PR tree-optimization/85699
[official-gcc.git] / gcc / ada / lib-xref.adb
blob8eb6504e7007c87b4d8bd05f0aa3fab5c07d1564
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- L I B . X R E F --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1998-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Csets; use Csets;
28 with Elists; use Elists;
29 with Errout; use Errout;
30 with Lib.Util; use Lib.Util;
31 with Nlists; use Nlists;
32 with Opt; use Opt;
33 with Restrict; use Restrict;
34 with Rident; use Rident;
35 with Sem; use Sem;
36 with Sem_Aux; use Sem_Aux;
37 with Sem_Prag; use Sem_Prag;
38 with Sem_Util; use Sem_Util;
39 with Sem_Warn; use Sem_Warn;
40 with Sinfo; use Sinfo;
41 with Sinput; use Sinput;
42 with Snames; use Snames;
43 with Stringt; use Stringt;
44 with Stand; use Stand;
45 with Table; use Table;
47 with GNAT.Heap_Sort_G;
48 with GNAT.HTable;
50 package body Lib.Xref is
52 ------------------
53 -- Declarations --
54 ------------------
56 -- The Xref table is used to record references. The Loc field is set
57 -- to No_Location for a definition entry.
59 subtype Xref_Entry_Number is Int;
61 type Xref_Key is record
62 -- These are the components of Xref_Entry that participate in hash
63 -- lookups.
65 Ent : Entity_Id;
66 -- Entity referenced (E parameter to Generate_Reference)
68 Loc : Source_Ptr;
69 -- Location of reference (Original_Location (Sloc field of N parameter
70 -- to Generate_Reference)). Set to No_Location for the case of a
71 -- defining occurrence.
73 Typ : Character;
74 -- Reference type (Typ param to Generate_Reference)
76 Eun : Unit_Number_Type;
77 -- Unit number corresponding to Ent
79 Lun : Unit_Number_Type;
80 -- Unit number corresponding to Loc. Value is undefined and not
81 -- referenced if Loc is set to No_Location.
83 -- The following components are only used for SPARK cross-references
85 Ref_Scope : Entity_Id;
86 -- Entity of the closest subprogram or package enclosing the reference
88 Ent_Scope : Entity_Id;
89 -- Entity of the closest subprogram or package enclosing the definition,
90 -- which should be located in the same file as the definition itself.
91 end record;
93 type Xref_Entry is record
94 Key : Xref_Key;
96 Ent_Scope_File : Unit_Number_Type;
97 -- File for entity Ent_Scope
99 Def : Source_Ptr;
100 -- Original source location for entity being referenced. Note that these
101 -- values are used only during the output process, they are not set when
102 -- the entries are originally built. This is because private entities
103 -- can be swapped when the initial call is made.
105 HTable_Next : Xref_Entry_Number;
106 -- For use only by Static_HTable
107 end record;
109 package Xrefs is new Table.Table (
110 Table_Component_Type => Xref_Entry,
111 Table_Index_Type => Xref_Entry_Number,
112 Table_Low_Bound => 1,
113 Table_Initial => Alloc.Xrefs_Initial,
114 Table_Increment => Alloc.Xrefs_Increment,
115 Table_Name => "Xrefs");
117 --------------
118 -- Xref_Set --
119 --------------
121 -- We keep a set of xref entries, in order to avoid inserting duplicate
122 -- entries into the above Xrefs table. An entry is in Xref_Set if and only
123 -- if it is in Xrefs.
125 Num_Buckets : constant := 2**16;
127 subtype Header_Num is Integer range 0 .. Num_Buckets - 1;
128 type Null_Type is null record;
129 pragma Unreferenced (Null_Type);
131 function Hash (F : Xref_Entry_Number) return Header_Num;
133 function Equal (F1, F2 : Xref_Entry_Number) return Boolean;
135 procedure HT_Set_Next (E : Xref_Entry_Number; Next : Xref_Entry_Number);
137 function HT_Next (E : Xref_Entry_Number) return Xref_Entry_Number;
139 function Get_Key (E : Xref_Entry_Number) return Xref_Entry_Number;
141 pragma Inline (Hash, Equal, HT_Set_Next, HT_Next, Get_Key);
143 package Xref_Set is new GNAT.HTable.Static_HTable (
144 Header_Num,
145 Element => Xref_Entry,
146 Elmt_Ptr => Xref_Entry_Number,
147 Null_Ptr => 0,
148 Set_Next => HT_Set_Next,
149 Next => HT_Next,
150 Key => Xref_Entry_Number,
151 Get_Key => Get_Key,
152 Hash => Hash,
153 Equal => Equal);
155 -----------------------------
156 -- SPARK Xrefs Information --
157 -----------------------------
159 package body SPARK_Specific is separate;
161 ------------------------
162 -- Local Subprograms --
163 ------------------------
165 procedure Add_Entry (Key : Xref_Key; Ent_Scope_File : Unit_Number_Type);
166 -- Add an entry to the tables of Xref_Entries, avoiding duplicates
168 procedure Generate_Prim_Op_References (Typ : Entity_Id);
169 -- For a tagged type, generate implicit references to its primitive
170 -- operations, for source navigation. This is done right before emitting
171 -- cross-reference information rather than at the freeze point of the type
172 -- in order to handle late bodies that are primitive operations.
174 function Lt (T1, T2 : Xref_Entry) return Boolean;
175 -- Order cross-references
177 ---------------
178 -- Add_Entry --
179 ---------------
181 procedure Add_Entry (Key : Xref_Key; Ent_Scope_File : Unit_Number_Type) is
182 begin
183 Xrefs.Increment_Last; -- tentative
184 Xrefs.Table (Xrefs.Last).Key := Key;
186 -- Set the entry in Xref_Set, and if newly set, keep the above
187 -- tentative increment.
189 if Xref_Set.Set_If_Not_Present (Xrefs.Last) then
190 Xrefs.Table (Xrefs.Last).Ent_Scope_File := Ent_Scope_File;
191 -- Leave Def and HTable_Next uninitialized
193 Set_Has_Xref_Entry (Key.Ent);
195 -- It was already in Xref_Set, so throw away the tentatively-added entry
197 else
198 Xrefs.Decrement_Last;
199 end if;
200 end Add_Entry;
202 -----------
203 -- Equal --
204 -----------
206 function Equal (F1, F2 : Xref_Entry_Number) return Boolean is
207 Result : constant Boolean :=
208 Xrefs.Table (F1).Key = Xrefs.Table (F2).Key;
209 begin
210 return Result;
211 end Equal;
213 -------------------------
214 -- Generate_Definition --
215 -------------------------
217 procedure Generate_Definition (E : Entity_Id) is
218 begin
219 pragma Assert (Nkind (E) in N_Entity);
221 -- Note that we do not test Xref_Entity_Letters here. It is too early
222 -- to do so, since we are often called before the entity is fully
223 -- constructed, so that the Ekind is still E_Void.
225 if Opt.Xref_Active
227 -- Definition must come from source
229 -- We make an exception for subprogram child units that have no spec.
230 -- For these we generate a subprogram declaration for library use,
231 -- and the corresponding entity does not come from source.
232 -- Nevertheless, all references will be attached to it and we have
233 -- to treat is as coming from user code.
235 and then (Comes_From_Source (E) or else Is_Child_Unit (E))
237 -- And must have a reasonable source location that is not
238 -- within an instance (all entities in instances are ignored)
240 and then Sloc (E) > No_Location
241 and then Instantiation_Location (Sloc (E)) = No_Location
243 -- And must be a non-internal name from the main source unit
245 and then In_Extended_Main_Source_Unit (E)
246 and then not Is_Internal_Name (Chars (E))
247 then
248 Add_Entry
249 ((Ent => E,
250 Loc => No_Location,
251 Typ => ' ',
252 Eun => Get_Source_Unit (Original_Location (Sloc (E))),
253 Lun => No_Unit,
254 Ref_Scope => Empty,
255 Ent_Scope => Empty),
256 Ent_Scope_File => No_Unit);
258 if In_Inlined_Body then
259 Set_Referenced (E);
260 end if;
261 end if;
262 end Generate_Definition;
264 ---------------------------------
265 -- Generate_Operator_Reference --
266 ---------------------------------
268 procedure Generate_Operator_Reference
269 (N : Node_Id;
270 T : Entity_Id)
272 begin
273 if not In_Extended_Main_Source_Unit (N) then
274 return;
275 end if;
277 -- If the operator is not a Standard operator, then we generate a real
278 -- reference to the user defined operator.
280 if Sloc (Entity (N)) /= Standard_Location then
281 Generate_Reference (Entity (N), N);
283 -- A reference to an implicit inequality operator is also a reference
284 -- to the user-defined equality.
286 if Nkind (N) = N_Op_Ne
287 and then not Comes_From_Source (Entity (N))
288 and then Present (Corresponding_Equality (Entity (N)))
289 then
290 Generate_Reference (Corresponding_Equality (Entity (N)), N);
291 end if;
293 -- For the case of Standard operators, we mark the result type as
294 -- referenced. This ensures that in the case where we are using a
295 -- derived operator, we mark an entity of the unit that implicitly
296 -- defines this operator as used. Otherwise we may think that no entity
297 -- of the unit is used. The actual entity marked as referenced is the
298 -- first subtype, which is the relevant user defined entity.
300 -- Note: we only do this for operators that come from source. The
301 -- generated code sometimes reaches for entities that do not need to be
302 -- explicitly visible (for example, when we expand the code for
303 -- comparing two record objects, the fields of the record may not be
304 -- visible).
306 elsif Comes_From_Source (N) then
307 Set_Referenced (First_Subtype (T));
308 end if;
309 end Generate_Operator_Reference;
311 ---------------------------------
312 -- Generate_Prim_Op_References --
313 ---------------------------------
315 procedure Generate_Prim_Op_References (Typ : Entity_Id) is
316 Base_T : Entity_Id;
317 Prim : Elmt_Id;
318 Prim_List : Elist_Id;
320 begin
321 -- Handle subtypes of synchronized types
323 if Ekind (Typ) = E_Protected_Subtype
324 or else Ekind (Typ) = E_Task_Subtype
325 then
326 Base_T := Etype (Typ);
327 else
328 Base_T := Typ;
329 end if;
331 -- References to primitive operations are only relevant for tagged types
333 if not Is_Tagged_Type (Base_T)
334 or else Is_Class_Wide_Type (Base_T)
335 then
336 return;
337 end if;
339 -- Ada 2005 (AI-345): For synchronized types generate reference to the
340 -- wrapper that allow us to dispatch calls through their implemented
341 -- abstract interface types.
343 -- The check for Present here is to protect against previously reported
344 -- critical errors.
346 Prim_List := Primitive_Operations (Base_T);
348 if No (Prim_List) then
349 return;
350 end if;
352 Prim := First_Elmt (Prim_List);
353 while Present (Prim) loop
355 -- If the operation is derived, get the original for cross-reference
356 -- reference purposes (it is the original for which we want the xref
357 -- and for which the comes_from_source test must be performed).
