PR c/20043
[official-gcc.git] / gcc / cfgloopmanip.c
blobc07571014afb5f6fef3133a38b715f89efd27842
1 /* Loop manipulation code for GNU compiler.
2 Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "cfglayout.h"
31 #include "output.h"
33 static void duplicate_subloops (struct loops *, struct loop *, struct loop *);
34 static void copy_loops_to (struct loops *, struct loop **, int,
35 struct loop *);
36 static void loop_redirect_edge (edge, basic_block);
37 static bool loop_delete_branch_edge (edge, int);
38 static void remove_bbs (basic_block *, int);
39 static bool rpe_enum_p (basic_block, void *);
40 static int find_path (edge, basic_block **);
41 static bool alp_enum_p (basic_block, void *);
42 static void add_loop (struct loops *, struct loop *);
43 static void fix_loop_placements (struct loops *, struct loop *);
44 static bool fix_bb_placement (struct loops *, basic_block);
45 static void fix_bb_placements (struct loops *, basic_block);
46 static void place_new_loop (struct loops *, struct loop *);
47 static void scale_loop_frequencies (struct loop *, int, int);
48 static void scale_bbs_frequencies (basic_block *, int, int, int);
49 static basic_block create_preheader (struct loop *, int);
50 static void fix_irreducible_loops (basic_block);
51 static void unloop (struct loops *, struct loop *);
53 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
55 /* Splits basic block BB after INSN, returns created edge. Updates loops
56 and dominators. */
57 edge
58 split_loop_bb (basic_block bb, void *insn)
60 edge e;
62 /* Split the block. */
63 e = split_block (bb, insn);
65 /* Add dest to loop. */
66 add_bb_to_loop (e->dest, e->src->loop_father);
68 return e;
71 /* Checks whether basic block BB is dominated by DATA. */
72 static bool
73 rpe_enum_p (basic_block bb, void *data)
75 return dominated_by_p (CDI_DOMINATORS, bb, data);
78 /* Remove basic blocks BBS from loop structure and dominance info,
79 and delete them afterwards. */
80 static void
81 remove_bbs (basic_block *bbs, int nbbs)
83 int i;
85 for (i = 0; i < nbbs; i++)
87 remove_bb_from_loops (bbs[i]);
88 delete_basic_block (bbs[i]);
92 /* Find path -- i.e. the basic blocks dominated by edge E and put them
93 into array BBS, that will be allocated large enough to contain them.
94 E->dest must have exactly one predecessor for this to work (it is
95 easy to achieve and we do not put it here because we do not want to
96 alter anything by this function). The number of basic blocks in the
97 path is returned. */
98 static int
99 find_path (edge e, basic_block **bbs)
101 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
103 /* Find bbs in the path. */
104 *bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
105 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
106 n_basic_blocks, e->dest);
109 /* Fix placement of basic block BB inside loop hierarchy stored in LOOPS --
110 Let L be a loop to that BB belongs. Then every successor of BB must either
111 1) belong to some superloop of loop L, or
112 2) be a header of loop K such that K->outer is superloop of L
113 Returns true if we had to move BB into other loop to enforce this condition,
114 false if the placement of BB was already correct (provided that placements
115 of its successors are correct). */
116 static bool
117 fix_bb_placement (struct loops *loops, basic_block bb)
119 edge e;
120 edge_iterator ei;
121 struct loop *loop = loops->tree_root, *act;
123 FOR_EACH_EDGE (e, ei, bb->succs)
125 if (e->dest == EXIT_BLOCK_PTR)
126 continue;
128 act = e->dest->loop_father;
129 if (act->header == e->dest)
130 act = act->outer;
132 if (flow_loop_nested_p (loop, act))
133 loop = act;
136 if (loop == bb->loop_father)
137 return false;
139 remove_bb_from_loops (bb);
140 add_bb_to_loop (bb, loop);
142 return true;
145 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
146 enforce condition condition stated in description of fix_bb_placement. We
147 start from basic block FROM that had some of its successors removed, so that
148 his placement no longer has to be correct, and iteratively fix placement of
