PR c/20043
[official-gcc.git] / gcc / ddg.c
bloba54a87c074448f707d4bbff262e7502d0f4b479a
1 /* DDG - Data Dependence Graph implementation.
2 Copyright (C) 2004
3 Free Software Foundation, Inc.
4 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "hard-reg-set.h"
32 #include "regs.h"
33 #include "function.h"
34 #include "flags.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 #include "except.h"
38 #include "recog.h"
39 #include "sched-int.h"
40 #include "target.h"
41 #include "cfglayout.h"
42 #include "cfgloop.h"
43 #include "sbitmap.h"
44 #include "expr.h"
45 #include "bitmap.h"
46 #include "df.h"
47 #include "ddg.h"
49 /* A flag indicating that a ddg edge belongs to an SCC or not. */
50 enum edge_flag {NOT_IN_SCC = 0, IN_SCC};
52 /* Forward declarations. */
53 static void add_backarc_to_ddg (ddg_ptr, ddg_edge_ptr);
54 static void add_backarc_to_scc (ddg_scc_ptr, ddg_edge_ptr);
55 static void add_scc_to_ddg (ddg_all_sccs_ptr, ddg_scc_ptr);
56 static void create_ddg_dependence (ddg_ptr, ddg_node_ptr, ddg_node_ptr, rtx);
57 static void create_ddg_dep_no_link (ddg_ptr, ddg_node_ptr, ddg_node_ptr,
58 dep_type, dep_data_type, int);
59 static ddg_edge_ptr create_ddg_edge (ddg_node_ptr, ddg_node_ptr, dep_type,
60 dep_data_type, int, int);
61 static void add_edge_to_ddg (ddg_ptr g, ddg_edge_ptr);
63 /* Auxiliary variable for mem_read_insn_p/mem_write_insn_p. */
64 static bool mem_ref_p;
66 /* Auxiliary function for mem_read_insn_p. */
67 static int
68 mark_mem_use (rtx *x, void *data ATTRIBUTE_UNUSED)
70 if (MEM_P (*x))
71 mem_ref_p = true;
72 return 0;
75 /* Auxiliary function for mem_read_insn_p. */
76 static void
77 mark_mem_use_1 (rtx *x, void *data)
79 for_each_rtx (x, mark_mem_use, data);
82 /* Returns nonzero if INSN reads from memory. */
83 static bool
84 mem_read_insn_p (rtx insn)
86 mem_ref_p = false;
87 note_uses (&PATTERN (insn), mark_mem_use_1, NULL);
88 return mem_ref_p;
91 static void
92 mark_mem_store (rtx loc, rtx setter ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
94 if (MEM_P (loc))
95 mem_ref_p = true;
98 /* Returns nonzero if INSN writes to memory. */
99 static bool
100 mem_write_insn_p (rtx insn)
102 mem_ref_p = false;
103 note_stores (PATTERN (insn), mark_mem_store, NULL);
104 return mem_ref_p;
107 /* Returns nonzero if X has access to memory. */
108 static bool
109 rtx_mem_access_p (rtx x)
111 int i, j;
112 const char *fmt;
113 enum rtx_code code;
115 if (x == 0)
116 return false;
118 if (MEM_P (x))
119 return true;
121 code = GET_CODE (x);
122 fmt = GET_RTX_FORMAT (code);
123 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
125 if (fmt[i] == 'e')
127 if (rtx_mem_access_p (XEXP (x, i)))
128 return true;
130 else if (fmt[i] == 'E')
131 for (j = 0; j < XVECLEN (x, i); j++)
133 if (rtx_mem_access_p (XVECEXP (x, i, j)))
134 return true;
137 return false;
140 /* Returns nonzero if INSN reads to or writes from memory. */
141 static bool
142 mem_access_insn_p (rtx insn)
144 return rtx_mem_access_p (PATTERN (insn));
147 /* Computes the dependence parameters (latency, distance etc.), creates
148 a ddg_edge and adds it to the given DDG. */
149 static void
150 create_ddg_dependence (ddg_ptr g, ddg_node_ptr src_node,
151 ddg_node_ptr dest_node, rtx link)
153 ddg_edge_ptr e;
154 int latency, distance = 0;
155 int interloop = (src_node->cuid >= dest_node->cuid);
156 dep_type t = TRUE_DEP;
157 dep_data_type dt = (mem_access_insn_p (src_node->insn)
158 && mem_access_insn_p (dest_node->insn) ? MEM_DEP
159 : REG_DEP);
161 /* For now we don't have an exact calculation of the distance,
162 so assume 1 conservatively. */
163 if (interloop)
164 distance = 1;
166 gcc_assert (link);
168 /* Note: REG_DEP_ANTI applies to MEM ANTI_DEP as well!! */
169 if (REG_NOTE_KIND (link) == REG_DEP_ANTI)
170 t = ANTI_DEP;
171 else if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT)
172 t = OUTPUT_DEP;
173 latency = insn_cost (src_node->insn, link, dest_node->insn);
175 e = create_ddg_edge (src_node, dest_node, t, dt, latency, distance);
177 if (interloop)
179 /* Some interloop dependencies are relaxed:
180 1. Every insn is output dependent on itself; ignore such deps.