359 Generate_Reference
360 (Typ, Ultimate_Alias (Node (Prim)), 'p', Set_Ref => False);
361 Next_Elmt (Prim);
362 end loop;
363 end Generate_Prim_Op_References;
365 ------------------------
366 -- Generate_Reference --
367 ------------------------
369 procedure Generate_Reference
370 (E : Entity_Id;
371 N : Node_Id;
372 Typ : Character := 'r';
373 Set_Ref : Boolean := True;
374 Force : Boolean := False)
376 Actual_Typ : Character := Typ;
377 Call : Node_Id;
378 Def : Source_Ptr;
379 Ent : Entity_Id;
380 Ent_Scope : Entity_Id;
381 Formal : Entity_Id;
382 Kind : Entity_Kind;
383 Nod : Node_Id;
384 Ref : Source_Ptr;
385 Ref_Scope : Entity_Id;
387 function Get_Through_Renamings (E : Entity_Id) return Entity_Id;
388 -- Get the enclosing entity through renamings, which may come from
389 -- source or from the translation of generic instantiations.
391 function Is_On_LHS (Node : Node_Id) return Boolean;
392 -- Used to check if a node is on the left hand side of an assignment.
393 -- The following cases are handled:
395 -- Variable Node is a direct descendant of left hand side of an
396 -- assignment statement.
398 -- Prefix Of an indexed or selected component that is present in
399 -- a subtree rooted by an assignment statement. There is
400 -- no restriction of nesting of components, thus cases
401 -- such as A.B (C).D are handled properly. However a prefix
402 -- of a dereference (either implicit or explicit) is never
403 -- considered as on a LHS.
405 -- Out param Same as above cases, but OUT parameter
407 function OK_To_Set_Referenced return Boolean;
408 -- Returns True if the Referenced flag can be set. There are a few
409 -- exceptions where we do not want to set this flag, see body for
410 -- details of these exceptional cases.
412 ---------------------------
413 -- Get_Through_Renamings --
414 ---------------------------
416 function Get_Through_Renamings (E : Entity_Id) return Entity_Id is
417 begin
418 case Ekind (E) is
420 -- For subprograms we just need to check once if they are have a
421 -- Renamed_Entity, because Renamed_Entity is set transitively.
423 when Subprogram_Kind =>
424 declare
425 Renamed : constant Entity_Id := Renamed_Entity (E);
427 begin
428 if Present (Renamed) then
429 return Renamed;
430 else
431 return E;
432 end if;
433 end;
435 -- For objects we need to repeatedly call Renamed_Object, because
436 -- it is not transitive.
438 when Object_Kind =>
439 declare
440 Obj : Entity_Id := E;
442 begin
443 loop
444 pragma Assert (Present (Obj));
446 declare
447 Renamed : constant Entity_Id := Renamed_Object (Obj);
449 begin
450 if Present (Renamed) then
451 Obj := Get_Enclosing_Object (Renamed);
453 -- The renamed expression denotes a non-object,
454 -- e.g. function call, slicing of a function call,
455 -- pointer dereference, etc.
457 if No (Obj) then
458 return Empty;
459 end if;
460 else
461 return Obj;
462 end if;
463 end;
464 end loop;
465 end;
467 when others =>
468 return E;
470 end case;
471 end Get_Through_Renamings;
473 ---------------
474 -- Is_On_LHS --
475 ---------------
477 -- ??? There are several routines here and there that perform a similar
478 -- (but subtly different) computation, which should be factored:
480 -- Sem_Util.Is_LHS
481 -- Sem_Util.May_Be_Lvalue
482 -- Sem_Util.Known_To_Be_Assigned
483 -- Exp_Ch2.Expand_Entry_Parameter.In_Assignment_Context
484 -- Exp_Smem.Is_Out_Actual
486 function Is_On_LHS (Node : Node_Id) return Boolean is
487 N : Node_Id;
488 P : Node_Id;
489 K : Node_Kind;
491 begin
492 -- Only identifiers are considered, is this necessary???
494 if Nkind (Node) /= N_Identifier then
495 return False;
496 end if;
498 -- Immediate return if appeared as OUT parameter
500 if Kind = E_Out_Parameter then
501 return True;
502 end if;
504 -- Search for assignment statement subtree root
506 N := Node;
507 loop
508 P := Parent (N);
509 K := Nkind (P);
511 if K = N_Assignment_Statement then
512 return Name (P) = N;
514 -- Check whether the parent is a component and the current node is
515 -- its prefix, but return False if the current node has an access
516 -- type, as in that case the selected or indexed component is an
517 -- implicit dereference, and the LHS is the designated object, not
518 -- the access object.
520 -- ??? case of a slice assignment?
522 elsif (K = N_Selected_Component or else K = N_Indexed_Component)
523 and then Prefix (P) = N
524 then
525 -- Check for access type. First a special test, In some cases
526 -- this is called too early (see comments in Find_Direct_Name),
527 -- at a point where the tree is not fully typed yet. In that
528 -- case we may lack an Etype for N, and we can't check the
529 -- Etype. For now, we always return False in such a case,
530 -- but this is clearly not right in all cases ???
532 if No (Etype (N)) then
533 return False;
535 elsif Is_Access_Type (Etype (N)) then
536 return False;
538 -- Access type case dealt with, keep going
540 else
541 N := P;
542 end if;
544 -- All other cases, definitely not on left side
546 else
547 return False;
548 end if;
549 end loop;
550 end Is_On_LHS;
552 ---------------------------
553 -- OK_To_Set_Referenced --
554 ---------------------------
556 function OK_To_Set_Referenced return Boolean is
557 P : Node_Id;
559 begin
560 -- A reference from a pragma Unreferenced or pragma Unmodified or
561 -- pragma Warnings does not cause the Referenced flag to be set.
562 -- This avoids silly warnings about things being referenced and
563 -- not assigned when the only reference is from the pragma.
565 if Nkind (N) = N_Identifier then
566 P := Parent (N);
568 if Nkind (P) = N_Pragma_Argument_Association then
569 P := Parent (P);
571 if Nkind (P) = N_Pragma then
572 if Nam_In (Pragma_Name_Unmapped (P),
573 Name_Warnings,
574 Name_Unmodified,
575 Name_Unreferenced)
576 then
577 return False;
578 end if;
579 end if;
581 -- A reference to a formal in a named parameter association does
582 -- not make the formal referenced. Formals that are unused in the
583 -- subprogram body are properly flagged as such, even if calls
584 -- elsewhere use named notation.
586 elsif Nkind (P) = N_Parameter_Association
587 and then N = Selector_Name (P)
588 then
589 return False;
590 end if;
591 end if;
593 return True;
594 end OK_To_Set_Referenced;
596 -- Start of processing for Generate_Reference
598 begin
599 pragma Assert (Nkind (E) in N_Entity);
600 Find_Actual (N, Formal, Call);
602 if Present (Formal) then
603 Kind := Ekind (Formal);
604 else
605 Kind := E_Void;
606 end if;
608 -- Check for obsolescent reference to package ASCII. GNAT treats this
609 -- element of annex J specially since in practice, programs make a lot
610 -- of use of this feature, so we don't include it in the set of features
611 -- diagnosed when Warn_On_Obsolescent_Features mode is set. However we
612 -- are required to note it as a violation of the RM defined restriction.
614 if E = Standard_ASCII then
615 Check_Restriction (No_Obsolescent_Features, N);
616 end if;
618 -- Check for reference to entity marked with Is_Obsolescent
620 -- Note that we always allow obsolescent references in the compiler
621 -- itself and the run time, since we assume that we know what we are
622 -- doing in such cases. For example the calls in Ada.Characters.Handling
623 -- to its own obsolescent subprograms are just fine.
625 -- In any case we only generate warnings if we are in the extended main
626 -- source unit, and the entity itself is not in the extended main source
627 -- unit, since we assume the source unit itself knows what is going on
628 -- (and for sure we do not want silly warnings, e.g. on the end line of
629 -- an obsolescent procedure body).
631 if Is_Obsolescent (E)
632 and then not GNAT_Mode
633 and then not In_Extended_Main_Source_Unit (E)
634 and then In_Extended_Main_Source_Unit (N)
635 then
636 Check_Restriction (No_Obsolescent_Features, N);
638 if Warn_On_Obsolescent_Feature then
639 Output_Obsolescent_Entity_Warnings (N, E);
640 end if;
641 end if;
643 -- Warn if reference to Ada 2005 entity not in Ada 2005 mode. We only
644 -- detect real explicit references (modifications and references).
646 if Comes_From_Source (N)
647 and then Is_Ada_2005_Only (E)
648 and then Ada_Version < Ada_2005
649 and then Warn_On_Ada_2005_Compatibility
650 and then (Typ = 'm' or else Typ = 'r' or else Typ = 's')
651 then
652 Error_Msg_NE ("& is only defined in Ada 2005?y?", N, E);
653 end if;
655 -- Warn if reference to Ada 2012 entity not in Ada 2012 mode. We only
656 -- detect real explicit references (modifications and references).
658 if Comes_From_Source (N)
659 and then Is_Ada_2012_Only (E)
660 and then Ada_Version < Ada_2012
661 and then Warn_On_Ada_2012_Compatibility
662 and then (Typ = 'm' or else Typ = 'r')
663 then
664 Error_Msg_NE ("& is only defined in Ada 2012?y?", N, E);
665 end if;
667 -- Do not generate references if we are within a postcondition sub-
668 -- program, because the reference does not comes from source, and the
669 -- pre-analysis of the aspect has already created an entry for the ALI
670 -- file at the proper source location.
672 if Chars (Current_Scope) = Name_uPostconditions then
673 return;
674 end if;
676 -- Never collect references if not in main source unit. However, we omit
677 -- this test if Typ is 'e' or 'k', since these entries are structural,
678 -- and it is useful to have them in units that reference packages as
679 -- well as units that define packages. We also omit the test for the
680 -- case of 'p' since we want to include inherited primitive operations
681 -- from other packages.
683 -- We also omit this test is this is a body reference for a subprogram
684 -- instantiation. In this case the reference is to the generic body,
685 -- which clearly need not be in the main unit containing the instance.
686 -- For the same reason we accept an implicit reference generated for
687 -- a default in an instance.
689 -- We also set the referenced flag in a generic package that is not in
690 -- then main source unit, when the variable is of a formal private type,
691 -- to warn in the instance if the corresponding type is not a fully
692 -- initialized type.
694 if not In_Extended_Main_Source_Unit (N) then
695 if Typ = 'e' or else
696 Typ = 'I' or else
697 Typ = 'p' or else
698 Typ = 'i' or else
699 Typ = 'k'
700 or else (Typ = 'b' and then Is_Generic_Instance (E))
702 -- Allow the generation of references to reads, writes and calls
703 -- in SPARK mode when the related context comes from an instance.
