MATCH: Improve `A CMP 0 ? A : -A` set of patterns to use bitwise_equal_p.
[official-gcc.git] / gcc / ada / sem_ch5.adb
blob72e7d186baa848fa7a6e318858d1e003651d195f
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 5 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2023, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Einfo.Entities; use Einfo.Entities;
32 with Einfo.Utils; use Einfo.Utils;
33 with Errout; use Errout;
34 with Expander; use Expander;
35 with Exp_Ch6; use Exp_Ch6;
36 with Exp_Tss; use Exp_Tss;
37 with Exp_Util; use Exp_Util;
38 with Freeze; use Freeze;
39 with Ghost; use Ghost;
40 with Lib; use Lib;
41 with Lib.Xref; use Lib.Xref;
42 with Namet; use Namet;
43 with Nlists; use Nlists;
44 with Nmake; use Nmake;
45 with Opt; use Opt;
46 with Sem; use Sem;
47 with Sem_Aux; use Sem_Aux;
48 with Sem_Case; use Sem_Case;
49 with Sem_Ch3; use Sem_Ch3;
50 with Sem_Ch6; use Sem_Ch6;
51 with Sem_Ch8; use Sem_Ch8;
52 with Sem_Dim; use Sem_Dim;
53 with Sem_Disp; use Sem_Disp;
54 with Sem_Elab; use Sem_Elab;
55 with Sem_Eval; use Sem_Eval;
56 with Sem_Res; use Sem_Res;
57 with Sem_Type; use Sem_Type;
58 with Sem_Util; use Sem_Util;
59 with Sem_Warn; use Sem_Warn;
60 with Snames; use Snames;
61 with Stand; use Stand;
62 with Sinfo; use Sinfo;
63 with Sinfo.Nodes; use Sinfo.Nodes;
64 with Sinfo.Utils; use Sinfo.Utils;
65 with Targparm; use Targparm;
66 with Tbuild; use Tbuild;
67 with Ttypes; use Ttypes;
68 with Uintp; use Uintp;
69 with Warnsw; use Warnsw;
71 package body Sem_Ch5 is
73 Current_Assignment : Node_Id := Empty;
74 -- This variable holds the node for an assignment that contains target
75 -- names. The corresponding flag has been set by the parser, and when
76 -- set the analysis of the RHS must be done with all expansion disabled,
77 -- because the assignment is reanalyzed after expansion has replaced all
78 -- occurrences of the target name appropriately.
80 Unblocked_Exit_Count : Nat := 0;
81 -- This variable is used when processing if statements, case statements,
82 -- and block statements. It counts the number of exit points that are not
83 -- blocked by unconditional transfer instructions: for IF and CASE, these
84 -- are the branches of the conditional; for a block, they are the statement
85 -- sequence of the block, and the statement sequences of any exception
86 -- handlers that are part of the block. When processing is complete, if
87 -- this count is zero, it means that control cannot fall through the IF,
88 -- CASE or block statement. This is used for the generation of warning
89 -- messages. This variable is recursively saved on entry to processing the
90 -- construct, and restored on exit.
92 function Has_Sec_Stack_Call (N : Node_Id) return Boolean;
93 -- N is the node for an arbitrary construct. This function searches the
94 -- construct N to see if it contains a function call that returns on the
95 -- secondary stack, returning True if any such call is found, and False
96 -- otherwise.
98 -- ??? The implementation invokes Sem_Util.Requires_Transient_Scope so it
99 -- will return True if N contains a function call that needs finalization,
100 -- in addition to the above specification. See Analyze_Loop_Statement for
101 -- a similar comment about this entanglement.
103 procedure Preanalyze_Range (R_Copy : Node_Id);
104 -- Determine expected type of range or domain of iteration of Ada 2012
105 -- loop by analyzing separate copy. Do the analysis and resolution of the
106 -- copy of the bound(s) with expansion disabled, to prevent the generation
107 -- of finalization actions. This prevents memory leaks when the bounds
108 -- contain calls to functions returning controlled arrays or when the
109 -- domain of iteration is a container.
111 ------------------------
112 -- Analyze_Assignment --
113 ------------------------
115 -- WARNING: This routine manages Ghost regions. Return statements must be
116 -- replaced by gotos which jump to the end of the routine and restore the
117 -- Ghost mode.
119 procedure Analyze_Assignment (N : Node_Id) is
120 Lhs : constant Node_Id := Name (N);
121 Rhs : constant Node_Id := Expression (N);
123 procedure Diagnose_Non_Variable_Lhs (N : Node_Id);
124 -- N is the node for the left hand side of an assignment, and it is not
125 -- a variable. This routine issues an appropriate diagnostic.
127 function Is_Protected_Part_Of_Constituent
128 (Nod : Node_Id) return Boolean;
129 -- Determine whether arbitrary node Nod denotes a Part_Of constituent of
130 -- a single protected type.
132 procedure Kill_Lhs;
133 -- This is called to kill current value settings of a simple variable
134 -- on the left hand side. We call it if we find any error in analyzing
135 -- the assignment, and at the end of processing before setting any new
136 -- current values in place.
138 procedure Set_Assignment_Type
139 (Opnd : Node_Id;
140 Opnd_Type : in out Entity_Id);
141 -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type is the
142 -- nominal subtype. This procedure is used to deal with cases where the
143 -- nominal subtype must be replaced by the actual subtype.
145 function Within_Function return Boolean;
146 -- Determine whether the current scope is a function or appears within
147 -- one.
149 -------------------------------
150 -- Diagnose_Non_Variable_Lhs --
151 -------------------------------
153 procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is
154 begin
155 -- Not worth posting another error if left hand side already flagged
156 -- as being illegal in some respect.
158 if Error_Posted (N) then
159 return;
161 -- Some special bad cases of entity names
163 elsif Is_Entity_Name (N) then
164 declare
165 Ent : constant Entity_Id := Entity (N);
167 begin
168 if Ekind (Ent) = E_Loop_Parameter
169 or else Is_Loop_Parameter (Ent)
170 then
171 Error_Msg_N ("assignment to loop parameter not allowed", N);
172 return;
174 elsif Ekind (Ent) = E_In_Parameter then
175 Error_Msg_N
176 ("assignment to IN mode parameter not allowed", N);
177 return;
179 -- Renamings of protected private components are turned into
180 -- constants when compiling a protected function. In the case
181 -- of single protected types, the private component appears
182 -- directly.
184 elsif (Is_Prival (Ent) and then Within_Function)
185 or else Is_Protected_Component (Ent)
186 then
187 Error_Msg_N
188 ("protected function cannot modify its protected object",
190 return;
191 end if;
192 end;
194 -- For indexed components, test prefix if it is in array. We do not
195 -- want to recurse for cases where the prefix is a pointer, since we
196 -- may get a message confusing the pointer and what it references.
198 elsif Nkind (N) = N_Indexed_Component
199 and then Is_Array_Type (Etype (Prefix (N)))
200 then
201 Diagnose_Non_Variable_Lhs (Prefix (N));
202 return;
204 -- Another special case for assignment to discriminant
206 elsif Nkind (N) = N_Selected_Component then
207 if Present (Entity (Selector_Name (N)))
208 and then Ekind (Entity (Selector_Name (N))) = E_Discriminant
209 then
210 Error_Msg_N ("assignment to discriminant not allowed", N);
211 return;
213 -- For selection from record, diagnose prefix, but note that again
214 -- we only do this for a record, not e.g. for a pointer.
216 elsif Is_Record_Type (Etype (Prefix (N))) then
217 Diagnose_Non_Variable_Lhs (Prefix (N));
218 return;
219 end if;
220 end if;
222 -- If we fall through, we have no special message to issue
224 Error_Msg_N ("left hand side of assignment must be a variable", N);
225 end Diagnose_Non_Variable_Lhs;
227 --------------------------------------
228 -- Is_Protected_Part_Of_Constituent --
229 --------------------------------------
231 function Is_Protected_Part_Of_Constituent
232 (Nod : Node_Id) return Boolean
234 Encap_Id : Entity_Id;
235 Var_Id : Entity_Id;
237 begin
238 -- Abstract states and variables may act as Part_Of constituents of
239 -- single protected types, however only variables can be modified by
240 -- an assignment.
242 if Is_Entity_Name (Nod) then
243 Var_Id := Entity (Nod);
245 if Present (Var_Id) and then Ekind (Var_Id) = E_Variable then
246 Encap_Id := Encapsulating_State (Var_Id);
248 -- To qualify, the node must denote a reference to a variable
249 -- whose encapsulating state is a single protected object.
251 return
252 Present (Encap_Id)
253 and then Is_Single_Protected_Object (Encap_Id);
254 end if;
255 end if;
257 return False;
258 end Is_Protected_Part_Of_Constituent;
260 --------------
261 -- Kill_Lhs --
262 --------------
264 procedure Kill_Lhs is
265 begin
266 if Is_Entity_Name (Lhs) then
267 declare
268 Ent : constant Entity_Id := Entity (Lhs);
269 begin
270 if Present (Ent) then
271 Kill_Current_Values (Ent);
272 end if;
273 end;
274 end if;
275 end Kill_Lhs;
277 -------------------------
278 -- Set_Assignment_Type --
279 -------------------------
281 procedure Set_Assignment_Type
282 (Opnd : Node_Id;
283 Opnd_Type : in out Entity_Id)
285 Decl : Node_Id;
287 begin
288 Require_Entity (Opnd);
290 -- If the assignment operand is an in-out or out parameter, then we
291 -- get the actual subtype (needed for the unconstrained case). If the
292 -- operand is the actual in an entry declaration, then within the
293 -- accept statement it is replaced with a local renaming, which may
294 -- also have an actual subtype. Likewise for a return object that
295 -- lives on the secondary stack.
297 if Is_Entity_Name (Opnd)
298 and then (Ekind (Entity (Opnd)) in E_Out_Parameter
299 | E_In_Out_Parameter
300 | E_Generic_In_Out_Parameter
301 or else
302 (Ekind (Entity (Opnd)) = E_Variable
303 and then Nkind (Parent (Entity (Opnd))) =
304 N_Object_Renaming_Declaration
305 and then Nkind (Parent (Parent (Entity (Opnd)))) =
306 N_Accept_Statement)
307 or else Is_Secondary_Stack_Return_Object (Entity (Opnd)))
308 then
309 Opnd_Type := Get_Actual_Subtype (Opnd);
311 -- If the assignment operand is a component reference, then we build
312 -- the actual subtype of the component for the unconstrained case,
313 -- unless there is already one or the type is an unchecked union.
315 elsif (Nkind (Opnd) = N_Selected_Component
316 or else (Nkind (Opnd) = N_Explicit_Dereference
317 and then No (Actual_Designated_Subtype (Opnd))))
318 and then not Is_Unchecked_Union (Opnd_Type)
319 then
320 Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd);
322 if Present (Decl) then
323 Insert_Action (N, Decl);
324 Mark_Rewrite_Insertion (Decl);
325 Analyze (Decl);
326 Opnd_Type := Defining_Identifier (Decl);
327 Set_Etype (Opnd, Opnd_Type);
328 Freeze_Itype (Opnd_Type, N);
330 elsif Is_Constrained (Etype (Opnd)) then
331 Opnd_Type := Etype (Opnd);
332 end if;
334 -- For slice, use the constrained subtype created for the slice
336 elsif Nkind (Opnd) = N_Slice then
337 Opnd_Type := Etype (Opnd);
338 end if;
339 end Set_Assignment_Type;
341 ---------------------
342 -- Within_Function --
343 ---------------------
345 function Within_Function return Boolean is
346 Scop_Id : constant Entity_Id := Current_Scope;
348 begin
349 if Ekind (Scop_Id) = E_Function then
350 return True;
352 elsif Ekind (Enclosing_Dynamic_Scope (Scop_Id)) = E_Function then
353 return True;
354 end if;
356 return False;
357 end Within_Function;
359 -- Local variables
361 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
362 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
363 -- Save the Ghost-related attributes to restore on exit
365 T1 : Entity_Id;
366 T2 : Entity_Id;
368 Save_Full_Analysis : Boolean := False;
369 -- Force initialization to facilitate static analysis
371 -- Start of processing for Analyze_Assignment
373 begin
374 Mark_Coextensions (N, Rhs);
376 -- Preserve relevant elaboration-related attributes of the context which
377 -- are no longer available or very expensive to recompute once analysis,
378 -- resolution, and expansion are over.
380 Mark_Elaboration_Attributes
381 (N_Id => N,
382 Checks => True,
383 Modes => True);
385 -- An assignment statement is Ghost when the left hand side denotes a
386 -- Ghost entity. Set the mode now to ensure that any nodes generated
387 -- during analysis and expansion are properly marked as Ghost.
389 Mark_And_Set_Ghost_Assignment (N);
391 if Has_Target_Names (N) then
392 pragma Assert (No (Current_Assignment));
393 Current_Assignment := N;
394 Expander_Mode_Save_And_Set (False);
395 Save_Full_Analysis := Full_Analysis;
396 Full_Analysis := False;
397 end if;
399 Analyze (Lhs);
400 Analyze (Rhs);
402 -- Ensure that we never do an assignment on a variable marked as
403 -- Is_Safe_To_Reevaluate.
405 pragma Assert
406 (not Is_Entity_Name (Lhs)
407 or else Ekind (Entity (Lhs)) /= E_Variable
408 or else not Is_Safe_To_Reevaluate (Entity (Lhs)));
410 -- Start type analysis for assignment
412 T1 := Etype (Lhs);
414 -- In the most general case, both Lhs and Rhs can be overloaded, and we
415 -- must compute the intersection of the possible types on each side.
417 if Is_Overloaded (Lhs) then
418 declare
419 I : Interp_Index;
420 It : Interp;
422 begin
423 T1 := Any_Type;
424 Get_First_Interp (Lhs, I, It);
426 while Present (It.Typ) loop
428 -- An indexed component with generalized indexing is always
429 -- overloaded with the corresponding dereference. Discard the
430 -- interpretation that yields a reference type, which is not
431 -- assignable.
433 if Nkind (Lhs) = N_Indexed_Component
434 and then Present (Generalized_Indexing (Lhs))
435 and then Has_Implicit_Dereference (It.Typ)
436 then
437 null;
439 -- This may be a call to a parameterless function through an
440 -- implicit dereference, so discard interpretation as well.
442 elsif Is_Entity_Name (Lhs)
443 and then Has_Implicit_Dereference (It.Typ)
444 then
445 null;
447 elsif Has_Compatible_Type (Rhs, It.Typ) then
448 if T1 = Any_Type then
449 T1 := It.Typ;
450 else
451 -- An explicit dereference is overloaded if the prefix
452 -- is. Try to remove the ambiguity on the prefix, the
453 -- error will be posted there if the ambiguity is real.
455 if Nkind (Lhs) = N_Explicit_Dereference then
456 declare
457 PI : Interp_Index;
458 PI1 : Interp_Index := 0;
459 PIt : Interp;
460 Found : Boolean;
462 begin
463 Found := False;
464 Get_First_Interp (Prefix (Lhs), PI, PIt);
466 while Present (PIt.Typ) loop
467 if Is_Access_Type (PIt.Typ)
468 and then Has_Compatible_Type
469 (Rhs, Designated_Type (PIt.Typ))
470 then
471 if Found then
472 PIt :=
473 Disambiguate (Prefix (Lhs),
474 PI1, PI, Any_Type);
476 if PIt = No_Interp then
477 Error_Msg_N
478 ("ambiguous left-hand side in "
479 & "assignment", Lhs);
480 exit;
481 else
482 Resolve (Prefix (Lhs), PIt.Typ);
483 end if;
485 exit;
486 else
487 Found := True;
488 PI1 := PI;
489 end if;
490 end if;
492 Get_Next_Interp (PI, PIt);
493 end loop;
494 end;
496 else
497 Error_Msg_N
498 ("ambiguous left-hand side in assignment", Lhs);
499 exit;
500 end if;
501 end if;
502 end if;
504 Get_Next_Interp (I, It);
505 end loop;
506 end;
508 if T1 = Any_Type then
509 Error_Msg_N
510 ("no valid types for left-hand side for assignment", Lhs);
511 Kill_Lhs;
512 goto Leave;
513 end if;
514 end if;
516 -- The resulting assignment type is T1, so now we will resolve the left
517 -- hand side of the assignment using this determined type.
519 Resolve (Lhs, T1);
521 -- Cases where Lhs is not a variable. In an instance or an inlined body
522 -- no need for further check because assignment was legal in template.
524 if In_Inlined_Body then
525 null;
527 elsif not Is_Variable (Lhs) then
529 -- Ada 2005 (AI-327): Check assignment to the attribute Priority of a
530 -- protected object.
532 declare
533 Ent : Entity_Id;
534 S : Entity_Id;
536 begin
537 if Ada_Version >= Ada_2005 then
539 -- Handle chains of renamings
541 Ent := Lhs;
542 while Nkind (Ent) in N_Has_Entity
543 and then Present (Entity (Ent))
544 and then Is_Object (Entity (Ent))
545 and then Present (Renamed_Object (Entity (Ent)))
546 loop
547 Ent := Renamed_Object (Entity (Ent));
548 end loop;
550 if (Nkind (Ent) = N_Attribute_Reference
551 and then Attribute_Name (Ent) = Name_Priority)
553 -- Renamings of the attribute Priority applied to protected
554 -- objects have been previously expanded into calls to the
555 -- Get_Ceiling run-time subprogram.
557 or else Is_Expanded_Priority_Attribute (Ent)
558 then
559 -- The enclosing subprogram cannot be a protected function
561 S := Current_Scope;
562 while not (Is_Subprogram (S)
563 and then Convention (S) = Convention_Protected)
564 and then S /= Standard_Standard
565 loop
566 S := Scope (S);
567 end loop;
569 if Ekind (S) = E_Function
570 and then Convention (S) = Convention_Protected
571 then
572 Error_Msg_N
573 ("protected function cannot modify its protected " &
574 "object",
575 Lhs);
576 end if;
578 -- Changes of the ceiling priority of the protected object
579 -- are only effective if the Ceiling_Locking policy is in
580 -- effect (AARM D.5.2 (5/2)).
582 if Locking_Policy /= 'C' then
583 Error_Msg_N
584 ("assignment to the attribute PRIORITY has no effect??",
585 Lhs);
586 Error_Msg_N
587 ("\since no Locking_Policy has been specified??", Lhs);
588 end if;
590 goto Leave;
591 end if;
592 end if;
593 end;
595 Diagnose_Non_Variable_Lhs (Lhs);
596 goto Leave;
598 -- Error of assigning to limited type. We do however allow this in
599 -- certain cases where the front end generates the assignments.
601 elsif Is_Limited_Type (T1)
602 and then not Assignment_OK (Lhs)
603 and then not Assignment_OK (Original_Node (Lhs))
604 then
605 -- CPP constructors can only be called in declarations
607 if Is_CPP_Constructor_Call (Rhs) then
608 Error_Msg_N ("invalid use of 'C'P'P constructor", Rhs);
609 else
610 Error_Msg_N
611 ("left hand of assignment must not be limited type", Lhs);
612 Explain_Limited_Type (T1, Lhs);
613 end if;
615 goto Leave;
617 -- A class-wide type may be a limited view. This illegal case is not
618 -- caught by previous checks.
620 elsif Ekind (T1) = E_Class_Wide_Type and then From_Limited_With (T1) then
621 Error_Msg_NE ("invalid use of limited view of&", Lhs, T1);
622 goto Leave;
624 -- Enforce RM 3.9.3 (8): the target of an assignment operation cannot be
625 -- abstract. This is only checked when the assignment Comes_From_Source,
626 -- because in some cases the expander generates such assignments (such
627 -- in the _assign operation for an abstract type).
