1 /* Expands front end tree to back end RTL for GCC
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 above the level of expressions, using subroutines in exp*.c and emit-rtl.c.
22 The functions whose names start with `expand_' are called by the
23 expander to generate RTL instructions for various kinds of constructs. */
27 #include "coretypes.h"
34 #include "alloc-pool.h"
39 #include "pretty-print.h"
40 #include "diagnostic-core.h"
42 #include "fold-const.h"
44 #include "stor-layout.h"
49 #include "langhooks.h"
56 /* Functions and data structures for expanding case statements. */
58 /* Case label structure, used to hold info on labels within case
59 statements. We handle "range" labels; for a single-value label
60 as in C, the high and low limits are the same.
62 We start with a vector of case nodes sorted in ascending order, and
63 the default label as the last element in the vector. Before expanding
64 to RTL, we transform this vector into a list linked via the RIGHT
65 fields in the case_node struct. Nodes with higher case values are
68 Switch statements can be output in three forms. A branch table is
69 used if there are more than a few labels and the labels are dense
70 within the range between the smallest and largest case value. If a
71 branch table is used, no further manipulations are done with the case
74 The alternative to the use of a branch table is to generate a series
75 of compare and jump insns. When that is done, we use the LEFT, RIGHT,
76 and PARENT fields to hold a binary tree. Initially the tree is
77 totally unbalanced, with everything on the right. We balance the tree
78 with nodes on the left having lower case values than the parent
79 and nodes on the right having higher values. We then output the tree
82 For very small, suitable switch statements, we can generate a series
83 of simple bit test and branches instead. */
87 struct case_node
*left
; /* Left son in binary tree */
88 struct case_node
*right
; /* Right son in binary tree; also node chain */
89 struct case_node
*parent
; /* Parent of node in binary tree */
90 tree low
; /* Lowest index value for this label */
91 tree high
; /* Highest index value for this label */
92 tree code_label
; /* Label to jump to when node matches */
93 int prob
; /* Probability of taking this case. */
94 /* Probability of reaching subtree rooted at this node */
98 typedef struct case_node
*case_node_ptr
;
100 extern basic_block
label_to_block_fn (struct function
*, tree
);
102 static bool check_unique_operand_names (tree
, tree
, tree
);
103 static char *resolve_operand_name_1 (char *, tree
, tree
, tree
);
104 static void balance_case_nodes (case_node_ptr
*, case_node_ptr
);
105 static int node_has_low_bound (case_node_ptr
, tree
);
106 static int node_has_high_bound (case_node_ptr
, tree
);
107 static int node_is_bounded (case_node_ptr
, tree
);
108 static void emit_case_nodes (rtx
, case_node_ptr
, rtx_code_label
*, int, tree
);
110 /* Return the rtx-label that corresponds to a LABEL_DECL,
111 creating it if necessary. */
114 label_rtx (tree label
)
116 gcc_assert (TREE_CODE (label
) == LABEL_DECL
);
118 if (!DECL_RTL_SET_P (label
))
120 rtx_code_label
*r
= gen_label_rtx ();
121 SET_DECL_RTL (label
, r
);
122 if (FORCED_LABEL (label
) || DECL_NONLOCAL (label
))
123 LABEL_PRESERVE_P (r
) = 1;
126 return as_a
<rtx_insn
*> (DECL_RTL (label
));
129 /* As above, but also put it on the forced-reference list of the
130 function that contains it. */
132 force_label_rtx (tree label
)
134 rtx_insn
*ref
= label_rtx (label
);
135 tree function
= decl_function_context (label
);
137 gcc_assert (function
);
139 vec_safe_push (forced_labels
, ref
);
143 /* As label_rtx, but ensures (in check build), that returned value is
144 an existing label (i.e. rtx with code CODE_LABEL). */
146 jump_target_rtx (tree label
)
148 return as_a
<rtx_code_label
*> (label_rtx (label
));
151 /* Add an unconditional jump to LABEL as the next sequential instruction. */
154 emit_jump (rtx label
)
156 do_pending_stack_adjust ();
157 emit_jump_insn (targetm
.gen_jump (label
));
161 /* Handle goto statements and the labels that they can go to. */
163 /* Specify the location in the RTL code of a label LABEL,
164 which is a LABEL_DECL tree node.
166 This is used for the kind of label that the user can jump to with a
167 goto statement, and for alternatives of a switch or case statement.
168 RTL labels generated for loops and conditionals don't go through here;
169 they are generated directly at the RTL level, by other functions below.
171 Note that this has nothing to do with defining label *names*.
172 Languages vary in how they do that and what that even means. */
175 expand_label (tree label
)
177 rtx_code_label
*label_r
= jump_target_rtx (label
);
179 do_pending_stack_adjust ();
180 emit_label (label_r
);
181 if (DECL_NAME (label
))
182 LABEL_NAME (DECL_RTL (label
)) = IDENTIFIER_POINTER (DECL_NAME (label
));
184 if (DECL_NONLOCAL (label
))
186 expand_builtin_setjmp_receiver (NULL
);
187 nonlocal_goto_handler_labels
188 = gen_rtx_INSN_LIST (VOIDmode
, label_r
,
189 nonlocal_goto_handler_labels
);
192 if (FORCED_LABEL (label
))
193 vec_safe_push
<rtx_insn
*> (forced_labels
, label_r
);
195 if (DECL_NONLOCAL (label
) || FORCED_LABEL (label
))
196 maybe_set_first_label_num (label_r
);
199 /* Parse the output constraint pointed to by *CONSTRAINT_P. It is the
200 OPERAND_NUMth output operand, indexed from zero. There are NINPUTS
201 inputs and NOUTPUTS outputs to this extended-asm. Upon return,
202 *ALLOWS_MEM will be TRUE iff the constraint allows the use of a
203 memory operand. Similarly, *ALLOWS_REG will be TRUE iff the
204 constraint allows the use of a register operand. And, *IS_INOUT
205 will be true if the operand is read-write, i.e., if it is used as
206 an input as well as an output. If *CONSTRAINT_P is not in
207 canonical form, it will be made canonical. (Note that `+' will be
208 replaced with `=' as part of this process.)