705 or else
706 (GNATprove_Mode
707 and then In_Extended_Main_Code_Unit (N)
708 and then (Typ = 'm' or else Typ = 'r' or else Typ = 's'))
709 then
710 null;
712 elsif In_Instance_Body
713 and then In_Extended_Main_Code_Unit (N)
714 and then Is_Generic_Type (Etype (E))
715 then
716 Set_Referenced (E);
717 return;
719 elsif Inside_A_Generic
720 and then Is_Generic_Type (Etype (E))
721 then
722 Set_Referenced (E);
723 return;
725 else
726 return;
727 end if;
728 end if;
730 -- For reference type p, the entity must be in main source unit
732 if Typ = 'p' and then not In_Extended_Main_Source_Unit (E) then
733 return;
734 end if;
736 -- Unless the reference is forced, we ignore references where the
737 -- reference itself does not come from source.
739 if not Force and then not Comes_From_Source (N) then
740 return;
741 end if;
743 -- Deal with setting entity as referenced, unless suppressed. Note that
744 -- we still do Set_Referenced on entities that do not come from source.
745 -- This situation arises when we have a source reference to a derived
746 -- operation, where the derived operation itself does not come from
747 -- source, but we still want to mark it as referenced, since we really
748 -- are referencing an entity in the corresponding package (this avoids
749 -- wrong complaints that the package contains no referenced entities).
751 if Set_Ref then
753 -- Assignable object appearing on left side of assignment or as
754 -- an out parameter.
756 if Is_Assignable (E)
757 and then Is_On_LHS (N)
758 and then Ekind (E) /= E_In_Out_Parameter
759 then
760 -- For objects that are renamings, just set as simply referenced
761 -- we do not try to do assignment type tracking in this case.
763 if Present (Renamed_Object (E)) then
764 Set_Referenced (E);
766 -- Out parameter case
768 elsif Kind = E_Out_Parameter then
770 -- If warning mode for all out parameters is set, or this is
771 -- the only warning parameter, then we want to mark this for
772 -- later warning logic by setting Referenced_As_Out_Parameter
774 if Warn_On_Modified_As_Out_Parameter (Formal) then
775 Set_Referenced_As_Out_Parameter (E, True);
776 Set_Referenced_As_LHS (E, False);
778 -- For OUT parameter not covered by the above cases, we simply
779 -- regard it as a normal reference (in this case we do not
780 -- want any of the warning machinery for out parameters).
782 else
783 Set_Referenced (E);
784 end if;
786 -- For the left hand of an assignment case, we do nothing here.
787 -- The processing for Analyze_Assignment_Statement will set the
788 -- Referenced_As_LHS flag.
790 else
791 null;
792 end if;
794 -- Check for a reference in a pragma that should not count as a
795 -- making the variable referenced for warning purposes.
797 elsif Is_Non_Significant_Pragma_Reference (N) then
798 null;
800 -- A reference in an attribute definition clause does not count as a
801 -- reference except for the case of Address. The reason that 'Address
802 -- is an exception is that it creates an alias through which the
803 -- variable may be referenced.
805 elsif Nkind (Parent (N)) = N_Attribute_Definition_Clause
806 and then Chars (Parent (N)) /= Name_Address
807 and then N = Name (Parent (N))
808 then
809 null;
811 -- Constant completion does not count as a reference
813 elsif Typ = 'c'
814 and then Ekind (E) = E_Constant
815 then
816 null;
818 -- Record representation clause does not count as a reference
820 elsif Nkind (N) = N_Identifier
821 and then Nkind (Parent (N)) = N_Record_Representation_Clause
822 then
823 null;
825 -- Discriminants do not need to produce a reference to record type
827 elsif Typ = 'd'
828 and then Nkind (Parent (N)) = N_Discriminant_Specification
829 then
830 null;
832 -- All other cases
834 else
835 -- Special processing for IN OUT parameters, where we have an
836 -- implicit assignment to a simple variable.
838 if Kind = E_In_Out_Parameter
839 and then Is_Assignable (E)
840 then
841 -- For sure this counts as a normal read reference
843 Set_Referenced (E);
844 Set_Last_Assignment (E, Empty);
846 -- We count it as being referenced as an out parameter if the
847 -- option is set to warn on all out parameters, except that we
848 -- have a special exclusion for an intrinsic subprogram, which
849 -- is most likely an instantiation of Unchecked_Deallocation
850 -- which we do not want to consider as an assignment since it
851 -- generates false positives. We also exclude the case of an
852 -- IN OUT parameter if the name of the procedure is Free,
853 -- since we suspect similar semantics.
855 if Warn_On_All_Unread_Out_Parameters
856 and then Is_Entity_Name (Name (Call))
857 and then not Is_Intrinsic_Subprogram (Entity (Name (Call)))
858 and then Chars (Name (Call)) /= Name_Free
859 then
860 Set_Referenced_As_Out_Parameter (E, True);
861 Set_Referenced_As_LHS (E, False);
862 end if;
864 -- Don't count a recursive reference within a subprogram as a
865 -- reference (that allows detection of a recursive subprogram
866 -- whose only references are recursive calls as unreferenced).
868 elsif Is_Subprogram (E)
869 and then E = Nearest_Dynamic_Scope (Current_Scope)
870 then
871 null;
873 -- Any other occurrence counts as referencing the entity
875 elsif OK_To_Set_Referenced then
876 Set_Referenced (E);
878 -- If variable, this is an OK reference after an assignment
879 -- so we can clear the Last_Assignment indication.
881 if Is_Assignable (E) then
882 Set_Last_Assignment (E, Empty);
883 end if;
884 end if;
885 end if;
887 -- Check for pragma Unreferenced given and reference is within
888 -- this source unit (occasion for possible warning to be issued).
889 -- Note that the entity may be marked as unreferenced by pragma
890 -- Unused.
892 if Has_Unreferenced (E)
893 and then In_Same_Extended_Unit (E, N)
894 then
895 -- A reference as a named parameter in a call does not count as a
896 -- violation of pragma Unreferenced for this purpose...
898 if Nkind (N) = N_Identifier
899 and then Nkind (Parent (N)) = N_Parameter_Association
900 and then Selector_Name (Parent (N)) = N
901 then
902 null;
904 -- ... Neither does a reference to a variable on the left side of
905 -- an assignment.
907 elsif Is_On_LHS (N) then
908 null;
910 -- Do not consider F'Result as a violation of pragma Unreferenced
911 -- since the attribute acts as an anonymous alias of the function
912 -- result and not as a real reference to the function.
914 elsif Ekind_In (E, E_Function, E_Generic_Function)
915 and then Is_Entity_Name (N)
916 and then Is_Attribute_Result (Parent (N))
917 then
918 null;
920 -- No warning if the reference is in a call that does not come
921 -- from source (e.g. a call to a controlled type primitive).
923 elsif not Comes_From_Source (Parent (N))
924 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
925 then
926 null;
928 -- For entry formals, we want to place the warning message on the
929 -- corresponding entity in the accept statement. The current scope
930 -- is the body of the accept, so we find the formal whose name
931 -- matches that of the entry formal (there is no link between the
932 -- two entities, and the one in the accept statement is only used
933 -- for conformance checking).
935 elsif Ekind (Scope (E)) = E_Entry then
936 declare
937 BE : Entity_Id;
939 begin
940 BE := First_Entity (Current_Scope);
941 while Present (BE) loop
942 if Chars (BE) = Chars (E) then
943 if Has_Pragma_Unused (E) then
944 Error_Msg_NE -- CODEFIX
945 ("??pragma Unused given for&!", N, BE);
946 else
947 Error_Msg_NE -- CODEFIX
948 ("??pragma Unreferenced given for&!", N, BE);
949 end if;
950 exit;
951 end if;
953 Next_Entity (BE);
954 end loop;
955 end;
957 -- Here we issue the warning, since this is a real reference
959 elsif Has_Pragma_Unused (E) then
960 Error_Msg_NE -- CODEFIX
961 ("??pragma Unused given for&!", N, E);
962 else
963 Error_Msg_NE -- CODEFIX
964 ("??pragma Unreferenced given for&!", N, E);
965 end if;
966 end if;
968 -- If this is a subprogram instance, mark as well the internal
969 -- subprogram in the wrapper package, which may be a visible
970 -- compilation unit.
972 if Is_Overloadable (E)
973 and then Is_Generic_Instance (E)
974 and then Present (Alias (E))
975 then
976 Set_Referenced (Alias (E));
977 end if;
978 end if;
980 -- Generate reference if all conditions are met:
983 -- Cross referencing must be active
985 Opt.Xref_Active
987 -- The entity must be one for which we collect references
989 and then Xref_Entity_Letters (Ekind (E)) /= ' '
991 -- Both Sloc values must be set to something sensible
993 and then Sloc (E) > No_Location
994 and then Sloc (N) > No_Location
996 -- Ignore references from within an instance. The only exceptions to
997 -- this are default subprograms, for which we generate an implicit
998 -- reference and compilations in SPARK mode.
1000 and then
1001 (Instantiation_Location (Sloc (N)) = No_Location
1002 or else Typ = 'i'
1003 or else GNATprove_Mode)
1005 -- Ignore dummy references
1007 and then Typ /= ' '
1008 then
1009 if Nkind_In (N, N_Identifier,
1010 N_Defining_Identifier,
1011 N_Defining_Operator_Symbol,
1012 N_Operator_Symbol,
1013 N_Defining_Character_Literal)
1014 or else Nkind (N) in N_Op
1015 or else (Nkind (N) = N_Character_Literal
1016 and then Sloc (Entity (N)) /= Standard_Location)
1017 then
1018 Nod := N;
1020 elsif Nkind_In (N, N_Expanded_Name, N_Selected_Component) then
1021 Nod := Selector_Name (N);
1023 else
1024 return;
1025 end if;
1027 -- Normal case of source entity comes from source
1029 if Comes_From_Source (E) then
1030 Ent := E;
1032 -- Because a declaration may be generated for a subprogram body
1033 -- without declaration in GNATprove mode, for inlining, some
1034 -- parameters may end up being marked as not coming from source
1035 -- although they are. Take these into account specially.
1037 elsif GNATprove_Mode and then Ekind (E) in Formal_Kind then
1038 Ent := E;
1040 -- Entity does not come from source, but is a derived subprogram and
1041 -- the derived subprogram comes from source (after one or more
1042 -- derivations) in which case the reference is to parent subprogram.
1044 elsif Is_Overloadable (E)
1045 and then Present (Alias (E))
1046 then
1047 Ent := Alias (E);
1048 while not Comes_From_Source (Ent) loop
1049 if No (Alias (Ent)) then
1050 return;
1051 end if;
1053 Ent := Alias (Ent);
1054 end loop;
1056 -- The internally created defining entity for a child subprogram
1057 -- that has no previous spec has valid references.
