1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Debug
; use Debug
;
28 with Elists
; use Elists
;
29 with Einfo
; use Einfo
;
30 with Exp_Disp
; use Exp_Disp
;
31 with Exp_Util
; use Exp_Util
;
32 with Exp_Ch7
; use Exp_Ch7
;
33 with Exp_Tss
; use Exp_Tss
;
34 with Errout
; use Errout
;
35 with Lib
.Xref
; use Lib
.Xref
;
36 with Namet
; use Namet
;
37 with Nlists
; use Nlists
;
38 with Nmake
; use Nmake
;
40 with Output
; use Output
;
41 with Restrict
; use Restrict
;
42 with Rident
; use Rident
;
44 with Sem_Aux
; use Sem_Aux
;
45 with Sem_Ch3
; use Sem_Ch3
;
46 with Sem_Ch6
; use Sem_Ch6
;
47 with Sem_Ch8
; use Sem_Ch8
;
48 with Sem_Eval
; use Sem_Eval
;
49 with Sem_Type
; use Sem_Type
;
50 with Sem_Util
; use Sem_Util
;
51 with Snames
; use Snames
;
52 with Sinfo
; use Sinfo
;
53 with Tbuild
; use Tbuild
;
54 with Uintp
; use Uintp
;
55 with Warnsw
; use Warnsw
;
57 package body Sem_Disp
is
59 -----------------------
60 -- Local Subprograms --
61 -----------------------
63 procedure Add_Dispatching_Operation
64 (Tagged_Type
: Entity_Id
;
66 -- Add New_Op in the list of primitive operations of Tagged_Type
68 function Check_Controlling_Type
70 Subp
: Entity_Id
) return Entity_Id
;
71 -- T is the tagged type of a formal parameter or the result of Subp.
72 -- If the subprogram has a controlling parameter or result that matches
73 -- the type, then returns the tagged type of that parameter or result
74 -- (returning the designated tagged type in the case of an access
75 -- parameter); otherwise returns empty.
77 function Find_Hidden_Overridden_Primitive
(S
: Entity_Id
) return Entity_Id
;
78 -- [Ada 2012:AI-0125] Find an inherited hidden primitive of the dispatching
79 -- type of S that has the same name of S, a type-conformant profile, an
80 -- original corresponding operation O that is a primitive of a visible
81 -- ancestor of the dispatching type of S and O is visible at the point of
82 -- of declaration of S. If the entity is found the Alias of S is set to the
83 -- original corresponding operation S and its Overridden_Operation is set
84 -- to the found entity; otherwise return Empty.
86 -- This routine does not search for non-hidden primitives since they are
87 -- covered by the normal Ada 2005 rules.
89 function Is_Inherited_Public_Operation
(Op
: Entity_Id
) return Boolean;
90 -- Check whether a primitive operation is inherited from an operation
91 -- declared in the visible part of its package.
93 -------------------------------
94 -- Add_Dispatching_Operation --
95 -------------------------------
97 procedure Add_Dispatching_Operation
98 (Tagged_Type
: Entity_Id
;
101 List
: constant Elist_Id
:= Primitive_Operations
(Tagged_Type
);
104 -- The dispatching operation may already be on the list, if it is the
105 -- wrapper for an inherited function of a null extension (see Exp_Ch3
106 -- for the construction of function wrappers). The list of primitive
107 -- operations must not contain duplicates.
109 Append_Unique_Elmt
(New_Op
, List
);
110 end Add_Dispatching_Operation
;
112 --------------------------
113 -- Covered_Interface_Op --
114 --------------------------
116 function Covered_Interface_Op
(Prim
: Entity_Id
) return Entity_Id
is
117 Tagged_Type
: constant Entity_Id
:= Find_Dispatching_Type
(Prim
);
122 pragma Assert
(Is_Dispatching_Operation
(Prim
));
124 -- Although this is a dispatching primitive we must check if its
125 -- dispatching type is available because it may be the primitive
126 -- of a private type not defined as tagged in its partial view.
128 if Present
(Tagged_Type
) and then Has_Interfaces
(Tagged_Type
) then
130 -- If the tagged type is frozen then the internal entities associated
131 -- with interfaces are available in the list of primitives of the
132 -- tagged type and can be used to speed up this search.
134 if Is_Frozen
(Tagged_Type
) then
135 Elmt
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
136 while Present
(Elmt
) loop
139 if Present
(Interface_Alias
(E
))
140 and then Alias
(E
) = Prim
142 return Interface_Alias
(E
);
148 -- Otherwise we must collect all the interface primitives and check
149 -- if the Prim overrides (implements) some interface primitive.
153 Ifaces_List
: Elist_Id
;
154 Iface_Elmt
: Elmt_Id
;
156 Iface_Prim
: Entity_Id
;
159 Collect_Interfaces
(Tagged_Type
, Ifaces_List
);
160 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
161 while Present
(Iface_Elmt
) loop
162 Iface
:= Node
(Iface_Elmt
);
164 Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
165 while Present
(Elmt
) loop
166 Iface_Prim
:= Node
(Elmt
);
168 if Chars
(Iface_Prim
) = Chars
(Prim
)
169 and then Is_Interface_Conformant
170 (Tagged_Type
, Iface_Prim
, Prim
)
178 Next_Elmt
(Iface_Elmt
);
185 end Covered_Interface_Op
;
187 -------------------------------
188 -- Check_Controlling_Formals --
189 -------------------------------
191 procedure Check_Controlling_Formals
196 Ctrl_Type
: Entity_Id
;
199 Formal
:= First_Formal
(Subp
);
200 while Present
(Formal
) loop
201 Ctrl_Type
:= Check_Controlling_Type
(Etype
(Formal
), Subp
);
203 if Present
(Ctrl_Type
) then
205 -- When controlling type is concurrent and declared within a
206 -- generic or inside an instance use corresponding record type.
208 if Is_Concurrent_Type
(Ctrl_Type
)
209 and then Present
(Corresponding_Record_Type
(Ctrl_Type
))
211 Ctrl_Type
:= Corresponding_Record_Type
(Ctrl_Type
);
214 if Ctrl_Type
= Typ
then
215 Set_Is_Controlling_Formal
(Formal
);
217 -- Ada 2005 (AI-231): Anonymous access types that are used in
218 -- controlling parameters exclude null because it is necessary
219 -- to read the tag to dispatch, and null has no tag.
221 if Ekind
(Etype
(Formal
)) = E_Anonymous_Access_Type
then
222 Set_Can_Never_Be_Null
(Etype
(Formal
));
223 Set_Is_Known_Non_Null
(Etype
(Formal
));
226 -- Check that the parameter's nominal subtype statically
227 -- matches the first subtype.
229 if Ekind
(Etype
(Formal
)) = E_Anonymous_Access_Type
then
230 if not Subtypes_Statically_Match
231 (Typ
, Designated_Type
(Etype
(Formal
)))
234 ("parameter subtype does not match controlling type",
238 -- Within a predicate function, the formal may be a subtype
239 -- of a tagged type, given that the predicate is expressed
240 -- in terms of the subtype.
242 elsif not Subtypes_Statically_Match
(Typ
, Etype
(Formal
))
243 and then not Is_Predicate_Function
(Subp
)
246 ("parameter subtype does not match controlling type",
250 if Present
(Default_Value
(Formal
)) then
252 -- In Ada 2005, access parameters can have defaults
254 if Ekind
(Etype
(Formal
)) = E_Anonymous_Access_Type
255 and then Ada_Version
< Ada_2005
258 ("default not allowed for controlling access parameter",
259 Default_Value
(Formal
));
261 elsif not Is_Tag_Indeterminate
(Default_Value
(Formal
)) then
263 ("default expression must be a tag indeterminate" &
264 " function call", Default_Value
(Formal
));
268 elsif Comes_From_Source
(Subp
) then
270 ("operation can be dispatching in only one type", Subp
);
274 Next_Formal
(Formal
);
277 if Ekind_In
(Subp
, E_Function
, E_Generic_Function
) then
278 Ctrl_Type
:= Check_Controlling_Type
(Etype
(Subp
), Subp
);
280 if Present
(Ctrl_Type
) then
281 if Ctrl_Type
= Typ
then
282 Set_Has_Controlling_Result
(Subp
);
284 -- Check that result subtype statically matches first subtype
285 -- (Ada 2005): Subp may have a controlling access result.
287 if Subtypes_Statically_Match
(Typ
, Etype
(Subp
))
288 or else (Ekind
(Etype
(Subp
)) = E_Anonymous_Access_Type
290 Subtypes_Statically_Match
291 (Typ
, Designated_Type
(Etype
(Subp
))))
297 ("result subtype does not match controlling type", Subp
);
300 elsif Comes_From_Source
(Subp
) then
302 ("operation can be dispatching in only one type", Subp
);
306 end Check_Controlling_Formals
;
308 ----------------------------
309 -- Check_Controlling_Type --
310 ----------------------------
312 function Check_Controlling_Type
314 Subp
: Entity_Id
) return Entity_Id
316 Tagged_Type
: Entity_Id
:= Empty
;
319 if Is_Tagged_Type
(T
) then
320 if Is_First_Subtype
(T
) then
323 Tagged_Type
:= Base_Type
(T
);
326 -- If the type is incomplete, it may have been declared without a
327 -- Tagged indication, but the full view may be tagged, in which case
328 -- that is the controlling type of the subprogram. This is one of the
329 -- approx. 579 places in the language where a lookahead would help.
331 elsif Ekind
(T
) = E_Incomplete_Type
332 and then Present
(Full_View
(T
))
333 and then Is_Tagged_Type
(Full_View
(T
))
335 Set_Is_Tagged_Type
(T
);
336 Tagged_Type
:= Full_View
(T
);
338 elsif Ekind
(T
) = E_Anonymous_Access_Type
339 and then Is_Tagged_Type
(Designated_Type
(T
))
341 if Ekind
(Designated_Type
(T
)) /= E_Incomplete_Type
then
342 if Is_First_Subtype
(Designated_Type
(T
)) then
343 Tagged_Type
:= Designated_Type
(T
);
345 Tagged_Type
:= Base_Type
(Designated_Type
(T
));
348 -- Ada 2005: an incomplete type can be tagged. An operation with an
349 -- access parameter of the type is dispatching.
