PR tree-optimization/85699
[official-gcc.git] / gcc / final.c
blob4c600f0edf2b533fa0a8697368bb37e3308f8508
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
45 #include "config.h"
46 #define INCLUDE_ALGORITHM /* reverse */
47 #include "system.h"
48 #include "coretypes.h"
49 #include "backend.h"
50 #include "target.h"
51 #include "rtl.h"
52 #include "tree.h"
53 #include "cfghooks.h"
54 #include "df.h"
55 #include "memmodel.h"
56 #include "tm_p.h"
57 #include "insn-config.h"
58 #include "regs.h"
59 #include "emit-rtl.h"
60 #include "recog.h"
61 #include "cgraph.h"
62 #include "tree-pretty-print.h" /* for dump_function_header */
63 #include "varasm.h"
64 #include "insn-attr.h"
65 #include "conditions.h"
66 #include "flags.h"
67 #include "output.h"
68 #include "except.h"
69 #include "rtl-error.h"
70 #include "toplev.h" /* exact_log2, floor_log2 */
71 #include "reload.h"
72 #include "intl.h"
73 #include "cfgrtl.h"
74 #include "debug.h"
75 #include "tree-pass.h"
76 #include "tree-ssa.h"
77 #include "cfgloop.h"
78 #include "params.h"
79 #include "stringpool.h"
80 #include "attribs.h"
81 #include "asan.h"
82 #include "rtl-iter.h"
83 #include "print-rtl.h"
85 #ifdef XCOFF_DEBUGGING_INFO
86 #include "xcoffout.h" /* Needed for external data declarations. */
87 #endif
89 #include "dwarf2out.h"
91 #ifdef DBX_DEBUGGING_INFO
92 #include "dbxout.h"
93 #endif
95 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
96 So define a null default for it to save conditionalization later. */
97 #ifndef CC_STATUS_INIT
98 #define CC_STATUS_INIT
99 #endif
101 /* Is the given character a logical line separator for the assembler? */
102 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
103 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
104 #endif
106 #ifndef JUMP_TABLES_IN_TEXT_SECTION
107 #define JUMP_TABLES_IN_TEXT_SECTION 0
108 #endif
110 /* Bitflags used by final_scan_insn. */
111 #define SEEN_NOTE 1
112 #define SEEN_EMITTED 2
113 #define SEEN_NEXT_VIEW 4
115 /* Last insn processed by final_scan_insn. */
116 static rtx_insn *debug_insn;
117 rtx_insn *current_output_insn;
119 /* Line number of last NOTE. */
120 static int last_linenum;
122 /* Column number of last NOTE. */
123 static int last_columnnum;
125 /* Last discriminator written to assembly. */
126 static int last_discriminator;
128 /* Discriminator of current block. */
129 static int discriminator;
131 /* Highest line number in current block. */
132 static int high_block_linenum;
134 /* Likewise for function. */
135 static int high_function_linenum;
137 /* Filename of last NOTE. */
138 static const char *last_filename;
140 /* Override filename, line and column number. */
141 static const char *override_filename;
142 static int override_linenum;
143 static int override_columnnum;
145 /* Whether to force emission of a line note before the next insn. */
146 static bool force_source_line = false;
148 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
150 /* Nonzero while outputting an `asm' with operands.
151 This means that inconsistencies are the user's fault, so don't die.
152 The precise value is the insn being output, to pass to error_for_asm. */
153 const rtx_insn *this_is_asm_operands;
155 /* Number of operands of this insn, for an `asm' with operands. */
156 static unsigned int insn_noperands;
158 /* Compare optimization flag. */
160 static rtx last_ignored_compare = 0;
162 /* Assign a unique number to each insn that is output.
163 This can be used to generate unique local labels. */
165 static int insn_counter = 0;
167 /* This variable contains machine-dependent flags (defined in tm.h)
168 set and examined by output routines
169 that describe how to interpret the condition codes properly. */
171 CC_STATUS cc_status;
173 /* During output of an insn, this contains a copy of cc_status
174 from before the insn. */
176 CC_STATUS cc_prev_status;
178 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
180 static int block_depth;
182 /* Nonzero if have enabled APP processing of our assembler output. */
184 static int app_on;
186 /* If we are outputting an insn sequence, this contains the sequence rtx.
187 Zero otherwise. */
189 rtx_sequence *final_sequence;
191 #ifdef ASSEMBLER_DIALECT
193 /* Number of the assembler dialect to use, starting at 0. */
194 static int dialect_number;
195 #endif
197 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
198 rtx current_insn_predicate;
200 /* True if printing into -fdump-final-insns= dump. */
201 bool final_insns_dump_p;
203 /* True if profile_function should be called, but hasn't been called yet. */
204 static bool need_profile_function;
206 static int asm_insn_count (rtx);
207 static void profile_function (FILE *);
208 static void profile_after_prologue (FILE *);
209 static bool notice_source_line (rtx_insn *, bool *);
210 static rtx walk_alter_subreg (rtx *, bool *);
211 static void output_asm_name (void);
212 static void output_alternate_entry_point (FILE *, rtx_insn *);
213 static tree get_mem_expr_from_op (rtx, int *);
214 static void output_asm_operand_names (rtx *, int *, int);
215 #ifdef LEAF_REGISTERS
216 static void leaf_renumber_regs (rtx_insn *);
217 #endif
218 #if HAVE_cc0
219 static int alter_cond (rtx);
220 #endif
221 static int align_fuzz (rtx, rtx, int, unsigned);
222 static void collect_fn_hard_reg_usage (void);
223 static tree get_call_fndecl (rtx_insn *);
225 /* Initialize data in final at the beginning of a compilation. */
227 void
228 init_final (const char *filename ATTRIBUTE_UNUSED)
230 app_on = 0;
231 final_sequence = 0;
233 #ifdef ASSEMBLER_DIALECT
234 dialect_number = ASSEMBLER_DIALECT;
235 #endif
238 /* Default target function prologue and epilogue assembler output.
240 If not overridden for epilogue code, then the function body itself
241 contains return instructions wherever needed. */
242 void
243 default_function_pro_epilogue (FILE *)
247 void
248 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED,
249 tree decl ATTRIBUTE_UNUSED,
250 bool new_is_cold ATTRIBUTE_UNUSED)
254 /* Default target hook that outputs nothing to a stream. */
255 void
256 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
260 /* Enable APP processing of subsequent output.
261 Used before the output from an `asm' statement. */
263 void
264 app_enable (void)
266 if (! app_on)
268 fputs (ASM_APP_ON, asm_out_file);
269 app_on = 1;
273 /* Disable APP processing of subsequent output.
274 Called from varasm.c before most kinds of output. */
276 void
277 app_disable (void)
279 if (app_on)
281 fputs (ASM_APP_OFF, asm_out_file);
282 app_on = 0;
286 /* Return the number of slots filled in the current
287 delayed branch sequence (we don't count the insn needing the
288 delay slot). Zero if not in a delayed branch sequence. */
291 dbr_sequence_length (void)
293 if (final_sequence != 0)
294 return XVECLEN (final_sequence, 0) - 1;
295 else
296 return 0;
299 /* The next two pages contain routines used to compute the length of an insn
300 and to shorten branches. */
302 /* Arrays for insn lengths, and addresses. The latter is referenced by
303 `insn_current_length'. */
305 static int *insn_lengths;
307 vec<int> insn_addresses_;
309 /* Max uid for which the above arrays are valid. */
310 static int insn_lengths_max_uid;
312 /* Address of insn being processed. Used by `insn_current_length'. */
313 int insn_current_address;
315 /* Address of insn being processed in previous iteration. */
316 int insn_last_address;
318 /* known invariant alignment of insn being processed. */
319 int insn_current_align;
321 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
322 gives the next following alignment insn that increases the known
323 alignment, or NULL_RTX if there is no such insn.
324 For any alignment obtained this way, we can again index uid_align with
325 its uid to obtain the next following align that in turn increases the
326 alignment, till we reach NULL_RTX; the sequence obtained this way
327 for each insn we'll call the alignment chain of this insn in the following
328 comments. */
330 struct label_alignment
332 short alignment;
333 short max_skip;
336 static rtx *uid_align;
337 static int *uid_shuid;
338 static struct label_alignment *label_align;
340 /* Indicate that branch shortening hasn't yet been done. */
342 void
343 init_insn_lengths (void)
345 if (uid_shuid)
347 free (uid_shuid);
348 uid_shuid = 0;
350 if (insn_lengths)
352 free (insn_lengths);
353 insn_lengths = 0;
354 insn_lengths_max_uid = 0;
356 if (HAVE_ATTR_length)
357 INSN_ADDRESSES_FREE ();
358 if (uid_align)
360 free (uid_align);
361 uid_align = 0;
365 /* Obtain the current length of an insn. If branch shortening has been done,
366 get its actual length. Otherwise, use FALLBACK_FN to calculate the
367 length. */
368 static int
369 get_attr_length_1 (rtx_insn *insn, int (*fallback_fn) (rtx_insn *))
371 rtx body;
372 int i;
373 int length = 0;
375 if (!HAVE_ATTR_length)
376 return 0;
378 if (insn_lengths_max_uid > INSN_UID (insn))
379 return insn_lengths[INSN_UID (insn)];
380 else
381 switch (GET_CODE (insn))
383 case NOTE:
384 case BARRIER:
385 case CODE_LABEL:
386 case DEBUG_INSN:
387 return 0;
389 case CALL_INSN:
390 case JUMP_INSN:
391 length = fallback_fn (insn);
392 break;
394 case INSN:
395 body = PATTERN (insn);
396 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
397 return 0;
399 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
400 length = asm_insn_count (body) * fallback_fn (insn);
401 else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
402 for (i = 0; i < seq->len (); i++)
403 length += get_attr_length_1 (seq->insn (i), fallback_fn);
404 else
405 length = fallback_fn (insn);
406 break;
408 default:
409 break;
412 #ifdef ADJUST_INSN_LENGTH
413 ADJUST_INSN_LENGTH (insn, length);
414 #endif
415 return length;
418 /* Obtain the current length of an insn. If branch shortening has been done,
419 get its actual length. Otherwise, get its maximum length. */
421 get_attr_length (rtx_insn *insn)
423 return get_attr_length_1 (insn, insn_default_length);
426 /* Obtain the current length of an insn. If branch shortening has been done,
427 get its actual length. Otherwise, get its minimum length. */
429 get_attr_min_length (rtx_insn *insn)
431 return get_attr_length_1 (insn, insn_min_length);
434 /* Code to handle alignment inside shorten_branches. */
436 /* Here is an explanation how the algorithm in align_fuzz can give
437 proper results:
439 Call a sequence of instructions beginning with alignment point X
440 and continuing until the next alignment point `block X'. When `X'
441 is used in an expression, it means the alignment value of the
442 alignment point.
444 Call the distance between the start of the first insn of block X, and
445 the end of the last insn of block X `IX', for the `inner size of X'.
446 This is clearly the sum of the instruction lengths.
448 Likewise with the next alignment-delimited block following X, which we
449 shall call block Y.
451 Call the distance between the start of the first insn of block X, and
452 the start of the first insn of block Y `OX', for the `outer size of X'.
454 The estimated padding is then OX - IX.
456 OX can be safely estimated as
458 if (X >= Y)
459 OX = round_up(IX, Y)
460 else
461 OX = round_up(IX, X) + Y - X
463 Clearly est(IX) >= real(IX), because that only depends on the
464 instruction lengths, and those being overestimated is a given.
466 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
467 we needn't worry about that when thinking about OX.
469 When X >= Y, the alignment provided by Y adds no uncertainty factor
470 for branch ranges starting before X, so we can just round what we have.
471 But when X < Y, we don't know anything about the, so to speak,
472 `middle bits', so we have to assume the worst when aligning up from an
473 address mod X to one mod Y, which is Y - X. */
475 #ifndef LABEL_ALIGN
476 #define LABEL_ALIGN(LABEL) align_labels_log
477 #endif
479 #ifndef LOOP_ALIGN
480 #define LOOP_ALIGN(LABEL) align_loops_log
481 #endif
483 #ifndef LABEL_ALIGN_AFTER_BARRIER
484 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
485 #endif
487 #ifndef JUMP_ALIGN
488 #define JUMP_ALIGN(LABEL) align_jumps_log
489 #endif
492 default_label_align_after_barrier_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
494 return 0;
498 default_loop_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
500 return align_loops_max_skip;
504 default_label_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
506 return align_labels_max_skip;
510 default_jump_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
512 return align_jumps_max_skip;
515 #ifndef ADDR_VEC_ALIGN
516 static int
517 final_addr_vec_align (rtx_jump_table_data *addr_vec)
519 int align = GET_MODE_SIZE (addr_vec->get_data_mode ());
521 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
522 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
523 return exact_log2 (align);
527 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
528 #endif
530 #ifndef INSN_LENGTH_ALIGNMENT
531 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
532 #endif
534 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
536 static int min_labelno, max_labelno;
538 #define LABEL_TO_ALIGNMENT(LABEL) \
539 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
541 #define LABEL_TO_MAX_SKIP(LABEL) \
542 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
544 /* For the benefit of port specific code do this also as a function. */
547 label_to_alignment (rtx label)
549 if (CODE_LABEL_NUMBER (label) <= max_labelno)
550 return LABEL_TO_ALIGNMENT (label);
551 return 0;
555 label_to_max_skip (rtx label)
557 if (CODE_LABEL_NUMBER (label) <= max_labelno)
558 return LABEL_TO_MAX_SKIP (label);
559 return 0;
562 /* The differences in addresses
563 between a branch and its target might grow or shrink depending on
564 the alignment the start insn of the range (the branch for a forward
565 branch or the label for a backward branch) starts out on; if these
566 differences are used naively, they can even oscillate infinitely.
567 We therefore want to compute a 'worst case' address difference that
568 is independent of the alignment the start insn of the range end
569 up on, and that is at least as large as the actual difference.
570 The function align_fuzz calculates the amount we have to add to the
571 naively computed difference, by traversing the part of the alignment
572 chain of the start insn of the range that is in front of the end insn
573 of the range, and considering for each alignment the maximum amount
574 that it might contribute to a size increase.
576 For casesi tables, we also want to know worst case minimum amounts of
577 address difference, in case a machine description wants to introduce
578 some common offset that is added to all offsets in a table.
579 For this purpose, align_fuzz with a growth argument of 0 computes the
580 appropriate adjustment. */
582 /* Compute the maximum delta by which the difference of the addresses of
583 START and END might grow / shrink due to a different address for start
584 which changes the size of alignment insns between START and END.
585 KNOWN_ALIGN_LOG is the alignment known for START.
586 GROWTH should be ~0 if the objective is to compute potential code size
587 increase, and 0 if the objective is to compute potential shrink.
588 The return value is undefined for any other value of GROWTH. */
590 static int
591 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
593 int uid = INSN_UID (start);
594 rtx align_label;
595 int known_align = 1 << known_align_log;
596 int end_shuid = INSN_SHUID (end);
597 int fuzz = 0;
599 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
601 int align_addr, new_align;
603 uid = INSN_UID (align_label);
604 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
605 if (uid_shuid[uid] > end_shuid)
606 break;
607 known_align_log = LABEL_TO_ALIGNMENT (align_label);
608 new_align = 1 << known_align_log;
609 if (new_align < known_align)
610 continue;
611 fuzz += (-align_addr ^ growth) & (new_align - known_align);
612 known_align = new_align;
614 return fuzz;
617 /* Compute a worst-case reference address of a branch so that it
618 can be safely used in the presence of aligned labels. Since the
619 size of the branch itself is unknown, the size of the branch is
620 not included in the range. I.e. for a forward branch, the reference
621 address is the end address of the branch as known from the previous
622 branch shortening pass, minus a value to account for possible size
623 increase due to alignment. For a backward branch, it is the start
624 address of the branch as known from the current pass, plus a value
625 to account for possible size increase due to alignment.
626 NB.: Therefore, the maximum offset allowed for backward branches needs
627 to exclude the branch size. */
630 insn_current_reference_address (rtx_insn *branch)
632 rtx dest;
633 int seq_uid;
635 if (! INSN_ADDRESSES_SET_P ())
636 return 0;
638 rtx_insn *seq = NEXT_INSN (PREV_INSN (branch));
639 seq_uid = INSN_UID (seq);
640 if (!JUMP_P (branch))
641 /* This can happen for example on the PA; the objective is to know the
642 offset to address something in front of the start of the function.
643 Thus, we can treat it like a backward branch.
644 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
645 any alignment we'd encounter, so we skip the call to align_fuzz. */
646 return insn_current_address;
647 dest = JUMP_LABEL (branch);
649 /* BRANCH has no proper alignment chain set, so use SEQ.