181 2. Every true/flow dependence is an anti dependence in the
182 opposite direction with distance 1; such register deps
183 will be removed by renaming if broken --- ignore them. */
184 if (!(t == OUTPUT_DEP && src_node == dest_node)
185 && !(t == ANTI_DEP && dt == REG_DEP))
186 add_backarc_to_ddg (g, e);
187 else
188 free (e);
190 else
191 add_edge_to_ddg (g, e);
194 /* The same as the above function, but it doesn't require a link parameter. */
195 static void
196 create_ddg_dep_no_link (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to,
197 dep_type d_t, dep_data_type d_dt, int distance)
199 ddg_edge_ptr e;
200 int l;
201 rtx link = alloc_INSN_LIST (to->insn, NULL_RTX);
203 if (d_t == ANTI_DEP)
204 PUT_REG_NOTE_KIND (link, REG_DEP_ANTI);
205 else if (d_t == OUTPUT_DEP)
206 PUT_REG_NOTE_KIND (link, REG_DEP_OUTPUT);
208 l = insn_cost (from->insn, link, to->insn);
209 free_INSN_LIST_node (link);
211 e = create_ddg_edge (from, to, d_t, d_dt, l, distance);
212 if (distance > 0)
213 add_backarc_to_ddg (g, e);
214 else
215 add_edge_to_ddg (g, e);
219 /* Given a downwards exposed register def RD, add inter-loop true dependences
220 for all its uses in the next iteration, and an output dependence to the
221 first def of the next iteration. */
222 static void
223 add_deps_for_def (ddg_ptr g, struct df *df, struct ref *rd)
225 int regno = DF_REF_REGNO (rd);
226 struct bb_info *bb_info = DF_BB_INFO (df, g->bb);
227 struct df_link *r_use;
228 int use_before_def = false;
229 rtx def_insn = DF_REF_INSN (rd);
230 ddg_node_ptr src_node = get_node_of_insn (g, def_insn);
232 /* Create and inter-loop true dependence between RD and each of its uses
233 that is upwards exposed in RD's block. */
234 for (r_use = DF_REF_CHAIN (rd); r_use != NULL; r_use = r_use->next)
236 if (bitmap_bit_p (bb_info->ru_gen, r_use->ref->id))
238 rtx use_insn = DF_REF_INSN (r_use->ref);
239 ddg_node_ptr dest_node = get_node_of_insn (g, use_insn);
241 gcc_assert (src_node && dest_node);
243 /* Any such upwards exposed use appears before the rd def. */
244 use_before_def = true;
245 create_ddg_dep_no_link (g, src_node, dest_node, TRUE_DEP,
246 REG_DEP, 1);
250 /* Create an inter-loop output dependence between RD (which is the
251 last def in its block, being downwards exposed) and the first def
252 in its block. Avoid creating a self output dependence. Avoid creating
253 an output dependence if there is a dependence path between the two defs
254 starting with a true dependence followed by an anti dependence (i.e. if
255 there is a use between the two defs. */
256 if (! use_before_def)
258 struct ref *def = df_bb_regno_first_def_find (df, g->bb, regno);
259 int i;
260 ddg_node_ptr dest_node;
262 if (!def || rd->id == def->id)
263 return;
265 /* Check if there are uses after RD. */
266 for (i = src_node->cuid + 1; i < g->num_nodes; i++)
267 if (df_reg_used (df, g->nodes[i].insn, rd->reg))
268 return;
270 dest_node = get_node_of_insn (g, def->insn);
271 create_ddg_dep_no_link (g, src_node, dest_node, OUTPUT_DEP, REG_DEP, 1);
275 /* Given a register USE, add an inter-loop anti dependence to the first
276 (nearest BLOCK_BEGIN) def of the next iteration, unless USE is followed
277 by a def in the block. */
278 static void
279 add_deps_for_use (ddg_ptr g, struct df *df, struct ref *use)