629 elsif Is_Abstract_Type (T1) and then Comes_From_Source (N) then
630 Error_Msg_N
631 ("target of assignment operation must not be abstract", Lhs);
632 end if;
634 -- Variables which are Part_Of constituents of single protected types
635 -- behave in similar fashion to protected components. Such variables
636 -- cannot be modified by protected functions.
638 if Is_Protected_Part_Of_Constituent (Lhs) and then Within_Function then
639 Error_Msg_N
640 ("protected function cannot modify its protected object", Lhs);
641 end if;
643 -- Resolution may have updated the subtype, in case the left-hand side
644 -- is a private protected component. Use the correct subtype to avoid
645 -- scoping issues in the back-end.
647 T1 := Etype (Lhs);
649 -- Ada 2005 (AI-50217, AI-326): Check wrong dereference of incomplete
650 -- type. For example:
652 -- limited with P;
653 -- package Pkg is
654 -- type Acc is access P.T;
655 -- end Pkg;
657 -- with Pkg; use Acc;
658 -- procedure Example is
659 -- A, B : Acc;
660 -- begin
661 -- A.all := B.all; -- ERROR
662 -- end Example;
664 if Nkind (Lhs) = N_Explicit_Dereference
665 and then Ekind (T1) = E_Incomplete_Type
666 then
667 Error_Msg_N ("invalid use of incomplete type", Lhs);
668 Kill_Lhs;
669 goto Leave;
670 end if;
672 -- Now we can complete the resolution of the right hand side
674 Set_Assignment_Type (Lhs, T1);
676 -- If the target of the assignment is an entity of a mutable type and
677 -- the expression is a conditional expression, its alternatives can be
678 -- of different subtypes of the nominal type of the LHS, so they must be
679 -- resolved with the base type, given that their subtype may differ from
680 -- that of the target mutable object.
682 if Is_Entity_Name (Lhs)
683 and then Is_Assignable (Entity (Lhs))
684 and then Is_Composite_Type (T1)
685 and then not Is_Constrained (Etype (Entity (Lhs)))
686 and then Nkind (Rhs) in N_If_Expression | N_Case_Expression
687 then
688 Resolve (Rhs, Base_Type (T1));
690 else
691 Resolve (Rhs, T1);
692 end if;
694 -- This is the point at which we check for an unset reference
696 Check_Unset_Reference (Rhs);
697 Check_Unprotected_Access (Lhs, Rhs);
699 -- Remaining steps are skipped if Rhs was syntactically in error
701 if Rhs = Error then
702 Kill_Lhs;
703 goto Leave;
704 end if;
706 T2 := Etype (Rhs);
708 if not Covers (T1, T2) then
709 Wrong_Type (Rhs, Etype (Lhs));
710 Kill_Lhs;
711 goto Leave;
712 end if;
714 -- Ada 2005 (AI-326): In case of explicit dereference of incomplete
715 -- types, use the non-limited view if available
717 if Nkind (Rhs) = N_Explicit_Dereference
718 and then Is_Tagged_Type (T2)
719 and then Has_Non_Limited_View (T2)
720 then
721 T2 := Non_Limited_View (T2);
722 end if;
724 Set_Assignment_Type (Rhs, T2);
726 if Total_Errors_Detected /= 0 then
727 if No (T1) then
728 T1 := Any_Type;
729 end if;
731 if No (T2) then
732 T2 := Any_Type;
733 end if;
734 end if;
736 if T1 = Any_Type or else T2 = Any_Type then
737 Kill_Lhs;
738 goto Leave;
739 end if;
741 -- If the rhs is class-wide or dynamically tagged, then require the lhs
742 -- to be class-wide. The case where the rhs is a dynamically tagged call
743 -- to a dispatching operation with a controlling access result is
744 -- excluded from this check, since the target has an access type (and
745 -- no tag propagation occurs in that case).
747 if (Is_Class_Wide_Type (T2)
748 or else (Is_Dynamically_Tagged (Rhs)
749 and then not Is_Access_Type (T1)))
750 and then not Is_Class_Wide_Type (T1)
751 then
752 Error_Msg_N ("dynamically tagged expression not allowed!", Rhs);
754 elsif Is_Class_Wide_Type (T1)
755 and then not Is_Class_Wide_Type (T2)
756 and then not Is_Tag_Indeterminate (Rhs)
757 and then not Is_Dynamically_Tagged (Rhs)
758 then
759 Error_Msg_N ("dynamically tagged expression required!", Rhs);
760 end if;
762 -- Propagate the tag from a class-wide target to the rhs when the rhs
763 -- is a tag-indeterminate call.
765 if Is_Tag_Indeterminate (Rhs) then
766 if Is_Class_Wide_Type (T1) then
767 Propagate_Tag (Lhs, Rhs);
769 elsif Nkind (Rhs) = N_Function_Call
770 and then Is_Entity_Name (Name (Rhs))
771 and then Is_Abstract_Subprogram (Entity (Name (Rhs)))
772 then
773 Error_Msg_N
774 ("call to abstract function must be dispatching", Name (Rhs));
776 elsif Nkind (Rhs) = N_Qualified_Expression
777 and then Nkind (Expression (Rhs)) = N_Function_Call
778 and then Is_Entity_Name (Name (Expression (Rhs)))
779 and then
780 Is_Abstract_Subprogram (Entity (Name (Expression (Rhs))))
781 then
782 Error_Msg_N
783 ("call to abstract function must be dispatching",
784 Name (Expression (Rhs)));
785 end if;
786 end if;
788 -- Ada 2005 (AI-385): When the lhs type is an anonymous access type,
789 -- apply an implicit conversion of the rhs to that type to force
790 -- appropriate static and run-time accessibility checks. This applies
791 -- as well to anonymous access-to-subprogram types that are component
792 -- subtypes or formal parameters.
794 if Ada_Version >= Ada_2005 and then Is_Access_Type (T1) then
795 if Is_Local_Anonymous_Access (T1)
796 or else Ekind (T2) = E_Anonymous_Access_Subprogram_Type
798 -- Handle assignment to an Ada 2012 stand-alone object
799 -- of an anonymous access type.
801 or else (Ekind (T1) = E_Anonymous_Access_Type
802 and then Nkind (Associated_Node_For_Itype (T1)) =
803 N_Object_Declaration)
805 then
806 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
807 Analyze_And_Resolve (Rhs, T1);
808 end if;
809 end if;
811 -- Ada 2005 (AI-231): Assignment to not null variable
813 if Ada_Version >= Ada_2005
814 and then Can_Never_Be_Null (T1)
815 and then not Assignment_OK (Lhs)
816 then
817 -- Case where we know the right hand side is null
819 if Known_Null (Rhs) then
820 Apply_Compile_Time_Constraint_Error
821 (N => Rhs,
822 Msg =>
823 "(Ada 2005) NULL not allowed in null-excluding objects??",
824 Reason => CE_Null_Not_Allowed);
826 -- We still mark this as a possible modification, that's necessary
827 -- to reset Is_True_Constant, and desirable for xref purposes.
829 Note_Possible_Modification (Lhs, Sure => True);
830 goto Leave;
832 -- If we know the right hand side is non-null, then we convert to the
833 -- target type, since we don't need a run time check in that case.
835 elsif not Can_Never_Be_Null (T2) then
836 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
837 Analyze_And_Resolve (Rhs, T1);
838 end if;
839 end if;
841 if Is_Scalar_Type (T1) then
842 declare
844 function Omit_Range_Check_For_Streaming return Boolean;
845 -- Return True if this assignment statement is the expansion of
846 -- a Some_Scalar_Type'Read procedure call such that all conditions
847 -- of 13.3.2(35)'s "no check is made" rule are met.
849 ------------------------------------
850 -- Omit_Range_Check_For_Streaming --
851 ------------------------------------
853 function Omit_Range_Check_For_Streaming return Boolean is
854 begin
855 -- Have we got an implicitly generated assignment to a
856 -- component of a composite object? If not, return False.
858 if Comes_From_Source (N)
859 or else Serious_Errors_Detected > 0
860 or else Nkind (Lhs)
861 not in N_Selected_Component | N_Indexed_Component
862 then
863 return False;
864 end if;
866 declare
867 Pref : constant Node_Id := Prefix (Lhs);
868 begin
869 -- Are we in the implicitly-defined Read subprogram
870 -- for a composite type, reading the value of a scalar
871 -- component from the stream? If not, return False.
873 if Nkind (Pref) /= N_Identifier
874 or else not Is_TSS (Scope (Entity (Pref)), TSS_Stream_Read)
875 then
876 return False;
877 end if;
879 -- Return False if Default_Value or Default_Component_Value
880 -- aspect applies.
882 if Has_Default_Aspect (Etype (Lhs))
883 or else Has_Default_Aspect (Etype (Pref))
884 then
885 return False;
887 -- Are we assigning to a record component (as opposed to
888 -- an array component)?
890 elsif Nkind (Lhs) = N_Selected_Component then
892 -- Are we assigning to a nondiscriminant component
893 -- that lacks a default initial value expression?
894 -- If so, return True.
896 declare
897 Comp_Id : constant Entity_Id :=
898 Original_Record_Component
899 (Entity (Selector_Name (Lhs)));
900 begin
901 if Ekind (Comp_Id) = E_Component
902 and then Nkind (Parent (Comp_Id))
903 = N_Component_Declaration
904 and then No (Expression (Parent (Comp_Id)))
905 then
906 return True;
907 end if;
908 return False;
909 end;
911 -- We are assigning to a component of an array
912 -- (and we tested for both Default_Value and
913 -- Default_Component_Value above), so return True.
915 else
916 pragma Assert (Nkind (Lhs) = N_Indexed_Component);
917 return True;
918 end if;
919 end;
920 end Omit_Range_Check_For_Streaming;
922 begin
923 if not Omit_Range_Check_For_Streaming then
924 Apply_Scalar_Range_Check (Rhs, Etype (Lhs));
925 end if;
926 end;
928 -- For array types, verify that lengths match. If the right hand side
929 -- is a function call that has been inlined, the assignment has been
930 -- rewritten as a block, and the constraint check will be applied to the
931 -- assignment within the block.
933 elsif Is_Array_Type (T1)
934 and then (Nkind (Rhs) /= N_Type_Conversion
935 or else Is_Constrained (Etype (Rhs)))
936 and then (Nkind (Rhs) /= N_Function_Call
937 or else Nkind (N) /= N_Block_Statement)
938 then
939 -- Assignment verifies that the length of the Lhs and Rhs are equal,
940 -- but of course the indexes do not have to match. If the right-hand
941 -- side is a type conversion to an unconstrained type, a length check
942 -- is performed on the expression itself during expansion. In rare
943 -- cases, the redundant length check is computed on an index type
944 -- with a different representation, triggering incorrect code in the
945 -- back end.
947 Apply_Length_Check_On_Assignment (Rhs, Etype (Lhs), Lhs);
949 else
950 -- Discriminant checks are applied in the course of expansion
952 null;
953 end if;
955 -- Note: modifications of the Lhs may only be recorded after
956 -- checks have been applied.
958 Note_Possible_Modification (Lhs, Sure => True);
960 -- ??? a real accessibility check is needed when ???
962 -- Post warning for redundant assignment or variable to itself
964 if Warn_On_Redundant_Constructs
966 -- We only warn for source constructs
968 and then Comes_From_Source (N)
970 -- Where the object is the same on both sides
972 and then Same_Object (Lhs, Rhs)
974 -- But exclude the case where the right side was an operation that
975 -- got rewritten (e.g. JUNK + K, where K was known to be zero). We
976 -- don't want to warn in such a case, since it is reasonable to write
977 -- such expressions especially when K is defined symbolically in some
978 -- other package.
980 and then Nkind (Original_Node (Rhs)) not in N_Op
981 then
982 if Nkind (Lhs) in N_Has_Entity then
983 Error_Msg_NE -- CODEFIX
984 ("?r?useless assignment of & to itself!", N, Entity (Lhs));
985 else
986 Error_Msg_N -- CODEFIX
987 ("?r?useless assignment of object to itself!", N);
988 end if;
989 end if;
991 -- Check for non-allowed composite assignment
993 if not Support_Composite_Assign_On_Target
994 and then (Is_Array_Type (T1) or else Is_Record_Type (T1))
995 and then (not Has_Size_Clause (T1)
996 or else Esize (T1) > Ttypes.System_Max_Integer_Size)
997 then
998 Error_Msg_CRT ("composite assignment", N);
999 end if;
1001 -- Check elaboration warning for left side if not in elab code
1003 if Legacy_Elaboration_Checks
1004 and not In_Subprogram_Or_Concurrent_Unit
1005 then
1006 Check_Elab_Assign (Lhs);
1007 end if;
1009 -- Save the scenario for later examination by the ABE Processing phase
1011 Record_Elaboration_Scenario (N);
1013 -- Set Referenced_As_LHS if appropriate. We are not interested in
1014 -- compiler-generated assignment statements, nor in references outside
1015 -- the extended main source unit. We check whether the Original_Node is
1016 -- in the extended main source unit because in the case of a renaming of
1017 -- a component of a packed array, the Lhs itself has a Sloc from the
1018 -- place of the renaming.
1020 if Comes_From_Source (N)
1021 and then (In_Extended_Main_Source_Unit (Lhs)
1022 or else In_Extended_Main_Source_Unit (Original_Node (Lhs)))
1023 then
1024 Set_Referenced_Modified (Lhs, Out_Param => False);
1025 end if;
1027 -- RM 7.3.2 (12/3): An assignment to a view conversion (from a type to
1028 -- one of its ancestors) requires an invariant check. Apply check only
1029 -- if expression comes from source, otherwise it will be applied when
1030 -- value is assigned to source entity. This is not done in GNATprove
1031 -- mode, as GNATprove handles invariant checks itself.
1033 if Nkind (Lhs) = N_Type_Conversion
1034 and then Has_Invariants (Etype (Expression (Lhs)))
1035 and then Comes_From_Source (Expression (Lhs))
1036 and then not GNATprove_Mode
1037 then
1038 Insert_After (N, Make_Invariant_Call (Expression (Lhs)));
1039 end if;
1041 -- Final step. If left side is an entity, then we may be able to reset
1042 -- the current tracked values to new safe values. We only have something
1043 -- to do if the left side is an entity name, and expansion has not
1044 -- modified the node into something other than an assignment, and of
1045 -- course we only capture values if it is safe to do so.
1047 if Is_Entity_Name (Lhs)
1048 and then Nkind (N) = N_Assignment_Statement
1049 then
1050 declare
1051 Ent : constant Entity_Id := Entity (Lhs);
1053 begin
1054 if Safe_To_Capture_Value (N, Ent) then
1056 -- If simple variable on left side, warn if this assignment
1057 -- blots out another one (rendering it useless). We only do
1058 -- this for source assignments, otherwise we can generate bogus
1059 -- warnings when an assignment is rewritten as another
1060 -- assignment, and gets tied up with itself.
1062 -- We also omit the warning if the RHS includes target names,
1063 -- that is to say the Ada 2022 "@" that denotes an instance of
1064 -- the LHS, which indicates that the current value is being
1065 -- used. Note that this implicit reference to the entity on
1066 -- the RHS is not treated as a source reference.
1068 -- There may have been a previous reference to a component of
1069 -- the variable, which in general removes the Last_Assignment
1070 -- field of the variable to indicate a relevant use of the
1071 -- previous assignment.
1073 if Warn_On_Modified_Unread
1074 and then Is_Assignable (Ent)
1075 and then Comes_From_Source (N)
1076 and then In_Extended_Main_Source_Unit (Ent)
1077 and then not Has_Target_Names (N)
1078 then
1079 Warn_On_Useless_Assignment (Ent, N);
1080 end if;
1082 -- If we are assigning an access type and the left side is an
1083 -- entity, then make sure that the Is_Known_[Non_]Null flags
1084 -- properly reflect the state of the entity after assignment.
1086 if Is_Access_Type (T1) then
1087 if Known_Non_Null (Rhs) then
1088 Set_Is_Known_Non_Null (Ent, True);
1090 elsif Known_Null (Rhs)
1091 and then not Can_Never_Be_Null (Ent)
1092 then
1093 Set_Is_Known_Null (Ent, True);
1095 else
1096 Set_Is_Known_Null (Ent, False);
1098 if not Can_Never_Be_Null (Ent) then
1099 Set_Is_Known_Non_Null (Ent, False);
1100 end if;
1101 end if;
1103 -- For discrete types, we may be able to set the current value
1104 -- if the value is known at compile time.
1106 elsif Is_Discrete_Type (T1)
1107 and then Compile_Time_Known_Value (Rhs)
1108 then
1109 Set_Current_Value (Ent, Rhs);
1110 else
1111 Set_Current_Value (Ent, Empty);
1112 end if;
1114 -- If not safe to capture values, kill them
1116 else
1117 Kill_Lhs;
1118 end if;
1119 end;
1120 end if;
1122 -- If assigning to an object in whole or in part, note location of
1123 -- assignment in case no one references value. We only do this for
1124 -- source assignments, otherwise we can generate bogus warnings when an
1125 -- assignment is rewritten as another assignment, and gets tied up with
1126 -- itself.
1128 declare
1129 Ent : constant Entity_Id := Get_Enclosing_Object (Lhs);
1130 begin
1131 if Present (Ent)
1132 and then Safe_To_Capture_Value (N, Ent)
1133 and then Nkind (N) = N_Assignment_Statement
1134 and then Warn_On_Modified_Unread
1135 and then Is_Assignable (Ent)
1136 and then Comes_From_Source (N)
1137 and then In_Extended_Main_Source_Unit (Ent)
1138 then
1139 Set_Last_Assignment (Ent, Lhs);
1140 end if;
1141 end;
1143 Analyze_Dimension (N);
1145 <<Leave>>
1146 Restore_Ghost_Region (Saved_GM, Saved_IGR);
1148 -- If the right-hand side contains target names, expansion has been
1149 -- disabled to prevent expansion that might move target names out of
1150 -- the context of the assignment statement. Restore the expander mode
1151 -- now so that assignment statement can be properly expanded.
1153 if Nkind (N) = N_Assignment_Statement then
1154 if Has_Target_Names (N) then
1155 Expander_Mode_Restore;
1156 Full_Analysis := Save_Full_Analysis;
1157 Current_Assignment := Empty;
1158 end if;
1159 end if;
1160 end Analyze_Assignment;
1162 -----------------------------
1163 -- Analyze_Block_Statement --
1164 -----------------------------
1166 procedure Analyze_Block_Statement (N : Node_Id) is
1167 procedure Install_Return_Entities (Scop : Entity_Id);
1168 -- Install all entities of return statement scope Scop in the visibility
1169 -- chain except for the return object since its entity is reused in a
1170 -- renaming.
1172 -----------------------------
1173 -- Install_Return_Entities --
1174 -----------------------------
1176 procedure Install_Return_Entities (Scop : Entity_Id) is
1177 Id : Entity_Id;
1179 begin
1180 Id := First_Entity (Scop);
1181 while Present (Id) loop
1183 -- Do not install the return object
1185 if Ekind (Id) not in E_Constant | E_Variable
1186 or else not Is_Return_Object (Id)
1187 then
1188 Install_Entity (Id);
1189 end if;
1191 Next_Entity (Id);
1192 end loop;
1193 end Install_Return_Entities;
1195 -- Local constants and variables
1197 Decls : constant List_Id := Declarations (N);
1198 Id : constant Node_Id := Identifier (N);
1199 HSS : constant Node_Id := Handled_Statement_Sequence (N);
1201 Is_BIP_Return_Statement : Boolean;
1203 -- Start of processing for Analyze_Block_Statement
1205 begin
1206 -- If no handled statement sequence is present, things are really messed
1207 -- up, and we just return immediately (defence against previous errors).