210 Returns TRUE if all went well; FALSE if an error occurred. */
213 parse_output_constraint (const char **constraint_p
, int operand_num
,
214 int ninputs
, int noutputs
, bool *allows_mem
,
215 bool *allows_reg
, bool *is_inout
)
217 const char *constraint
= *constraint_p
;
220 /* Assume the constraint doesn't allow the use of either a register
225 /* Allow the `=' or `+' to not be at the beginning of the string,
226 since it wasn't explicitly documented that way, and there is a
227 large body of code that puts it last. Swap the character to
228 the front, so as not to uglify any place else. */
229 p
= strchr (constraint
, '=');
231 p
= strchr (constraint
, '+');
233 /* If the string doesn't contain an `=', issue an error
237 error ("output operand constraint lacks %<=%>");
241 /* If the constraint begins with `+', then the operand is both read
242 from and written to. */
243 *is_inout
= (*p
== '+');
245 /* Canonicalize the output constraint so that it begins with `='. */
246 if (p
!= constraint
|| *is_inout
)
249 size_t c_len
= strlen (constraint
);
252 warning (0, "output constraint %qc for operand %d "
253 "is not at the beginning",
256 /* Make a copy of the constraint. */
257 buf
= XALLOCAVEC (char, c_len
+ 1);
258 strcpy (buf
, constraint
);
259 /* Swap the first character and the `=' or `+'. */
260 buf
[p
- constraint
] = buf
[0];
261 /* Make sure the first character is an `='. (Until we do this,
262 it might be a `+'.) */
264 /* Replace the constraint with the canonicalized string. */
265 *constraint_p
= ggc_alloc_string (buf
, c_len
);
266 constraint
= *constraint_p
;
269 /* Loop through the constraint string. */
270 for (p
= constraint
+ 1; *p
; p
+= CONSTRAINT_LEN (*p
, p
))
275 error ("operand constraint contains incorrectly positioned "
280 if (operand_num
+ 1 == ninputs
+ noutputs
)
282 error ("%<%%%> constraint used with last operand");
287 case '?': case '!': case '*': case '&': case '#':
289 case 'E': case 'F': case 'G': case 'H':
290 case 's': case 'i': case 'n':
291 case 'I': case 'J': case 'K': case 'L': case 'M':
292 case 'N': case 'O': case 'P': case ',':
295 case '0': case '1': case '2': case '3': case '4':
296 case '5': case '6': case '7': case '8': case '9':
298 error ("matching constraint not valid in output operand");
302 /* ??? Before flow, auto inc/dec insns are not supposed to exist,
303 excepting those that expand_call created. So match memory
316 enum constraint_num cn
= lookup_constraint (p
);
317 if (reg_class_for_constraint (cn
) != NO_REGS
318 || insn_extra_address_constraint (cn
))
320 else if (insn_extra_memory_constraint (cn
))
323 insn_extra_constraint_allows_reg_mem (cn
, allows_reg
, allows_mem
);
330 /* Similar, but for input constraints. */
333 parse_input_constraint (const char **constraint_p
, int input_num
,
334 int ninputs
, int noutputs
, int ninout
,
335 const char * const * constraints
,
336 bool *allows_mem
, bool *allows_reg
)
338 const char *constraint
= *constraint_p
;
339 const char *orig_constraint
= constraint
;
340 size_t c_len
= strlen (constraint
);
342 bool saw_match
= false;
344 /* Assume the constraint doesn't allow the use of either
345 a register or memory. */
349 /* Make sure constraint has neither `=', `+', nor '&'. */
351 for (j
= 0; j
< c_len
; j
+= CONSTRAINT_LEN (constraint
[j
], constraint
+j
))
352 switch (constraint
[j
])
354 case '+': case '=': case '&':
355 if (constraint
== orig_constraint
)
357 error ("input operand constraint contains %qc", constraint
[j
]);
363 if (constraint
== orig_constraint
364 && input_num
+ 1 == ninputs
- ninout
)
366 error ("%<%%%> constraint used with last operand");
372 case '?': case '!': case '*': case '#':
374 case 'E': case 'F': case 'G': case 'H':
375 case 's': case 'i': case 'n':
376 case 'I': case 'J': case 'K': case 'L': case 'M':
377 case 'N': case 'O': case 'P': case ',':
380 /* Whether or not a numeric constraint allows a register is
381 decided by the matching constraint, and so there is no need
382 to do anything special with them. We must handle them in
383 the default case, so that we don't unnecessarily force
384 operands to memory. */
385 case '0': case '1': case '2': case '3': case '4':
386 case '5': case '6': case '7': case '8': case '9':
393 match
= strtoul (constraint
+ j
, &end
, 10);
394 if (match
>= (unsigned long) noutputs
)
396 error ("matching constraint references invalid operand number");
400 /* Try and find the real constraint for this dup. Only do this
401 if the matching constraint is the only alternative. */
403 && (j
== 0 || (j
== 1 && constraint
[0] == '%')))
405 constraint
= constraints
[match
];
406 *constraint_p
= constraint
;
407 c_len
= strlen (constraint
);
409 /* ??? At the end of the loop, we will skip the first part of
410 the matched constraint. This assumes not only that the
411 other constraint is an output constraint, but also that
412 the '=' or '+' come first. */
416 j
= end
- constraint
;
417 /* Anticipate increment at end of loop. */
428 if (! ISALPHA (constraint
[j
]))
430 error ("invalid punctuation %qc in constraint", constraint
[j
]);
433 enum constraint_num cn
= lookup_constraint (constraint
+ j
);
434 if (reg_class_for_constraint (cn
) != NO_REGS
435 || insn_extra_address_constraint (cn
))
437 else if (insn_extra_memory_constraint (cn
)
438 || insn_extra_special_memory_constraint (cn
))
441 insn_extra_constraint_allows_reg_mem (cn
, allows_reg
, allows_mem
);
445 if (saw_match
&& !*allows_reg
)
446 warning (0, "matching constraint does not allow a register");
451 /* Return DECL iff there's an overlap between *REGS and DECL, where DECL
452 can be an asm-declared register. Called via walk_tree. */
455 decl_overlaps_hard_reg_set_p (tree
*declp
, int *walk_subtrees ATTRIBUTE_UNUSED
,
459 const HARD_REG_SET
*const regs
= (const HARD_REG_SET
*) data
;
463 if (DECL_HARD_REGISTER (decl
)
464 && REG_P (DECL_RTL (decl
))
465 && REGNO (DECL_RTL (decl
)) < FIRST_PSEUDO_REGISTER
)
467 rtx reg
= DECL_RTL (decl
);
469 if (overlaps_hard_reg_set_p (*regs
, GET_MODE (reg
), REGNO (reg
)))
474 else if (TYPE_P (decl
) || TREE_CODE (decl
) == PARM_DECL
)
479 /* If there is an overlap between *REGS and DECL, return the first overlap
482 tree_overlaps_hard_reg_set (tree decl
, HARD_REG_SET
*regs
)
484 return walk_tree (&decl
, decl_overlaps_hard_reg_set_p
, regs
, NULL
);
488 /* A subroutine of expand_asm_operands. Check that all operand names
489 are unique. Return true if so. We rely on the fact that these names
490 are identifiers, and so have been canonicalized by get_identifier,
491 so all we need are pointer comparisons. */
494 check_unique_operand_names (tree outputs
, tree inputs
, tree labels
)
496 tree i
, j
, i_name
= NULL_TREE
;
498 for (i
= outputs
; i
; i
= TREE_CHAIN (i
))
500 i_name
= TREE_PURPOSE (TREE_PURPOSE (i
));
504 for (j
= TREE_CHAIN (i
); j
; j
= TREE_CHAIN (j
))
505 if (simple_cst_equal (i_name
, TREE_PURPOSE (TREE_PURPOSE (j
))))
509 for (i
= inputs
; i
; i
= TREE_CHAIN (i
))
511 i_name
= TREE_PURPOSE (TREE_PURPOSE (i
));
515 for (j
= TREE_CHAIN (i
); j
; j
= TREE_CHAIN (j
))
516 if (simple_cst_equal (i_name
, TREE_PURPOSE (TREE_PURPOSE (j
))))
518 for (j
= outputs
; j
; j
= TREE_CHAIN (j
))
519 if (simple_cst_equal (i_name
, TREE_PURPOSE (TREE_PURPOSE (j
))))
523 for (i
= labels
; i
; i
= TREE_CHAIN (i
))
525 i_name
= TREE_PURPOSE (i
);
529 for (j
= TREE_CHAIN (i
); j
; j
= TREE_CHAIN (j
))
530 if (simple_cst_equal (i_name
, TREE_PURPOSE (j
)))
532 for (j
= inputs
; j
; j
= TREE_CHAIN (j
))
533 if (simple_cst_equal (i_name
, TREE_PURPOSE (TREE_PURPOSE (j
))))
540 error ("duplicate asm operand name %qs", TREE_STRING_POINTER (i_name
));
544 /* Resolve the names of the operands in *POUTPUTS and *PINPUTS to numbers,
545 and replace the name expansions in STRING and in the constraints to
546 those numbers. This is generally done in the front end while creating
547 the ASM_EXPR generic tree that eventually becomes the GIMPLE_ASM. */
550 resolve_asm_operand_names (tree string
, tree outputs
, tree inputs
, tree labels
)
557 check_unique_operand_names (outputs
, inputs
, labels
);
559 /* Substitute [<name>] in input constraint strings. There should be no
560 named operands in output constraints. */
561 for (t
= inputs
; t
; t
= TREE_CHAIN (t
))
563 c
= TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t
)));
564 if (strchr (c
, '[') != NULL
)
566 p
= buffer
= xstrdup (c
);
567 while ((p
= strchr (p
, '[')) != NULL
)
568 p
= resolve_operand_name_1 (p
, outputs
, inputs
, NULL
);
569 TREE_VALUE (TREE_PURPOSE (t
))
570 = build_string (strlen (buffer
), buffer
);
575 /* Now check for any needed substitutions in the template. */
576 c
= TREE_STRING_POINTER (string
);
577 while ((c
= strchr (c
, '%')) != NULL
)
581 else if (ISALPHA (c
[1]) && c
[2] == '[')
585 c
+= 1 + (c
[1] == '%');
592 /* OK, we need to make a copy so we can perform the substitutions.
