invalid data"]
4437 -- Note: the F parameter determines whether the others case (no valid
4438 -- representation) raises Constraint_Error or returns a unique value
4439 -- of minus one. The latter case is used, e.g. in 'Valid code.
4441 -- Note: the reason we use Enum_Rep values in the case here is to avoid
4442 -- the code generator making inappropriate assumptions about the range
4443 -- of the values in the case where the value is invalid. ityp is a
4444 -- signed or unsigned integer type of appropriate width.
4446 -- Note: if exceptions are not supported, then we suppress the raise
4447 -- and return -1 unconditionally (this is an erroneous program in any
4448 -- case and there is no obligation to raise Constraint_Error here!) We
4449 -- also do this if pragma Restrictions (No_Exceptions) is active.
4451 -- Representations are signed
4453 if Enumeration_Rep
(First_Literal
(Typ
)) < 0 then
4455 -- The underlying type is signed. Reset the Is_Unsigned_Type
4456 -- explicitly, because it might have been inherited from
4459 Set_Is_Unsigned_Type
(Typ
, False);
4461 if Esize
(Typ
) <= Standard_Integer_Size
then
4462 Ityp
:= Standard_Integer
;
4464 Ityp
:= Universal_Integer
;
4467 -- Representations are unsigned
4470 if Esize
(Typ
) <= Standard_Integer_Size
then
4471 Ityp
:= RTE
(RE_Unsigned
);
4473 Ityp
:= RTE
(RE_Long_Long_Unsigned
);
4477 -- The body of the function is a case statement. First collect case
4478 -- alternatives, or optimize the contiguous case.
4482 -- If representation is contiguous, Pos is computed by subtracting
4483 -- the representation of the first literal.
4485 if Is_Contiguous
then
4486 Ent
:= First_Literal
(Typ
);
4488 if Enumeration_Rep
(Ent
) = Last_Repval
then
4490 -- Another special case: for a single literal, Pos is zero
4492 Pos_Expr
:= Make_Integer_Literal
(Loc
, Uint_0
);
4496 Convert_To
(Standard_Integer
,
4497 Make_Op_Subtract
(Loc
,
4499 Unchecked_Convert_To
(Ityp
,
4500 Make_Identifier
(Loc
, Name_uA
)),
4502 Make_Integer_Literal
(Loc
,
4504 Enumeration_Rep
(First_Literal
(Typ
)))));
4508 Make_Case_Statement_Alternative
(Loc
,
4509 Discrete_Choices
=> New_List
(
4510 Make_Range
(Sloc
(Enumeration_Rep_Expr
(Ent
)),
4512 Make_Integer_Literal
(Loc
,
4513 Intval
=> Enumeration_Rep
(Ent
)),
4515 Make_Integer_Literal
(Loc
, Intval
=> Last_Repval
))),
4517 Statements
=> New_List
(
4518 Make_Return_Statement
(Loc
,
4519 Expression
=> Pos_Expr
))));
4522 Ent
:= First_Literal
(Typ
);
4524 while Present
(Ent
) loop
4526 Make_Case_Statement_Alternative
(Loc
,
4527 Discrete_Choices
=> New_List
(
4528 Make_Integer_Literal
(Sloc
(Enumeration_Rep_Expr
(Ent
)),
4529 Intval
=> Enumeration_Rep
(Ent
))),
4531 Statements
=> New_List
(
4532 Make_Return_Statement
(Loc
,
4534 Make_Integer_Literal
(Loc
,
4535 Intval
=> Enumeration_Pos
(Ent
))))));
4541 -- In normal mode, add the others clause with the test
4543 if not Restriction_Active
(No_Exception_Handlers
) then
4545 Make_Case_Statement_Alternative
(Loc
,
4546 Discrete_Choices
=> New_List
(Make_Others_Choice
(Loc
)),
4547 Statements
=> New_List
(
4548 Make_Raise_Constraint_Error
(Loc
,
4549 Condition
=> Make_Identifier
(Loc
, Name_uF
),
4550 Reason
=> CE_Invalid_Data
),
4551 Make_Return_Statement
(Loc
,
4553 Make_Integer_Literal
(Loc
, -1)))));
4555 -- If Restriction (No_Exceptions_Handlers) is active then we always
4556 -- return -1 (since we cannot usefully raise Constraint_Error in
4557 -- this case). See description above for further details.
4561 Make_Case_Statement_Alternative
(Loc
,
4562 Discrete_Choices
=> New_List
(Make_Others_Choice
(Loc
)),
4563 Statements
=> New_List
(
4564 Make_Return_Statement
(Loc
,
4566 Make_Integer_Literal
(Loc
, -1)))));
4569 -- Now we can build the function body
4572 Make_Defining_Identifier
(Loc
, Make_TSS_Name
(Typ
, TSS_Rep_To_Pos
));
4575 Make_Subprogram_Body
(Loc
,
4577 Make_Function_Specification
(Loc
,
4578 Defining_Unit_Name
=> Fent
,
4579 Parameter_Specifications
=> New_List
(
4580 Make_Parameter_Specification
(Loc
,
4581 Defining_Identifier
=>
4582 Make_Defining_Identifier
(Loc
, Name_uA
),
4583 Parameter_Type
=> New_Reference_To
(Typ
, Loc
)),
4584 Make_Parameter_Specification
(Loc
,
4585 Defining_Identifier
=>
4586 Make_Defining_Identifier
(Loc
, Name_uF
),
4587 Parameter_Type
=> New_Reference_To
(Standard_Boolean
, Loc
))),
4589 Result_Definition
=> New_Reference_To
(Standard_Integer
, Loc
)),
4591 Declarations
=> Empty_List
,
4593 Handled_Statement_Sequence
=>
4594 Make_Handled_Sequence_Of_Statements
(Loc
,
4595 Statements
=> New_List
(
4596 Make_Case_Statement
(Loc
,
4598 Unchecked_Convert_To
(Ityp
,
4599 Make_Identifier
(Loc
, Name_uA
)),
4600 Alternatives
=> Lst
))));
4602 Set_TSS
(Typ
, Fent
);
4605 if not Debug_Generated_Code
then
4606 Set_Debug_Info_Off
(Fent
);
4610 when RE_Not_Available
=>
4612 end Freeze_Enumeration_Type
;
4614 ------------------------
4615 -- Freeze_Record_Type --
4616 ------------------------
4618 procedure Freeze_Record_Type
(N
: Node_Id
) is
4620 Def_Id
: constant Node_Id
:= Entity
(N
);
4621 Predef_List
: List_Id
;
4622 Type_Decl
: constant Node_Id
:= Parent
(Def_Id
);
4624 Renamed_Eq
: Node_Id
:= Empty
;
4625 -- Could use some comments ???
4627 Wrapper_Decl_List
: List_Id
:= No_List
;
4628 Wrapper_Body_List
: List_Id
:= No_List
;
4629 Null_Proc_Decl_List
: List_Id
:= No_List
;
4632 -- Build discriminant checking functions if not a derived type (for
4633 -- derived types that are not tagged types, we always use the
4634 -- discriminant checking functions of the parent type). However, for
4635 -- untagged types the derivation may have taken place before the
4636 -- parent was frozen, so we copy explicitly the discriminant checking
4637 -- functions from the parent into the components of the derived type.
4639 if not Is_Derived_Type
(Def_Id
)
4640 or else Has_New_Non_Standard_Rep
(Def_Id
)
4641 or else Is_Tagged_Type
(Def_Id
)
4643 Build_Discr_Checking_Funcs
(Type_Decl
);
4645 elsif Is_Derived_Type
(Def_Id
)
4646 and then not Is_Tagged_Type
(Def_Id
)
4648 -- If we have a derived Unchecked_Union, we do not inherit the
4649 -- discriminant checking functions from the parent type since the
4650 -- discriminants are non existent.
4652 and then not Is_Unchecked_Union
(Def_Id
)
4653 and then Has_Discriminants
(Def_Id
)
4656 Old_Comp
: Entity_Id
;
4660 First_Component
(Base_Type
(Underlying_Type
(Etype
(Def_Id
))));
4661 Comp
:= First_Component
(Def_Id
);
4662 while Present
(Comp
) loop
4663 if Ekind
(Comp
) = E_Component
4664 and then Chars
(Comp
) = Chars
(Old_Comp
)
4666 Set_Discriminant_Checking_Func
(Comp
,
4667 Discriminant_Checking_Func
(Old_Comp
));
4670 Next_Component
(Old_Comp
);
4671 Next_Component
(Comp
);
4676 if Is_Derived_Type
(Def_Id
)
4677 and then Is_Limited_Type
(Def_Id
)
4678 and then Is_Tagged_Type
(Def_Id
)
4680 Check_Stream_Attributes
(Def_Id
);
4683 -- Update task and controlled component flags, because some of the
4684 -- component types may have been private at the point of the record
4687 Comp
:= First_Component
(Def_Id
);
4689 while Present
(Comp
) loop
4690 if Has_Task
(Etype
(Comp
)) then
4691 Set_Has_Task
(Def_Id
);
4693 elsif Has_Controlled_Component
(Etype
(Comp
))
4694 or else (Chars
(Comp
) /= Name_uParent
4695 and then Is_Controlled
(Etype
(Comp
)))
4697 Set_Has_Controlled_Component
(Def_Id
);
4700 Next_Component
(Comp
);
4703 -- Creation of the Dispatch Table. Note that a Dispatch Table is
4704 -- created for regular tagged types as well as for Ada types deriving
4705 -- from a C++ Class, but not for tagged types directly corresponding to
4706 -- the C++ classes. In the later case we assume that the Vtable is
4707 -- created in the C++ side and we just use it.
4709 if Is_Tagged_Type
(Def_Id
) then
4711 if Is_CPP_Class
(Def_Id
) then
4713 -- Because of the new C++ ABI compatibility we now allow the
4714 -- programer to use the Ada tag (and in this case we must do
4715 -- the normal expansion of the tag)
4717 if Etype
(First_Component
(Def_Id
)) = RTE
(RE_Tag
)
4718 and then Underlying_Type
(Etype
(Def_Id
)) = Def_Id
4720 Expand_Tagged_Root
(Def_Id
);
4723 Set_All_DT_Position
(Def_Id
);
4724 Set_Default_Constructor
(Def_Id
);
4727 -- Usually inherited primitives are not delayed but the first Ada
4728 -- extension of a CPP_Class is an exception since the address of
4729 -- the inherited subprogram has to be inserted in the new Ada
4730 -- Dispatch Table and this is a freezing action (usually the
4731 -- inherited primitive address is inserted in the DT by
4734 -- Similarly, if this is an inherited operation whose parent is
4735 -- not frozen yet, it is not in the DT of the parent, and we
4736 -- generate an explicit freeze node for the inherited operation,
4737 -- so that it is properly inserted in the DT of the current type.
4740 Elmt
: Elmt_Id
:= First_Elmt
(Primitive_Operations
(Def_Id
));
4744 while Present
(Elmt
) loop
4745 Subp
:= Node
(Elmt
);
4747 if Present
(Alias
(Subp
)) then
4748 if Is_CPP_Class
(Etype
(Def_Id
)) then
4749 Set_Has_Delayed_Freeze
(Subp
);
4751 elsif Has_Delayed_Freeze
(Alias
(Subp
))
4752 and then not Is_Frozen
(Alias
(Subp
))
4754 Set_Is_Frozen
(Subp
, False);
4755 Set_Has_Delayed_Freeze
(Subp
);
4763 if Underlying_Type
(Etype
(Def_Id
)) = Def_Id
then
4764 Expand_Tagged_Root
(Def_Id
);
4767 -- Unfreeze momentarily the type to add the predefined primitives
4768 -- operations. The reason we unfreeze is so that these predefined
4769 -- operations will indeed end up as primitive operations (which
4770 -- must be before the freeze point).
4772 Set_Is_Frozen
(Def_Id
, False);
4773 Make_Predefined_Primitive_Specs
4774 (Def_Id
, Predef_List
, Renamed_Eq
);
4775 Insert_List_Before_And_Analyze
(N
, Predef_List
);
4777 -- Ada 2005 (AI-391): For a nonabstract null extension, create
4778 -- wrapper functions for each nonoverridden inherited function
4779 -- with a controlling result of the type. The wrapper for such
4780 -- a function returns an extension aggregate that invokes the
4781 -- the parent function.