1209 if No (HSS) then
1210 Check_Error_Detected;
1211 return;
1212 end if;
1214 -- Detect whether the block is actually a rewritten return statement of
1215 -- a build-in-place function.
1217 Is_BIP_Return_Statement :=
1218 Present (Id)
1219 and then Present (Entity (Id))
1220 and then Ekind (Entity (Id)) = E_Return_Statement
1221 and then Is_Build_In_Place_Function
1222 (Return_Applies_To (Entity (Id)));
1224 -- Normal processing with HSS present
1226 declare
1227 EH : constant List_Id := Exception_Handlers (HSS);
1228 Ent : Entity_Id := Empty;
1229 S : Entity_Id;
1231 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1232 -- Recursively save value of this global, will be restored on exit
1234 begin
1235 -- Initialize unblocked exit count for statements of begin block
1236 -- plus one for each exception handler that is present.
1238 Unblocked_Exit_Count := 1 + List_Length (EH);
1240 -- If a label is present analyze it and mark it as referenced
1242 if Present (Id) then
1243 Analyze (Id);
1244 Ent := Entity (Id);
1246 -- An error defense. If we have an identifier, but no entity, then
1247 -- something is wrong. If previous errors, then just remove the
1248 -- identifier and continue, otherwise raise an exception.
1250 if No (Ent) then
1251 Check_Error_Detected;
1252 Set_Identifier (N, Empty);
1254 else
1255 if Ekind (Ent) = E_Label then
1256 Reinit_Field_To_Zero (Ent, F_Enclosing_Scope);
1257 end if;
1259 Mutate_Ekind (Ent, E_Block);
1260 Generate_Reference (Ent, N, ' ');
1261 Generate_Definition (Ent);
1263 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
1264 Set_Label_Construct (Parent (Ent), N);
1265 end if;
1266 end if;
1267 end if;
1269 -- If no entity set, create a label entity
1271 if No (Ent) then
1272 Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
1273 Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N)));
1274 Set_Parent (Ent, N);
1275 end if;
1277 Set_Etype (Ent, Standard_Void_Type);
1278 Set_Block_Node (Ent, Identifier (N));
1279 Push_Scope (Ent);
1281 -- The block served as an extended return statement. Ensure that any
1282 -- entities created during the analysis and expansion of the return
1283 -- object declaration are once again visible.
1285 if Is_BIP_Return_Statement then
1286 Install_Return_Entities (Ent);
1287 end if;
1289 if Present (Decls) then
1290 Analyze_Declarations (Decls);
1291 Check_Completion;
1292 Inspect_Deferred_Constant_Completion (Decls);
1293 end if;
1295 Analyze (HSS);
1296 Process_End_Label (HSS, 'e', Ent);
1298 -- If exception handlers are present, then we indicate that enclosing
1299 -- scopes contain a block with handlers. We only need to mark non-
1300 -- generic scopes.
1302 if Present (EH) then
1303 S := Scope (Ent);
1304 loop
1305 Set_Has_Nested_Block_With_Handler (S);
1306 exit when Is_Overloadable (S)
1307 or else Ekind (S) = E_Package
1308 or else Is_Generic_Unit (S);
1309 S := Scope (S);
1310 end loop;
1311 end if;
1313 Check_References (Ent);
1314 Update_Use_Clause_Chain;
1315 End_Scope;
1317 if Unblocked_Exit_Count = 0 then
1318 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1319 Check_Unreachable_Code (N);
1320 else
1321 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1322 end if;
1323 end;
1324 end Analyze_Block_Statement;
1326 --------------------------------
1327 -- Analyze_Compound_Statement --
1328 --------------------------------
1330 procedure Analyze_Compound_Statement (N : Node_Id) is
1331 begin
1332 Analyze_List (Actions (N));
1333 end Analyze_Compound_Statement;
1335 ----------------------------
1336 -- Analyze_Case_Statement --
1337 ----------------------------
1339 procedure Analyze_Case_Statement (N : Node_Id) is
1340 Exp : constant Node_Id := Expression (N);
1342 Statements_Analyzed : Boolean := False;
1343 -- Set True if at least some statement sequences get analyzed. If False
1344 -- on exit, means we had a serious error that prevented full analysis of
1345 -- the case statement, and as a result it is not a good idea to output
1346 -- warning messages about unreachable code.
1348 Is_General_Case_Statement : Boolean := False;
1349 -- Set True (later) if type of case expression is not discrete
1351 procedure Non_Static_Choice_Error (Choice : Node_Id);
1352 -- Error routine invoked by the generic instantiation below when the
1353 -- case statement has a non static choice.
1355 procedure Process_Statements (Alternative : Node_Id);
1356 -- Analyzes the statements associated with a case alternative. Needed
1357 -- by instantiation below.
1359 package Analyze_Case_Choices is new
1360 Generic_Analyze_Choices
1361 (Process_Associated_Node => Process_Statements);
1362 use Analyze_Case_Choices;
1363 -- Instantiation of the generic choice analysis package
1365 package Check_Case_Choices is new
1366 Generic_Check_Choices
1367 (Process_Empty_Choice => No_OP,
1368 Process_Non_Static_Choice => Non_Static_Choice_Error,
1369 Process_Associated_Node => No_OP);
1370 use Check_Case_Choices;
1371 -- Instantiation of the generic choice processing package
1373 -----------------------------
1374 -- Non_Static_Choice_Error --
1375 -----------------------------
1377 procedure Non_Static_Choice_Error (Choice : Node_Id) is
1378 begin
1379 Flag_Non_Static_Expr
1380 ("choice given in case statement is not static!", Choice);
1381 end Non_Static_Choice_Error;
1383 ------------------------
1384 -- Process_Statements --
1385 ------------------------
1387 procedure Process_Statements (Alternative : Node_Id) is
1388 Choices : constant List_Id := Discrete_Choices (Alternative);
1389 Ent : Entity_Id;
1391 begin
1392 if Is_General_Case_Statement then
1393 return;
1394 -- Processing deferred in this case; decls associated with
1395 -- pattern match bindings don't exist yet.
1396 end if;
1398 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1399 Statements_Analyzed := True;
1401 -- An interesting optimization. If the case statement expression
1402 -- is a simple entity, then we can set the current value within an
1403 -- alternative if the alternative has one possible value.
1405 -- case N is
1406 -- when 1 => alpha
1407 -- when 2 | 3 => beta
1408 -- when others => gamma
1410 -- Here we know that N is initially 1 within alpha, but for beta and
1411 -- gamma, we do not know anything more about the initial value.
1413 if Is_Entity_Name (Exp) then
1414 Ent := Entity (Exp);
1416 if Is_Object (Ent) then
1417 if List_Length (Choices) = 1
1418 and then Nkind (First (Choices)) in N_Subexpr
1419 and then Compile_Time_Known_Value (First (Choices))
1420 then
1421 Set_Current_Value (Entity (Exp), First (Choices));
1422 end if;
1424 Analyze_Statements (Statements (Alternative));
1426 -- After analyzing the case, set the current value to empty
1427 -- since we won't know what it is for the next alternative
1428 -- (unless reset by this same circuit), or after the case.
1430 Set_Current_Value (Entity (Exp), Empty);
1431 return;
1432 end if;
1433 end if;
1435 -- Case where expression is not an entity name of an object
1437 Analyze_Statements (Statements (Alternative));
1438 end Process_Statements;
1440 -- Local variables
1442 Exp_Type : Entity_Id;
1443 Exp_Btype : Entity_Id;
1445 Others_Present : Boolean;
1446 -- Indicates if Others was present
1448 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1449 -- Recursively save value of this global, will be restored on exit
1451 -- Start of processing for Analyze_Case_Statement
1453 begin
1454 Analyze (Exp);
1456 -- The expression must be of any discrete type. In rare cases, the
1457 -- expander constructs a case statement whose expression has a private
1458 -- type whose full view is discrete. This can happen when generating
1459 -- a stream operation for a variant type after the type is frozen,
1460 -- when the partial of view of the type of the discriminant is private.
1461 -- In that case, use the full view to analyze case alternatives.
1463 if not Is_Overloaded (Exp)
1464 and then not Comes_From_Source (N)
1465 and then Is_Private_Type (Etype (Exp))
1466 and then Present (Full_View (Etype (Exp)))
1467 and then Is_Discrete_Type (Full_View (Etype (Exp)))
1468 then
1469 Resolve (Exp);
1470 Exp_Type := Full_View (Etype (Exp));
1472 -- For Ada, overloading might be ok because subsequently filtering
1473 -- out non-discretes may resolve the ambiguity.
1474 -- But GNAT extensions allow casing on non-discretes.
1476 elsif Core_Extensions_Allowed and then Is_Overloaded (Exp) then
1478 -- It would be nice if we could generate all the right error
1479 -- messages by calling "Resolve (Exp, Any_Type);" in the
1480 -- same way that they are generated a few lines below by the
1481 -- call "Analyze_And_Resolve (Exp, Any_Discrete);".
1482 -- Unfortunately, Any_Type and Any_Discrete are not treated
1483 -- consistently (specifically, by Sem_Type.Covers), so that
1484 -- doesn't work.
1486 Error_Msg_N
1487 ("selecting expression of general case statement is ambiguous",
1488 Exp);
1489 return;
1491 -- Check for a GNAT-extension "general" case statement (i.e., one where
1492 -- the type of the selecting expression is not discrete).
1494 elsif Core_Extensions_Allowed
1495 and then not Is_Discrete_Type (Etype (Exp))
1496 then
1497 Resolve (Exp, Etype (Exp));
1498 Exp_Type := Etype (Exp);
1499 Is_General_Case_Statement := True;
1500 else
1501 Analyze_And_Resolve (Exp, Any_Discrete);
1502 Exp_Type := Etype (Exp);
1503 end if;
1505 Check_Unset_Reference (Exp);
1506 Exp_Btype := Base_Type (Exp_Type);
1508 -- The expression must be of a discrete type which must be determinable
1509 -- independently of the context in which the expression occurs, but
1510 -- using the fact that the expression must be of a discrete type.
1511 -- Moreover, the type this expression must not be a character literal
1512 -- (which is always ambiguous) or, for Ada-83, a generic formal type.
1514 -- If error already reported by Resolve, nothing more to do
1516 if Exp_Btype = Any_Discrete or else Exp_Btype = Any_Type then
1517 return;
1519 elsif Exp_Btype = Any_Character then
1520 Error_Msg_N
1521 ("character literal as case expression is ambiguous", Exp);
1522 return;
1524 elsif Ada_Version = Ada_83
1525 and then (Is_Generic_Type (Exp_Btype)
1526 or else Is_Generic_Type (Root_Type (Exp_Btype)))
1527 then
1528 Error_Msg_N
1529 ("(Ada 83) case expression cannot be of a generic type", Exp);
1530 return;
1532 elsif not Core_Extensions_Allowed
1533 and then not Is_Discrete_Type (Exp_Type)
1534 then
1535 Error_Msg_N
1536 ("expression in case statement must be of a discrete_Type", Exp);
1537 return;
1538 end if;
1540 -- If the case expression is a formal object of mode in out, then treat
1541 -- it as having a nonstatic subtype by forcing use of the base type
1542 -- (which has to get passed to Check_Case_Choices below). Also use base
1543 -- type when the case expression is parenthesized.
1545 if Paren_Count (Exp) > 0
1546 or else (Is_Entity_Name (Exp)
1547 and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter)
1548 then
1549 Exp_Type := Exp_Btype;
1550 end if;
1552 -- Call instantiated procedures to analyze and check discrete choices
1554 Unblocked_Exit_Count := 0;
1556 Analyze_Choices (Alternatives (N), Exp_Type);
1557 Check_Choices (N, Alternatives (N), Exp_Type, Others_Present);
1559 if Is_General_Case_Statement then
1560 -- Work normally done in Process_Statements was deferred; do that
1561 -- deferred work now that Check_Choices has had a chance to create
1562 -- any needed pattern-match-binding declarations.
1563 declare
1564 Alt : Node_Id := First (Alternatives (N));
1565 begin
1566 while Present (Alt) loop
1567 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1568 Analyze_Statements (Statements (Alt));
1569 Next (Alt);
1570 end loop;
1571 end;
1572 end if;
1574 if Exp_Type = Universal_Integer and then not Others_Present then
1575 Error_Msg_N ("case on universal integer requires OTHERS choice", Exp);
1576 end if;
1578 -- If all our exits were blocked by unconditional transfers of control,
1579 -- then the entire CASE statement acts as an unconditional transfer of
1580 -- control, so treat it like one, and check unreachable code. Skip this
1581 -- test if we had serious errors preventing any statement analysis.
1583 if Unblocked_Exit_Count = 0 and then Statements_Analyzed then
1584 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1585 Check_Unreachable_Code (N);
1586 else
1587 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1588 end if;
1590 -- If the expander is active it will detect the case of a statically
1591 -- determined single alternative and remove warnings for the case, but
1592 -- if we are not doing expansion, that circuit won't be active. Here we
1593 -- duplicate the effect of removing warnings in the same way, so that
1594 -- we will get the same set of warnings in -gnatc mode.
1596 if not Expander_Active
1597 and then Compile_Time_Known_Value (Expression (N))
1598 and then Serious_Errors_Detected = 0
1599 then
1600 declare
1601 Chosen : constant Node_Id := Find_Static_Alternative (N);
1602 Alt : Node_Id;
1604 begin
1605 Alt := First (Alternatives (N));
1606 while Present (Alt) loop
1607 if Alt /= Chosen then
1608 Remove_Warning_Messages (Statements (Alt));
1609 end if;
1611 Next (Alt);
1612 end loop;
1613 end;
1614 end if;
1615 end Analyze_Case_Statement;
1617 ----------------------------
1618 -- Analyze_Exit_Statement --
1619 ----------------------------
1621 -- If the exit includes a name, it must be the name of a currently open
1622 -- loop. Otherwise there must be an innermost open loop on the stack, to
1623 -- which the statement implicitly refers.
1625 -- Additionally, in SPARK mode:
1627 -- The exit can only name the closest enclosing loop;
1629 -- An exit with a when clause must be directly contained in a loop;
1631 -- An exit without a when clause must be directly contained in an
1632 -- if-statement with no elsif or else, which is itself directly contained
1633 -- in a loop. The exit must be the last statement in the if-statement.
1635 procedure Analyze_Exit_Statement (N : Node_Id) is
1636 Target : constant Node_Id := Name (N);
1637 Cond : constant Node_Id := Condition (N);
1638 Scope_Id : Entity_Id := Empty; -- initialize to prevent warning
1639 U_Name : Entity_Id;
1640 Kind : Entity_Kind;
1642 begin
1643 if No (Cond) then
1644 Check_Unreachable_Code (N);
1645 end if;
1647 if Present (Target) then
1648 Analyze (Target);
1649 U_Name := Entity (Target);
1651 if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then
1652 Error_Msg_N ("invalid loop name in exit statement", N);
1653 return;
1655 else
1656 Set_Has_Exit (U_Name);
1657 end if;
1659 else
1660 U_Name := Empty;
1661 end if;
1663 for J in reverse 0 .. Scope_Stack.Last loop
1664 Scope_Id := Scope_Stack.Table (J).Entity;
1665 Kind := Ekind (Scope_Id);
1667 if Kind = E_Loop and then (No (Target) or else Scope_Id = U_Name) then
1668 Set_Has_Exit (Scope_Id);
1669 exit;
1671 elsif Kind = E_Block
1672 or else Kind = E_Loop
1673 or else Kind = E_Return_Statement
1674 then
1675 null;
1677 else
1678 Error_Msg_N
1679 ("cannot exit from program unit or accept statement", N);
1680 return;
1681 end if;
1682 end loop;
1684 -- Verify that if present the condition is a Boolean expression
1686 if Present (Cond) then
1687 Analyze_And_Resolve (Cond, Any_Boolean);
1688 Check_Unset_Reference (Cond);
1689 end if;
1691 -- Chain exit statement to associated loop entity
1693 Set_Next_Exit_Statement (N, First_Exit_Statement (Scope_Id));
1694 Set_First_Exit_Statement (Scope_Id, N);
1696 -- Since the exit may take us out of a loop, any previous assignment
1697 -- statement is not useless, so clear last assignment indications. It
1698 -- is OK to keep other current values, since if the exit statement
1699 -- does not exit, then the current values are still valid.
1701 Kill_Current_Values (Last_Assignment_Only => True);
1702 end Analyze_Exit_Statement;
1704 ----------------------------
1705 -- Analyze_Goto_Statement --
1706 ----------------------------
1708 procedure Analyze_Goto_Statement (N : Node_Id) is
1709 Label : constant Node_Id := Name (N);
1710 Scope_Id : Entity_Id;
1711 Label_Scope : Entity_Id;
1712 Label_Ent : Entity_Id;
1714 begin
1715 -- Actual semantic checks
1717 Check_Unreachable_Code (N);
1718 Kill_Current_Values (Last_Assignment_Only => True);
1720 Analyze (Label);
1721 Label_Ent := Entity (Label);
1723 -- Ignore previous error
1725 if Label_Ent = Any_Id then
1726 Check_Error_Detected;
1727 return;
1729 -- We just have a label as the target of a goto
1731 elsif Ekind (Label_Ent) /= E_Label then
1732 Error_Msg_N ("target of goto statement must be a label", Label);
1733 return;
1735 -- Check that the target of the goto is reachable according to Ada
1736 -- scoping rules. Note: the special gotos we generate for optimizing
1737 -- local handling of exceptions would violate these rules, but we mark
1738 -- such gotos as analyzed when built, so this code is never entered.
1740 elsif not Reachable (Label_Ent) then
1741 Error_Msg_N ("target of goto statement is not reachable", Label);
1742 return;
1743 end if;
1745 -- Here if goto passes initial validity checks
1747 Label_Scope := Enclosing_Scope (Label_Ent);
1749 for J in reverse 0 .. Scope_Stack.Last loop
1750 Scope_Id := Scope_Stack.Table (J).Entity;
1752 if Label_Scope = Scope_Id
1753 or else Ekind (Scope_Id) not in
1754 E_Block | E_Loop | E_Return_Statement
1755 then
1756 if Scope_Id /= Label_Scope then
1757 Error_Msg_N
1758 ("cannot exit from program unit or accept statement", N);
1759 end if;
1761 return;
1762 end if;
1763 end loop;
1765 raise Program_Error;
1766 end Analyze_Goto_Statement;
1768 ---------------------------------
1769 -- Analyze_Goto_When_Statement --
1770 ---------------------------------
1772 procedure Analyze_Goto_When_Statement (N : Node_Id) is
1773 begin
1774 -- Verify the condition is a Boolean expression
1776 Analyze_And_Resolve (Condition (N), Any_Boolean);
1777 Check_Unset_Reference (Condition (N));
1778 end Analyze_Goto_When_Statement;
1780 --------------------------
1781 -- Analyze_If_Statement --
1782 --------------------------
1784 -- A special complication arises in the analysis of if statements
1786 -- The expander has circuitry to completely delete code that it can tell
1787 -- will not be executed (as a result of compile time known conditions). In
1788 -- the analyzer, we ensure that code that will be deleted in this manner
1789 -- is analyzed but not expanded. This is obviously more efficient, but
1790 -- more significantly, difficulties arise if code is expanded and then
1791 -- eliminated (e.g. exception table entries disappear). Similarly, itypes
1792 -- generated in deleted code must be frozen from start, because the nodes
1793 -- on which they depend will not be available at the freeze point.
1795 procedure Analyze_If_Statement (N : Node_Id) is
1796 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1797 -- Recursively save value of this global, will be restored on exit
1799 Save_In_Deleted_Code : Boolean := In_Deleted_Code;
1801 Del : Boolean := False;
1802 -- This flag gets set True if a True condition has been found, which
1803 -- means that remaining ELSE/ELSIF parts are deleted.