593 Assume that we will not need extra space--we get to remove '['
594 and ']', which means we cannot have a problem until we have more
595 than 999 operands. */
596 buffer
= xstrdup (TREE_STRING_POINTER (string
));
597 p
= buffer
+ (c
- TREE_STRING_POINTER (string
));
599 while ((p
= strchr (p
, '%')) != NULL
)
603 else if (ISALPHA (p
[1]) && p
[2] == '[')
607 p
+= 1 + (p
[1] == '%');
611 p
= resolve_operand_name_1 (p
, outputs
, inputs
, labels
);
614 string
= build_string (strlen (buffer
), buffer
);
621 /* A subroutine of resolve_operand_names. P points to the '[' for a
622 potential named operand of the form [<name>]. In place, replace
623 the name and brackets with a number. Return a pointer to the
624 balance of the string after substitution. */
627 resolve_operand_name_1 (char *p
, tree outputs
, tree inputs
, tree labels
)
633 /* Collect the operand name. */
634 q
= strchr (++p
, ']');
637 error ("missing close brace for named operand");
638 return strchr (p
, '\0');
642 /* Resolve the name to a number. */
643 for (op
= 0, t
= outputs
; t
; t
= TREE_CHAIN (t
), op
++)
645 tree name
= TREE_PURPOSE (TREE_PURPOSE (t
));
646 if (name
&& strcmp (TREE_STRING_POINTER (name
), p
) == 0)
649 for (t
= inputs
; t
; t
= TREE_CHAIN (t
), op
++)
651 tree name
= TREE_PURPOSE (TREE_PURPOSE (t
));
652 if (name
&& strcmp (TREE_STRING_POINTER (name
), p
) == 0)
655 for (t
= labels
; t
; t
= TREE_CHAIN (t
), op
++)
657 tree name
= TREE_PURPOSE (t
);
658 if (name
&& strcmp (TREE_STRING_POINTER (name
), p
) == 0)
662 error ("undefined named operand %qs", identifier_to_locale (p
));
666 /* Replace the name with the number. Unfortunately, not all libraries
667 get the return value of sprintf correct, so search for the end of the
668 generated string by hand. */
669 sprintf (--p
, "%d", op
);
670 p
= strchr (p
, '\0');
672 /* Verify the no extra buffer space assumption. */
675 /* Shift the rest of the buffer down to fill the gap. */
676 memmove (p
, q
+ 1, strlen (q
+ 1) + 1);
682 /* Generate RTL to return directly from the current function.
683 (That is, we bypass any return value.) */
686 expand_naked_return (void)
688 rtx_code_label
*end_label
;
690 clear_pending_stack_adjust ();
691 do_pending_stack_adjust ();
693 end_label
= naked_return_label
;
695 end_label
= naked_return_label
= gen_label_rtx ();
697 emit_jump (end_label
);
700 /* Generate code to jump to LABEL if OP0 and OP1 are equal in mode MODE. PROB
701 is the probability of jumping to LABEL. */
703 do_jump_if_equal (machine_mode mode
, rtx op0
, rtx op1
, rtx_code_label
*label
,
704 int unsignedp
, int prob
)
706 gcc_assert (prob
<= REG_BR_PROB_BASE
);
707 do_compare_rtx_and_jump (op0
, op1
, EQ
, unsignedp
, mode
,
708 NULL_RTX
, NULL
, label
, prob
);
711 /* Do the insertion of a case label into case_list. The labels are
712 fed to us in descending order from the sorted vector of case labels used
713 in the tree part of the middle end. So the list we construct is
714 sorted in ascending order.
716 LABEL is the case label to be inserted. LOW and HIGH are the bounds
717 against which the index is compared to jump to LABEL and PROB is the
718 estimated probability LABEL is reached from the switch statement. */
720 static struct case_node
*
721 add_case_node (struct case_node
*head
, tree low
, tree high
,
722 tree label
, int prob
,
723 object_allocator
<case_node
> &case_node_pool
)
727 gcc_checking_assert (low
);
728 gcc_checking_assert (high
&& (TREE_TYPE (low
) == TREE_TYPE (high
)));
730 /* Add this label to the chain. */
731 r
= case_node_pool
.allocate ();
734 r
->code_label
= label
;
735 r
->parent
= r
->left
= NULL
;
737 r
->subtree_prob
= prob
;
742 /* Dump ROOT, a list or tree of case nodes, to file. */
745 dump_case_nodes (FILE *f
, struct case_node
*root
,
746 int indent_step
, int indent_level
)
752 dump_case_nodes (f
, root
->left
, indent_step
, indent_level
);
755 fprintf (f
, "%*s", indent_step
* indent_level
, "");
756 print_dec (root
->low
, f
, TYPE_SIGN (TREE_TYPE (root
->low
)));
757 if (!tree_int_cst_equal (root
->low
, root
->high
))
759 fprintf (f
, " ... ");
760 print_dec (root
->high
, f
, TYPE_SIGN (TREE_TYPE (root
->high
)));
764 dump_case_nodes (f
, root
->right
, indent_step
, indent_level
);
767 /* Return the smallest number of different values for which it is best to use a
768 jump-table instead of a tree of conditional branches. */
771 case_values_threshold (void)
773 unsigned int threshold
= PARAM_VALUE (PARAM_CASE_VALUES_THRESHOLD
);
776 threshold
= targetm
.case_values_threshold ();
781 /* Return true if a switch should be expanded as a decision tree.
782 RANGE is the difference between highest and lowest case.
783 UNIQ is number of unique case node targets, not counting the default case.
784 COUNT is the number of comparisons needed, not counting the default case. */
787 expand_switch_as_decision_tree_p (tree range
,
788 unsigned int uniq ATTRIBUTE_UNUSED
,
793 /* If neither casesi or tablejump is available, or flag_jump_tables
794 over-ruled us, we really have no choice. */
795 if (!targetm
.have_casesi () && !targetm
.have_tablejump ())
797 if (!flag_jump_tables
)
799 #ifndef ASM_OUTPUT_ADDR_DIFF_ELT
804 /* If the switch is relatively small such that the cost of one
805 indirect jump on the target are higher than the cost of a
806 decision tree, go with the decision tree.
808 If range of values is much bigger than number of values,
809 or if it is too large to represent in a HOST_WIDE_INT,
810 make a sequence of conditional branches instead of a dispatch.