149 its predecessors that may change if placement of FROM changed. Also fix
150 placement of subloops of FROM->loop_father, that might also be altered due
151 to this change; the condition for them is similar, except that instead of
152 successors we consider edges coming out of the loops. */
153 static void
154 fix_bb_placements (struct loops *loops, basic_block from)
156 sbitmap in_queue;
157 basic_block *queue, *qtop, *qbeg, *qend;
158 struct loop *base_loop;
159 edge e;
161 /* We pass through blocks back-reachable from FROM, testing whether some
162 of their successors moved to outer loop. It may be necessary to
163 iterate several times, but it is finite, as we stop unless we move
164 the basic block up the loop structure. The whole story is a bit
165 more complicated due to presence of subloops, those are moved using
166 fix_loop_placement. */
168 base_loop = from->loop_father;
169 if (base_loop == loops->tree_root)
170 return;
172 in_queue = sbitmap_alloc (last_basic_block);
173 sbitmap_zero (in_queue);
174 SET_BIT (in_queue, from->index);
175 /* Prevent us from going out of the base_loop. */
176 SET_BIT (in_queue, base_loop->header->index);
178 queue = xmalloc ((base_loop->num_nodes + 1) * sizeof (basic_block));
179 qtop = queue + base_loop->num_nodes + 1;
180 qbeg = queue;
181 qend = queue + 1;
182 *qbeg = from;
184 while (qbeg != qend)
186 edge_iterator ei;
187 from = *qbeg;
188 qbeg++;
189 if (qbeg == qtop)
190 qbeg = queue;
191 RESET_BIT (in_queue, from->index);
193 if (from->loop_father->header == from)
195 /* Subloop header, maybe move the loop upward. */
196 if (!fix_loop_placement (from->loop_father))
197 continue;
199 else
201 /* Ordinary basic block. */
202 if (!fix_bb_placement (loops, from))
203 continue;
206 /* Something has changed, insert predecessors into queue. */
207 FOR_EACH_EDGE (e, ei, from->preds)
209 basic_block pred = e->src;
210 struct loop *nca;
212 if (TEST_BIT (in_queue, pred->index))
213 continue;
215 /* If it is subloop, then it either was not moved, or
216 the path up the loop tree from base_loop do not contain
217 it. */
218 nca = find_common_loop (pred->loop_father, base_loop);
219 if (pred->loop_father != base_loop
220 && (nca == base_loop
221 || nca != pred->loop_father))
222 pred = pred->loop_father->header;
223 else if (!flow_loop_nested_p (from->loop_father, pred->loop_father))
225 /* No point in processing it. */
226 continue;
229 if (TEST_BIT (in_queue, pred->index))
230 continue;
232 /* Schedule the basic block. */
233 *qend = pred;
234 qend++;
235 if (qend == qtop)
236 qend = queue;
237 SET_BIT (in_queue, pred->index);
240 free (in_queue);
241 free (queue);
244 /* Basic block from has lost one or more of its predecessors, so it might
245 mo longer be part irreducible loop. Fix it and proceed recursively
246 for its successors if needed. */
247 static void
248 fix_irreducible_loops (basic_block from)
250 basic_block bb;
251 basic_block *stack;
252 int stack_top;
253 sbitmap on_stack;
254 edge *edges, e;
255 unsigned n_edges, i;
257 if (!(from->flags & BB_IRREDUCIBLE_LOOP))
258 return;
260 on_stack = sbitmap_alloc (last_basic_block);
261 sbitmap_zero (on_stack);
262 SET_BIT (on_stack, from->index);
263 stack = xmalloc (from->loop_father->num_nodes * sizeof (basic_block));
264 stack[0] = from;
265 stack_top = 1;
267 while (stack_top)
269 edge_iterator ei;
270 bb = stack[--stack_top];
271 RESET_BIT (on_stack, bb->index);
273 FOR_EACH_EDGE (e, ei, bb->preds)
274 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
275 break;
276 if (e)
277 continue;
279 bb->flags &= ~BB_IRREDUCIBLE_LOOP;
280 if (bb->loop_father->header == bb)
281 edges = get_loop_exit_edges (bb->loop_father, &n_edges);
282 else
284 n_edges = EDGE_COUNT (bb->succs);
285 edges = xmalloc (n_edges * sizeof (edge));
286 FOR_EACH_EDGE (e, ei, bb->succs)
287 edges[ei.index] = e;
290 for (i = 0; i < n_edges; i++)
292 e = edges[i];
294 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
296 if (!flow_bb_inside_loop_p (from->loop_father, e->dest))