650 BRANCH also has no INSN_SHUID. */
651 if (INSN_SHUID (seq) < INSN_SHUID (dest))
653 /* Forward branch. */
654 return (insn_last_address + insn_lengths[seq_uid]
655 - align_fuzz (seq, dest, length_unit_log, ~0));
657 else
659 /* Backward branch. */
660 return (insn_current_address
661 + align_fuzz (dest, seq, length_unit_log, ~0));
665 /* Compute branch alignments based on CFG profile. */
667 unsigned int
668 compute_alignments (void)
670 int log, max_skip, max_log;
671 basic_block bb;
673 if (label_align)
675 free (label_align);
676 label_align = 0;
679 max_labelno = max_label_num ();
680 min_labelno = get_first_label_num ();
681 label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
683 /* If not optimizing or optimizing for size, don't assign any alignments. */
684 if (! optimize || optimize_function_for_size_p (cfun))
685 return 0;
687 if (dump_file)
689 dump_reg_info (dump_file);
690 dump_flow_info (dump_file, TDF_DETAILS);
691 flow_loops_dump (dump_file, NULL, 1);
693 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
694 profile_count count_threshold = cfun->cfg->count_max.apply_scale
695 (1, PARAM_VALUE (PARAM_ALIGN_THRESHOLD));
697 if (dump_file)
699 fprintf (dump_file, "count_max: ");
700 cfun->cfg->count_max.dump (dump_file);
701 fprintf (dump_file, "\n");
703 FOR_EACH_BB_FN (bb, cfun)
705 rtx_insn *label = BB_HEAD (bb);
706 bool has_fallthru = 0;
707 edge e;
708 edge_iterator ei;
710 if (!LABEL_P (label)
711 || optimize_bb_for_size_p (bb))
713 if (dump_file)
714 fprintf (dump_file,
715 "BB %4i loop %2i loop_depth %2i skipped.\n",
716 bb->index,
717 bb->loop_father->num,
718 bb_loop_depth (bb));
719 continue;
721 max_log = LABEL_ALIGN (label);
722 max_skip = targetm.asm_out.label_align_max_skip (label);
723 profile_count fallthru_count = profile_count::zero ();
724 profile_count branch_count = profile_count::zero ();
726 FOR_EACH_EDGE (e, ei, bb->preds)
728 if (e->flags & EDGE_FALLTHRU)
729 has_fallthru = 1, fallthru_count += e->count ();
730 else
731 branch_count += e->count ();
733 if (dump_file)
735 fprintf (dump_file, "BB %4i loop %2i loop_depth"
736 " %2i fall ",
737 bb->index, bb->loop_father->num,
738 bb_loop_depth (bb));
739 fallthru_count.dump (dump_file);
740 fprintf (dump_file, " branch ");
741 branch_count.dump (dump_file);
742 if (!bb->loop_father->inner && bb->loop_father->num)
743 fprintf (dump_file, " inner_loop");
744 if (bb->loop_father->header == bb)
745 fprintf (dump_file, " loop_header");
746 fprintf (dump_file, "\n");
748 if (!fallthru_count.initialized_p () || !branch_count.initialized_p ())
749 continue;
751 /* There are two purposes to align block with no fallthru incoming edge:
752 1) to avoid fetch stalls when branch destination is near cache boundary
753 2) to improve cache efficiency in case the previous block is not executed
754 (so it does not need to be in the cache).
756 We to catch first case, we align frequently executed blocks.
757 To catch the second, we align blocks that are executed more frequently
758 than the predecessor and the predecessor is likely to not be executed
759 when function is called. */
761 if (!has_fallthru
762 && (branch_count > count_threshold
763 || (bb->count > bb->prev_bb->count.apply_scale (10, 1)
764 && (bb->prev_bb->count
765 <= ENTRY_BLOCK_PTR_FOR_FN (cfun)
766 ->count.apply_scale (1, 2)))))
768 log = JUMP_ALIGN (label);
769 if (dump_file)
770 fprintf (dump_file, " jump alignment added.\n");
771 if (max_log < log)
773 max_log = log;
774 max_skip = targetm.asm_out.jump_align_max_skip (label);
777 /* In case block is frequent and reached mostly by non-fallthru edge,
778 align it. It is most likely a first block of loop. */
779 if (has_fallthru
780 && !(single_succ_p (bb)
781 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
782 && optimize_bb_for_speed_p (bb)
783 && branch_count + fallthru_count > count_threshold
784 && (branch_count
785 > fallthru_count.apply_scale
786 (PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS), 1)))
788 log = LOOP_ALIGN (label);
789 if (dump_file)
790 fprintf (dump_file, " internal loop alignment added.\n");
791 if (max_log < log)
793 max_log = log;
794 max_skip = targetm.asm_out.loop_align_max_skip (label);
797 LABEL_TO_ALIGNMENT (label) = max_log;
798 LABEL_TO_MAX_SKIP (label) = max_skip;
801 loop_optimizer_finalize ();
802 free_dominance_info (CDI_DOMINATORS);
803 return 0;
806 /* Grow the LABEL_ALIGN array after new labels are created. */
808 static void
809 grow_label_align (void)
811 int old = max_labelno;
812 int n_labels;
813 int n_old_labels;
815 max_labelno = max_label_num ();
817 n_labels = max_labelno - min_labelno + 1;
818 n_old_labels = old - min_labelno + 1;
820 label_align = XRESIZEVEC (struct label_alignment, label_align, n_labels);
822 /* Range of labels grows monotonically in the function. Failing here
823 means that the initialization of array got lost. */
824 gcc_assert (n_old_labels <= n_labels);
826 memset (label_align + n_old_labels, 0,
827 (n_labels - n_old_labels) * sizeof (struct label_alignment));
830 /* Update the already computed alignment information. LABEL_PAIRS is a vector
831 made up of pairs of labels for which the alignment information of the first
832 element will be copied from that of the second element. */
834 void
835 update_alignments (vec<rtx> &label_pairs)
837 unsigned int i = 0;
838 rtx iter, label = NULL_RTX;
840 if (max_labelno != max_label_num ())
841 grow_label_align ();
843 FOR_EACH_VEC_ELT (label_pairs, i, iter)
844 if (i & 1)
846 LABEL_TO_ALIGNMENT (label) = LABEL_TO_ALIGNMENT (iter);
847 LABEL_TO_MAX_SKIP (label) = LABEL_TO_MAX_SKIP (iter);
849 else
850 label = iter;
853 namespace {
855 const pass_data pass_data_compute_alignments =
857 RTL_PASS, /* type */
858 "alignments", /* name */
859 OPTGROUP_NONE, /* optinfo_flags */
860 TV_NONE, /* tv_id */
861 0, /* properties_required */
862 0, /* properties_provided */
863 0, /* properties_destroyed */
864 0, /* todo_flags_start */
865 0, /* todo_flags_finish */
868 class pass_compute_alignments : public rtl_opt_pass
870 public:
871 pass_compute_alignments (gcc::context *ctxt)
872 : rtl_opt_pass (pass_data_compute_alignments, ctxt)
875 /* opt_pass methods: */
876 virtual unsigned int execute (function *) { return compute_alignments (); }
878 }; // class pass_compute_alignments
880 } // anon namespace
882 rtl_opt_pass *
883 make_pass_compute_alignments (gcc::context *ctxt)
885 return new pass_compute_alignments (ctxt);
889 /* Make a pass over all insns and compute their actual lengths by shortening
890 any branches of variable length if possible. */
892 /* shorten_branches might be called multiple times: for example, the SH
893 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
894 In order to do this, it needs proper length information, which it obtains
895 by calling shorten_branches. This cannot be collapsed with
896 shorten_branches itself into a single pass unless we also want to integrate
897 reorg.c, since the branch splitting exposes new instructions with delay
898 slots. */
900 void
901 shorten_branches (rtx_insn *first)
903 rtx_insn *insn;
904 int max_uid;
905 int i;
906 int max_log;
907 int max_skip;
908 #define MAX_CODE_ALIGN 16
909 rtx_insn *seq;
910 int something_changed = 1;
911 char *varying_length;
912 rtx body;
913 int uid;
914 rtx align_tab[MAX_CODE_ALIGN + 1];
916 /* Compute maximum UID and allocate label_align / uid_shuid. */
917 max_uid = get_max_uid ();
919 /* Free uid_shuid before reallocating it. */
920 free (uid_shuid);
922 uid_shuid = XNEWVEC (int, max_uid);
924 if (max_labelno != max_label_num ())
925 grow_label_align ();
927 /* Initialize label_align and set up uid_shuid to be strictly
928 monotonically rising with insn order. */
929 /* We use max_log here to keep track of the maximum alignment we want to
930 impose on the next CODE_LABEL (or the current one if we are processing
931 the CODE_LABEL itself). */
933 max_log = 0;
934 max_skip = 0;
936 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
938 int log;
940 INSN_SHUID (insn) = i++;
941 if (INSN_P (insn))
942 continue;
944 if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn))
946 /* Merge in alignments computed by compute_alignments. */
947 log = LABEL_TO_ALIGNMENT (label);
948 if (max_log < log)
950 max_log = log;
951 max_skip = LABEL_TO_MAX_SKIP (label);
954 rtx_jump_table_data *table = jump_table_for_label (label);
955 if (!table)
957 log = LABEL_ALIGN (label);
958 if (max_log < log)
960 max_log = log;
961 max_skip = targetm.asm_out.label_align_max_skip (label);
964 /* ADDR_VECs only take room if read-only data goes into the text
965 section. */
966 if ((JUMP_TABLES_IN_TEXT_SECTION
967 || readonly_data_section == text_section)
968 && table)
970 log = ADDR_VEC_ALIGN (table);
971 if (max_log < log)
973 max_log = log;
974 max_skip = targetm.asm_out.label_align_max_skip (label);
977 LABEL_TO_ALIGNMENT (label) = max_log;
978 LABEL_TO_MAX_SKIP (label) = max_skip;
979 max_log = 0;
980 max_skip = 0;
982 else if (BARRIER_P (insn))
984 rtx_insn *label;
986 for (label = insn; label && ! INSN_P (label);
987 label = NEXT_INSN (label))
988 if (LABEL_P (label))
990 log = LABEL_ALIGN_AFTER_BARRIER (insn);
991 if (max_log < log)
993 max_log = log;
994 max_skip = targetm.asm_out.label_align_after_barrier_max_skip (label);
996 break;
1000 if (!HAVE_ATTR_length)
1001 return;
1003 /* Allocate the rest of the arrays. */
1004 insn_lengths = XNEWVEC (int, max_uid);
1005 insn_lengths_max_uid = max_uid;
1006 /* Syntax errors can lead to labels being outside of the main insn stream.
1007 Initialize insn_addresses, so that we get reproducible results. */
1008 INSN_ADDRESSES_ALLOC (max_uid);
1010 varying_length = XCNEWVEC (char, max_uid);
1012 /* Initialize uid_align. We scan instructions
1013 from end to start, and keep in align_tab[n] the last seen insn
1014 that does an alignment of at least n+1, i.e. the successor
1015 in the alignment chain for an insn that does / has a known
1016 alignment of n. */
1017 uid_align = XCNEWVEC (rtx, max_uid);
1019 for (i = MAX_CODE_ALIGN + 1; --i >= 0;)
1020 align_tab[i] = NULL_RTX;
1021 seq = get_last_insn ();
1022 for (; seq; seq = PREV_INSN (seq))
1024 int uid = INSN_UID (seq);
1025 int log;
1026 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
1027 uid_align[uid] = align_tab[0];
1028 if (log)
1030 /* Found an alignment label. */
1031 uid_align[uid] = align_tab[log];
1032 for (i = log - 1; i >= 0; i--)
1033 align_tab[i] = seq;
1037 /* When optimizing, we start assuming minimum length, and keep increasing
1038 lengths as we find the need for this, till nothing changes.
1039 When not optimizing, we start assuming maximum lengths, and
1040 do a single pass to update the lengths. */
1041 bool increasing = optimize != 0;
1043 #ifdef CASE_VECTOR_SHORTEN_MODE
1044 if (optimize)
1046 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1047 label fields. */
1049 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1050 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1051 int rel;
1053 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1055 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1056 int len, i, min, max, insn_shuid;
1057 int min_align;
1058 addr_diff_vec_flags flags;
1060 if (! JUMP_TABLE_DATA_P (insn)
1061 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1062 continue;
1063 pat = PATTERN (insn);
1064 len = XVECLEN (pat, 1);
1065 gcc_assert (len > 0);
1066 min_align = MAX_CODE_ALIGN;
1067 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1069 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1070 int shuid = INSN_SHUID (lab);
1071 if (shuid < min)
1073 min = shuid;
1074 min_lab = lab;
1076 if (shuid > max)
1078 max = shuid;
1079 max_lab = lab;
1081 if (min_align > LABEL_TO_ALIGNMENT (lab))
1082 min_align = LABEL_TO_ALIGNMENT (lab);
1084 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1085 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1086 insn_shuid = INSN_SHUID (insn);
1087 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1088 memset (&flags, 0, sizeof (flags));
1089 flags.min_align = min_align;
1090 flags.base_after_vec = rel > insn_shuid;
1091 flags.min_after_vec = min > insn_shuid;
1092 flags.max_after_vec = max > insn_shuid;
1093 flags.min_after_base = min > rel;
1094 flags.max_after_base = max > rel;
1095 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1097 if (increasing)
1098 PUT_MODE (pat, CASE_VECTOR_SHORTEN_MODE (0, 0, pat));
1101 #endif /* CASE_VECTOR_SHORTEN_MODE */
1103 /* Compute initial lengths, addresses, and varying flags for each insn. */
1104 int (*length_fun) (rtx_insn *) = increasing ? insn_min_length : insn_default_length;
1106 for (insn_current_address = 0, insn = first;
1107 insn != 0;
1108 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1110 uid = INSN_UID (insn);
1112 insn_lengths[uid] = 0;
1114 if (LABEL_P (insn))
1116 int log = LABEL_TO_ALIGNMENT (insn);
1117 if (log)
1119 int align = 1 << log;
1120 int new_address = (insn_current_address + align - 1) & -align;
1121 insn_lengths[uid] = new_address - insn_current_address;
1125 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1127 if (NOTE_P (insn) || BARRIER_P (insn)
1128 || LABEL_P (insn) || DEBUG_INSN_P (insn))
1129 continue;
1130 if (insn->deleted ())
1131 continue;
1133 body = PATTERN (insn);
1134 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
1136 /* This only takes room if read-only data goes into the text
1137 section. */
1138 if (JUMP_TABLES_IN_TEXT_SECTION
1139 || readonly_data_section == text_section)
1140 insn_lengths[uid] = (XVECLEN (body,
1141 GET_CODE (body) == ADDR_DIFF_VEC)
1142 * GET_MODE_SIZE (table->get_data_mode ()));
1143 /* Alignment is handled by ADDR_VEC_ALIGN. */
1145 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1146 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1147 else if (rtx_sequence *body_seq = dyn_cast <rtx_sequence *> (body))
1149 int i;
1150 int const_delay_slots;
1151 if (DELAY_SLOTS)
1152 const_delay_slots = const_num_delay_slots (body_seq->insn (0));
1153 else
1154 const_delay_slots = 0;
1156 int (*inner_length_fun) (rtx_insn *)
1157 = const_delay_slots ? length_fun : insn_default_length;
1158 /* Inside a delay slot sequence, we do not do any branch shortening
1159 if the shortening could change the number of delay slots
1160 of the branch. */
1161 for (i = 0; i < body_seq->len (); i++)
1163 rtx_insn *inner_insn = body_seq->insn (i);
1164 int inner_uid = INSN_UID (inner_insn);
1165 int inner_length;
1167 if (GET_CODE (PATTERN (inner_insn)) == ASM_INPUT
1168 || asm_noperands (PATTERN (inner_insn)) >= 0)
1169 inner_length = (asm_insn_count (PATTERN (inner_insn))
1170 * insn_default_length (inner_insn));
1171 else
1172 inner_length = inner_length_fun (inner_insn);
1174 insn_lengths[inner_uid] = inner_length;
1175 if (const_delay_slots)
1177 if ((varying_length[inner_uid]
1178 = insn_variable_length_p (inner_insn)) != 0)
1179 varying_length[uid] = 1;
1180 INSN_ADDRESSES (inner_uid) = (insn_current_address
1181 + insn_lengths[uid]);
1183 else
1184 varying_length[inner_uid] = 0;
1185 insn_lengths[uid] += inner_length;
1188 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1190 insn_lengths[uid] = length_fun (insn);
1191 varying_length[uid] = insn_variable_length_p (insn);
1194 /* If needed, do any adjustment. */
1195 #ifdef ADJUST_INSN_LENGTH
1196 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1197 if (insn_lengths[uid] < 0)
1198 fatal_insn ("negative insn length", insn);
1199 #endif
1202 /* Now loop over all the insns finding varying length insns. For each,
1203 get the current insn length. If it has changed, reflect the change.