812 The definition of "much bigger" depends on whether we are
813 optimizing for size or for speed. If the former, the maximum
814 ratio range/count = 3, because this was found to be the optimal
815 ratio for size on i686-pc-linux-gnu, see PR11823. The ratio
816 10 is much older, and was probably selected after an extensive
817 benchmarking investigation on numerous platforms. Or maybe it
818 just made sense to someone at some point in the history of GCC,
820 max_ratio
= optimize_insn_for_size_p () ? 3 : 10;
821 if (count
< case_values_threshold ()
822 || ! tree_fits_uhwi_p (range
)
823 || compare_tree_int (range
, max_ratio
* count
) > 0)
829 /* Generate a decision tree, switching on INDEX_EXPR and jumping to
830 one of the labels in CASE_LIST or to the DEFAULT_LABEL.
831 DEFAULT_PROB is the estimated probability that it jumps to
834 We generate a binary decision tree to select the appropriate target
835 code. This is done as follows:
837 If the index is a short or char that we do not have
838 an insn to handle comparisons directly, convert it to
839 a full integer now, rather than letting each comparison
840 generate the conversion.
842 Load the index into a register.
844 The list of cases is rearranged into a binary tree,
845 nearly optimal assuming equal probability for each case.
847 The tree is transformed into RTL, eliminating redundant
848 test conditions at the same time.
850 If program flow could reach the end of the decision tree
851 an unconditional jump to the default code is emitted.
853 The above process is unaware of the CFG. The caller has to fix up
854 the CFG itself. This is done in cfgexpand.c. */
857 emit_case_decision_tree (tree index_expr
, tree index_type
,
858 case_node_ptr case_list
, rtx_code_label
*default_label
,
861 rtx index
= expand_normal (index_expr
);
863 if (GET_MODE_CLASS (GET_MODE (index
)) == MODE_INT
864 && ! have_insn_for (COMPARE
, GET_MODE (index
)))
866 int unsignedp
= TYPE_UNSIGNED (index_type
);
867 machine_mode wider_mode
;
868 for (wider_mode
= GET_MODE (index
); wider_mode
!= VOIDmode
;
869 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
870 if (have_insn_for (COMPARE
, wider_mode
))
872 index
= convert_to_mode (wider_mode
, index
, unsignedp
);
877 do_pending_stack_adjust ();
881 index
= copy_to_reg (index
);
882 if (TREE_CODE (index_expr
) == SSA_NAME
)
883 set_reg_attrs_for_decl_rtl (index_expr
, index
);
886 balance_case_nodes (&case_list
, NULL
);
888 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
890 int indent_step
= ceil_log2 (TYPE_PRECISION (index_type
)) + 2;
891 fprintf (dump_file
, ";; Expanding GIMPLE switch as decision tree:\n");
892 dump_case_nodes (dump_file
, case_list
, indent_step
, 0);
895 emit_case_nodes (index
, case_list
, default_label
, default_prob
, index_type
);
897 emit_jump (default_label
);
900 /* Return the sum of probabilities of outgoing edges of basic block BB. */
903 get_outgoing_edge_probs (basic_block bb
)
910 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
911 prob_sum
+= e
->probability
;
915 /* Computes the conditional probability of jumping to a target if the branch
916 instruction is executed.
917 TARGET_PROB is the estimated probability of jumping to a target relative
918 to some basic block BB.
919 BASE_PROB is the probability of reaching the branch instruction relative
920 to the same basic block BB. */
923 conditional_probability (int target_prob
, int base_prob
)
927 gcc_assert (target_prob
>= 0);
928 gcc_assert (target_prob
<= base_prob
);
929 return GCOV_COMPUTE_SCALE (target_prob
, base_prob
);
934 /* Generate a dispatch tabler, switching on INDEX_EXPR and jumping to
935 one of the labels in CASE_LIST or to the DEFAULT_LABEL.
936 MINVAL, MAXVAL, and RANGE are the extrema and range of the case
937 labels in CASE_LIST. STMT_BB is the basic block containing the statement.
939 First, a jump insn is emitted. First we try "casesi". If that
940 fails, try "tablejump". A target *must* have one of them (or both).
942 Then, a table with the target labels is emitted.
944 The process is unaware of the CFG. The caller has to fix up
945 the CFG itself. This is done in cfgexpand.c. */
948 emit_case_dispatch_table (tree index_expr
, tree index_type
,
949 struct case_node
*case_list
, rtx default_label
,
950 tree minval
, tree maxval
, tree range
,
956 rtx_insn
*fallback_label
= label_rtx (case_list
->code_label
);
957 rtx_code_label
*table_label
= gen_label_rtx ();
958 bool has_gaps
= false;
959 edge default_edge
= stmt_bb
? EDGE_SUCC (stmt_bb
, 0) : NULL
;
960 int default_prob
= default_edge
? default_edge
->probability
: 0;
961 int base
= get_outgoing_edge_probs (stmt_bb
);
962 bool try_with_tablejump
= false;
964 int new_default_prob
= conditional_probability (default_prob
,
967 if (! try_casesi (index_type
, index_expr
, minval
, range
,
968 table_label
, default_label
, fallback_label
,
971 /* Index jumptables from zero for suitable values of minval to avoid
972 a subtraction. For the rationale see:
973 "http://gcc.gnu.org/ml/gcc-patches/2001-10/msg01234.html". */
974 if (optimize_insn_for_speed_p ()
975 && compare_tree_int (minval
, 0) > 0
976 && compare_tree_int (minval
, 3) < 0)
978 minval
= build_int_cst (index_type
, 0);
982 try_with_tablejump
= true;
985 /* Get table of labels to jump to, in order of case index. */
987 ncases
= tree_to_shwi (range
) + 1;
988 labelvec
= XALLOCAVEC (rtx
, ncases
);
989 memset (labelvec
, 0, ncases
* sizeof (rtx
));
991 for (n
= case_list
; n
; n
= n
->right
)
993 /* Compute the low and high bounds relative to the minimum
994 value since that should fit in a HOST_WIDE_INT while the
995 actual values may not. */
997 = tree_to_uhwi (fold_build2 (MINUS_EXPR
, index_type
,
1000 = tree_to_uhwi (fold_build2 (MINUS_EXPR
, index_type
,
1004 for (i
= i_low
; i
<= i_high
; i
++)
1006 = gen_rtx_LABEL_REF (Pmode
, label_rtx (n
->code_label
));
1009 /* Fill in the gaps with the default. We may have gaps at
1010 the beginning if we tried to avoid the minval subtraction,
1011 so substitute some label even if the default label was
1012 deemed unreachable. */
1014 default_label
= fallback_label
;
1015 for (i
= 0; i
< ncases
; i
++)
1016 if (labelvec
[i
] == 0)
1019 labelvec
[i
] = gen_rtx_LABEL_REF (Pmode
, default_label
);
1024 /* There is at least one entry in the jump table that jumps
1025 to default label. The default label can either be reached
1026 through the indirect jump or the direct conditional jump
1027 before that. Split the probability of reaching the
1028 default label among these two jumps. */
1029 new_default_prob
= conditional_probability (default_prob
/2,
1032 base
-= default_prob
;
1036 base
-= default_prob
;
1041 default_edge
->probability
= default_prob
;
1043 /* We have altered the probability of the default edge. So the probabilities
1044 of all other edges need to be adjusted so that it sums up to
1045 REG_BR_PROB_BASE. */
1050 FOR_EACH_EDGE (e
, ei
, stmt_bb
->succs
)
1051 e
->probability
= GCOV_COMPUTE_SCALE (e
->probability
, base
);
1054 if (try_with_tablejump
)
1056 bool ok
= try_tablejump (index_type
, index_expr
, minval
, range
,
1057 table_label
, default_label
, new_default_prob
);
1060 /* Output the table. */
1061 emit_label (table_label
);
1063 if (CASE_VECTOR_PC_RELATIVE
|| flag_pic
)
1064 emit_jump_table_data (gen_rtx_ADDR_DIFF_VEC (CASE_VECTOR_MODE
,
1065 gen_rtx_LABEL_REF (Pmode
,
1067 gen_rtvec_v (ncases
, labelvec
),
1068 const0_rtx
, const0_rtx
));
1070 emit_jump_table_data (gen_rtx_ADDR_VEC (CASE_VECTOR_MODE
,
1071 gen_rtvec_v (ncases
, labelvec
)));
1073 /* Record no drop-through after the table. */
1077 /* Reset the aux field of all outgoing edges of basic block BB. */
1080 reset_out_edges_aux (basic_block bb
)
1084 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1088 /* Compute the number of case labels that correspond to each outgoing edge of
1089 STMT. Record this information in the aux field of the edge. */
1092 compute_cases_per_edge (gswitch
*stmt
)
1094 basic_block bb
= gimple_bb (stmt
);
1095 reset_out_edges_aux (bb
);
1096 int ncases
= gimple_switch_num_labels (stmt
);
1097 for (int i
= ncases
- 1; i
>= 1; --i
)
1099 tree elt
= gimple_switch_label (stmt
, i
);
1100 tree lab
= CASE_LABEL (elt
);
1101 basic_block case_bb
= label_to_block_fn (cfun
, lab
);
1102 edge case_edge
= find_edge (bb
, case_bb
);
1103 case_edge
->aux
= (void *)((intptr_t)(case_edge
->aux
) + 1);
1107 /* Terminate a case (Pascal/Ada) or switch (C) statement
1108 in which ORIG_INDEX is the expression to be tested.