4783 if Ada_Version
>= Ada_05
4784 and then not Is_Abstract
(Def_Id
)
4785 and then Is_Null_Extension
(Def_Id
)
4787 Make_Controlling_Function_Wrappers
4788 (Def_Id
, Wrapper_Decl_List
, Wrapper_Body_List
);
4789 Insert_List_Before_And_Analyze
(N
, Wrapper_Decl_List
);
4792 -- Ada 2005 (AI-251): For a nonabstract type extension, build
4793 -- null procedure declarations for each set of homographic null
4794 -- procedures that are inherited from interface types but not
4795 -- overridden. This is done to ensure that the dispatch table
4796 -- entry associated with such null primitives are properly filled.
4798 if Ada_Version
>= Ada_05
4799 and then Etype
(Def_Id
) /= Def_Id
4800 and then not Is_Abstract
(Def_Id
)
4802 Make_Null_Procedure_Specs
(Def_Id
, Null_Proc_Decl_List
);
4803 Insert_Actions
(N
, Null_Proc_Decl_List
);
4806 Set_Is_Frozen
(Def_Id
, True);
4807 Set_All_DT_Position
(Def_Id
);
4809 -- Add the controlled component before the freezing actions
4810 -- referenced in those actions.
4812 if Has_New_Controlled_Component
(Def_Id
) then
4813 Expand_Record_Controller
(Def_Id
);
4816 -- Suppress creation of a dispatch table when Java_VM because the
4817 -- dispatching mechanism is handled internally by the JVM.
4821 -- Ada 2005 (AI-251): Build the secondary dispatch tables
4824 ADT
: Elist_Id
:= Access_Disp_Table
(Def_Id
);
4826 procedure Add_Secondary_Tables
(Typ
: Entity_Id
);
4827 -- Internal subprogram, recursively climb to the ancestors
4829 --------------------------
4830 -- Add_Secondary_Tables --
4831 --------------------------
4833 procedure Add_Secondary_Tables
(Typ
: Entity_Id
) is
4840 -- Climb to the ancestor (if any) handling private types
4842 if Present
(Full_View
(Etype
(Typ
))) then
4843 if Full_View
(Etype
(Typ
)) /= Typ
then
4844 Add_Secondary_Tables
(Full_View
(Etype
(Typ
)));
4847 elsif Etype
(Typ
) /= Typ
then
4848 Add_Secondary_Tables
(Etype
(Typ
));
4851 if Present
(Abstract_Interfaces
(Typ
))
4853 not Is_Empty_Elmt_List
(Abstract_Interfaces
(Typ
))
4855 Iface
:= First_Elmt
(Abstract_Interfaces
(Typ
));
4858 E
:= First_Entity
(Typ
);
4859 while Present
(E
) loop
4860 if Is_Tag
(E
) and then Chars
(E
) /= Name_uTag
then
4863 Ancestor_Typ
=> Typ
,
4864 Suffix_Index
=> Suffix_Index
,
4865 Iface
=> Node
(Iface
),
4867 Acc_Disp_Tables
=> ADT
,
4870 Append_Freeze_Actions
(Def_Id
, Result
);
4871 Suffix_Index
:= Suffix_Index
+ 1;
4878 end Add_Secondary_Tables
;
4880 -- Start of processing to build secondary dispatch tables
4883 -- Handle private types
4885 if Present
(Full_View
(Def_Id
)) then
4886 Add_Secondary_Tables
(Full_View
(Def_Id
));
4888 Add_Secondary_Tables
(Def_Id
);
4891 Set_Access_Disp_Table
(Def_Id
, ADT
);
4892 Append_Freeze_Actions
(Def_Id
, Make_DT
(Def_Id
));
4896 -- Make sure that the primitives Initialize, Adjust and Finalize
4897 -- are Frozen before other TSS subprograms. We don't want them
4900 if Is_Controlled
(Def_Id
) then
4901 if not Is_Limited_Type
(Def_Id
) then
4902 Append_Freeze_Actions
(Def_Id
,
4904 (Find_Prim_Op
(Def_Id
, Name_Adjust
), Sloc
(Def_Id
)));
4907 Append_Freeze_Actions
(Def_Id
,
4909 (Find_Prim_Op
(Def_Id
, Name_Initialize
), Sloc
(Def_Id
)));
4911 Append_Freeze_Actions
(Def_Id
,
4913 (Find_Prim_Op
(Def_Id
, Name_Finalize
), Sloc
(Def_Id
)));
4916 -- Freeze rest of primitive operations
4918 Append_Freeze_Actions
4919 (Def_Id
, Predefined_Primitive_Freeze
(Def_Id
));
4920 Append_Freeze_Actions
4921 (Def_Id
, Init_Predefined_Interface_Primitives
(Def_Id
));
4924 -- In the non-tagged case, an equality function is provided only for
4925 -- variant records (that are not unchecked unions).
4927 elsif Has_Discriminants
(Def_Id
)
4928 and then not Is_Limited_Type
(Def_Id
)
4931 Comps
: constant Node_Id
:=
4932 Component_List
(Type_Definition
(Type_Decl
));
4936 and then Present
(Variant_Part
(Comps
))
4938 Build_Variant_Record_Equality
(Def_Id
);
4943 -- Before building the record initialization procedure, if we are
4944 -- dealing with a concurrent record value type, then we must go through
4945 -- the discriminants, exchanging discriminals between the concurrent
4946 -- type and the concurrent record value type. See the section "Handling
4947 -- of Discriminants" in the Einfo spec for details.
4949 if Is_Concurrent_Record_Type
(Def_Id
)
4950 and then Has_Discriminants
(Def_Id
)
4953 Ctyp
: constant Entity_Id
:=
4954 Corresponding_Concurrent_Type
(Def_Id
);
4955 Conc_Discr
: Entity_Id
;
4956 Rec_Discr
: Entity_Id
;
4960 Conc_Discr
:= First_Discriminant
(Ctyp
);
4961 Rec_Discr
:= First_Discriminant
(Def_Id
);
4963 while Present
(Conc_Discr
) loop
4964 Temp
:= Discriminal
(Conc_Discr
);
4965 Set_Discriminal
(Conc_Discr
, Discriminal
(Rec_Discr
));
4966 Set_Discriminal
(Rec_Discr
, Temp
);
4968 Set_Discriminal_Link
(Discriminal
(Conc_Discr
), Conc_Discr
);
4969 Set_Discriminal_Link
(Discriminal
(Rec_Discr
), Rec_Discr
);
4971 Next_Discriminant
(Conc_Discr
);
4972 Next_Discriminant
(Rec_Discr
);
4977 if Has_Controlled_Component
(Def_Id
) then
4978 if No
(Controller_Component
(Def_Id
)) then
4979 Expand_Record_Controller
(Def_Id
);
4982 Build_Controlling_Procs
(Def_Id
);
4985 Adjust_Discriminants
(Def_Id
);
4986 Build_Record_Init_Proc
(Type_Decl
, Def_Id
);
4988 -- For tagged type, build bodies of primitive operations. Note that we
4989 -- do this after building the record initialization experiment, since
4990 -- the primitive operations may need the initialization routine
4992 if Is_Tagged_Type
(Def_Id
) then
4993 Predef_List
:= Predefined_Primitive_Bodies
(Def_Id
, Renamed_Eq
);
4994 Append_Freeze_Actions
(Def_Id
, Predef_List
);
4996 -- Ada 2005 (AI-391): If any wrappers were created for nonoverridden
4997 -- inherited functions, then add their bodies to the freeze actions.
4999 if Present
(Wrapper_Body_List
) then
5000 Append_Freeze_Actions
(Def_Id
, Wrapper_Body_List
);
5003 -- Populate the two auxiliary tables used for dispatching
5004 -- asynchronous, conditional and timed selects for synchronized
5005 -- types that implement a limited interface.
5007 if Ada_Version
>= Ada_05
5008 and then not Restriction_Active
(No_Dispatching_Calls
)
5009 and then Is_Concurrent_Record_Type
(Def_Id
)
5010 and then Implements_Interface
(
5012 Kind
=> Any_Limited_Interface
,
5013 Check_Parent
=> True)
5015 Append_Freeze_Actions
(Def_Id
,
5016 Make_Select_Specific_Data_Table
(Def_Id
));
5019 end Freeze_Record_Type
;
5021 ------------------------------
5022 -- Freeze_Stream_Operations --
5023 ------------------------------
5025 procedure Freeze_Stream_Operations
(N
: Node_Id
; Typ
: Entity_Id
) is
5026 Names
: constant array (1 .. 4) of TSS_Name_Type
:=
5031 Stream_Op
: Entity_Id
;
5034 -- Primitive operations of tagged types are frozen when the dispatch
5035 -- table is constructed.
5037 if not Comes_From_Source
(Typ
)
5038 or else Is_Tagged_Type
(Typ
)
5043 for J
in Names
'Range loop
5044 Stream_Op
:= TSS
(Typ
, Names
(J
));
5046 if Present
(Stream_Op
)
5047 and then Is_Subprogram
(Stream_Op
)
5048 and then Nkind
(Unit_Declaration_Node
(Stream_Op
)) =
5049 N_Subprogram_Declaration
5050 and then not Is_Frozen
(Stream_Op
)
5052 Append_Freeze_Actions
5053 (Typ
, Freeze_Entity
(Stream_Op
, Sloc
(N
)));
5056 end Freeze_Stream_Operations
;
5062 -- Full type declarations are expanded at the point at which the type is
5063 -- frozen. The formal N is the Freeze_Node for the type. Any statements or
5064 -- declarations generated by the freezing (e.g. the procedure generated
5065 -- for initialization) are chained in the Actions field list of the freeze
5066 -- node using Append_Freeze_Actions.
5068 function Freeze_Type
(N
: Node_Id
) return Boolean is
5069 Def_Id
: constant Entity_Id
:= Entity
(N
);
5070 RACW_Seen
: Boolean := False;
5071 Result
: Boolean := False;
5074 -- Process associated access types needing special processing
5076 if Present
(Access_Types_To_Process
(N
)) then
5078 E
: Elmt_Id
:= First_Elmt
(Access_Types_To_Process
(N
));
5080 while Present
(E
) loop
5082 if Is_Remote_Access_To_Class_Wide_Type
(Node
(E
)) then
5083 Validate_RACW_Primitives
(Node
(E
));
5093 -- If there are RACWs designating this type, make stubs now
5095 Remote_Types_Tagged_Full_View_Encountered
(Def_Id
);
5099 -- Freeze processing for record types
5101 if Is_Record_Type
(Def_Id
) then
5102 if Ekind
(Def_Id
) = E_Record_Type
then
5103 Freeze_Record_Type
(N
);
5105 -- The subtype may have been declared before the type was frozen. If
5106 -- the type has controlled components it is necessary to create the
5107 -- entity for the controller explicitly because it did not exist at
5108 -- the point of the subtype declaration. Only the entity is needed,
5109 -- the back-end will obtain the layout from the type. This is only
5110 -- necessary if this is constrained subtype whose component list is
5111 -- not shared with the base type.
5113 elsif Ekind
(Def_Id
) = E_Record_Subtype
5114 and then Has_Discriminants
(Def_Id
)
5115 and then Last_Entity
(Def_Id
) /= Last_Entity
(Base_Type
(Def_Id
))
5116 and then Present
(Controller_Component
(Def_Id
))
5119 Old_C
: constant Entity_Id
:= Controller_Component
(Def_Id
);
5123 if Scope
(Old_C
) = Base_Type
(Def_Id
) then
5125 -- The entity is the one in the parent. Create new one
5127 New_C
:= New_Copy
(Old_C
);
5128 Set_Parent
(New_C
, Parent
(Old_C
));
5135 if Is_Itype
(Def_Id
)
5136 and then Is_Record_Type
(Underlying_Type
(Scope
(Def_Id
)))
5138 -- The freeze node is only used to introduce the controller,
5139 -- the back-end has no use for it for a discriminated
5142 Set_Freeze_Node
(Def_Id
, Empty
);
5143 Set_Has_Delayed_Freeze
(Def_Id
, False);
5147 -- Similar process if the controller of the subtype is not present
5148 -- but the parent has it. This can happen with constrained
5149 -- record components where the subtype is an itype.