1204 When nothing changes for a full pass, we are done. */
1206 while (something_changed)
1208 something_changed = 0;
1209 insn_current_align = MAX_CODE_ALIGN - 1;
1210 for (insn_current_address = 0, insn = first;
1211 insn != 0;
1212 insn = NEXT_INSN (insn))
1214 int new_length;
1215 #ifdef ADJUST_INSN_LENGTH
1216 int tmp_length;
1217 #endif
1218 int length_align;
1220 uid = INSN_UID (insn);
1222 if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn))
1224 int log = LABEL_TO_ALIGNMENT (label);
1226 #ifdef CASE_VECTOR_SHORTEN_MODE
1227 /* If the mode of a following jump table was changed, we
1228 may need to update the alignment of this label. */
1230 if (JUMP_TABLES_IN_TEXT_SECTION
1231 || readonly_data_section == text_section)
1233 rtx_jump_table_data *table = jump_table_for_label (label);
1234 if (table)
1236 int newlog = ADDR_VEC_ALIGN (table);
1237 if (newlog != log)
1239 log = newlog;
1240 LABEL_TO_ALIGNMENT (insn) = log;
1241 something_changed = 1;
1245 #endif
1247 if (log > insn_current_align)
1249 int align = 1 << log;
1250 int new_address= (insn_current_address + align - 1) & -align;
1251 insn_lengths[uid] = new_address - insn_current_address;
1252 insn_current_align = log;
1253 insn_current_address = new_address;
1255 else
1256 insn_lengths[uid] = 0;
1257 INSN_ADDRESSES (uid) = insn_current_address;
1258 continue;
1261 length_align = INSN_LENGTH_ALIGNMENT (insn);
1262 if (length_align < insn_current_align)
1263 insn_current_align = length_align;
1265 insn_last_address = INSN_ADDRESSES (uid);
1266 INSN_ADDRESSES (uid) = insn_current_address;
1268 #ifdef CASE_VECTOR_SHORTEN_MODE
1269 if (optimize
1270 && JUMP_TABLE_DATA_P (insn)
1271 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1273 rtx_jump_table_data *table = as_a <rtx_jump_table_data *> (insn);
1274 rtx body = PATTERN (insn);
1275 int old_length = insn_lengths[uid];
1276 rtx_insn *rel_lab =
1277 safe_as_a <rtx_insn *> (XEXP (XEXP (body, 0), 0));
1278 rtx min_lab = XEXP (XEXP (body, 2), 0);
1279 rtx max_lab = XEXP (XEXP (body, 3), 0);
1280 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1281 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1282 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1283 rtx_insn *prev;
1284 int rel_align = 0;
1285 addr_diff_vec_flags flags;
1286 scalar_int_mode vec_mode;
1288 /* Avoid automatic aggregate initialization. */
1289 flags = ADDR_DIFF_VEC_FLAGS (body);
1291 /* Try to find a known alignment for rel_lab. */
1292 for (prev = rel_lab;
1293 prev
1294 && ! insn_lengths[INSN_UID (prev)]
1295 && ! (varying_length[INSN_UID (prev)] & 1);
1296 prev = PREV_INSN (prev))
1297 if (varying_length[INSN_UID (prev)] & 2)
1299 rel_align = LABEL_TO_ALIGNMENT (prev);
1300 break;
1303 /* See the comment on addr_diff_vec_flags in rtl.h for the
1304 meaning of the flags values. base: REL_LAB vec: INSN */
1305 /* Anything after INSN has still addresses from the last
1306 pass; adjust these so that they reflect our current
1307 estimate for this pass. */
1308 if (flags.base_after_vec)
1309 rel_addr += insn_current_address - insn_last_address;
1310 if (flags.min_after_vec)
1311 min_addr += insn_current_address - insn_last_address;
1312 if (flags.max_after_vec)
1313 max_addr += insn_current_address - insn_last_address;
1314 /* We want to know the worst case, i.e. lowest possible value
1315 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1316 its offset is positive, and we have to be wary of code shrink;
1317 otherwise, it is negative, and we have to be vary of code
1318 size increase. */
1319 if (flags.min_after_base)
1321 /* If INSN is between REL_LAB and MIN_LAB, the size
1322 changes we are about to make can change the alignment
1323 within the observed offset, therefore we have to break
1324 it up into two parts that are independent. */
1325 if (! flags.base_after_vec && flags.min_after_vec)
1327 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1328 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1330 else
1331 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1333 else
1335 if (flags.base_after_vec && ! flags.min_after_vec)
1337 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1338 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1340 else
1341 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1343 /* Likewise, determine the highest lowest possible value
1344 for the offset of MAX_LAB. */
1345 if (flags.max_after_base)
1347 if (! flags.base_after_vec && flags.max_after_vec)
1349 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1350 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1352 else
1353 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1355 else
1357 if (flags.base_after_vec && ! flags.max_after_vec)
1359 max_addr += align_fuzz (max_lab, insn, 0, 0);
1360 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1362 else
1363 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1365 vec_mode = CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1366 max_addr - rel_addr, body);
1367 if (!increasing
1368 || (GET_MODE_SIZE (vec_mode)
1369 >= GET_MODE_SIZE (table->get_data_mode ())))
1370 PUT_MODE (body, vec_mode);
1371 if (JUMP_TABLES_IN_TEXT_SECTION
1372 || readonly_data_section == text_section)
1374 insn_lengths[uid]
1375 = (XVECLEN (body, 1)
1376 * GET_MODE_SIZE (table->get_data_mode ()));
1377 insn_current_address += insn_lengths[uid];
1378 if (insn_lengths[uid] != old_length)
1379 something_changed = 1;
1382 continue;
1384 #endif /* CASE_VECTOR_SHORTEN_MODE */
1386 if (! (varying_length[uid]))
1388 if (NONJUMP_INSN_P (insn)
1389 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1391 int i;
1393 body = PATTERN (insn);
1394 for (i = 0; i < XVECLEN (body, 0); i++)
1396 rtx inner_insn = XVECEXP (body, 0, i);
1397 int inner_uid = INSN_UID (inner_insn);
1399 INSN_ADDRESSES (inner_uid) = insn_current_address;
1401 insn_current_address += insn_lengths[inner_uid];
1404 else
1405 insn_current_address += insn_lengths[uid];
1407 continue;
1410 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1412 rtx_sequence *seqn = as_a <rtx_sequence *> (PATTERN (insn));
1413 int i;
1415 body = PATTERN (insn);
1416 new_length = 0;
1417 for (i = 0; i < seqn->len (); i++)
1419 rtx_insn *inner_insn = seqn->insn (i);
1420 int inner_uid = INSN_UID (inner_insn);
1421 int inner_length;
1423 INSN_ADDRESSES (inner_uid) = insn_current_address;
1425 /* insn_current_length returns 0 for insns with a
1426 non-varying length. */
1427 if (! varying_length[inner_uid])
1428 inner_length = insn_lengths[inner_uid];
1429 else
1430 inner_length = insn_current_length (inner_insn);
1432 if (inner_length != insn_lengths[inner_uid])
1434 if (!increasing || inner_length > insn_lengths[inner_uid])
1436 insn_lengths[inner_uid] = inner_length;
1437 something_changed = 1;
1439 else
1440 inner_length = insn_lengths[inner_uid];
1442 insn_current_address += inner_length;
1443 new_length += inner_length;
1446 else
1448 new_length = insn_current_length (insn);
1449 insn_current_address += new_length;
1452 #ifdef ADJUST_INSN_LENGTH
1453 /* If needed, do any adjustment. */
1454 tmp_length = new_length;
1455 ADJUST_INSN_LENGTH (insn, new_length);
1456 insn_current_address += (new_length - tmp_length);
1457 #endif
1459 if (new_length != insn_lengths[uid]
1460 && (!increasing || new_length > insn_lengths[uid]))
1462 insn_lengths[uid] = new_length;
1463 something_changed = 1;
1465 else
1466 insn_current_address += insn_lengths[uid] - new_length;
1468 /* For a non-optimizing compile, do only a single pass. */
1469 if (!increasing)
1470 break;
1472 crtl->max_insn_address = insn_current_address;
1473 free (varying_length);
1476 /* Given the body of an INSN known to be generated by an ASM statement, return
1477 the number of machine instructions likely to be generated for this insn.
1478 This is used to compute its length. */
1480 static int
1481 asm_insn_count (rtx body)
1483 const char *templ;
1485 if (GET_CODE (body) == ASM_INPUT)
1486 templ = XSTR (body, 0);
1487 else
1488 templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1490 return asm_str_count (templ);
1493 /* Return the number of machine instructions likely to be generated for the
1494 inline-asm template. */
1496 asm_str_count (const char *templ)
1498 int count = 1;
1500 if (!*templ)
1501 return 0;
1503 for (; *templ; templ++)
1504 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
1505 || *templ == '\n')
1506 count++;
1508 return count;
1511 /* Return true if DWARF2 debug info can be emitted for DECL. */
1513 static bool
1514 dwarf2_debug_info_emitted_p (tree decl)
1516 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1517 return false;
1519 if (DECL_IGNORED_P (decl))
1520 return false;
1522 return true;
1525 /* Return scope resulting from combination of S1 and S2. */
1526 static tree
1527 choose_inner_scope (tree s1, tree s2)
1529 if (!s1)
1530 return s2;
1531 if (!s2)
1532 return s1;
1533 if (BLOCK_NUMBER (s1) > BLOCK_NUMBER (s2))
1534 return s1;
1535 return s2;
1538 /* Emit lexical block notes needed to change scope from S1 to S2. */
1540 static void
1541 change_scope (rtx_insn *orig_insn, tree s1, tree s2)
1543 rtx_insn *insn = orig_insn;
1544 tree com = NULL_TREE;
1545 tree ts1 = s1, ts2 = s2;
1546 tree s;
1548 while (ts1 != ts2)
1550 gcc_assert (ts1 && ts2);
1551 if (BLOCK_NUMBER (ts1) > BLOCK_NUMBER (ts2))
1552 ts1 = BLOCK_SUPERCONTEXT (ts1);
1553 else if (BLOCK_NUMBER (ts1) < BLOCK_NUMBER (ts2))
1554 ts2 = BLOCK_SUPERCONTEXT (ts2);
1555 else
1557 ts1 = BLOCK_SUPERCONTEXT (ts1);
1558 ts2 = BLOCK_SUPERCONTEXT (ts2);
1561 com = ts1;
1563 /* Close scopes. */
1564 s = s1;
1565 while (s != com)
1567 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1568 NOTE_BLOCK (note) = s;
1569 s = BLOCK_SUPERCONTEXT (s);
1572 /* Open scopes. */
1573 s = s2;
1574 while (s != com)
1576 insn = emit_note_before (NOTE_INSN_BLOCK_BEG, insn);
1577 NOTE_BLOCK (insn) = s;
1578 s = BLOCK_SUPERCONTEXT (s);
1582 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1583 on the scope tree and the newly reordered instructions. */
1585 static void
1586 reemit_insn_block_notes (void)
1588 tree cur_block = DECL_INITIAL (cfun->decl);
1589 rtx_insn *insn;
1591 insn = get_insns ();
1592 for (; insn; insn = NEXT_INSN (insn))
1594 tree this_block;
1596 /* Prevent lexical blocks from straddling section boundaries. */
1597 if (NOTE_P (insn))
1598 switch (NOTE_KIND (insn))
1600 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1602 for (tree s = cur_block; s != DECL_INITIAL (cfun->decl);
1603 s = BLOCK_SUPERCONTEXT (s))
1605 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1606 NOTE_BLOCK (note) = s;
1607 note = emit_note_after (NOTE_INSN_BLOCK_BEG, insn);
1608 NOTE_BLOCK (note) = s;
1611 break;
1613 case NOTE_INSN_BEGIN_STMT:
1614 case NOTE_INSN_INLINE_ENTRY:
1615 this_block = LOCATION_BLOCK (NOTE_MARKER_LOCATION (insn));
1616 goto set_cur_block_to_this_block;
1618 default:
1619 continue;
1622 if (!active_insn_p (insn))
1623 continue;
1625 /* Avoid putting scope notes between jump table and its label. */
1626 if (JUMP_TABLE_DATA_P (insn))
1627 continue;
1629 this_block = insn_scope (insn);
1630 /* For sequences compute scope resulting from merging all scopes
1631 of instructions nested inside. */
1632 if (rtx_sequence *body = dyn_cast <rtx_sequence *> (PATTERN (insn)))
1634 int i;
1636 this_block = NULL;
1637 for (i = 0; i < body->len (); i++)
1638 this_block = choose_inner_scope (this_block,
1639 insn_scope (body->insn (i)));
1641 set_cur_block_to_this_block:
1642 if (! this_block)
1644 if (INSN_LOCATION (insn) == UNKNOWN_LOCATION)
1645 continue;
1646 else
1647 this_block = DECL_INITIAL (cfun->decl);
1650 if (this_block != cur_block)
1652 change_scope (insn, cur_block, this_block);
1653 cur_block = this_block;
1657 /* change_scope emits before the insn, not after. */
1658 rtx_note *note = emit_note (NOTE_INSN_DELETED);
1659 change_scope (note, cur_block, DECL_INITIAL (cfun->decl));
1660 delete_insn (note);
1662 reorder_blocks ();
1665 static const char *some_local_dynamic_name;
1667 /* Locate some local-dynamic symbol still in use by this function
1668 so that we can print its name in local-dynamic base patterns.
1669 Return null if there are no local-dynamic references. */
1671 const char *
1672 get_some_local_dynamic_name ()
1674 subrtx_iterator::array_type array;
1675 rtx_insn *insn;
1677 if (some_local_dynamic_name)
1678 return some_local_dynamic_name;
1680 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1681 if (NONDEBUG_INSN_P (insn))
1682 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
1684 const_rtx x = *iter;
1685 if (GET_CODE (x) == SYMBOL_REF)
1687 if (SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC)
1688 return some_local_dynamic_name = XSTR (x, 0);
1689 if (CONSTANT_POOL_ADDRESS_P (x))
1690 iter.substitute (get_pool_constant (x));
1694 return 0;
1697 /* Arrange for us to emit a source location note before any further
1698 real insns or section changes, by setting the SEEN_NEXT_VIEW bit in
1699 *SEEN, as long as we are keeping track of location views. The bit
1700 indicates we have referenced the next view at the current PC, so we
1701 have to emit it. This should be called next to the var_location
1702 debug hook. */
1704 static inline void
1705 set_next_view_needed (int *seen)
1707 if (debug_variable_location_views)
1708 *seen |= SEEN_NEXT_VIEW;
1711 /* Clear the flag in *SEEN indicating we need to emit the next view.
1712 This should be called next to the source_line debug hook. */
1714 static inline void
1715 clear_next_view_needed (int *seen)
1717 *seen &= ~SEEN_NEXT_VIEW;
1720 /* Test whether we have a pending request to emit the next view in
1721 *SEEN, and emit it if needed, clearing the request bit. */
1723 static inline void
1724 maybe_output_next_view (int *seen)
1726 if ((*seen & SEEN_NEXT_VIEW) != 0)
1728 clear_next_view_needed (seen);
1729 (*debug_hooks->source_line) (last_linenum, last_columnnum,
1730 last_filename, last_discriminator,
1731 false);
1735 /* We want to emit param bindings (before the first begin_stmt) in the
1736 initial view, if we are emitting views. To that end, we may
1737 consume initial notes in the function, processing them in
1738 final_start_function, before signaling the beginning of the
1739 prologue, rather than in final.
1741 We don't test whether the DECLs are PARM_DECLs: the assumption is
1742 that there will be a NOTE_INSN_BEGIN_STMT marker before any
1743 non-parameter NOTE_INSN_VAR_LOCATION. It's ok if the marker is not
1744 there, we'll just have more variable locations bound in the initial
1745 view, which is consistent with their being bound without any code
1746 that would give them a value. */
1748 static inline bool
1749 in_initial_view_p (rtx_insn *insn)
1751 return (!DECL_IGNORED_P (current_function_decl)
1752 && debug_variable_location_views
1753 && insn && GET_CODE (insn) == NOTE
1754 && (NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
1755 || NOTE_KIND (insn) == NOTE_INSN_DELETED));
1758 /* Output assembler code for the start of a function,
1759 and initialize some of the variables in this file
1760 for the new function. The label for the function and associated
1761 assembler pseudo-ops have already been output in `assemble_start_function'.
1763 FIRST is the first insn of the rtl for the function being compiled.
1764 FILE is the file to write assembler code to.
1765 SEEN should be initially set to zero, and it may be updated to
1766 indicate we have references to the next location view, that would
1767 require us to emit it at the current PC.
1768 OPTIMIZE_P is nonzero if we should eliminate redundant
1769 test and compare insns. */
1771 static void
1772 final_start_function_1 (rtx_insn **firstp, FILE *file, int *seen,
1773 int optimize_p ATTRIBUTE_UNUSED)
1775 block_depth = 0;
1777 this_is_asm_operands = 0;
1779 need_profile_function = false;
1781 last_filename = LOCATION_FILE (prologue_location);
1782 last_linenum = LOCATION_LINE (prologue_location);
1783 last_columnnum = LOCATION_COLUMN (prologue_location);
1784 last_discriminator = discriminator = 0;
1786 high_block_linenum = high_function_linenum = last_linenum;
1788 if (flag_sanitize & SANITIZE_ADDRESS)
1789 asan_function_start ();
1791 rtx_insn *first = *firstp;
1792 if (in_initial_view_p (first))
1796 final_scan_insn (first, file, 0, 0, seen);
1797 first = NEXT_INSN (first);
1799 while (in_initial_view_p (first));
1800 *firstp = first;
1803 if (!DECL_IGNORED_P (current_function_decl))
1804 debug_hooks->begin_prologue (last_linenum, last_columnnum,
1805 last_filename);
1807 if (!dwarf2_debug_info_emitted_p (current_function_decl))
1808 dwarf2out_begin_prologue (0, 0, NULL);
1810 #ifdef LEAF_REG_REMAP
1811 if (crtl->uses_only_leaf_regs)
1812 leaf_renumber_regs (first);
1813 #endif
1815 /* The Sun386i and perhaps other machines don't work right
1816 if the profiling code comes after the prologue. */
1817 if (targetm.profile_before_prologue () && crtl->profile)
1819 if (targetm.asm_out.function_prologue == default_function_pro_epilogue
1820 && targetm.have_prologue ())
1822 rtx_insn *insn;
1823 for (insn = first; insn; insn = NEXT_INSN (insn))
1824 if (!NOTE_P (insn))
1826 insn = NULL;
1827 break;
1829 else if (NOTE_KIND (insn) == NOTE_INSN_BASIC_BLOCK
1830 || NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
1831 break;
1832 else if (NOTE_KIND (insn) == NOTE_INSN_DELETED
1833 || NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
1834 continue;
1835 else
1837 insn = NULL;
1838 break;
1841 if (insn)
1842 need_profile_function = true;
1843 else
1844 profile_function (file);
1846 else
1847 profile_function (file);
1850 /* If debugging, assign block numbers to all of the blocks in this
1851 function. */
1852 if (write_symbols)
1854 reemit_insn_block_notes ();
1855 number_blocks (current_function_decl);
1856 /* We never actually put out begin/end notes for the top-level
1857 block in the function. But, conceptually, that block is
1858 always needed. */
1859 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1862 HOST_WIDE_INT min_frame_size = constant_lower_bound (get_frame_size ());
1863 if (warn_frame_larger_than
1864 && min_frame_size > frame_larger_than_size)
1866 /* Issue a warning */
1867 warning (OPT_Wframe_larger_than_,
1868 "the frame size of %wd bytes is larger than %wd bytes",
1869 min_frame_size, frame_larger_than_size);
1872 /* First output the function prologue: code to set up the stack frame. */
1873 targetm.asm_out.function_prologue (file);
1875 /* If the machine represents the prologue as RTL, the profiling code must
1876 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1877 if (! targetm.have_prologue ())
1878 profile_after_prologue (file);
1881 /* This is an exported final_start_function_1, callable without SEEN. */
1883 void
1884 final_start_function (rtx_insn *first, FILE *file,
1885 int optimize_p ATTRIBUTE_UNUSED)
1887 int seen = 0;
1888 final_start_function_1 (&first, file, &seen, optimize_p);
1889 gcc_assert (seen == 0);
1892 static void
1893 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1895 if (!targetm.profile_before_prologue () && crtl->profile)
1896 profile_function (file);
1899 static void
1900 profile_function (FILE *file ATTRIBUTE_UNUSED)
1902 #ifndef NO_PROFILE_COUNTERS
1903 # define NO_PROFILE_COUNTERS 0
1904 #endif
1905 #ifdef ASM_OUTPUT_REG_PUSH
1906 rtx sval = NULL, chain = NULL;
1908 if (cfun->returns_struct)
1909 sval = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl),
1910 true);
1911 if (cfun->static_chain_decl)
1912 chain = targetm.calls.static_chain (current_function_decl, true);
1913 #endif /* ASM_OUTPUT_REG_PUSH */
1915 if (! NO_PROFILE_COUNTERS)
1917 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1918 switch_to_section (data_section);
1919 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1920 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1921 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1924 switch_to_section (current_function_section ());
1926 #ifdef ASM_OUTPUT_REG_PUSH
1927 if (sval && REG_P (sval))
1928 ASM_OUTPUT_REG_PUSH (file, REGNO (sval));
1929 if (chain && REG_P (chain))
1930 ASM_OUTPUT_REG_PUSH (file, REGNO (chain));
1931 #endif
1933 FUNCTION_PROFILER (file, current_function_funcdef_no);
1935 #ifdef ASM_OUTPUT_REG_PUSH
1936 if (chain && REG_P (chain))
1937 ASM_OUTPUT_REG_POP (file, REGNO (chain));
1938 if (sval && REG_P (sval))
1939 ASM_OUTPUT_REG_POP (file, REGNO (sval));
1940 #endif
1943 /* Output assembler code for the end of a function.