1109 If ORIG_TYPE is not NULL, it is the original ORIG_INDEX
1110 type as given in the source before any compiler conversions.
1111 Generate the code to test it and jump to the right place. */
1114 expand_case (gswitch
*stmt
)
1116 tree minval
= NULL_TREE
, maxval
= NULL_TREE
, range
= NULL_TREE
;
1117 rtx_code_label
*default_label
= NULL
;
1118 unsigned int count
, uniq
;
1120 int ncases
= gimple_switch_num_labels (stmt
);
1121 tree index_expr
= gimple_switch_index (stmt
);
1122 tree index_type
= TREE_TYPE (index_expr
);
1124 basic_block bb
= gimple_bb (stmt
);
1126 /* A list of case labels; it is first built as a list and it may then
1127 be rearranged into a nearly balanced binary tree. */
1128 struct case_node
*case_list
= 0;
1130 /* A pool for case nodes. */
1131 object_allocator
<case_node
> case_node_pool ("struct case_node pool");
1133 /* An ERROR_MARK occurs for various reasons including invalid data type.
1134 ??? Can this still happen, with GIMPLE and all? */
1135 if (index_type
== error_mark_node
)
1138 /* cleanup_tree_cfg removes all SWITCH_EXPR with their index
1139 expressions being INTEGER_CST. */
1140 gcc_assert (TREE_CODE (index_expr
) != INTEGER_CST
);
1143 do_pending_stack_adjust ();
1145 /* Find the default case target label. */
1146 default_label
= jump_target_rtx
1147 (CASE_LABEL (gimple_switch_default_label (stmt
)));
1148 edge default_edge
= EDGE_SUCC (bb
, 0);
1149 int default_prob
= default_edge
->probability
;
1151 /* Get upper and lower bounds of case values. */
1152 elt
= gimple_switch_label (stmt
, 1);
1153 minval
= fold_convert (index_type
, CASE_LOW (elt
));
1154 elt
= gimple_switch_label (stmt
, ncases
- 1);
1155 if (CASE_HIGH (elt
))
1156 maxval
= fold_convert (index_type
, CASE_HIGH (elt
));
1158 maxval
= fold_convert (index_type
, CASE_LOW (elt
));
1160 /* Compute span of values. */
1161 range
= fold_build2 (MINUS_EXPR
, index_type
, maxval
, minval
);
1163 /* Listify the labels queue and gather some numbers to decide
1164 how to expand this switch(). */
1167 hash_set
<tree
> seen_labels
;
1168 compute_cases_per_edge (stmt
);
1170 for (i
= ncases
- 1; i
>= 1; --i
)
1172 elt
= gimple_switch_label (stmt
, i
);
1173 tree low
= CASE_LOW (elt
);
1175 tree high
= CASE_HIGH (elt
);
1176 gcc_assert (! high
|| tree_int_cst_lt (low
, high
));
1177 tree lab
= CASE_LABEL (elt
);
1179 /* Count the elements.
1180 A range counts double, since it requires two compares. */
1185 /* If we have not seen this label yet, then increase the
1186 number of unique case node targets seen. */
1187 if (!seen_labels
.add (lab
))
1190 /* The bounds on the case range, LOW and HIGH, have to be converted
1191 to case's index type TYPE. Note that the original type of the
1192 case index in the source code is usually "lost" during
1193 gimplification due to type promotion, but the case labels retain the
1194 original type. Make sure to drop overflow flags. */
1195 low
= fold_convert (index_type
, low
);
1196 if (TREE_OVERFLOW (low
))
1197 low
= wide_int_to_tree (index_type
, low
);
1199 /* The canonical from of a case label in GIMPLE is that a simple case
1200 has an empty CASE_HIGH. For the casesi and tablejump expanders,
1201 the back ends want simple cases to have high == low. */
1204 high
= fold_convert (index_type
, high
);
1205 if (TREE_OVERFLOW (high
))
1206 high
= wide_int_to_tree (index_type
, high
);
1208 basic_block case_bb
= label_to_block_fn (cfun
, lab
);
1209 edge case_edge
= find_edge (bb
, case_bb
);
1210 case_list
= add_case_node (
1211 case_list
, low
, high
, lab
,
1212 case_edge
->probability
/ (intptr_t)(case_edge
->aux
),
1215 reset_out_edges_aux (bb
);
1217 /* cleanup_tree_cfg removes all SWITCH_EXPR with a single
1218 destination, such as one with a default case only.
1219 It also removes cases that are out of range for the switch
1220 type, so we should never get a zero here. */
1221 gcc_assert (count
> 0);
1223 rtx_insn
*before_case
= get_last_insn ();
1225 /* Decide how to expand this switch.
1226 The two options at this point are a dispatch table (casesi or
1227 tablejump) or a decision tree. */
1229 if (expand_switch_as_decision_tree_p (range
, uniq
, count
))
1230 emit_case_decision_tree (index_expr
, index_type
,
1231 case_list
, default_label
,
1234 emit_case_dispatch_table (index_expr
, index_type
,
1235 case_list
, default_label
,
1236 minval
, maxval
, range
, bb
);
1238 reorder_insns (NEXT_INSN (before_case
), get_last_insn (), before_case
);
1243 /* Expand the dispatch to a short decrement chain if there are few cases
1244 to dispatch to. Likewise if neither casesi nor tablejump is available,
1245 or if flag_jump_tables is set. Otherwise, expand as a casesi or a
1246 tablejump. The index mode is always the mode of integer_type_node.
1247 Trap if no case matches the index.
1249 DISPATCH_INDEX is the index expression to switch on. It should be a
1250 memory or register operand.