5151 elsif Ekind
(Def_Id
) = E_Record_Subtype
5152 and then Is_Itype
(Def_Id
)
5153 and then No
(Controller_Component
(Def_Id
))
5154 and then Present
(Controller_Component
(Etype
(Def_Id
)))
5157 Old_C
: constant Entity_Id
:=
5158 Controller_Component
(Etype
(Def_Id
));
5159 New_C
: constant Entity_Id
:= New_Copy
(Old_C
);
5162 Set_Next_Entity
(New_C
, First_Entity
(Def_Id
));
5163 Set_First_Entity
(Def_Id
, New_C
);
5165 -- The freeze node is only used to introduce the controller,
5166 -- the back-end has no use for it for a discriminated
5169 Set_Freeze_Node
(Def_Id
, Empty
);
5170 Set_Has_Delayed_Freeze
(Def_Id
, False);
5175 -- Freeze processing for array types
5177 elsif Is_Array_Type
(Def_Id
) then
5178 Freeze_Array_Type
(N
);
5180 -- Freeze processing for access types
5182 -- For pool-specific access types, find out the pool object used for
5183 -- this type, needs actual expansion of it in some cases. Here are the
5184 -- different cases :
5186 -- 1. Rep Clause "for Def_Id'Storage_Size use 0;"
5187 -- ---> don't use any storage pool
5189 -- 2. Rep Clause : for Def_Id'Storage_Size use Expr.
5191 -- Def_Id__Pool : Stack_Bounded_Pool (Expr, DT'Size, DT'Alignment);
5193 -- 3. Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
5194 -- ---> Storage Pool is the specified one
5196 -- See GNAT Pool packages in the Run-Time for more details
5198 elsif Ekind
(Def_Id
) = E_Access_Type
5199 or else Ekind
(Def_Id
) = E_General_Access_Type
5202 Loc
: constant Source_Ptr
:= Sloc
(N
);
5203 Desig_Type
: constant Entity_Id
:= Designated_Type
(Def_Id
);
5204 Pool_Object
: Entity_Id
;
5207 Freeze_Action_Typ
: Entity_Id
;
5210 if Has_Storage_Size_Clause
(Def_Id
) then
5211 Siz_Exp
:= Expression
(Parent
(Storage_Size_Variable
(Def_Id
)));
5218 -- Rep Clause "for Def_Id'Storage_Size use 0;"
5219 -- ---> don't use any storage pool
5221 if Has_Storage_Size_Clause
(Def_Id
)
5222 and then Compile_Time_Known_Value
(Siz_Exp
)
5223 and then Expr_Value
(Siz_Exp
) = 0
5229 -- Rep Clause : for Def_Id'Storage_Size use Expr.
5231 -- Def_Id__Pool : Stack_Bounded_Pool
5232 -- (Expr, DT'Size, DT'Alignment);
5234 elsif Has_Storage_Size_Clause
(Def_Id
) then
5240 -- For unconstrained composite types we give a size of zero
5241 -- so that the pool knows that it needs a special algorithm
5242 -- for variable size object allocation.
5244 if Is_Composite_Type
(Desig_Type
)
5245 and then not Is_Constrained
(Desig_Type
)
5248 Make_Integer_Literal
(Loc
, 0);
5251 Make_Integer_Literal
(Loc
, Maximum_Alignment
);
5255 Make_Attribute_Reference
(Loc
,
5256 Prefix
=> New_Reference_To
(Desig_Type
, Loc
),
5257 Attribute_Name
=> Name_Max_Size_In_Storage_Elements
);
5260 Make_Attribute_Reference
(Loc
,
5261 Prefix
=> New_Reference_To
(Desig_Type
, Loc
),
5262 Attribute_Name
=> Name_Alignment
);
5266 Make_Defining_Identifier
(Loc
,
5267 Chars
=> New_External_Name
(Chars
(Def_Id
), 'P'));
5269 -- We put the code associated with the pools in the entity
5270 -- that has the later freeze node, usually the acces type
5271 -- but it can also be the designated_type; because the pool
5272 -- code requires both those types to be frozen
5274 if Is_Frozen
(Desig_Type
)
5275 and then (No
(Freeze_Node
(Desig_Type
))
5276 or else Analyzed
(Freeze_Node
(Desig_Type
)))
5278 Freeze_Action_Typ
:= Def_Id
;
5280 -- A Taft amendment type cannot get the freeze actions
5281 -- since the full view is not there.
5283 elsif Is_Incomplete_Or_Private_Type
(Desig_Type
)
5284 and then No
(Full_View
(Desig_Type
))
5286 Freeze_Action_Typ
:= Def_Id
;
5289 Freeze_Action_Typ
:= Desig_Type
;
5292 Append_Freeze_Action
(Freeze_Action_Typ
,
5293 Make_Object_Declaration
(Loc
,
5294 Defining_Identifier
=> Pool_Object
,
5295 Object_Definition
=>
5296 Make_Subtype_Indication
(Loc
,
5299 (RTE
(RE_Stack_Bounded_Pool
), Loc
),
5302 Make_Index_Or_Discriminant_Constraint
(Loc
,
5303 Constraints
=> New_List
(
5305 -- First discriminant is the Pool Size
5308 Storage_Size_Variable
(Def_Id
), Loc
),
5310 -- Second discriminant is the element size
5314 -- Third discriminant is the alignment
5319 Set_Associated_Storage_Pool
(Def_Id
, Pool_Object
);
5323 -- Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
5324 -- ---> Storage Pool is the specified one
5326 elsif Present
(Associated_Storage_Pool
(Def_Id
)) then
5328 -- Nothing to do the associated storage pool has been attached
5329 -- when analyzing the rep. clause
5334 -- For access-to-controlled types (including class-wide types and
5335 -- Taft-amendment types which potentially have controlled
5336 -- components), expand the list controller object that will store
5337 -- the dynamically allocated objects. Do not do this
5338 -- transformation for expander-generated access types, but do it
5339 -- for types that are the full view of types derived from other
5340 -- private types. Also suppress the list controller in the case
5341 -- of a designated type with convention Java, since this is used
5342 -- when binding to Java API specs, where there's no equivalent of
5343 -- a finalization list and we don't want to pull in the
5344 -- finalization support if not needed.
5346 if not Comes_From_Source
(Def_Id
)
5347 and then not Has_Private_Declaration
(Def_Id
)
5351 elsif (Controlled_Type
(Desig_Type
)
5352 and then Convention
(Desig_Type
) /= Convention_Java
)
5354 (Is_Incomplete_Or_Private_Type
(Desig_Type
)
5355 and then No
(Full_View
(Desig_Type
))
5357 -- An exception is made for types defined in the run-time
5358 -- because Ada.Tags.Tag itself is such a type and cannot
5359 -- afford this unnecessary overhead that would generates a
5360 -- loop in the expansion scheme...
5362 and then not In_Runtime
(Def_Id
)
5364 -- Another exception is if Restrictions (No_Finalization)
5365 -- is active, since then we know nothing is controlled.
5367 and then not Restriction_Active
(No_Finalization
))
5369 -- If the designated type is not frozen yet, its controlled
5370 -- status must be retrieved explicitly.
5372 or else (Is_Array_Type
(Desig_Type
)
5373 and then not Is_Frozen
(Desig_Type
)
5374 and then Controlled_Type
(Component_Type
(Desig_Type
)))
5376 Set_Associated_Final_Chain
(Def_Id
,
5377 Make_Defining_Identifier
(Loc
,
5378 New_External_Name
(Chars
(Def_Id
), 'L')));
5380 Append_Freeze_Action
(Def_Id
,
5381 Make_Object_Declaration
(Loc
,
5382 Defining_Identifier
=> Associated_Final_Chain
(Def_Id
),
5383 Object_Definition
=>
5384 New_Reference_To
(RTE
(RE_List_Controller
), Loc
)));
5388 -- Freeze processing for enumeration types
5390 elsif Ekind
(Def_Id
) = E_Enumeration_Type
then
5392 -- We only have something to do if we have a non-standard
5393 -- representation (i.e. at least one literal whose pos value
5394 -- is not the same as its representation)
5396 if Has_Non_Standard_Rep
(Def_Id
) then
5397 Freeze_Enumeration_Type
(N
);
5400 -- Private types that are completed by a derivation from a private
5401 -- type have an internally generated full view, that needs to be
5402 -- frozen. This must be done explicitly because the two views share
5403 -- the freeze node, and the underlying full view is not visible when
5404 -- the freeze node is analyzed.
5406 elsif Is_Private_Type
(Def_Id
)
5407 and then Is_Derived_Type
(Def_Id
)
5408 and then Present
(Full_View
(Def_Id
))
5409 and then Is_Itype
(Full_View
(Def_Id
))
5410 and then Has_Private_Declaration
(Full_View
(Def_Id
))
5411 and then Freeze_Node
(Full_View
(Def_Id
)) = N
5413 Set_Entity
(N
, Full_View
(Def_Id
));
5414 Result
:= Freeze_Type
(N
);
5415 Set_Entity
(N
, Def_Id
);
5417 -- All other types require no expander action. There are such cases
5418 -- (e.g. task types and protected types). In such cases, the freeze
5419 -- nodes are there for use by Gigi.
5423 Freeze_Stream_Operations
(N
, Def_Id
);
5427 when RE_Not_Available
=>
5431 -------------------------
5432 -- Get_Simple_Init_Val --
5433 -------------------------
5435 function Get_Simple_Init_Val
5438 Size
: Uint
:= No_Uint
) return Node_Id
5445 -- This is the size to be used for computation of the appropriate
5446 -- initial value for the Normalize_Scalars and Initialize_Scalars case.
5450 -- These are the values computed by the procedure Check_Subtype_Bounds
5452 procedure Check_Subtype_Bounds
;
5453 -- This procedure examines the subtype T, and its ancestor subtypes and
5454 -- derived types to determine the best known information about the
5455 -- bounds of the subtype. After the call Lo_Bound is set either to
5456 -- No_Uint if no information can be determined, or to a value which
5457 -- represents a known low bound, i.e. a valid value of the subtype can
5458 -- not be less than this value. Hi_Bound is similarly set to a known
5459 -- high bound (valid value cannot be greater than this).
5461 --------------------------
5462 -- Check_Subtype_Bounds --
5463 --------------------------
5465 procedure Check_Subtype_Bounds
is
5474 Lo_Bound
:= No_Uint
;
5475 Hi_Bound
:= No_Uint
;
5477 -- Loop to climb ancestor subtypes and derived types
5481 if not Is_Discrete_Type
(ST1
) then
5485 Lo
:= Type_Low_Bound
(ST1
);
5486 Hi
:= Type_High_Bound
(ST1
);
5488 if Compile_Time_Known_Value
(Lo
) then
5489 Loval
:= Expr_Value
(Lo
);
5491 if Lo_Bound
= No_Uint
or else Lo_Bound
< Loval
then
5496 if Compile_Time_Known_Value
(Hi
) then
5497 Hival
:= Expr_Value
(Hi
);
5499 if Hi_Bound
= No_Uint
or else Hi_Bound
> Hival
then
5504 ST2
:= Ancestor_Subtype
(ST1
);
5510 exit when ST1
= ST2
;
5513 end Check_Subtype_Bounds
;
5515 -- Start of processing for Get_Simple_Init_Val
5518 -- For a private type, we should always have an underlying type
5519 -- (because this was already checked in Needs_Simple_Initialization).
5520 -- What we do is to get the value for the underlying type and then do
5521 -- an Unchecked_Convert to the private type.
5523 if Is_Private_Type
(T
) then
5524 Val
:= Get_Simple_Init_Val
(Underlying_Type
(T
), Loc
, Size
);
5526 -- A special case, if the underlying value is null, then qualify it
5527 -- with the underlying type, so that the null is properly typed
5528 -- Similarly, if it is an aggregate it must be qualified, because an
5529 -- unchecked conversion does not provide a context for it.