1944 For clarity, args are same as those of `final_start_function'
1945 even though not all of them are needed. */
1947 void
1948 final_end_function (void)
1950 app_disable ();
1952 if (!DECL_IGNORED_P (current_function_decl))
1953 debug_hooks->end_function (high_function_linenum);
1955 /* Finally, output the function epilogue:
1956 code to restore the stack frame and return to the caller. */
1957 targetm.asm_out.function_epilogue (asm_out_file);
1959 /* And debug output. */
1960 if (!DECL_IGNORED_P (current_function_decl))
1961 debug_hooks->end_epilogue (last_linenum, last_filename);
1963 if (!dwarf2_debug_info_emitted_p (current_function_decl)
1964 && dwarf2out_do_frame ())
1965 dwarf2out_end_epilogue (last_linenum, last_filename);
1967 some_local_dynamic_name = 0;
1971 /* Dumper helper for basic block information. FILE is the assembly
1972 output file, and INSN is the instruction being emitted. */
1974 static void
1975 dump_basic_block_info (FILE *file, rtx_insn *insn, basic_block *start_to_bb,
1976 basic_block *end_to_bb, int bb_map_size, int *bb_seqn)
1978 basic_block bb;
1980 if (!flag_debug_asm)
1981 return;
1983 if (INSN_UID (insn) < bb_map_size
1984 && (bb = start_to_bb[INSN_UID (insn)]) != NULL)
1986 edge e;
1987 edge_iterator ei;
1989 fprintf (file, "%s BLOCK %d", ASM_COMMENT_START, bb->index);
1990 if (bb->count.initialized_p ())
1992 fprintf (file, ", count:");
1993 bb->count.dump (file);
1995 fprintf (file, " seq:%d", (*bb_seqn)++);
1996 fprintf (file, "\n%s PRED:", ASM_COMMENT_START);
1997 FOR_EACH_EDGE (e, ei, bb->preds)
1999 dump_edge_info (file, e, TDF_DETAILS, 0);
2001 fprintf (file, "\n");
2003 if (INSN_UID (insn) < bb_map_size
2004 && (bb = end_to_bb[INSN_UID (insn)]) != NULL)
2006 edge e;
2007 edge_iterator ei;
2009 fprintf (asm_out_file, "%s SUCC:", ASM_COMMENT_START);
2010 FOR_EACH_EDGE (e, ei, bb->succs)
2012 dump_edge_info (asm_out_file, e, TDF_DETAILS, 1);
2014 fprintf (file, "\n");
2018 /* Output assembler code for some insns: all or part of a function.
2019 For description of args, see `final_start_function', above. */
2021 static void
2022 final_1 (rtx_insn *first, FILE *file, int seen, int optimize_p)
2024 rtx_insn *insn, *next;
2026 /* Used for -dA dump. */
2027 basic_block *start_to_bb = NULL;
2028 basic_block *end_to_bb = NULL;
2029 int bb_map_size = 0;
2030 int bb_seqn = 0;
2032 last_ignored_compare = 0;
2034 if (HAVE_cc0)
2035 for (insn = first; insn; insn = NEXT_INSN (insn))
2037 /* If CC tracking across branches is enabled, record the insn which
2038 jumps to each branch only reached from one place. */
2039 if (optimize_p && JUMP_P (insn))
2041 rtx lab = JUMP_LABEL (insn);
2042 if (lab && LABEL_P (lab) && LABEL_NUSES (lab) == 1)
2044 LABEL_REFS (lab) = insn;
2049 init_recog ();
2051 CC_STATUS_INIT;
2053 if (flag_debug_asm)
2055 basic_block bb;
2057 bb_map_size = get_max_uid () + 1;
2058 start_to_bb = XCNEWVEC (basic_block, bb_map_size);
2059 end_to_bb = XCNEWVEC (basic_block, bb_map_size);
2061 /* There is no cfg for a thunk. */
2062 if (!cfun->is_thunk)
2063 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2065 start_to_bb[INSN_UID (BB_HEAD (bb))] = bb;
2066 end_to_bb[INSN_UID (BB_END (bb))] = bb;
2070 /* Output the insns. */
2071 for (insn = first; insn;)
2073 if (HAVE_ATTR_length)
2075 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
2077 /* This can be triggered by bugs elsewhere in the compiler if
2078 new insns are created after init_insn_lengths is called. */
2079 gcc_assert (NOTE_P (insn));
2080 insn_current_address = -1;
2082 else
2083 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
2084 /* final can be seen as an iteration of shorten_branches that
2085 does nothing (since a fixed point has already been reached). */
2086 insn_last_address = insn_current_address;
2089 dump_basic_block_info (file, insn, start_to_bb, end_to_bb,
2090 bb_map_size, &bb_seqn);
2091 insn = final_scan_insn (insn, file, optimize_p, 0, &seen);
2094 maybe_output_next_view (&seen);
2096 if (flag_debug_asm)
2098 free (start_to_bb);
2099 free (end_to_bb);
2102 /* Remove CFI notes, to avoid compare-debug failures. */
2103 for (insn = first; insn; insn = next)
2105 next = NEXT_INSN (insn);
2106 if (NOTE_P (insn)
2107 && (NOTE_KIND (insn) == NOTE_INSN_CFI
2108 || NOTE_KIND (insn) == NOTE_INSN_CFI_LABEL))
2109 delete_insn (insn);
2113 /* This is an exported final_1, callable without SEEN. */
2115 void
2116 final (rtx_insn *first, FILE *file, int optimize_p)
2118 /* Those that use the internal final_start_function_1/final_1 API
2119 skip initial debug bind notes in final_start_function_1, and pass
2120 the modified FIRST to final_1. But those that use the public
2121 final_start_function/final APIs, final_start_function can't move
2122 FIRST because it's not passed by reference, so if they were
2123 skipped there, skip them again here. */
2124 while (in_initial_view_p (first))
2125 first = NEXT_INSN (first);
2127 final_1 (first, file, 0, optimize_p);
2130 const char *
2131 get_insn_template (int code, rtx insn)
2133 switch (insn_data[code].output_format)
2135 case INSN_OUTPUT_FORMAT_SINGLE:
2136 return insn_data[code].output.single;
2137 case INSN_OUTPUT_FORMAT_MULTI:
2138 return insn_data[code].output.multi[which_alternative];
2139 case INSN_OUTPUT_FORMAT_FUNCTION:
2140 gcc_assert (insn);
2141 return (*insn_data[code].output.function) (recog_data.operand,
2142 as_a <rtx_insn *> (insn));
2144 default:
2145 gcc_unreachable ();
2149 /* Emit the appropriate declaration for an alternate-entry-point
2150 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
2151 LABEL_KIND != LABEL_NORMAL.
2153 The case fall-through in this function is intentional. */
2154 static void
2155 output_alternate_entry_point (FILE *file, rtx_insn *insn)
2157 const char *name = LABEL_NAME (insn);
2159 switch (LABEL_KIND (insn))
2161 case LABEL_WEAK_ENTRY:
2162 #ifdef ASM_WEAKEN_LABEL
2163 ASM_WEAKEN_LABEL (file, name);
2164 gcc_fallthrough ();
2165 #endif
2166 case LABEL_GLOBAL_ENTRY:
2167 targetm.asm_out.globalize_label (file, name);
2168 gcc_fallthrough ();
2169 case LABEL_STATIC_ENTRY:
2170 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2171 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
2172 #endif
2173 ASM_OUTPUT_LABEL (file, name);
2174 break;
2176 case LABEL_NORMAL:
2177 default:
2178 gcc_unreachable ();
2182 /* Given a CALL_INSN, find and return the nested CALL. */
2183 static rtx
2184 call_from_call_insn (rtx_call_insn *insn)
2186 rtx x;
2187 gcc_assert (CALL_P (insn));
2188 x = PATTERN (insn);
2190 while (GET_CODE (x) != CALL)
2192 switch (GET_CODE (x))
2194 default:
2195 gcc_unreachable ();
2196 case COND_EXEC:
2197 x = COND_EXEC_CODE (x);
2198 break;
2199 case PARALLEL:
2200 x = XVECEXP (x, 0, 0);
2201 break;
2202 case SET:
2203 x = XEXP (x, 1);
2204 break;
2207 return x;
2210 /* Print a comment into the asm showing FILENAME, LINENUM, and the
2211 corresponding source line, if available. */
2213 static void
2214 asm_show_source (const char *filename, int linenum)
2216 if (!filename)
2217 return;
2219 char_span line = location_get_source_line (filename, linenum);
2220 if (!line)
2221 return;
2223 fprintf (asm_out_file, "%s %s:%i: ", ASM_COMMENT_START, filename, linenum);
2224 /* "line" is not 0-terminated, so we must use its length. */
2225 fwrite (line.get_buffer (), 1, line.length (), asm_out_file);
2226 fputc ('\n', asm_out_file);
2229 /* The final scan for one insn, INSN.
2230 Args are same as in `final', except that INSN
2231 is the insn being scanned.
2232 Value returned is the next insn to be scanned.
2234 NOPEEPHOLES is the flag to disallow peephole processing (currently
2235 used for within delayed branch sequence output).
2237 SEEN is used to track the end of the prologue, for emitting
2238 debug information. We force the emission of a line note after
2239 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG. */
2241 static rtx_insn *
2242 final_scan_insn_1 (rtx_insn *insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED,
2243 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
2245 #if HAVE_cc0
2246 rtx set;
2247 #endif
2248 rtx_insn *next;
2249 rtx_jump_table_data *table;
2251 insn_counter++;
2253 /* Ignore deleted insns. These can occur when we split insns (due to a
2254 template of "#") while not optimizing. */
2255 if (insn->deleted ())
2256 return NEXT_INSN (insn);
2258 switch (GET_CODE (insn))
2260 case NOTE:
2261 switch (NOTE_KIND (insn))
2263 case NOTE_INSN_DELETED:
2264 case NOTE_INSN_UPDATE_SJLJ_CONTEXT:
2265 break;
2267 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
2268 maybe_output_next_view (seen);
2270 output_function_exception_table (0);
2272 if (targetm.asm_out.unwind_emit)
2273 targetm.asm_out.unwind_emit (asm_out_file, insn);
2275 in_cold_section_p = !in_cold_section_p;
2277 if (in_cold_section_p)
2278 cold_function_name
2279 = clone_function_name (current_function_decl, "cold");
2281 if (dwarf2out_do_frame ())
2283 dwarf2out_switch_text_section ();
2284 if (!dwarf2_debug_info_emitted_p (current_function_decl)
2285 && !DECL_IGNORED_P (current_function_decl))
2286 debug_hooks->switch_text_section ();
2288 else if (!DECL_IGNORED_P (current_function_decl))
2289 debug_hooks->switch_text_section ();
2291 switch_to_section (current_function_section ());
2292 targetm.asm_out.function_switched_text_sections (asm_out_file,
2293 current_function_decl,
2294 in_cold_section_p);
2295 /* Emit a label for the split cold section. Form label name by
2296 suffixing "cold" to the original function's name. */
2297 if (in_cold_section_p)
2299 #ifdef ASM_DECLARE_COLD_FUNCTION_NAME
2300 ASM_DECLARE_COLD_FUNCTION_NAME (asm_out_file,
2301 IDENTIFIER_POINTER
2302 (cold_function_name),
2303 current_function_decl);
2304 #else
2305 ASM_OUTPUT_LABEL (asm_out_file,
2306 IDENTIFIER_POINTER (cold_function_name));
2307 #endif
2309 break;
2311 case NOTE_INSN_BASIC_BLOCK:
2312 if (need_profile_function)
2314 profile_function (asm_out_file);
2315 need_profile_function = false;
2318 if (targetm.asm_out.unwind_emit)
2319 targetm.asm_out.unwind_emit (asm_out_file, insn);
2321 discriminator = NOTE_BASIC_BLOCK (insn)->discriminator;
2323 break;
2325 case NOTE_INSN_EH_REGION_BEG:
2326 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2327 NOTE_EH_HANDLER (insn));
2328 break;
2330 case NOTE_INSN_EH_REGION_END:
2331 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2332 NOTE_EH_HANDLER (insn));
2333 break;
2335 case NOTE_INSN_PROLOGUE_END:
2336 targetm.asm_out.function_end_prologue (file);
2337 profile_after_prologue (file);
2339 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2341 *seen |= SEEN_EMITTED;
2342 force_source_line = true;
2344 else
2345 *seen |= SEEN_NOTE;
2347 break;
2349 case NOTE_INSN_EPILOGUE_BEG:
2350 if (!DECL_IGNORED_P (current_function_decl))
2351 (*debug_hooks->begin_epilogue) (last_linenum, last_filename);
2352 targetm.asm_out.function_begin_epilogue (file);
2353 break;
2355 case NOTE_INSN_CFI:
2356 dwarf2out_emit_cfi (NOTE_CFI (insn));
2357 break;
2359 case NOTE_INSN_CFI_LABEL:
2360 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LCFI",
2361 NOTE_LABEL_NUMBER (insn));
2362 break;
2364 case NOTE_INSN_FUNCTION_BEG:
2365 if (need_profile_function)
2367 profile_function (asm_out_file);
2368 need_profile_function = false;
2371 app_disable ();
2372 if (!DECL_IGNORED_P (current_function_decl))
2373 debug_hooks->end_prologue (last_linenum, last_filename);
2375 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2377 *seen |= SEEN_EMITTED;
2378 force_source_line = true;
2380 else
2381 *seen |= SEEN_NOTE;
2383 break;
2385 case NOTE_INSN_BLOCK_BEG:
2386 if (debug_info_level == DINFO_LEVEL_NORMAL
2387 || debug_info_level == DINFO_LEVEL_VERBOSE
2388 || write_symbols == DWARF2_DEBUG
2389 || write_symbols == VMS_AND_DWARF2_DEBUG
2390 || write_symbols == VMS_DEBUG)
2392 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2394 app_disable ();
2395 ++block_depth;
2396 high_block_linenum = last_linenum;
2398 /* Output debugging info about the symbol-block beginning. */
2399 if (!DECL_IGNORED_P (current_function_decl))
2400 debug_hooks->begin_block (last_linenum, n);
2402 /* Mark this block as output. */
2403 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2404 BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn)) = in_cold_section_p;
2406 if (write_symbols == DBX_DEBUG)
2408 location_t *locus_ptr
2409 = block_nonartificial_location (NOTE_BLOCK (insn));
2411 if (locus_ptr != NULL)
2413 override_filename = LOCATION_FILE (*locus_ptr);
2414 override_linenum = LOCATION_LINE (*locus_ptr);
2415 override_columnnum = LOCATION_COLUMN (*locus_ptr);
2418 break;
2420 case NOTE_INSN_BLOCK_END:
2421 maybe_output_next_view (seen);
2423 if (debug_info_level == DINFO_LEVEL_NORMAL
2424 || debug_info_level == DINFO_LEVEL_VERBOSE
2425 || write_symbols == DWARF2_DEBUG
2426 || write_symbols == VMS_AND_DWARF2_DEBUG
2427 || write_symbols == VMS_DEBUG)
2429 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2431 app_disable ();
2433 /* End of a symbol-block. */
2434 --block_depth;
2435 gcc_assert (block_depth >= 0);
2437 if (!DECL_IGNORED_P (current_function_decl))
2438 debug_hooks->end_block (high_block_linenum, n);
2439 gcc_assert (BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn))
2440 == in_cold_section_p);
2442 if (write_symbols == DBX_DEBUG)
2444 tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
2445 location_t *locus_ptr
2446 = block_nonartificial_location (outer_block);
2448 if (locus_ptr != NULL)
2450 override_filename = LOCATION_FILE (*locus_ptr);
2451 override_linenum = LOCATION_LINE (*locus_ptr);
2452 override_columnnum = LOCATION_COLUMN (*locus_ptr);
2454 else
2456 override_filename = NULL;
2457 override_linenum = 0;
2458 override_columnnum = 0;
2461 break;
2463 case NOTE_INSN_DELETED_LABEL:
2464 /* Emit the label. We may have deleted the CODE_LABEL because
2465 the label could be proved to be unreachable, though still
2466 referenced (in the form of having its address taken. */
2467 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2468 break;
2470 case NOTE_INSN_DELETED_DEBUG_LABEL:
2471 /* Similarly, but need to use different namespace for it. */
2472 if (CODE_LABEL_NUMBER (insn) != -1)
2473 ASM_OUTPUT_DEBUG_LABEL (file, "LDL", CODE_LABEL_NUMBER (insn));
2474 break;
2476 case NOTE_INSN_VAR_LOCATION:
2477 if (!DECL_IGNORED_P (current_function_decl))
2479 debug_hooks->var_location (insn);
2480 set_next_view_needed (seen);
2482 break;
2484 case NOTE_INSN_BEGIN_STMT:
2485 gcc_checking_assert (cfun->debug_nonbind_markers);
2486 if (!DECL_IGNORED_P (current_function_decl)
2487 && notice_source_line (insn, NULL))
2489 output_source_line:
2490 (*debug_hooks->source_line) (last_linenum, last_columnnum,
2491 last_filename, last_discriminator,
2492 true);
2493 clear_next_view_needed (seen);
2495 break;
2497 case NOTE_INSN_INLINE_ENTRY:
2498 gcc_checking_assert (cfun->debug_nonbind_markers);
2499 if (!DECL_IGNORED_P (current_function_decl))
2501 if (!notice_source_line (insn, NULL))
2502 break;
2503 (*debug_hooks->inline_entry) (LOCATION_BLOCK
2504 (NOTE_MARKER_LOCATION (insn)));
2505 goto output_source_line;
2507 break;
2509 default:
2510 gcc_unreachable ();
2511 break;
2513 break;
2515 case BARRIER:
2516 break;
2518 case CODE_LABEL:
2519 /* The target port might emit labels in the output function for
2520 some insn, e.g. sh.c output_branchy_insn. */
2521 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2523 int align = LABEL_TO_ALIGNMENT (insn);
2524 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2525 int max_skip = LABEL_TO_MAX_SKIP (insn);
2526 #endif
2528 if (align && NEXT_INSN (insn))
2530 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2531 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2532 #else
2533 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2534 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
2535 #else
2536 ASM_OUTPUT_ALIGN (file, align);
2537 #endif
2538 #endif
2541 CC_STATUS_INIT;
2543 if (!DECL_IGNORED_P (current_function_decl) && LABEL_NAME (insn))
2544 debug_hooks->label (as_a <rtx_code_label *> (insn));
2546 app_disable ();
2548 /* If this label is followed by a jump-table, make sure we put
2549 the label in the read-only section. Also possibly write the
2550 label and jump table together. */
2551 table = jump_table_for_label (as_a <rtx_code_label *> (insn));
2552 if (table)
2554 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2555 /* In this case, the case vector is being moved by the
2556 target, so don't output the label at all. Leave that
2557 to the back end macros. */
2558 #else
2559 if (! JUMP_TABLES_IN_TEXT_SECTION)
2561 int log_align;
2563 switch_to_section (targetm.asm_out.function_rodata_section
2564 (current_function_decl));
2566 #ifdef ADDR_VEC_ALIGN
2567 log_align = ADDR_VEC_ALIGN (table);
2568 #else
2569 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2570 #endif
2571 ASM_OUTPUT_ALIGN (file, log_align);
2573 else
2574 switch_to_section (current_function_section ());
2576 #ifdef ASM_OUTPUT_CASE_LABEL
2577 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn), table);
2578 #else
2579 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2580 #endif
2581 #endif
2582 break;
2584 if (LABEL_ALT_ENTRY_P (insn))
2585 output_alternate_entry_point (file, insn);
2586 else
2587 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2588 break;
2590 default:
2592 rtx body = PATTERN (insn);
2593 int insn_code_number;
2594 const char *templ;
2595 bool is_stmt, *is_stmt_p;
2597 if (MAY_HAVE_DEBUG_MARKER_INSNS && cfun->debug_nonbind_markers)
2599 is_stmt = false;
2600 is_stmt_p = NULL;
2602 else
2603 is_stmt_p = &is_stmt;
2605 /* Reset this early so it is correct for ASM statements. */
2606 current_insn_predicate = NULL_RTX;
2608 /* An INSN, JUMP_INSN or CALL_INSN.