297 continue;
299 e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
300 if (TEST_BIT (on_stack, e->dest->index))
301 continue;
303 SET_BIT (on_stack, e->dest->index);
304 stack[stack_top++] = e->dest;
307 free (edges);
310 free (on_stack);
311 free (stack);
314 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
315 and update loop structure stored in LOOPS and dominators. Return true if
316 we were able to remove the path, false otherwise (and nothing is affected
317 then). */
318 bool
319 remove_path (struct loops *loops, edge e)
321 edge ae;
322 basic_block *rem_bbs, *bord_bbs, *dom_bbs, from, bb;
323 int i, nrem, n_bord_bbs, n_dom_bbs;
324 sbitmap seen;
325 bool deleted;
327 if (!loop_delete_branch_edge (e, 0))
328 return false;
330 /* We need to check whether basic blocks are dominated by the edge
331 e, but we only have basic block dominators. This is easy to
332 fix -- when e->dest has exactly one predecessor, this corresponds
333 to blocks dominated by e->dest, if not, split the edge. */
334 if (EDGE_COUNT (e->dest->preds) > 1)
335 e = EDGE_PRED (loop_split_edge_with (e, NULL_RTX), 0);
337 /* It may happen that by removing path we remove one or more loops
338 we belong to. In this case first unloop the loops, then proceed
339 normally. We may assume that e->dest is not a header of any loop,
340 as it now has exactly one predecessor. */
341 while (e->src->loop_father->outer
342 && dominated_by_p (CDI_DOMINATORS,
343 e->src->loop_father->latch, e->dest))
344 unloop (loops, e->src->loop_father);
346 /* Identify the path. */
347 nrem = find_path (e, &rem_bbs);
349 n_bord_bbs = 0;
350 bord_bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
351 seen = sbitmap_alloc (last_basic_block);
352 sbitmap_zero (seen);
354 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
355 for (i = 0; i < nrem; i++)
356 SET_BIT (seen, rem_bbs[i]->index);
357 for (i = 0; i < nrem; i++)
359 edge_iterator ei;
360 bb = rem_bbs[i];
361 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
362 if (ae->dest != EXIT_BLOCK_PTR && !TEST_BIT (seen, ae->dest->index))
364 SET_BIT (seen, ae->dest->index);
365 bord_bbs[n_bord_bbs++] = ae->dest;
369 /* Remove the path. */
370 from = e->src;
371 deleted = loop_delete_branch_edge (e, 1);
372 gcc_assert (deleted);
373 dom_bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
375 /* Cancel loops contained in the path. */
376 for (i = 0; i < nrem; i++)
377 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
378 cancel_loop_tree (loops, rem_bbs[i]->loop_father);
380 remove_bbs (rem_bbs, nrem);
381 free (rem_bbs);
383 /* Find blocks whose dominators may be affected. */
384 n_dom_bbs = 0;
385 sbitmap_zero (seen);
386 for (i = 0; i < n_bord_bbs; i++)
388 basic_block ldom;
390 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
391 if (TEST_BIT (seen, bb->index))
392 continue;
393 SET_BIT (seen, bb->index);
395 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
396 ldom;
397 ldom = next_dom_son (CDI_DOMINATORS, ldom))
398 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
399 dom_bbs[n_dom_bbs++] = ldom;
402 free (seen);
404 /* Recount dominators. */
405 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, n_dom_bbs);
406 free (dom_bbs);
408 /* These blocks have lost some predecessor(s), thus their irreducible
409 status could be changed. */
410 for (i = 0; i < n_bord_bbs; i++)
411 fix_irreducible_loops (bord_bbs[i]);
412 free (bord_bbs);
414 /* Fix placements of basic blocks inside loops and the placement of
415 loops in the loop tree. */
416 fix_bb_placements (loops, from);
417 fix_loop_placements (loops, from->loop_father);
419 return true;
422 /* Predicate for enumeration in add_loop. */
423 static bool
424 alp_enum_p (basic_block bb, void *alp_header)
426 return bb != (basic_block) alp_header;
429 /* Given LOOP structure with filled header and latch, find the body of the
430 corresponding loop and add it to LOOPS tree. */
431 static void
432 add_loop (struct loops *loops, struct loop *loop)
434 basic_block *bbs;
435 int i, n;
437 /* Add it to loop structure. */