351 elsif Scope
(Designated_Type
(T
)) = Current_Scope
then
352 Tagged_Type
:= Designated_Type
(T
);
354 -- Ada 2005 (AI-50217)
356 elsif From_Limited_With
(Designated_Type
(T
))
357 and then Has_Non_Limited_View
(Designated_Type
(T
))
358 and then Scope
(Designated_Type
(T
)) = Scope
(Subp
)
360 if Is_First_Subtype
(Non_Limited_View
(Designated_Type
(T
))) then
361 Tagged_Type
:= Non_Limited_View
(Designated_Type
(T
));
363 Tagged_Type
:= Base_Type
(Non_Limited_View
364 (Designated_Type
(T
)));
369 if No
(Tagged_Type
) or else Is_Class_Wide_Type
(Tagged_Type
) then
372 -- The dispatching type and the primitive operation must be defined in
373 -- the same scope, except in the case of internal operations and formal
374 -- abstract subprograms.
376 elsif ((Scope
(Subp
) = Scope
(Tagged_Type
) or else Is_Internal
(Subp
))
377 and then (not Is_Generic_Type
(Tagged_Type
)
378 or else not Comes_From_Source
(Subp
)))
380 (Is_Formal_Subprogram
(Subp
) and then Is_Abstract_Subprogram
(Subp
))
382 (Nkind
(Parent
(Parent
(Subp
))) = N_Subprogram_Renaming_Declaration
384 Present
(Corresponding_Formal_Spec
(Parent
(Parent
(Subp
))))
386 Is_Abstract_Subprogram
(Subp
))
393 end Check_Controlling_Type
;
395 ----------------------------
396 -- Check_Dispatching_Call --
397 ----------------------------
399 procedure Check_Dispatching_Call
(N
: Node_Id
) is
400 Loc
: constant Source_Ptr
:= Sloc
(N
);
403 Control
: Node_Id
:= Empty
;
405 Subp_Entity
: Entity_Id
;
406 Indeterm_Ancestor_Call
: Boolean := False;
407 Indeterm_Ctrl_Type
: Entity_Id
:= Empty
; -- init to avoid warning
409 Static_Tag
: Node_Id
:= Empty
;
410 -- If a controlling formal has a statically tagged actual, the tag of
411 -- this actual is to be used for any tag-indeterminate actual.
413 procedure Check_Direct_Call
;
414 -- In the case when the controlling actual is a class-wide type whose
415 -- root type's completion is a task or protected type, the call is in
416 -- fact direct. This routine detects the above case and modifies the
419 procedure Check_Dispatching_Context
(Call
: Node_Id
);
420 -- If the call is tag-indeterminate and the entity being called is
421 -- abstract, verify that the context is a call that will eventually
422 -- provide a tag for dispatching, or has provided one already.
424 -----------------------
425 -- Check_Direct_Call --
426 -----------------------
428 procedure Check_Direct_Call
is
429 Typ
: Entity_Id
:= Etype
(Control
);
431 -- Predefined primitives do not receive wrappers since they are built
432 -- from scratch for the corresponding record of synchronized types.
433 -- Equality is in general predefined, but is excluded from the check
434 -- when it is user-defined.
436 if Is_Predefined_Dispatching_Operation
(Subp_Entity
)
437 and then not Is_User_Defined_Equality
(Subp_Entity
)
442 if Is_Class_Wide_Type
(Typ
) then
443 Typ
:= Root_Type
(Typ
);
446 if Is_Private_Type
(Typ
) and then Present
(Full_View
(Typ
)) then
447 Typ
:= Full_View
(Typ
);
450 if Is_Concurrent_Type
(Typ
)
452 Present
(Corresponding_Record_Type
(Typ
))
454 Typ
:= Corresponding_Record_Type
(Typ
);
456 -- The concurrent record's list of primitives should contain a
457 -- wrapper for the entity of the call, retrieve it.
462 Wrapper_Found
: Boolean := False;
465 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Typ
));
466 while Present
(Prim_Elmt
) loop
467 Prim
:= Node
(Prim_Elmt
);
469 if Is_Primitive_Wrapper
(Prim
)
470 and then Wrapped_Entity
(Prim
) = Subp_Entity
472 Wrapper_Found
:= True;
476 Next_Elmt
(Prim_Elmt
);
479 -- A primitive declared between two views should have a
480 -- corresponding wrapper.
482 pragma Assert
(Wrapper_Found
);
484 -- Modify the call by setting the proper entity
486 Set_Entity
(Name
(N
), Prim
);
489 end Check_Direct_Call
;
491 -------------------------------
492 -- Check_Dispatching_Context --
493 -------------------------------
495 procedure Check_Dispatching_Context
(Call
: Node_Id
) is
496 Subp
: constant Entity_Id
:= Entity
(Name
(Call
));
498 procedure Abstract_Context_Error
;
499 -- Error for abstract call dispatching on result is not dispatching
501 ----------------------------
502 -- Abstract_Context_Error --
503 ----------------------------
505 procedure Abstract_Context_Error
is
507 if Ekind
(Subp
) = E_Function
then
509 ("call to abstract function must be dispatching", N
);
511 -- This error can occur for a procedure in the case of a call to
512 -- an abstract formal procedure with a statically tagged operand.
516 ("call to abstract procedure must be dispatching", N
);
518 end Abstract_Context_Error
;
522 Scop
: constant Entity_Id
:= Current_Scope_No_Loops
;
523 Typ
: constant Entity_Id
:= Etype
(Subp
);
526 -- Start of processing for Check_Dispatching_Context
529 -- If the called subprogram is a private overriding, replace it
530 -- with its alias, which has the correct body. Verify that the
531 -- two subprograms have the same controlling type (this is not the
532 -- case for an inherited subprogram that has become abstract).
534 if Is_Abstract_Subprogram
(Subp
)
535 and then No
(Controlling_Argument
(Call
))
537 if Present
(Alias
(Subp
))
538 and then not Is_Abstract_Subprogram
(Alias
(Subp
))
539 and then No
(DTC_Entity
(Subp
))
540 and then Find_Dispatching_Type
(Subp
) =
541 Find_Dispatching_Type
(Alias
(Subp
))
543 -- Private overriding of inherited abstract operation, call is
546 Set_Entity
(Name
(N
), Alias
(Subp
));
549 -- An obscure special case: a null procedure may have a class-
550 -- wide pre/postcondition that includes a call to an abstract
551 -- subp. Calls within the expression may not have been rewritten
552 -- as dispatching calls yet, because the null body appears in
553 -- the current declarative part. The expression will be properly
554 -- rewritten/reanalyzed when the postcondition procedure is built.
556 -- Similarly, if this is a pre/postcondition for an abstract
557 -- subprogram, it may call another abstract function which is
558 -- a primitive of an abstract type. The call is non-dispatching
559 -- but will be legal in overridings of the operation.
561 elsif (Is_Subprogram
(Scop
)
562 or else Chars
(Scop
) = Name_Postcondition
)
564 (Is_Abstract_Subprogram
(Scop
)
566 (Nkind
(Parent
(Scop
)) = N_Procedure_Specification
567 and then Null_Present
(Parent
(Scop
))))
571 elsif Ekind
(Current_Scope
) = E_Function
572 and then Nkind
(Unit_Declaration_Node
(Scop
)) =
573 N_Generic_Subprogram_Declaration
578 -- We need to determine whether the context of the call
579 -- provides a tag to make the call dispatching. This requires
580 -- the call to be the actual in an enclosing call, and that
581 -- actual must be controlling. If the call is an operand of
582 -- equality, the other operand must not ve abstract.
584 if not Is_Tagged_Type
(Typ
)
586 (Ekind
(Typ
) = E_Anonymous_Access_Type
587 and then Is_Tagged_Type
(Designated_Type
(Typ
)))
589 Abstract_Context_Error
;
593 Par
:= Parent
(Call
);
595 if Nkind
(Par
) = N_Parameter_Association
then
599 if Nkind
(Par
) = N_Qualified_Expression
600 or else Nkind
(Par
) = N_Unchecked_Type_Conversion
605 if Nkind_In
(Par
, N_Function_Call
, N_Procedure_Call_Statement
)
606 and then Is_Entity_Name
(Name
(Par
))
609 Enc_Subp
: constant Entity_Id
:= Entity
(Name
(Par
));
613 Ret_Type
: Entity_Id
;
616 -- Find controlling formal that can provide tag for the
617 -- tag-indeterminate actual. The corresponding actual
618 -- must be the corresponding class-wide type.
620 F
:= First_Formal
(Enc_Subp
);
621 A
:= First_Actual
(Par
);
623 -- Find controlling type of call. Dereference if function
624 -- returns an access type.
626 Ret_Type
:= Etype
(Call
);
627 if Is_Access_Type
(Etype
(Call
)) then
628 Ret_Type
:= Designated_Type
(Ret_Type
);
631 while Present
(F
) loop
632 Control
:= Etype
(A
);
634 if Is_Access_Type
(Control
) then
635 Control
:= Designated_Type
(Control
);
638 if Is_Controlling_Formal
(F
)
639 and then not (Call
= A
or else Parent
(Call
) = A
)
640 and then Control
= Class_Wide_Type
(Ret_Type
)
649 if Nkind
(Par
) = N_Function_Call
650 and then Is_Tag_Indeterminate
(Par
)
652 -- The parent may be an actual of an enclosing call
654 Check_Dispatching_Context
(Par
);
659 ("call to abstract function must be dispatching",
665 -- For equality operators, one of the operands must be
666 -- statically or dynamically tagged.
668 elsif Nkind_In
(Par
, N_Op_Eq
, N_Op_Ne
) then
669 if N
= Right_Opnd
(Par
)
670 and then Is_Tag_Indeterminate
(Left_Opnd
(Par
))
672 Abstract_Context_Error
;
674 elsif N
= Left_Opnd
(Par
)
675 and then Is_Tag_Indeterminate
(Right_Opnd
(Par
))
677 Abstract_Context_Error
;
682 -- The left-hand side of an assignment provides the tag
684 elsif Nkind
(Par
) = N_Assignment_Statement
then
688 Abstract_Context_Error
;
692 end Check_Dispatching_Context
;
694 -- Start of processing for Check_Dispatching_Call
697 -- Find a controlling argument, if any
699 if Present
(Parameter_Associations
(N
)) then
700 Subp_Entity
:= Entity
(Name
(N
));
702 Actual
:= First_Actual
(N
);
703 Formal
:= First_Formal
(Subp_Entity
);
704 while Present
(Actual
) loop
705 Control
:= Find_Controlling_Arg
(Actual
);
706 exit when Present
(Control
);
708 -- Check for the case where the actual is a tag-indeterminate call
709 -- whose result type is different than the tagged type associated
710 -- with the containing call, but is an ancestor of the type.
712 if Is_Controlling_Formal
(Formal
)
713 and then Is_Tag_Indeterminate
(Actual
)
714 and then Base_Type
(Etype
(Actual
)) /= Base_Type
(Etype
(Formal
))
715 and then Is_Ancestor
(Etype
(Actual
), Etype
(Formal
))
717 Indeterm_Ancestor_Call
:= True;
718 Indeterm_Ctrl_Type
:= Etype
(Formal
);
720 -- If the formal is controlling but the actual is not, the type
721 -- of the actual is statically known, and may be used as the
722 -- controlling tag for some other tag-indeterminate actual.