5531 if Nkind
(Val
) = N_Null
5532 or else Nkind
(Val
) = N_Aggregate
5535 Make_Qualified_Expression
(Loc
,
5537 New_Occurrence_Of
(Underlying_Type
(T
), Loc
),
5541 Result
:= Unchecked_Convert_To
(T
, Val
);
5543 -- Don't truncate result (important for Initialize/Normalize_Scalars)
5545 if Nkind
(Result
) = N_Unchecked_Type_Conversion
5546 and then Is_Scalar_Type
(Underlying_Type
(T
))
5548 Set_No_Truncation
(Result
);
5553 -- For scalars, we must have normalize/initialize scalars case
5555 elsif Is_Scalar_Type
(T
) then
5556 pragma Assert
(Init_Or_Norm_Scalars
);
5558 -- Compute size of object. If it is given by the caller, we can use
5559 -- it directly, otherwise we use Esize (T) as an estimate. As far as
5560 -- we know this covers all cases correctly.
5562 if Size
= No_Uint
or else Size
<= Uint_0
then
5563 Size_To_Use
:= UI_Max
(Uint_1
, Esize
(T
));
5565 Size_To_Use
:= Size
;
5568 -- Maximum size to use is 64 bits, since we will create values
5569 -- of type Unsigned_64 and the range must fit this type.
5571 if Size_To_Use
/= No_Uint
and then Size_To_Use
> Uint_64
then
5572 Size_To_Use
:= Uint_64
;
5575 -- Check known bounds of subtype
5577 Check_Subtype_Bounds
;
5579 -- Processing for Normalize_Scalars case
5581 if Normalize_Scalars
then
5583 -- If zero is invalid, it is a convenient value to use that is
5584 -- for sure an appropriate invalid value in all situations.
5586 if Lo_Bound
/= No_Uint
and then Lo_Bound
> Uint_0
then
5587 Val
:= Make_Integer_Literal
(Loc
, 0);
5589 -- Cases where all one bits is the appropriate invalid value
5591 -- For modular types, all 1 bits is either invalid or valid. If
5592 -- it is valid, then there is nothing that can be done since there
5593 -- are no invalid values (we ruled out zero already).
5595 -- For signed integer types that have no negative values, either
5596 -- there is room for negative values, or there is not. If there
5597 -- is, then all 1 bits may be interpretecd as minus one, which is
5598 -- certainly invalid. Alternatively it is treated as the largest
5599 -- positive value, in which case the observation for modular types
5602 -- For float types, all 1-bits is a NaN (not a number), which is
5603 -- certainly an appropriately invalid value.
5605 elsif Is_Unsigned_Type
(T
)
5606 or else Is_Floating_Point_Type
(T
)
5607 or else Is_Enumeration_Type
(T
)
5609 Val
:= Make_Integer_Literal
(Loc
, 2 ** Size_To_Use
- 1);
5611 -- Resolve as Unsigned_64, because the largest number we
5612 -- can generate is out of range of universal integer.
5614 Analyze_And_Resolve
(Val
, RTE
(RE_Unsigned_64
));
5616 -- Case of signed types
5620 Signed_Size
: constant Uint
:=
5621 UI_Min
(Uint_63
, Size_To_Use
- 1);
5624 -- Normally we like to use the most negative number. The
5625 -- one exception is when this number is in the known
5626 -- subtype range and the largest positive number is not in
5627 -- the known subtype range.
5629 -- For this exceptional case, use largest positive value
5631 if Lo_Bound
/= No_Uint
and then Hi_Bound
/= No_Uint
5632 and then Lo_Bound
<= (-(2 ** Signed_Size
))
5633 and then Hi_Bound
< 2 ** Signed_Size
5635 Val
:= Make_Integer_Literal
(Loc
, 2 ** Signed_Size
- 1);
5637 -- Normal case of largest negative value
5640 Val
:= Make_Integer_Literal
(Loc
, -(2 ** Signed_Size
));
5645 -- Here for Initialize_Scalars case
5648 -- For float types, use float values from System.Scalar_Values
5650 if Is_Floating_Point_Type
(T
) then
5651 if Root_Type
(T
) = Standard_Short_Float
then
5652 Val_RE
:= RE_IS_Isf
;
5653 elsif Root_Type
(T
) = Standard_Float
then
5654 Val_RE
:= RE_IS_Ifl
;
5655 elsif Root_Type
(T
) = Standard_Long_Float
then
5656 Val_RE
:= RE_IS_Ilf
;
5657 else pragma Assert
(Root_Type
(T
) = Standard_Long_Long_Float
);
5658 Val_RE
:= RE_IS_Ill
;
5661 -- If zero is invalid, use zero values from System.Scalar_Values
5663 elsif Lo_Bound
/= No_Uint
and then Lo_Bound
> Uint_0
then
5664 if Size_To_Use
<= 8 then
5665 Val_RE
:= RE_IS_Iz1
;
5666 elsif Size_To_Use
<= 16 then
5667 Val_RE
:= RE_IS_Iz2
;
5668 elsif Size_To_Use
<= 32 then
5669 Val_RE
:= RE_IS_Iz4
;
5671 Val_RE
:= RE_IS_Iz8
;
5674 -- For unsigned, use unsigned values from System.Scalar_Values
5676 elsif Is_Unsigned_Type
(T
) then
5677 if Size_To_Use
<= 8 then
5678 Val_RE
:= RE_IS_Iu1
;
5679 elsif Size_To_Use
<= 16 then
5680 Val_RE
:= RE_IS_Iu2
;
5681 elsif Size_To_Use
<= 32 then
5682 Val_RE
:= RE_IS_Iu4
;
5684 Val_RE
:= RE_IS_Iu8
;
5687 -- For signed, use signed values from System.Scalar_Values
5690 if Size_To_Use
<= 8 then
5691 Val_RE
:= RE_IS_Is1
;
5692 elsif Size_To_Use
<= 16 then
5693 Val_RE
:= RE_IS_Is2
;
5694 elsif Size_To_Use
<= 32 then
5695 Val_RE
:= RE_IS_Is4
;
5697 Val_RE
:= RE_IS_Is8
;
5701 Val
:= New_Occurrence_Of
(RTE
(Val_RE
), Loc
);
5704 -- The final expression is obtained by doing an unchecked conversion
5705 -- of this result to the base type of the required subtype. We use
5706 -- the base type to avoid the unchecked conversion from chopping
5707 -- bits, and then we set Kill_Range_Check to preserve the "bad"
5710 Result
:= Unchecked_Convert_To
(Base_Type
(T
), Val
);
5712 -- Ensure result is not truncated, since we want the "bad" bits
5713 -- and also kill range check on result.
5715 if Nkind
(Result
) = N_Unchecked_Type_Conversion
then
5716 Set_No_Truncation
(Result
);
5717 Set_Kill_Range_Check
(Result
, True);
5722 -- String or Wide_[Wide]_String (must have Initialize_Scalars set)
5724 elsif Root_Type
(T
) = Standard_String
5726 Root_Type
(T
) = Standard_Wide_String
5728 Root_Type
(T
) = Standard_Wide_Wide_String
5730 pragma Assert
(Init_Or_Norm_Scalars
);
5733 Make_Aggregate
(Loc
,
5734 Component_Associations
=> New_List
(
5735 Make_Component_Association
(Loc
,
5736 Choices
=> New_List
(
5737 Make_Others_Choice
(Loc
)),
5740 (Component_Type
(T
), Loc
, Esize
(Root_Type
(T
))))));
5742 -- Access type is initialized to null
5744 elsif Is_Access_Type
(T
) then
5748 -- No other possibilities should arise, since we should only be
5749 -- calling Get_Simple_Init_Val if Needs_Simple_Initialization
5750 -- returned True, indicating one of the above cases held.
5753 raise Program_Error
;
5757 when RE_Not_Available
=>
5759 end Get_Simple_Init_Val
;
5761 ------------------------------
5762 -- Has_New_Non_Standard_Rep --
5763 ------------------------------
5765 function Has_New_Non_Standard_Rep
(T
: Entity_Id
) return Boolean is
5767 if not Is_Derived_Type
(T
) then
5768 return Has_Non_Standard_Rep
(T
)
5769 or else Has_Non_Standard_Rep
(Root_Type
(T
));
5771 -- If Has_Non_Standard_Rep is not set on the derived type, the
5772 -- representation is fully inherited.
5774 elsif not Has_Non_Standard_Rep
(T
) then
5778 return First_Rep_Item
(T
) /= First_Rep_Item
(Root_Type
(T
));
5780 -- May need a more precise check here: the First_Rep_Item may
5781 -- be a stream attribute, which does not affect the representation
5784 end Has_New_Non_Standard_Rep
;
5790 function In_Runtime
(E
: Entity_Id
) return Boolean is
5791 S1
: Entity_Id
:= Scope
(E
);
5794 while Scope
(S1
) /= Standard_Standard
loop
5798 return Chars
(S1
) = Name_System
or else Chars
(S1
) = Name_Ada
;
5805 function Init_Formals
(Typ
: Entity_Id
) return List_Id
is
5806 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
5810 -- First parameter is always _Init : in out typ. Note that we need
5811 -- this to be in/out because in the case of the task record value,
5812 -- there are default record fields (_Priority, _Size, -Task_Info)
5813 -- that may be referenced in the generated initialization routine.
5815 Formals
:= New_List
(
5816 Make_Parameter_Specification
(Loc
,
5817 Defining_Identifier
=>
5818 Make_Defining_Identifier
(Loc
, Name_uInit
),
5820 Out_Present
=> True,
5821 Parameter_Type
=> New_Reference_To
(Typ
, Loc
)));
5823 -- For task record value, or type that contains tasks, add two more
5824 -- formals, _Master : Master_Id and _Chain : in out Activation_Chain
5825 -- We also add these parameters for the task record type case.
5828 or else (Is_Record_Type
(Typ
) and then Is_Task_Record_Type
(Typ
))
5831 Make_Parameter_Specification
(Loc
,
5832 Defining_Identifier
=>
5833 Make_Defining_Identifier
(Loc
, Name_uMaster
),
5834 Parameter_Type
=> New_Reference_To
(RTE
(RE_Master_Id
), Loc
)));
5837 Make_Parameter_Specification
(Loc
,
5838 Defining_Identifier
=>
5839 Make_Defining_Identifier
(Loc
, Name_uChain
),
5841 Out_Present
=> True,
5843 New_Reference_To
(RTE
(RE_Activation_Chain
), Loc
)));
5846 Make_Parameter_Specification
(Loc
,
5847 Defining_Identifier
=>
5848 Make_Defining_Identifier
(Loc
, Name_uTask_Name
),
5851 New_Reference_To
(Standard_String
, Loc
)));
5857 when RE_Not_Available
=>
5861 -------------------------
5862 -- Init_Secondary_Tags --
5863 -------------------------
5865 procedure Init_Secondary_Tags
5868 Stmts_List
: List_Id
)
5870 Loc
: constant Source_Ptr
:= Sloc
(Target
);
5872 Full_Typ
: Entity_Id
;
5874 procedure Init_Secondary_Tags_Internal
(Typ
: Entity_Id
);
5875 -- Internal subprogram used to recursively climb to the root type.
5876 -- We assume that all the primitives of the imported C++ class are
5877 -- defined in the C side.