438 place_new_loop (loops, loop);
439 loop->level = 1;
441 /* Find its nodes. */
442 bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
443 n = dfs_enumerate_from (loop->latch, 1, alp_enum_p,
444 bbs, n_basic_blocks, loop->header);
446 for (i = 0; i < n; i++)
447 add_bb_to_loop (bbs[i], loop);
448 add_bb_to_loop (loop->header, loop);
450 free (bbs);
453 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
454 by NUM/DEN. */
455 static void
456 scale_bbs_frequencies (basic_block *bbs, int nbbs, int num, int den)
458 int i;
459 edge e;
461 for (i = 0; i < nbbs; i++)
463 edge_iterator ei;
464 bbs[i]->frequency = (bbs[i]->frequency * num) / den;
465 bbs[i]->count = RDIV (bbs[i]->count * num, den);
466 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
467 e->count = (e->count * num) /den;
471 /* Multiply all frequencies in LOOP by NUM/DEN. */
472 static void
473 scale_loop_frequencies (struct loop *loop, int num, int den)
475 basic_block *bbs;
477 bbs = get_loop_body (loop);
478 scale_bbs_frequencies (bbs, loop->num_nodes, num, den);
479 free (bbs);
482 /* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
483 latch to header and update loop tree stored in LOOPS and dominators
484 accordingly. Everything between them plus LATCH_EDGE destination must
485 be dominated by HEADER_EDGE destination, and back-reachable from
486 LATCH_EDGE source. HEADER_EDGE is redirected to basic block SWITCH_BB,
487 FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
488 TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
489 Returns newly created loop. */
491 struct loop *
492 loopify (struct loops *loops, edge latch_edge, edge header_edge,
493 basic_block switch_bb, edge true_edge, edge false_edge,
494 bool redirect_all_edges)
496 basic_block succ_bb = latch_edge->dest;
497 basic_block pred_bb = header_edge->src;
498 basic_block *dom_bbs, *body;
499 unsigned n_dom_bbs, i;
500 sbitmap seen;
501 struct loop *loop = xcalloc (1, sizeof (struct loop));
502 struct loop *outer = succ_bb->loop_father->outer;
503 int freq, prob, tot_prob;
504 gcov_type cnt;
505 edge e;
506 edge_iterator ei;
508 loop->header = header_edge->dest;
509 loop->latch = latch_edge->src;
511 freq = EDGE_FREQUENCY (header_edge);
512 cnt = header_edge->count;
513 prob = EDGE_SUCC (switch_bb, 0)->probability;
514 tot_prob = prob + EDGE_SUCC (switch_bb, 1)->probability;
515 if (tot_prob == 0)
516 tot_prob = 1;
518 /* Redirect edges. */
519 loop_redirect_edge (latch_edge, loop->header);
520 loop_redirect_edge (true_edge, succ_bb);
522 /* During loop versioning, one of the switch_bb edge is already properly
523 set. Do not redirect it again unless redirect_all_edges is true. */
524 if (redirect_all_edges)
526 loop_redirect_edge (header_edge, switch_bb);
527 loop_redirect_edge (false_edge, loop->header);
529 /* Update dominators. */
530 set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
531 set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
534 set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
536 /* Compute new loop. */
537 add_loop (loops, loop);
538 flow_loop_tree_node_add (outer, loop);
540 /* Add switch_bb to appropriate loop. */
541 add_bb_to_loop (switch_bb, outer);
543 /* Fix frequencies. */
544 switch_bb->frequency = freq;
545 switch_bb->count = cnt;
546 FOR_EACH_EDGE (e, ei, switch_bb->succs)
547 e->count = (switch_bb->count * e->probability) / REG_BR_PROB_BASE;
548 scale_loop_frequencies (loop, prob, tot_prob);
549 scale_loop_frequencies (succ_bb->loop_father, tot_prob - prob, tot_prob);
551 /* Update dominators of blocks outside of LOOP. */
552 dom_bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
553 n_dom_bbs = 0;
554 seen = sbitmap_alloc (last_basic_block);
555 sbitmap_zero (seen);
556 body = get_loop_body (loop);
558 for (i = 0; i < loop->num_nodes; i++)
559 SET_BIT (seen, body[i]->index);
561 for (i = 0; i < loop->num_nodes; i++)
563 basic_block ldom;
565 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
566 ldom;
567 ldom = next_dom_son (CDI_DOMINATORS, ldom))