724 elsif Is_Controlling_Formal
(Formal
)
725 and then Is_Entity_Name
(Actual
)
726 and then Is_Tagged_Type
(Etype
(Actual
))
728 Static_Tag
:= Actual
;
731 Next_Actual
(Actual
);
732 Next_Formal
(Formal
);
735 -- If the call doesn't have a controlling actual but does have an
736 -- indeterminate actual that requires dispatching treatment, then an
737 -- object is needed that will serve as the controlling argument for
738 -- a dispatching call on the indeterminate actual. This can occur
739 -- in the unusual situation of a default actual given by a tag-
740 -- indeterminate call and where the type of the call is an ancestor
741 -- of the type associated with a containing call to an inherited
742 -- operation (see AI-239).
744 -- Rather than create an object of the tagged type, which would
745 -- be problematic for various reasons (default initialization,
746 -- discriminants), the tag of the containing call's associated
747 -- tagged type is directly used to control the dispatching.
750 and then Indeterm_Ancestor_Call
751 and then No
(Static_Tag
)
754 Make_Attribute_Reference
(Loc
,
755 Prefix
=> New_Occurrence_Of
(Indeterm_Ctrl_Type
, Loc
),
756 Attribute_Name
=> Name_Tag
);
761 if Present
(Control
) then
763 -- Verify that no controlling arguments are statically tagged
766 Write_Str
("Found Dispatching call");
771 Actual
:= First_Actual
(N
);
772 while Present
(Actual
) loop
773 if Actual
/= Control
then
775 if not Is_Controlling_Actual
(Actual
) then
776 null; -- Can be anything
778 elsif Is_Dynamically_Tagged
(Actual
) then
779 null; -- Valid parameter
781 elsif Is_Tag_Indeterminate
(Actual
) then
783 -- The tag is inherited from the enclosing call (the node
784 -- we are currently analyzing). Explicitly expand the
785 -- actual, since the previous call to Expand (from
786 -- Resolve_Call) had no way of knowing about the
787 -- required dispatching.
789 Propagate_Tag
(Control
, Actual
);
793 ("controlling argument is not dynamically tagged",
799 Next_Actual
(Actual
);
802 -- Mark call as a dispatching call
804 Set_Controlling_Argument
(N
, Control
);
805 Check_Restriction
(No_Dispatching_Calls
, N
);
807 -- The dispatching call may need to be converted into a direct
808 -- call in certain cases.
812 -- If there is a statically tagged actual and a tag-indeterminate
813 -- call to a function of the ancestor (such as that provided by a
814 -- default), then treat this as a dispatching call and propagate
815 -- the tag to the tag-indeterminate call(s).
817 elsif Present
(Static_Tag
) and then Indeterm_Ancestor_Call
then
819 Make_Attribute_Reference
(Loc
,
821 New_Occurrence_Of
(Etype
(Static_Tag
), Loc
),
822 Attribute_Name
=> Name_Tag
);
826 Actual
:= First_Actual
(N
);
827 Formal
:= First_Formal
(Subp_Entity
);
828 while Present
(Actual
) loop
829 if Is_Tag_Indeterminate
(Actual
)
830 and then Is_Controlling_Formal
(Formal
)
832 Propagate_Tag
(Control
, Actual
);
835 Next_Actual
(Actual
);
836 Next_Formal
(Formal
);
839 Check_Dispatching_Context
(N
);
841 elsif Nkind
(N
) /= N_Function_Call
then
843 -- The call is not dispatching, so check that there aren't any
844 -- tag-indeterminate abstract calls left among its actuals.
846 Actual
:= First_Actual
(N
);
847 while Present
(Actual
) loop
848 if Is_Tag_Indeterminate
(Actual
) then
850 -- Function call case
852 if Nkind
(Original_Node
(Actual
)) = N_Function_Call
then
853 Func
:= Entity
(Name
(Original_Node
(Actual
)));
855 -- If the actual is an attribute then it can't be abstract
856 -- (the only current case of a tag-indeterminate attribute
857 -- is the stream Input attribute).
859 elsif Nkind
(Original_Node
(Actual
)) = N_Attribute_Reference
863 -- Ditto if it is an explicit dereference
865 elsif Nkind
(Original_Node
(Actual
)) = N_Explicit_Dereference
869 -- Only other possibility is a qualified expression whose
870 -- constituent expression is itself a call.
874 Entity
(Name
(Original_Node
875 (Expression
(Original_Node
(Actual
)))));
878 if Present
(Func
) and then Is_Abstract_Subprogram
(Func
) then
880 ("call to abstract function must be dispatching",
885 Next_Actual
(Actual
);
888 Check_Dispatching_Context
(N
);
891 elsif Nkind
(Parent
(N
)) in N_Subexpr
then
892 Check_Dispatching_Context
(N
);
894 elsif Nkind
(Parent
(N
)) = N_Assignment_Statement
895 and then Is_Class_Wide_Type
(Etype
(Name
(Parent
(N
))))
899 elsif Is_Abstract_Subprogram
(Subp_Entity
) then
900 Check_Dispatching_Context
(N
);
905 -- If dispatching on result, the enclosing call, if any, will
906 -- determine the controlling argument. Otherwise this is the
907 -- primitive operation of the root type.
909 Check_Dispatching_Context
(N
);
911 end Check_Dispatching_Call
;
913 ---------------------------------
914 -- Check_Dispatching_Operation --
915 ---------------------------------
917 procedure Check_Dispatching_Operation
(Subp
, Old_Subp
: Entity_Id
) is
918 procedure Warn_On_Late_Primitive_After_Private_Extension
921 -- Prim is a dispatching primitive of the tagged type Typ. Warn on Prim
922 -- if it is a public primitive defined after some private extension of
925 ----------------------------------------------------
926 -- Warn_On_Late_Primitive_After_Private_Extension --
927 ----------------------------------------------------
929 procedure Warn_On_Late_Primitive_After_Private_Extension
936 if Warn_On_Late_Primitives
937 and then Comes_From_Source
(Prim
)
938 and then Has_Private_Extension
(Typ
)
939 and then Is_Package_Or_Generic_Package
(Current_Scope
)
940 and then not In_Private_Part
(Current_Scope
)
942 E
:= Next_Entity
(Typ
);
945 if Ekind
(E
) = E_Record_Type_With_Private
946 and then Etype
(E
) = Typ
948 Error_Msg_Name_1
:= Chars
(Typ
);
949 Error_Msg_Name_2
:= Chars
(E
);
950 Error_Msg_Sloc
:= Sloc
(E
);
952 ("?j?primitive of type % defined after private extension "
954 Error_Msg_Name_1
:= Chars
(Prim
);
955 Error_Msg_Name_2
:= Chars
(E
);
957 ("\spec of % should appear before declaration of type %!",
965 end Warn_On_Late_Primitive_After_Private_Extension
;
969 Body_Is_Last_Primitive
: Boolean := False;
970 Has_Dispatching_Parent
: Boolean := False;
971 Ovr_Subp
: Entity_Id
:= Empty
;
972 Tagged_Type
: Entity_Id
;
974 -- Start of processing for Check_Dispatching_Operation
977 if not Ekind_In
(Subp
, E_Function
, E_Procedure
) then
980 -- The Default_Initial_Condition procedure is not a primitive subprogram
981 -- even if it relates to a tagged type. This routine is not meant to be
982 -- inherited or overridden.
984 elsif Is_DIC_Procedure
(Subp
) then
987 -- The "partial" and "full" type invariant procedures are not primitive
988 -- subprograms even if they relate to a tagged type. These routines are
989 -- not meant to be inherited or overridden.
991 elsif Is_Invariant_Procedure
(Subp
)
992 or else Is_Partial_Invariant_Procedure
(Subp
)
997 Set_Is_Dispatching_Operation
(Subp
, False);
998 Tagged_Type
:= Find_Dispatching_Type
(Subp
);
1000 -- Ada 2005 (AI-345): Use the corresponding record (if available).
1001 -- Required because primitives of concurrent types are attached
1002 -- to the corresponding record (not to the concurrent type).
1004 if Ada_Version
>= Ada_2005
1005 and then Present
(Tagged_Type
)
1006 and then Is_Concurrent_Type
(Tagged_Type
)
1007 and then Present
(Corresponding_Record_Type
(Tagged_Type
))
1009 Tagged_Type
:= Corresponding_Record_Type
(Tagged_Type
);
1012 -- (AI-345): The task body procedure is not a primitive of the tagged
1015 if Present
(Tagged_Type
)
1016 and then Is_Concurrent_Record_Type
(Tagged_Type
)
1017 and then Present
(Corresponding_Concurrent_Type
(Tagged_Type
))
1018 and then Is_Task_Type
(Corresponding_Concurrent_Type
(Tagged_Type
))
1019 and then Subp
= Get_Task_Body_Procedure
1020 (Corresponding_Concurrent_Type
(Tagged_Type
))
1025 -- If Subp is derived from a dispatching operation then it should
1026 -- always be treated as dispatching. In this case various checks
1027 -- below will be bypassed. Makes sure that late declarations for
1028 -- inherited private subprograms are treated as dispatching, even
1029 -- if the associated tagged type is already frozen.
1031 Has_Dispatching_Parent
:=
1032 Present
(Alias
(Subp
))
1033 and then Is_Dispatching_Operation
(Alias
(Subp
));
1035 if No
(Tagged_Type
) then
1037 -- Ada 2005 (AI-251): Check that Subp is not a primitive associated
1038 -- with an abstract interface type unless the interface acts as a
1039 -- parent type in a derivation. If the interface type is a formal
1040 -- type then the operation is not primitive and therefore legal.
1047 E
:= First_Entity
(Subp
);
1048 while Present
(E
) loop
1050 -- For an access parameter, check designated type
1052 if Ekind
(Etype
(E
)) = E_Anonymous_Access_Type
then
1053 Typ
:= Designated_Type
(Etype
(E
));
1058 if Comes_From_Source
(Subp
)
1059 and then Is_Interface
(Typ
)
1060 and then not Is_Class_Wide_Type
(Typ
)
1061 and then not Is_Derived_Type
(Typ
)
1062 and then not Is_Generic_Type
(Typ
)
1063 and then not In_Instance
1065 Error_Msg_N
("??declaration of& is too late!", Subp
);
1066 Error_Msg_NE
-- CODEFIX??