281 int i;
282 int regno = DF_REF_REGNO (use);
283 struct ref *first_def = df_bb_regno_first_def_find (df, g->bb, regno);
284 ddg_node_ptr use_node;
285 ddg_node_ptr def_node;
286 struct bb_info *bb_info;
288 bb_info = DF_BB_INFO (df, g->bb);
290 if (!first_def)
291 return;
293 use_node = get_node_of_insn (g, use->insn);
294 def_node = get_node_of_insn (g, first_def->insn);
296 gcc_assert (use_node && def_node);
298 /* Make sure there are no defs after USE. */
299 for (i = use_node->cuid + 1; i < g->num_nodes; i++)
300 if (df_find_def (df, g->nodes[i].insn, use->reg))
301 return;
302 /* We must not add ANTI dep when there is an intra-loop TRUE dep in
303 the opozite direction. If the first_def reaches the USE then there is
304 such a dep. */
305 if (! bitmap_bit_p (bb_info->rd_gen, first_def->id))
306 create_ddg_dep_no_link (g, use_node, def_node, ANTI_DEP, REG_DEP, 1);
309 /* Build inter-loop dependencies, by looking at DF analysis backwards. */
310 static void
311 build_inter_loop_deps (ddg_ptr g, struct df *df)
313 unsigned rd_num, u_num;
314 struct bb_info *bb_info;
315 bitmap_iterator bi;
317 bb_info = DF_BB_INFO (df, g->bb);
319 /* Find inter-loop output and true deps by connecting downward exposed defs
320 to the first def of the BB and to upwards exposed uses. */
321 EXECUTE_IF_SET_IN_BITMAP (bb_info->rd_gen, 0, rd_num, bi)
323 struct ref *rd = df->defs[rd_num];
325 add_deps_for_def (g, df, rd);
328 /* Find inter-loop anti deps. We are interested in uses of the block that
329 appear below all defs; this implies that these uses are killed. */
330 EXECUTE_IF_SET_IN_BITMAP (bb_info->ru_kill, 0, u_num, bi)
332 struct ref *use = df->uses[u_num];
334 /* We are interested in uses of this BB. */
335 if (BLOCK_FOR_INSN (use->insn) == g->bb)
336 add_deps_for_use (g, df,use);
340 /* Given two nodes, analyze their RTL insns and add inter-loop mem deps
341 to ddg G. */
342 static void
343 add_inter_loop_mem_dep (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to)
345 if (mem_write_insn_p (from->insn))
347 if (mem_read_insn_p (to->insn))
348 create_ddg_dep_no_link (g, from, to, TRUE_DEP, MEM_DEP, 1);
349 else if (from->cuid != to->cuid)
350 create_ddg_dep_no_link (g, from, to, OUTPUT_DEP, MEM_DEP, 1);
352 else
354 if (mem_read_insn_p (to->insn))
355 return;
356 else if (from->cuid != to->cuid)
358 create_ddg_dep_no_link (g, from, to, ANTI_DEP, MEM_DEP, 1);
359 create_ddg_dep_no_link (g, to, from, TRUE_DEP, MEM_DEP, 1);
365 /* Perform intra-block Data Dependency analysis and connect the nodes in
366 the DDG. We assume the loop has a single basic block. */
367 static void
368 build_intra_loop_deps (ddg_ptr g)
370 int i;
371 /* Hold the dependency analysis state during dependency calculations. */
372 struct deps tmp_deps;
373 rtx head, tail, link;
375 /* Build the dependence information, using the sched_analyze function. */
376 init_deps_global ();
377 init_deps (&tmp_deps);
379 /* Do the intra-block data dependence analysis for the given block. */
380 get_block_head_tail (g->bb->index, &head, &tail);
381 sched_analyze (&tmp_deps, head, tail);
383 /* Build intra-loop data dependencies using the scheduler dependency
384 analysis. */
385 for (i = 0; i < g->num_nodes; i++)
387 ddg_node_ptr dest_node = &g->nodes[i];