1252 DISPATCH_TABLE is a set of case labels. The set should be sorted in
1253 ascending order, be contiguous, starting with value 0, and contain only
1254 single-valued case labels. */
1257 expand_sjlj_dispatch_table (rtx dispatch_index
,
1258 vec
<tree
> dispatch_table
)
1260 tree index_type
= integer_type_node
;
1261 machine_mode index_mode
= TYPE_MODE (index_type
);
1263 int ncases
= dispatch_table
.length ();
1265 do_pending_stack_adjust ();
1266 rtx_insn
*before_case
= get_last_insn ();
1268 /* Expand as a decrement-chain if there are 5 or fewer dispatch
1269 labels. This covers more than 98% of the cases in libjava,
1270 and seems to be a reasonable compromise between the "old way"
1271 of expanding as a decision tree or dispatch table vs. the "new
1272 way" with decrement chain or dispatch table. */
1273 if (dispatch_table
.length () <= 5
1274 || (!targetm
.have_casesi () && !targetm
.have_tablejump ())
1275 || !flag_jump_tables
)
1277 /* Expand the dispatch as a decrement chain:
1279 "switch(index) {case 0: do_0; case 1: do_1; ...; case N: do_N;}"
1283 if (index == 0) do_0; else index--;
1284 if (index == 0) do_1; else index--;
1286 if (index == 0) do_N; else index--;
1288 This is more efficient than a dispatch table on most machines.
1289 The last "index--" is redundant but the code is trivially dead
1290 and will be cleaned up by later passes. */
1291 rtx index
= copy_to_mode_reg (index_mode
, dispatch_index
);
1292 rtx zero
= CONST0_RTX (index_mode
);
1293 for (int i
= 0; i
< ncases
; i
++)
1295 tree elt
= dispatch_table
[i
];
1296 rtx_code_label
*lab
= jump_target_rtx (CASE_LABEL (elt
));
1297 do_jump_if_equal (index_mode
, index
, zero
, lab
, 0, -1);
1298 force_expand_binop (index_mode
, sub_optab
,
1299 index
, CONST1_RTX (index_mode
),
1300 index
, 0, OPTAB_DIRECT
);
1305 /* Similar to expand_case, but much simpler. */
1306 struct case_node
*case_list
= 0;
1307 object_allocator
<case_node
> case_node_pool ("struct sjlj_case pool");
1308 tree index_expr
= make_tree (index_type
, dispatch_index
);
1309 tree minval
= build_int_cst (index_type
, 0);
1310 tree maxval
= CASE_LOW (dispatch_table
.last ());
1311 tree range
= maxval
;
1312 rtx_code_label
*default_label
= gen_label_rtx ();
1314 for (int i
= ncases
- 1; i
>= 0; --i
)
1316 tree elt
= dispatch_table
[i
];
1317 tree low
= CASE_LOW (elt
);
1318 tree lab
= CASE_LABEL (elt
);
1319 case_list
= add_case_node (case_list
, low
, low
, lab
, 0, case_node_pool
);
1322 emit_case_dispatch_table (index_expr
, index_type
,
1323 case_list
, default_label
,
1324 minval
, maxval
, range
,
1325 BLOCK_FOR_INSN (before_case
));
1326 emit_label (default_label
);
1329 /* Dispatching something not handled? Trap! */
1330 expand_builtin_trap ();
1332 reorder_insns (NEXT_INSN (before_case
), get_last_insn (), before_case
);
1338 /* Take an ordered list of case nodes
1339 and transform them into a near optimal binary tree,
1340 on the assumption that any target code selection value is as
1341 likely as any other.
1343 The transformation is performed by splitting the ordered
1344 list into two equal sections plus a pivot. The parts are
1345 then attached to the pivot as left and right branches. Each
1346 branch is then transformed recursively. */
1349 balance_case_nodes (case_node_ptr
*head
, case_node_ptr parent
)
1361 /* Count the number of entries on branch. Also count the ranges. */
1365 if (!tree_int_cst_equal (np
->low
, np
->high
))
1374 /* Split this list if it is long enough for that to help. */
1378 /* If there are just three nodes, split at the middle one. */
1380 npp
= &(*npp
)->right
;
1383 /* Find the place in the list that bisects the list's total cost,
1384 where ranges count as 2.
1385 Here I gets half the total cost. */
1386 i
= (i
+ ranges
+ 1) / 2;
1389 /* Skip nodes while their cost does not reach that amount. */
1390 if (!tree_int_cst_equal ((*npp
)->low
, (*npp
)->high
))
1395 npp
= &(*npp
)->right
;
1400 np
->parent
= parent
;
1403 /* Optimize each of the two split parts. */
1404 balance_case_nodes (&np
->left
, np
);
1405 balance_case_nodes (&np
->right
, np
);
1406 np
->subtree_prob
= np
->prob
;
1407 np
->subtree_prob
+= np
->left
->subtree_prob
;
1408 np
->subtree_prob
+= np
->right
->subtree_prob
;
1412 /* Else leave this branch as one level,
1413 but fill in `parent' fields. */
1415 np
->parent
= parent
;
1416 np
->subtree_prob
= np
->prob
;
1417 for (; np
->right
; np
= np
->right
)
1419 np
->right
->parent
= np
;
1420 (*head
)->subtree_prob
+= np
->right
->subtree_prob
;
1426 /* Search the parent sections of the case node tree
1427 to see if a test for the lower bound of NODE would be redundant.
1428 INDEX_TYPE is the type of the index expression.
1430 The instructions to generate the case decision tree are
1431 output in the same order as nodes are processed so it is
1432 known that if a parent node checks the range of the current
1433 node minus one that the current node is bounded at its lower
1434 span. Thus the test would be redundant. */
1437 node_has_low_bound (case_node_ptr node
, tree index_type
)
1440 case_node_ptr pnode
;
1442 /* If the lower bound of this node is the lowest value in the index type,
1443 we need not test it. */
1445 if (tree_int_cst_equal (node
->low
, TYPE_MIN_VALUE (index_type
)))
1448 /* If this node has a left branch, the value at the left must be less
1449 than that at this node, so it cannot be bounded at the bottom and
1450 we need not bother testing any further. */
1455 low_minus_one
= fold_build2 (MINUS_EXPR
, TREE_TYPE (node
->low
),
1457 build_int_cst (TREE_TYPE (node
->low
), 1));
1459 /* If the subtraction above overflowed, we can't verify anything.
1460 Otherwise, look for a parent that tests our value - 1. */
1462 if (! tree_int_cst_lt (low_minus_one
, node
->low
))
1465 for (pnode
= node
->parent
; pnode
; pnode
= pnode
->parent
)
1466 if (tree_int_cst_equal (low_minus_one
, pnode
->high
))
1472 /* Search the parent sections of the case node tree
1473 to see if a test for the upper bound of NODE would be redundant.
1474 INDEX_TYPE is the type of the index expression.
1476 The instructions to generate the case decision tree are
1477 output in the same order as nodes are processed so it is
1478 known that if a parent node checks the range of the current
1479 node plus one that the current node is bounded at its upper
1480 span. Thus the test would be redundant. */
1483 node_has_high_bound (case_node_ptr node
, tree index_type
)
1486 case_node_ptr pnode
;
1488 /* If there is no upper bound, obviously no test is needed. */
1490 if (TYPE_MAX_VALUE (index_type
) == NULL
)
1493 /* If the upper bound of this node is the highest value in the type
1494 of the index expression, we need not test against it. */
1496 if (tree_int_cst_equal (node
->high
, TYPE_MAX_VALUE (index_type
)))
1499 /* If this node has a right branch, the value at the right must be greater
1500 than that at this node, so it cannot be bounded at the top and
1501 we need not bother testing any further. */
1506 high_plus_one
= fold_build2 (PLUS_EXPR
, TREE_TYPE (node
->high
),
1508 build_int_cst (TREE_TYPE (node
->high
), 1));
1510 /* If the addition above overflowed, we can't verify anything.