1067 ("\??spec should appear immediately after declaration of "
1068 & "& !", Subp
, Typ
);
1075 -- In case of functions check also the result type
1077 if Ekind
(Subp
) = E_Function
then
1078 if Is_Access_Type
(Etype
(Subp
)) then
1079 Typ
:= Designated_Type
(Etype
(Subp
));
1081 Typ
:= Etype
(Subp
);
1084 -- The following should be better commented, especially since
1085 -- we just added several new conditions here ???
1087 if Comes_From_Source
(Subp
)
1088 and then Is_Interface
(Typ
)
1089 and then not Is_Class_Wide_Type
(Typ
)
1090 and then not Is_Derived_Type
(Typ
)
1091 and then not Is_Generic_Type
(Typ
)
1092 and then not In_Instance
1094 Error_Msg_N
("??declaration of& is too late!", Subp
);
1096 ("\??spec should appear immediately after declaration of "
1097 & "& !", Subp
, Typ
);
1104 -- The subprograms build internally after the freezing point (such as
1105 -- init procs, interface thunks, type support subprograms, and Offset
1106 -- to top functions for accessing interface components in variable
1107 -- size tagged types) are not primitives.
1109 elsif Is_Frozen
(Tagged_Type
)
1110 and then not Comes_From_Source
(Subp
)
1111 and then not Has_Dispatching_Parent
1113 -- Complete decoration of internally built subprograms that override
1114 -- a dispatching primitive. These entities correspond with the
1117 -- 1. Ada 2005 (AI-391): Wrapper functions built by the expander
1118 -- to override functions of nonabstract null extensions. These
1119 -- primitives were added to the list of primitives of the tagged
1120 -- type by Make_Controlling_Function_Wrappers. However, attribute
1121 -- Is_Dispatching_Operation must be set to true.
1123 -- 2. Ada 2005 (AI-251): Wrapper procedures of null interface
1126 -- 3. Subprograms associated with stream attributes (built by
1127 -- New_Stream_Subprogram)
1129 -- 4. Wrapper built for inherited operations with inherited class-
1130 -- wide conditions, where the conditions include calls to other
1131 -- overridden primitives. The wrappers include checks on these
1132 -- modified conditions. (AI12-113).
1134 if Present
(Old_Subp
)
1135 and then Present
(Overridden_Operation
(Subp
))
1136 and then Is_Dispatching_Operation
(Old_Subp
)
1139 ((Ekind
(Subp
) = E_Function
1140 and then Is_Dispatching_Operation
(Old_Subp
)
1141 and then Is_Null_Extension
(Base_Type
(Etype
(Subp
))))
1144 (Ekind
(Subp
) = E_Procedure
1145 and then Is_Dispatching_Operation
(Old_Subp
)
1146 and then Present
(Alias
(Old_Subp
))
1147 and then Is_Null_Interface_Primitive
1148 (Ultimate_Alias
(Old_Subp
)))
1150 or else Get_TSS_Name
(Subp
) = TSS_Stream_Read
1151 or else Get_TSS_Name
(Subp
) = TSS_Stream_Write
1153 or else Present
(Contract
(Overridden_Operation
(Subp
))));
1155 Check_Controlling_Formals
(Tagged_Type
, Subp
);
1156 Override_Dispatching_Operation
(Tagged_Type
, Old_Subp
, Subp
);
1157 Set_Is_Dispatching_Operation
(Subp
);
1162 -- The operation may be a child unit, whose scope is the defining
1163 -- package, but which is not a primitive operation of the type.
1165 elsif Is_Child_Unit
(Subp
) then
1168 -- If the subprogram is not defined in a package spec, the only case
1169 -- where it can be a dispatching op is when it overrides an operation
1170 -- before the freezing point of the type.
1172 elsif ((not Is_Package_Or_Generic_Package
(Scope
(Subp
)))
1173 or else In_Package_Body
(Scope
(Subp
)))
1174 and then not Has_Dispatching_Parent
1176 if not Comes_From_Source
(Subp
)
1177 or else (Present
(Old_Subp
) and then not Is_Frozen
(Tagged_Type
))
1181 -- If the type is already frozen, the overriding is not allowed
1182 -- except when Old_Subp is not a dispatching operation (which can
1183 -- occur when Old_Subp was inherited by an untagged type). However,
1184 -- a body with no previous spec freezes the type *after* its
1185 -- declaration, and therefore is a legal overriding (unless the type
1186 -- has already been frozen). Only the first such body is legal.
1188 elsif Present
(Old_Subp
)
1189 and then Is_Dispatching_Operation
(Old_Subp
)
1191 if Comes_From_Source
(Subp
)
1193 (Nkind
(Unit_Declaration_Node
(Subp
)) = N_Subprogram_Body
1194 or else Nkind
(Unit_Declaration_Node
(Subp
)) in N_Body_Stub
)
1197 Subp_Body
: constant Node_Id
:= Unit_Declaration_Node
(Subp
);
1198 Decl_Item
: Node_Id
;
1201 -- ??? The checks here for whether the type has been frozen
1202 -- prior to the new body are not complete. It's not simple
1203 -- to check frozenness at this point since the body has
1204 -- already caused the type to be prematurely frozen in
1205 -- Analyze_Declarations, but we're forced to recheck this
1206 -- here because of the odd rule interpretation that allows
1207 -- the overriding if the type wasn't frozen prior to the
1208 -- body. The freezing action should probably be delayed
1209 -- until after the spec is seen, but that's a tricky
1210 -- change to the delicate freezing code.
1212 -- Look at each declaration following the type up until the
1213 -- new subprogram body. If any of the declarations is a body
1214 -- then the type has been frozen already so the overriding
1215 -- primitive is illegal.
1217 Decl_Item
:= Next
(Parent
(Tagged_Type
));
1218 while Present
(Decl_Item
)
1219 and then (Decl_Item
/= Subp_Body
)
1221 if Comes_From_Source
(Decl_Item
)
1222 and then (Nkind
(Decl_Item
) in N_Proper_Body
1223 or else Nkind
(Decl_Item
) in N_Body_Stub
)
1225 Error_Msg_N
("overriding of& is too late!", Subp
);
1227 ("\spec should appear immediately after the type!",
1235 -- If the subprogram doesn't follow in the list of
1236 -- declarations including the type then the type has
1237 -- definitely been frozen already and the body is illegal.
1239 if No
(Decl_Item
) then
1240 Error_Msg_N
("overriding of& is too late!", Subp
);
1242 ("\spec should appear immediately after the type!",
1245 elsif Is_Frozen
(Subp
) then
1247 -- The subprogram body declares a primitive operation.
1248 -- If the subprogram is already frozen, we must update
1249 -- its dispatching information explicitly here. The
1250 -- information is taken from the overridden subprogram.
1251 -- We must also generate a cross-reference entry because
1252 -- references to other primitives were already created
1253 -- when type was frozen.
1255 Body_Is_Last_Primitive
:= True;
1257 if Present
(DTC_Entity
(Old_Subp
)) then
1258 Set_DTC_Entity
(Subp
, DTC_Entity
(Old_Subp
));
1259 Set_DT_Position_Value
(Subp
, DT_Position
(Old_Subp
));
1261 if not Restriction_Active
(No_Dispatching_Calls
) then
1262 if Building_Static_DT
(Tagged_Type
) then
1264 -- If the static dispatch table has not been
1265 -- built then there is nothing else to do now;
1266 -- otherwise we notify that we cannot build the
1267 -- static dispatch table.
1269 if Has_Dispatch_Table
(Tagged_Type
) then
1271 ("overriding of& is too late for building "
1272 & " static dispatch tables!", Subp
);
1274 ("\spec should appear immediately after "
1275 & "the type!", Subp
);
1278 -- No code required to register primitives in VM
1281 elsif not Tagged_Type_Expansion
then
1285 Insert_Actions_After
(Subp_Body
,
1286 Register_Primitive
(Sloc
(Subp_Body
),
1290 -- Indicate that this is an overriding operation,
1291 -- and replace the overridden entry in the list of
1292 -- primitive operations, which is used for xref
1293 -- generation subsequently.
1295 Generate_Reference
(Tagged_Type
, Subp
, 'P', False);
1296 Override_Dispatching_Operation
1297 (Tagged_Type
, Old_Subp
, Subp
);
1304 Error_Msg_N
("overriding of& is too late!", Subp
);
1306 ("\subprogram spec should appear immediately after the type!",
1310 -- If the type is not frozen yet and we are not in the overriding
1311 -- case it looks suspiciously like an attempt to define a primitive
1312 -- operation, which requires the declaration to be in a package spec
1313 -- (3.2.3(6)). Only report cases where the type and subprogram are
1314 -- in the same declaration list (by checking the enclosing parent
1315 -- declarations), to avoid spurious warnings on subprograms in
1316 -- instance bodies when the type is declared in the instance spec
1317 -- but hasn't been frozen by the instance body.
1319 elsif not Is_Frozen
(Tagged_Type
)
1320 and then In_Same_List
(Parent
(Tagged_Type
), Parent
(Parent
(Subp
)))
1323 ("??not dispatching (must be defined in a package spec)", Subp
);
1326 -- When the type is frozen, it is legitimate to define a new
1327 -- non-primitive operation.
1333 -- Now, we are sure that the scope is a package spec. If the subprogram
1334 -- is declared after the freezing point of the type that's an error
1336 elsif Is_Frozen
(Tagged_Type
) and then not Has_Dispatching_Parent
then
1337 Error_Msg_N
("this primitive operation is declared too late", Subp
);
1339 ("??no primitive operations for& after this line",
1340 Freeze_Node
(Tagged_Type
),
1345 Check_Controlling_Formals
(Tagged_Type
, Subp
);
1347 Ovr_Subp
:= Old_Subp
;
1349 -- [Ada 2012:AI-0125]: Search for inherited hidden primitive that may be
1350 -- overridden by Subp. This only applies to source subprograms, and
1351 -- their declaration must carry an explicit overriding indicator.
1354 and then Ada_Version
>= Ada_2012
1355 and then Comes_From_Source
(Subp
)
1357 Nkind
(Unit_Declaration_Node
(Subp
)) = N_Subprogram_Declaration
1359 Ovr_Subp
:= Find_Hidden_Overridden_Primitive
(Subp
);
1361 -- Verify that the proper overriding indicator has been supplied.
1363 if Present
(Ovr_Subp
)
1365 not Must_Override
(Specification
(Unit_Declaration_Node
(Subp
)))
1367 Error_Msg_NE
("missing overriding indicator for&", Subp
, Subp
);
1371 -- Now it should be a correct primitive operation, put it in the list
1373 if Present
(Ovr_Subp
) then
1375 -- If the type has interfaces we complete this check after we set
1376 -- attribute Is_Dispatching_Operation.