1805 procedure Analyze_Cond_Then (Cnode : Node_Id);
1806 -- This is applied to either the N_If_Statement node itself or to an
1807 -- N_Elsif_Part node. It deals with analyzing the condition and the THEN
1808 -- statements associated with it.
1810 -----------------------
1811 -- Analyze_Cond_Then --
1812 -----------------------
1814 procedure Analyze_Cond_Then (Cnode : Node_Id) is
1815 Cond : constant Node_Id := Condition (Cnode);
1816 Tstm : constant List_Id := Then_Statements (Cnode);
1818 begin
1819 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1820 Analyze_And_Resolve (Cond, Any_Boolean);
1821 Check_Unset_Reference (Cond);
1822 Set_Current_Value_Condition (Cnode);
1824 -- If already deleting, then just analyze then statements
1826 if Del then
1827 Analyze_Statements (Tstm);
1829 -- Compile time known value, not deleting yet
1831 elsif Compile_Time_Known_Value (Cond) then
1832 Save_In_Deleted_Code := In_Deleted_Code;
1834 -- If condition is True, then analyze the THEN statements and set
1835 -- no expansion for ELSE and ELSIF parts.
1837 if Is_True (Expr_Value (Cond)) then
1838 Analyze_Statements (Tstm);
1839 Del := True;
1840 Expander_Mode_Save_And_Set (False);
1841 In_Deleted_Code := True;
1843 -- If condition is False, analyze THEN with expansion off
1845 else pragma Assert (Is_False (Expr_Value (Cond)));
1846 Expander_Mode_Save_And_Set (False);
1847 In_Deleted_Code := True;
1848 Analyze_Statements (Tstm);
1849 Expander_Mode_Restore;
1850 In_Deleted_Code := Save_In_Deleted_Code;
1851 end if;
1853 -- Not known at compile time, not deleting, normal analysis
1855 else
1856 Analyze_Statements (Tstm);
1857 end if;
1858 end Analyze_Cond_Then;
1860 -- Local variables
1862 E : Node_Id;
1863 -- For iterating over elsif parts
1865 -- Start of processing for Analyze_If_Statement
1867 begin
1868 -- Initialize exit count for else statements. If there is no else part,
1869 -- this count will stay non-zero reflecting the fact that the uncovered
1870 -- else case is an unblocked exit.
1872 Unblocked_Exit_Count := 1;
1873 Analyze_Cond_Then (N);
1875 -- Now to analyze the elsif parts if any are present
1877 E := First (Elsif_Parts (N));
1878 while Present (E) loop
1879 Analyze_Cond_Then (E);
1880 Next (E);
1881 end loop;
1883 if Present (Else_Statements (N)) then
1884 Analyze_Statements (Else_Statements (N));
1885 end if;
1887 -- If all our exits were blocked by unconditional transfers of control,
1888 -- then the entire IF statement acts as an unconditional transfer of
1889 -- control, so treat it like one, and check unreachable code.
1891 if Unblocked_Exit_Count = 0 then
1892 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1893 Check_Unreachable_Code (N);
1894 else
1895 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1896 end if;
1898 if Del then
1899 Expander_Mode_Restore;
1900 In_Deleted_Code := Save_In_Deleted_Code;
1901 end if;
1903 if not Expander_Active
1904 and then Compile_Time_Known_Value (Condition (N))
1905 and then Serious_Errors_Detected = 0
1906 then
1907 if Is_True (Expr_Value (Condition (N))) then
1908 Remove_Warning_Messages (Else_Statements (N));
1910 E := First (Elsif_Parts (N));
1911 while Present (E) loop
1912 Remove_Warning_Messages (Then_Statements (E));
1913 Next (E);
1914 end loop;
1916 else
1917 Remove_Warning_Messages (Then_Statements (N));
1918 end if;
1919 end if;
1921 -- Warn on redundant if statement that has no effect
1923 -- Note, we could also check empty ELSIF parts ???
1925 if Warn_On_Redundant_Constructs
1927 -- If statement must be from source
1929 and then Comes_From_Source (N)
1931 -- Condition must not have obvious side effect
1933 and then Has_No_Obvious_Side_Effects (Condition (N))
1935 -- No elsif parts of else part
1937 and then No (Elsif_Parts (N))
1938 and then No (Else_Statements (N))
1940 -- Then must be a single null statement
1942 and then List_Length (Then_Statements (N)) = 1
1943 then
1944 -- Go to original node, since we may have rewritten something as
1945 -- a null statement (e.g. a case we could figure the outcome of).
1947 declare
1948 T : constant Node_Id := First (Then_Statements (N));
1949 S : constant Node_Id := Original_Node (T);
1951 begin
1952 if Comes_From_Source (S) and then Nkind (S) = N_Null_Statement then
1953 Error_Msg_N ("if statement has no effect?r?", N);
1954 end if;
1955 end;
1956 end if;
1957 end Analyze_If_Statement;
1959 ----------------------------------------
1960 -- Analyze_Implicit_Label_Declaration --
1961 ----------------------------------------
1963 -- An implicit label declaration is generated in the innermost enclosing
1964 -- declarative part. This is done for labels, and block and loop names.
1966 procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is
1967 Id : constant Node_Id := Defining_Identifier (N);
1968 begin
1969 Enter_Name (Id);
1970 Mutate_Ekind (Id, E_Label);
1971 Set_Etype (Id, Standard_Void_Type);
1972 Set_Enclosing_Scope (Id, Current_Scope);
1974 -- A label declared within a Ghost region becomes Ghost (SPARK RM
1975 -- 6.9(2)).
1977 if Ghost_Mode > None then
1978 Set_Is_Ghost_Entity (Id);
1979 end if;
1980 end Analyze_Implicit_Label_Declaration;
1982 ------------------------------
1983 -- Analyze_Iteration_Scheme --
1984 ------------------------------
1986 procedure Analyze_Iteration_Scheme (N : Node_Id) is
1987 Cond : Node_Id;
1988 Iter_Spec : Node_Id;
1989 Loop_Spec : Node_Id;
1991 begin
1992 -- For an infinite loop, there is no iteration scheme
1994 if No (N) then
1995 return;
1996 end if;
1998 Cond := Condition (N);
1999 Iter_Spec := Iterator_Specification (N);
2000 Loop_Spec := Loop_Parameter_Specification (N);
2002 if Present (Cond) then
2003 Analyze_And_Resolve (Cond, Any_Boolean);
2004 Check_Unset_Reference (Cond);
2005 Set_Current_Value_Condition (N);
2007 elsif Present (Iter_Spec) then
2008 Analyze_Iterator_Specification (Iter_Spec);
2010 else
2011 Analyze_Loop_Parameter_Specification (Loop_Spec);
2012 end if;
2013 end Analyze_Iteration_Scheme;
2015 ------------------------------------
2016 -- Analyze_Iterator_Specification --
2017 ------------------------------------
2019 procedure Analyze_Iterator_Specification (N : Node_Id) is
2020 Def_Id : constant Node_Id := Defining_Identifier (N);
2021 Iter_Name : constant Node_Id := Name (N);
2022 Loc : constant Source_Ptr := Sloc (N);
2023 Subt : constant Node_Id := Subtype_Indication (N);
2025 Bas : Entity_Id := Empty; -- initialize to prevent warning
2026 Typ : Entity_Id;
2028 procedure Check_Reverse_Iteration (Typ : Entity_Id);
2029 -- For an iteration over a container, if the loop carries the Reverse
2030 -- indicator, verify that the container type has an Iterate aspect that
2031 -- implements the reversible iterator interface.
2033 procedure Check_Subtype_Definition (Comp_Type : Entity_Id);
2034 -- If a subtype indication is present, verify that it is consistent
2035 -- with the component type of the array or container name.
2036 -- In Ada 2022, the subtype indication may be an access definition,
2037 -- if the array or container has elements of an anonymous access type.
2039 function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id;
2040 -- For containers with Iterator and related aspects, the cursor is
2041 -- obtained by locating an entity with the proper name in the scope
2042 -- of the type.
2044 -----------------------------
2045 -- Check_Reverse_Iteration --
2046 -----------------------------
2048 procedure Check_Reverse_Iteration (Typ : Entity_Id) is
2049 begin
2050 if Reverse_Present (N) then
2051 if Is_Array_Type (Typ)
2052 or else Is_Reversible_Iterator (Typ)
2053 or else
2054 (Has_Aspect (Typ, Aspect_Iterable)
2055 and then
2056 Present
2057 (Get_Iterable_Type_Primitive (Typ, Name_Previous)))
2058 then
2059 null;
2060 else
2061 Error_Msg_N
2062 ("container type does not support reverse iteration", N);
2063 end if;
2064 end if;
2065 end Check_Reverse_Iteration;
2067 -------------------------------
2068 -- Check_Subtype_Definition --
2069 -------------------------------
2071 procedure Check_Subtype_Definition (Comp_Type : Entity_Id) is
2072 begin
2073 if No (Subt) then
2074 return;
2075 end if;
2077 if Is_Anonymous_Access_Type (Entity (Subt)) then
2078 if not Is_Anonymous_Access_Type (Comp_Type) then
2079 Error_Msg_NE
2080 ("component type& is not an anonymous access",
2081 Subt, Comp_Type);
2083 elsif not Conforming_Types
2084 (Designated_Type (Entity (Subt)),
2085 Designated_Type (Comp_Type),
2086 Fully_Conformant)
2087 then
2088 Error_Msg_NE
2089 ("subtype indication does not match component type&",
2090 Subt, Comp_Type);
2091 end if;
2093 elsif not Covers (Base_Type (Bas), Comp_Type)
2094 or else not Subtypes_Statically_Match (Bas, Comp_Type)
2095 then
2096 if Is_Array_Type (Typ) then
2097 Error_Msg_NE
2098 ("subtype indication does not match component type&",
2099 Subt, Comp_Type);
2100 else
2101 Error_Msg_NE
2102 ("subtype indication does not match element type&",
2103 Subt, Comp_Type);
2104 end if;
2105 end if;
2106 end Check_Subtype_Definition;
2108 ---------------------
2109 -- Get_Cursor_Type --
2110 ---------------------
2112 function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id is
2113 Ent : Entity_Id;
2115 begin
2116 -- If iterator type is derived, the cursor is declared in the scope
2117 -- of the parent type.
2119 if Is_Derived_Type (Typ) then
2120 Ent := First_Entity (Scope (Etype (Typ)));
2121 else
2122 Ent := First_Entity (Scope (Typ));
2123 end if;
2125 while Present (Ent) loop
2126 exit when Chars (Ent) = Name_Cursor;
2127 Next_Entity (Ent);
2128 end loop;
2130 if No (Ent) then
2131 return Any_Type;
2132 end if;
2134 -- The cursor is the target of generated assignments in the
2135 -- loop, and cannot have a limited type.
2137 if Is_Limited_Type (Etype (Ent)) then
2138 Error_Msg_N ("cursor type cannot be limited", N);
2139 end if;
2141 return Etype (Ent);
2142 end Get_Cursor_Type;
2144 -- Start of processing for Analyze_Iterator_Specification
2146 begin
2147 Enter_Name (Def_Id);
2149 -- AI12-0151 specifies that when the subtype indication is present, it
2150 -- must statically match the type of the array or container element.
2151 -- To simplify this check, we introduce a subtype declaration with the
2152 -- given subtype indication when it carries a constraint, and rewrite
2153 -- the original as a reference to the created subtype entity.
2155 if Present (Subt) then
2156 if Nkind (Subt) = N_Subtype_Indication then
2157 declare
2158 S : constant Entity_Id := Make_Temporary (Sloc (Subt), 'S');
2159 Decl : constant Node_Id :=
2160 Make_Subtype_Declaration (Loc,
2161 Defining_Identifier => S,
2162 Subtype_Indication => New_Copy_Tree (Subt));
2163 begin
2164 Insert_Action (N, Decl);
2165 Analyze (Decl);
2166 Rewrite (Subt, New_Occurrence_Of (S, Sloc (Subt)));
2167 end;
2169 -- Ada 2022: the subtype definition may be for an anonymous
2170 -- access type.
2172 elsif Nkind (Subt) = N_Access_Definition then
2173 declare
2174 S : constant Entity_Id := Make_Temporary (Sloc (Subt), 'S');
2175 Decl : Node_Id;
2176 begin
2177 if Present (Subtype_Mark (Subt)) then
2178 Decl :=
2179 Make_Full_Type_Declaration (Loc,
2180 Defining_Identifier => S,
2181 Type_Definition =>
2182 Make_Access_To_Object_Definition (Loc,
2183 All_Present => True,
2184 Subtype_Indication =>
2185 New_Copy_Tree (Subtype_Mark (Subt))));
2187 else
2188 Decl :=
2189 Make_Full_Type_Declaration (Loc,
2190 Defining_Identifier => S,
2191 Type_Definition =>
2192 New_Copy_Tree
2193 (Access_To_Subprogram_Definition (Subt)));
2194 end if;
2196 Insert_Before (Parent (Parent (N)), Decl);
2197 Analyze (Decl);
2198 Freeze_Before (First (Statements (Parent (Parent (N)))), S);
2199 Rewrite (Subt, New_Occurrence_Of (S, Sloc (Subt)));
2200 end;
2201 else
2202 Analyze (Subt);
2203 end if;
2205 -- Save entity of subtype indication for subsequent check
2207 Bas := Entity (Subt);
2208 end if;
2210 Preanalyze_Range (Iter_Name);
2212 -- If the domain of iteration is a function call, make sure the function
2213 -- itself is frozen. This is an issue if this is a local expression
2214 -- function.
2216 if Nkind (Iter_Name) = N_Function_Call
2217 and then Is_Entity_Name (Name (Iter_Name))
2218 and then Full_Analysis
2219 and then (In_Assertion_Expr = 0 or else Assertions_Enabled)
2220 then
2221 Freeze_Before (N, Entity (Name (Iter_Name)));
2222 end if;
2224 -- Set the kind of the loop variable, which is not visible within the
2225 -- iterator name.
2227 Mutate_Ekind (Def_Id, E_Variable);
2228 Set_Is_Not_Self_Hidden (Def_Id);
2230 -- Provide a link between the iterator variable and the container, for
2231 -- subsequent use in cross-reference and modification information.
2233 if Of_Present (N) then
2234 Set_Related_Expression (Def_Id, Iter_Name);
2236 -- For a container, the iterator is specified through the aspect
2238 if not Is_Array_Type (Etype (Iter_Name)) then
2239 declare
2240 Iterator : constant Entity_Id :=
2241 Find_Value_Of_Aspect
2242 (Etype (Iter_Name), Aspect_Default_Iterator);
2244 I : Interp_Index;
2245 It : Interp;
2247 begin
2248 -- The domain of iteration must implement either the RM
2249 -- iterator interface, or the SPARK Iterable aspect.
2251 if No (Iterator) then
2252 if No (Find_Aspect (Etype (Iter_Name), Aspect_Iterable)) then
2253 Error_Msg_NE
2254 ("cannot iterate over&",
2255 N, Base_Type (Etype (Iter_Name)));
2256 return;
2257 end if;
2259 elsif not Is_Overloaded (Iterator) then
2260 Check_Reverse_Iteration (Etype (Iterator));
2262 -- If Iterator is overloaded, use reversible iterator if one is
2263 -- available.
2265 elsif Is_Overloaded (Iterator) then
2266 Get_First_Interp (Iterator, I, It);
2267 while Present (It.Nam) loop
2268 if Ekind (It.Nam) = E_Function
2269 and then Is_Reversible_Iterator (Etype (It.Nam))
2270 then
2271 Set_Etype (Iterator, It.Typ);
2272 Set_Entity (Iterator, It.Nam);
2273 exit;
2274 end if;
2276 Get_Next_Interp (I, It);
2277 end loop;
2279 Check_Reverse_Iteration (Etype (Iterator));
2280 end if;
2281 end;
2282 end if;
2283 end if;
2285 -- If the domain of iteration is an expression, create a declaration for
2286 -- it, so that finalization actions are introduced outside of the loop.
2287 -- The declaration must be a renaming (both in GNAT and GNATprove
2288 -- modes), because the body of the loop may assign to elements.
2290 if not Is_Entity_Name (Iter_Name)
2292 -- Do not perform this expansion in preanalysis
2294 and then Full_Analysis
2296 -- Do not perform this expansion when expansion is disabled, where the
2297 -- temporary may hide the transformation of a selected component into
2298 -- a prefixed function call, and references need to see the original
2299 -- expression.
2301 and then (Expander_Active or GNATprove_Mode)
2302 then
2303 declare
2304 Id : constant Entity_Id := Make_Temporary (Loc, 'R', Iter_Name);
2305 Decl : Node_Id;
2306 Act_S : Node_Id;
2308 begin
2310 -- If the domain of iteration is an array component that depends
2311 -- on a discriminant, create actual subtype for it. Preanalysis
2312 -- does not generate the actual subtype of a selected component.
2314 if Nkind (Iter_Name) = N_Selected_Component
2315 and then Is_Array_Type (Etype (Iter_Name))
2316 then
2317 Act_S :=
2318 Build_Actual_Subtype_Of_Component
2319 (Etype (Selector_Name (Iter_Name)), Iter_Name);
2320 Insert_Action (N, Act_S);
2322 if Present (Act_S) then
2323 Typ := Defining_Identifier (Act_S);
2324 else
2325 Typ := Etype (Iter_Name);
2326 end if;
2328 else
2329 Typ := Etype (Iter_Name);
2331 -- Verify that the expression produces an iterator
2333 if not Of_Present (N) and then not Is_Iterator (Typ)
2334 and then not Is_Array_Type (Typ)
2335 and then No (Find_Aspect (Typ, Aspect_Iterable))
2336 then
2337 Error_Msg_N
2338 ("expect object that implements iterator interface",
2339 Iter_Name);
2340 end if;
2341 end if;
2343 -- Protect against malformed iterator
2345 if Typ = Any_Type then
2346 Error_Msg_N ("invalid expression in loop iterator", Iter_Name);
2347 return;
2348 end if;
2350 if not Of_Present (N) then
2351 Check_Reverse_Iteration (Typ);
2352 end if;
2354 -- For an element iteration over a slice, we must complete
2355 -- the resolution and expansion of the slice bounds. These
2356 -- can be arbitrary expressions, and the preanalysis that
2357 -- was performed in preparation for the iteration may have
2358 -- generated an itype whose bounds must be fully expanded.
2359 -- We set the parent node to provide a proper insertion
2360 -- point for generated actions, if any.
2362 if Nkind (Iter_Name) = N_Slice
2363 and then Nkind (Discrete_Range (Iter_Name)) = N_Range
2364 and then not Analyzed (Discrete_Range (Iter_Name))
2365 then
2366 declare
2367 Indx : constant Node_Id :=
2368 Entity (First_Index (Etype (Iter_Name)));
2369 begin
2370 Set_Parent (Indx, Iter_Name);
2371 Resolve (Scalar_Range (Indx), Etype (Indx));
2372 end;
2373 end if;
2375 -- The name in the renaming declaration may be a function call.
2376 -- Indicate that it does not come from source, to suppress
2377 -- spurious warnings on renamings of parameterless functions,
2378 -- a common enough idiom in user-defined iterators.
2380 Decl :=
2381 Make_Object_Renaming_Declaration (Loc,
2382 Defining_Identifier => Id,
2383 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
2384 Name =>
2385 New_Copy_Tree (Iter_Name, New_Sloc => Loc));
2386 Set_Comes_From_Iterator (Decl);
2388 Insert_Actions (Parent (Parent (N)), New_List (Decl));
2389 Rewrite (Name (N), New_Occurrence_Of (Id, Loc));
2390 Analyze (Name (N));
2391 Set_Etype (Id, Typ);
2392 Set_Etype (Name (N), Typ);
2393 end;
2395 -- Container is an entity or an array with uncontrolled components, or
2396 -- else it is a container iterator given by a function call, typically
2397 -- called Iterate in the case of predefined containers, even though
2398 -- Iterate is not a reserved name. What matters is that the return type
2399 -- of the function is an iterator type.