5879 ----------------------------------
5880 -- Init_Secondary_Tags_Internal --
5881 ----------------------------------
5883 procedure Init_Secondary_Tags_Internal
(Typ
: Entity_Id
) is
5892 -- Climb to the ancestor (if any) handling private types
5894 if Present
(Full_View
(Etype
(Typ
))) then
5895 if Full_View
(Etype
(Typ
)) /= Typ
then
5896 Init_Secondary_Tags_Internal
(Full_View
(Etype
(Typ
)));
5899 elsif Etype
(Typ
) /= Typ
then
5900 Init_Secondary_Tags_Internal
(Etype
(Typ
));
5903 if Is_Interface
(Typ
) then
5905 -- Set_Offset_To_Top
5907 -- Interface_T => Iface'Tag,
5908 -- Is_Constant => True,
5909 -- Offset_Value => 0,
5910 -- Offset_Func => null)
5912 Append_To
(Stmts_List
,
5913 Make_Procedure_Call_Statement
(Loc
,
5914 Name
=> New_Reference_To
(RTE
(RE_Set_Offset_To_Top
), Loc
),
5915 Parameter_Associations
=> New_List
(
5916 Make_Attribute_Reference
(Loc
,
5917 Prefix
=> New_Copy_Tree
(Target
),
5918 Attribute_Name
=> Name_Address
),
5920 Unchecked_Convert_To
(RTE
(RE_Tag
),
5922 (Node
(First_Elmt
(Access_Disp_Table
(Typ
))),
5925 New_Occurrence_Of
(Standard_True
, Loc
),
5927 Make_Integer_Literal
(Loc
, Uint_0
),
5929 New_Reference_To
(RTE
(RE_Null_Address
), Loc
))));
5932 if Present
(Abstract_Interfaces
(Typ
))
5933 and then not Is_Empty_Elmt_List
(Abstract_Interfaces
(Typ
))
5935 E
:= First_Entity
(Typ
);
5936 while Present
(E
) loop
5938 and then Chars
(E
) /= Name_uTag
5940 Aux_N
:= Node
(ADT
);
5941 pragma Assert
(Present
(Aux_N
));
5943 Iface
:= Find_Interface
(Typ
, E
);
5945 -- If we are compiling under the CPP full ABI compatibility
5946 -- mode and the ancestor is a CPP_Pragma tagged type then
5947 -- we generate code to inherit the contents of the dispatch
5948 -- table directly from the ancestor.
5950 if Is_CPP_Class
(Etype
(Typ
))
5951 and then not Debug_Flag_QQ
5955 Unchecked_Convert_To
(RTE
(RE_Tag
),
5956 Make_Selected_Component
(Loc
,
5957 Prefix
=> New_Copy_Tree
(Target
),
5958 Selector_Name
=> New_Reference_To
(E
, Loc
))),
5960 Unchecked_Convert_To
(RTE
(RE_Tag
),
5961 New_Reference_To
(Aux_N
, Loc
)),
5964 Make_Integer_Literal
(Loc
,
5965 DT_Entry_Count
(First_Tag_Component
(Iface
))));
5967 -- Issue error if Inherit_CPP_DT is not available
5968 -- in a configurable run-time environment.
5970 if not RTE_Available
(RE_Inherit_CPP_DT
) then
5971 Error_Msg_CRT
("cpp interfacing", Typ
);
5976 Make_Procedure_Call_Statement
(Loc
,
5977 Name
=> New_Reference_To
(RTE
(RE_Inherit_CPP_DT
),
5979 Parameter_Associations
=> Args
);
5981 Append_To
(Stmts_List
, New_N
);
5984 -- Initialize the pointer to the secondary DT associated
5985 -- with the interface
5987 Append_To
(Stmts_List
,
5988 Make_Assignment_Statement
(Loc
,
5990 Make_Selected_Component
(Loc
,
5991 Prefix
=> New_Copy_Tree
(Target
),
5992 Selector_Name
=> New_Reference_To
(E
, Loc
)),
5994 New_Reference_To
(Aux_N
, Loc
)));
5996 -- If the ancestor is CPP_Class, nothing else to do here
5998 if Is_CPP_Class
(Etype
(Typ
)) and then not Debug_Flag_QQ
then
6001 -- Otherwise, comment required ???
6004 -- Issue error if Set_Offset_To_Top is not available in a
6005 -- configurable run-time environment.
6007 if not RTE_Available
(RE_Set_Offset_To_Top
) then
6008 Error_Msg_CRT
("abstract interface types", Typ
);
6012 -- We generate a different call when the parent of the
6013 -- type has discriminants.
6015 if Typ
/= Etype
(Typ
)
6016 and then Has_Discriminants
(Etype
(Typ
))
6019 (Present
(DT_Offset_To_Top_Func
(E
)));
6022 -- Set_Offset_To_Top
6024 -- Interface_T => Iface'Tag,
6025 -- Is_Constant => False,
6026 -- Offset_Value => n,
6027 -- Offset_Func => Fn'Address)
6029 Append_To
(Stmts_List
,
6030 Make_Procedure_Call_Statement
(Loc
,
6031 Name
=> New_Reference_To
6032 (RTE
(RE_Set_Offset_To_Top
), Loc
),
6033 Parameter_Associations
=> New_List
(
6034 Make_Attribute_Reference
(Loc
,
6035 Prefix
=> New_Copy_Tree
(Target
),
6036 Attribute_Name
=> Name_Address
),
6038 Unchecked_Convert_To
(RTE
(RE_Tag
),
6041 (Access_Disp_Table
(Iface
))),
6044 New_Occurrence_Of
(Standard_False
, Loc
),
6046 Unchecked_Convert_To
6047 (RTE
(RE_Storage_Offset
),
6048 Make_Attribute_Reference
(Loc
,
6050 Make_Selected_Component
(Loc
,
6051 Prefix
=> New_Copy_Tree
(Target
),
6053 New_Reference_To
(E
, Loc
)),
6054 Attribute_Name
=> Name_Position
)),
6056 Unchecked_Convert_To
(RTE
(RE_Address
),
6057 Make_Attribute_Reference
(Loc
,
6058 Prefix
=> New_Reference_To
6059 (DT_Offset_To_Top_Func
(E
),
6064 -- In this case the next component stores the
6065 -- value of the offset to the top.
6069 pragma Assert
(Present
(E
));
6071 Append_To
(Stmts_List
,
6072 Make_Assignment_Statement
(Loc
,
6074 Make_Selected_Component
(Loc
,
6075 Prefix
=> New_Copy_Tree
(Target
),
6076 Selector_Name
=> New_Reference_To
(E
, Loc
)),
6078 Make_Attribute_Reference
(Loc
,
6080 Make_Selected_Component
(Loc
,
6081 Prefix
=> New_Copy_Tree
(Target
),
6083 New_Reference_To
(Prev_E
, Loc
)),
6084 Attribute_Name
=> Name_Position
)));
6086 -- Normal case: No discriminants in the parent type
6090 -- Set_Offset_To_Top
6092 -- Interface_T => Iface'Tag,
6093 -- Is_Constant => True,
6094 -- Offset_Value => n,
6095 -- Offset_Func => null);
6097 Append_To
(Stmts_List
,
6098 Make_Procedure_Call_Statement
(Loc
,
6099 Name
=> New_Reference_To
6100 (RTE
(RE_Set_Offset_To_Top
), Loc
),
6101 Parameter_Associations
=> New_List
(
6102 Make_Attribute_Reference
(Loc
,
6103 Prefix
=> New_Copy_Tree
(Target
),
6104 Attribute_Name
=> Name_Address
),
6106 Unchecked_Convert_To
(RTE
(RE_Tag
),
6109 (Access_Disp_Table
(Iface
))),
6112 New_Occurrence_Of
(Standard_True
, Loc
),
6114 Unchecked_Convert_To
6115 (RTE
(RE_Storage_Offset
),
6116 Make_Attribute_Reference
(Loc
,
6118 Make_Selected_Component
(Loc
,
6119 Prefix
=> New_Copy_Tree
(Target
),
6121 New_Reference_To
(E
, Loc
)),
6122 Attribute_Name
=> Name_Position
)),
6125 (RTE
(RE_Null_Address
), Loc
))));
6135 end Init_Secondary_Tags_Internal
;
6137 -- Start of processing for Init_Secondary_Tags
6140 -- Skip the first _Tag, which is the main tag of the tagged type.
6141 -- Following tags correspond with abstract interfaces.
6143 ADT
:= Next_Elmt
(First_Elmt
(Access_Disp_Table
(Typ
)));
6145 -- Handle private types
6147 if Present
(Full_View
(Typ
)) then
6148 Full_Typ
:= Full_View
(Typ
);
6153 Init_Secondary_Tags_Internal
(Full_Typ
);
6154 end Init_Secondary_Tags
;
6156 ----------------------------------------
6157 -- Make_Controlling_Function_Wrappers --
6158 ----------------------------------------
6160 procedure Make_Controlling_Function_Wrappers
6161 (Tag_Typ
: Entity_Id
;
6162 Decl_List
: out List_Id
;
6163 Body_List
: out List_Id
)
6165 Loc
: constant Source_Ptr
:= Sloc
(Tag_Typ
);
6166 Prim_Elmt
: Elmt_Id
;
6168 Actual_List
: List_Id
;
6169 Formal_List
: List_Id
;
6171 Par_Formal
: Entity_Id
;
6172 Formal_Node
: Node_Id
;
6173 Func_Spec
: Node_Id
;
6174 Func_Decl
: Node_Id
;
6175 Func_Body
: Node_Id
;
6176 Return_Stmt
: Node_Id
;
6179 Decl_List
:= New_List
;
6180 Body_List
:= New_List
;
6182 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
6184 while Present
(Prim_Elmt
) loop
6185 Subp
:= Node
(Prim_Elmt
);
6187 -- If a primitive function with a controlling result of the type has
6188 -- not been overridden by the user, then we must create a wrapper
6189 -- function here that effectively overrides it and invokes the
6190 -- (non-abstract) parent function. This can only occur for a null
6191 -- extension. Note that functions with anonymous controlling access
6192 -- results don't qualify and must be overridden. We also exclude
6193 -- Input attributes, since each type will have its own version of
6194 -- Input constructed by the expander. The test for Comes_From_Source
6195 -- is needed to distinguish inherited operations from renamings
6196 -- (which also have Alias set).
6198 if Is_Abstract
(Subp
)
6199 and then Present
(Alias
(Subp
))
6200 and then not Is_Abstract
(Alias
(Subp
))
6201 and then not Comes_From_Source
(Subp
)
6202 and then Ekind
(Subp
) = E_Function
6203 and then Has_Controlling_Result
(Subp
)
6204 and then not Is_Access_Type
(Etype
(Subp
))
6205 and then not Is_TSS
(Subp
, TSS_Stream_Input
)
6207 Formal_List
:= No_List
;
6208 Formal
:= First_Formal
(Subp
);
6210 if Present
(Formal
) then
6211 Formal_List
:= New_List
;
6213 while Present
(Formal
) loop
6215 (Make_Parameter_Specification
6217 Defining_Identifier
=>
6218 Make_Defining_Identifier
(Sloc
(Formal
),
6219 Chars
=> Chars
(Formal
)),
6220 In_Present
=> In_Present
(Parent
(Formal
)),
6221 Out_Present
=> Out_Present
(Parent
(Formal
)),
6223 New_Reference_To
(Etype
(Formal
), Loc
),
6225 New_Copy_Tree
(Expression
(Parent
(Formal
)))),
6228 Next_Formal
(Formal
);
6233 Make_Function_Specification
(Loc
,
6234 Defining_Unit_Name
=>
6235 Make_Defining_Identifier
(Loc
, Chars
(Subp
)),
6236 Parameter_Specifications
=>
6238 Result_Definition
=>
6239 New_Reference_To
(Etype
(Subp
), Loc
));
6241 Func_Decl
:= Make_Subprogram_Declaration
(Loc
, Func_Spec
);
6242 Append_To
(Decl_List
, Func_Decl
);
6244 -- Build a wrapper body that calls the parent function. The body
6245 -- contains a single return statement that returns an extension
6246 -- aggregate whose ancestor part is a call to the parent function,
6247 -- passing the formals as actuals (with any controlling arguments
6248 -- converted to the types of the corresponding formals of the
6249 -- parent function, which might be anonymous access types), and
6250 -- having a null extension.