1378 Check_Subtype_Conformant
(Subp
, Ovr_Subp
);
1380 -- A primitive operation with the name of a primitive controlled
1381 -- operation does not override a non-visible overriding controlled
1382 -- operation, i.e. one declared in a private part when the full
1383 -- view of a type is controlled. Conversely, it will override a
1384 -- visible operation that may be declared in a partial view when
1385 -- the full view is controlled.
1387 if Nam_In
(Chars
(Subp
), Name_Initialize
, Name_Adjust
, Name_Finalize
)
1388 and then Is_Controlled
(Tagged_Type
)
1389 and then not Is_Visibly_Controlled
(Tagged_Type
)
1390 and then not Is_Inherited_Public_Operation
(Ovr_Subp
)
1392 Set_Overridden_Operation
(Subp
, Empty
);
1394 -- If the subprogram specification carries an overriding
1395 -- indicator, no need for the warning: it is either redundant,
1396 -- or else an error will be reported.
1398 if Nkind
(Parent
(Subp
)) = N_Procedure_Specification
1400 (Must_Override
(Parent
(Subp
))
1401 or else Must_Not_Override
(Parent
(Subp
)))
1405 -- Here we need the warning
1409 ("operation does not override inherited&??", Subp
, Subp
);
1413 Override_Dispatching_Operation
(Tagged_Type
, Ovr_Subp
, Subp
);
1415 -- Ada 2005 (AI-251): In case of late overriding of a primitive
1416 -- that covers abstract interface subprograms we must register it
1417 -- in all the secondary dispatch tables associated with abstract
1418 -- interfaces. We do this now only if not building static tables,
1419 -- nor when the expander is inactive (we avoid trying to register
1420 -- primitives in semantics-only mode, since the type may not have
1421 -- an associated dispatch table). Otherwise the patch code is
1422 -- emitted after those tables are built, to prevent access before
1423 -- elaboration in gigi.
1425 if Body_Is_Last_Primitive
and then Expander_Active
then
1427 Subp_Body
: constant Node_Id
:= Unit_Declaration_Node
(Subp
);
1432 Elmt
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
1433 while Present
(Elmt
) loop
1434 Prim
:= Node
(Elmt
);
1436 -- No code required to register primitives in VM targets
1438 if Present
(Alias
(Prim
))
1439 and then Present
(Interface_Alias
(Prim
))
1440 and then Alias
(Prim
) = Subp
1441 and then not Building_Static_DT
(Tagged_Type
)
1442 and then Tagged_Type_Expansion
1444 Insert_Actions_After
(Subp_Body
,
1445 Register_Primitive
(Sloc
(Subp_Body
), Prim
=> Prim
));
1451 -- Redisplay the contents of the updated dispatch table
1453 if Debug_Flag_ZZ
then
1454 Write_Str
("Late overriding: ");
1455 Write_DT
(Tagged_Type
);
1461 -- If the tagged type is a concurrent type then we must be compiling
1462 -- with no code generation (we are either compiling a generic unit or
1463 -- compiling under -gnatc mode) because we have previously tested that
1464 -- no serious errors has been reported. In this case we do not add the
1465 -- primitive to the list of primitives of Tagged_Type but we leave the
1466 -- primitive decorated as a dispatching operation to be able to analyze
1467 -- and report errors associated with the Object.Operation notation.
1469 elsif Is_Concurrent_Type
(Tagged_Type
) then
1470 pragma Assert
(not Expander_Active
);
1472 -- Attach operation to list of primitives of the synchronized type
1473 -- itself, for ASIS use.
1475 Append_Elmt
(Subp
, Direct_Primitive_Operations
(Tagged_Type
));
1477 -- If no old subprogram, then we add this as a dispatching operation,
1478 -- but we avoid doing this if an error was posted, to prevent annoying
1481 elsif not Error_Posted
(Subp
) then
1482 Add_Dispatching_Operation
(Tagged_Type
, Subp
);
1485 Set_Is_Dispatching_Operation
(Subp
, True);
1487 -- Ada 2005 (AI-251): If the type implements interfaces we must check
1488 -- subtype conformance against all the interfaces covered by this
1491 if Present
(Ovr_Subp
)
1492 and then Has_Interfaces
(Tagged_Type
)
1495 Ifaces_List
: Elist_Id
;
1496 Iface_Elmt
: Elmt_Id
;
1497 Iface_Prim_Elmt
: Elmt_Id
;
1498 Iface_Prim
: Entity_Id
;
1499 Ret_Typ
: Entity_Id
;
1502 Collect_Interfaces
(Tagged_Type
, Ifaces_List
);
1504 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
1505 while Present
(Iface_Elmt
) loop
1506 if not Is_Ancestor
(Node
(Iface_Elmt
), Tagged_Type
) then
1508 First_Elmt
(Primitive_Operations
(Node
(Iface_Elmt
)));
1509 while Present
(Iface_Prim_Elmt
) loop
1510 Iface_Prim
:= Node
(Iface_Prim_Elmt
);
1512 if Is_Interface_Conformant
1513 (Tagged_Type
, Iface_Prim
, Subp
)
1515 -- Handle procedures, functions whose return type
1516 -- matches, or functions not returning interfaces
1518 if Ekind
(Subp
) = E_Procedure
1519 or else Etype
(Iface_Prim
) = Etype
(Subp
)
1520 or else not Is_Interface
(Etype
(Iface_Prim
))
1522 Check_Subtype_Conformant
1524 Old_Id
=> Iface_Prim
,
1526 Skip_Controlling_Formals
=> True);
1528 -- Handle functions returning interfaces
1530 elsif Implements_Interface
1531 (Etype
(Subp
), Etype
(Iface_Prim
))
1533 -- Temporarily force both entities to return the
1534 -- same type. Required because Subtype_Conformant
1535 -- does not handle this case.
1537 Ret_Typ
:= Etype
(Iface_Prim
);
1538 Set_Etype
(Iface_Prim
, Etype
(Subp
));
1540 Check_Subtype_Conformant
1542 Old_Id
=> Iface_Prim
,
1544 Skip_Controlling_Formals
=> True);
1546 Set_Etype
(Iface_Prim
, Ret_Typ
);
1550 Next_Elmt
(Iface_Prim_Elmt
);
1554 Next_Elmt
(Iface_Elmt
);
1559 if not Body_Is_Last_Primitive
then
1560 Set_DT_Position_Value
(Subp
, No_Uint
);
1562 elsif Has_Controlled_Component
(Tagged_Type
)
1563 and then Nam_In
(Chars
(Subp
), Name_Initialize
,
1566 Name_Finalize_Address
)
1569 F_Node
: constant Node_Id
:= Freeze_Node
(Tagged_Type
);
1573 Old_Spec
: Entity_Id
;
1575 C_Names
: constant array (1 .. 4) of Name_Id
:=
1579 Name_Finalize_Address
);
1581 D_Names
: constant array (1 .. 4) of TSS_Name_Type
:=
1582 (TSS_Deep_Initialize
,
1585 TSS_Finalize_Address
);
1588 -- Remove previous controlled function which was constructed and
1589 -- analyzed when the type was frozen. This requires removing the
1590 -- body of the redefined primitive, as well as its specification
1591 -- if needed (there is no spec created for Deep_Initialize, see
1592 -- exp_ch3.adb). We must also dismantle the exception information
1593 -- that may have been generated for it when front end zero-cost
1594 -- tables are enabled.
1596 for J
in D_Names
'Range loop
1597 Old_P
:= TSS
(Tagged_Type
, D_Names
(J
));
1600 and then Chars
(Subp
) = C_Names
(J
)
1602 Old_Bod
:= Unit_Declaration_Node
(Old_P
);
1604 Set_Is_Eliminated
(Old_P
);
1605 Set_Scope
(Old_P
, Scope
(Current_Scope
));
1607 if Nkind
(Old_Bod
) = N_Subprogram_Body
1608 and then Present
(Corresponding_Spec
(Old_Bod
))
1610 Old_Spec
:= Corresponding_Spec
(Old_Bod
);
1611 Set_Has_Completion
(Old_Spec
, False);
1616 Build_Late_Proc
(Tagged_Type
, Chars
(Subp
));
1618 -- The new operation is added to the actions of the freeze node
1619 -- for the type, but this node has already been analyzed, so we
1620 -- must retrieve and analyze explicitly the new body.
1623 and then Present
(Actions
(F_Node
))
1625 Decl
:= Last
(Actions
(F_Node
));
1631 -- For similarity with record extensions, in Ada 9X the language should
1632 -- have disallowed adding visible operations to a tagged type after
1633 -- deriving a private extension from it. Report a warning if this
1634 -- primitive is defined after a private extension of Tagged_Type.
1636 Warn_On_Late_Primitive_After_Private_Extension
(Tagged_Type
, Subp
);
1637 end Check_Dispatching_Operation
;
1639 ------------------------------------------
1640 -- Check_Operation_From_Incomplete_Type --
1641 ------------------------------------------
1643 procedure Check_Operation_From_Incomplete_Type
1647 Full
: constant Entity_Id
:= Full_View
(Typ
);
1648 Parent_Typ
: constant Entity_Id
:= Etype
(Full
);
1649 Old_Prim
: constant Elist_Id
:= Primitive_Operations
(Parent_Typ
);
1650 New_Prim
: constant Elist_Id
:= Primitive_Operations
(Full
);
1652 Prev
: Elmt_Id
:= No_Elmt
;
1654 function Derives_From
(Parent_Subp
: Entity_Id
) return Boolean;
1655 -- Check that Subp has profile of an operation derived from Parent_Subp.
1656 -- Subp must have a parameter or result type that is Typ or an access
1657 -- parameter or access result type that designates Typ.
1663 function Derives_From
(Parent_Subp
: Entity_Id
) return Boolean is
1667 if Chars
(Parent_Subp
) /= Chars
(Subp
) then
1671 -- Check that the type of controlling formals is derived from the
1672 -- parent subprogram's controlling formal type (or designated type
1673 -- if the formal type is an anonymous access type).
1675 F1
:= First_Formal
(Parent_Subp
);
1676 F2
:= First_Formal
(Subp
);
1677 while Present
(F1
) and then Present
(F2
) loop
1678 if Ekind
(Etype
(F1
)) = E_Anonymous_Access_Type
then
1679 if Ekind
(Etype
(F2
)) /= E_Anonymous_Access_Type
then
1681 elsif Designated_Type
(Etype
(F1
)) = Parent_Typ
1682 and then Designated_Type
(Etype
(F2
)) /= Full
1687 elsif Ekind
(Etype
(F2
)) = E_Anonymous_Access_Type
then
1690 elsif Etype
(F1
) = Parent_Typ
and then Etype
(F2
) /= Full
then
1698 -- Check that a controlling result type is derived from the parent
1699 -- subprogram's result type (or designated type if the result type
1700 -- is an anonymous access type).