568 if (!TEST_BIT (seen, ldom->index))
570 SET_BIT (seen, ldom->index);
571 dom_bbs[n_dom_bbs++] = ldom;
575 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, n_dom_bbs);
577 free (body);
578 free (seen);
579 free (dom_bbs);
581 return loop;
584 /* Remove the latch edge of a LOOP and update LOOPS tree to indicate that
585 the LOOP was removed. After this function, original loop latch will
586 have no successor, which caller is expected to fix somehow. */
587 static void
588 unloop (struct loops *loops, struct loop *loop)
590 basic_block *body;
591 struct loop *ploop;
592 unsigned i, n;
593 basic_block latch = loop->latch;
594 edge *edges;
595 unsigned n_edges;
597 /* This is relatively straightforward. The dominators are unchanged, as
598 loop header dominates loop latch, so the only thing we have to care of
599 is the placement of loops and basic blocks inside the loop tree. We
600 move them all to the loop->outer, and then let fix_bb_placements do
601 its work. */
603 body = get_loop_body (loop);
604 edges = get_loop_exit_edges (loop, &n_edges);
605 n = loop->num_nodes;
606 for (i = 0; i < n; i++)
607 if (body[i]->loop_father == loop)
609 remove_bb_from_loops (body[i]);
610 add_bb_to_loop (body[i], loop->outer);
612 free(body);
614 while (loop->inner)
616 ploop = loop->inner;
617 flow_loop_tree_node_remove (ploop);
618 flow_loop_tree_node_add (loop->outer, ploop);
621 /* Remove the loop and free its data. */
622 flow_loop_tree_node_remove (loop);
623 loops->parray[loop->num] = NULL;
624 flow_loop_free (loop);
626 remove_edge (EDGE_SUCC (latch, 0));
627 fix_bb_placements (loops, latch);
629 /* If the loop was inside an irreducible region, we would have to somehow
630 update the irreducible marks inside its body. While it is certainly
631 possible to do, it is a bit complicated and this situation should be
632 very rare, so we just remark all loops in this case. */
633 for (i = 0; i < n_edges; i++)
634 if (edges[i]->flags & EDGE_IRREDUCIBLE_LOOP)
635 break;
636 if (i != n_edges)
637 mark_irreducible_loops (loops);
638 free (edges);
641 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
642 FATHER of LOOP such that all of the edges coming out of LOOP belong to
643 FATHER, and set it as outer loop of LOOP. Return 1 if placement of
644 LOOP changed. */
646 fix_loop_placement (struct loop *loop)
648 basic_block *body;
649 unsigned i;
650 edge e;
651 edge_iterator ei;
652 struct loop *father = loop->pred[0], *act;
654 body = get_loop_body (loop);
655 for (i = 0; i < loop->num_nodes; i++)
656 FOR_EACH_EDGE (e, ei, body[i]->succs)
657 if (!flow_bb_inside_loop_p (loop, e->dest))
659 act = find_common_loop (loop, e->dest->loop_father);
660 if (flow_loop_nested_p (father, act))
661 father = act;
663 free (body);
665 if (father != loop->outer)
667 for (act = loop->outer; act != father; act = act->outer)
668 act->num_nodes -= loop->num_nodes;
669 flow_loop_tree_node_remove (loop);
670 flow_loop_tree_node_add (father, loop);
671 return 1;
673 return 0;
676 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
677 condition stated in description of fix_loop_placement holds for them.
678 It is used in case when we removed some edges coming out of LOOP, which
679 may cause the right placement of LOOP inside loop tree to change. */
680 static void
681 fix_loop_placements (struct loops *loops, struct loop *loop)
683 struct loop *outer;
685 while (loop->outer)
687 outer = loop->outer;
688 if (!fix_loop_placement (loop))
689 break;
691 /* Changing the placement of a loop in the loop tree may alter the
692 validity of condition 2) of the description of fix_bb_placement
693 for its preheader, because the successor is the header and belongs
694 to the loop. So call fix_bb_placements to fix up the placement
695 of the preheader and (possibly) of its predecessors. */
696 fix_bb_placements (loops, loop_preheader_edge (loop)->src);
697 loop = outer;
701 /* Creates place for a new LOOP in LOOPS structure. */
702 static void
703 place_new_loop (struct loops *loops, struct loop *loop)
705 loops->parray =