6252 Formal
:= First_Formal
(Subp
);
6253 Par_Formal
:= First_Formal
(Alias
(Subp
));
6254 Formal_Node
:= First
(Formal_List
);
6256 if Present
(Formal
) then
6257 Actual_List
:= New_List
;
6259 Actual_List
:= No_List
;
6262 while Present
(Formal
) loop
6263 if Is_Controlling_Formal
(Formal
) then
6264 Append_To
(Actual_List
,
6265 Make_Type_Conversion
(Loc
,
6267 New_Occurrence_Of
(Etype
(Par_Formal
), Loc
),
6270 (Defining_Identifier
(Formal_Node
), Loc
)));
6275 (Defining_Identifier
(Formal_Node
), Loc
));
6278 Next_Formal
(Formal
);
6279 Next_Formal
(Par_Formal
);
6284 Make_Return_Statement
(Loc
,
6286 Make_Extension_Aggregate
(Loc
,
6288 Make_Function_Call
(Loc
,
6289 Name
=> New_Reference_To
(Alias
(Subp
), Loc
),
6290 Parameter_Associations
=> Actual_List
),
6291 Null_Record_Present
=> True));
6294 Make_Subprogram_Body
(Loc
,
6295 Specification
=> New_Copy_Tree
(Func_Spec
),
6296 Declarations
=> Empty_List
,
6297 Handled_Statement_Sequence
=>
6298 Make_Handled_Sequence_Of_Statements
(Loc
,
6299 Statements
=> New_List
(Return_Stmt
)));
6301 Set_Defining_Unit_Name
6302 (Specification
(Func_Body
),
6303 Make_Defining_Identifier
(Loc
, Chars
(Subp
)));
6305 Append_To
(Body_List
, Func_Body
);
6307 -- Replace the inherited function with the wrapper function
6308 -- in the primitive operations list.
6310 Override_Dispatching_Operation
6311 (Tag_Typ
, Subp
, New_Op
=> Defining_Unit_Name
(Func_Spec
));
6314 Next_Elmt
(Prim_Elmt
);
6316 end Make_Controlling_Function_Wrappers
;
6322 -- <Make_Eq_if shared components>
6324 -- when V1 => <Make_Eq_Case> on subcomponents
6326 -- when Vn => <Make_Eq_Case> on subcomponents
6329 function Make_Eq_Case
6332 Discr
: Entity_Id
:= Empty
) return List_Id
6334 Loc
: constant Source_Ptr
:= Sloc
(E
);
6335 Result
: constant List_Id
:= New_List
;
6340 Append_To
(Result
, Make_Eq_If
(E
, Component_Items
(CL
)));
6342 if No
(Variant_Part
(CL
)) then
6346 Variant
:= First_Non_Pragma
(Variants
(Variant_Part
(CL
)));
6348 if No
(Variant
) then
6352 Alt_List
:= New_List
;
6354 while Present
(Variant
) loop
6355 Append_To
(Alt_List
,
6356 Make_Case_Statement_Alternative
(Loc
,
6357 Discrete_Choices
=> New_Copy_List
(Discrete_Choices
(Variant
)),
6358 Statements
=> Make_Eq_Case
(E
, Component_List
(Variant
))));
6360 Next_Non_Pragma
(Variant
);
6363 -- If we have an Unchecked_Union, use one of the parameters that
6364 -- captures the discriminants.
6366 if Is_Unchecked_Union
(E
) then
6368 Make_Case_Statement
(Loc
,
6369 Expression
=> New_Reference_To
(Discr
, Loc
),
6370 Alternatives
=> Alt_List
));
6374 Make_Case_Statement
(Loc
,
6376 Make_Selected_Component
(Loc
,
6377 Prefix
=> Make_Identifier
(Loc
, Name_X
),
6378 Selector_Name
=> New_Copy
(Name
(Variant_Part
(CL
)))),
6379 Alternatives
=> Alt_List
));
6400 -- or a null statement if the list L is empty
6404 L
: List_Id
) return Node_Id
6406 Loc
: constant Source_Ptr
:= Sloc
(E
);
6408 Field_Name
: Name_Id
;
6413 return Make_Null_Statement
(Loc
);
6418 C
:= First_Non_Pragma
(L
);
6419 while Present
(C
) loop
6420 Field_Name
:= Chars
(Defining_Identifier
(C
));
6422 -- The tags must not be compared they are not part of the value.
6423 -- Note also that in the following, we use Make_Identifier for
6424 -- the component names. Use of New_Reference_To to identify the
6425 -- components would be incorrect because the wrong entities for
6426 -- discriminants could be picked up in the private type case.
6428 if Field_Name
/= Name_uTag
then
6429 Evolve_Or_Else
(Cond
,
6432 Make_Selected_Component
(Loc
,
6433 Prefix
=> Make_Identifier
(Loc
, Name_X
),
6435 Make_Identifier
(Loc
, Field_Name
)),
6438 Make_Selected_Component
(Loc
,
6439 Prefix
=> Make_Identifier
(Loc
, Name_Y
),
6441 Make_Identifier
(Loc
, Field_Name
))));
6444 Next_Non_Pragma
(C
);
6448 return Make_Null_Statement
(Loc
);
6452 Make_Implicit_If_Statement
(E
,
6454 Then_Statements
=> New_List
(
6455 Make_Return_Statement
(Loc
,
6456 Expression
=> New_Occurrence_Of
(Standard_False
, Loc
))));
6461 -------------------------------
6462 -- Make_Null_Procedure_Specs --
6463 -------------------------------
6465 procedure Make_Null_Procedure_Specs
6466 (Tag_Typ
: Entity_Id
;
6467 Decl_List
: out List_Id
)
6469 Loc
: constant Source_Ptr
:= Sloc
(Tag_Typ
);
6471 Formal_List
: List_Id
;
6472 Parent_Subp
: Entity_Id
;
6473 Prim_Elmt
: Elmt_Id
;
6474 Proc_Spec
: Node_Id
;
6475 Proc_Decl
: Node_Id
;
6478 function Is_Null_Interface_Primitive
(E
: Entity_Id
) return Boolean;
6479 -- Returns True if E is a null procedure that is an interface primitive
6481 ---------------------------------
6482 -- Is_Null_Interface_Primitive --
6483 ---------------------------------
6485 function Is_Null_Interface_Primitive
(E
: Entity_Id
) return Boolean is
6487 return Comes_From_Source
(E
)
6488 and then Is_Dispatching_Operation
(E
)
6489 and then Ekind
(E
) = E_Procedure
6490 and then Null_Present
(Parent
(E
))
6491 and then Is_Interface
(Find_Dispatching_Type
(E
));
6492 end Is_Null_Interface_Primitive
;
6494 -- Start of processing for Make_Null_Procedure_Specs
6497 Decl_List
:= New_List
;
6498 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
6499 while Present
(Prim_Elmt
) loop
6500 Subp
:= Node
(Prim_Elmt
);
6502 -- If a null procedure inherited from an interface has not been
6503 -- overridden, then we build a null procedure declaration to
6504 -- override the inherited procedure.
6506 Parent_Subp
:= Alias
(Subp
);
6508 if Present
(Parent_Subp
)
6509 and then Is_Null_Interface_Primitive
(Parent_Subp
)
6511 Formal_List
:= No_List
;
6512 Formal
:= First_Formal
(Subp
);
6514 if Present
(Formal
) then
6515 Formal_List
:= New_List
;
6517 while Present
(Formal
) loop
6519 (Make_Parameter_Specification
(Loc
,
6520 Defining_Identifier
=>
6521 Make_Defining_Identifier
(Sloc
(Formal
),
6522 Chars
=> Chars
(Formal
)),
6523 In_Present
=> In_Present
(Parent
(Formal
)),
6524 Out_Present
=> Out_Present
(Parent
(Formal
)),
6526 New_Reference_To
(Etype
(Formal
), Loc
),
6528 New_Copy_Tree
(Expression
(Parent
(Formal
)))),
6531 Next_Formal
(Formal
);
6536 Make_Procedure_Specification
(Loc
,
6537 Defining_Unit_Name
=>
6538 Make_Defining_Identifier
(Loc
, Chars
(Subp
)),
6539 Parameter_Specifications
=> Formal_List
);
6540 Set_Null_Present
(Proc_Spec
);
6542 Proc_Decl
:= Make_Subprogram_Declaration
(Loc
, Proc_Spec
);
6543 Append_To
(Decl_List
, Proc_Decl
);
6544 Analyze
(Proc_Decl
);
6547 Next_Elmt
(Prim_Elmt
);
6549 end Make_Null_Procedure_Specs
;
6551 -------------------------------------
6552 -- Make_Predefined_Primitive_Specs --
6553 -------------------------------------
6555 procedure Make_Predefined_Primitive_Specs
6556 (Tag_Typ
: Entity_Id
;
6557 Predef_List
: out List_Id
;
6558 Renamed_Eq
: out Node_Id
)
6560 Loc
: constant Source_Ptr
:= Sloc
(Tag_Typ
);
6561 Res
: constant List_Id
:= New_List
;
6563 Eq_Needed
: Boolean;
6565 Eq_Name
: Name_Id
:= Name_Op_Eq
;
6567 function Is_Predefined_Eq_Renaming
(Prim
: Node_Id
) return Boolean;
6568 -- Returns true if Prim is a renaming of an unresolved predefined
6569 -- equality operation.
6571 -------------------------------
6572 -- Is_Predefined_Eq_Renaming --
6573 -------------------------------
6575 function Is_Predefined_Eq_Renaming
(Prim
: Node_Id
) return Boolean is
6577 return Chars
(Prim
) /= Name_Op_Eq
6578 and then Present
(Alias
(Prim
))
6579 and then Comes_From_Source
(Prim
)
6580 and then Is_Intrinsic_Subprogram
(Alias
(Prim
))
6581 and then Chars
(Alias
(Prim
)) = Name_Op_Eq
;
6582 end Is_Predefined_Eq_Renaming
;
6584 -- Start of processing for Make_Predefined_Primitive_Specs
6587 Renamed_Eq
:= Empty
;
6591 Append_To
(Res
, Predef_Spec_Or_Body
(Loc
,
6594 Profile
=> New_List
(
6595 Make_Parameter_Specification
(Loc
,
6596 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_X
),
6597 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
))),
6599 Ret_Type
=> Standard_Long_Long_Integer
));
6601 -- Spec of _Alignment
6603 Append_To
(Res
, Predef_Spec_Or_Body
(Loc
,
6605 Name
=> Name_uAlignment
,
6606 Profile
=> New_List
(
6607 Make_Parameter_Specification
(Loc
,
6608 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_X
),
6609 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
))),
6611 Ret_Type
=> Standard_Integer
));
6613 -- Specs for dispatching stream attributes
6616 Stream_Op_TSS_Names
:
6617 constant array (Integer range <>) of TSS_Name_Type
:=
6623 for Op
in Stream_Op_TSS_Names
'Range loop
6624 if Stream_Operation_OK
(Tag_Typ
, Stream_Op_TSS_Names
(Op
)) then
6626 Predef_Stream_Attr_Spec
(Loc
, Tag_Typ
,
6627 Stream_Op_TSS_Names
(Op
)));
6632 -- Spec of "=" if expanded if the type is not limited and if a
6633 -- user defined "=" was not already declared for the non-full
6634 -- view of a private extension
6636 if not Is_Limited_Type
(Tag_Typ
) then
6639 Prim
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
6640 while Present
(Prim
) loop
6642 -- If a primitive is encountered that renames the predefined
6643 -- equality operator before reaching any explicit equality
6644 -- primitive, then we still need to create a predefined
6645 -- equality function, because calls to it can occur via
6646 -- the renaming. A new name is created for the equality
6647 -- to avoid conflicting with any user-defined equality.
6648 -- (Note that this doesn't account for renamings of
6649 -- equality nested within subpackages???)
6651 if Is_Predefined_Eq_Renaming
(Node
(Prim
)) then
6652 Eq_Name
:= New_External_Name
(Chars
(Node
(Prim
)), 'E');
6654 elsif Chars
(Node
(Prim
)) = Name_Op_Eq
6655 and then (No
(Alias
(Node
(Prim
)))
6656 or else Nkind
(Unit_Declaration_Node
(Node
(Prim
))) =
6657 N_Subprogram_Renaming_Declaration
)
6658 and then Etype
(First_Formal
(Node
(Prim
))) =
6659 Etype
(Next_Formal
(First_Formal
(Node
(Prim
))))
6660 and then Base_Type
(Etype
(Node
(Prim
))) = Standard_Boolean
6666 -- If the parent equality is abstract, the inherited equality is
6667 -- abstract as well, and no body can be created for for it.