1059 elsif Is_Overloadable (E)
1060 and then Is_Child_Unit (E)
1061 then
1062 Ent := E;
1064 -- Ditto for the formals of such a subprogram
1066 elsif Is_Overloadable (Scope (E))
1067 and then Is_Child_Unit (Scope (E))
1068 then
1069 Ent := E;
1071 -- Record components of discriminated subtypes or derived types must
1072 -- be treated as references to the original component.
1074 elsif Ekind (E) = E_Component
1075 and then Comes_From_Source (Original_Record_Component (E))
1076 then
1077 Ent := Original_Record_Component (E);
1079 -- If this is an expanded reference to a discriminant, recover the
1080 -- original discriminant, which gets the reference.
1082 elsif Ekind (E) = E_In_Parameter
1083 and then Present (Discriminal_Link (E))
1084 then
1085 Ent := Discriminal_Link (E);
1086 Set_Referenced (Ent);
1088 -- Ignore reference to any other entity that is not from source
1090 else
1091 return;
1092 end if;
1094 -- In SPARK mode, consider the underlying entity renamed instead of
1095 -- the renaming, which is needed to compute a valid set of effects
1096 -- (reads, writes) for the enclosing subprogram.
1098 if GNATprove_Mode then
1099 Ent := Get_Through_Renamings (Ent);
1101 -- If no enclosing object, then it could be a reference to any
1102 -- location not tracked individually, like heap-allocated data.
1103 -- Conservatively approximate this possibility by generating a
1104 -- dereference, and return.
1106 if No (Ent) then
1107 if Actual_Typ = 'w' then
1108 SPARK_Specific.Generate_Dereference (Nod, 'r');
1109 SPARK_Specific.Generate_Dereference (Nod, 'w');
1110 else
1111 SPARK_Specific.Generate_Dereference (Nod, 'r');
1112 end if;
1114 return;
1115 end if;
1116 end if;
1118 -- Record reference to entity
1120 if Actual_Typ = 'p'
1121 and then Is_Subprogram (Nod)
1122 and then Present (Overridden_Operation (Nod))
1123 then
1124 Actual_Typ := 'P';
1125 end if;
1127 -- Comment needed here for special SPARK code ???
1129 if GNATprove_Mode then
1131 -- Ignore references to an entity which is a Part_Of single
1132 -- concurrent object. Ideally we would prefer to add it as a
1133 -- reference to the corresponding concurrent type, but it is quite
1134 -- difficult (as such references are not currently added even for)
1135 -- reads/writes of private protected components) and not worth the
1136 -- effort.
1138 if Ekind_In (Ent, E_Abstract_State, E_Constant, E_Variable)
1139 and then Present (Encapsulating_State (Ent))
1140 and then Is_Single_Concurrent_Object (Encapsulating_State (Ent))
1141 then
1142 return;
1143 end if;
1145 Ref := Sloc (Nod);
1146 Def := Sloc (Ent);
1148 Ref_Scope :=
1149 SPARK_Specific.Enclosing_Subprogram_Or_Library_Package (Nod);
1150 Ent_Scope :=
1151 SPARK_Specific.Enclosing_Subprogram_Or_Library_Package (Ent);
1153 -- Since we are reaching through renamings in SPARK mode, we may
1154 -- end up with standard constants. Ignore those.
1156 if Sloc (Ent_Scope) <= Standard_Location
1157 or else Def <= Standard_Location
1158 then
1159 return;
1160 end if;
1162 Add_Entry
1163 ((Ent => Ent,
1164 Loc => Ref,
1165 Typ => Actual_Typ,
1166 Eun => Get_Top_Level_Code_Unit (Def),
1167 Lun => Get_Top_Level_Code_Unit (Ref),
1168 Ref_Scope => Ref_Scope,
1169 Ent_Scope => Ent_Scope),
1170 Ent_Scope_File => Get_Top_Level_Code_Unit (Ent));
1172 else
1173 Ref := Original_Location (Sloc (Nod));
1174 Def := Original_Location (Sloc (Ent));
1176 -- If this is an operator symbol, skip the initial quote for
1177 -- navigation purposes. This is not done for the end label,
1178 -- where we want the actual position after the closing quote.
1180 if Typ = 't' then
1181 null;
1183 elsif Nkind (N) = N_Defining_Operator_Symbol
1184 or else Nkind (Nod) = N_Operator_Symbol
1185 then
1186 Ref := Ref + 1;
1187 end if;
1189 Add_Entry
1190 ((Ent => Ent,
1191 Loc => Ref,
1192 Typ => Actual_Typ,
1193 Eun => Get_Source_Unit (Def),
1194 Lun => Get_Source_Unit (Ref),
1195 Ref_Scope => Empty,
1196 Ent_Scope => Empty),
1197 Ent_Scope_File => No_Unit);
1199 -- Generate reference to the first private entity
1201 if Typ = 'e'
1202 and then Comes_From_Source (E)
1203 and then Nkind (Ent) = N_Defining_Identifier
1204 and then (Is_Package_Or_Generic_Package (Ent)
1205 or else Is_Concurrent_Type (Ent))
1206 and then Present (First_Private_Entity (E))
1207 and then In_Extended_Main_Source_Unit (N)
1208 then
1209 -- Handle case in which the full-view and partial-view of the
1210 -- first private entity are swapped.
1212 declare
1213 First_Private : Entity_Id := First_Private_Entity (E);
1215 begin
1216 if Is_Private_Type (First_Private)
1217 and then Present (Full_View (First_Private))
1218 then
1219 First_Private := Full_View (First_Private);
1220 end if;
1222 Add_Entry
1223 ((Ent => Ent,
1224 Loc => Sloc (First_Private),
1225 Typ => 'E',
1226 Eun => Get_Source_Unit (Def),
1227 Lun => Get_Source_Unit (Ref),
1228 Ref_Scope => Empty,
1229 Ent_Scope => Empty),
1230 Ent_Scope_File => No_Unit);
1231 end;
1232 end if;
1233 end if;
1234 end if;
1235 end Generate_Reference;
1237 -----------------------------------
1238 -- Generate_Reference_To_Formals --
1239 -----------------------------------
1241 procedure Generate_Reference_To_Formals (E : Entity_Id) is
1242 Formal : Entity_Id;
1244 begin
1245 if Is_Generic_Subprogram (E) then
1246 Formal := First_Entity (E);
1248 while Present (Formal)
1249 and then not Is_Formal (Formal)
1250 loop
1251 Next_Entity (Formal);
1252 end loop;
1254 elsif Ekind (E) in Access_Subprogram_Kind then
1255 Formal := First_Formal (Designated_Type (E));
1257 else
1258 Formal := First_Formal (E);
1259 end if;
1261 while Present (Formal) loop
1262 if Ekind (Formal) = E_In_Parameter then
1264 if Nkind (Parameter_Type (Parent (Formal))) = N_Access_Definition
1265 then
1266 Generate_Reference (E, Formal, '^', False);
1267 else
1268 Generate_Reference (E, Formal, '>', False);
1269 end if;
1271 elsif Ekind (Formal) = E_In_Out_Parameter then
1272 Generate_Reference (E, Formal, '=', False);
1274 else
1275 Generate_Reference (E, Formal, '<', False);
1276 end if;
1278 Next_Formal (Formal);
1279 end loop;
1280 end Generate_Reference_To_Formals;
1282 -------------------------------------------
1283 -- Generate_Reference_To_Generic_Formals --
1284 -------------------------------------------
1286 procedure Generate_Reference_To_Generic_Formals (E : Entity_Id) is
1287 Formal : Entity_Id;
1289 begin
1290 Formal := First_Entity (E);
1291 while Present (Formal) loop
1292 if Comes_From_Source (Formal) then
1293 Generate_Reference (E, Formal, 'z', False);
1294 end if;
1296 Next_Entity (Formal);
1297 end loop;
1298 end Generate_Reference_To_Generic_Formals;
1300 -------------
1301 -- Get_Key --
1302 -------------
1304 function Get_Key (E : Xref_Entry_Number) return Xref_Entry_Number is
1305 begin
1306 return E;
1307 end Get_Key;
1309 ----------------------------
1310 -- Has_Deferred_Reference --
1311 ----------------------------
1313 function Has_Deferred_Reference (Ent : Entity_Id) return Boolean is
1314 begin
1315 for J in Deferred_References.First .. Deferred_References.Last loop
1316 if Deferred_References.Table (J).E = Ent then
1317 return True;
1318 end if;
1319 end loop;
1321 return False;
1322 end Has_Deferred_Reference;
1324 ----------
1325 -- Hash --
1326 ----------
1328 function Hash (F : Xref_Entry_Number) return Header_Num is
1329 -- It is unlikely to have two references to the same entity at the same
1330 -- source location, so the hash function depends only on the Ent and Loc
1331 -- fields.
1333 XE : Xref_Entry renames Xrefs.Table (F);
1334 type M is mod 2**32;
1336 H : constant M := M (XE.Key.Ent) + 2 ** 7 * M (abs XE.Key.Loc);
1337 -- It would be more natural to write:
1339 -- H : constant M := M'Mod (XE.Key.Ent) + 2**7 * M'Mod (XE.Key.Loc);
1341 -- But we can't use M'Mod, because it prevents bootstrapping with older
1342 -- compilers. Loc can be negative, so we do "abs" before converting.
1343 -- One day this can be cleaned up ???
1345 begin
1346 return Header_Num (H mod Num_Buckets);
1347 end Hash;
1349 -----------------
1350 -- HT_Set_Next --
1351 -----------------
1353 procedure HT_Set_Next (E : Xref_Entry_Number; Next : Xref_Entry_Number) is
1354 begin
1355 Xrefs.Table (E).HTable_Next := Next;
1356 end HT_Set_Next;
1358 -------------
1359 -- HT_Next --
1360 -------------
1362 function HT_Next (E : Xref_Entry_Number) return Xref_Entry_Number is
1363 begin
1364 return Xrefs.Table (E).HTable_Next;
1365 end HT_Next;
1367 ----------------
1368 -- Initialize --
1369 ----------------
1371 procedure Initialize is
1372 begin
1373 Xrefs.Init;
1374 end Initialize;
1376 --------
1377 -- Lt --
1378 --------
1380 function Lt (T1, T2 : Xref_Entry) return Boolean is
1381 begin
1382 -- First test: if entity is in different unit, sort by unit
1384 if T1.Key.Eun /= T2.Key.Eun then
1385 return Dependency_Num (T1.Key.Eun) < Dependency_Num (T2.Key.Eun);
1387 -- Second test: within same unit, sort by entity Sloc
1389 elsif T1.Def /= T2.Def then
1390 return T1.Def < T2.Def;
1392 -- Third test: sort definitions ahead of references
1394 elsif T1.Key.Loc = No_Location then
1395 return True;
1397 elsif T2.Key.Loc = No_Location then
1398 return False;
1400 -- Fourth test: for same entity, sort by reference location unit
1402 elsif T1.Key.Lun /= T2.Key.Lun then
1403 return Dependency_Num (T1.Key.Lun) < Dependency_Num (T2.Key.Lun);
1405 -- Fifth test: order of location within referencing unit
1407 elsif T1.Key.Loc /= T2.Key.Loc then
1408 return T1.Key.Loc < T2.Key.Loc;
1410 -- Finally, for two locations at the same address, we prefer
1411 -- the one that does NOT have the type 'r' so that a modification
1412 -- or extension takes preference, when there are more than one
1413 -- reference at the same location. As a result, in the case of
1414 -- entities that are in-out actuals, the read reference follows
1415 -- the modify reference.