706 xrealloc (loops->parray, (loops->num + 1) * sizeof (struct loop *));
707 loops->parray[loops->num] = loop;
709 loop->num = loops->num++;
712 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
713 created loop into LOOPS structure. */
714 struct loop *
715 duplicate_loop (struct loops *loops, struct loop *loop, struct loop *target)
717 struct loop *cloop;
718 cloop = xcalloc (1, sizeof (struct loop));
719 place_new_loop (loops, cloop);
721 /* Initialize copied loop. */
722 cloop->level = loop->level;
724 /* Set it as copy of loop. */
725 loop->copy = cloop;
727 /* Add it to target. */
728 flow_loop_tree_node_add (target, cloop);
730 return cloop;
733 /* Copies structure of subloops of LOOP into TARGET loop, placing
734 newly created loops into loop tree stored in LOOPS. */
735 static void
736 duplicate_subloops (struct loops *loops, struct loop *loop, struct loop *target)
738 struct loop *aloop, *cloop;
740 for (aloop = loop->inner; aloop; aloop = aloop->next)
742 cloop = duplicate_loop (loops, aloop, target);
743 duplicate_subloops (loops, aloop, cloop);
747 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
748 into TARGET loop, placing newly created loops into loop tree LOOPS. */
749 static void
750 copy_loops_to (struct loops *loops, struct loop **copied_loops, int n, struct loop *target)
752 struct loop *aloop;
753 int i;
755 for (i = 0; i < n; i++)
757 aloop = duplicate_loop (loops, copied_loops[i], target);
758 duplicate_subloops (loops, copied_loops[i], aloop);
762 /* Redirects edge E to basic block DEST. */
763 static void
764 loop_redirect_edge (edge e, basic_block dest)
766 if (e->dest == dest)
767 return;
769 redirect_edge_and_branch_force (e, dest);
772 /* Deletes edge E from a branch if possible. Unless REALLY_DELETE is set,
773 just test whether it is possible to remove the edge. */
774 static bool
775 loop_delete_branch_edge (edge e, int really_delete)
777 basic_block src = e->src;
778 basic_block newdest;
779 int irr;
780 edge snd;
782 gcc_assert (EDGE_COUNT (src->succs) > 1);
784 /* Cannot handle more than two exit edges. */
785 if (EDGE_COUNT (src->succs) > 2)
786 return false;
787 /* And it must be just a simple branch. */
788 if (!any_condjump_p (BB_END (src)))
789 return false;
791 snd = e == EDGE_SUCC (src, 0) ? EDGE_SUCC (src, 1) : EDGE_SUCC (src, 0);
792 newdest = snd->dest;
793 if (newdest == EXIT_BLOCK_PTR)
794 return false;
796 /* Hopefully the above conditions should suffice. */
797 if (!really_delete)
798 return true;
800 /* Redirecting behaves wrongly wrto this flag. */
801 irr = snd->flags & EDGE_IRREDUCIBLE_LOOP;
803 if (!redirect_edge_and_branch (e, newdest))
804 return false;
805 EDGE_SUCC (src, 0)->flags &= ~EDGE_IRREDUCIBLE_LOOP;
806 EDGE_SUCC (src, 0)->flags |= irr;
808 return true;
811 /* Check whether LOOP's body can be duplicated. */
812 bool
813 can_duplicate_loop_p (struct loop *loop)
815 int ret;
816 basic_block *bbs = get_loop_body (loop);
818 ret = can_copy_bbs_p (bbs, loop->num_nodes);
819 free (bbs);
821 return ret;
824 /* The NBBS blocks in BBS will get duplicated and the copies will be placed
825 to LOOP. Update the single_exit information in superloops of LOOP. */
827 static void
828 update_single_exits_after_duplication (basic_block *bbs, unsigned nbbs,
829 struct loop *loop)
831 unsigned i;
833 for (i = 0; i < nbbs; i++)
834 bbs[i]->rbi->duplicated = 1;
836 for (; loop->outer; loop = loop->outer)
838 if (!loop->single_exit)
839 continue;
841 if (loop->single_exit->src->rbi->duplicated)
842 loop->single_exit = NULL;
845 for (i = 0; i < nbbs; i++)
846 bbs[i]->rbi->duplicated = 0;
849 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
850 LOOPS structure and dominators. E's destination must be LOOP header for
851 this to work, i.e. it must be entry or latch edge of this loop; these are
852 unique, as the loops must have preheaders for this function to work
853 correctly (in case E is latch, the function unrolls the loop, if E is entry
854 edge, it peels the loop). Store edges created by copying ORIG edge from