1511 Otherwise, look for a parent that tests our value + 1. */
1513 if (! tree_int_cst_lt (node
->high
, high_plus_one
))
1516 for (pnode
= node
->parent
; pnode
; pnode
= pnode
->parent
)
1517 if (tree_int_cst_equal (high_plus_one
, pnode
->low
))
1523 /* Search the parent sections of the
1524 case node tree to see if both tests for the upper and lower
1525 bounds of NODE would be redundant. */
1528 node_is_bounded (case_node_ptr node
, tree index_type
)
1530 return (node_has_low_bound (node
, index_type
)
1531 && node_has_high_bound (node
, index_type
));
1535 /* Emit step-by-step code to select a case for the value of INDEX.
1536 The thus generated decision tree follows the form of the
1537 case-node binary tree NODE, whose nodes represent test conditions.
1538 INDEX_TYPE is the type of the index of the switch.
1540 Care is taken to prune redundant tests from the decision tree
1541 by detecting any boundary conditions already checked by
1542 emitted rtx. (See node_has_high_bound, node_has_low_bound
1543 and node_is_bounded, above.)
1545 Where the test conditions can be shown to be redundant we emit
1546 an unconditional jump to the target code. As a further
1547 optimization, the subordinates of a tree node are examined to
1548 check for bounded nodes. In this case conditional and/or
1549 unconditional jumps as a result of the boundary check for the
1550 current node are arranged to target the subordinates associated
1551 code for out of bound conditions on the current node.
1553 We can assume that when control reaches the code generated here,
1554 the index value has already been compared with the parents
1555 of this node, and determined to be on the same side of each parent
1556 as this node is. Thus, if this node tests for the value 51,
1557 and a parent tested for 52, we don't need to consider
1558 the possibility of a value greater than 51. If another parent
1559 tests for the value 50, then this node need not test anything. */
1562 emit_case_nodes (rtx index
, case_node_ptr node
, rtx_code_label
*default_label
,
1563 int default_prob
, tree index_type
)
1565 /* If INDEX has an unsigned type, we must make unsigned branches. */
1566 int unsignedp
= TYPE_UNSIGNED (index_type
);
1568 int prob
= node
->prob
, subtree_prob
= node
->subtree_prob
;
1569 machine_mode mode
= GET_MODE (index
);
1570 machine_mode imode
= TYPE_MODE (index_type
);
1572 /* Handle indices detected as constant during RTL expansion. */
1573 if (mode
== VOIDmode
)
1576 /* See if our parents have already tested everything for us.
1577 If they have, emit an unconditional jump for this node. */
1578 if (node_is_bounded (node
, index_type
))
1579 emit_jump (label_rtx (node
->code_label
));
1581 else if (tree_int_cst_equal (node
->low
, node
->high
))
1583 probability
= conditional_probability (prob
, subtree_prob
+ default_prob
);
1584 /* Node is single valued. First see if the index expression matches
1585 this node and then check our children, if any. */
1586 do_jump_if_equal (mode
, index
,
1587 convert_modes (mode
, imode
,
1588 expand_normal (node
->low
),
1590 jump_target_rtx (node
->code_label
),
1591 unsignedp
, probability
);
1592 /* Since this case is taken at this point, reduce its weight from
1594 subtree_prob
-= prob
;
1595 if (node
->right
!= 0 && node
->left
!= 0)
1597 /* This node has children on both sides.
1598 Dispatch to one side or the other
1599 by comparing the index value with this node's value.
1600 If one subtree is bounded, check that one first,
1601 so we can avoid real branches in the tree. */
1603 if (node_is_bounded (node
->right
, index_type
))
1605 probability
= conditional_probability (
1607 subtree_prob
+ default_prob
);
1608 emit_cmp_and_jump_insns (index
,
1611 expand_normal (node
->high
),
1613 GT
, NULL_RTX
, mode
, unsignedp
,
1614 label_rtx (node
->right
->code_label
),
1616 emit_case_nodes (index
, node
->left
, default_label
, default_prob
,
1620 else if (node_is_bounded (node
->left
, index_type
))
1622 probability
= conditional_probability (
1624 subtree_prob
+ default_prob
);
1625 emit_cmp_and_jump_insns (index
,
1628 expand_normal (node
->high
),
1630 LT
, NULL_RTX
, mode
, unsignedp
,
1631 label_rtx (node
->left
->code_label
),
1633 emit_case_nodes (index
, node
->right
, default_label
, default_prob
,
1637 /* If both children are single-valued cases with no
1638 children, finish up all the work. This way, we can save
1639 one ordered comparison. */
1640 else if (tree_int_cst_equal (node
->right
->low
, node
->right
->high
)
1641 && node
->right
->left
== 0
1642 && node
->right
->right
== 0
1643 && tree_int_cst_equal (node
->left
->low
, node
->left
->high
)
1644 && node
->left
->left
== 0
1645 && node
->left
->right
== 0)
1647 /* Neither node is bounded. First distinguish the two sides;
1648 then emit the code for one side at a time. */
1650 /* See if the value matches what the right hand side
1652 probability
= conditional_probability (
1654 subtree_prob
+ default_prob
);
1655 do_jump_if_equal (mode
, index
,
1656 convert_modes (mode
, imode
,
1657 expand_normal (node
->right
->low
),
1659 jump_target_rtx (node
->right
->code_label
),
1660 unsignedp
, probability
);
1662 /* See if the value matches what the left hand side
1664 probability
= conditional_probability (
1666 subtree_prob
+ default_prob
);
1667 do_jump_if_equal (mode
, index
,
1668 convert_modes (mode
, imode
,
1669 expand_normal (node
->left
->low
),
1671 jump_target_rtx (node
->left
->code_label
),
1672 unsignedp
, probability
);
1677 /* Neither node is bounded. First distinguish the two sides;
1678 then emit the code for one side at a time. */
1681 = build_decl (curr_insn_location (),
1682 LABEL_DECL
, NULL_TREE
, void_type_node
);
1684 /* The default label could be reached either through the right
1685 subtree or the left subtree. Divide the probability
1687 probability
= conditional_probability (
1688 node
->right
->subtree_prob
+ default_prob
/2,
1689 subtree_prob
+ default_prob
);
1690 /* See if the value is on the right. */
1691 emit_cmp_and_jump_insns (index
,
1694 expand_normal (node
->high
),
1696 GT
, NULL_RTX
, mode
, unsignedp
,
1697 label_rtx (test_label
),
1701 /* Value must be on the left.
1702 Handle the left-hand subtree. */
1703 emit_case_nodes (index
, node
->left
, default_label
, default_prob
, index_type
);
1704 /* If left-hand subtree does nothing,
1707 emit_jump (default_label
);
1709 /* Code branches here for the right-hand subtree. */
1710 expand_label (test_label
);
1711 emit_case_nodes (index
, node
->right
, default_label
, default_prob
, index_type
);
1715 else if (node
->right
!= 0 && node
->left
== 0)
1717 /* Here we have a right child but no left so we issue a conditional
1718 branch to default and process the right child.