1417 else
1418 return T2.Key.Typ = 'r';
1419 end if;
1420 end Lt;
1422 -----------------------
1423 -- Output_References --
1424 -----------------------
1426 procedure Output_References is
1428 procedure Get_Type_Reference
1429 (Ent : Entity_Id;
1430 Tref : out Entity_Id;
1431 Left : out Character;
1432 Right : out Character);
1433 -- Given an Entity_Id Ent, determines whether a type reference is
1434 -- required. If so, Tref is set to the entity for the type reference
1435 -- and Left and Right are set to the left/right brackets to be output
1436 -- for the reference. If no type reference is required, then Tref is
1437 -- set to Empty, and Left/Right are set to space.
1439 procedure Output_Import_Export_Info (Ent : Entity_Id);
1440 -- Output language and external name information for an interfaced
1441 -- entity, using the format <language, external_name>.
1443 ------------------------
1444 -- Get_Type_Reference --
1445 ------------------------
1447 procedure Get_Type_Reference
1448 (Ent : Entity_Id;
1449 Tref : out Entity_Id;
1450 Left : out Character;
1451 Right : out Character)
1453 Sav : Entity_Id;
1455 begin
1456 -- See if we have a type reference
1458 Tref := Ent;
1459 Left := '{';
1460 Right := '}';
1462 loop
1463 Sav := Tref;
1465 -- Processing for types
1467 if Is_Type (Tref) then
1469 -- Case of base type
1471 if Base_Type (Tref) = Tref then
1473 -- If derived, then get first subtype
1475 if Tref /= Etype (Tref) then
1476 Tref := First_Subtype (Etype (Tref));
1478 -- Set brackets for derived type, but don't override
1479 -- pointer case since the fact that something is a
1480 -- pointer is more important.
1482 if Left /= '(' then
1483 Left := '<';
1484 Right := '>';
1485 end if;
1487 -- If the completion of a private type is itself a derived
1488 -- type, we need the parent of the full view.
1490 elsif Is_Private_Type (Tref)
1491 and then Present (Full_View (Tref))
1492 and then Etype (Full_View (Tref)) /= Full_View (Tref)
1493 then
1494 Tref := Etype (Full_View (Tref));
1496 if Left /= '(' then
1497 Left := '<';
1498 Right := '>';
1499 end if;
1501 -- If non-derived pointer, get directly designated type.
1502 -- If the type has a full view, all references are on the
1503 -- partial view that is seen first.
1505 elsif Is_Access_Type (Tref) then
1506 Tref := Directly_Designated_Type (Tref);
1507 Left := '(';
1508 Right := ')';
1510 elsif Is_Private_Type (Tref)
1511 and then Present (Full_View (Tref))
1512 then
1513 if Is_Access_Type (Full_View (Tref)) then
1514 Tref := Directly_Designated_Type (Full_View (Tref));
1515 Left := '(';
1516 Right := ')';
1518 -- If the full view is an array type, we also retrieve
1519 -- the corresponding component type, because the ali
1520 -- entry already indicates that this is an array.
1522 elsif Is_Array_Type (Full_View (Tref)) then
1523 Tref := Component_Type (Full_View (Tref));
1524 Left := '(';
1525 Right := ')';
1526 end if;
1528 -- If non-derived array, get component type. Skip component
1529 -- type for case of String or Wide_String, saves worthwhile
1530 -- space.
1532 elsif Is_Array_Type (Tref)
1533 and then Tref /= Standard_String
1534 and then Tref /= Standard_Wide_String
1535 then
1536 Tref := Component_Type (Tref);
1537 Left := '(';
1538 Right := ')';
1540 -- For other non-derived base types, nothing
1542 else
1543 exit;
1544 end if;
1546 -- For a subtype, go to ancestor subtype
1548 else
1549 Tref := Ancestor_Subtype (Tref);
1551 -- If no ancestor subtype, go to base type
1553 if No (Tref) then
1554 Tref := Base_Type (Sav);
1555 end if;
1556 end if;
1558 -- For objects, functions, enum literals, just get type from
1559 -- Etype field.
1561 elsif Is_Object (Tref)
1562 or else Ekind (Tref) = E_Enumeration_Literal
1563 or else Ekind (Tref) = E_Function
1564 or else Ekind (Tref) = E_Operator
1565 then
1566 Tref := Etype (Tref);
1568 -- Another special case: an object of a classwide type
1569 -- initialized with a tag-indeterminate call gets a subtype
1570 -- of the classwide type during expansion. See if the original
1571 -- type in the declaration is named, and return it instead
1572 -- of going to the root type. The expression may be a class-
1573 -- wide function call whose result is on the secondary stack,
1574 -- which forces the declaration to be rewritten as a renaming,
1575 -- so examine the source declaration.
1577 if Ekind (Tref) = E_Class_Wide_Subtype then
1578 declare
1579 Decl : constant Node_Id := Original_Node (Parent (Ent));
1580 begin
1581 if Nkind (Decl) = N_Object_Declaration
1582 and then Is_Entity_Name
1583 (Original_Node (Object_Definition (Decl)))
1584 then
1585 Tref :=
1586 Entity (Original_Node (Object_Definition (Decl)));
1587 end if;
1588 end;
1590 -- For a function that returns a class-wide type, Tref is
1591 -- already correct.
1593 elsif Is_Overloadable (Ent)
1594 and then Is_Class_Wide_Type (Tref)
1595 then
1596 return;
1597 end if;
1599 -- For anything else, exit
1601 else
1602 exit;
1603 end if;
1605 -- Exit if no type reference, or we are stuck in some loop trying
1606 -- to find the type reference, or if the type is standard void
1607 -- type (the latter is an implementation artifact that should not
1608 -- show up in the generated cross-references).
1610 exit when No (Tref)
1611 or else Tref = Sav
1612 or else Tref = Standard_Void_Type;
1614 -- If we have a usable type reference, return, otherwise keep
1615 -- looking for something useful (we are looking for something
1616 -- that either comes from source or standard)
1618 if Sloc (Tref) = Standard_Location
1619 or else Comes_From_Source (Tref)
1620 then
1621 -- If the reference is a subtype created for a generic actual,
1622 -- go actual directly, the inner subtype is not user visible.
1624 if Nkind (Parent (Tref)) = N_Subtype_Declaration
1625 and then not Comes_From_Source (Parent (Tref))
1626 and then
1627 (Is_Wrapper_Package (Scope (Tref))
1628 or else Is_Generic_Instance (Scope (Tref)))
1629 then
1630 Tref := First_Subtype (Base_Type (Tref));
1631 end if;
1633 return;
1634 end if;
1635 end loop;
1637 -- If we fall through the loop, no type reference
1639 Tref := Empty;
1640 Left := ' ';
1641 Right := ' ';
1642 end Get_Type_Reference;
1644 -------------------------------
1645 -- Output_Import_Export_Info --
1646 -------------------------------
1648 procedure Output_Import_Export_Info (Ent : Entity_Id) is
1649 Language_Name : Name_Id;
1650 Conv : constant Convention_Id := Convention (Ent);
1652 begin
1653 -- Generate language name from convention
1655 if Conv = Convention_C then
1656 Language_Name := Name_C;
1658 elsif Conv = Convention_CPP then
1659 Language_Name := Name_CPP;
1661 elsif Conv = Convention_Ada then
1662 Language_Name := Name_Ada;
1664 else
1665 -- For the moment we ignore all other cases ???
1667 return;
1668 end if;
1670 Write_Info_Char ('<');
1671 Get_Unqualified_Name_String (Language_Name);
1673 for J in 1 .. Name_Len loop
1674 Write_Info_Char (Name_Buffer (J));
1675 end loop;
1677 if Present (Interface_Name (Ent)) then
1678 Write_Info_Char (',');
1679 String_To_Name_Buffer (Strval (Interface_Name (Ent)));
1681 for J in 1 .. Name_Len loop
1682 Write_Info_Char (Name_Buffer (J));
1683 end loop;
1684 end if;
1686 Write_Info_Char ('>');
1687 end Output_Import_Export_Info;
1689 -- Start of processing for Output_References
1691 begin
1692 -- First we add references to the primitive operations of tagged types
1693 -- declared in the main unit.
1695 Handle_Prim_Ops : declare
1696 Ent : Entity_Id;
1698 begin
1699 for J in 1 .. Xrefs.Last loop
1700 Ent := Xrefs.Table (J).Key.Ent;
1702 if Is_Type (Ent)
1703 and then Is_Tagged_Type (Ent)
1704 and then Is_Base_Type (Ent)
1705 and then In_Extended_Main_Source_Unit (Ent)
1706 then
1707 Generate_Prim_Op_References (Ent);
1708 end if;
1709 end loop;
1710 end Handle_Prim_Ops;
1712 -- Before we go ahead and output the references we have a problem
1713 -- that needs dealing with. So far we have captured things that are
1714 -- definitely referenced by the main unit, or defined in the main
1715 -- unit. That's because we don't want to clutter up the ali file
1716 -- for this unit with definition lines for entities in other units
1717 -- that are not referenced.
1719 -- But there is a glitch. We may reference an entity in another unit,
1720 -- and it may have a type reference to an entity that is not directly
1721 -- referenced in the main unit, which may mean that there is no xref
1722 -- entry for this entity yet in the list of references.
1724 -- If we don't do something about this, we will end with an orphan type
1725 -- reference, i.e. it will point to an entity that does not appear
1726 -- within the generated references in the ali file. That is not good for
1727 -- tools using the xref information.
1729 -- To fix this, we go through the references adding definition entries
1730 -- for any unreferenced entities that can be referenced in a type
1731 -- reference. There is a recursion problem here, and that is dealt with
1732 -- by making sure that this traversal also traverses any entries that
1733 -- get added by the traversal.
1735 Handle_Orphan_Type_References : declare
1736 J : Nat;
1737 Tref : Entity_Id;
1738 Ent : Entity_Id;
1740 L, R : Character;
1741 pragma Warnings (Off, L);
1742 pragma Warnings (Off, R);
1744 procedure New_Entry (E : Entity_Id);
1745 -- Make an additional entry into the Xref table for a type entity
1746 -- that is related to the current entity (parent, type ancestor,
1747 -- progenitor, etc.).