855 copies corresponding to set bits in WONT_EXIT bitmap (bit 0 corresponds to
856 original LOOP body, the other copies are numbered in order given by control
857 flow through them) into TO_REMOVE array. Returns false if duplication is
858 impossible. */
860 duplicate_loop_to_header_edge (struct loop *loop, edge e, struct loops *loops,
861 unsigned int ndupl, sbitmap wont_exit,
862 edge orig, edge *to_remove,
863 unsigned int *n_to_remove, int flags)
865 struct loop *target, *aloop;
866 struct loop **orig_loops;
867 unsigned n_orig_loops;
868 basic_block header = loop->header, latch = loop->latch;
869 basic_block *new_bbs, *bbs, *first_active;
870 basic_block new_bb, bb, first_active_latch = NULL;
871 edge ae, latch_edge;
872 edge spec_edges[2], new_spec_edges[2];
873 #define SE_LATCH 0
874 #define SE_ORIG 1
875 unsigned i, j, n;
876 int is_latch = (latch == e->src);
877 int scale_act = 0, *scale_step = NULL, scale_main = 0;
878 int p, freq_in, freq_le, freq_out_orig;
879 int prob_pass_thru, prob_pass_wont_exit, prob_pass_main;
880 int add_irreducible_flag;
882 gcc_assert (e->dest == loop->header);
883 gcc_assert (ndupl > 0);
885 if (orig)
887 /* Orig must be edge out of the loop. */
888 gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
889 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
892 bbs = get_loop_body (loop);
894 /* Check whether duplication is possible. */
895 if (!can_copy_bbs_p (bbs, loop->num_nodes))
897 free (bbs);
898 return false;
900 new_bbs = xmalloc (sizeof (basic_block) * loop->num_nodes);
902 /* In case we are doing loop peeling and the loop is in the middle of
903 irreducible region, the peeled copies will be inside it too. */
904 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
905 gcc_assert (!is_latch || !add_irreducible_flag);
907 /* Find edge from latch. */
908 latch_edge = loop_latch_edge (loop);
910 if (flags & DLTHE_FLAG_UPDATE_FREQ)
912 /* Calculate coefficients by that we have to scale frequencies
913 of duplicated loop bodies. */
914 freq_in = header->frequency;
915 freq_le = EDGE_FREQUENCY (latch_edge);
916 if (freq_in == 0)
917 freq_in = 1;
918 if (freq_in < freq_le)
919 freq_in = freq_le;
920 freq_out_orig = orig ? EDGE_FREQUENCY (orig) : freq_in - freq_le;
921 if (freq_out_orig > freq_in - freq_le)
922 freq_out_orig = freq_in - freq_le;
923 prob_pass_thru = RDIV (REG_BR_PROB_BASE * freq_le, freq_in);
924 prob_pass_wont_exit =
925 RDIV (REG_BR_PROB_BASE * (freq_le + freq_out_orig), freq_in);
927 scale_step = xmalloc (ndupl * sizeof (int));
929 for (i = 1; i <= ndupl; i++)
930 scale_step[i - 1] = TEST_BIT (wont_exit, i)
931 ? prob_pass_wont_exit
932 : prob_pass_thru;
934 if (is_latch)
936 prob_pass_main = TEST_BIT (wont_exit, 0)
937 ? prob_pass_wont_exit
938 : prob_pass_thru;
939 p = prob_pass_main;
940 scale_main = REG_BR_PROB_BASE;
941 for (i = 0; i < ndupl; i++)
943 scale_main += p;
944 p = RDIV (p * scale_step[i], REG_BR_PROB_BASE);
946 scale_main = RDIV (REG_BR_PROB_BASE * REG_BR_PROB_BASE, scale_main);
947 scale_act = RDIV (scale_main * prob_pass_main, REG_BR_PROB_BASE);
949 else
951 scale_main = REG_BR_PROB_BASE;
952 for (i = 0; i < ndupl; i++)
953 scale_main = RDIV (scale_main * scale_step[i], REG_BR_PROB_BASE);
954 scale_act = REG_BR_PROB_BASE - prob_pass_thru;
956 for (i = 0; i < ndupl; i++)
957 gcc_assert (scale_step[i] >= 0 && scale_step[i] <= REG_BR_PROB_BASE);
958 gcc_assert (scale_main >= 0 && scale_main <= REG_BR_PROB_BASE
959 && scale_act >= 0 && scale_act <= REG_BR_PROB_BASE);
962 /* Loop the new bbs will belong to. */
963 target = e->src->loop_father;
965 /* Original loops. */
966 n_orig_loops = 0;
967 for (aloop = loop->inner; aloop; aloop = aloop->next)
968 n_orig_loops++;
969 orig_loops = xcalloc (n_orig_loops, sizeof (struct loop *));
970 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
971 orig_loops[i] = aloop;
973 loop->copy = target;
975 n = loop->num_nodes;
977 first_active = xmalloc (n * sizeof (basic_block));
978 if (is_latch)
980 memcpy (first_active, bbs, n * sizeof (basic_block));
981 first_active_latch = latch;