1702 if Ekind
(Parent_Subp
) = E_Function
then
1703 if Ekind
(Subp
) /= E_Function
then
1706 elsif Ekind
(Etype
(Parent_Subp
)) = E_Anonymous_Access_Type
then
1707 if Ekind
(Etype
(Subp
)) /= E_Anonymous_Access_Type
then
1710 elsif Designated_Type
(Etype
(Parent_Subp
)) = Parent_Typ
1711 and then Designated_Type
(Etype
(Subp
)) /= Full
1716 elsif Ekind
(Etype
(Subp
)) = E_Anonymous_Access_Type
then
1719 elsif Etype
(Parent_Subp
) = Parent_Typ
1720 and then Etype
(Subp
) /= Full
1725 elsif Ekind
(Subp
) = E_Function
then
1729 return No
(F1
) and then No
(F2
);
1732 -- Start of processing for Check_Operation_From_Incomplete_Type
1735 -- The operation may override an inherited one, or may be a new one
1736 -- altogether. The inherited operation will have been hidden by the
1737 -- current one at the point of the type derivation, so it does not
1738 -- appear in the list of primitive operations of the type. We have to
1739 -- find the proper place of insertion in the list of primitive opera-
1740 -- tions by iterating over the list for the parent type.
1742 Op1
:= First_Elmt
(Old_Prim
);
1743 Op2
:= First_Elmt
(New_Prim
);
1744 while Present
(Op1
) and then Present
(Op2
) loop
1745 if Derives_From
(Node
(Op1
)) then
1748 -- Avoid adding it to the list of primitives if already there
1750 if Node
(Op2
) /= Subp
then
1751 Prepend_Elmt
(Subp
, New_Prim
);
1755 Insert_Elmt_After
(Subp
, Prev
);
1766 -- Operation is a new primitive
1768 Append_Elmt
(Subp
, New_Prim
);
1769 end Check_Operation_From_Incomplete_Type
;
1771 ---------------------------------------
1772 -- Check_Operation_From_Private_View --
1773 ---------------------------------------
1775 procedure Check_Operation_From_Private_View
(Subp
, Old_Subp
: Entity_Id
) is
1776 Tagged_Type
: Entity_Id
;
1779 if Is_Dispatching_Operation
(Alias
(Subp
)) then
1780 Set_Scope
(Subp
, Current_Scope
);
1781 Tagged_Type
:= Find_Dispatching_Type
(Subp
);
1783 -- Add Old_Subp to primitive operations if not already present
1785 if Present
(Tagged_Type
) and then Is_Tagged_Type
(Tagged_Type
) then
1786 Append_Unique_Elmt
(Old_Subp
, Primitive_Operations
(Tagged_Type
));
1788 -- If Old_Subp isn't already marked as dispatching then this is
1789 -- the case of an operation of an untagged private type fulfilled
1790 -- by a tagged type that overrides an inherited dispatching
1791 -- operation, so we set the necessary dispatching attributes here.
1793 if not Is_Dispatching_Operation
(Old_Subp
) then
1795 -- If the untagged type has no discriminants, and the full
1796 -- view is constrained, there will be a spurious mismatch of
1797 -- subtypes on the controlling arguments, because the tagged
1798 -- type is the internal base type introduced in the derivation.
1799 -- Use the original type to verify conformance, rather than the
1802 if not Comes_From_Source
(Tagged_Type
)
1803 and then Has_Discriminants
(Tagged_Type
)
1809 Formal
:= First_Formal
(Old_Subp
);
1810 while Present
(Formal
) loop
1811 if Tagged_Type
= Base_Type
(Etype
(Formal
)) then
1812 Tagged_Type
:= Etype
(Formal
);
1815 Next_Formal
(Formal
);
1819 if Tagged_Type
= Base_Type
(Etype
(Old_Subp
)) then
1820 Tagged_Type
:= Etype
(Old_Subp
);
1824 Check_Controlling_Formals
(Tagged_Type
, Old_Subp
);
1825 Set_Is_Dispatching_Operation
(Old_Subp
, True);
1826 Set_DT_Position_Value
(Old_Subp
, No_Uint
);
1829 -- If the old subprogram is an explicit renaming of some other
1830 -- entity, it is not overridden by the inherited subprogram.
1831 -- Otherwise, update its alias and other attributes.
1833 if Present
(Alias
(Old_Subp
))
1834 and then Nkind
(Unit_Declaration_Node
(Old_Subp
)) /=
1835 N_Subprogram_Renaming_Declaration
1837 Set_Alias
(Old_Subp
, Alias
(Subp
));
1839 -- The derived subprogram should inherit the abstractness of
1840 -- the parent subprogram (except in the case of a function
1841 -- returning the type). This sets the abstractness properly
1842 -- for cases where a private extension may have inherited an
1843 -- abstract operation, but the full type is derived from a
1844 -- descendant type and inherits a nonabstract version.
1846 if Etype
(Subp
) /= Tagged_Type
then
1847 Set_Is_Abstract_Subprogram
1848 (Old_Subp
, Is_Abstract_Subprogram
(Alias
(Subp
)));
1853 end Check_Operation_From_Private_View
;
1855 --------------------------
1856 -- Find_Controlling_Arg --
1857 --------------------------
1859 function Find_Controlling_Arg
(N
: Node_Id
) return Node_Id
is
1860 Orig_Node
: constant Node_Id
:= Original_Node
(N
);
1864 if Nkind
(Orig_Node
) = N_Qualified_Expression
then
1865 return Find_Controlling_Arg
(Expression
(Orig_Node
));
1868 -- Dispatching on result case. If expansion is disabled, the node still
1869 -- has the structure of a function call. However, if the function name
1870 -- is an operator and the call was given in infix form, the original
1871 -- node has no controlling result and we must examine the current node.
1873 if Nkind
(N
) = N_Function_Call
1874 and then Present
(Controlling_Argument
(N
))
1875 and then Has_Controlling_Result
(Entity
(Name
(N
)))
1877 return Controlling_Argument
(N
);
1879 -- If expansion is enabled, the call may have been transformed into
1880 -- an indirect call, and we need to recover the original node.
1882 elsif Nkind
(Orig_Node
) = N_Function_Call
1883 and then Present
(Controlling_Argument
(Orig_Node
))
1884 and then Has_Controlling_Result
(Entity
(Name
(Orig_Node
)))
1886 return Controlling_Argument
(Orig_Node
);
1888 -- Type conversions are dynamically tagged if the target type, or its
1889 -- designated type, are classwide. An interface conversion expands into
1890 -- a dereference, so test must be performed on the original node.
1892 elsif Nkind
(Orig_Node
) = N_Type_Conversion
1893 and then Nkind
(N
) = N_Explicit_Dereference
1894 and then Is_Controlling_Actual
(N
)
1897 Target_Type
: constant Entity_Id
:=
1898 Entity
(Subtype_Mark
(Orig_Node
));
1901 if Is_Class_Wide_Type
(Target_Type
) then
1904 elsif Is_Access_Type
(Target_Type
)
1905 and then Is_Class_Wide_Type
(Designated_Type
(Target_Type
))
1916 elsif Is_Controlling_Actual
(N
)
1918 (Nkind
(Parent
(N
)) = N_Qualified_Expression
1919 and then Is_Controlling_Actual
(Parent
(N
)))
1923 if Is_Access_Type
(Typ
) then
1925 -- In the case of an Access attribute, use the type of the prefix,
1926 -- since in the case of an actual for an access parameter, the
1927 -- attribute's type may be of a specific designated type, even
1928 -- though the prefix type is class-wide.
1930 if Nkind
(N
) = N_Attribute_Reference
then
1931 Typ
:= Etype
(Prefix
(N
));
1933 -- An allocator is dispatching if the type of qualified expression
1934 -- is class_wide, in which case this is the controlling type.
1936 elsif Nkind
(Orig_Node
) = N_Allocator
1937 and then Nkind
(Expression
(Orig_Node
)) = N_Qualified_Expression
1939 Typ
:= Etype
(Expression
(Orig_Node
));
1941 Typ
:= Designated_Type
(Typ
);
1945 if Is_Class_Wide_Type
(Typ
)
1947 (Nkind
(Parent
(N
)) = N_Qualified_Expression
1948 and then Is_Access_Type
(Etype
(N
))
1949 and then Is_Class_Wide_Type
(Designated_Type
(Etype
(N
))))
1956 end Find_Controlling_Arg
;
1958 ---------------------------
1959 -- Find_Dispatching_Type --
1960 ---------------------------
1962 function Find_Dispatching_Type
(Subp
: Entity_Id
) return Entity_Id
is
1963 A_Formal
: Entity_Id
;
1965 Ctrl_Type
: Entity_Id
;
1968 if Ekind_In
(Subp
, E_Function
, E_Procedure
)
1969 and then Present
(DTC_Entity
(Subp
))
1971 return Scope
(DTC_Entity
(Subp
));
1973 -- For subprograms internally generated by derivations of tagged types
1974 -- use the alias subprogram as a reference to locate the dispatching
1977 elsif not Comes_From_Source
(Subp
)
1978 and then Present
(Alias
(Subp
))
1979 and then Is_Dispatching_Operation
(Alias
(Subp
))
1981 if Ekind
(Alias
(Subp
)) = E_Function
1982 and then Has_Controlling_Result
(Alias
(Subp
))
1984 return Check_Controlling_Type
(Etype
(Subp
), Subp
);
1987 Formal
:= First_Formal
(Subp
);
1988 A_Formal
:= First_Formal
(Alias
(Subp
));
1989 while Present
(A_Formal
) loop
1990 if Is_Controlling_Formal
(A_Formal
) then
1991 return Check_Controlling_Type
(Etype
(Formal
), Subp
);
1994 Next_Formal
(Formal
);
1995 Next_Formal
(A_Formal
);
1998 pragma Assert
(False);
2005 Formal
:= First_Formal
(Subp
);
2006 while Present
(Formal
) loop
2007 Ctrl_Type
:= Check_Controlling_Type
(Etype
(Formal
), Subp
);
2009 if Present
(Ctrl_Type
) then
2013 Next_Formal
(Formal
);
2016 -- The subprogram may also be dispatching on result
2018 if Present
(Etype
(Subp
)) then
2019 return Check_Controlling_Type
(Etype
(Subp
), Subp
);
2023 pragma Assert
(not Is_Dispatching_Operation
(Subp
));
2025 end Find_Dispatching_Type
;
2027 --------------------------------------
2028 -- Find_Hidden_Overridden_Primitive --
2029 --------------------------------------
2031 function Find_Hidden_Overridden_Primitive
(S
: Entity_Id
) return Entity_Id
2033 Tag_Typ
: constant Entity_Id
:= Find_Dispatching_Type
(S
);
2035 Orig_Prim
: Entity_Id
;
2037 Vis_List
: Elist_Id
;
2040 -- This Ada 2012 rule applies only for type extensions or private
2041 -- extensions, where the parent type is not in a parent unit, and
2042 -- where an operation is never declared but still inherited.