6669 elsif Chars
(Node
(Prim
)) = Name_Op_Eq
6670 and then Present
(Alias
(Node
(Prim
)))
6671 and then Is_Abstract
(Alias
(Node
(Prim
)))
6680 -- If a renaming of predefined equality was found
6681 -- but there was no user-defined equality (so Eq_Needed
6682 -- is still true), then set the name back to Name_Op_Eq.
6683 -- But in the case where a user-defined equality was
6684 -- located after such a renaming, then the predefined
6685 -- equality function is still needed, so Eq_Needed must
6686 -- be set back to True.
6688 if Eq_Name
/= Name_Op_Eq
then
6690 Eq_Name
:= Name_Op_Eq
;
6697 Eq_Spec
:= Predef_Spec_Or_Body
(Loc
,
6700 Profile
=> New_List
(
6701 Make_Parameter_Specification
(Loc
,
6702 Defining_Identifier
=>
6703 Make_Defining_Identifier
(Loc
, Name_X
),
6704 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
)),
6705 Make_Parameter_Specification
(Loc
,
6706 Defining_Identifier
=>
6707 Make_Defining_Identifier
(Loc
, Name_Y
),
6708 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
))),
6709 Ret_Type
=> Standard_Boolean
);
6710 Append_To
(Res
, Eq_Spec
);
6712 if Eq_Name
/= Name_Op_Eq
then
6713 Renamed_Eq
:= Defining_Unit_Name
(Specification
(Eq_Spec
));
6715 Prim
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
6716 while Present
(Prim
) loop
6718 -- Any renamings of equality that appeared before an
6719 -- overriding equality must be updated to refer to
6720 -- the entity for the predefined equality, otherwise
6721 -- calls via the renaming would get incorrectly
6722 -- resolved to call the user-defined equality function.
6724 if Is_Predefined_Eq_Renaming
(Node
(Prim
)) then
6725 Set_Alias
(Node
(Prim
), Renamed_Eq
);
6727 -- Exit upon encountering a user-defined equality
6729 elsif Chars
(Node
(Prim
)) = Name_Op_Eq
6730 and then No
(Alias
(Node
(Prim
)))
6740 -- Spec for dispatching assignment
6742 Append_To
(Res
, Predef_Spec_Or_Body
(Loc
,
6744 Name
=> Name_uAssign
,
6745 Profile
=> New_List
(
6746 Make_Parameter_Specification
(Loc
,
6747 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_X
),
6748 Out_Present
=> True,
6749 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
)),
6751 Make_Parameter_Specification
(Loc
,
6752 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_Y
),
6753 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
)))));
6756 -- Generate the declarations for the following primitive operations:
6758 -- disp_asynchronous_select
6759 -- disp_conditional_select
6760 -- disp_get_prim_op_kind
6762 -- disp_timed_select
6764 -- for limited interfaces and synchronized types that implement a
6765 -- limited interface.
6767 if Ada_Version
>= Ada_05
6769 ((Is_Interface
(Tag_Typ
) and then Is_Limited_Record
(Tag_Typ
))
6771 (Is_Concurrent_Record_Type
(Tag_Typ
)
6772 and then Implements_Interface
(
6774 Kind
=> Any_Limited_Interface
,
6775 Check_Parent
=> True)))
6778 Make_Subprogram_Declaration
(Loc
,
6780 Make_Disp_Asynchronous_Select_Spec
(Tag_Typ
)));
6783 Make_Subprogram_Declaration
(Loc
,
6785 Make_Disp_Conditional_Select_Spec
(Tag_Typ
)));
6788 Make_Subprogram_Declaration
(Loc
,
6790 Make_Disp_Get_Prim_Op_Kind_Spec
(Tag_Typ
)));
6793 Make_Subprogram_Declaration
(Loc
,
6795 Make_Disp_Get_Task_Id_Spec
(Tag_Typ
)));
6798 Make_Subprogram_Declaration
(Loc
,
6800 Make_Disp_Timed_Select_Spec
(Tag_Typ
)));
6803 -- Specs for finalization actions that may be required in case a
6804 -- future extension contain a controlled element. We generate those
6805 -- only for root tagged types where they will get dummy bodies or
6806 -- when the type has controlled components and their body must be
6807 -- generated. It is also impossible to provide those for tagged
6808 -- types defined within s-finimp since it would involve circularity
6811 if In_Finalization_Root
(Tag_Typ
) then
6814 -- We also skip these if finalization is not available
6816 elsif Restriction_Active
(No_Finalization
) then
6819 elsif Etype
(Tag_Typ
) = Tag_Typ
6820 or else Controlled_Type
(Tag_Typ
)
6822 -- Ada 2005 (AI-251): We must also generate these subprograms if
6823 -- the immediate ancestor is an interface to ensure the correct
6824 -- initialization of its dispatch table.
6826 or else (not Is_Interface
(Tag_Typ
)
6828 Is_Interface
(Etype
(Tag_Typ
)))
6830 if not Is_Limited_Type
(Tag_Typ
) then
6832 Predef_Deep_Spec
(Loc
, Tag_Typ
, TSS_Deep_Adjust
));
6835 Append_To
(Res
, Predef_Deep_Spec
(Loc
, Tag_Typ
, TSS_Deep_Finalize
));
6839 end Make_Predefined_Primitive_Specs
;
6841 ---------------------------------
6842 -- Needs_Simple_Initialization --
6843 ---------------------------------
6845 function Needs_Simple_Initialization
(T
: Entity_Id
) return Boolean is
6847 -- Check for private type, in which case test applies to the
6848 -- underlying type of the private type.
6850 if Is_Private_Type
(T
) then
6852 RT
: constant Entity_Id
:= Underlying_Type
(T
);
6855 if Present
(RT
) then
6856 return Needs_Simple_Initialization
(RT
);
6862 -- Cases needing simple initialization are access types, and, if pragma
6863 -- Normalize_Scalars or Initialize_Scalars is in effect, then all scalar
6866 elsif Is_Access_Type
(T
)
6867 or else (Init_Or_Norm_Scalars
and then (Is_Scalar_Type
(T
)))
6871 -- If Initialize/Normalize_Scalars is in effect, string objects also
6872 -- need initialization, unless they are created in the course of
6873 -- expanding an aggregate (since in the latter case they will be
6874 -- filled with appropriate initializing values before they are used).
6876 elsif Init_Or_Norm_Scalars
6878 (Root_Type
(T
) = Standard_String
6879 or else Root_Type
(T
) = Standard_Wide_String
6880 or else Root_Type
(T
) = Standard_Wide_Wide_String
)
6883 or else Nkind
(Associated_Node_For_Itype
(T
)) /= N_Aggregate
)
6890 end Needs_Simple_Initialization
;
6892 ----------------------
6893 -- Predef_Deep_Spec --
6894 ----------------------
6896 function Predef_Deep_Spec
6898 Tag_Typ
: Entity_Id
;
6899 Name
: TSS_Name_Type
;
6900 For_Body
: Boolean := False) return Node_Id
6906 if Name
= TSS_Deep_Finalize
then
6908 Type_B
:= Standard_Boolean
;
6912 Make_Parameter_Specification
(Loc
,
6913 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_L
),
6915 Out_Present
=> True,
6917 New_Reference_To
(RTE
(RE_Finalizable_Ptr
), Loc
)));
6918 Type_B
:= Standard_Short_Short_Integer
;
6922 Make_Parameter_Specification
(Loc
,
6923 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_V
),
6925 Out_Present
=> True,
6926 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
)));
6929 Make_Parameter_Specification
(Loc
,
6930 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_B
),
6931 Parameter_Type
=> New_Reference_To
(Type_B
, Loc
)));
6933 return Predef_Spec_Or_Body
(Loc
,
6934 Name
=> Make_TSS_Name
(Tag_Typ
, Name
),
6937 For_Body
=> For_Body
);
6940 when RE_Not_Available
=>
6942 end Predef_Deep_Spec
;
6944 -------------------------
6945 -- Predef_Spec_Or_Body --
6946 -------------------------
6948 function Predef_Spec_Or_Body
6950 Tag_Typ
: Entity_Id
;
6953 Ret_Type
: Entity_Id
:= Empty
;
6954 For_Body
: Boolean := False) return Node_Id
6956 Id
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name
);
6960 Set_Is_Public
(Id
, Is_Public
(Tag_Typ
));
6962 -- The internal flag is set to mark these declarations because
6963 -- they have specific properties. First they are primitives even
6964 -- if they are not defined in the type scope (the freezing point
6965 -- is not necessarily in the same scope), furthermore the
6966 -- predefined equality can be overridden by a user-defined
6967 -- equality, no body will be generated in this case.
6969 Set_Is_Internal
(Id
);
6971 if not Debug_Generated_Code
then
6972 Set_Debug_Info_Off
(Id
);
6975 if No
(Ret_Type
) then
6977 Make_Procedure_Specification
(Loc
,
6978 Defining_Unit_Name
=> Id
,
6979 Parameter_Specifications
=> Profile
);
6982 Make_Function_Specification
(Loc
,
6983 Defining_Unit_Name
=> Id
,
6984 Parameter_Specifications
=> Profile
,
6985 Result_Definition
=>
6986 New_Reference_To
(Ret_Type
, Loc
));
6989 -- If body case, return empty subprogram body. Note that this is
6990 -- ill-formed, because there is not even a null statement, and
6991 -- certainly not a return in the function case. The caller is
6992 -- expected to do surgery on the body to add the appropriate stuff.
6995 return Make_Subprogram_Body
(Loc
, Spec
, Empty_List
, Empty
);
6997 -- For the case of Input/Output attributes applied to an abstract type,
6998 -- generate abstract specifications. These will never be called,
6999 -- but we need the slots allocated in the dispatching table so
7000 -- that typ'Class'Input and typ'Class'Output will work properly.
7002 elsif (Is_TSS
(Name
, TSS_Stream_Input
)
7004 Is_TSS
(Name
, TSS_Stream_Output
))
7005 and then Is_Abstract
(Tag_Typ
)
7007 return Make_Abstract_Subprogram_Declaration
(Loc
, Spec
);
7009 -- Normal spec case, where we return a subprogram declaration
7012 return Make_Subprogram_Declaration
(Loc
, Spec
);
7014 end Predef_Spec_Or_Body
;
7016 -----------------------------
7017 -- Predef_Stream_Attr_Spec --
7018 -----------------------------
7020 function Predef_Stream_Attr_Spec
7022 Tag_Typ
: Entity_Id
;
7023 Name
: TSS_Name_Type
;
7024 For_Body
: Boolean := False) return Node_Id
7026 Ret_Type
: Entity_Id
;
7029 if Name
= TSS_Stream_Input
then
7030 Ret_Type
:= Tag_Typ
;
7035 return Predef_Spec_Or_Body
(Loc
,
7036 Name
=> Make_TSS_Name
(Tag_Typ
, Name
),
7038 Profile
=> Build_Stream_Attr_Profile
(Loc
, Tag_Typ
, Name
),
7039 Ret_Type
=> Ret_Type
,
7040 For_Body
=> For_Body
);
7041 end Predef_Stream_Attr_Spec
;
7043 ---------------------------------
7044 -- Predefined_Primitive_Bodies --
7045 ---------------------------------
7047 function Predefined_Primitive_Bodies
7048 (Tag_Typ
: Entity_Id
;
7049 Renamed_Eq
: Node_Id
) return List_Id
7051 Loc
: constant Source_Ptr
:= Sloc
(Tag_Typ
);
7052 Res
: constant List_Id
:= New_List
;
7055 Eq_Needed
: Boolean;
7060 -- See if we have a predefined "=" operator
7062 if Present
(Renamed_Eq
) then
7064 Eq_Name
:= Chars
(Renamed_Eq
);
7070 Prim
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
7071 while Present
(Prim
) loop
7072 if Chars
(Node
(Prim
)) = Name_Op_Eq
7073 and then Is_Internal
(Node
(Prim
))
7076 Eq_Name
:= Name_Op_Eq
;
7083 -- Body of _Alignment
7085 Decl
:= Predef_Spec_Or_Body
(Loc
,
7087 Name
=> Name_uAlignment
,
7088 Profile
=> New_List
(
7089 Make_Parameter_Specification
(Loc
,
7090 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_X
),
7091 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
))),
7093 Ret_Type
=> Standard_Integer
,
7096 Set_Handled_Statement_Sequence
(Decl
,
7097 Make_Handled_Sequence_Of_Statements
(Loc
, New_List
(
7098 Make_Return_Statement
(Loc
,
7100 Make_Attribute_Reference
(Loc
,
7101 Prefix
=> Make_Identifier
(Loc
, Name_X
),
7102 Attribute_Name
=> Name_Alignment
)))));
7104 Append_To
(Res
, Decl
);
7108 Decl
:= Predef_Spec_Or_Body
(Loc
,
7111 Profile
=> New_List
(
7112 Make_Parameter_Specification
(Loc
,
7113 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_X
),
7114 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
))),
7116 Ret_Type
=> Standard_Long_Long_Integer
,
7119 Set_Handled_Statement_Sequence
(Decl
,
7120 Make_Handled_Sequence_Of_Statements
(Loc
, New_List
(
7121 Make_Return_Statement
(Loc
,
7123 Make_Attribute_Reference
(Loc
,
7124 Prefix
=> Make_Identifier
(Loc
, Name_X
),
7125 Attribute_Name
=> Name_Size
)))));
7127 Append_To
(Res
, Decl
);
7129 -- Bodies for Dispatching stream IO routines. We need these only for
7130 -- non-limited types (in the limited case there is no dispatching).