1749 ----------------
1750 -- New_Entry --
1751 ----------------
1753 procedure New_Entry (E : Entity_Id) is
1754 begin
1755 pragma Assert (Present (E));
1757 if not Has_Xref_Entry (Implementation_Base_Type (E))
1758 and then Sloc (E) > No_Location
1759 then
1760 Add_Entry
1761 ((Ent => E,
1762 Loc => No_Location,
1763 Typ => Character'First,
1764 Eun => Get_Source_Unit (Original_Location (Sloc (E))),
1765 Lun => No_Unit,
1766 Ref_Scope => Empty,
1767 Ent_Scope => Empty),
1768 Ent_Scope_File => No_Unit);
1769 end if;
1770 end New_Entry;
1772 -- Start of processing for Handle_Orphan_Type_References
1774 begin
1775 -- Note that this is not a for loop for a very good reason. The
1776 -- processing of items in the table can add new items to the table,
1777 -- and they must be processed as well.
1779 J := 1;
1780 while J <= Xrefs.Last loop
1781 Ent := Xrefs.Table (J).Key.Ent;
1783 -- Do not generate reference information for an ignored Ghost
1784 -- entity because neither the entity nor its references will
1785 -- appear in the final tree.
1787 if Is_Ignored_Ghost_Entity (Ent) then
1788 goto Orphan_Continue;
1789 end if;
1791 Get_Type_Reference (Ent, Tref, L, R);
1793 if Present (Tref)
1794 and then not Has_Xref_Entry (Tref)
1795 and then Sloc (Tref) > No_Location
1796 then
1797 New_Entry (Tref);
1799 if Is_Record_Type (Ent)
1800 and then Present (Interfaces (Ent))
1801 then
1802 -- Add an entry for each one of the given interfaces
1803 -- implemented by type Ent.
1805 declare
1806 Elmt : Elmt_Id := First_Elmt (Interfaces (Ent));
1807 begin
1808 while Present (Elmt) loop
1809 New_Entry (Node (Elmt));
1810 Next_Elmt (Elmt);
1811 end loop;
1812 end;
1813 end if;
1814 end if;
1816 -- Collect inherited primitive operations that may be declared in
1817 -- another unit and have no visible reference in the current one.
1819 if Is_Type (Ent)
1820 and then Is_Tagged_Type (Ent)
1821 and then Is_Derived_Type (Ent)
1822 and then Is_Base_Type (Ent)
1823 and then In_Extended_Main_Source_Unit (Ent)
1824 then
1825 declare
1826 Op_List : constant Elist_Id := Primitive_Operations (Ent);
1827 Op : Elmt_Id;
1828 Prim : Entity_Id;
1830 function Parent_Op (E : Entity_Id) return Entity_Id;
1831 -- Find original operation, which may be inherited through
1832 -- several derivations.
1834 function Parent_Op (E : Entity_Id) return Entity_Id is
1835 Orig_Op : constant Entity_Id := Alias (E);
1837 begin
1838 if No (Orig_Op) then
1839 return Empty;
1841 elsif not Comes_From_Source (E)
1842 and then not Has_Xref_Entry (Orig_Op)
1843 and then Comes_From_Source (Orig_Op)
1844 then
1845 return Orig_Op;
1846 else
1847 return Parent_Op (Orig_Op);
1848 end if;
1849 end Parent_Op;
1851 begin
1852 Op := First_Elmt (Op_List);
1853 while Present (Op) loop
1854 Prim := Parent_Op (Node (Op));
1856 if Present (Prim) then
1857 Add_Entry
1858 ((Ent => Prim,
1859 Loc => No_Location,
1860 Typ => Character'First,
1861 Eun => Get_Source_Unit (Sloc (Prim)),
1862 Lun => No_Unit,
1863 Ref_Scope => Empty,
1864 Ent_Scope => Empty),
1865 Ent_Scope_File => No_Unit);
1866 end if;
1868 Next_Elmt (Op);
1869 end loop;
1870 end;
1871 end if;
1873 <<Orphan_Continue>>
1874 J := J + 1;
1875 end loop;
1876 end Handle_Orphan_Type_References;
1878 -- Now we have all the references, including those for any embedded type
1879 -- references, so we can sort them, and output them.
1881 Output_Refs : declare
1882 Nrefs : constant Nat := Xrefs.Last;
1883 -- Number of references in table
1885 Rnums : array (0 .. Nrefs) of Nat;
1886 -- This array contains numbers of references in the Xrefs table.
1887 -- This list is sorted in output order. The extra 0'th entry is
1888 -- convenient for the call to sort. When we sort the table, we
1889 -- move the entries in Rnums around, but we do not move the
1890 -- original table entries.
1892 Curxu : Unit_Number_Type;
1893 -- Current xref unit
1895 Curru : Unit_Number_Type;
1896 -- Current reference unit for one entity
1898 Curent : Entity_Id;
1899 -- Current entity
1901 Curnam : String (1 .. Name_Buffer'Length);
1902 Curlen : Natural;
1903 -- Simple name and length of current entity
1905 Curdef : Source_Ptr;
1906 -- Original source location for current entity
1908 Crloc : Source_Ptr;
1909 -- Current reference location
1911 Ctyp : Character;
1912 -- Entity type character
1914 Prevt : Character;
1915 -- reference kind of previous reference
1917 Tref : Entity_Id;
1918 -- Type reference
1920 Rref : Node_Id;
1921 -- Renaming reference
1923 Trunit : Unit_Number_Type;
1924 -- Unit number for type reference
1926 function Lt (Op1, Op2 : Natural) return Boolean;
1927 -- Comparison function for Sort call
1929 function Name_Change (X : Entity_Id) return Boolean;
1930 -- Determines if entity X has a different simple name from Curent
1932 procedure Move (From : Natural; To : Natural);
1933 -- Move procedure for Sort call
1935 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
1937 --------
1938 -- Lt --
1939 --------
1941 function Lt (Op1, Op2 : Natural) return Boolean is
1942 T1 : Xref_Entry renames Xrefs.Table (Rnums (Nat (Op1)));
1943 T2 : Xref_Entry renames Xrefs.Table (Rnums (Nat (Op2)));
1945 begin
1946 return Lt (T1, T2);
1947 end Lt;
1949 ----------
1950 -- Move --
1951 ----------
1953 procedure Move (From : Natural; To : Natural) is
1954 begin
1955 Rnums (Nat (To)) := Rnums (Nat (From));
1956 end Move;
1958 -----------------
1959 -- Name_Change --
1960 -----------------
1962 -- Why a string comparison here??? Why not compare Name_Id values???
1964 function Name_Change (X : Entity_Id) return Boolean is
1965 begin
1966 Get_Unqualified_Name_String (Chars (X));
1968 if Name_Len /= Curlen then
1969 return True;
1970 else
1971 return Name_Buffer (1 .. Curlen) /= Curnam (1 .. Curlen);
1972 end if;
1973 end Name_Change;
1975 -- Start of processing for Output_Refs
1977 begin
1978 -- Capture the definition Sloc values. We delay doing this till now,
1979 -- since at the time the reference or definition is made, private
1980 -- types may be swapped, and the Sloc value may be incorrect. We
1981 -- also set up the pointer vector for the sort.
1983 -- For user-defined operators we need to skip the initial quote and
1984 -- point to the first character of the name, for navigation purposes.
1986 for J in 1 .. Nrefs loop
1987 declare
1988 E : constant Entity_Id := Xrefs.Table (J).Key.Ent;
1989 Loc : constant Source_Ptr := Original_Location (Sloc (E));
1991 begin
1992 Rnums (J) := J;
1994 if Nkind (E) = N_Defining_Operator_Symbol then
1995 Xrefs.Table (J).Def := Loc + 1;
1996 else
1997 Xrefs.Table (J).Def := Loc;
1998 end if;
1999 end;
2000 end loop;
2002 -- Sort the references
2004 Sorting.Sort (Integer (Nrefs));
2006 -- Initialize loop through references
2008 Curxu := No_Unit;
2009 Curent := Empty;
2010 Curdef := No_Location;
2011 Curru := No_Unit;
2012 Crloc := No_Location;
2013 Prevt := 'm';
2015 -- Loop to output references
2017 for Refno in 1 .. Nrefs loop
2018 Output_One_Ref : declare
2019 Ent : Entity_Id;
2021 XE : Xref_Entry renames Xrefs.Table (Rnums (Refno));
2022 -- The current entry to be accessed
2024 Left : Character;
2025 Right : Character;
2026 -- Used for {} or <> or () for type reference
2028 procedure Check_Type_Reference
2029 (Ent : Entity_Id;
2030 List_Interface : Boolean;
2031 Is_Component : Boolean := False);
2032 -- Find whether there is a meaningful type reference for
2033 -- Ent, and display it accordingly. If List_Interface is
2034 -- true, then Ent is a progenitor interface of the current
2035 -- type entity being listed. In that case list it as is,
2036 -- without looking for a type reference for it. Flag is also
2037 -- used for index types of an array type, where the caller
2038 -- supplies the intended type reference. Is_Component serves
2039 -- the same purpose, to display the component type of a
2040 -- derived array type, for which only the parent type has
2041 -- ben displayed so far.
2043 procedure Output_Instantiation_Refs (Loc : Source_Ptr);
2044 -- Recursive procedure to output instantiation references for
2045 -- the given source ptr in [file|line[...]] form. No output
2046 -- if the given location is not a generic template reference.
2048 procedure Output_Overridden_Op (Old_E : Entity_Id);
2049 -- For a subprogram that is overriding, display information
2050 -- about the inherited operation that it overrides.
2052 --------------------------
2053 -- Check_Type_Reference --
2054 --------------------------
2056 procedure Check_Type_Reference
2057 (Ent : Entity_Id;
2058 List_Interface : Boolean;
2059 Is_Component : Boolean := False)
2061 begin
2062 if List_Interface then
2064 -- This is a progenitor interface of the type for which
2065 -- xref information is being generated.
2067 Tref := Ent;
2068 Left := '<';
2069 Right := '>';
2071 -- The following is not documented in lib-xref.ads ???