2045 or else not Is_Record_Type
(Tag_Typ
)
2046 or else Etype
(Tag_Typ
) = Tag_Typ
2047 or else In_Open_Scopes
(Scope
(Etype
(Tag_Typ
)))
2052 -- Collect the list of visible ancestor of the tagged type
2054 Vis_List
:= Visible_Ancestors
(Tag_Typ
);
2056 Elmt
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
2057 while Present
(Elmt
) loop
2058 Prim
:= Node
(Elmt
);
2060 -- Find an inherited hidden dispatching primitive with the name of S
2061 -- and a type-conformant profile.
2063 if Present
(Alias
(Prim
))
2064 and then Is_Hidden
(Alias
(Prim
))
2065 and then Find_Dispatching_Type
(Alias
(Prim
)) /= Tag_Typ
2066 and then Primitive_Names_Match
(S
, Prim
)
2067 and then Type_Conformant
(S
, Prim
)
2070 Vis_Ancestor
: Elmt_Id
;
2074 -- The original corresponding operation of Prim must be an
2075 -- operation of a visible ancestor of the dispatching type S,
2076 -- and the original corresponding operation of S2 must be
2079 Orig_Prim
:= Original_Corresponding_Operation
(Prim
);
2081 if Orig_Prim
/= Prim
2082 and then Is_Immediately_Visible
(Orig_Prim
)
2084 Vis_Ancestor
:= First_Elmt
(Vis_List
);
2085 while Present
(Vis_Ancestor
) loop
2087 First_Elmt
(Primitive_Operations
(Node
(Vis_Ancestor
)));
2088 while Present
(Elmt
) loop
2089 if Node
(Elmt
) = Orig_Prim
then
2090 Set_Overridden_Operation
(S
, Prim
);
2091 Set_Alias
(Prim
, Orig_Prim
);
2098 Next_Elmt
(Vis_Ancestor
);
2108 end Find_Hidden_Overridden_Primitive
;
2110 ---------------------------------------
2111 -- Find_Primitive_Covering_Interface --
2112 ---------------------------------------
2114 function Find_Primitive_Covering_Interface
2115 (Tagged_Type
: Entity_Id
;
2116 Iface_Prim
: Entity_Id
) return Entity_Id
2122 pragma Assert
(Is_Interface
(Find_Dispatching_Type
(Iface_Prim
))
2123 or else (Present
(Alias
(Iface_Prim
))
2126 (Find_Dispatching_Type
(Ultimate_Alias
(Iface_Prim
)))));
2128 -- Search in the homonym chain. Done to speed up locating visible
2129 -- entities and required to catch primitives associated with the partial
2130 -- view of private types when processing the corresponding full view.
2132 E
:= Current_Entity
(Iface_Prim
);
2133 while Present
(E
) loop
2134 if Is_Subprogram
(E
)
2135 and then Is_Dispatching_Operation
(E
)
2136 and then Is_Interface_Conformant
(Tagged_Type
, Iface_Prim
, E
)
2144 -- Search in the list of primitives of the type. Required to locate
2145 -- the covering primitive if the covering primitive is not visible
2146 -- (for example, non-visible inherited primitive of private type).
2148 El
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
2149 while Present
(El
) loop
2152 -- Keep separate the management of internal entities that link
2153 -- primitives with interface primitives from tagged type primitives.
2155 if No
(Interface_Alias
(E
)) then
2156 if Present
(Alias
(E
)) then
2158 -- This interface primitive has not been covered yet
2160 if Alias
(E
) = Iface_Prim
then
2163 -- The covering primitive was inherited
2165 elsif Overridden_Operation
(Ultimate_Alias
(E
))
2172 -- Check if E covers the interface primitive (includes case in
2173 -- which E is an inherited private primitive).
2175 if Is_Interface_Conformant
(Tagged_Type
, Iface_Prim
, E
) then
2179 -- Use the internal entity that links the interface primitive with
2180 -- the covering primitive to locate the entity.
2182 elsif Interface_Alias
(E
) = Iface_Prim
then
2192 end Find_Primitive_Covering_Interface
;
2194 ---------------------------
2195 -- Inherited_Subprograms --
2196 ---------------------------
2198 function Inherited_Subprograms
2200 No_Interfaces
: Boolean := False;
2201 Interfaces_Only
: Boolean := False;
2202 One_Only
: Boolean := False) return Subprogram_List
2204 Result
: Subprogram_List
(1 .. 6000);
2205 -- 6000 here is intended to be infinity. We could use an expandable
2206 -- table, but it would be awfully heavy, and there is no way that we
2207 -- could reasonably exceed this value.
2210 -- Number of entries in Result
2212 Parent_Op
: Entity_Id
;
2213 -- Traverses the Overridden_Operation chain
2215 procedure Store_IS
(E
: Entity_Id
);
2216 -- Stores E in Result if not already stored
2222 procedure Store_IS
(E
: Entity_Id
) is
2224 for J
in 1 .. N
loop
2225 if E
= Result
(J
) then
2234 -- Start of processing for Inherited_Subprograms
2237 pragma Assert
(not (No_Interfaces
and Interfaces_Only
));
2239 if Present
(S
) and then Is_Dispatching_Operation
(S
) then
2241 -- Deal with direct inheritance
2243 if not Interfaces_Only
then
2246 Parent_Op
:= Overridden_Operation
(Parent_Op
);
2247 exit when No
(Parent_Op
)
2251 Is_Interface
(Find_Dispatching_Type
(Parent_Op
)));
2253 if Is_Subprogram_Or_Generic_Subprogram
(Parent_Op
) then
2254 Store_IS
(Parent_Op
);
2263 -- Now deal with interfaces
2265 if not No_Interfaces
then
2267 Tag_Typ
: Entity_Id
;
2272 Tag_Typ
:= Find_Dispatching_Type
(S
);
2274 -- In the presence of limited views there may be no visible
2275 -- dispatching type. Primitives will be inherited when non-
2276 -- limited view is frozen.
2278 if No
(Tag_Typ
) then
2279 return Result
(1 .. 0);
2282 if Is_Concurrent_Type
(Tag_Typ
) then
2283 Tag_Typ
:= Corresponding_Record_Type
(Tag_Typ
);
2286 -- Search primitive operations of dispatching type
2288 if Present
(Tag_Typ
)
2289 and then Present
(Primitive_Operations
(Tag_Typ
))
2291 Elmt
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
2292 while Present
(Elmt
) loop
2293 Prim
:= Node
(Elmt
);
2295 -- The following test eliminates some odd cases in which
2296 -- Ekind (Prim) is Void, to be investigated further ???
2298 if not Is_Subprogram_Or_Generic_Subprogram
(Prim
) then
2301 -- For [generic] subprogram, look at interface alias
2303 elsif Present
(Interface_Alias
(Prim
))
2304 and then Alias
(Prim
) = S
2306 -- We have found a primitive covered by S
2308 Store_IS
(Interface_Alias
(Prim
));
2324 return Result
(1 .. N
);
2325 end Inherited_Subprograms
;
2327 ---------------------------
2328 -- Is_Dynamically_Tagged --
2329 ---------------------------
2331 function Is_Dynamically_Tagged
(N
: Node_Id
) return Boolean is
2333 if Nkind
(N
) = N_Error
then
2336 elsif Present
(Find_Controlling_Arg
(N
)) then
2339 -- Special cases: entities, and calls that dispatch on result
2341 elsif Is_Entity_Name
(N
) then
2342 return Is_Class_Wide_Type
(Etype
(N
));
2344 elsif Nkind
(N
) = N_Function_Call
2345 and then Is_Class_Wide_Type
(Etype
(N
))
2349 -- Otherwise check whether call has controlling argument
2354 end Is_Dynamically_Tagged
;
2356 ---------------------------------
2357 -- Is_Null_Interface_Primitive --
2358 ---------------------------------
2360 function Is_Null_Interface_Primitive
(E
: Entity_Id
) return Boolean is
2362 return Comes_From_Source
(E
)
2363 and then Is_Dispatching_Operation
(E
)
2364 and then Ekind
(E
) = E_Procedure
2365 and then Null_Present
(Parent
(E
))
2366 and then Is_Interface
(Find_Dispatching_Type
(E
));
2367 end Is_Null_Interface_Primitive
;
2369 -----------------------------------
2370 -- Is_Inherited_Public_Operation --
2371 -----------------------------------
2373 function Is_Inherited_Public_Operation
(Op
: Entity_Id
) return Boolean is
2374 Pack_Decl
: Node_Id
;
2375 Prim
: Entity_Id
:= Op
;
2376 Scop
: Entity_Id
:= Prim
;
2379 -- Locate the ultimate non-hidden alias entity
2381 while Present
(Alias
(Prim
)) and then not Is_Hidden
(Alias
(Prim
)) loop
2382 pragma Assert
(Alias
(Prim
) /= Prim
);
2383 Prim
:= Alias
(Prim
);
2384 Scop
:= Scope
(Prim
);
2387 if Comes_From_Source
(Prim
) and then Ekind
(Scop
) = E_Package
then
2388 Pack_Decl
:= Unit_Declaration_Node
(Scop
);
2391 Nkind
(Pack_Decl
) = N_Package_Declaration
2392 and then List_Containing
(Unit_Declaration_Node
(Prim
)) =
2393 Visible_Declarations
(Specification
(Pack_Decl
));
2398 end Is_Inherited_Public_Operation
;
2400 ------------------------------
2401 -- Is_Overriding_Subprogram --
2402 ------------------------------
2404 function Is_Overriding_Subprogram
(E
: Entity_Id
) return Boolean is
2405 Inherited
: constant Subprogram_List
:=
2406 Inherited_Subprograms
(E
, One_Only
=> True);
2408 return Inherited
'Length > 0;
2409 end Is_Overriding_Subprogram
;
2411 --------------------------
2412 -- Is_Tag_Indeterminate --
2413 --------------------------
2415 function Is_Tag_Indeterminate
(N
: Node_Id
) return Boolean is
2418 Orig_Node
: constant Node_Id
:= Original_Node
(N
);
2421 if Nkind
(Orig_Node
) = N_Function_Call
2422 and then Is_Entity_Name
(Name
(Orig_Node
))
2424 Nam
:= Entity
(Name
(Orig_Node
));
2426 if not Has_Controlling_Result
(Nam
) then
2429 -- The function may have a controlling result, but if the return type
2430 -- is not visibly tagged, then this is not tag-indeterminate.