389 if (! INSN_P (dest_node->insn))
390 continue;
392 for (link = LOG_LINKS (dest_node->insn); link; link = XEXP (link, 1))
394 ddg_node_ptr src_node = get_node_of_insn (g, XEXP (link, 0));
396 if (!src_node)
397 continue;
399 add_forward_dependence (XEXP (link, 0), dest_node->insn,
400 REG_NOTE_KIND (link));
401 create_ddg_dependence (g, src_node, dest_node,
402 INSN_DEPEND (src_node->insn));
405 /* If this insn modifies memory, add an edge to all insns that access
406 memory. */
407 if (mem_access_insn_p (dest_node->insn))
409 int j;
411 for (j = 0; j <= i; j++)
413 ddg_node_ptr j_node = &g->nodes[j];
414 if (mem_access_insn_p (j_node->insn))
415 /* Don't bother calculating inter-loop dep if an intra-loop dep
416 already exists. */
417 if (! TEST_BIT (dest_node->successors, j))
418 add_inter_loop_mem_dep (g, dest_node, j_node);
423 /* Free the INSN_LISTs. */
424 finish_deps_global ();
425 free_deps (&tmp_deps);
429 /* Given a basic block, create its DDG and return a pointer to a variable
430 of ddg type that represents it.
431 Initialize the ddg structure fields to the appropriate values. */
432 ddg_ptr
433 create_ddg (basic_block bb, struct df *df, int closing_branch_deps)
435 ddg_ptr g;
436 rtx insn, first_note;
437 int i;
438 int num_nodes = 0;
440 g = (ddg_ptr) xcalloc (1, sizeof (struct ddg));
442 g->bb = bb;
443 g->closing_branch_deps = closing_branch_deps;
445 /* Count the number of insns in the BB. */
446 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
447 insn = NEXT_INSN (insn))
449 if (! INSN_P (insn) || GET_CODE (PATTERN (insn)) == USE)
450 continue;
452 if (mem_read_insn_p (insn))
453 g->num_loads++;
454 if (mem_write_insn_p (insn))
455 g->num_stores++;
456 num_nodes++;
459 /* There is nothing to do for this BB. */
460 if (num_nodes <= 1)
462 free (g);
463 return NULL;
466 /* Allocate the nodes array, and initialize the nodes. */
467 g->num_nodes = num_nodes;
468 g->nodes = (ddg_node_ptr) xcalloc (num_nodes, sizeof (struct ddg_node));
469 g->closing_branch = NULL;
470 i = 0;
471 first_note = NULL_RTX;
472 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
473 insn = NEXT_INSN (insn))
475 if (! INSN_P (insn))
477 if (! first_note && NOTE_P (insn)
478 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK)
479 first_note = insn;
480 continue;
482 if (JUMP_P (insn))
484 gcc_assert (!g->closing_branch);
485 g->closing_branch = &g->nodes[i];
487 else if (GET_CODE (PATTERN (insn)) == USE)
489 if (! first_note)
490 first_note = insn;
491 continue;
494 g->nodes[i].cuid = i;
495 g->nodes[i].successors = sbitmap_alloc (num_nodes);
496 sbitmap_zero (g->nodes[i].successors);
497 g->nodes[i].predecessors = sbitmap_alloc (num_nodes);
498 sbitmap_zero (g->nodes[i].predecessors);
499 g->nodes[i].first_note = (first_note ? first_note : insn);
500 g->nodes[i++].insn = insn;
501 first_note = NULL_RTX;
504 /* We must have found a branch in DDG. */
505 gcc_assert (g->closing_branch);
508 /* Build the data dependency graph. */
509 build_intra_loop_deps (g);
510 build_inter_loop_deps (g, df);
511 return g;
514 /* Free all the memory allocated for the DDG. */
515 void
516 free_ddg (ddg_ptr g)
518 int i;
520 if (!g)
521 return;
523 for (i = 0; i < g->num_nodes; i++)
525 ddg_edge_ptr e = g->nodes[i].out;