2401 elsif Is_Entity_Name (Iter_Name) then
2402 Analyze (Iter_Name);
2404 if Nkind (Iter_Name) = N_Function_Call then
2405 declare
2406 C : constant Node_Id := Name (Iter_Name);
2407 I : Interp_Index;
2408 It : Interp;
2410 begin
2411 if not Is_Overloaded (Iter_Name) then
2412 Resolve (Iter_Name, Etype (C));
2414 else
2415 Get_First_Interp (C, I, It);
2416 while It.Typ /= Empty loop
2417 if Reverse_Present (N) then
2418 if Is_Reversible_Iterator (It.Typ) then
2419 Resolve (Iter_Name, It.Typ);
2420 exit;
2421 end if;
2423 elsif Is_Iterator (It.Typ) then
2424 Resolve (Iter_Name, It.Typ);
2425 exit;
2426 end if;
2428 Get_Next_Interp (I, It);
2429 end loop;
2430 end if;
2431 end;
2433 -- Domain of iteration is not overloaded
2435 else
2436 Resolve (Iter_Name);
2437 end if;
2439 if not Of_Present (N) then
2440 Check_Reverse_Iteration (Etype (Iter_Name));
2441 end if;
2442 end if;
2444 -- Get base type of container, for proper retrieval of Cursor type
2445 -- and primitive operations.
2447 Typ := Base_Type (Etype (Iter_Name));
2449 if Is_Array_Type (Typ) then
2450 if Of_Present (N) then
2451 Set_Etype (Def_Id, Component_Type (Typ));
2453 -- The loop variable is aliased if the array components are
2454 -- aliased. Likewise for the independent aspect.
2456 Set_Is_Aliased (Def_Id, Has_Aliased_Components (Typ));
2457 Set_Is_Independent (Def_Id, Has_Independent_Components (Typ));
2459 -- AI12-0047 stipulates that the domain (array or container)
2460 -- cannot be a component that depends on a discriminant if the
2461 -- enclosing object is mutable, to prevent a modification of the
2462 -- domain of iteration in the course of an iteration.
2464 -- If the object is an expression it has been captured in a
2465 -- temporary, so examine original node.
2467 if Nkind (Original_Node (Iter_Name)) = N_Selected_Component
2468 and then Is_Dependent_Component_Of_Mutable_Object
2469 (Original_Node (Iter_Name))
2470 then
2471 Error_Msg_N
2472 ("iterable name cannot be a discriminant-dependent "
2473 & "component of a mutable object", N);
2474 end if;
2476 Check_Subtype_Definition (Component_Type (Typ));
2478 -- Here we have a missing Range attribute
2480 else
2481 Error_Msg_N
2482 ("missing Range attribute in iteration over an array", N);
2484 -- In Ada 2012 mode, this may be an attempt at an iterator
2486 if Ada_Version >= Ada_2012 then
2487 Error_Msg_NE
2488 ("\if& is meant to designate an element of the array, use OF",
2489 N, Def_Id);
2490 end if;
2492 -- Prevent cascaded errors
2494 Mutate_Ekind (Def_Id, E_Loop_Parameter);
2495 Set_Etype (Def_Id, Etype (First_Index (Typ)));
2496 end if;
2498 -- Check for type error in iterator
2500 elsif Typ = Any_Type then
2501 return;
2503 -- Iteration over a container
2505 else
2506 Mutate_Ekind (Def_Id, E_Loop_Parameter);
2507 Set_Is_Not_Self_Hidden (Def_Id);
2508 Error_Msg_Ada_2012_Feature ("container iterator", Sloc (N));
2510 -- OF present
2512 if Of_Present (N) then
2513 if Has_Aspect (Typ, Aspect_Iterable) then
2514 declare
2515 Elt : constant Entity_Id :=
2516 Get_Iterable_Type_Primitive (Typ, Name_Element);
2517 begin
2518 if No (Elt) then
2519 Error_Msg_N
2520 ("missing Element primitive for iteration", N);
2521 else
2522 Set_Etype (Def_Id, Etype (Elt));
2523 Check_Reverse_Iteration (Typ);
2524 end if;
2525 end;
2527 Check_Subtype_Definition (Etype (Def_Id));
2529 -- For a predefined container, the type of the loop variable is
2530 -- the Iterator_Element aspect of the container type.
2532 else
2533 declare
2534 Element : constant Entity_Id :=
2535 Find_Value_Of_Aspect
2536 (Typ, Aspect_Iterator_Element);
2537 Iterator : constant Entity_Id :=
2538 Find_Value_Of_Aspect
2539 (Typ, Aspect_Default_Iterator);
2540 Orig_Iter_Name : constant Node_Id :=
2541 Original_Node (Iter_Name);
2542 Cursor_Type : Entity_Id;
2544 begin
2545 if No (Element) then
2546 Error_Msg_NE ("cannot iterate over&", N, Typ);
2547 return;
2549 else
2550 Set_Etype (Def_Id, Entity (Element));
2551 Cursor_Type := Get_Cursor_Type (Typ);
2552 pragma Assert (Present (Cursor_Type));
2554 Check_Subtype_Definition (Etype (Def_Id));
2556 -- If the container has a variable indexing aspect, the
2557 -- element is a variable and is modifiable in the loop.
2559 if Has_Aspect (Typ, Aspect_Variable_Indexing) then
2560 Mutate_Ekind (Def_Id, E_Variable);
2561 Set_Is_Not_Self_Hidden (Def_Id);
2562 end if;
2564 -- If the container is a constant, iterating over it
2565 -- requires a Constant_Indexing operation.
2567 if not Is_Variable (Iter_Name)
2568 and then not Has_Aspect (Typ, Aspect_Constant_Indexing)
2569 then
2570 Error_Msg_N
2571 ("iteration over constant container require "
2572 & "constant_indexing aspect", N);
2574 -- The Iterate function may have an in_out parameter,
2575 -- and a constant container is thus illegal.
2577 elsif Present (Iterator)
2578 and then Ekind (Entity (Iterator)) = E_Function
2579 and then Ekind (First_Formal (Entity (Iterator))) /=
2580 E_In_Parameter
2581 and then not Is_Variable (Iter_Name)
2582 then
2583 Error_Msg_N ("variable container expected", N);
2584 end if;
2586 -- Detect a case where the iterator denotes a component
2587 -- of a mutable object which depends on a discriminant.
2588 -- Note that the iterator may denote a function call in
2589 -- qualified form, in which case this check should not
2590 -- be performed.
2592 if Nkind (Orig_Iter_Name) = N_Selected_Component
2593 and then
2594 Present (Entity (Selector_Name (Orig_Iter_Name)))
2595 and then
2596 Ekind (Entity (Selector_Name (Orig_Iter_Name))) in
2597 E_Component | E_Discriminant
2598 and then Is_Dependent_Component_Of_Mutable_Object
2599 (Orig_Iter_Name)
2600 then
2601 Error_Msg_N
2602 ("container cannot be a discriminant-dependent "
2603 & "component of a mutable object", N);
2604 end if;
2605 end if;
2606 end;
2607 end if;
2609 -- IN iterator, domain is a range, a call to Iterate function,
2610 -- or an object/actual parameter of an iterator type.
2612 else
2613 -- If the type of the name is class-wide and its root type is a
2614 -- derived type, the primitive operations (First, Next, etc.) are
2615 -- those inherited by its specific type. Calls to these primitives
2616 -- will be dispatching.
2618 if Is_Class_Wide_Type (Typ)
2619 and then Is_Derived_Type (Etype (Typ))
2620 then
2621 Typ := Etype (Typ);
2622 end if;
2624 -- For an iteration of the form IN, the name must denote an
2625 -- iterator, typically the result of a call to Iterate. Give a
2626 -- useful error message when the name is a container by itself.
2628 -- The type may be a formal container type, which has to have
2629 -- an Iterable aspect detailing the required primitives.
2631 if Is_Entity_Name (Original_Node (Name (N)))
2632 and then not Is_Iterator (Typ)
2633 then
2634 if Has_Aspect (Typ, Aspect_Iterable) then
2635 null;
2637 elsif not Has_Aspect (Typ, Aspect_Iterator_Element) then
2638 Error_Msg_NE
2639 ("cannot iterate over&", Name (N), Typ);
2640 else
2641 Error_Msg_N
2642 ("name must be an iterator, not a container", Name (N));
2643 end if;
2645 if Has_Aspect (Typ, Aspect_Iterable) then
2646 null;
2647 else
2648 Error_Msg_NE
2649 ("\to iterate directly over the elements of a container, "
2650 & "write `of &`", Name (N), Original_Node (Name (N)));
2652 -- No point in continuing analysis of iterator spec
2654 return;
2655 end if;
2656 end if;
2658 -- If the name is a call (typically prefixed) to some Iterate
2659 -- function, it has been rewritten as an object declaration.
2660 -- If that object is a selected component, verify that it is not
2661 -- a component of an unconstrained mutable object.
2663 if Nkind (Iter_Name) = N_Identifier
2664 or else (not Expander_Active and Comes_From_Source (Iter_Name))
2665 then
2666 declare
2667 Orig_Node : constant Node_Id := Original_Node (Iter_Name);
2668 Iter_Kind : constant Node_Kind := Nkind (Orig_Node);
2669 Obj : Node_Id;
2671 begin
2672 if Iter_Kind = N_Selected_Component then
2673 Obj := Prefix (Orig_Node);
2675 elsif Iter_Kind = N_Function_Call then
2676 Obj := First_Actual (Orig_Node);
2678 -- If neither, the name comes from source
2680 else
2681 Obj := Iter_Name;
2682 end if;
2684 if Nkind (Obj) = N_Selected_Component
2685 and then Is_Dependent_Component_Of_Mutable_Object (Obj)
2686 then
2687 Error_Msg_N
2688 ("container cannot be a discriminant-dependent "
2689 & "component of a mutable object", N);
2690 end if;
2691 end;
2692 end if;
2694 -- The result type of Iterate function is the classwide type of
2695 -- the interface parent. We need the specific Cursor type defined
2696 -- in the container package. We obtain it by name for a predefined
2697 -- container, or through the Iterable aspect for a formal one.
2699 if Has_Aspect (Typ, Aspect_Iterable) then
2700 Set_Etype (Def_Id,
2701 Get_Cursor_Type
2702 (Parent (Find_Value_Of_Aspect (Typ, Aspect_Iterable)),
2703 Typ));
2705 else
2706 Set_Etype (Def_Id, Get_Cursor_Type (Typ));
2707 Check_Reverse_Iteration (Etype (Iter_Name));
2708 end if;
2710 end if;
2711 end if;
2713 -- Preanalyze the filter. Expansion will take place when enclosing
2714 -- loop is expanded.
2716 if Present (Iterator_Filter (N)) then
2717 Preanalyze_And_Resolve (Iterator_Filter (N), Standard_Boolean);
2718 end if;
2719 end Analyze_Iterator_Specification;
2721 -------------------
2722 -- Analyze_Label --
2723 -------------------
2725 -- Note: the semantic work required for analyzing labels (setting them as
2726 -- reachable) was done in a prepass through the statements in the block,
2727 -- so that forward gotos would be properly handled. See Analyze_Statements
2728 -- for further details. The only processing required here is to deal with
2729 -- optimizations that depend on an assumption of sequential control flow,
2730 -- since of course the occurrence of a label breaks this assumption.
2732 procedure Analyze_Label (N : Node_Id) is
2733 pragma Warnings (Off, N);
2734 begin
2735 Kill_Current_Values;
2736 end Analyze_Label;
2738 ------------------------------------------
2739 -- Analyze_Loop_Parameter_Specification --
2740 ------------------------------------------
2742 procedure Analyze_Loop_Parameter_Specification (N : Node_Id) is
2743 Loop_Nod : constant Node_Id := Parent (Parent (N));
2745 procedure Check_Controlled_Array_Attribute (DS : Node_Id);
2746 -- If the bounds are given by a 'Range reference on a function call
2747 -- that returns a controlled array, introduce an explicit declaration
2748 -- to capture the bounds, so that the function result can be finalized
2749 -- in timely fashion.
2751 procedure Check_Predicate_Use (T : Entity_Id);
2752 -- Diagnose Attempt to iterate through non-static predicate. Note that
2753 -- a type with inherited predicates may have both static and dynamic
2754 -- forms. In this case it is not sufficient to check the static
2755 -- predicate function only, look for a dynamic predicate aspect as well.
2757 procedure Process_Bounds (R : Node_Id);
2758 -- If the iteration is given by a range, create temporaries and
2759 -- assignment statements block to capture the bounds and perform
2760 -- required finalization actions in case a bound includes a function
2761 -- call that uses the temporary stack. We first preanalyze a copy of
2762 -- the range in order to determine the expected type, and analyze and
2763 -- resolve the original bounds.
2765 --------------------------------------
2766 -- Check_Controlled_Array_Attribute --
2767 --------------------------------------
2769 procedure Check_Controlled_Array_Attribute (DS : Node_Id) is
2770 begin
2771 if Nkind (DS) = N_Attribute_Reference
2772 and then Is_Entity_Name (Prefix (DS))
2773 and then Ekind (Entity (Prefix (DS))) = E_Function
2774 and then Is_Array_Type (Etype (Entity (Prefix (DS))))
2775 and then
2776 Is_Controlled (Component_Type (Etype (Entity (Prefix (DS)))))
2777 and then Expander_Active
2778 then
2779 declare
2780 Loc : constant Source_Ptr := Sloc (N);
2781 Arr : constant Entity_Id := Etype (Entity (Prefix (DS)));
2782 Indx : constant Entity_Id :=
2783 Base_Type (Etype (First_Index (Arr)));
2784 Subt : constant Entity_Id := Make_Temporary (Loc, 'S');
2785 Decl : Node_Id;
2787 begin
2788 Decl :=
2789 Make_Subtype_Declaration (Loc,
2790 Defining_Identifier => Subt,
2791 Subtype_Indication =>
2792 Make_Subtype_Indication (Loc,
2793 Subtype_Mark => New_Occurrence_Of (Indx, Loc),
2794 Constraint =>
2795 Make_Range_Constraint (Loc, Relocate_Node (DS))));
2796 Insert_Before (Loop_Nod, Decl);
2797 Analyze (Decl);
2799 Rewrite (DS,
2800 Make_Attribute_Reference (Loc,
2801 Prefix => New_Occurrence_Of (Subt, Loc),
2802 Attribute_Name => Attribute_Name (DS)));
2804 Analyze (DS);
2805 end;
2806 end if;
2807 end Check_Controlled_Array_Attribute;
2809 -------------------------
2810 -- Check_Predicate_Use --
2811 -------------------------
2813 procedure Check_Predicate_Use (T : Entity_Id) is
2814 begin
2815 -- A predicated subtype is illegal in loops and related constructs
2816 -- if the predicate is not static, or if it is a non-static subtype
2817 -- of a statically predicated subtype.
2819 if Is_Discrete_Type (T)
2820 and then Has_Predicates (T)
2821 and then (not Has_Static_Predicate (T)
2822 or else not Is_Static_Subtype (T)
2823 or else Has_Dynamic_Predicate_Aspect (T)
2824 or else Has_Ghost_Predicate_Aspect (T))
2825 then
2826 -- Seems a confusing message for the case of a static predicate
2827 -- with a non-static subtype???
2829 Bad_Predicated_Subtype_Use
2830 ("cannot use subtype& with non-static predicate for loop "
2831 & "iteration", Discrete_Subtype_Definition (N),
2832 T, Suggest_Static => True);
2834 elsif Inside_A_Generic
2835 and then Is_Generic_Formal (T)
2836 and then Is_Discrete_Type (T)
2837 then
2838 Set_No_Dynamic_Predicate_On_Actual (T);
2839 end if;
2840 end Check_Predicate_Use;
2842 --------------------
2843 -- Process_Bounds --
2844 --------------------
2846 procedure Process_Bounds (R : Node_Id) is
2847 Loc : constant Source_Ptr := Sloc (N);
2849 function One_Bound
2850 (Original_Bound : Node_Id;
2851 Analyzed_Bound : Node_Id;
2852 Typ : Entity_Id) return Node_Id;
2853 -- Capture value of bound and return captured value
2855 ---------------
2856 -- One_Bound --
2857 ---------------
2859 function One_Bound
2860 (Original_Bound : Node_Id;
2861 Analyzed_Bound : Node_Id;
2862 Typ : Entity_Id) return Node_Id
2864 Assign : Node_Id;
2865 Decl : Node_Id;
2866 Id : Entity_Id;
2868 begin
2869 -- If the bound is a constant or an object, no need for a separate
2870 -- declaration. If the bound is the result of previous expansion
2871 -- it is already analyzed and should not be modified. Note that
2872 -- the Bound will be resolved later, if needed, as part of the
2873 -- call to Make_Index (literal bounds may need to be resolved to
2874 -- type Integer).
2876 if Analyzed (Original_Bound) then
2877 return Original_Bound;
2879 elsif Nkind (Analyzed_Bound) in
2880 N_Integer_Literal | N_Character_Literal
2881 or else Is_Entity_Name (Analyzed_Bound)
2882 then
2883 Analyze_And_Resolve (Original_Bound, Typ);
2884 return Original_Bound;
2886 elsif Inside_Class_Condition_Preanalysis then
2887 Analyze_And_Resolve (Original_Bound, Typ);
2888 return Original_Bound;
2889 end if;
2891 -- Normally, the best approach is simply to generate a constant
2892 -- declaration that captures the bound. However, there is a nasty
2893 -- case where this is wrong. If the bound is complex, and has a
2894 -- possible use of the secondary stack, we need to generate a
2895 -- separate assignment statement to ensure the creation of a block
2896 -- which will release the secondary stack.
2898 -- We prefer the constant declaration, since it leaves us with a
2899 -- proper trace of the value, useful in optimizations that get rid
2900 -- of junk range checks.
2902 if not Has_Sec_Stack_Call (Analyzed_Bound) then
2903 Analyze_And_Resolve (Original_Bound, Typ);
2905 -- Ensure that the bound is valid. This check should not be
2906 -- generated when the range belongs to a quantified expression
2907 -- as the construct is still not expanded into its final form.
2909 if Nkind (Parent (R)) /= N_Loop_Parameter_Specification
2910 or else Nkind (Parent (Parent (R))) /= N_Quantified_Expression
2911 then
2912 Ensure_Valid (Original_Bound);
2913 end if;
2915 Force_Evaluation (Original_Bound);
2916 return Original_Bound;
2917 end if;
2919 Id := Make_Temporary (Loc, 'R', Original_Bound);
2921 -- Here we make a declaration with a separate assignment
2922 -- statement, and insert before loop header.
2924 Decl :=
2925 Make_Object_Declaration (Loc,
2926 Defining_Identifier => Id,
2927 Object_Definition => New_Occurrence_Of (Typ, Loc));
2929 Assign :=
2930 Make_Assignment_Statement (Loc,
2931 Name => New_Occurrence_Of (Id, Loc),
2932 Expression => Relocate_Node (Original_Bound));
2934 Insert_Actions (Loop_Nod, New_List (Decl, Assign));
2936 -- Now that this temporary variable is initialized we decorate it
2937 -- as safe-to-reevaluate to inform to the backend that no further
2938 -- asignment will be issued and hence it can be handled as side
2939 -- effect free. Note that this decoration must be done when the
2940 -- assignment has been analyzed because otherwise it will be
2941 -- rejected (see Analyze_Assignment).