2432 elsif Is_Access_Type
(Etype
(Nam
))
2433 and then not Is_Tagged_Type
(Designated_Type
(Etype
(Nam
)))
2437 -- An explicit dereference means that the call has already been
2438 -- expanded and there is no tag to propagate.
2440 elsif Nkind
(N
) = N_Explicit_Dereference
then
2443 -- If there are no actuals, the call is tag-indeterminate
2445 elsif No
(Parameter_Associations
(Orig_Node
)) then
2449 Actual
:= First_Actual
(Orig_Node
);
2450 while Present
(Actual
) loop
2451 if Is_Controlling_Actual
(Actual
)
2452 and then not Is_Tag_Indeterminate
(Actual
)
2454 -- One operand is dispatching
2459 Next_Actual
(Actual
);
2465 elsif Nkind
(Orig_Node
) = N_Qualified_Expression
then
2466 return Is_Tag_Indeterminate
(Expression
(Orig_Node
));
2468 -- Case of a call to the Input attribute (possibly rewritten), which is
2469 -- always tag-indeterminate except when its prefix is a Class attribute.
2471 elsif Nkind
(Orig_Node
) = N_Attribute_Reference
2473 Get_Attribute_Id
(Attribute_Name
(Orig_Node
)) = Attribute_Input
2474 and then Nkind
(Prefix
(Orig_Node
)) /= N_Attribute_Reference
2478 -- In Ada 2005, a function that returns an anonymous access type can be
2479 -- dispatching, and the dereference of a call to such a function can
2480 -- also be tag-indeterminate if the call itself is.
2482 elsif Nkind
(Orig_Node
) = N_Explicit_Dereference
2483 and then Ada_Version
>= Ada_2005
2485 return Is_Tag_Indeterminate
(Prefix
(Orig_Node
));
2490 end Is_Tag_Indeterminate
;
2492 ------------------------------------
2493 -- Override_Dispatching_Operation --
2494 ------------------------------------
2496 procedure Override_Dispatching_Operation
2497 (Tagged_Type
: Entity_Id
;
2498 Prev_Op
: Entity_Id
;
2500 Is_Wrapper
: Boolean := False)
2506 -- Diagnose failure to match No_Return in parent (Ada-2005, AI-414, but
2507 -- we do it unconditionally in Ada 95 now, since this is our pragma).
2509 if No_Return
(Prev_Op
) and then not No_Return
(New_Op
) then
2510 Error_Msg_N
("procedure & must have No_Return pragma", New_Op
);
2511 Error_Msg_N
("\since overridden procedure has No_Return", New_Op
);
2514 -- If there is no previous operation to override, the type declaration
2515 -- was malformed, and an error must have been emitted already.
2517 Elmt
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
2518 while Present
(Elmt
) and then Node
(Elmt
) /= Prev_Op
loop
2526 -- The location of entities that come from source in the list of
2527 -- primitives of the tagged type must follow their order of occurrence
2528 -- in the sources to fulfill the C++ ABI. If the overridden entity is a
2529 -- primitive of an interface that is not implemented by the parents of
2530 -- this tagged type (that is, it is an alias of an interface primitive
2531 -- generated by Derive_Interface_Progenitors), then we must append the
2532 -- new entity at the end of the list of primitives.
2534 if Present
(Alias
(Prev_Op
))
2535 and then Etype
(Tagged_Type
) /= Tagged_Type
2536 and then Is_Interface
(Find_Dispatching_Type
(Alias
(Prev_Op
)))
2537 and then not Is_Ancestor
(Find_Dispatching_Type
(Alias
(Prev_Op
)),
2538 Tagged_Type
, Use_Full_View
=> True)
2539 and then not Implements_Interface
2540 (Etype
(Tagged_Type
),
2541 Find_Dispatching_Type
(Alias
(Prev_Op
)))
2543 Remove_Elmt
(Primitive_Operations
(Tagged_Type
), Elmt
);
2544 Append_Elmt
(New_Op
, Primitive_Operations
(Tagged_Type
));
2546 -- The new primitive replaces the overridden entity. Required to ensure
2547 -- that overriding primitive is assigned the same dispatch table slot.
2550 Replace_Elmt
(Elmt
, New_Op
);
2553 if Ada_Version
>= Ada_2005
and then Has_Interfaces
(Tagged_Type
) then
2555 -- Ada 2005 (AI-251): Update the attribute alias of all the aliased
2556 -- entities of the overridden primitive to reference New_Op, and
2557 -- also propagate the proper value of Is_Abstract_Subprogram. Verify
2558 -- that the new operation is subtype conformant with the interface
2559 -- operations that it implements (for operations inherited from the
2560 -- parent itself, this check is made when building the derived type).
2562 -- Note: This code is executed with internally generated wrappers of
2563 -- functions with controlling result and late overridings.
2565 Elmt
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
2566 while Present
(Elmt
) loop
2567 Prim
:= Node
(Elmt
);
2569 if Prim
= New_Op
then
2572 -- Note: The check on Is_Subprogram protects the frontend against
2573 -- reading attributes in entities that are not yet fully decorated
2575 elsif Is_Subprogram
(Prim
)
2576 and then Present
(Interface_Alias
(Prim
))
2577 and then Alias
(Prim
) = Prev_Op
2579 Set_Alias
(Prim
, New_Op
);
2581 -- No further decoration needed yet for internally generated
2582 -- wrappers of controlling functions since (at this stage)
2583 -- they are not yet decorated.
2585 if not Is_Wrapper
then
2586 Check_Subtype_Conformant
(New_Op
, Prim
);
2588 Set_Is_Abstract_Subprogram
(Prim
,
2589 Is_Abstract_Subprogram
(New_Op
));
2591 -- Ensure that this entity will be expanded to fill the
2592 -- corresponding entry in its dispatch table.
2594 if not Is_Abstract_Subprogram
(Prim
) then
2595 Set_Has_Delayed_Freeze
(Prim
);
2604 if (not Is_Package_Or_Generic_Package
(Current_Scope
))
2605 or else not In_Private_Part
(Current_Scope
)
2607 -- Not a private primitive
2611 else pragma Assert
(Is_Inherited_Operation
(Prev_Op
));
2613 -- Make the overriding operation into an alias of the implicit one.
2614 -- In this fashion a call from outside ends up calling the new body
2615 -- even if non-dispatching, and a call from inside calls the over-
2616 -- riding operation because it hides the implicit one. To indicate
2617 -- that the body of Prev_Op is never called, set its dispatch table
2618 -- entity to Empty. If the overridden operation has a dispatching
2619 -- result, so does the overriding one.
2621 Set_Alias
(Prev_Op
, New_Op
);
2622 Set_DTC_Entity
(Prev_Op
, Empty
);
2623 Set_Has_Controlling_Result
(New_Op
, Has_Controlling_Result
(Prev_Op
));
2626 end Override_Dispatching_Operation
;
2632 procedure Propagate_Tag
(Control
: Node_Id
; Actual
: Node_Id
) is
2633 Call_Node
: Node_Id
;
2637 if Nkind
(Actual
) = N_Function_Call
then
2638 Call_Node
:= Actual
;
2640 elsif Nkind
(Actual
) = N_Identifier
2641 and then Nkind
(Original_Node
(Actual
)) = N_Function_Call
2643 -- Call rewritten as object declaration when stack-checking is
2644 -- enabled. Propagate tag to expression in declaration, which is
2647 Call_Node
:= Expression
(Parent
(Entity
(Actual
)));
2649 -- Ada 2005: If this is a dereference of a call to a function with a
2650 -- dispatching access-result, the tag is propagated when the dereference
2651 -- itself is expanded (see exp_ch6.adb) and there is nothing else to do.
2653 elsif Nkind
(Actual
) = N_Explicit_Dereference
2654 and then Nkind
(Original_Node
(Prefix
(Actual
))) = N_Function_Call
2658 -- When expansion is suppressed, an unexpanded call to 'Input can occur,
2659 -- and in that case we can simply return.
2661 elsif Nkind
(Actual
) = N_Attribute_Reference
then
2662 pragma Assert
(Attribute_Name
(Actual
) = Name_Input
);
2666 -- Only other possibilities are parenthesized or qualified expression,
2667 -- or an expander-generated unchecked conversion of a function call to
2668 -- a stream Input attribute.
2671 Call_Node
:= Expression
(Actual
);
2674 -- No action needed if the call has been already expanded
2676 if Is_Expanded_Dispatching_Call
(Call_Node
) then
2680 -- Do not set the Controlling_Argument if already set. This happens in
2681 -- the special case of _Input (see Exp_Attr, case Input).
2683 if No
(Controlling_Argument
(Call_Node
)) then
2684 Set_Controlling_Argument
(Call_Node
, Control
);
2687 Arg
:= First_Actual
(Call_Node
);
2688 while Present
(Arg
) loop
2689 if Is_Tag_Indeterminate
(Arg
) then
2690 Propagate_Tag
(Control
, Arg
);
2696 -- Expansion of dispatching calls is suppressed on VM targets, because
2697 -- the VM back-ends directly handle the generation of dispatching calls
2698 -- and would have to undo any expansion to an indirect call.
2700 if Tagged_Type_Expansion
then
2702 Call_Typ
: constant Entity_Id
:= Etype
(Call_Node
);
2705 Expand_Dispatching_Call
(Call_Node
);
2707 -- If the controlling argument is an interface type and the type
2708 -- of Call_Node differs then we must add an implicit conversion to
2709 -- force displacement of the pointer to the object to reference
2710 -- the secondary dispatch table of the interface.
2712 if Is_Interface
(Etype
(Control
))
2713 and then Etype
(Control
) /= Call_Typ
2715 -- Cannot use Convert_To because the previous call to
2716 -- Expand_Dispatching_Call leaves decorated the Call_Node
2717 -- with the type of Control.
2720 Make_Type_Conversion
(Sloc
(Call_Node
),
2722 New_Occurrence_Of
(Etype
(Control
), Sloc
(Call_Node
)),
2723 Expression
=> Relocate_Node
(Call_Node
)));
2724 Set_Etype
(Call_Node
, Etype
(Control
));
2725 Set_Analyzed
(Call_Node
);
2727 Expand_Interface_Conversion
(Call_Node
);
2731 -- Expansion of a dispatching call results in an indirect call, which in
2732 -- turn causes current values to be killed (see Resolve_Call), so on VM
2733 -- targets we do the call here to ensure consistent warnings between VM
2734 -- and non-VM targets.
2737 Kill_Current_Values
;