527 while (e)
529 ddg_edge_ptr next = e->next_out;
531 free (e);
532 e = next;
534 sbitmap_free (g->nodes[i].successors);
535 sbitmap_free (g->nodes[i].predecessors);
537 if (g->num_backarcs > 0)
538 free (g->backarcs);
539 free (g->nodes);
540 free (g);
543 void
544 print_ddg_edge (FILE *dump_file, ddg_edge_ptr e)
546 char dep_c;
548 switch (e->type) {
549 case OUTPUT_DEP :
550 dep_c = 'O';
551 break;
552 case ANTI_DEP :
553 dep_c = 'A';
554 break;
555 default:
556 dep_c = 'T';
559 fprintf (dump_file, " [%d -(%c,%d,%d)-> %d] ", INSN_UID (e->src->insn),
560 dep_c, e->latency, e->distance, INSN_UID (e->dest->insn));
563 /* Print the DDG nodes with there in/out edges to the dump file. */
564 void
565 print_ddg (FILE *dump_file, ddg_ptr g)
567 int i;
569 for (i = 0; i < g->num_nodes; i++)
571 ddg_edge_ptr e;
573 print_rtl_single (dump_file, g->nodes[i].insn);
574 fprintf (dump_file, "OUT ARCS: ");
575 for (e = g->nodes[i].out; e; e = e->next_out)
576 print_ddg_edge (dump_file, e);
578 fprintf (dump_file, "\nIN ARCS: ");
579 for (e = g->nodes[i].in; e; e = e->next_in)
580 print_ddg_edge (dump_file, e);
582 fprintf (dump_file, "\n");
586 /* Print the given DDG in VCG format. */
587 void
588 vcg_print_ddg (FILE *dump_file, ddg_ptr g)
590 int src_cuid;
592 fprintf (dump_file, "graph: {\n");
593 for (src_cuid = 0; src_cuid < g->num_nodes; src_cuid++)
595 ddg_edge_ptr e;
596 int src_uid = INSN_UID (g->nodes[src_cuid].insn);
598 fprintf (dump_file, "node: {title: \"%d_%d\" info1: \"", src_cuid, src_uid);
599 print_rtl_single (dump_file, g->nodes[src_cuid].insn);
600 fprintf (dump_file, "\"}\n");
601 for (e = g->nodes[src_cuid].out; e; e = e->next_out)
603 int dst_uid = INSN_UID (e->dest->insn);
604 int dst_cuid = e->dest->cuid;
606 /* Give the backarcs a different color. */
607 if (e->distance > 0)
608 fprintf (dump_file, "backedge: {color: red ");
609 else
610 fprintf (dump_file, "edge: { ");
612 fprintf (dump_file, "sourcename: \"%d_%d\" ", src_cuid, src_uid);
613 fprintf (dump_file, "targetname: \"%d_%d\" ", dst_cuid, dst_uid);
614 fprintf (dump_file, "label: \"%d_%d\"}\n", e->latency, e->distance);
617 fprintf (dump_file, "}\n");
620 /* Create an edge and initialize it with given values. */
621 static ddg_edge_ptr
622 create_ddg_edge (ddg_node_ptr src, ddg_node_ptr dest,
623 dep_type t, dep_data_type dt, int l, int d)
625 ddg_edge_ptr e = (ddg_edge_ptr) xmalloc (sizeof (struct ddg_edge));
627 e->src = src;
628 e->dest = dest;
629 e->type = t;
630 e->data_type = dt;
631 e->latency = l;
632 e->distance = d;
633 e->next_in = e->next_out = NULL;
634 e->aux.info = 0;
635 return e;
638 /* Add the given edge to the in/out linked lists of the DDG nodes. */
639 static void
640 add_edge_to_ddg (ddg_ptr g ATTRIBUTE_UNUSED, ddg_edge_ptr e)
642 ddg_node_ptr src = e->src;
643 ddg_node_ptr dest = e->dest;
645 /* Should have allocated the sbitmaps. */
646 gcc_assert (src->successors && dest->predecessors);
648 SET_BIT (src->successors, dest->cuid);
649 SET_BIT (dest->predecessors, src->cuid);
650 e->next_in = dest->in;
651 dest->in = e;
652 e->next_out = src->out;
653 src->out = e;
658 /* Algorithm for computing the recurrence_length of an scc. We assume at
659 for now that cycles in the data dependence graph contain a single backarc.