2609 First check for special kinds that recog doesn't recognize. */
2611 if (GET_CODE (body) == USE /* These are just declarations. */
2612 || GET_CODE (body) == CLOBBER)
2613 break;
2615 #if HAVE_cc0
2617 /* If there is a REG_CC_SETTER note on this insn, it means that
2618 the setting of the condition code was done in the delay slot
2619 of the insn that branched here. So recover the cc status
2620 from the insn that set it. */
2622 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2623 if (note)
2625 rtx_insn *other = as_a <rtx_insn *> (XEXP (note, 0));
2626 NOTICE_UPDATE_CC (PATTERN (other), other);
2627 cc_prev_status = cc_status;
2630 #endif
2632 /* Detect insns that are really jump-tables
2633 and output them as such. */
2635 if (JUMP_TABLE_DATA_P (insn))
2637 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2638 int vlen, idx;
2639 #endif
2641 if (! JUMP_TABLES_IN_TEXT_SECTION)
2642 switch_to_section (targetm.asm_out.function_rodata_section
2643 (current_function_decl));
2644 else
2645 switch_to_section (current_function_section ());
2647 app_disable ();
2649 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2650 if (GET_CODE (body) == ADDR_VEC)
2652 #ifdef ASM_OUTPUT_ADDR_VEC
2653 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2654 #else
2655 gcc_unreachable ();
2656 #endif
2658 else
2660 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2661 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2662 #else
2663 gcc_unreachable ();
2664 #endif
2666 #else
2667 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2668 for (idx = 0; idx < vlen; idx++)
2670 if (GET_CODE (body) == ADDR_VEC)
2672 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2673 ASM_OUTPUT_ADDR_VEC_ELT
2674 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2675 #else
2676 gcc_unreachable ();
2677 #endif
2679 else
2681 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2682 ASM_OUTPUT_ADDR_DIFF_ELT
2683 (file,
2684 body,
2685 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2686 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2687 #else
2688 gcc_unreachable ();
2689 #endif
2692 #ifdef ASM_OUTPUT_CASE_END
2693 ASM_OUTPUT_CASE_END (file,
2694 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2695 insn);
2696 #endif
2697 #endif
2699 switch_to_section (current_function_section ());
2701 if (debug_variable_location_views
2702 && !DECL_IGNORED_P (current_function_decl))
2703 debug_hooks->var_location (insn);
2705 break;
2707 /* Output this line note if it is the first or the last line
2708 note in a row. */
2709 if (!DECL_IGNORED_P (current_function_decl)
2710 && notice_source_line (insn, is_stmt_p))
2712 if (flag_verbose_asm)
2713 asm_show_source (last_filename, last_linenum);
2714 (*debug_hooks->source_line) (last_linenum, last_columnnum,
2715 last_filename, last_discriminator,
2716 is_stmt);
2717 clear_next_view_needed (seen);
2719 else
2720 maybe_output_next_view (seen);
2722 gcc_checking_assert (!DEBUG_INSN_P (insn));
2724 if (GET_CODE (body) == PARALLEL
2725 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
2726 body = XVECEXP (body, 0, 0);
2728 if (GET_CODE (body) == ASM_INPUT)
2730 const char *string = XSTR (body, 0);
2732 /* There's no telling what that did to the condition codes. */
2733 CC_STATUS_INIT;
2735 if (string[0])
2737 expanded_location loc;
2739 app_enable ();
2740 loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2741 if (*loc.file && loc.line)
2742 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2743 ASM_COMMENT_START, loc.line, loc.file);
2744 fprintf (asm_out_file, "\t%s\n", string);
2745 #if HAVE_AS_LINE_ZERO
2746 if (*loc.file && loc.line)
2747 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2748 #endif
2750 break;
2753 /* Detect `asm' construct with operands. */
2754 if (asm_noperands (body) >= 0)
2756 unsigned int noperands = asm_noperands (body);
2757 rtx *ops = XALLOCAVEC (rtx, noperands);
2758 const char *string;
2759 location_t loc;
2760 expanded_location expanded;
2762 /* There's no telling what that did to the condition codes. */
2763 CC_STATUS_INIT;
2765 /* Get out the operand values. */
2766 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2767 /* Inhibit dying on what would otherwise be compiler bugs. */
2768 insn_noperands = noperands;
2769 this_is_asm_operands = insn;
2770 expanded = expand_location (loc);
2772 #ifdef FINAL_PRESCAN_INSN
2773 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2774 #endif
2776 /* Output the insn using them. */
2777 if (string[0])
2779 app_enable ();
2780 if (expanded.file && expanded.line)
2781 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2782 ASM_COMMENT_START, expanded.line, expanded.file);
2783 output_asm_insn (string, ops);
2784 #if HAVE_AS_LINE_ZERO
2785 if (expanded.file && expanded.line)
2786 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2787 #endif
2790 if (targetm.asm_out.final_postscan_insn)
2791 targetm.asm_out.final_postscan_insn (file, insn, ops,
2792 insn_noperands);
2794 this_is_asm_operands = 0;
2795 break;
2798 app_disable ();
2800 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
2802 /* A delayed-branch sequence */
2803 int i;
2805 final_sequence = seq;
2807 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2808 force the restoration of a comparison that was previously
2809 thought unnecessary. If that happens, cancel this sequence
2810 and cause that insn to be restored. */
2812 next = final_scan_insn (seq->insn (0), file, 0, 1, seen);
2813 if (next != seq->insn (1))
2815 final_sequence = 0;
2816 return next;
2819 for (i = 1; i < seq->len (); i++)
2821 rtx_insn *insn = seq->insn (i);
2822 rtx_insn *next = NEXT_INSN (insn);
2823 /* We loop in case any instruction in a delay slot gets
2824 split. */
2826 insn = final_scan_insn (insn, file, 0, 1, seen);
2827 while (insn != next);
2829 #ifdef DBR_OUTPUT_SEQEND
2830 DBR_OUTPUT_SEQEND (file);
2831 #endif
2832 final_sequence = 0;
2834 /* If the insn requiring the delay slot was a CALL_INSN, the
2835 insns in the delay slot are actually executed before the
2836 called function. Hence we don't preserve any CC-setting
2837 actions in these insns and the CC must be marked as being
2838 clobbered by the function. */
2839 if (CALL_P (seq->insn (0)))
2841 CC_STATUS_INIT;
2843 break;
2846 /* We have a real machine instruction as rtl. */
2848 body = PATTERN (insn);
2850 #if HAVE_cc0
2851 set = single_set (insn);
2853 /* Check for redundant test and compare instructions
2854 (when the condition codes are already set up as desired).
2855 This is done only when optimizing; if not optimizing,
2856 it should be possible for the user to alter a variable
2857 with the debugger in between statements
2858 and the next statement should reexamine the variable
2859 to compute the condition codes. */
2861 if (optimize_p)
2863 if (set
2864 && GET_CODE (SET_DEST (set)) == CC0
2865 && insn != last_ignored_compare)
2867 rtx src1, src2;
2868 if (GET_CODE (SET_SRC (set)) == SUBREG)
2869 SET_SRC (set) = alter_subreg (&SET_SRC (set), true);
2871 src1 = SET_SRC (set);
2872 src2 = NULL_RTX;
2873 if (GET_CODE (SET_SRC (set)) == COMPARE)
2875 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2876 XEXP (SET_SRC (set), 0)
2877 = alter_subreg (&XEXP (SET_SRC (set), 0), true);
2878 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2879 XEXP (SET_SRC (set), 1)
2880 = alter_subreg (&XEXP (SET_SRC (set), 1), true);
2881 if (XEXP (SET_SRC (set), 1)
2882 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set), 0))))
2883 src2 = XEXP (SET_SRC (set), 0);
2885 if ((cc_status.value1 != 0
2886 && rtx_equal_p (src1, cc_status.value1))
2887 || (cc_status.value2 != 0
2888 && rtx_equal_p (src1, cc_status.value2))
2889 || (src2 != 0 && cc_status.value1 != 0
2890 && rtx_equal_p (src2, cc_status.value1))
2891 || (src2 != 0 && cc_status.value2 != 0
2892 && rtx_equal_p (src2, cc_status.value2)))
2894 /* Don't delete insn if it has an addressing side-effect. */
2895 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2896 /* or if anything in it is volatile. */
2897 && ! volatile_refs_p (PATTERN (insn)))
2899 /* We don't really delete the insn; just ignore it. */
2900 last_ignored_compare = insn;
2901 break;
2907 /* If this is a conditional branch, maybe modify it
2908 if the cc's are in a nonstandard state
2909 so that it accomplishes the same thing that it would
2910 do straightforwardly if the cc's were set up normally. */
2912 if (cc_status.flags != 0
2913 && JUMP_P (insn)
2914 && GET_CODE (body) == SET
2915 && SET_DEST (body) == pc_rtx
2916 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2917 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2918 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2920 /* This function may alter the contents of its argument
2921 and clear some of the cc_status.flags bits.
2922 It may also return 1 meaning condition now always true
2923 or -1 meaning condition now always false
2924 or 2 meaning condition nontrivial but altered. */
2925 int result = alter_cond (XEXP (SET_SRC (body), 0));
2926 /* If condition now has fixed value, replace the IF_THEN_ELSE
2927 with its then-operand or its else-operand. */
2928 if (result == 1)
2929 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2930 if (result == -1)
2931 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2933 /* The jump is now either unconditional or a no-op.
2934 If it has become a no-op, don't try to output it.
2935 (It would not be recognized.) */
2936 if (SET_SRC (body) == pc_rtx)
2938 delete_insn (insn);
2939 break;
2941 else if (ANY_RETURN_P (SET_SRC (body)))
2942 /* Replace (set (pc) (return)) with (return). */
2943 PATTERN (insn) = body = SET_SRC (body);
2945 /* Rerecognize the instruction if it has changed. */
2946 if (result != 0)
2947 INSN_CODE (insn) = -1;
2950 /* If this is a conditional trap, maybe modify it if the cc's
2951 are in a nonstandard state so that it accomplishes the same
2952 thing that it would do straightforwardly if the cc's were
2953 set up normally. */
2954 if (cc_status.flags != 0
2955 && NONJUMP_INSN_P (insn)
2956 && GET_CODE (body) == TRAP_IF
2957 && COMPARISON_P (TRAP_CONDITION (body))
2958 && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2960 /* This function may alter the contents of its argument
2961 and clear some of the cc_status.flags bits.
2962 It may also return 1 meaning condition now always true
2963 or -1 meaning condition now always false
2964 or 2 meaning condition nontrivial but altered. */
2965 int result = alter_cond (TRAP_CONDITION (body));
2967 /* If TRAP_CONDITION has become always false, delete the
2968 instruction. */
2969 if (result == -1)
2971 delete_insn (insn);
2972 break;
2975 /* If TRAP_CONDITION has become always true, replace
2976 TRAP_CONDITION with const_true_rtx. */
2977 if (result == 1)
2978 TRAP_CONDITION (body) = const_true_rtx;
2980 /* Rerecognize the instruction if it has changed. */
2981 if (result != 0)
2982 INSN_CODE (insn) = -1;
2985 /* Make same adjustments to instructions that examine the
2986 condition codes without jumping and instructions that
2987 handle conditional moves (if this machine has either one). */
2989 if (cc_status.flags != 0
2990 && set != 0)
2992 rtx cond_rtx, then_rtx, else_rtx;
2994 if (!JUMP_P (insn)
2995 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2997 cond_rtx = XEXP (SET_SRC (set), 0);
2998 then_rtx = XEXP (SET_SRC (set), 1);
2999 else_rtx = XEXP (SET_SRC (set), 2);
3001 else
3003 cond_rtx = SET_SRC (set);
3004 then_rtx = const_true_rtx;
3005 else_rtx = const0_rtx;
3008 if (COMPARISON_P (cond_rtx)
3009 && XEXP (cond_rtx, 0) == cc0_rtx)
3011 int result;
3012 result = alter_cond (cond_rtx);
3013 if (result == 1)
3014 validate_change (insn, &SET_SRC (set), then_rtx, 0);
3015 else if (result == -1)
3016 validate_change (insn, &SET_SRC (set), else_rtx, 0);
3017 else if (result == 2)
3018 INSN_CODE (insn) = -1;
3019 if (SET_DEST (set) == SET_SRC (set))
3020 delete_insn (insn);
3024 #endif
3026 /* Do machine-specific peephole optimizations if desired. */
3028 if (HAVE_peephole && optimize_p && !flag_no_peephole && !nopeepholes)
3030 rtx_insn *next = peephole (insn);
3031 /* When peepholing, if there were notes within the peephole,
3032 emit them before the peephole. */
3033 if (next != 0 && next != NEXT_INSN (insn))
3035 rtx_insn *note, *prev = PREV_INSN (insn);
3037 for (note = NEXT_INSN (insn); note != next;
3038 note = NEXT_INSN (note))
3039 final_scan_insn (note, file, optimize_p, nopeepholes, seen);
3041 /* Put the notes in the proper position for a later
3042 rescan. For example, the SH target can do this
3043 when generating a far jump in a delayed branch
3044 sequence. */
3045 note = NEXT_INSN (insn);
3046 SET_PREV_INSN (note) = prev;
3047 SET_NEXT_INSN (prev) = note;
3048 SET_NEXT_INSN (PREV_INSN (next)) = insn;
3049 SET_PREV_INSN (insn) = PREV_INSN (next);
3050 SET_NEXT_INSN (insn) = next;
3051 SET_PREV_INSN (next) = insn;
3054 /* PEEPHOLE might have changed this. */
3055 body = PATTERN (insn);
3058 /* Try to recognize the instruction.
3059 If successful, verify that the operands satisfy the
3060 constraints for the instruction. Crash if they don't,
3061 since `reload' should have changed them so that they do. */
3063 insn_code_number = recog_memoized (insn);
3064 cleanup_subreg_operands (insn);
3066 /* Dump the insn in the assembly for debugging (-dAP).
3067 If the final dump is requested as slim RTL, dump slim
3068 RTL to the assembly file also. */
3069 if (flag_dump_rtl_in_asm)
3071 print_rtx_head = ASM_COMMENT_START;
3072 if (! (dump_flags & TDF_SLIM))
3073 print_rtl_single (asm_out_file, insn);
3074 else
3075 dump_insn_slim (asm_out_file, insn);
3076 print_rtx_head = "";
3079 if (! constrain_operands_cached (insn, 1))
3080 fatal_insn_not_found (insn);
3082 /* Some target machines need to prescan each insn before
3083 it is output. */
3085 #ifdef FINAL_PRESCAN_INSN
3086 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
3087 #endif
3089 if (targetm.have_conditional_execution ()
3090 && GET_CODE (PATTERN (insn)) == COND_EXEC)
3091 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
3093 #if HAVE_cc0
3094 cc_prev_status = cc_status;
3096 /* Update `cc_status' for this instruction.