7131 -- We also skip them if dispatching or finalization are not available.
7133 if Stream_Operation_OK
(Tag_Typ
, TSS_Stream_Read
)
7134 and then No
(TSS
(Tag_Typ
, TSS_Stream_Read
))
7136 Build_Record_Read_Procedure
(Loc
, Tag_Typ
, Decl
, Ent
);
7137 Append_To
(Res
, Decl
);
7140 if Stream_Operation_OK
(Tag_Typ
, TSS_Stream_Write
)
7141 and then No
(TSS
(Tag_Typ
, TSS_Stream_Write
))
7143 Build_Record_Write_Procedure
(Loc
, Tag_Typ
, Decl
, Ent
);
7144 Append_To
(Res
, Decl
);
7147 -- Skip bodies of _Input and _Output for the abstract case, since
7148 -- the corresponding specs are abstract (see Predef_Spec_Or_Body)
7150 if not Is_Abstract
(Tag_Typ
) then
7151 if Stream_Operation_OK
(Tag_Typ
, TSS_Stream_Input
)
7152 and then No
(TSS
(Tag_Typ
, TSS_Stream_Input
))
7154 Build_Record_Or_Elementary_Input_Function
7155 (Loc
, Tag_Typ
, Decl
, Ent
);
7156 Append_To
(Res
, Decl
);
7159 if Stream_Operation_OK
(Tag_Typ
, TSS_Stream_Output
)
7160 and then No
(TSS
(Tag_Typ
, TSS_Stream_Output
))
7162 Build_Record_Or_Elementary_Output_Procedure
7163 (Loc
, Tag_Typ
, Decl
, Ent
);
7164 Append_To
(Res
, Decl
);
7168 -- Generate the bodies for the following primitive operations:
7170 -- disp_asynchronous_select
7171 -- disp_conditional_select
7172 -- disp_get_prim_op_kind
7174 -- disp_timed_select
7176 -- for limited interfaces and synchronized types that implement a
7177 -- limited interface. The interface versions will have null bodies.
7179 if Ada_Version
>= Ada_05
7181 not Restriction_Active
(No_Dispatching_Calls
)
7183 ((Is_Interface
(Tag_Typ
) and then Is_Limited_Record
(Tag_Typ
))
7185 (Is_Concurrent_Record_Type
(Tag_Typ
)
7186 and then Implements_Interface
(
7188 Kind
=> Any_Limited_Interface
,
7189 Check_Parent
=> True)))
7191 Append_To
(Res
, Make_Disp_Asynchronous_Select_Body
(Tag_Typ
));
7192 Append_To
(Res
, Make_Disp_Conditional_Select_Body
(Tag_Typ
));
7193 Append_To
(Res
, Make_Disp_Get_Prim_Op_Kind_Body
(Tag_Typ
));
7194 Append_To
(Res
, Make_Disp_Get_Task_Id_Body
(Tag_Typ
));
7195 Append_To
(Res
, Make_Disp_Timed_Select_Body
(Tag_Typ
));
7198 if not Is_Limited_Type
(Tag_Typ
) then
7200 -- Body for equality
7204 Predef_Spec_Or_Body
(Loc
,
7207 Profile
=> New_List
(
7208 Make_Parameter_Specification
(Loc
,
7209 Defining_Identifier
=>
7210 Make_Defining_Identifier
(Loc
, Name_X
),
7211 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
)),
7213 Make_Parameter_Specification
(Loc
,
7214 Defining_Identifier
=>
7215 Make_Defining_Identifier
(Loc
, Name_Y
),
7216 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
))),
7218 Ret_Type
=> Standard_Boolean
,
7222 Def
: constant Node_Id
:= Parent
(Tag_Typ
);
7223 Stmts
: constant List_Id
:= New_List
;
7224 Variant_Case
: Boolean := Has_Discriminants
(Tag_Typ
);
7225 Comps
: Node_Id
:= Empty
;
7226 Typ_Def
: Node_Id
:= Type_Definition
(Def
);
7229 if Variant_Case
then
7230 if Nkind
(Typ_Def
) = N_Derived_Type_Definition
then
7231 Typ_Def
:= Record_Extension_Part
(Typ_Def
);
7234 if Present
(Typ_Def
) then
7235 Comps
:= Component_List
(Typ_Def
);
7238 Variant_Case
:= Present
(Comps
)
7239 and then Present
(Variant_Part
(Comps
));
7242 if Variant_Case
then
7244 Make_Eq_If
(Tag_Typ
, Discriminant_Specifications
(Def
)));
7245 Append_List_To
(Stmts
, Make_Eq_Case
(Tag_Typ
, Comps
));
7247 Make_Return_Statement
(Loc
,
7248 Expression
=> New_Reference_To
(Standard_True
, Loc
)));
7252 Make_Return_Statement
(Loc
,
7254 Expand_Record_Equality
(Tag_Typ
,
7256 Lhs
=> Make_Identifier
(Loc
, Name_X
),
7257 Rhs
=> Make_Identifier
(Loc
, Name_Y
),
7258 Bodies
=> Declarations
(Decl
))));
7261 Set_Handled_Statement_Sequence
(Decl
,
7262 Make_Handled_Sequence_Of_Statements
(Loc
, Stmts
));
7264 Append_To
(Res
, Decl
);
7267 -- Body for dispatching assignment
7270 Predef_Spec_Or_Body
(Loc
,
7272 Name
=> Name_uAssign
,
7273 Profile
=> New_List
(
7274 Make_Parameter_Specification
(Loc
,
7275 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_X
),
7276 Out_Present
=> True,
7277 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
)),
7279 Make_Parameter_Specification
(Loc
,
7280 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_Y
),
7281 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
))),
7284 Set_Handled_Statement_Sequence
(Decl
,
7285 Make_Handled_Sequence_Of_Statements
(Loc
, New_List
(
7286 Make_Assignment_Statement
(Loc
,
7287 Name
=> Make_Identifier
(Loc
, Name_X
),
7288 Expression
=> Make_Identifier
(Loc
, Name_Y
)))));
7290 Append_To
(Res
, Decl
);
7293 -- Generate dummy bodies for finalization actions of types that have
7294 -- no controlled components.
7296 -- Skip this processing if we are in the finalization routine in the
7297 -- runtime itself, otherwise we get hopelessly circularly confused!
7299 if In_Finalization_Root
(Tag_Typ
) then
7302 -- Skip this if finalization is not available
7304 elsif Restriction_Active
(No_Finalization
) then
7307 elsif (Etype
(Tag_Typ
) = Tag_Typ
7308 or else Is_Controlled
(Tag_Typ
)
7310 -- Ada 2005 (AI-251): We must also generate these subprograms
7311 -- if the immediate ancestor of Tag_Typ is an interface to
7312 -- ensure the correct initialization of its dispatch table.
7314 or else (not Is_Interface
(Tag_Typ
)
7316 Is_Interface
(Etype
(Tag_Typ
))))
7317 and then not Has_Controlled_Component
(Tag_Typ
)
7319 if not Is_Limited_Type
(Tag_Typ
) then
7320 Decl
:= Predef_Deep_Spec
(Loc
, Tag_Typ
, TSS_Deep_Adjust
, True);
7322 if Is_Controlled
(Tag_Typ
) then
7323 Set_Handled_Statement_Sequence
(Decl
,
7324 Make_Handled_Sequence_Of_Statements
(Loc
,
7326 Ref
=> Make_Identifier
(Loc
, Name_V
),
7328 Flist_Ref
=> Make_Identifier
(Loc
, Name_L
),
7329 With_Attach
=> Make_Identifier
(Loc
, Name_B
))));
7332 Set_Handled_Statement_Sequence
(Decl
,
7333 Make_Handled_Sequence_Of_Statements
(Loc
, New_List
(
7334 Make_Null_Statement
(Loc
))));
7337 Append_To
(Res
, Decl
);
7340 Decl
:= Predef_Deep_Spec
(Loc
, Tag_Typ
, TSS_Deep_Finalize
, True);
7342 if Is_Controlled
(Tag_Typ
) then
7343 Set_Handled_Statement_Sequence
(Decl
,
7344 Make_Handled_Sequence_Of_Statements
(Loc
,
7346 Ref
=> Make_Identifier
(Loc
, Name_V
),
7348 With_Detach
=> Make_Identifier
(Loc
, Name_B
))));
7351 Set_Handled_Statement_Sequence
(Decl
,
7352 Make_Handled_Sequence_Of_Statements
(Loc
, New_List
(
7353 Make_Null_Statement
(Loc
))));
7356 Append_To
(Res
, Decl
);
7360 end Predefined_Primitive_Bodies
;
7362 ---------------------------------
7363 -- Predefined_Primitive_Freeze --
7364 ---------------------------------
7366 function Predefined_Primitive_Freeze
7367 (Tag_Typ
: Entity_Id
) return List_Id
7369 Loc
: constant Source_Ptr
:= Sloc
(Tag_Typ
);
7370 Res
: constant List_Id
:= New_List
;
7375 Prim
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
7376 while Present
(Prim
) loop
7377 if Is_Internal
(Node
(Prim
)) then
7378 Frnodes
:= Freeze_Entity
(Node
(Prim
), Loc
);
7380 if Present
(Frnodes
) then
7381 Append_List_To
(Res
, Frnodes
);
7389 end Predefined_Primitive_Freeze
;
7391 -------------------------
7392 -- Stream_Operation_OK --
7393 -------------------------
7395 function Stream_Operation_OK
7397 Operation
: TSS_Name_Type
) return Boolean
7399 Has_Inheritable_Stream_Attribute
: Boolean := False;
7402 if Is_Limited_Type
(Typ
)
7403 and then Is_Tagged_Type
(Typ
)
7404 and then Is_Derived_Type
(Typ
)
7406 -- Special case of a limited type extension: a default implementation
7407 -- of the stream attributes Read and Write exists if the attribute
7408 -- has been specified for an ancestor type.
7410 Has_Inheritable_Stream_Attribute
:=
7411 Present
(Find_Inherited_TSS
(Base_Type
(Etype
(Typ
)), Operation
));
7415 not (Is_Limited_Type
(Typ
)
7416 and then not Has_Inheritable_Stream_Attribute
)
7417 and then not Has_Unknown_Discriminants
(Typ
)
7418 and then RTE_Available
(RE_Tag
)
7419 and then RTE_Available
(RE_Root_Stream_Type
)
7420 and then not Restriction_Active
(No_Dispatch
)
7421 and then not Restriction_Active
(No_Streams
);
7422 end Stream_Operation_OK
;