660 This simplifies the algorithm, and can be generalized later. */
661 static void
662 set_recurrence_length (ddg_scc_ptr scc, ddg_ptr g)
664 int j;
665 int result = -1;
667 for (j = 0; j < scc->num_backarcs; j++)
669 ddg_edge_ptr backarc = scc->backarcs[j];
670 int length;
671 int distance = backarc->distance;
672 ddg_node_ptr src = backarc->dest;
673 ddg_node_ptr dest = backarc->src;
675 length = longest_simple_path (g, src->cuid, dest->cuid, scc->nodes);
676 if (length < 0 )
678 /* fprintf (stderr, "Backarc not on simple cycle in SCC.\n"); */
679 continue;
681 length += backarc->latency;
682 result = MAX (result, (length / distance));
684 scc->recurrence_length = result;
687 /* Create a new SCC given the set of its nodes. Compute its recurrence_length
688 and mark edges that belong to this scc as IN_SCC. */
689 static ddg_scc_ptr
690 create_scc (ddg_ptr g, sbitmap nodes)
692 ddg_scc_ptr scc;
693 int u;
695 scc = (ddg_scc_ptr) xmalloc (sizeof (struct ddg_scc));
696 scc->backarcs = NULL;
697 scc->num_backarcs = 0;
698 scc->nodes = sbitmap_alloc (g->num_nodes);
699 sbitmap_copy (scc->nodes, nodes);
701 /* Mark the backarcs that belong to this SCC. */
702 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u,
704 ddg_edge_ptr e;
705 ddg_node_ptr n = &g->nodes[u];
707 for (e = n->out; e; e = e->next_out)
708 if (TEST_BIT (nodes, e->dest->cuid))
710 e->aux.count = IN_SCC;
711 if (e->distance > 0)
712 add_backarc_to_scc (scc, e);
716 set_recurrence_length (scc, g);
717 return scc;
720 /* Cleans the memory allocation of a given SCC. */
721 static void
722 free_scc (ddg_scc_ptr scc)
724 if (!scc)
725 return;
727 sbitmap_free (scc->nodes);
728 if (scc->num_backarcs > 0)
729 free (scc->backarcs);
730 free (scc);
734 /* Add a given edge known to be a backarc to the given DDG. */
735 static void
736 add_backarc_to_ddg (ddg_ptr g, ddg_edge_ptr e)
738 int size = (g->num_backarcs + 1) * sizeof (ddg_edge_ptr);
740 add_edge_to_ddg (g, e);
741 g->backarcs = (ddg_edge_ptr *) xrealloc (g->backarcs, size);
742 g->backarcs[g->num_backarcs++] = e;
745 /* Add backarc to an SCC. */
746 static void
747 add_backarc_to_scc (ddg_scc_ptr scc, ddg_edge_ptr e)
749 int size = (scc->num_backarcs + 1) * sizeof (ddg_edge_ptr);
751 scc->backarcs = (ddg_edge_ptr *) xrealloc (scc->backarcs, size);
752 scc->backarcs[scc->num_backarcs++] = e;
755 /* Add the given SCC to the DDG. */
756 static void
757 add_scc_to_ddg (ddg_all_sccs_ptr g, ddg_scc_ptr scc)
759 int size = (g->num_sccs + 1) * sizeof (ddg_scc_ptr);
761 g->sccs = (ddg_scc_ptr *) xrealloc (g->sccs, size);
762 g->sccs[g->num_sccs++] = scc;
765 /* Given the instruction INSN return the node that represents it. */
766 ddg_node_ptr
767 get_node_of_insn (ddg_ptr g, rtx insn)
769 int i;
771 for (i = 0; i < g->num_nodes; i++)
772 if (insn == g->nodes[i].insn)
773 return &g->nodes[i];
774 return NULL;
777 /* Given a set OPS of nodes in the DDG, find the set of their successors
778 which are not in OPS, and set their bits in SUCC. Bits corresponding to
779 OPS are cleared from SUCC. Leaves the other bits in SUCC unchanged. */
780 void
781 find_successors (sbitmap succ, ddg_ptr g, sbitmap ops)
783 int i;
785 EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i,