2943 Set_Is_Safe_To_Reevaluate (Id);
2945 Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));
2947 if Nkind (Assign) = N_Assignment_Statement then
2948 return Expression (Assign);
2949 else
2950 return Original_Bound;
2951 end if;
2952 end One_Bound;
2954 Hi : constant Node_Id := High_Bound (R);
2955 Lo : constant Node_Id := Low_Bound (R);
2956 R_Copy : constant Node_Id := New_Copy_Tree (R);
2957 New_Hi : Node_Id;
2958 New_Lo : Node_Id;
2959 Typ : Entity_Id;
2961 -- Start of processing for Process_Bounds
2963 begin
2964 Set_Parent (R_Copy, Parent (R));
2965 Preanalyze_Range (R_Copy);
2966 Typ := Etype (R_Copy);
2968 -- If the type of the discrete range is Universal_Integer, then the
2969 -- bound's type must be resolved to Integer, and any object used to
2970 -- hold the bound must also have type Integer, unless the literal
2971 -- bounds are constant-folded expressions with a user-defined type.
2973 if Typ = Universal_Integer then
2974 if Nkind (Lo) = N_Integer_Literal
2975 and then Present (Etype (Lo))
2976 and then Scope (Etype (Lo)) /= Standard_Standard
2977 then
2978 Typ := Etype (Lo);
2980 elsif Nkind (Hi) = N_Integer_Literal
2981 and then Present (Etype (Hi))
2982 and then Scope (Etype (Hi)) /= Standard_Standard
2983 then
2984 Typ := Etype (Hi);
2986 else
2987 Typ := Standard_Integer;
2988 end if;
2989 end if;
2991 Set_Etype (R, Typ);
2993 New_Lo := One_Bound (Lo, Low_Bound (R_Copy), Typ);
2994 New_Hi := One_Bound (Hi, High_Bound (R_Copy), Typ);
2996 -- Propagate staticness to loop range itself, in case the
2997 -- corresponding subtype is static.
2999 if New_Lo /= Lo and then Is_OK_Static_Expression (New_Lo) then
3000 Rewrite (Low_Bound (R), New_Copy (New_Lo));
3001 end if;
3003 if New_Hi /= Hi and then Is_OK_Static_Expression (New_Hi) then
3004 Rewrite (High_Bound (R), New_Copy (New_Hi));
3005 end if;
3006 end Process_Bounds;
3008 -- Local variables
3010 DS : constant Node_Id := Discrete_Subtype_Definition (N);
3011 Id : constant Entity_Id := Defining_Identifier (N);
3013 DS_Copy : Node_Id;
3015 -- Start of processing for Analyze_Loop_Parameter_Specification
3017 begin
3018 Enter_Name (Id);
3020 -- We always consider the loop variable to be referenced, since the loop
3021 -- may be used just for counting purposes.
3023 Generate_Reference (Id, N, ' ');
3025 -- Check for the case of loop variable hiding a local variable (used
3026 -- later on to give a nice warning if the hidden variable is never
3027 -- assigned).
3029 declare
3030 H : constant Entity_Id := Homonym (Id);
3031 begin
3032 if Present (H)
3033 and then Ekind (H) = E_Variable
3034 and then Is_Discrete_Type (Etype (H))
3035 and then Enclosing_Dynamic_Scope (H) = Enclosing_Dynamic_Scope (Id)
3036 then
3037 Set_Hiding_Loop_Variable (H, Id);
3038 end if;
3039 end;
3041 -- Analyze the subtype definition and create temporaries for the bounds.
3042 -- Do not evaluate the range when preanalyzing a quantified expression
3043 -- because bounds expressed as function calls with side effects will be
3044 -- incorrectly replicated.
3046 if Nkind (DS) = N_Range
3047 and then Expander_Active
3048 and then Nkind (Parent (N)) /= N_Quantified_Expression
3049 then
3050 Process_Bounds (DS);
3052 -- Either the expander not active or the range of iteration is a subtype
3053 -- indication, an entity, or a function call that yields an aggregate or
3054 -- a container.
3056 else
3057 DS_Copy := New_Copy_Tree (DS);
3058 Set_Parent (DS_Copy, Parent (DS));
3059 Preanalyze_Range (DS_Copy);
3061 -- Ada 2012: If the domain of iteration is:
3063 -- a) a function call,
3064 -- b) an identifier that is not a type,
3065 -- c) an attribute reference 'Old (within a postcondition),
3066 -- d) an unchecked conversion or a qualified expression with
3067 -- the proper iterator type.
3069 -- then it is an iteration over a container. It was classified as
3070 -- a loop specification by the parser, and must be rewritten now
3071 -- to activate container iteration. The last case will occur within
3072 -- an expanded inlined call, where the expansion wraps an actual in
3073 -- an unchecked conversion when needed. The expression of the
3074 -- conversion is always an object.
3076 if Nkind (DS_Copy) = N_Function_Call
3078 or else (Is_Entity_Name (DS_Copy)
3079 and then not Is_Type (Entity (DS_Copy)))
3081 or else (Nkind (DS_Copy) = N_Attribute_Reference
3082 and then Attribute_Name (DS_Copy) in
3083 Name_Loop_Entry | Name_Old)
3085 or else Has_Aspect (Etype (DS_Copy), Aspect_Iterable)
3087 or else Nkind (DS_Copy) = N_Unchecked_Type_Conversion
3088 or else (Nkind (DS_Copy) = N_Qualified_Expression
3089 and then Is_Iterator (Etype (DS_Copy)))
3090 then
3091 -- This is an iterator specification. Rewrite it as such and
3092 -- analyze it to capture function calls that may require
3093 -- finalization actions.
3095 declare
3096 I_Spec : constant Node_Id :=
3097 Make_Iterator_Specification (Sloc (N),
3098 Defining_Identifier => Relocate_Node (Id),
3099 Name => DS_Copy,
3100 Subtype_Indication => Empty,
3101 Reverse_Present => Reverse_Present (N));
3102 Scheme : constant Node_Id := Parent (N);
3104 begin
3105 Set_Iterator_Specification (Scheme, I_Spec);
3106 Set_Loop_Parameter_Specification (Scheme, Empty);
3107 Set_Iterator_Filter (I_Spec,
3108 Relocate_Node (Iterator_Filter (N)));
3110 Analyze_Iterator_Specification (I_Spec);
3112 -- In a generic context, analyze the original domain of
3113 -- iteration, for name capture.
3115 if not Expander_Active then
3116 Analyze (DS);
3117 end if;
3119 -- Set kind of loop parameter, which may be used in the
3120 -- subsequent analysis of the condition in a quantified
3121 -- expression.
3123 Mutate_Ekind (Id, E_Loop_Parameter);
3124 return;
3125 end;
3127 -- Domain of iteration is not a function call, and is side-effect
3128 -- free.
3130 else
3131 -- A quantified expression that appears in a pre/post condition
3132 -- is preanalyzed several times. If the range is given by an
3133 -- attribute reference it is rewritten as a range, and this is
3134 -- done even with expansion disabled. If the type is already set
3135 -- do not reanalyze, because a range with static bounds may be
3136 -- typed Integer by default.
3138 if Nkind (Parent (N)) = N_Quantified_Expression
3139 and then Present (Etype (DS))
3140 then
3141 null;
3142 else
3143 Analyze (DS);
3144 end if;
3145 end if;
3146 end if;
3148 if DS = Error then
3149 return;
3150 end if;
3152 -- Some additional checks if we are iterating through a type
3154 if Is_Entity_Name (DS)
3155 and then Present (Entity (DS))
3156 and then Is_Type (Entity (DS))
3157 then
3158 -- The subtype indication may denote the completion of an incomplete
3159 -- type declaration.
3161 if Ekind (Entity (DS)) = E_Incomplete_Type then
3162 Set_Entity (DS, Get_Full_View (Entity (DS)));
3163 Set_Etype (DS, Entity (DS));
3164 end if;
3166 Check_Predicate_Use (Entity (DS));
3167 end if;
3169 -- Error if not discrete type
3171 if not Is_Discrete_Type (Etype (DS)) then
3172 Wrong_Type (DS, Any_Discrete);
3173 Set_Etype (DS, Any_Type);
3174 end if;
3176 Check_Controlled_Array_Attribute (DS);
3178 if Nkind (DS) = N_Subtype_Indication then
3179 Check_Predicate_Use (Entity (Subtype_Mark (DS)));
3180 end if;
3182 if Nkind (DS) not in N_Raise_xxx_Error then
3183 Make_Index (DS, N);
3184 end if;
3186 Mutate_Ekind (Id, E_Loop_Parameter);
3187 Set_Is_Not_Self_Hidden (Id);
3189 -- A quantified expression which appears in a pre- or post-condition may
3190 -- be analyzed multiple times. The analysis of the range creates several
3191 -- itypes which reside in different scopes depending on whether the pre-
3192 -- or post-condition has been expanded. Update the type of the loop
3193 -- variable to reflect the proper itype at each stage of analysis.
3195 -- Loop_Nod might not be present when we are preanalyzing a class-wide
3196 -- pre/postcondition since preanalysis occurs in a place unrelated to
3197 -- the actual code and the quantified expression may be the outermost
3198 -- expression of the class-wide condition.
3200 if No (Etype (Id))
3201 or else Etype (Id) = Any_Type
3202 or else
3203 (Present (Etype (Id))
3204 and then Is_Itype (Etype (Id))
3205 and then Present (Loop_Nod)
3206 and then Nkind (Parent (Loop_Nod)) = N_Expression_With_Actions
3207 and then Nkind (Original_Node (Parent (Loop_Nod))) =
3208 N_Quantified_Expression)
3209 then
3210 Set_Etype (Id, Etype (DS));
3211 end if;
3213 -- Treat a range as an implicit reference to the type, to inhibit
3214 -- spurious warnings.
3216 Generate_Reference (Base_Type (Etype (DS)), N, ' ');
3217 Set_Is_Known_Valid (Id, True);
3219 -- The loop is not a declarative part, so the loop variable must be
3220 -- frozen explicitly. Do not freeze while preanalyzing a quantified
3221 -- expression because the freeze node will not be inserted into the
3222 -- tree due to flag Is_Spec_Expression being set.
3224 if Nkind (Parent (N)) /= N_Quantified_Expression then
3225 declare
3226 Flist : constant List_Id := Freeze_Entity (Id, N);
3227 begin
3228 Insert_Actions (N, Flist);
3229 end;
3230 end if;
3232 -- Case where we have a range or a subtype, get type bounds
3234 if Nkind (DS) in N_Range | N_Subtype_Indication
3235 and then not Error_Posted (DS)
3236 and then Etype (DS) /= Any_Type
3237 and then Is_Discrete_Type (Etype (DS))
3238 then
3239 declare
3240 L : Node_Id;
3241 H : Node_Id;
3242 Null_Range : Boolean := False;
3244 begin
3245 if Nkind (DS) = N_Range then
3246 L := Low_Bound (DS);
3247 H := High_Bound (DS);
3248 else
3249 L :=
3250 Type_Low_Bound (Underlying_Type (Etype (Subtype_Mark (DS))));
3251 H :=
3252 Type_High_Bound (Underlying_Type (Etype (Subtype_Mark (DS))));
3253 end if;
3255 -- Check for null or possibly null range and issue warning. We
3256 -- suppress such messages in generic templates and instances,
3257 -- because in practice they tend to be dubious in these cases. The
3258 -- check applies as well to rewritten array element loops where a
3259 -- null range may be detected statically.
3261 if Compile_Time_Compare (L, H, Assume_Valid => True) = GT then
3262 if Compile_Time_Compare (L, H, Assume_Valid => False) = GT then
3263 -- Since we know the range of the loop is always null,
3264 -- set the appropriate flag to remove the loop entirely
3265 -- during expansion.
3267 Set_Is_Null_Loop (Loop_Nod);
3268 Null_Range := True;
3269 end if;
3271 -- Suppress the warning if inside a generic template or
3272 -- instance, since in practice they tend to be dubious in these
3273 -- cases since they can result from intended parameterization.
3275 if not Inside_A_Generic and then not In_Instance then
3277 -- Specialize msg if invalid values could make the loop
3278 -- non-null after all.
3280 if Null_Range then
3281 if Comes_From_Source (N) then
3282 Error_Msg_N
3283 ("??loop range is null, loop will not execute", DS);
3284 end if;
3286 -- Here is where the loop could execute because of
3287 -- invalid values, so issue appropriate message.
3289 elsif Comes_From_Source (N) then
3290 Error_Msg_N
3291 ("??loop range may be null, loop may not execute",
3292 DS);
3293 Error_Msg_N
3294 ("??can only execute if invalid values are present",
3295 DS);
3296 end if;
3297 end if;
3299 -- In either case, suppress warnings in the body of the loop,
3300 -- since it is likely that these warnings will be inappropriate
3301 -- if the loop never actually executes, which is likely.
3303 Set_Suppress_Loop_Warnings (Loop_Nod);
3305 -- The other case for a warning is a reverse loop where the
3306 -- upper bound is the integer literal zero or one, and the
3307 -- lower bound may exceed this value.
3309 -- For example, we have
3311 -- for J in reverse N .. 1 loop
3313 -- In practice, this is very likely to be a case of reversing
3314 -- the bounds incorrectly in the range.
3316 elsif Reverse_Present (N)
3317 and then Nkind (Original_Node (H)) = N_Integer_Literal
3318 and then
3319 (Intval (Original_Node (H)) = Uint_0
3320 or else
3321 Intval (Original_Node (H)) = Uint_1)
3322 then
3323 -- Lower bound may in fact be known and known not to exceed
3324 -- upper bound (e.g. reverse 0 .. 1) and that's OK.
3326 if Compile_Time_Known_Value (L)
3327 and then Expr_Value (L) <= Expr_Value (H)
3328 then
3329 null;
3331 -- Otherwise warning is warranted
3333 else
3334 Error_Msg_N ("??loop range may be null", DS);
3335 Error_Msg_N ("\??bounds may be wrong way round", DS);
3336 end if;
3337 end if;
3339 -- Check if either bound is known to be outside the range of the
3340 -- loop parameter type, this is e.g. the case of a loop from
3341 -- 20..X where the type is 1..19.
3343 -- Such a loop is dubious since either it raises CE or it executes
3344 -- zero times, and that cannot be useful!
3346 if Etype (DS) /= Any_Type
3347 and then not Error_Posted (DS)
3348 and then Nkind (DS) = N_Subtype_Indication
3349 and then Nkind (Constraint (DS)) = N_Range_Constraint
3350 then
3351 declare
3352 LLo : constant Node_Id :=
3353 Low_Bound (Range_Expression (Constraint (DS)));
3354 LHi : constant Node_Id :=
3355 High_Bound (Range_Expression (Constraint (DS)));
3357 Bad_Bound : Node_Id := Empty;
3358 -- Suspicious loop bound
3360 begin
3361 -- At this stage L, H are the bounds of the type, and LLo
3362 -- Lhi are the low bound and high bound of the loop.
3364 if Compile_Time_Compare (LLo, L, Assume_Valid => True) = LT
3365 or else
3366 Compile_Time_Compare (LLo, H, Assume_Valid => True) = GT
3367 then
3368 Bad_Bound := LLo;
3369 end if;
3371 if Compile_Time_Compare (LHi, L, Assume_Valid => True) = LT
3372 or else
3373 Compile_Time_Compare (LHi, H, Assume_Valid => True) = GT
3374 then
3375 Bad_Bound := LHi;
3376 end if;
3378 if Present (Bad_Bound) then
3379 Error_Msg_N
3380 ("suspicious loop bound out of range of "
3381 & "loop subtype??", Bad_Bound);
3382 Error_Msg_N
3383 ("\loop executes zero times or raises "
3384 & "Constraint_Error??", Bad_Bound);
3385 end if;
3387 if Compile_Time_Compare (LLo, LHi, Assume_Valid => False)
3388 = GT
3389 then
3390 Error_Msg_N ("??constrained range is null",
3391 Constraint (DS));
3393 -- Additional constraints on modular types can be
3394 -- confusing, add more information.
3396 if Ekind (Etype (DS)) = E_Modular_Integer_Subtype then
3397 Error_Msg_Uint_1 := Intval (LLo);
3398 Error_Msg_Uint_2 := Intval (LHi);
3399 Error_Msg_NE ("\iterator has modular type &, " &
3400 "so the loop has bounds ^ ..^",
3401 Constraint (DS),
3402 Subtype_Mark (DS));
3403 end if;
3405 Set_Is_Null_Loop (Loop_Nod);
3406 Null_Range := True;
3408 -- Suppress other warnings about the body of the loop, as
3409 -- it will never execute.
3410 Set_Suppress_Loop_Warnings (Loop_Nod);
3411 end if;
3412 end;
3413 end if;
3415 -- This declare block is about warnings, if we get an exception while
3416 -- testing for warnings, we simply abandon the attempt silently. This
3417 -- most likely occurs as the result of a previous error, but might
3418 -- just be an obscure case we have missed. In either case, not giving
3419 -- the warning is perfectly acceptable.
3421 exception
3422 when others =>
3423 -- With debug flag K we will get an exception unless an error
3424 -- has already occurred (useful for debugging).
3426 if Debug_Flag_K then
3427 Check_Error_Detected;
3428 end if;
3429 end;
3430 end if;
3432 -- Preanalyze the filter. Expansion will take place when enclosing
3433 -- loop is expanded.
3435 if Present (Iterator_Filter (N)) then
3436 Preanalyze_And_Resolve (Iterator_Filter (N), Standard_Boolean);
3437 end if;
3439 -- A loop parameter cannot be effectively volatile (SPARK RM 7.1.3(4)).
3440 -- This check is relevant only when SPARK_Mode is on as it is not a
3441 -- standard Ada legality check.
3443 if SPARK_Mode = On and then Is_Effectively_Volatile (Id) then
3444 Error_Msg_N ("loop parameter cannot be volatile", Id);
3445 end if;
3446 end Analyze_Loop_Parameter_Specification;
3448 ----------------------------
3449 -- Analyze_Loop_Statement --
3450 ----------------------------
3452 procedure Analyze_Loop_Statement (N : Node_Id) is
3454 -- The following exception is raised by routine Prepare_Loop_Statement
3455 -- to avoid further analysis of a transformed loop.
3457 procedure Prepare_Loop_Statement
3458 (Iter : Node_Id;
3459 Stop_Processing : out Boolean);
3460 -- Determine whether loop statement N with iteration scheme Iter must be
3461 -- transformed prior to analysis, and if so, perform it.
3462 -- If Stop_Processing is set to True, should stop further processing.
3464 ----------------------------
3465 -- Prepare_Loop_Statement --
3466 ----------------------------
3468 procedure Prepare_Loop_Statement
3469 (Iter : Node_Id;
3470 Stop_Processing : out Boolean)
3472 function Has_Sec_Stack_Default_Iterator
3473 (Cont_Typ : Entity_Id) return Boolean;
3474 pragma Inline (Has_Sec_Stack_Default_Iterator);
3475 -- Determine whether container type Cont_Typ has a default iterator
3476 -- that requires secondary stack management.
3478 function Is_Sec_Stack_Iteration_Primitive
3479 (Cont_Typ : Entity_Id;
3480 Iter_Prim_Nam : Name_Id) return Boolean;
3481 pragma Inline (Is_Sec_Stack_Iteration_Primitive);
3482 -- Determine whether container type Cont_Typ has an iteration routine
3483 -- described by its name Iter_Prim_Nam that requires secondary stack
3484 -- management.
3486 function Is_Wrapped_In_Block (Stmt : Node_Id) return Boolean;
3487 pragma Inline (Is_Wrapped_In_Block);
3488 -- Determine whether arbitrary statement Stmt is the sole statement
3489 -- wrapped within some block, excluding pragmas.