3097 The instruction's output routine may change it further.
3098 If the output routine for a jump insn needs to depend
3099 on the cc status, it should look at cc_prev_status. */
3101 NOTICE_UPDATE_CC (body, insn);
3102 #endif
3104 current_output_insn = debug_insn = insn;
3106 /* Find the proper template for this insn. */
3107 templ = get_insn_template (insn_code_number, insn);
3109 /* If the C code returns 0, it means that it is a jump insn
3110 which follows a deleted test insn, and that test insn
3111 needs to be reinserted. */
3112 if (templ == 0)
3114 rtx_insn *prev;
3116 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
3118 /* We have already processed the notes between the setter and
3119 the user. Make sure we don't process them again, this is
3120 particularly important if one of the notes is a block
3121 scope note or an EH note. */
3122 for (prev = insn;
3123 prev != last_ignored_compare;
3124 prev = PREV_INSN (prev))
3126 if (NOTE_P (prev))
3127 delete_insn (prev); /* Use delete_note. */
3130 return prev;
3133 /* If the template is the string "#", it means that this insn must
3134 be split. */
3135 if (templ[0] == '#' && templ[1] == '\0')
3137 rtx_insn *new_rtx = try_split (body, insn, 0);
3139 /* If we didn't split the insn, go away. */
3140 if (new_rtx == insn && PATTERN (new_rtx) == body)
3141 fatal_insn ("could not split insn", insn);
3143 /* If we have a length attribute, this instruction should have
3144 been split in shorten_branches, to ensure that we would have
3145 valid length info for the splitees. */
3146 gcc_assert (!HAVE_ATTR_length);
3148 return new_rtx;
3151 /* ??? This will put the directives in the wrong place if
3152 get_insn_template outputs assembly directly. However calling it
3153 before get_insn_template breaks if the insns is split. */
3154 if (targetm.asm_out.unwind_emit_before_insn
3155 && targetm.asm_out.unwind_emit)
3156 targetm.asm_out.unwind_emit (asm_out_file, insn);
3158 rtx_call_insn *call_insn = dyn_cast <rtx_call_insn *> (insn);
3159 if (call_insn != NULL)
3161 rtx x = call_from_call_insn (call_insn);
3162 x = XEXP (x, 0);
3163 if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3165 tree t;
3166 x = XEXP (x, 0);
3167 t = SYMBOL_REF_DECL (x);
3168 if (t)
3169 assemble_external (t);
3173 /* Output assembler code from the template. */
3174 output_asm_insn (templ, recog_data.operand);
3176 /* Some target machines need to postscan each insn after
3177 it is output. */
3178 if (targetm.asm_out.final_postscan_insn)
3179 targetm.asm_out.final_postscan_insn (file, insn, recog_data.operand,
3180 recog_data.n_operands);
3182 if (!targetm.asm_out.unwind_emit_before_insn
3183 && targetm.asm_out.unwind_emit)
3184 targetm.asm_out.unwind_emit (asm_out_file, insn);
3186 /* Let the debug info back-end know about this call. We do this only
3187 after the instruction has been emitted because labels that may be
3188 created to reference the call instruction must appear after it. */
3189 if ((debug_variable_location_views || call_insn != NULL)
3190 && !DECL_IGNORED_P (current_function_decl))
3191 debug_hooks->var_location (insn);
3193 current_output_insn = debug_insn = 0;
3196 return NEXT_INSN (insn);
3199 /* This is a wrapper around final_scan_insn_1 that allows ports to
3200 call it recursively without a known value for SEEN. The value is
3201 saved at the outermost call, and recovered for recursive calls.
3202 Recursive calls MUST pass NULL, or the same pointer if they can
3203 otherwise get to it. */
3205 rtx_insn *
3206 final_scan_insn (rtx_insn *insn, FILE *file, int optimize_p,
3207 int nopeepholes, int *seen)
3209 static int *enclosing_seen;
3210 static int recursion_counter;
3212 gcc_assert (seen || recursion_counter);
3213 gcc_assert (!recursion_counter || !seen || seen == enclosing_seen);
3215 if (!recursion_counter++)
3216 enclosing_seen = seen;
3217 else if (!seen)
3218 seen = enclosing_seen;
3220 rtx_insn *ret = final_scan_insn_1 (insn, file, optimize_p, nopeepholes, seen);
3222 if (!--recursion_counter)
3223 enclosing_seen = NULL;
3225 return ret;
3229 /* Return whether a source line note needs to be emitted before INSN.
3230 Sets IS_STMT to TRUE if the line should be marked as a possible
3231 breakpoint location. */
3233 static bool
3234 notice_source_line (rtx_insn *insn, bool *is_stmt)
3236 const char *filename;
3237 int linenum, columnnum;
3239 if (NOTE_MARKER_P (insn))
3241 location_t loc = NOTE_MARKER_LOCATION (insn);
3242 /* The inline entry markers (gimple, insn, note) carry the
3243 location of the call, because that's what we want to carry
3244 during compilation, but the location we want to output in
3245 debug information for the inline entry point is the location
3246 of the function itself. */
3247 if (NOTE_KIND (insn) == NOTE_INSN_INLINE_ENTRY)
3249 tree block = LOCATION_BLOCK (loc);
3250 tree fn = block_ultimate_origin (block);
3251 loc = DECL_SOURCE_LOCATION (fn);
3253 expanded_location xloc = expand_location (loc);
3254 if (xloc.line == 0)
3256 gcc_checking_assert (LOCATION_LOCUS (loc) == UNKNOWN_LOCATION
3257 || LOCATION_LOCUS (loc) == BUILTINS_LOCATION);
3258 return false;
3260 filename = xloc.file;
3261 linenum = xloc.line;
3262 columnnum = xloc.column;
3263 force_source_line = true;
3265 else if (override_filename)
3267 filename = override_filename;
3268 linenum = override_linenum;
3269 columnnum = override_columnnum;
3271 else if (INSN_HAS_LOCATION (insn))
3273 expanded_location xloc = insn_location (insn);
3274 filename = xloc.file;
3275 linenum = xloc.line;
3276 columnnum = xloc.column;
3278 else
3280 filename = NULL;
3281 linenum = 0;
3282 columnnum = 0;
3285 if (filename == NULL)
3286 return false;
3288 if (force_source_line
3289 || filename != last_filename
3290 || last_linenum != linenum
3291 || (debug_column_info && last_columnnum != columnnum))
3293 force_source_line = false;
3294 last_filename = filename;
3295 last_linenum = linenum;
3296 last_columnnum = columnnum;
3297 last_discriminator = discriminator;
3298 if (is_stmt)
3299 *is_stmt = true;
3300 high_block_linenum = MAX (last_linenum, high_block_linenum);
3301 high_function_linenum = MAX (last_linenum, high_function_linenum);
3302 return true;
3305 if (SUPPORTS_DISCRIMINATOR && last_discriminator != discriminator)
3307 /* If the discriminator changed, but the line number did not,
3308 output the line table entry with is_stmt false so the
3309 debugger does not treat this as a breakpoint location. */
3310 last_discriminator = discriminator;
3311 if (is_stmt)
3312 *is_stmt = false;
3313 return true;
3316 return false;
3319 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3320 directly to the desired hard register. */
3322 void
3323 cleanup_subreg_operands (rtx_insn *insn)
3325 int i;
3326 bool changed = false;
3327 extract_insn_cached (insn);
3328 for (i = 0; i < recog_data.n_operands; i++)
3330 /* The following test cannot use recog_data.operand when testing
3331 for a SUBREG: the underlying object might have been changed
3332 already if we are inside a match_operator expression that
3333 matches the else clause. Instead we test the underlying
3334 expression directly. */
3335 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
3337 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i], true);
3338 changed = true;
3340 else if (GET_CODE (recog_data.operand[i]) == PLUS
3341 || GET_CODE (recog_data.operand[i]) == MULT
3342 || MEM_P (recog_data.operand[i]))
3343 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
3346 for (i = 0; i < recog_data.n_dups; i++)
3348 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
3350 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i], true);
3351 changed = true;
3353 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
3354 || GET_CODE (*recog_data.dup_loc[i]) == MULT
3355 || MEM_P (*recog_data.dup_loc[i]))
3356 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
3358 if (changed)
3359 df_insn_rescan (insn);
3362 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3363 the thing it is a subreg of. Do it anyway if FINAL_P. */
3366 alter_subreg (rtx *xp, bool final_p)
3368 rtx x = *xp;
3369 rtx y = SUBREG_REG (x);
3371 /* simplify_subreg does not remove subreg from volatile references.
3372 We are required to. */
3373 if (MEM_P (y))
3375 poly_int64 offset = SUBREG_BYTE (x);
3377 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3378 contains 0 instead of the proper offset. See simplify_subreg. */
3379 if (paradoxical_subreg_p (x))
3380 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3382 if (final_p)
3383 *xp = adjust_address (y, GET_MODE (x), offset);
3384 else
3385 *xp = adjust_address_nv (y, GET_MODE (x), offset);
3387 else if (REG_P (y) && HARD_REGISTER_P (y))
3389 rtx new_rtx = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
3390 SUBREG_BYTE (x));
3392 if (new_rtx != 0)
3393 *xp = new_rtx;
3394 else if (final_p && REG_P (y))
3396 /* Simplify_subreg can't handle some REG cases, but we have to. */
3397 unsigned int regno;
3398 poly_int64 offset;
3400 regno = subreg_regno (x);
3401 if (subreg_lowpart_p (x))
3402 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3403 else
3404 offset = SUBREG_BYTE (x);
3405 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
3409 return *xp;
3412 /* Do alter_subreg on all the SUBREGs contained in X. */
3414 static rtx
3415 walk_alter_subreg (rtx *xp, bool *changed)
3417 rtx x = *xp;
3418 switch (GET_CODE (x))
3420 case PLUS:
3421 case MULT:
3422 case AND:
3423 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3424 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
3425 break;
3427 case MEM:
3428 case ZERO_EXTEND:
3429 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3430 break;
3432 case SUBREG:
3433 *changed = true;
3434 return alter_subreg (xp, true);
3436 default:
3437 break;
3440 return *xp;
3443 #if HAVE_cc0
3445 /* Given BODY, the body of a jump instruction, alter the jump condition
3446 as required by the bits that are set in cc_status.flags.
3447 Not all of the bits there can be handled at this level in all cases.
3449 The value is normally 0.
3450 1 means that the condition has become always true.
3451 -1 means that the condition has become always false.
3452 2 means that COND has been altered. */
3454 static int
3455 alter_cond (rtx cond)
3457 int value = 0;
3459 if (cc_status.flags & CC_REVERSED)
3461 value = 2;
3462 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3465 if (cc_status.flags & CC_INVERTED)
3467 value = 2;
3468 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3471 if (cc_status.flags & CC_NOT_POSITIVE)
3472 switch (GET_CODE (cond))
3474 case LE:
3475 case LEU:
3476 case GEU:
3477 /* Jump becomes unconditional. */
3478 return 1;
3480 case GT:
3481 case GTU:
3482 case LTU:
3483 /* Jump becomes no-op. */
3484 return -1;
3486 case GE:
3487 PUT_CODE (cond, EQ);
3488 value = 2;
3489 break;
3491 case LT:
3492 PUT_CODE (cond, NE);
3493 value = 2;
3494 break;
3496 default:
3497 break;
3500 if (cc_status.flags & CC_NOT_NEGATIVE)
3501 switch (GET_CODE (cond))
3503 case GE:
3504 case GEU:
3505 /* Jump becomes unconditional. */
3506 return 1;
3508 case LT:
3509 case LTU:
3510 /* Jump becomes no-op. */
3511 return -1;
3513 case LE:
3514 case LEU:
3515 PUT_CODE (cond, EQ);
3516 value = 2;
3517 break;
3519 case GT:
3520 case GTU:
3521 PUT_CODE (cond, NE);
3522 value = 2;
3523 break;
3525 default:
3526 break;
3529 if (cc_status.flags & CC_NO_OVERFLOW)
3530 switch (GET_CODE (cond))
3532 case GEU:
3533 /* Jump becomes unconditional. */
3534 return 1;
3536 case LEU:
3537 PUT_CODE (cond, EQ);
3538 value = 2;
3539 break;
3541 case GTU:
3542 PUT_CODE (cond, NE);
3543 value = 2;
3544 break;
3546 case LTU:
3547 /* Jump becomes no-op. */
3548 return -1;
3550 default:
3551 break;
3554 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3555 switch (GET_CODE (cond))
3557 default:
3558 gcc_unreachable ();
3560 case NE:
3561 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3562 value = 2;
3563 break;
3565 case EQ:
3566 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3567 value = 2;
3568 break;
3571 if (cc_status.flags & CC_NOT_SIGNED)
3572 /* The flags are valid if signed condition operators are converted
3573 to unsigned. */
3574 switch (GET_CODE (cond))
3576 case LE:
3577 PUT_CODE (cond, LEU);
3578 value = 2;
3579 break;
3581 case LT:
3582 PUT_CODE (cond, LTU);
3583 value = 2;
3584 break;
3586 case GT:
3587 PUT_CODE (cond, GTU);
3588 value = 2;
3589 break;
3591 case GE:
3592 PUT_CODE (cond, GEU);
3593 value = 2;
3594 break;
3596 default:
3597 break;
3600 return value;
3602 #endif
3604 /* Report inconsistency between the assembler template and the operands.
3605 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3607 void
3608 output_operand_lossage (const char *cmsgid, ...)
3610 char *fmt_string;
3611 char *new_message;
3612 const char *pfx_str;
3613 va_list ap;
3615 va_start (ap, cmsgid);
3617 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
3618 fmt_string = xasprintf ("%s%s", pfx_str, _(cmsgid));
3619 new_message = xvasprintf (fmt_string, ap);
3621 if (this_is_asm_operands)
3622 error_for_asm (this_is_asm_operands, "%s", new_message);
3623 else
3624 internal_error ("%s", new_message);
3626 free (fmt_string);
3627 free (new_message);
3628 va_end (ap);
3631 /* Output of assembler code from a template, and its subroutines. */
3633 /* Annotate the assembly with a comment describing the pattern and
3634 alternative used. */
3636 static void
3637 output_asm_name (void)
3639 if (debug_insn)
3641 fprintf (asm_out_file, "\t%s %d\t",
3642 ASM_COMMENT_START, INSN_UID (debug_insn));
3644 fprintf (asm_out_file, "[c=%d",
3645 insn_cost (debug_insn, optimize_insn_for_speed_p ()));
3646 if (HAVE_ATTR_length)
3647 fprintf (asm_out_file, " l=%d",
3648 get_attr_length (debug_insn));
3649 fprintf (asm_out_file, "] ");
3651 int num = INSN_CODE (debug_insn);
3652 fprintf (asm_out_file, "%s", insn_data[num].name);
3653 if (insn_data[num].n_alternatives > 1)
3654 fprintf (asm_out_file, "/%d", which_alternative);
3656 /* Clear this so only the first assembler insn
3657 of any rtl insn will get the special comment for -dp. */
3658 debug_insn = 0;
3662 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3663 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3664 corresponds to the address of the object and 0 if to the object. */
3666 static tree
3667 get_mem_expr_from_op (rtx op, int *paddressp)
3669 tree expr;
3670 int inner_addressp;
3672 *paddressp = 0;
3674 if (REG_P (op))
3675 return REG_EXPR (op);
3676 else if (!MEM_P (op))
3677 return 0;
3679 if (MEM_EXPR (op) != 0)
3680 return MEM_EXPR (op);
3682 /* Otherwise we have an address, so indicate it and look at the address. */
3683 *paddressp = 1;
3684 op = XEXP (op, 0);
3686 /* First check if we have a decl for the address, then look at the right side
3687 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3688 But don't allow the address to itself be indirect. */
3689 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3690 return expr;
3691 else if (GET_CODE (op) == PLUS
3692 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3693 return expr;
3695 while (UNARY_P (op)
3696 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3697 op = XEXP (op, 0);
3699 expr = get_mem_expr_from_op (op, &inner_addressp);
3700 return inner_addressp ? 0 : expr;
3703 /* Output operand names for assembler instructions. OPERANDS is the
3704 operand vector, OPORDER is the order to write the operands, and NOPS
3705 is the number of operands to write. */
3707 static void
3708 output_asm_operand_names (rtx *operands, int *oporder, int nops)
3710 int wrote = 0;
3711 int i;
3713 for (i = 0; i < nops; i++)
3715 int addressp;
3716 rtx op = operands[oporder[i]];
3717 tree expr = get_mem_expr_from_op (op, &addressp);
3719 fprintf (asm_out_file, "%c%s",
3720 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3721 wrote = 1;
3722 if (expr)
3724 fprintf (asm_out_file, "%s",
3725 addressp ? "*" : "");
3726 print_mem_expr (asm_out_file, expr);
3727 wrote = 1;
3729 else if (REG_P (op) && ORIGINAL_REGNO (op)
3730 && ORIGINAL_REGNO (op) != REGNO (op))
3731 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3735 #ifdef ASSEMBLER_DIALECT
3736 /* Helper function to parse assembler dialects in the asm string.
3737 This is called from output_asm_insn and asm_fprintf. */
3738 static const char *
3739 do_assembler_dialects (const char *p, int *dialect)
3741 char c = *(p - 1);
3743 switch (c)
3745 case '{':
3747 int i;
3749 if (*dialect)
3750 output_operand_lossage ("nested assembly dialect alternatives");
3751 else
3752 *dialect = 1;
3754 /* If we want the first dialect, do nothing. Otherwise, skip
3755 DIALECT_NUMBER of strings ending with '|'. */
3756 for (i = 0; i < dialect_number; i++)
3758 while (*p && *p != '}')
3760 if (*p == '|')
3762 p++;
3763 break;
3766 /* Skip over any character after a percent sign. */
3767 if (*p == '%')
3768 p++;
3769 if (*p)
3770 p++;
3773 if (*p == '}')
3774 break;
3777 if (*p == '\0')
3778 output_operand_lossage ("unterminated assembly dialect alternative");
3780 break;
3782 case '|':
3783 if (*dialect)
3785 /* Skip to close brace. */
3788 if (*p == '\0')
3790 output_operand_lossage ("unterminated assembly dialect alternative");
3791 break;
3794 /* Skip over any character after a percent sign. */
3795 if (*p == '%' && p[1])
3797 p += 2;
3798 continue;
3801 if (*p++ == '}')
3802 break;
3804 while (1);
3806 *dialect = 0;
3808 else
3809 putc (c, asm_out_file);
3810 break;
3812 case '}':
3813 if (! *dialect)
3814 putc (c, asm_out_file);
3815 *dialect = 0;
3816 break;
3817 default:
3818 gcc_unreachable ();
3821 return p;
3823 #endif
3825 /* Output text from TEMPLATE to the assembler output file,
3826 obeying %-directions to substitute operands taken from
3827 the vector OPERANDS.