787 const sbitmap node_succ = NODE_SUCCESSORS (&g->nodes[i]);
788 sbitmap_a_or_b (succ, succ, node_succ);
791 /* We want those that are not in ops. */
792 sbitmap_difference (succ, succ, ops);
795 /* Given a set OPS of nodes in the DDG, find the set of their predecessors
796 which are not in OPS, and set their bits in PREDS. Bits corresponding to
797 OPS are cleared from PREDS. Leaves the other bits in PREDS unchanged. */
798 void
799 find_predecessors (sbitmap preds, ddg_ptr g, sbitmap ops)
801 int i;
803 EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i,
805 const sbitmap node_preds = NODE_PREDECESSORS (&g->nodes[i]);
806 sbitmap_a_or_b (preds, preds, node_preds);
809 /* We want those that are not in ops. */
810 sbitmap_difference (preds, preds, ops);
814 /* Compare function to be passed to qsort to order the backarcs in descending
815 recMII order. */
816 static int
817 compare_sccs (const void *s1, const void *s2)
819 int rec_l1 = (*(ddg_scc_ptr *)s1)->recurrence_length;
820 int rec_l2 = (*(ddg_scc_ptr *)s2)->recurrence_length;
821 return ((rec_l2 > rec_l1) - (rec_l2 < rec_l1));
825 /* Order the backarcs in descending recMII order using compare_sccs. */
826 static void
827 order_sccs (ddg_all_sccs_ptr g)
829 qsort (g->sccs, g->num_sccs, sizeof (ddg_scc_ptr),
830 (int (*) (const void *, const void *)) compare_sccs);
833 /* Perform the Strongly Connected Components decomposing algorithm on the
834 DDG and return DDG_ALL_SCCS structure that contains them. */
835 ddg_all_sccs_ptr
836 create_ddg_all_sccs (ddg_ptr g)
838 int i;
839 int num_nodes = g->num_nodes;
840 sbitmap from = sbitmap_alloc (num_nodes);
841 sbitmap to = sbitmap_alloc (num_nodes);
842 sbitmap scc_nodes = sbitmap_alloc (num_nodes);
843 ddg_all_sccs_ptr sccs = (ddg_all_sccs_ptr)
844 xmalloc (sizeof (struct ddg_all_sccs));
846 sccs->ddg = g;
847 sccs->sccs = NULL;
848 sccs->num_sccs = 0;
850 for (i = 0; i < g->num_backarcs; i++)
852 ddg_scc_ptr scc;
853 ddg_edge_ptr backarc = g->backarcs[i];
854 ddg_node_ptr src = backarc->src;
855 ddg_node_ptr dest = backarc->dest;
857 /* If the backarc already belongs to an SCC, continue. */
858 if (backarc->aux.count == IN_SCC)
859 continue;
861 sbitmap_zero (from);
862 sbitmap_zero (to);
863 SET_BIT (from, dest->cuid);
864 SET_BIT (to, src->cuid);
866 if (find_nodes_on_paths (scc_nodes, g, from, to))
868 scc = create_scc (g, scc_nodes);
869 add_scc_to_ddg (sccs, scc);
872 order_sccs (sccs);
873 sbitmap_free (from);
874 sbitmap_free (to);
875 sbitmap_free (scc_nodes);
876 return sccs;
879 /* Frees the memory allocated for all SCCs of the DDG, but keeps the DDG. */
880 void
881 free_ddg_all_sccs (ddg_all_sccs_ptr all_sccs)
883 int i;
885 if (!all_sccs)
886 return;
888 for (i = 0; i < all_sccs->num_sccs; i++)
889 free_scc (all_sccs->sccs[i]);
891 free (all_sccs);
895 /* Given FROM - a bitmap of source nodes - and TO - a bitmap of destination
896 nodes - find all nodes that lie on paths from FROM to TO (not excluding
897 nodes from FROM and TO). Return nonzero if nodes exist. */
899 find_nodes_on_paths (sbitmap result, ddg_ptr g, sbitmap from, sbitmap to)
901 int answer;
902 int change, u;
903 int num_nodes = g->num_nodes;
904 sbitmap workset = sbitmap_alloc (num_nodes);