2073 elsif Is_Component then
2074 Tref := Ent;
2075 Left := '(';
2076 Right := ')';
2078 else
2079 Get_Type_Reference (Ent, Tref, Left, Right);
2080 end if;
2082 if Present (Tref) then
2084 -- Case of standard entity, output name
2086 if Sloc (Tref) = Standard_Location then
2087 Write_Info_Char (Left);
2088 Write_Info_Name (Chars (Tref));
2089 Write_Info_Char (Right);
2091 -- Case of source entity, output location
2093 else
2094 Write_Info_Char (Left);
2095 Trunit := Get_Source_Unit (Sloc (Tref));
2097 if Trunit /= Curxu then
2098 Write_Info_Nat (Dependency_Num (Trunit));
2099 Write_Info_Char ('|');
2100 end if;
2102 Write_Info_Nat
2103 (Int (Get_Logical_Line_Number (Sloc (Tref))));
2105 declare
2106 Ent : Entity_Id;
2107 Ctyp : Character;
2109 begin
2110 Ent := Tref;
2111 Ctyp := Xref_Entity_Letters (Ekind (Ent));
2113 if Ctyp = '+'
2114 and then Present (Full_View (Ent))
2115 then
2116 Ent := Underlying_Type (Ent);
2118 if Present (Ent) then
2119 Ctyp := Xref_Entity_Letters (Ekind (Ent));
2120 end if;
2121 end if;
2123 Write_Info_Char (Ctyp);
2124 end;
2126 Write_Info_Nat
2127 (Int (Get_Column_Number (Sloc (Tref))));
2129 -- If the type comes from an instantiation, add the
2130 -- corresponding info.
2132 Output_Instantiation_Refs (Sloc (Tref));
2133 Write_Info_Char (Right);
2134 end if;
2135 end if;
2136 end Check_Type_Reference;
2138 -------------------------------
2139 -- Output_Instantiation_Refs --
2140 -------------------------------
2142 procedure Output_Instantiation_Refs (Loc : Source_Ptr) is
2143 Iloc : constant Source_Ptr := Instantiation_Location (Loc);
2144 Lun : Unit_Number_Type;
2145 Cu : constant Unit_Number_Type := Curru;
2147 begin
2148 -- Nothing to do if this is not an instantiation
2150 if Iloc = No_Location then
2151 return;
2152 end if;
2154 -- Output instantiation reference
2156 Write_Info_Char ('[');
2157 Lun := Get_Source_Unit (Iloc);
2159 if Lun /= Curru then
2160 Curru := Lun;
2161 Write_Info_Nat (Dependency_Num (Curru));
2162 Write_Info_Char ('|');
2163 end if;
2165 Write_Info_Nat (Int (Get_Logical_Line_Number (Iloc)));
2167 -- Recursive call to get nested instantiations
2169 Output_Instantiation_Refs (Iloc);
2171 -- Output final ] after call to get proper nesting
2173 Write_Info_Char (']');
2174 Curru := Cu;
2175 return;
2176 end Output_Instantiation_Refs;
2178 --------------------------
2179 -- Output_Overridden_Op --
2180 --------------------------
2182 procedure Output_Overridden_Op (Old_E : Entity_Id) is
2183 Op : Entity_Id;
2185 begin
2186 -- The overridden operation has an implicit declaration
2187 -- at the point of derivation. What we want to display
2188 -- is the original operation, which has the actual body
2189 -- (or abstract declaration) that is being overridden.
2190 -- The overridden operation is not always set, e.g. when
2191 -- it is a predefined operator.
2193 if No (Old_E) then
2194 return;
2196 -- Follow alias chain if one is present
2198 elsif Present (Alias (Old_E)) then
2200 -- The subprogram may have been implicitly inherited
2201 -- through several levels of derivation, so find the
2202 -- ultimate (source) ancestor.
2204 Op := Ultimate_Alias (Old_E);
2206 -- Normal case of no alias present. We omit generated
2207 -- primitives like tagged equality, that have no source
2208 -- representation.
2210 else
2211 Op := Old_E;
2212 end if;
2214 if Present (Op)
2215 and then Sloc (Op) /= Standard_Location
2216 and then Comes_From_Source (Op)
2217 then
2218 declare
2219 Loc : constant Source_Ptr := Sloc (Op);
2220 Par_Unit : constant Unit_Number_Type :=
2221 Get_Source_Unit (Loc);
2223 begin
2224 Write_Info_Char ('<');
2226 if Par_Unit /= Curxu then
2227 Write_Info_Nat (Dependency_Num (Par_Unit));
2228 Write_Info_Char ('|');
2229 end if;
2231 Write_Info_Nat (Int (Get_Logical_Line_Number (Loc)));
2232 Write_Info_Char ('p');
2233 Write_Info_Nat (Int (Get_Column_Number (Loc)));
2234 Write_Info_Char ('>');
2235 end;
2236 end if;
2237 end Output_Overridden_Op;
2239 -- Start of processing for Output_One_Ref
2241 begin
2242 Ent := XE.Key.Ent;
2244 -- Do not generate reference information for an ignored Ghost
2245 -- entity because neither the entity nor its references will
2246 -- appear in the final tree.
2248 if Is_Ignored_Ghost_Entity (Ent) then
2249 goto Continue;
2250 end if;
2252 Ctyp := Xref_Entity_Letters (Ekind (Ent));
2254 -- Skip reference if it is the only reference to an entity,
2255 -- and it is an END line reference, and the entity is not in
2256 -- the current extended source. This prevents junk entries
2257 -- consisting only of packages with END lines, where no
2258 -- entity from the package is actually referenced.
2260 if XE.Key.Typ = 'e'
2261 and then Ent /= Curent
2262 and then (Refno = Nrefs
2263 or else
2264 Ent /= Xrefs.Table (Rnums (Refno + 1)).Key.Ent)
2265 and then not In_Extended_Main_Source_Unit (Ent)
2266 then
2267 goto Continue;
2268 end if;
2270 -- For private type, get full view type
2272 if Ctyp = '+'
2273 and then Present (Full_View (XE.Key.Ent))
2274 then
2275 Ent := Underlying_Type (Ent);
2277 if Present (Ent) then
2278 Ctyp := Xref_Entity_Letters (Ekind (Ent));
2279 end if;
2280 end if;
2282 -- Special exception for Boolean
2284 if Ctyp = 'E' and then Is_Boolean_Type (Ent) then
2285 Ctyp := 'B';
2286 end if;
2288 -- For variable reference, get corresponding type
2290 if Ctyp = '*' then
2291 Ent := Etype (XE.Key.Ent);
2292 Ctyp := Fold_Lower (Xref_Entity_Letters (Ekind (Ent)));
2294 -- If variable is private type, get full view type
2296 if Ctyp = '+'
2297 and then Present (Full_View (Etype (XE.Key.Ent)))
2298 then
2299 Ent := Underlying_Type (Etype (XE.Key.Ent));
2301 if Present (Ent) then
2302 Ctyp := Fold_Lower (Xref_Entity_Letters (Ekind (Ent)));
2303 end if;
2305 elsif Is_Generic_Type (Ent) then
2307 -- If the type of the entity is a generic private type,
2308 -- there is no usable full view, so retain the indication
2309 -- that this is an object.
2311 Ctyp := '*';
2312 end if;
2314 -- Special handling for access parameters and objects and
2315 -- components of an anonymous access type.
2317 if Ekind_In (Etype (XE.Key.Ent),
2318 E_Anonymous_Access_Type,
2319 E_Anonymous_Access_Subprogram_Type,
2320 E_Anonymous_Access_Protected_Subprogram_Type)
2321 then
2322 if Is_Formal (XE.Key.Ent)
2323 or else
2324 Ekind_In
2325 (XE.Key.Ent, E_Variable, E_Constant, E_Component)
2326 then
2327 Ctyp := 'p';
2328 end if;
2330 -- Special handling for Boolean
2332 elsif Ctyp = 'e' and then Is_Boolean_Type (Ent) then
2333 Ctyp := 'b';
2334 end if;
2335 end if;
2337 -- Special handling for abstract types and operations
2339 if Is_Overloadable (XE.Key.Ent)
2340 and then Is_Abstract_Subprogram (XE.Key.Ent)
2341 then
2342 if Ctyp = 'U' then
2343 Ctyp := 'x'; -- Abstract procedure
2345 elsif Ctyp = 'V' then
2346 Ctyp := 'y'; -- Abstract function
2347 end if;
2349 elsif Is_Type (XE.Key.Ent)
2350 and then Is_Abstract_Type (XE.Key.Ent)
2351 then
2352 if Is_Interface (XE.Key.Ent) then
2353 Ctyp := 'h';
2355 elsif Ctyp = 'R' then
2356 Ctyp := 'H'; -- Abstract type
2357 end if;
2358 end if;
2360 -- Only output reference if interesting type of entity
2362 if Ctyp = ' '
2364 -- Suppress references to object definitions, used for local
2365 -- references.
2367 or else XE.Key.Typ = 'D'
2368 or else XE.Key.Typ = 'I'
2370 -- Suppress self references, except for bodies that act as
2371 -- specs.
2373 or else (XE.Key.Loc = XE.Def
2374 and then
2375 (XE.Key.Typ /= 'b'
2376 or else not Is_Subprogram (XE.Key.Ent)))
2378 -- Also suppress definitions of body formals (we only
2379 -- treat these as references, and the references were
2380 -- separately recorded).
2382 or else (Is_Formal (XE.Key.Ent)
2383 and then Present (Spec_Entity (XE.Key.Ent)))
2384 then
2385 null;
2387 else
2388 -- Start new Xref section if new xref unit
2390 if XE.Key.Eun /= Curxu then
2391 if Write_Info_Col > 1 then
2392 Write_Info_EOL;
2393 end if;
2395 Curxu := XE.Key.Eun;
2397 Write_Info_Initiate ('X');
2398 Write_Info_Char (' ');
2399 Write_Info_Nat (Dependency_Num (XE.Key.Eun));
2400 Write_Info_Char (' ');
2401 Write_Info_Name
2402 (Reference_Name (Source_Index (XE.Key.Eun)));
2403 end if;
2405 -- Start new Entity line if new entity. Note that we
2406 -- consider two entities the same if they have the same
2407 -- name and source location. This causes entities in
2408 -- instantiations to be treated as though they referred
2409 -- to the template.
2411 if No (Curent)
2412 or else
2413 (XE.Key.Ent /= Curent
2414 and then
2415 (Name_Change (XE.Key.Ent) or else XE.Def /= Curdef))
2416 then
2417 Curent := XE.Key.Ent;
2418 Curdef := XE.Def;
2420 Get_Unqualified_Name_String (Chars (XE.Key.Ent));
2421 Curlen := Name_Len;
2422 Curnam (1 .. Curlen) := Name_Buffer (1 .. Curlen);
2424 if Write_Info_Col > 1 then
2425 Write_Info_EOL;
2426 end if;
2428 -- Write column number information
2430 Write_Info_Nat (Int (Get_Logical_Line_Number (XE.Def)));
2431 Write_Info_Char (Ctyp);
2432 Write_Info_Nat (Int (Get_Column_Number (XE.Def)));
2434 -- Write level information
2436 Write_Level_Info : declare
2437 function Is_Visible_Generic_Entity
2438 (E : Entity_Id) return Boolean;
2439 -- Check whether E is declared in the visible part
2440 -- of a generic package. For source navigation
2441 -- purposes, treat this as a visible entity.
2443 function Is_Private_Record_Component
2444 (E : Entity_Id) return Boolean;
2445 -- Check whether E is a non-inherited component of a
2446 -- private extension. Even if the enclosing record is
2447 -- public, we want to treat the component as private
2448 -- for navigation purposes.