3829 %N (for N a digit) means print operand N in usual manner.
3830 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3831 and print the label name with no punctuation.
3832 %cN means require operand N to be a constant
3833 and print the constant expression with no punctuation.
3834 %aN means expect operand N to be a memory address
3835 (not a memory reference!) and print a reference
3836 to that address.
3837 %nN means expect operand N to be a constant
3838 and print a constant expression for minus the value
3839 of the operand, with no other punctuation. */
3841 void
3842 output_asm_insn (const char *templ, rtx *operands)
3844 const char *p;
3845 int c;
3846 #ifdef ASSEMBLER_DIALECT
3847 int dialect = 0;
3848 #endif
3849 int oporder[MAX_RECOG_OPERANDS];
3850 char opoutput[MAX_RECOG_OPERANDS];
3851 int ops = 0;
3853 /* An insn may return a null string template
3854 in a case where no assembler code is needed. */
3855 if (*templ == 0)
3856 return;
3858 memset (opoutput, 0, sizeof opoutput);
3859 p = templ;
3860 putc ('\t', asm_out_file);
3862 #ifdef ASM_OUTPUT_OPCODE
3863 ASM_OUTPUT_OPCODE (asm_out_file, p);
3864 #endif
3866 while ((c = *p++))
3867 switch (c)
3869 case '\n':
3870 if (flag_verbose_asm)
3871 output_asm_operand_names (operands, oporder, ops);
3872 if (flag_print_asm_name)
3873 output_asm_name ();
3875 ops = 0;
3876 memset (opoutput, 0, sizeof opoutput);
3878 putc (c, asm_out_file);
3879 #ifdef ASM_OUTPUT_OPCODE
3880 while ((c = *p) == '\t')
3882 putc (c, asm_out_file);
3883 p++;
3885 ASM_OUTPUT_OPCODE (asm_out_file, p);
3886 #endif
3887 break;
3889 #ifdef ASSEMBLER_DIALECT
3890 case '{':
3891 case '}':
3892 case '|':
3893 p = do_assembler_dialects (p, &dialect);
3894 break;
3895 #endif
3897 case '%':
3898 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3899 if ASSEMBLER_DIALECT defined and these characters have a special
3900 meaning as dialect delimiters.*/
3901 if (*p == '%'
3902 #ifdef ASSEMBLER_DIALECT
3903 || *p == '{' || *p == '}' || *p == '|'
3904 #endif
3907 putc (*p, asm_out_file);
3908 p++;
3910 /* %= outputs a number which is unique to each insn in the entire
3911 compilation. This is useful for making local labels that are
3912 referred to more than once in a given insn. */
3913 else if (*p == '=')
3915 p++;
3916 fprintf (asm_out_file, "%d", insn_counter);
3918 /* % followed by a letter and some digits
3919 outputs an operand in a special way depending on the letter.
3920 Letters `acln' are implemented directly.
3921 Other letters are passed to `output_operand' so that
3922 the TARGET_PRINT_OPERAND hook can define them. */
3923 else if (ISALPHA (*p))
3925 int letter = *p++;
3926 unsigned long opnum;
3927 char *endptr;
3929 opnum = strtoul (p, &endptr, 10);
3931 if (endptr == p)
3932 output_operand_lossage ("operand number missing "
3933 "after %%-letter");
3934 else if (this_is_asm_operands && opnum >= insn_noperands)
3935 output_operand_lossage ("operand number out of range");
3936 else if (letter == 'l')
3937 output_asm_label (operands[opnum]);
3938 else if (letter == 'a')
3939 output_address (VOIDmode, operands[opnum]);
3940 else if (letter == 'c')
3942 if (CONSTANT_ADDRESS_P (operands[opnum]))
3943 output_addr_const (asm_out_file, operands[opnum]);
3944 else
3945 output_operand (operands[opnum], 'c');
3947 else if (letter == 'n')
3949 if (CONST_INT_P (operands[opnum]))
3950 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3951 - INTVAL (operands[opnum]));
3952 else
3954 putc ('-', asm_out_file);
3955 output_addr_const (asm_out_file, operands[opnum]);
3958 else
3959 output_operand (operands[opnum], letter);
3961 if (!opoutput[opnum])
3962 oporder[ops++] = opnum;
3963 opoutput[opnum] = 1;
3965 p = endptr;
3966 c = *p;
3968 /* % followed by a digit outputs an operand the default way. */
3969 else if (ISDIGIT (*p))
3971 unsigned long opnum;
3972 char *endptr;
3974 opnum = strtoul (p, &endptr, 10);
3975 if (this_is_asm_operands && opnum >= insn_noperands)
3976 output_operand_lossage ("operand number out of range");
3977 else
3978 output_operand (operands[opnum], 0);
3980 if (!opoutput[opnum])
3981 oporder[ops++] = opnum;
3982 opoutput[opnum] = 1;
3984 p = endptr;
3985 c = *p;
3987 /* % followed by punctuation: output something for that
3988 punctuation character alone, with no operand. The
3989 TARGET_PRINT_OPERAND hook decides what is actually done. */
3990 else if (targetm.asm_out.print_operand_punct_valid_p ((unsigned char) *p))
3991 output_operand (NULL_RTX, *p++);
3992 else
3993 output_operand_lossage ("invalid %%-code");
3994 break;
3996 default:
3997 putc (c, asm_out_file);
4000 /* Try to keep the asm a bit more readable. */
4001 if ((flag_verbose_asm || flag_print_asm_name) && strlen (templ) < 9)
4002 putc ('\t', asm_out_file);
4004 /* Write out the variable names for operands, if we know them. */
4005 if (flag_verbose_asm)
4006 output_asm_operand_names (operands, oporder, ops);
4007 if (flag_print_asm_name)
4008 output_asm_name ();
4010 putc ('\n', asm_out_file);
4013 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
4015 void
4016 output_asm_label (rtx x)
4018 char buf[256];
4020 if (GET_CODE (x) == LABEL_REF)
4021 x = label_ref_label (x);
4022 if (LABEL_P (x)
4023 || (NOTE_P (x)
4024 && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
4025 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
4026 else
4027 output_operand_lossage ("'%%l' operand isn't a label");
4029 assemble_name (asm_out_file, buf);
4032 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
4034 void
4035 mark_symbol_refs_as_used (rtx x)
4037 subrtx_iterator::array_type array;
4038 FOR_EACH_SUBRTX (iter, array, x, ALL)
4040 const_rtx x = *iter;
4041 if (GET_CODE (x) == SYMBOL_REF)
4042 if (tree t = SYMBOL_REF_DECL (x))
4043 assemble_external (t);
4047 /* Print operand X using machine-dependent assembler syntax.
4048 CODE is a non-digit that preceded the operand-number in the % spec,
4049 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
4050 between the % and the digits.
4051 When CODE is a non-letter, X is 0.
4053 The meanings of the letters are machine-dependent and controlled
4054 by TARGET_PRINT_OPERAND. */
4056 void
4057 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
4059 if (x && GET_CODE (x) == SUBREG)
4060 x = alter_subreg (&x, true);
4062 /* X must not be a pseudo reg. */
4063 if (!targetm.no_register_allocation)
4064 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
4066 targetm.asm_out.print_operand (asm_out_file, x, code);
4068 if (x == NULL_RTX)
4069 return;
4071 mark_symbol_refs_as_used (x);
4074 /* Print a memory reference operand for address X using
4075 machine-dependent assembler syntax. */
4077 void
4078 output_address (machine_mode mode, rtx x)
4080 bool changed = false;
4081 walk_alter_subreg (&x, &changed);
4082 targetm.asm_out.print_operand_address (asm_out_file, mode, x);
4085 /* Print an integer constant expression in assembler syntax.
4086 Addition and subtraction are the only arithmetic
4087 that may appear in these expressions. */
4089 void
4090 output_addr_const (FILE *file, rtx x)
4092 char buf[256];
4094 restart:
4095 switch (GET_CODE (x))
4097 case PC:
4098 putc ('.', file);
4099 break;
4101 case SYMBOL_REF:
4102 if (SYMBOL_REF_DECL (x))
4103 assemble_external (SYMBOL_REF_DECL (x));
4104 #ifdef ASM_OUTPUT_SYMBOL_REF
4105 ASM_OUTPUT_SYMBOL_REF (file, x);
4106 #else
4107 assemble_name (file, XSTR (x, 0));
4108 #endif
4109 break;
4111 case LABEL_REF:
4112 x = label_ref_label (x);
4113 /* Fall through. */
4114 case CODE_LABEL:
4115 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
4116 #ifdef ASM_OUTPUT_LABEL_REF
4117 ASM_OUTPUT_LABEL_REF (file, buf);
4118 #else
4119 assemble_name (file, buf);
4120 #endif
4121 break;
4123 case CONST_INT:
4124 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
4125 break;
4127 case CONST:
4128 /* This used to output parentheses around the expression,
4129 but that does not work on the 386 (either ATT or BSD assembler). */
4130 output_addr_const (file, XEXP (x, 0));
4131 break;
4133 case CONST_WIDE_INT:
4134 /* We do not know the mode here so we have to use a round about
4135 way to build a wide-int to get it printed properly. */
4137 wide_int w = wide_int::from_array (&CONST_WIDE_INT_ELT (x, 0),
4138 CONST_WIDE_INT_NUNITS (x),
4139 CONST_WIDE_INT_NUNITS (x)
4140 * HOST_BITS_PER_WIDE_INT,
4141 false);
4142 print_decs (w, file);
4144 break;
4146 case CONST_DOUBLE:
4147 if (CONST_DOUBLE_AS_INT_P (x))
4149 /* We can use %d if the number is one word and positive. */
4150 if (CONST_DOUBLE_HIGH (x))
4151 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
4152 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
4153 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
4154 else if (CONST_DOUBLE_LOW (x) < 0)
4155 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
4156 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
4157 else
4158 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
4160 else
4161 /* We can't handle floating point constants;
4162 PRINT_OPERAND must handle them. */
4163 output_operand_lossage ("floating constant misused");
4164 break;
4166 case CONST_FIXED:
4167 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_FIXED_VALUE_LOW (x));
4168 break;
4170 case PLUS:
4171 /* Some assemblers need integer constants to appear last (eg masm). */
4172 if (CONST_INT_P (XEXP (x, 0)))
4174 output_addr_const (file, XEXP (x, 1));
4175 if (INTVAL (XEXP (x, 0)) >= 0)
4176 fprintf (file, "+");
4177 output_addr_const (file, XEXP (x, 0));
4179 else
4181 output_addr_const (file, XEXP (x, 0));
4182 if (!CONST_INT_P (XEXP (x, 1))
4183 || INTVAL (XEXP (x, 1)) >= 0)
4184 fprintf (file, "+");
4185 output_addr_const (file, XEXP (x, 1));
4187 break;
4189 case MINUS:
4190 /* Avoid outputting things like x-x or x+5-x,
4191 since some assemblers can't handle that. */
4192 x = simplify_subtraction (x);
4193 if (GET_CODE (x) != MINUS)
4194 goto restart;
4196 output_addr_const (file, XEXP (x, 0));
4197 fprintf (file, "-");
4198 if ((CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0)
4199 || GET_CODE (XEXP (x, 1)) == PC
4200 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
4201 output_addr_const (file, XEXP (x, 1));
4202 else
4204 fputs (targetm.asm_out.open_paren, file);
4205 output_addr_const (file, XEXP (x, 1));
4206 fputs (targetm.asm_out.close_paren, file);
4208 break;
4210 case ZERO_EXTEND:
4211 case SIGN_EXTEND:
4212 case SUBREG:
4213 case TRUNCATE:
4214 output_addr_const (file, XEXP (x, 0));
4215 break;
4217 default:
4218 if (targetm.asm_out.output_addr_const_extra (file, x))
4219 break;
4221 output_operand_lossage ("invalid expression as operand");
4225 /* Output a quoted string. */
4227 void
4228 output_quoted_string (FILE *asm_file, const char *string)
4230 #ifdef OUTPUT_QUOTED_STRING
4231 OUTPUT_QUOTED_STRING (asm_file, string);
4232 #else
4233 char c;
4235 putc ('\"', asm_file);
4236 while ((c = *string++) != 0)
4238 if (ISPRINT (c))
4240 if (c == '\"' || c == '\\')
4241 putc ('\\', asm_file);
4242 putc (c, asm_file);
4244 else
4245 fprintf (asm_file, "\\%03o", (unsigned char) c);
4247 putc ('\"', asm_file);
4248 #endif
4251 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
4253 void
4254 fprint_whex (FILE *f, unsigned HOST_WIDE_INT value)
4256 char buf[2 + CHAR_BIT * sizeof (value) / 4];
4257 if (value == 0)
4258 putc ('0', f);
4259 else
4261 char *p = buf + sizeof (buf);
4263 *--p = "0123456789abcdef"[value % 16];
4264 while ((value /= 16) != 0);
4265 *--p = 'x';
4266 *--p = '0';
4267 fwrite (p, 1, buf + sizeof (buf) - p, f);
4271 /* Internal function that prints an unsigned long in decimal in reverse.
4272 The output string IS NOT null-terminated. */
4274 static int
4275 sprint_ul_rev (char *s, unsigned long value)
4277 int i = 0;
4280 s[i] = "0123456789"[value % 10];
4281 value /= 10;
4282 i++;
4283 /* alternate version, without modulo */
4284 /* oldval = value; */
4285 /* value /= 10; */
4286 /* s[i] = "0123456789" [oldval - 10*value]; */
4287 /* i++ */
4289 while (value != 0);
4290 return i;
4293 /* Write an unsigned long as decimal to a file, fast. */
4295 void
4296 fprint_ul (FILE *f, unsigned long value)
4298 /* python says: len(str(2**64)) == 20 */
4299 char s[20];
4300 int i;
4302 i = sprint_ul_rev (s, value);
4304 /* It's probably too small to bother with string reversal and fputs. */
4307 i--;
4308 putc (s[i], f);
4310 while (i != 0);
4313 /* Write an unsigned long as decimal to a string, fast.
4314 s must be wide enough to not overflow, at least 21 chars.
4315 Returns the length of the string (without terminating '\0'). */
4318 sprint_ul (char *s, unsigned long value)
4320 int len = sprint_ul_rev (s, value);
4321 s[len] = '\0';
4323 std::reverse (s, s + len);
4324 return len;
4327 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4328 %R prints the value of REGISTER_PREFIX.
4329 %L prints the value of LOCAL_LABEL_PREFIX.
4330 %U prints the value of USER_LABEL_PREFIX.
4331 %I prints the value of IMMEDIATE_PREFIX.
4332 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4333 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4335 We handle alternate assembler dialects here, just like output_asm_insn. */
4337 void
4338 asm_fprintf (FILE *file, const char *p, ...)
4340 char buf[10];
4341 char *q, c;
4342 #ifdef ASSEMBLER_DIALECT
4343 int dialect = 0;
4344 #endif
4345 va_list argptr;
4347 va_start (argptr, p);
4349 buf[0] = '%';
4351 while ((c = *p++))
4352 switch (c)
4354 #ifdef ASSEMBLER_DIALECT
4355 case '{':
4356 case '}':
4357 case '|':
4358 p = do_assembler_dialects (p, &dialect);
4359 break;
4360 #endif
4362 case '%':
4363 c = *p++;
4364 q = &buf[1];
4365 while (strchr ("-+ #0", c))
4367 *q++ = c;
4368 c = *p++;
4370 while (ISDIGIT (c) || c == '.')
4372 *q++ = c;
4373 c = *p++;
4375 switch (c)
4377 case '%':
4378 putc ('%', file);
4379 break;
4381 case 'd': case 'i': case 'u':
4382 case 'x': case 'X': case 'o':
4383 case 'c':
4384 *q++ = c;
4385 *q = 0;
4386 fprintf (file, buf, va_arg (argptr, int));
4387 break;
4389 case 'w':
4390 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4391 'o' cases, but we do not check for those cases. It
4392 means that the value is a HOST_WIDE_INT, which may be
4393 either `long' or `long long'. */
4394 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
4395 q += strlen (HOST_WIDE_INT_PRINT);
4396 *q++ = *p++;
4397 *q = 0;
4398 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
4399 break;
4401 case 'l':
4402 *q++ = c;
4403 #ifdef HAVE_LONG_LONG
4404 if (*p == 'l')
4406 *q++ = *p++;
4407 *q++ = *p++;
4408 *q = 0;
4409 fprintf (file, buf, va_arg (argptr, long long));
4411 else
4412 #endif
4414 *q++ = *p++;
4415 *q = 0;
4416 fprintf (file, buf, va_arg (argptr, long));
4419 break;
4421 case 's':
4422 *q++ = c;
4423 *q = 0;
4424 fprintf (file, buf, va_arg (argptr, char *));
4425 break;
4427 case 'O':
4428 #ifdef ASM_OUTPUT_OPCODE
4429 ASM_OUTPUT_OPCODE (asm_out_file, p);
4430 #endif
4431 break;
4433 case 'R':
4434 #ifdef REGISTER_PREFIX
4435 fprintf (file, "%s", REGISTER_PREFIX);
4436 #endif
4437 break;
4439 case 'I':
4440 #ifdef IMMEDIATE_PREFIX
4441 fprintf (file, "%s", IMMEDIATE_PREFIX);
4442 #endif
4443 break;
4445 case 'L':
4446 #ifdef LOCAL_LABEL_PREFIX
4447 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
4448 #endif
4449 break;
4451 case 'U':
4452 fputs (user_label_prefix, file);
4453 break;
4455 #ifdef ASM_FPRINTF_EXTENSIONS
4456 /* Uppercase letters are reserved for general use by asm_fprintf
4457 and so are not available to target specific code. In order to
4458 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4459 they are defined here. As they get turned into real extensions
4460 to asm_fprintf they should be removed from this list. */
4461 case 'A': case 'B': case 'C': case 'D': case 'E':
4462 case 'F': case 'G': case 'H': case 'J': case 'K':
4463 case 'M': case 'N': case 'P': case 'Q': case 'S':
4464 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4465 break;
4467 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
4468 #endif
4469 default:
4470 gcc_unreachable ();
4472 break;
4474 default:
4475 putc (c, file);
4477 va_end (argptr);
4480 /* Return nonzero if this function has no function calls. */
4483 leaf_function_p (void)
4485 rtx_insn *insn;
4487 /* Ensure we walk the entire function body. */
4488 gcc_assert (!in_sequence_p ());
4490 /* Some back-ends (e.g. s390) want leaf functions to stay leaf
4491 functions even if they call mcount. */
4492 if (crtl->profile && !targetm.keep_leaf_when_profiled ())
4493 return 0;
4495 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4497 if (CALL_P (insn)
4498 && ! SIBLING_CALL_P (insn))
4499 return 0;
4500 if (NONJUMP_INSN_P (insn)
4501 && GET_CODE (PATTERN (insn)) == SEQUENCE
4502 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
4503 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4504 return 0;
4507 return 1;
4510 /* Return 1 if branch is a forward branch.