3491 procedure Prepare_Iterator_Loop
3492 (Iter_Spec : Node_Id;
3493 Stop_Processing : out Boolean);
3494 pragma Inline (Prepare_Iterator_Loop);
3495 -- Prepare an iterator loop with iteration specification Iter_Spec
3496 -- for transformation if needed.
3497 -- If Stop_Processing is set to True, should stop further processing.
3499 procedure Prepare_Param_Spec_Loop
3500 (Param_Spec : Node_Id;
3501 Stop_Processing : out Boolean);
3502 pragma Inline (Prepare_Param_Spec_Loop);
3503 -- Prepare a discrete loop with parameter specification Param_Spec
3504 -- for transformation if needed.
3505 -- If Stop_Processing is set to True, should stop further processing.
3507 procedure Wrap_Loop_Statement (Manage_Sec_Stack : Boolean);
3508 pragma Inline (Wrap_Loop_Statement);
3509 -- Wrap loop statement N within a block. Flag Manage_Sec_Stack must
3510 -- be set when the block must mark and release the secondary stack.
3511 -- Should stop further processing after calling this procedure.
3513 ------------------------------------
3514 -- Has_Sec_Stack_Default_Iterator --
3515 ------------------------------------
3517 function Has_Sec_Stack_Default_Iterator
3518 (Cont_Typ : Entity_Id) return Boolean
3520 Def_Iter : constant Node_Id :=
3521 Find_Value_Of_Aspect
3522 (Cont_Typ, Aspect_Default_Iterator);
3523 begin
3524 return
3525 Present (Def_Iter)
3526 and then Present (Etype (Def_Iter))
3527 and then Requires_Transient_Scope (Etype (Def_Iter));
3528 end Has_Sec_Stack_Default_Iterator;
3530 --------------------------------------
3531 -- Is_Sec_Stack_Iteration_Primitive --
3532 --------------------------------------
3534 function Is_Sec_Stack_Iteration_Primitive
3535 (Cont_Typ : Entity_Id;
3536 Iter_Prim_Nam : Name_Id) return Boolean
3538 Iter_Prim : constant Entity_Id :=
3539 Get_Iterable_Type_Primitive
3540 (Cont_Typ, Iter_Prim_Nam);
3541 begin
3542 return
3543 Present (Iter_Prim)
3544 and then Requires_Transient_Scope (Etype (Iter_Prim));
3545 end Is_Sec_Stack_Iteration_Primitive;
3547 -------------------------
3548 -- Is_Wrapped_In_Block --
3549 -------------------------
3551 function Is_Wrapped_In_Block (Stmt : Node_Id) return Boolean is
3552 Blk_HSS : Node_Id;
3553 Blk_Id : Entity_Id;
3554 Blk_Stmt : Node_Id;
3556 begin
3557 Blk_Id := Current_Scope;
3559 -- The current context is a block. Inspect the statements of the
3560 -- block to determine whether it wraps Stmt.
3562 if Ekind (Blk_Id) = E_Block
3563 and then Present (Block_Node (Blk_Id))
3564 then
3565 Blk_HSS :=
3566 Handled_Statement_Sequence (Parent (Block_Node (Blk_Id)));
3568 -- Skip leading pragmas introduced for invariant and predicate
3569 -- checks.
3571 Blk_Stmt := First (Statements (Blk_HSS));
3572 while Present (Blk_Stmt)
3573 and then Nkind (Blk_Stmt) = N_Pragma
3574 loop
3575 Next (Blk_Stmt);
3576 end loop;
3578 return Blk_Stmt = Stmt and then No (Next (Blk_Stmt));
3579 end if;
3581 return False;
3582 end Is_Wrapped_In_Block;
3584 ---------------------------
3585 -- Prepare_Iterator_Loop --
3586 ---------------------------
3588 procedure Prepare_Iterator_Loop
3589 (Iter_Spec : Node_Id;
3590 Stop_Processing : out Boolean)
3592 Cont_Typ : Entity_Id;
3593 Nam : Node_Id;
3594 Nam_Copy : Node_Id;
3596 begin
3597 Stop_Processing := False;
3599 -- The iterator specification has syntactic errors. Transform the
3600 -- loop into an infinite loop in order to safely perform at least
3601 -- some minor analysis. This check must come first.
3603 if Error_Posted (Iter_Spec) then
3604 Set_Iteration_Scheme (N, Empty);
3605 Analyze (N);
3606 Stop_Processing := True;
3608 -- Nothing to do when the loop is already wrapped in a block
3610 elsif Is_Wrapped_In_Block (N) then
3611 null;
3613 -- Otherwise the iterator loop traverses an array or a container
3614 -- and appears in the form
3616 -- for Def_Id in [reverse] Iterator_Name loop
3617 -- for Def_Id [: Subtyp_Indic] of [reverse] Iterable_Name loop
3619 else
3620 -- Prepare a copy of the iterated name for preanalysis. The
3621 -- copy is semi inserted into the tree by setting its Parent
3622 -- pointer.
3624 Nam := Name (Iter_Spec);
3625 Nam_Copy := New_Copy_Tree (Nam);
3626 Set_Parent (Nam_Copy, Parent (Nam));
3628 -- Determine what the loop is iterating on
3630 Preanalyze_Range (Nam_Copy);
3631 Cont_Typ := Etype (Nam_Copy);
3633 -- The iterator loop is traversing an array. This case does not
3634 -- require any transformation, unless the name contains a call
3635 -- that returns on the secondary stack since we need to release
3636 -- the space allocated there.
3638 if Is_Array_Type (Cont_Typ)
3639 and then not Has_Sec_Stack_Call (Nam_Copy)
3640 then
3641 null;
3643 -- Otherwise unconditionally wrap the loop statement within
3644 -- a block. The expansion of iterator loops may relocate the
3645 -- iterator outside the loop, thus "leaking" its entity into
3646 -- the enclosing scope. Wrapping the loop statement allows
3647 -- for multiple iterator loops using the same iterator name
3648 -- to coexist within the same scope.
3650 -- The block must manage the secondary stack when the iterator
3651 -- loop is traversing a container using either
3653 -- * A default iterator obtained on the secondary stack
3655 -- * Call to Iterate where the iterator is returned on the
3656 -- secondary stack.
3658 -- * Combination of First, Next, and Has_Element where the
3659 -- first two return a cursor on the secondary stack.
3661 else
3662 Wrap_Loop_Statement
3663 (Manage_Sec_Stack =>
3664 Has_Sec_Stack_Default_Iterator (Cont_Typ)
3665 or else Has_Sec_Stack_Call (Nam_Copy)
3666 or else Is_Sec_Stack_Iteration_Primitive
3667 (Cont_Typ, Name_First)
3668 or else Is_Sec_Stack_Iteration_Primitive
3669 (Cont_Typ, Name_Next));
3670 Stop_Processing := True;
3671 end if;
3672 end if;
3673 end Prepare_Iterator_Loop;
3675 -----------------------------
3676 -- Prepare_Param_Spec_Loop --
3677 -----------------------------
3679 procedure Prepare_Param_Spec_Loop
3680 (Param_Spec : Node_Id;
3681 Stop_Processing : out Boolean)
3683 High : Node_Id;
3684 Low : Node_Id;
3685 Rng : Node_Id;
3686 Rng_Copy : Node_Id;
3687 Rng_Typ : Entity_Id;
3689 begin
3690 Stop_Processing := False;
3691 Rng := Discrete_Subtype_Definition (Param_Spec);
3693 -- Nothing to do when the loop is already wrapped in a block
3695 if Is_Wrapped_In_Block (N) then
3696 null;
3698 -- The parameter specification appears in the form
3700 -- for Def_Id in Subtype_Mark Constraint loop
3702 elsif Nkind (Rng) = N_Subtype_Indication
3703 and then Nkind (Range_Expression (Constraint (Rng))) = N_Range
3704 then
3705 Rng := Range_Expression (Constraint (Rng));
3707 -- Preanalyze the bounds of the range constraint, setting
3708 -- parent fields to associate the copied bounds with the range,
3709 -- allowing proper tree climbing during preanalysis.
3711 Low := New_Copy_Tree (Low_Bound (Rng));
3712 High := New_Copy_Tree (High_Bound (Rng));
3714 Set_Parent (Low, Rng);
3715 Set_Parent (High, Rng);
3717 Preanalyze (Low);
3718 Preanalyze (High);
3720 -- The bounds contain at least one function call that returns
3721 -- on the secondary stack. Note that the loop must be wrapped
3722 -- only when such a call exists.
3724 if Has_Sec_Stack_Call (Low) or else Has_Sec_Stack_Call (High)
3725 then
3726 Wrap_Loop_Statement (Manage_Sec_Stack => True);
3727 Stop_Processing := True;
3728 end if;
3730 -- Otherwise the parameter specification appears in the form
3732 -- for Def_Id in Range loop
3734 else
3735 -- Prepare a copy of the discrete range for preanalysis. The
3736 -- copy is semi inserted into the tree by setting its Parent
3737 -- pointer.
3739 Rng_Copy := New_Copy_Tree (Rng);
3740 Set_Parent (Rng_Copy, Parent (Rng));
3742 -- Determine what the loop is iterating on
3744 Preanalyze_Range (Rng_Copy);
3745 Rng_Typ := Etype (Rng_Copy);
3747 -- Wrap the loop statement within a block in order to manage
3748 -- the secondary stack when the discrete range is
3750 -- * Either a Forward_Iterator or a Reverse_Iterator
3752 -- * Function call whose return type requires finalization
3753 -- actions.
3755 -- ??? it is unclear why using Has_Sec_Stack_Call directly on
3756 -- the discrete range causes the freeze node of an itype to be
3757 -- in the wrong scope in complex assertion expressions.
3759 if Is_Iterator (Rng_Typ)
3760 or else (Nkind (Rng_Copy) = N_Function_Call
3761 and then Needs_Finalization (Rng_Typ))
3762 then
3763 Wrap_Loop_Statement (Manage_Sec_Stack => True);
3764 Stop_Processing := True;
3765 end if;
3766 end if;
3767 end Prepare_Param_Spec_Loop;
3769 -------------------------
3770 -- Wrap_Loop_Statement --
3771 -------------------------
3773 procedure Wrap_Loop_Statement (Manage_Sec_Stack : Boolean) is
3774 Loc : constant Source_Ptr := Sloc (N);
3776 Blk : Node_Id;
3777 Blk_Id : Entity_Id;
3779 begin
3780 Blk :=
3781 Make_Block_Statement (Loc,
3782 Declarations => New_List,
3783 Handled_Statement_Sequence =>
3784 Make_Handled_Sequence_Of_Statements (Loc,
3785 Statements => New_List (Relocate_Node (N))));
3787 Add_Block_Identifier (Blk, Blk_Id);
3788 Set_Uses_Sec_Stack (Blk_Id, Manage_Sec_Stack);
3790 Rewrite (N, Blk);
3791 Analyze (N);
3792 end Wrap_Loop_Statement;
3794 -- Local variables
3796 Iter_Spec : constant Node_Id := Iterator_Specification (Iter);
3797 Param_Spec : constant Node_Id := Loop_Parameter_Specification (Iter);
3799 -- Start of processing for Prepare_Loop_Statement
3801 begin
3802 Stop_Processing := False;
3804 if Present (Iter_Spec) then
3805 Prepare_Iterator_Loop (Iter_Spec, Stop_Processing);
3807 elsif Present (Param_Spec) then
3808 Prepare_Param_Spec_Loop (Param_Spec, Stop_Processing);
3809 end if;
3810 end Prepare_Loop_Statement;
3812 -- Local declarations
3814 Id : constant Node_Id := Identifier (N);
3815 Iter : constant Node_Id := Iteration_Scheme (N);
3816 Loc : constant Source_Ptr := Sloc (N);
3817 Ent : Entity_Id;
3818 Stmt : Node_Id;
3820 -- Start of processing for Analyze_Loop_Statement
3822 begin
3823 if Present (Id) then
3825 -- Make name visible, e.g. for use in exit statements. Loop labels
3826 -- are always considered to be referenced.
3828 Analyze (Id);
3829 Ent := Entity (Id);
3831 -- Guard against serious error (typically, a scope mismatch when
3832 -- semantic analysis is requested) by creating loop entity to
3833 -- continue analysis.
3835 if No (Ent) then
3836 if Total_Errors_Detected /= 0 then
3837 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
3838 else
3839 raise Program_Error;
3840 end if;
3842 -- Verify that the loop name is hot hidden by an unrelated
3843 -- declaration in an inner scope.
3845 elsif Ekind (Ent) /= E_Label and then Ekind (Ent) /= E_Loop then
3846 Error_Msg_Sloc := Sloc (Ent);
3847 Error_Msg_N ("implicit label declaration for & is hidden#", Id);
3849 if Present (Homonym (Ent))
3850 and then Ekind (Homonym (Ent)) = E_Label
3851 then
3852 Set_Entity (Id, Ent);
3853 Mutate_Ekind (Ent, E_Loop);
3854 end if;
3856 else
3857 Generate_Reference (Ent, N, ' ');
3858 Generate_Definition (Ent);
3860 -- If we found a label, mark its type. If not, ignore it, since it
3861 -- means we have a conflicting declaration, which would already
3862 -- have been diagnosed at declaration time. Set Label_Construct
3863 -- of the implicit label declaration, which is not created by the
3864 -- parser for generic units.
3866 if Ekind (Ent) = E_Label then
3867 Reinit_Field_To_Zero (Ent, F_Enclosing_Scope);
3868 Reinit_Field_To_Zero (Ent, F_Reachable);
3869 Mutate_Ekind (Ent, E_Loop);
3871 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
3872 Set_Label_Construct (Parent (Ent), N);
3873 end if;
3874 end if;
3875 end if;
3877 -- Case of no identifier present. Create one and attach it to the
3878 -- loop statement for use as a scope and as a reference for later
3879 -- expansions. Indicate that the label does not come from source,
3880 -- and attach it to the loop statement so it is part of the tree,
3881 -- even without a full declaration.
3883 else
3884 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
3885 Set_Etype (Ent, Standard_Void_Type);
3886 Set_Identifier (N, New_Occurrence_Of (Ent, Loc));
3887 Set_Parent (Ent, N);
3888 Set_Has_Created_Identifier (N);
3889 end if;
3891 -- Determine whether the loop statement must be transformed prior to
3892 -- analysis, and if so, perform it. This early modification is needed
3893 -- when:
3895 -- * The loop has an erroneous iteration scheme. In this case the
3896 -- loop is converted into an infinite loop in order to perform
3897 -- minor analysis.
3899 -- * The loop is an Ada 2012 iterator loop. In this case the loop is
3900 -- wrapped within a block to provide a local scope for the iterator.
3901 -- If the iterator specification requires the secondary stack in any
3902 -- way, the block is marked in order to manage it.
3904 -- * The loop is using a parameter specification where the discrete
3905 -- range requires the secondary stack. In this case the loop is
3906 -- wrapped within a block in order to manage the secondary stack.
3908 -- ??? This overlooks finalization: the loop may leave the secondary
3909 -- stack untouched, but its iterator or discrete range may need
3910 -- finalization, in which case the block is also required. Therefore
3911 -- the criterion must be based on Sem_Util.Requires_Transient_Scope,
3912 -- which happens to be what is currently implemented.
3914 if Present (Iter) then
3915 declare
3916 Stop_Processing : Boolean;
3917 begin
3918 Prepare_Loop_Statement (Iter, Stop_Processing);
3920 if Stop_Processing then
3921 return;
3922 end if;
3923 end;
3924 end if;
3926 -- Kill current values on entry to loop, since statements in the body of
3927 -- the loop may have been executed before the loop is entered. Similarly
3928 -- we kill values after the loop, since we do not know that the body of
3929 -- the loop was executed.
3931 Kill_Current_Values;
3932 Push_Scope (Ent);
3933 Analyze_Iteration_Scheme (Iter);
3935 -- Check for following case which merits a warning if the type E of is
3936 -- a multi-dimensional array (and no explicit subscript ranges present).
3938 -- for J in E'Range
3939 -- for K in E'Range
3941 if Present (Iter)
3942 and then Present (Loop_Parameter_Specification (Iter))
3943 then
3944 declare
3945 LPS : constant Node_Id := Loop_Parameter_Specification (Iter);
3946 DSD : constant Node_Id :=
3947 Original_Node (Discrete_Subtype_Definition (LPS));
3948 begin
3949 if Nkind (DSD) = N_Attribute_Reference
3950 and then Attribute_Name (DSD) = Name_Range
3951 and then No (Expressions (DSD))
3952 then
3953 declare
3954 Typ : constant Entity_Id := Etype (Prefix (DSD));
3955 begin
3956 if Is_Array_Type (Typ)
3957 and then Number_Dimensions (Typ) > 1
3958 and then Nkind (Parent (N)) = N_Loop_Statement
3959 and then Present (Iteration_Scheme (Parent (N)))
3960 then
3961 declare
3962 OIter : constant Node_Id :=
3963 Iteration_Scheme (Parent (N));
3964 OLPS : constant Node_Id :=
3965 Loop_Parameter_Specification (OIter);
3966 ODSD : constant Node_Id :=
3967 Original_Node (Discrete_Subtype_Definition (OLPS));
3968 begin
3969 if Nkind (ODSD) = N_Attribute_Reference
3970 and then Attribute_Name (ODSD) = Name_Range
3971 and then No (Expressions (ODSD))
3972 and then Etype (Prefix (ODSD)) = Typ
3973 then
3974 Error_Msg_Sloc := Sloc (ODSD);
3975 Error_Msg_N
3976 ("inner range same as outer range#??", DSD);
3977 end if;
3978 end;
3979 end if;
3980 end;
3981 end if;
3982 end;
3983 end if;
3985 -- Analyze the statements of the body except in the case of an Ada 2012
3986 -- iterator with the expander active. In this case the expander will do
3987 -- a rewrite of the loop into a while loop. We will then analyze the
3988 -- loop body when we analyze this while loop.
3990 -- We need to do this delay because if the container is for indefinite
3991 -- types the actual subtype of the components will only be determined
3992 -- when the cursor declaration is analyzed.
3994 -- If the expander is not active then we want to analyze the loop body
3995 -- now even in the Ada 2012 iterator case, since the rewriting will not
3996 -- be done. Insert the loop variable in the current scope, if not done
3997 -- when analysing the iteration scheme. Set its kind properly to detect
3998 -- improper uses in the loop body.
4000 -- In GNATprove mode, we do one of the above depending on the kind of
4001 -- loop. If it is an iterator over an array, then we do not analyze the
4002 -- loop now. We will analyze it after it has been rewritten by the
4003 -- special SPARK expansion which is activated in GNATprove mode. We need
4004 -- to do this so that other expansions that should occur in GNATprove
4005 -- mode take into account the specificities of the rewritten loop, in
4006 -- particular the introduction of a renaming (which needs to be
4007 -- expanded).
4009 -- In other cases in GNATprove mode then we want to analyze the loop
4010 -- body now, since no rewriting will occur. Within a generic the
4011 -- GNATprove mode is irrelevant, we must analyze the generic for
4012 -- non-local name capture.
4014 if Present (Iter)
4015 and then Present (Iterator_Specification (Iter))
4016 then
4017 if GNATprove_Mode
4018 and then Is_Iterator_Over_Array (Iterator_Specification (Iter))
4019 and then not Inside_A_Generic
4020 then
4021 null;
4023 elsif not Expander_Active then
4024 declare
4025 I_Spec : constant Node_Id := Iterator_Specification (Iter);
4026 Id : constant Entity_Id := Defining_Identifier (I_Spec);
4028 begin
4029 if Scope (Id) /= Current_Scope then
4030 Enter_Name (Id);
4031 end if;
4033 -- In an element iterator, the loop parameter is a variable if
4034 -- the domain of iteration (container or array) is a variable.