1720 Omit the conditional branch to default if the right child
1721 does not have any children and is single valued; it would
1722 cost too much space to save so little time. */
1724 if (node
->right
->right
|| node
->right
->left
1725 || !tree_int_cst_equal (node
->right
->low
, node
->right
->high
))
1727 if (!node_has_low_bound (node
, index_type
))
1729 probability
= conditional_probability (
1731 subtree_prob
+ default_prob
);
1732 emit_cmp_and_jump_insns (index
,
1735 expand_normal (node
->high
),
1737 LT
, NULL_RTX
, mode
, unsignedp
,
1743 emit_case_nodes (index
, node
->right
, default_label
, default_prob
, index_type
);
1747 probability
= conditional_probability (
1748 node
->right
->subtree_prob
,
1749 subtree_prob
+ default_prob
);
1750 /* We cannot process node->right normally
1751 since we haven't ruled out the numbers less than
1752 this node's value. So handle node->right explicitly. */
1753 do_jump_if_equal (mode
, index
,
1756 expand_normal (node
->right
->low
),
1758 jump_target_rtx (node
->right
->code_label
),
1759 unsignedp
, probability
);
1763 else if (node
->right
== 0 && node
->left
!= 0)
1765 /* Just one subtree, on the left. */
1766 if (node
->left
->left
|| node
->left
->right
1767 || !tree_int_cst_equal (node
->left
->low
, node
->left
->high
))
1769 if (!node_has_high_bound (node
, index_type
))
1771 probability
= conditional_probability (
1773 subtree_prob
+ default_prob
);
1774 emit_cmp_and_jump_insns (index
,
1777 expand_normal (node
->high
),
1779 GT
, NULL_RTX
, mode
, unsignedp
,
1785 emit_case_nodes (index
, node
->left
, default_label
,
1786 default_prob
, index_type
);
1790 probability
= conditional_probability (
1791 node
->left
->subtree_prob
,
1792 subtree_prob
+ default_prob
);
1793 /* We cannot process node->left normally
1794 since we haven't ruled out the numbers less than
1795 this node's value. So handle node->left explicitly. */
1796 do_jump_if_equal (mode
, index
,
1799 expand_normal (node
->left
->low
),
1801 jump_target_rtx (node
->left
->code_label
),
1802 unsignedp
, probability
);
1808 /* Node is a range. These cases are very similar to those for a single
1809 value, except that we do not start by testing whether this node
1810 is the one to branch to. */
1812 if (node
->right
!= 0 && node
->left
!= 0)
1814 /* Node has subtrees on both sides.
1815 If the right-hand subtree is bounded,
1816 test for it first, since we can go straight there.
1817 Otherwise, we need to make a branch in the control structure,
1818 then handle the two subtrees. */
1819 tree test_label
= 0;
1821 if (node_is_bounded (node
->right
, index_type
))
1823 /* Right hand node is fully bounded so we can eliminate any
1824 testing and branch directly to the target code. */
1825 probability
= conditional_probability (
1826 node
->right
->subtree_prob
,
1827 subtree_prob
+ default_prob
);
1828 emit_cmp_and_jump_insns (index
,
1831 expand_normal (node
->high
),
1833 GT
, NULL_RTX
, mode
, unsignedp
,
1834 label_rtx (node
->right
->code_label
),
1839 /* Right hand node requires testing.
1840 Branch to a label where we will handle it later. */
1842 test_label
= build_decl (curr_insn_location (),
1843 LABEL_DECL
, NULL_TREE
, void_type_node
);
1844 probability
= conditional_probability (
1845 node
->right
->subtree_prob
+ default_prob
/2,
1846 subtree_prob
+ default_prob
);
1847 emit_cmp_and_jump_insns (index
,
1850 expand_normal (node
->high
),
1852 GT
, NULL_RTX
, mode
, unsignedp
,
1853 label_rtx (test_label
),
1858 /* Value belongs to this node or to the left-hand subtree. */
1860 probability
= conditional_probability (
1862 subtree_prob
+ default_prob
);
1863 emit_cmp_and_jump_insns (index
,
1866 expand_normal (node
->low
),
1868 GE
, NULL_RTX
, mode
, unsignedp
,
1869 label_rtx (node
->code_label
),
1872 /* Handle the left-hand subtree. */
1873 emit_case_nodes (index
, node
->left
, default_label
, default_prob
, index_type
);
1875 /* If right node had to be handled later, do that now. */
1879 /* If the left-hand subtree fell through,
1880 don't let it fall into the right-hand subtree. */
1882 emit_jump (default_label
);
1884 expand_label (test_label
);
1885 emit_case_nodes (index
, node
->right
, default_label
, default_prob
, index_type
);
1889 else if (node
->right
!= 0 && node
->left
== 0)
1891 /* Deal with values to the left of this node,
1892 if they are possible. */
1893 if (!node_has_low_bound (node
, index_type
))
1895 probability
= conditional_probability (
1897 subtree_prob
+ default_prob
);
1898 emit_cmp_and_jump_insns (index
,
1901 expand_normal (node
->low
),
1903 LT
, NULL_RTX
, mode
, unsignedp
,
1909 /* Value belongs to this node or to the right-hand subtree. */
1911 probability
= conditional_probability (
1913 subtree_prob
+ default_prob
);
1914 emit_cmp_and_jump_insns (index
,
1917 expand_normal (node
->high
),
1919 LE
, NULL_RTX
, mode
, unsignedp
,
1920 label_rtx (node
->code_label
),
1923 emit_case_nodes (index
, node
->right
, default_label
, default_prob
, index_type
);
1926 else if (node
->right
== 0 && node
->left
!= 0)
1928 /* Deal with values to the right of this node,
1929 if they are possible. */
1930 if (!node_has_high_bound (node
, index_type
))
1932 probability
= conditional_probability (
1934 subtree_prob
+ default_prob
);
1935 emit_cmp_and_jump_insns (index
,
1938 expand_normal (node
->high
),
1940 GT
, NULL_RTX
, mode
, unsignedp
,
1946 /* Value belongs to this node or to the left-hand subtree. */
1948 probability
= conditional_probability (
1950 subtree_prob
+ default_prob
);
1951 emit_cmp_and_jump_insns (index
,
1954 expand_normal (node
->low
),
1956 GE
, NULL_RTX
, mode
, unsignedp
,
1957 label_rtx (node
->code_label
),
1960 emit_case_nodes (index
, node
->left
, default_label
, default_prob
, index_type
);
1965 /* Node has no children so we check low and high bounds to remove
1966 redundant tests. Only one of the bounds can exist,
1967 since otherwise this node is bounded--a case tested already. */
1968 int high_bound
= node_has_high_bound (node
, index_type
);
1969 int low_bound
= node_has_low_bound (node
, index_type
);
1971 if (!high_bound
&& low_bound
)
1973 probability
= conditional_probability (
1975 subtree_prob
+ default_prob
);
1976 emit_cmp_and_jump_insns (index
,
1979 expand_normal (node
->high
),
1981 GT
, NULL_RTX
, mode
, unsignedp
,
1986 else if (!low_bound
&& high_bound
)
1988 probability
= conditional_probability (
1990 subtree_prob
+ default_prob
);
1991 emit_cmp_and_jump_insns (index
,
1994 expand_normal (node
->low
),
1996 LT
, NULL_RTX
, mode
, unsignedp
,
2000 else if (!low_bound
&& !high_bound
)
2002 /* Widen LOW and HIGH to the same width as INDEX. */
2003 tree type
= lang_hooks
.types
.type_for_mode (mode
, unsignedp
);
2004 tree low
= build1 (CONVERT_EXPR
, type
, node
->low
);
2005 tree high
= build1 (CONVERT_EXPR
, type
, node
->high
);
2006 rtx low_rtx
, new_index
, new_bound
;
2008 /* Instead of doing two branches, emit one unsigned branch for
2009 (index-low) > (high-low). */
2010 low_rtx
= expand_expr (low
, NULL_RTX
, mode
, EXPAND_NORMAL
);
2011 new_index
= expand_simple_binop (mode
, MINUS
, index
, low_rtx
,
2012 NULL_RTX
, unsignedp
,
2014 new_bound
= expand_expr (fold_build2 (MINUS_EXPR
, type
,
2016 NULL_RTX
, mode
, EXPAND_NORMAL
);
2018 probability
= conditional_probability (
2020 subtree_prob
+ default_prob
);
2021 emit_cmp_and_jump_insns (new_index
, new_bound
, GT
, NULL_RTX
,
2022 mode
, 1, default_label
, probability
);
2025 emit_jump (jump_target_rtx (node
->code_label
));