905 sbitmap reachable_from = sbitmap_alloc (num_nodes);
906 sbitmap reach_to = sbitmap_alloc (num_nodes);
907 sbitmap tmp = sbitmap_alloc (num_nodes);
909 sbitmap_copy (reachable_from, from);
910 sbitmap_copy (tmp, from);
912 change = 1;
913 while (change)
915 change = 0;
916 sbitmap_copy (workset, tmp);
917 sbitmap_zero (tmp);
918 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u,
920 ddg_edge_ptr e;
921 ddg_node_ptr u_node = &g->nodes[u];
923 for (e = u_node->out; e != (ddg_edge_ptr) 0; e = e->next_out)
925 ddg_node_ptr v_node = e->dest;
926 int v = v_node->cuid;
928 if (!TEST_BIT (reachable_from, v))
930 SET_BIT (reachable_from, v);
931 SET_BIT (tmp, v);
932 change = 1;
938 sbitmap_copy (reach_to, to);
939 sbitmap_copy (tmp, to);
941 change = 1;
942 while (change)
944 change = 0;
945 sbitmap_copy (workset, tmp);
946 sbitmap_zero (tmp);
947 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u,
949 ddg_edge_ptr e;
950 ddg_node_ptr u_node = &g->nodes[u];
952 for (e = u_node->in; e != (ddg_edge_ptr) 0; e = e->next_in)
954 ddg_node_ptr v_node = e->src;
955 int v = v_node->cuid;
957 if (!TEST_BIT (reach_to, v))
959 SET_BIT (reach_to, v);
960 SET_BIT (tmp, v);
961 change = 1;
967 answer = sbitmap_a_and_b_cg (result, reachable_from, reach_to);
968 sbitmap_free (workset);
969 sbitmap_free (reachable_from);
970 sbitmap_free (reach_to);
971 sbitmap_free (tmp);
972 return answer;
976 /* Updates the counts of U_NODE's successors (that belong to NODES) to be
977 at-least as large as the count of U_NODE plus the latency between them.
978 Sets a bit in TMP for each successor whose count was changed (increased).
979 Returns nonzero if any count was changed. */
980 static int
981 update_dist_to_successors (ddg_node_ptr u_node, sbitmap nodes, sbitmap tmp)
983 ddg_edge_ptr e;
984 int result = 0;
986 for (e = u_node->out; e; e = e->next_out)
988 ddg_node_ptr v_node = e->dest;
989 int v = v_node->cuid;
991 if (TEST_BIT (nodes, v)
992 && (e->distance == 0)
993 && (v_node->aux.count < u_node->aux.count + e->latency))
995 v_node->aux.count = u_node->aux.count + e->latency;
996 SET_BIT (tmp, v);
997 result = 1;
1000 return result;
1004 /* Find the length of a longest path from SRC to DEST in G,
1005 going only through NODES, and disregarding backarcs. */
1007 longest_simple_path (struct ddg * g, int src, int dest, sbitmap nodes)
1009 int i, u;
1010 int change = 1;
1011 int result;
1012 int num_nodes = g->num_nodes;
1013 sbitmap workset = sbitmap_alloc (num_nodes);
1014 sbitmap tmp = sbitmap_alloc (num_nodes);
1017 /* Data will hold the distance of the longest path found so far from
1018 src to each node. Initialize to -1 = less than minimum. */
1019 for (i = 0; i < g->num_nodes; i++)
1020 g->nodes[i].aux.count = -1;
1021 g->nodes[src].aux.count = 0;
1023 sbitmap_zero (tmp);
1024 SET_BIT (tmp, src);
1026 while (change)
1028 change = 0;
1029 sbitmap_copy (workset, tmp);
1030 sbitmap_zero (tmp);
1031 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u,
1033 ddg_node_ptr u_node = &g->nodes[u];
1035 change |= update_dist_to_successors (u_node, nodes, tmp);
1038 result = g->nodes[dest].aux.count;
1039 sbitmap_free (workset);
1040 sbitmap_free (tmp);
1041 return result;