2450 ---------------------------------
2451 -- Is_Private_Record_Component --
2452 ---------------------------------
2454 function Is_Private_Record_Component
2455 (E : Entity_Id) return Boolean
2457 S : constant Entity_Id := Scope (E);
2458 begin
2459 return
2460 Ekind (E) = E_Component
2461 and then Nkind (Declaration_Node (S)) =
2462 N_Private_Extension_Declaration
2463 and then Original_Record_Component (E) = E;
2464 end Is_Private_Record_Component;
2466 -------------------------------
2467 -- Is_Visible_Generic_Entity --
2468 -------------------------------
2470 function Is_Visible_Generic_Entity
2471 (E : Entity_Id) return Boolean
2473 Par : Node_Id;
2475 begin
2476 -- The Present check here is an error defense
2478 if Present (Scope (E))
2479 and then Ekind (Scope (E)) /= E_Generic_Package
2480 then
2481 return False;
2482 end if;
2484 Par := Parent (E);
2485 while Present (Par) loop
2487 Nkind (Par) = N_Generic_Package_Declaration
2488 then
2489 -- Entity is a generic formal
2491 return False;
2493 elsif
2494 Nkind (Parent (Par)) = N_Package_Specification
2495 then
2496 return
2497 Is_List_Member (Par)
2498 and then List_Containing (Par) =
2499 Visible_Declarations (Parent (Par));
2500 else
2501 Par := Parent (Par);
2502 end if;
2503 end loop;
2505 return False;
2506 end Is_Visible_Generic_Entity;
2508 -- Start of processing for Write_Level_Info
2510 begin
2511 if Is_Hidden (Curent)
2512 or else Is_Private_Record_Component (Curent)
2513 then
2514 Write_Info_Char (' ');
2516 elsif
2517 Is_Public (Curent)
2518 or else Is_Visible_Generic_Entity (Curent)
2519 then
2520 Write_Info_Char ('*');
2522 else
2523 Write_Info_Char (' ');
2524 end if;
2525 end Write_Level_Info;
2527 -- Output entity name. We use the occurrence from the
2528 -- actual source program at the definition point.
2530 declare
2531 Ent_Name : constant String :=
2532 Exact_Source_Name (Sloc (XE.Key.Ent));
2533 begin
2534 for C in Ent_Name'Range loop
2535 Write_Info_Char (Ent_Name (C));
2536 end loop;
2537 end;
2539 -- See if we have a renaming reference
2541 if Is_Object (XE.Key.Ent)
2542 and then Present (Renamed_Object (XE.Key.Ent))
2543 then
2544 Rref := Renamed_Object (XE.Key.Ent);
2546 elsif Is_Overloadable (XE.Key.Ent)
2547 and then Nkind (Parent (Declaration_Node (XE.Key.Ent)))
2548 = N_Subprogram_Renaming_Declaration
2549 then
2550 Rref := Name (Parent (Declaration_Node (XE.Key.Ent)));
2552 elsif Ekind (XE.Key.Ent) = E_Package
2553 and then Nkind (Declaration_Node (XE.Key.Ent)) =
2554 N_Package_Renaming_Declaration
2555 then
2556 Rref := Name (Declaration_Node (XE.Key.Ent));
2558 else
2559 Rref := Empty;
2560 end if;
2562 if Present (Rref) then
2563 if Nkind (Rref) = N_Expanded_Name then
2564 Rref := Selector_Name (Rref);
2565 end if;
2567 if Nkind (Rref) = N_Identifier
2568 or else Nkind (Rref) = N_Operator_Symbol
2569 then
2570 null;
2572 -- For renamed array components, use the array name
2573 -- for the renamed entity, which reflect the fact that
2574 -- in general the whole array is aliased.
2576 elsif Nkind (Rref) = N_Indexed_Component then
2577 if Nkind (Prefix (Rref)) = N_Identifier then
2578 Rref := Prefix (Rref);
2579 elsif Nkind (Prefix (Rref)) = N_Expanded_Name then
2580 Rref := Selector_Name (Prefix (Rref));
2581 else
2582 Rref := Empty;
2583 end if;
2585 else
2586 Rref := Empty;
2587 end if;
2588 end if;
2590 -- Write out renaming reference if we have one
2592 if Present (Rref) then
2593 Write_Info_Char ('=');
2594 Write_Info_Nat
2595 (Int (Get_Logical_Line_Number (Sloc (Rref))));
2596 Write_Info_Char (':');
2597 Write_Info_Nat
2598 (Int (Get_Column_Number (Sloc (Rref))));
2599 end if;
2601 -- Indicate that the entity is in the unit of the current
2602 -- xref section.
2604 Curru := Curxu;
2606 -- Write out information about generic parent, if entity
2607 -- is an instance.
2609 if Is_Generic_Instance (XE.Key.Ent) then
2610 declare
2611 Gen_Par : constant Entity_Id :=
2612 Generic_Parent
2613 (Specification
2614 (Unit_Declaration_Node
2615 (XE.Key.Ent)));
2616 Loc : constant Source_Ptr := Sloc (Gen_Par);
2617 Gen_U : constant Unit_Number_Type :=
2618 Get_Source_Unit (Loc);
2620 begin
2621 Write_Info_Char ('[');
2623 if Curru /= Gen_U then
2624 Write_Info_Nat (Dependency_Num (Gen_U));
2625 Write_Info_Char ('|');
2626 end if;
2628 Write_Info_Nat
2629 (Int (Get_Logical_Line_Number (Loc)));
2630 Write_Info_Char (']');
2631 end;
2632 end if;
2634 -- See if we have a type reference and if so output
2636 Check_Type_Reference (XE.Key.Ent, False);
2638 -- Additional information for types with progenitors,
2639 -- including synchronized tagged types.
2641 declare
2642 Typ : constant Entity_Id := XE.Key.Ent;
2643 Elmt : Elmt_Id;
2645 begin
2646 if Is_Record_Type (Typ)
2647 and then Present (Interfaces (Typ))
2648 then
2649 Elmt := First_Elmt (Interfaces (Typ));
2651 elsif Is_Concurrent_Type (Typ)
2652 and then Present (Corresponding_Record_Type (Typ))
2653 and then Present (
2654 Interfaces (Corresponding_Record_Type (Typ)))
2655 then
2656 Elmt :=
2657 First_Elmt (
2658 Interfaces (Corresponding_Record_Type (Typ)));
2660 else
2661 Elmt := No_Elmt;
2662 end if;
2664 while Present (Elmt) loop
2665 Check_Type_Reference (Node (Elmt), True);
2666 Next_Elmt (Elmt);
2667 end loop;
2668 end;
2670 -- For array types, list index types as well. (This is
2671 -- not C, indexes have distinct types).
2673 if Is_Array_Type (XE.Key.Ent) then
2674 declare
2675 A_Typ : constant Entity_Id := XE.Key.Ent;
2676 Indx : Node_Id;
2678 begin
2679 -- If this is a derived array type, we have
2680 -- output the parent type, so add the component
2681 -- type now.
2683 if Is_Derived_Type (A_Typ) then
2684 Check_Type_Reference
2685 (Component_Type (A_Typ), False, True);
2686 end if;
2688 -- Add references to index types.
2690 Indx := First_Index (XE.Key.Ent);
2691 while Present (Indx) loop
2692 Check_Type_Reference
2693 (First_Subtype (Etype (Indx)), True);
2694 Next_Index (Indx);
2695 end loop;
2696 end;
2697 end if;
2699 -- If the entity is an overriding operation, write info
2700 -- on operation that was overridden.
2702 if Is_Subprogram (XE.Key.Ent)
2703 and then Present (Overridden_Operation (XE.Key.Ent))
2704 then
2705 Output_Overridden_Op
2706 (Overridden_Operation (XE.Key.Ent));
2707 end if;
2709 -- End of processing for entity output
2711 Crloc := No_Location;
2712 end if;
2714 -- Output the reference if it is not as the same location
2715 -- as the previous one, or it is a read-reference that
2716 -- indicates that the entity is an in-out actual in a call.
2718 if XE.Key.Loc /= No_Location
2719 and then
2720 (XE.Key.Loc /= Crloc
2721 or else (Prevt = 'm' and then XE.Key.Typ = 'r'))
2722 then
2723 Crloc := XE.Key.Loc;
2724 Prevt := XE.Key.Typ;
2726 -- Start continuation if line full, else blank
2728 if Write_Info_Col > 72 then
2729 Write_Info_EOL;
2730 Write_Info_Initiate ('.');
2731 end if;
2733 Write_Info_Char (' ');
2735 -- Output file number if changed
2737 if XE.Key.Lun /= Curru then
2738 Curru := XE.Key.Lun;
2739 Write_Info_Nat (Dependency_Num (Curru));
2740 Write_Info_Char ('|');
2741 end if;
2743 Write_Info_Nat
2744 (Int (Get_Logical_Line_Number (XE.Key.Loc)));
2745 Write_Info_Char (XE.Key.Typ);
2747 if Is_Overloadable (XE.Key.Ent) then
2748 if (Is_Imported (XE.Key.Ent) and then XE.Key.Typ = 'b')
2749 or else
2750 (Is_Exported (XE.Key.Ent) and then XE.Key.Typ = 'i')
2751 then
2752 Output_Import_Export_Info (XE.Key.Ent);
2753 end if;
2754 end if;
2756 Write_Info_Nat (Int (Get_Column_Number (XE.Key.Loc)));
2758 Output_Instantiation_Refs (Sloc (XE.Key.Ent));
2759 end if;
2760 end if;
2761 end Output_One_Ref;
2763 <<Continue>>
2764 null;
2765 end loop;
2767 Write_Info_EOL;
2768 end Output_Refs;
2769 end Output_References;
2771 ---------------------------------
2772 -- Process_Deferred_References --
2773 ---------------------------------
2775 procedure Process_Deferred_References is
2776 begin
2777 for J in Deferred_References.First .. Deferred_References.Last loop
2778 declare
2779 D : Deferred_Reference_Entry renames Deferred_References.Table (J);
2781 begin
2782 case Is_LHS (D.N) is
2783 when Yes =>
2784 Generate_Reference (D.E, D.N, 'm');
2786 when No =>
2787 Generate_Reference (D.E, D.N, 'r');
2789 -- Not clear if Unknown can occur at this stage, but if it
2790 -- does we will treat it as a normal reference.
2792 when Unknown =>
2793 Generate_Reference (D.E, D.N, 'r');
2794 end case;
2795 end;
2796 end loop;
2798 -- Clear processed entries from table
2800 Deferred_References.Init;
2801 end Process_Deferred_References;
2803 -- Start of elaboration for Lib.Xref
2805 begin
2806 -- Reset is necessary because Elmt_Ptr does not default to Null_Ptr,
2807 -- because it's not an access type.
2809 Xref_Set.Reset;
2810 end Lib.Xref;