4036 if not Of_Present (I_Spec)
4037 or else not Is_Variable (Name (I_Spec))
4038 then
4039 Mutate_Ekind (Id, E_Loop_Parameter);
4040 end if;
4041 end;
4043 Analyze_Statements (Statements (N));
4044 end if;
4046 else
4047 -- Pre-Ada2012 for-loops and while loops
4049 Analyze_Statements (Statements (N));
4050 end if;
4052 -- If the loop has no side effects, mark it for removal.
4054 if Side_Effect_Free_Loop (N) then
4055 Set_Is_Null_Loop (N);
4056 end if;
4058 -- When the iteration scheme of a loop contains attribute 'Loop_Entry,
4059 -- the loop is transformed into a conditional block. Retrieve the loop.
4061 Stmt := N;
4063 if Subject_To_Loop_Entry_Attributes (Stmt) then
4064 Stmt := Find_Loop_In_Conditional_Block (Stmt);
4065 end if;
4067 -- Finish up processing for the loop. We kill all current values, since
4068 -- in general we don't know if the statements in the loop have been
4069 -- executed. We could do a bit better than this with a loop that we
4070 -- know will execute at least once, but it's not worth the trouble and
4071 -- the front end is not in the business of flow tracing.
4073 Process_End_Label (Stmt, 'e', Ent);
4074 End_Scope;
4075 Kill_Current_Values;
4077 -- Check for infinite loop. Skip check for generated code, since it
4078 -- justs waste time and makes debugging the routine called harder.
4080 -- Note that we have to wait till the body of the loop is fully analyzed
4081 -- before making this call, since Check_Infinite_Loop_Warning relies on
4082 -- being able to use semantic visibility information to find references.
4084 if Comes_From_Source (Stmt) then
4085 Check_Infinite_Loop_Warning (Stmt);
4086 end if;
4088 -- Code after loop is unreachable if the loop has no WHILE or FOR and
4089 -- contains no EXIT statements within the body of the loop.
4091 if No (Iter) and then not Has_Exit (Ent) then
4092 Check_Unreachable_Code (Stmt);
4093 end if;
4094 end Analyze_Loop_Statement;
4096 ----------------------------
4097 -- Analyze_Null_Statement --
4098 ----------------------------
4100 -- Note: the semantics of the null statement is implemented by a single
4101 -- null statement, too bad everything isn't as simple as this.
4103 procedure Analyze_Null_Statement (N : Node_Id) is
4104 pragma Warnings (Off, N);
4105 begin
4106 null;
4107 end Analyze_Null_Statement;
4109 -------------------------
4110 -- Analyze_Target_Name --
4111 -------------------------
4113 procedure Analyze_Target_Name (N : Node_Id) is
4114 procedure Report_Error;
4115 -- Complain about illegal use of target_name and rewrite it into unknown
4116 -- identifier.
4118 ------------------
4119 -- Report_Error --
4120 ------------------
4122 procedure Report_Error is
4123 begin
4124 Error_Msg_N
4125 ("must appear in the right-hand side of an assignment statement",
4127 Rewrite (N, New_Occurrence_Of (Any_Id, Sloc (N)));
4128 end Report_Error;
4130 -- Start of processing for Analyze_Target_Name
4132 begin
4133 -- A target name has the type of the left-hand side of the enclosing
4134 -- assignment.
4136 -- First, verify that the context is the right-hand side of an
4137 -- assignment statement.
4139 if No (Current_Assignment) then
4140 Report_Error;
4141 return;
4142 end if;
4144 declare
4145 Current : Node_Id := N;
4146 Context : Node_Id := Parent (N);
4147 begin
4148 while Present (Context) loop
4150 -- Check if target_name appears in the expression of the enclosing
4151 -- assignment.
4153 if Nkind (Context) = N_Assignment_Statement then
4154 if Current = Expression (Context) then
4155 pragma Assert (Context = Current_Assignment);
4156 Set_Etype (N, Etype (Name (Current_Assignment)));
4157 else
4158 Report_Error;
4159 end if;
4160 return;
4162 -- Prevent the search from going too far
4164 elsif Is_Body_Or_Package_Declaration (Context) then
4165 Report_Error;
4166 return;
4167 end if;
4169 Current := Context;
4170 Context := Parent (Context);
4171 end loop;
4173 Report_Error;
4174 end;
4175 end Analyze_Target_Name;
4177 ------------------------
4178 -- Analyze_Statements --
4179 ------------------------
4181 procedure Analyze_Statements (L : List_Id) is
4182 Lab : Entity_Id;
4183 S : Node_Id;
4185 begin
4186 -- The labels declared in the statement list are reachable from
4187 -- statements in the list. We do this as a prepass so that any goto
4188 -- statement will be properly flagged if its target is not reachable.
4189 -- This is not required, but is nice behavior.
4191 S := First (L);
4192 while Present (S) loop
4193 if Nkind (S) = N_Label then
4194 Analyze (Identifier (S));
4195 Lab := Entity (Identifier (S));
4197 -- If we found a label mark it as reachable
4199 if Ekind (Lab) = E_Label then
4200 Generate_Definition (Lab);
4201 Set_Reachable (Lab);
4203 if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then
4204 Set_Label_Construct (Parent (Lab), S);
4205 end if;
4207 -- If we failed to find a label, it means the implicit declaration
4208 -- of the label was hidden. A for-loop parameter can do this to
4209 -- a label with the same name inside the loop, since the implicit
4210 -- label declaration is in the innermost enclosing body or block
4211 -- statement.
4213 else
4214 Error_Msg_Sloc := Sloc (Lab);
4215 Error_Msg_N
4216 ("implicit label declaration for & is hidden#",
4217 Identifier (S));
4218 end if;
4219 end if;
4221 Next (S);
4222 end loop;
4224 -- Perform semantic analysis on all statements
4226 Conditional_Statements_Begin;
4228 S := First (L);
4229 while Present (S) loop
4230 Analyze (S);
4232 -- Remove dimension in all statements
4234 Remove_Dimension_In_Statement (S);
4235 Next (S);
4236 end loop;
4238 Conditional_Statements_End;
4240 -- Make labels unreachable. Visibility is not sufficient, because labels
4241 -- in one if-branch for example are not reachable from the other branch,
4242 -- even though their declarations are in the enclosing declarative part.
4244 S := First (L);
4245 while Present (S) loop
4246 if Nkind (S) = N_Label
4247 and then Ekind (Entity (Identifier (S))) = E_Label
4248 then
4249 Set_Reachable (Entity (Identifier (S)), False);
4250 end if;
4252 Next (S);
4253 end loop;
4254 end Analyze_Statements;
4256 ----------------------------
4257 -- Check_Unreachable_Code --
4258 ----------------------------
4260 procedure Check_Unreachable_Code (N : Node_Id) is
4262 function Is_Simple_Case (N : Node_Id) return Boolean;
4263 -- N is the condition of an if statement. True if N is simple enough
4264 -- that we should not set Unblocked_Exit_Count in the special case
4265 -- below.
4267 --------------------
4268 -- Is_Simple_Case --
4269 --------------------
4271 function Is_Simple_Case (N : Node_Id) return Boolean is
4272 begin
4273 return
4274 Is_Trivial_Boolean (N)
4275 or else
4276 (Comes_From_Source (N)
4277 and then Is_Static_Expression (N)
4278 and then Nkind (N) in N_Identifier | N_Expanded_Name
4279 and then Ekind (Entity (N)) = E_Constant)
4280 or else
4281 (not In_Instance
4282 and then Nkind (Original_Node (N)) = N_Op_Not
4283 and then Is_Simple_Case (Right_Opnd (Original_Node (N))));
4284 end Is_Simple_Case;
4286 Error_Node : Node_Id;
4287 Nxt : Node_Id;
4288 P : Node_Id;
4290 begin
4291 if Comes_From_Source (N) then
4292 Nxt := Original_Node (Next (N));
4294 -- Skip past pragmas
4296 while Nkind (Nxt) = N_Pragma loop
4297 Nxt := Original_Node (Next (Nxt));
4298 end loop;
4300 -- If a label follows us, then we never have dead code, since someone
4301 -- could branch to the label, so we just ignore it.
4303 if Nkind (Nxt) = N_Label then
4304 return;
4306 -- Otherwise see if we have a real statement following us
4308 elsif Comes_From_Source (Nxt)
4309 and then Is_Statement (Nxt)
4310 then
4311 -- Special very annoying exception. Ada RM 6.5(5) annoyingly
4312 -- requires functions to have at least one return statement, so
4313 -- don't complain about a simple return that follows a raise or a
4314 -- call to procedure with No_Return.
4316 if not (Present (Current_Subprogram)
4317 and then Ekind (Current_Subprogram) = E_Function
4318 and then (Nkind (N) in N_Raise_Statement
4319 or else
4320 (Nkind (N) = N_Procedure_Call_Statement
4321 and then Is_Entity_Name (Name (N))
4322 and then Present (Entity (Name (N)))
4323 and then No_Return (Entity (Name (N)))))
4324 and then Nkind (Nxt) = N_Simple_Return_Statement)
4325 then
4326 -- The rather strange shenanigans with the warning message
4327 -- here reflects the fact that Kill_Dead_Code is very good at
4328 -- removing warnings in deleted code, and this is one warning
4329 -- we would prefer NOT to have removed.
4331 Error_Node := Nxt;
4333 -- If we have unreachable code, analyze and remove the
4334 -- unreachable code, since it is useless and we don't want
4335 -- to generate junk warnings.
4337 -- We skip this step if we are not in code generation mode.
4339 -- This is the one case where we remove dead code in the
4340 -- semantics as opposed to the expander, and we do not want
4341 -- to remove code if we are not in code generation mode, since
4342 -- this messes up the tree or loses useful information for
4343 -- analysis tools such as CodePeer.
4345 -- Note that one might react by moving the whole circuit to
4346 -- exp_ch5, but then we lose the warning in -gnatc mode.
4348 if Operating_Mode = Generate_Code then
4349 loop
4350 declare
4351 Del : constant Node_Id := Next (N);
4352 -- Node to be possibly deleted
4353 begin
4354 -- Quit deleting when we have nothing more to delete
4355 -- or if we hit a label (since someone could transfer
4356 -- control to a label, so we should not delete it).
4358 exit when No (Del) or else Nkind (Del) = N_Label;
4360 -- Statement/declaration is to be deleted
4362 Analyze (Del);
4363 Kill_Dead_Code (Del);
4364 Remove (Del);
4365 end;
4366 end loop;
4368 -- If this is a function, we add "raise Program_Error;",
4369 -- because otherwise, we will get incorrect warnings about
4370 -- falling off the end of the function.
4372 declare
4373 Subp : constant Entity_Id := Current_Subprogram;
4374 begin
4375 if Present (Subp) and then Ekind (Subp) = E_Function then
4376 Insert_After_And_Analyze (N,
4377 Make_Raise_Program_Error (Sloc (Error_Node),
4378 Reason => PE_Missing_Return));
4379 end if;
4380 end;
4382 end if;
4384 -- Suppress the warning in instances, because a statement can
4385 -- be unreachable in some instances but not others.
4387 if not In_Instance then
4388 Error_Msg_N ("??unreachable code!", Error_Node);
4389 end if;
4390 end if;
4392 -- If the unconditional transfer of control instruction is the
4393 -- last statement of a sequence, then see if our parent is one of
4394 -- the constructs for which we count unblocked exits, and if so,
4395 -- adjust the count.
4397 else
4398 P := Parent (N);
4400 -- Statements in THEN part or ELSE part of IF statement
4402 if Nkind (P) = N_If_Statement then
4403 null;
4405 -- Statements in ELSIF part of an IF statement
4407 elsif Nkind (P) = N_Elsif_Part then
4408 P := Parent (P);
4409 pragma Assert (Nkind (P) = N_If_Statement);
4411 -- Statements in CASE statement alternative
4413 elsif Nkind (P) = N_Case_Statement_Alternative then
4414 P := Parent (P);
4415 pragma Assert (Nkind (P) = N_Case_Statement);
4417 -- Statements in body of block
4419 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
4420 and then Nkind (Parent (P)) = N_Block_Statement
4421 then
4422 -- The original loop is now placed inside a block statement
4423 -- due to the expansion of attribute 'Loop_Entry. Return as
4424 -- this is not a "real" block for the purposes of exit
4425 -- counting.
4427 if Nkind (N) = N_Loop_Statement
4428 and then Subject_To_Loop_Entry_Attributes (N)
4429 then
4430 return;
4431 end if;
4433 -- Statements in exception handler in a block
4435 elsif Nkind (P) = N_Exception_Handler
4436 and then Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements
4437 and then Nkind (Parent (Parent (P))) = N_Block_Statement
4438 then
4439 null;
4441 -- None of these cases, so return
4443 else
4444 return;
4445 end if;
4447 -- This was one of the cases we are looking for (i.e. the parent
4448 -- construct was IF, CASE or block). In most cases, we simply
4449 -- decrement the count. However, if the parent is something like:
4451 -- if cond then
4452 -- raise ...; -- or some other jump
4453 -- end if;
4455 -- where cond is an expression that is known-true at compile time,
4456 -- we can treat that as just the jump -- i.e. anything following
4457 -- the if statement is unreachable. We don't do this for simple
4458 -- cases like "if True" or "if Debug_Flag", because that causes
4459 -- too many warnings.
4461 if Nkind (P) = N_If_Statement
4462 and then Present (Then_Statements (P))
4463 and then No (Elsif_Parts (P))
4464 and then No (Else_Statements (P))
4465 and then Is_OK_Static_Expression (Condition (P))
4466 and then Is_True (Expr_Value (Condition (P)))
4467 and then not Is_Simple_Case (Condition (P))
4468 then
4469 pragma Assert (Unblocked_Exit_Count = 2);
4470 Unblocked_Exit_Count := 0;
4471 else
4472 Unblocked_Exit_Count := Unblocked_Exit_Count - 1;
4473 end if;
4474 end if;
4475 end if;
4476 end Check_Unreachable_Code;
4478 ------------------------
4479 -- Has_Sec_Stack_Call --
4480 ------------------------
4482 function Has_Sec_Stack_Call (N : Node_Id) return Boolean is
4483 function Check_Call (N : Node_Id) return Traverse_Result;
4484 -- Check if N is a function call which uses the secondary stack
4486 ----------------
4487 -- Check_Call --
4488 ----------------
4490 function Check_Call (N : Node_Id) return Traverse_Result is
4491 Nam : Node_Id;
4492 Subp : Entity_Id;
4493 Typ : Entity_Id;
4495 begin
4496 if Nkind (N) = N_Function_Call then
4497 Nam := Name (N);
4499 -- Obtain the subprogram being invoked
4501 loop
4502 if Nkind (Nam) = N_Explicit_Dereference then
4503 Nam := Prefix (Nam);
4505 elsif Nkind (Nam) = N_Selected_Component then
4506 Nam := Selector_Name (Nam);
4508 else
4509 exit;
4510 end if;
4511 end loop;
4513 Subp := Entity (Nam);
4515 if Present (Subp) then
4516 Typ := Etype (Subp);
4518 if Requires_Transient_Scope (Typ) then
4519 return Abandon;
4521 elsif Sec_Stack_Needed_For_Return (Subp) then
4522 return Abandon;
4523 end if;
4524 end if;
4525 end if;
4527 -- Continue traversing the tree
4529 return OK;
4530 end Check_Call;
4532 function Check_Calls is new Traverse_Func (Check_Call);
4534 -- Start of processing for Has_Sec_Stack_Call
4536 begin
4537 return Check_Calls (N) = Abandon;
4538 end Has_Sec_Stack_Call;
4540 ----------------------
4541 -- Preanalyze_Range --
4542 ----------------------
4544 procedure Preanalyze_Range (R_Copy : Node_Id) is
4545 Save_Analysis : constant Boolean := Full_Analysis;
4546 Typ : Entity_Id;
4548 begin
4549 Full_Analysis := False;
4550 Expander_Mode_Save_And_Set (False);
4552 -- In addition to the above we must explicitly suppress the generation
4553 -- of freeze nodes that might otherwise be generated during resolution
4554 -- of the range (e.g. if given by an attribute that will freeze its
4555 -- prefix).
4557 Set_Must_Not_Freeze (R_Copy);
4559 if Nkind (R_Copy) = N_Attribute_Reference then
4560 Set_Must_Not_Freeze (Prefix (R_Copy));
4561 end if;
4563 Analyze (R_Copy);
4565 if Nkind (R_Copy) in N_Subexpr and then Is_Overloaded (R_Copy) then
4567 -- Apply preference rules for range of predefined integer types, or
4568 -- check for array or iterable construct for "of" iterator, or
4569 -- diagnose true ambiguity.
4571 declare
4572 I : Interp_Index;
4573 It : Interp;
4574 Found : Entity_Id := Empty;
4576 begin
4577 Get_First_Interp (R_Copy, I, It);
4578 while Present (It.Typ) loop
4579 if Is_Discrete_Type (It.Typ) then
4580 if No (Found) then
4581 Found := It.Typ;
4582 else
4583 if Scope (Found) = Standard_Standard then
4584 null;
4586 elsif Scope (It.Typ) = Standard_Standard then
4587 Found := It.Typ;
4589 else
4590 -- Both of them are user-defined
4592 Error_Msg_N
4593 ("ambiguous bounds in range of iteration", R_Copy);
4594 Error_Msg_N ("\possible interpretations:", R_Copy);
4595 Error_Msg_NE ("\\}", R_Copy, Found);
4596 Error_Msg_NE ("\\}", R_Copy, It.Typ);
4597 exit;
4598 end if;
4599 end if;
4601 elsif Nkind (Parent (R_Copy)) = N_Iterator_Specification
4602 and then Of_Present (Parent (R_Copy))
4603 then
4604 if Is_Array_Type (It.Typ)
4605 or else Has_Aspect (It.Typ, Aspect_Iterator_Element)
4606 or else Has_Aspect (It.Typ, Aspect_Constant_Indexing)
4607 or else Has_Aspect (It.Typ, Aspect_Variable_Indexing)
4608 then
4609 if No (Found) then
4610 Found := It.Typ;
4611 Set_Etype (R_Copy, It.Typ);
4613 else
4614 Error_Msg_N ("ambiguous domain of iteration", R_Copy);
4615 end if;
4616 end if;
4617 end if;
4619 Get_Next_Interp (I, It);
4620 end loop;
4621 end;
4622 end if;
4624 -- Subtype mark in iteration scheme
4626 if Is_Entity_Name (R_Copy) and then Is_Type (Entity (R_Copy)) then
4627 null;
4629 -- Expression in range, or Ada 2012 iterator
4631 elsif Nkind (R_Copy) in N_Subexpr then
4632 Resolve (R_Copy);
4633 Typ := Etype (R_Copy);
4635 if Is_Discrete_Type (Typ) then
4636 null;
4638 -- Check that the resulting object is an iterable container
4640 elsif Has_Aspect (Typ, Aspect_Iterator_Element)
4641 or else Has_Aspect (Typ, Aspect_Constant_Indexing)
4642 or else Has_Aspect (Typ, Aspect_Variable_Indexing)
4643 then
4644 null;
4646 -- The expression may yield an implicit reference to an iterable
4647 -- container. Insert explicit dereference so that proper type is
4648 -- visible in the loop.
4650 elsif Has_Implicit_Dereference (Etype (R_Copy)) then
4651 Build_Explicit_Dereference
4652 (R_Copy, Get_Reference_Discriminant (Etype (R_Copy)));
4653 end if;
4654 end if;
4656 Expander_Mode_Restore;
4657 Full_Analysis := Save_Analysis;
4658 end Preanalyze_Range;
4660 end Sem_Ch5;