4511 Uses insn_shuid array, so it works only in the final pass. May be used by
4512 output templates to customary add branch prediction hints.
4515 final_forward_branch_p (rtx_insn *insn)
4517 int insn_id, label_id;
4519 gcc_assert (uid_shuid);
4520 insn_id = INSN_SHUID (insn);
4521 label_id = INSN_SHUID (JUMP_LABEL (insn));
4522 /* We've hit some insns that does not have id information available. */
4523 gcc_assert (insn_id && label_id);
4524 return insn_id < label_id;
4527 /* On some machines, a function with no call insns
4528 can run faster if it doesn't create its own register window.
4529 When output, the leaf function should use only the "output"
4530 registers. Ordinarily, the function would be compiled to use
4531 the "input" registers to find its arguments; it is a candidate
4532 for leaf treatment if it uses only the "input" registers.
4533 Leaf function treatment means renumbering so the function
4534 uses the "output" registers instead. */
4536 #ifdef LEAF_REGISTERS
4538 /* Return 1 if this function uses only the registers that can be
4539 safely renumbered. */
4542 only_leaf_regs_used (void)
4544 int i;
4545 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4547 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4548 if ((df_regs_ever_live_p (i) || global_regs[i])
4549 && ! permitted_reg_in_leaf_functions[i])
4550 return 0;
4552 if (crtl->uses_pic_offset_table
4553 && pic_offset_table_rtx != 0
4554 && REG_P (pic_offset_table_rtx)
4555 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4556 return 0;
4558 return 1;
4561 /* Scan all instructions and renumber all registers into those
4562 available in leaf functions. */
4564 static void
4565 leaf_renumber_regs (rtx_insn *first)
4567 rtx_insn *insn;
4569 /* Renumber only the actual patterns.
4570 The reg-notes can contain frame pointer refs,
4571 and renumbering them could crash, and should not be needed. */
4572 for (insn = first; insn; insn = NEXT_INSN (insn))
4573 if (INSN_P (insn))
4574 leaf_renumber_regs_insn (PATTERN (insn));
4577 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4578 available in leaf functions. */
4580 void
4581 leaf_renumber_regs_insn (rtx in_rtx)
4583 int i, j;
4584 const char *format_ptr;
4586 if (in_rtx == 0)
4587 return;
4589 /* Renumber all input-registers into output-registers.
4590 renumbered_regs would be 1 for an output-register;
4591 they */
4593 if (REG_P (in_rtx))
4595 int newreg;
4597 /* Don't renumber the same reg twice. */
4598 if (in_rtx->used)
4599 return;
4601 newreg = REGNO (in_rtx);
4602 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4603 to reach here as part of a REG_NOTE. */
4604 if (newreg >= FIRST_PSEUDO_REGISTER)
4606 in_rtx->used = 1;
4607 return;
4609 newreg = LEAF_REG_REMAP (newreg);
4610 gcc_assert (newreg >= 0);
4611 df_set_regs_ever_live (REGNO (in_rtx), false);
4612 df_set_regs_ever_live (newreg, true);
4613 SET_REGNO (in_rtx, newreg);
4614 in_rtx->used = 1;
4615 return;
4618 if (INSN_P (in_rtx))
4620 /* Inside a SEQUENCE, we find insns.
4621 Renumber just the patterns of these insns,
4622 just as we do for the top-level insns. */
4623 leaf_renumber_regs_insn (PATTERN (in_rtx));
4624 return;
4627 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4629 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4630 switch (*format_ptr++)
4632 case 'e':
4633 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4634 break;
4636 case 'E':
4637 if (XVEC (in_rtx, i) != NULL)
4638 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4639 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4640 break;
4642 case 'S':
4643 case 's':
4644 case '0':
4645 case 'i':
4646 case 'w':
4647 case 'p':
4648 case 'n':
4649 case 'u':
4650 break;
4652 default:
4653 gcc_unreachable ();
4656 #endif
4658 /* Turn the RTL into assembly. */
4659 static unsigned int
4660 rest_of_handle_final (void)
4662 const char *fnname = get_fnname_from_decl (current_function_decl);
4664 /* Turn debug markers into notes if the var-tracking pass has not
4665 been invoked. */
4666 if (!flag_var_tracking && MAY_HAVE_DEBUG_MARKER_INSNS)
4667 delete_vta_debug_insns (false);
4669 assemble_start_function (current_function_decl, fnname);
4670 rtx_insn *first = get_insns ();
4671 int seen = 0;
4672 final_start_function_1 (&first, asm_out_file, &seen, optimize);
4673 final_1 (first, asm_out_file, seen, optimize);
4674 if (flag_ipa_ra
4675 && !lookup_attribute ("noipa", DECL_ATTRIBUTES (current_function_decl)))
4676 collect_fn_hard_reg_usage ();
4677 final_end_function ();
4679 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4680 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4681 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4682 output_function_exception_table (crtl->has_bb_partition ? 1 : 0);
4684 assemble_end_function (current_function_decl, fnname);
4686 /* Free up reg info memory. */
4687 free_reg_info ();
4689 if (! quiet_flag)
4690 fflush (asm_out_file);
4692 /* Write DBX symbols if requested. */
4694 /* Note that for those inline functions where we don't initially
4695 know for certain that we will be generating an out-of-line copy,
4696 the first invocation of this routine (rest_of_compilation) will
4697 skip over this code by doing a `goto exit_rest_of_compilation;'.
4698 Later on, wrapup_global_declarations will (indirectly) call
4699 rest_of_compilation again for those inline functions that need
4700 to have out-of-line copies generated. During that call, we
4701 *will* be routed past here. */
4703 timevar_push (TV_SYMOUT);
4704 if (!DECL_IGNORED_P (current_function_decl))
4705 debug_hooks->function_decl (current_function_decl);
4706 timevar_pop (TV_SYMOUT);
4708 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4709 DECL_INITIAL (current_function_decl) = error_mark_node;
4711 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4712 && targetm.have_ctors_dtors)
4713 targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4714 decl_init_priority_lookup
4715 (current_function_decl));
4716 if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4717 && targetm.have_ctors_dtors)
4718 targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4719 decl_fini_priority_lookup
4720 (current_function_decl));
4721 return 0;
4724 namespace {
4726 const pass_data pass_data_final =
4728 RTL_PASS, /* type */
4729 "final", /* name */
4730 OPTGROUP_NONE, /* optinfo_flags */
4731 TV_FINAL, /* tv_id */
4732 0, /* properties_required */
4733 0, /* properties_provided */
4734 0, /* properties_destroyed */
4735 0, /* todo_flags_start */
4736 0, /* todo_flags_finish */
4739 class pass_final : public rtl_opt_pass
4741 public:
4742 pass_final (gcc::context *ctxt)
4743 : rtl_opt_pass (pass_data_final, ctxt)
4746 /* opt_pass methods: */
4747 virtual unsigned int execute (function *) { return rest_of_handle_final (); }
4749 }; // class pass_final
4751 } // anon namespace
4753 rtl_opt_pass *
4754 make_pass_final (gcc::context *ctxt)
4756 return new pass_final (ctxt);
4760 static unsigned int
4761 rest_of_handle_shorten_branches (void)
4763 /* Shorten branches. */
4764 shorten_branches (get_insns ());
4765 return 0;
4768 namespace {
4770 const pass_data pass_data_shorten_branches =
4772 RTL_PASS, /* type */
4773 "shorten", /* name */
4774 OPTGROUP_NONE, /* optinfo_flags */
4775 TV_SHORTEN_BRANCH, /* tv_id */
4776 0, /* properties_required */
4777 0, /* properties_provided */
4778 0, /* properties_destroyed */
4779 0, /* todo_flags_start */
4780 0, /* todo_flags_finish */
4783 class pass_shorten_branches : public rtl_opt_pass
4785 public:
4786 pass_shorten_branches (gcc::context *ctxt)
4787 : rtl_opt_pass (pass_data_shorten_branches, ctxt)
4790 /* opt_pass methods: */
4791 virtual unsigned int execute (function *)
4793 return rest_of_handle_shorten_branches ();
4796 }; // class pass_shorten_branches
4798 } // anon namespace
4800 rtl_opt_pass *
4801 make_pass_shorten_branches (gcc::context *ctxt)
4803 return new pass_shorten_branches (ctxt);
4807 static unsigned int
4808 rest_of_clean_state (void)
4810 rtx_insn *insn, *next;
4811 FILE *final_output = NULL;
4812 int save_unnumbered = flag_dump_unnumbered;
4813 int save_noaddr = flag_dump_noaddr;
4815 if (flag_dump_final_insns)
4817 final_output = fopen (flag_dump_final_insns, "a");
4818 if (!final_output)
4820 error ("could not open final insn dump file %qs: %m",
4821 flag_dump_final_insns);
4822 flag_dump_final_insns = NULL;
4824 else
4826 flag_dump_noaddr = flag_dump_unnumbered = 1;
4827 if (flag_compare_debug_opt || flag_compare_debug)
4828 dump_flags |= TDF_NOUID | TDF_COMPARE_DEBUG;
4829 dump_function_header (final_output, current_function_decl,
4830 dump_flags);
4831 final_insns_dump_p = true;
4833 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4834 if (LABEL_P (insn))
4835 INSN_UID (insn) = CODE_LABEL_NUMBER (insn);
4836 else
4838 if (NOTE_P (insn))
4839 set_block_for_insn (insn, NULL);
4840 INSN_UID (insn) = 0;
4845 /* It is very important to decompose the RTL instruction chain here:
4846 debug information keeps pointing into CODE_LABEL insns inside the function
4847 body. If these remain pointing to the other insns, we end up preserving
4848 whole RTL chain and attached detailed debug info in memory. */
4849 for (insn = get_insns (); insn; insn = next)
4851 next = NEXT_INSN (insn);
4852 SET_NEXT_INSN (insn) = NULL;
4853 SET_PREV_INSN (insn) = NULL;
4855 rtx_insn *call_insn = insn;
4856 if (NONJUMP_INSN_P (call_insn)
4857 && GET_CODE (PATTERN (call_insn)) == SEQUENCE)
4859 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (call_insn));
4860 call_insn = seq->insn (0);
4862 if (CALL_P (call_insn))
4864 rtx note
4865 = find_reg_note (call_insn, REG_CALL_ARG_LOCATION, NULL_RTX);
4866 if (note)
4867 remove_note (call_insn, note);
4870 if (final_output
4871 && (!NOTE_P (insn)
4872 || (NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION
4873 && NOTE_KIND (insn) != NOTE_INSN_BEGIN_STMT
4874 && NOTE_KIND (insn) != NOTE_INSN_INLINE_ENTRY
4875 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_BEG
4876 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_END
4877 && NOTE_KIND (insn) != NOTE_INSN_DELETED_DEBUG_LABEL)))
4878 print_rtl_single (final_output, insn);
4881 if (final_output)
4883 flag_dump_noaddr = save_noaddr;
4884 flag_dump_unnumbered = save_unnumbered;
4885 final_insns_dump_p = false;
4887 if (fclose (final_output))
4889 error ("could not close final insn dump file %qs: %m",
4890 flag_dump_final_insns);
4891 flag_dump_final_insns = NULL;
4895 flag_rerun_cse_after_global_opts = 0;
4896 reload_completed = 0;
4897 epilogue_completed = 0;
4898 #ifdef STACK_REGS
4899 regstack_completed = 0;
4900 #endif
4902 /* Clear out the insn_length contents now that they are no
4903 longer valid. */
4904 init_insn_lengths ();
4906 /* Show no temporary slots allocated. */
4907 init_temp_slots ();
4909 free_bb_for_insn ();
4911 if (cfun->gimple_df)
4912 delete_tree_ssa (cfun);
4914 /* We can reduce stack alignment on call site only when we are sure that
4915 the function body just produced will be actually used in the final
4916 executable. */
4917 if (decl_binds_to_current_def_p (current_function_decl))
4919 unsigned int pref = crtl->preferred_stack_boundary;
4920 if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary)
4921 pref = crtl->stack_alignment_needed;
4922 cgraph_node::rtl_info (current_function_decl)
4923 ->preferred_incoming_stack_boundary = pref;
4926 /* Make sure volatile mem refs aren't considered valid operands for
4927 arithmetic insns. We must call this here if this is a nested inline
4928 function, since the above code leaves us in the init_recog state,
4929 and the function context push/pop code does not save/restore volatile_ok.
4931 ??? Maybe it isn't necessary for expand_start_function to call this
4932 anymore if we do it here? */
4934 init_recog_no_volatile ();
4936 /* We're done with this function. Free up memory if we can. */
4937 free_after_parsing (cfun);
4938 free_after_compilation (cfun);
4939 return 0;
4942 namespace {
4944 const pass_data pass_data_clean_state =
4946 RTL_PASS, /* type */
4947 "*clean_state", /* name */
4948 OPTGROUP_NONE, /* optinfo_flags */
4949 TV_FINAL, /* tv_id */
4950 0, /* properties_required */
4951 0, /* properties_provided */
4952 PROP_rtl, /* properties_destroyed */
4953 0, /* todo_flags_start */
4954 0, /* todo_flags_finish */
4957 class pass_clean_state : public rtl_opt_pass
4959 public:
4960 pass_clean_state (gcc::context *ctxt)
4961 : rtl_opt_pass (pass_data_clean_state, ctxt)
4964 /* opt_pass methods: */
4965 virtual unsigned int execute (function *)
4967 return rest_of_clean_state ();
4970 }; // class pass_clean_state
4972 } // anon namespace
4974 rtl_opt_pass *
4975 make_pass_clean_state (gcc::context *ctxt)
4977 return new pass_clean_state (ctxt);
4980 /* Return true if INSN is a call to the current function. */
4982 static bool
4983 self_recursive_call_p (rtx_insn *insn)
4985 tree fndecl = get_call_fndecl (insn);
4986 return (fndecl == current_function_decl
4987 && decl_binds_to_current_def_p (fndecl));
4990 /* Collect hard register usage for the current function. */
4992 static void
4993 collect_fn_hard_reg_usage (void)
4995 rtx_insn *insn;
4996 #ifdef STACK_REGS
4997 int i;
4998 #endif
4999 struct cgraph_rtl_info *node;
5000 HARD_REG_SET function_used_regs;
5002 /* ??? To be removed when all the ports have been fixed. */
5003 if (!targetm.call_fusage_contains_non_callee_clobbers)
5004 return;
5006 CLEAR_HARD_REG_SET (function_used_regs);
5008 for (insn = get_insns (); insn != NULL_RTX; insn = next_insn (insn))
5010 HARD_REG_SET insn_used_regs;
5012 if (!NONDEBUG_INSN_P (insn))
5013 continue;
5015 if (CALL_P (insn)
5016 && !self_recursive_call_p (insn))
5018 if (!get_call_reg_set_usage (insn, &insn_used_regs,
5019 call_used_reg_set))
5020 return;
5022 IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
5025 find_all_hard_reg_sets (insn, &insn_used_regs, false);
5026 IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
5029 /* Be conservative - mark fixed and global registers as used. */
5030 IOR_HARD_REG_SET (function_used_regs, fixed_reg_set);
5032 #ifdef STACK_REGS
5033 /* Handle STACK_REGS conservatively, since the df-framework does not
5034 provide accurate information for them. */
5036 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
5037 SET_HARD_REG_BIT (function_used_regs, i);
5038 #endif
5040 /* The information we have gathered is only interesting if it exposes a
5041 register from the call_used_regs that is not used in this function. */
5042 if (hard_reg_set_subset_p (call_used_reg_set, function_used_regs))
5043 return;
5045 node = cgraph_node::rtl_info (current_function_decl);
5046 gcc_assert (node != NULL);
5048 COPY_HARD_REG_SET (node->function_used_regs, function_used_regs);
5049 node->function_used_regs_valid = 1;
5052 /* Get the declaration of the function called by INSN. */
5054 static tree
5055 get_call_fndecl (rtx_insn *insn)
5057 rtx note, datum;
5059 note = find_reg_note (insn, REG_CALL_DECL, NULL_RTX);
5060 if (note == NULL_RTX)
5061 return NULL_TREE;
5063 datum = XEXP (note, 0);
5064 if (datum != NULL_RTX)
5065 return SYMBOL_REF_DECL (datum);
5067 return NULL_TREE;
5070 /* Return the cgraph_rtl_info of the function called by INSN. Returns NULL for
5071 call targets that can be overwritten. */
5073 static struct cgraph_rtl_info *
5074 get_call_cgraph_rtl_info (rtx_insn *insn)
5076 tree fndecl;
5078 if (insn == NULL_RTX)
5079 return NULL;
5081 fndecl = get_call_fndecl (insn);
5082 if (fndecl == NULL_TREE
5083 || !decl_binds_to_current_def_p (fndecl))
5084 return NULL;
5086 return cgraph_node::rtl_info (fndecl);
5089 /* Find hard registers used by function call instruction INSN, and return them
5090 in REG_SET. Return DEFAULT_SET in REG_SET if not found. */
5092 bool
5093 get_call_reg_set_usage (rtx_insn *insn, HARD_REG_SET *reg_set,
5094 HARD_REG_SET default_set)
5096 if (flag_ipa_ra)
5098 struct cgraph_rtl_info *node = get_call_cgraph_rtl_info (insn);
5099 if (node != NULL
5100 && node->function_used_regs_valid)
5102 COPY_HARD_REG_SET (*reg_set, node->function_used_regs);
5103 AND_HARD_REG_SET (*reg_set, default_set);
5104 return true;
5108 COPY_HARD_REG_SET (*reg_set, default_set);
5109 return false;