984 /* Update the information about single exits. */
985 if (loops->state & LOOPS_HAVE_MARKED_SINGLE_EXITS)
986 update_single_exits_after_duplication (bbs, n, target);
988 /* Record exit edge in original loop body. */
989 if (orig && TEST_BIT (wont_exit, 0))
990 to_remove[(*n_to_remove)++] = orig;
992 spec_edges[SE_ORIG] = orig;
993 spec_edges[SE_LATCH] = latch_edge;
995 for (j = 0; j < ndupl; j++)
997 /* Copy loops. */
998 copy_loops_to (loops, orig_loops, n_orig_loops, target);
1000 /* Copy bbs. */
1001 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop);
1003 for (i = 0; i < n; i++)
1004 new_bbs[i]->rbi->copy_number = j + 1;
1006 /* Note whether the blocks and edges belong to an irreducible loop. */
1007 if (add_irreducible_flag)
1009 for (i = 0; i < n; i++)
1010 new_bbs[i]->rbi->duplicated = 1;
1011 for (i = 0; i < n; i++)
1013 edge_iterator ei;
1014 new_bb = new_bbs[i];
1015 if (new_bb->loop_father == target)
1016 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1018 FOR_EACH_EDGE (ae, ei, new_bb->succs)
1019 if (ae->dest->rbi->duplicated
1020 && (ae->src->loop_father == target
1021 || ae->dest->loop_father == target))
1022 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1024 for (i = 0; i < n; i++)
1025 new_bbs[i]->rbi->duplicated = 0;
1028 /* Redirect the special edges. */
1029 if (is_latch)
1031 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1032 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1033 loop->header);
1034 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1035 latch = loop->latch = new_bbs[1];
1036 e = latch_edge = new_spec_edges[SE_LATCH];
1038 else
1040 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1041 loop->header);
1042 redirect_edge_and_branch_force (e, new_bbs[0]);
1043 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1044 e = new_spec_edges[SE_LATCH];
1047 /* Record exit edge in this copy. */
1048 if (orig && TEST_BIT (wont_exit, j + 1))
1049 to_remove[(*n_to_remove)++] = new_spec_edges[SE_ORIG];
1051 /* Record the first copy in the control flow order if it is not
1052 the original loop (i.e. in case of peeling). */
1053 if (!first_active_latch)
1055 memcpy (first_active, new_bbs, n * sizeof (basic_block));
1056 first_active_latch = new_bbs[1];
1059 /* Set counts and frequencies. */
1060 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1062 scale_bbs_frequencies (new_bbs, n, scale_act, REG_BR_PROB_BASE);
1063 scale_act = RDIV (scale_act * scale_step[j], REG_BR_PROB_BASE);
1066 free (new_bbs);
1067 free (orig_loops);
1069 /* Update the original loop. */
1070 if (!is_latch)
1071 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1072 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1074 scale_bbs_frequencies (bbs, n, scale_main, REG_BR_PROB_BASE);
1075 free (scale_step);
1078 /* Update dominators of outer blocks if affected. */
1079 for (i = 0; i < n; i++)
1081 basic_block dominated, dom_bb, *dom_bbs;
1082 int n_dom_bbs,j;
1084 bb = bbs[i];
1085 bb->rbi->copy_number = 0;
1087 n_dom_bbs = get_dominated_by (CDI_DOMINATORS, bb, &dom_bbs);
1088 for (j = 0; j < n_dom_bbs; j++)
1090 dominated = dom_bbs[j];
1091 if (flow_bb_inside_loop_p (loop, dominated))
1092 continue;
1093 dom_bb = nearest_common_dominator (
1094 CDI_DOMINATORS, first_active[i], first_active_latch);
1095 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1097 free (dom_bbs);
1099 free (first_active);
1101 free (bbs);
1103 return true;
1106 /* A callback for make_forwarder block, to redirect all edges except for
1107 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1108 whether to redirect it. */
1110 static edge mfb_kj_edge;
1111 static bool
1112 mfb_keep_just (edge e)
1114 return e != mfb_kj_edge;
1117 /* A callback for make_forwarder block, to update data structures for a basic
1118 block JUMP created by redirecting an edge (only the latch edge is being
1119 redirected). */
1121 static void
1122 mfb_update_loops (basic_block jump)
1124 struct loop *loop = EDGE_SUCC (jump, 0)->dest->loop_father;
1126 if (dom_computed[CDI_DOMINATORS])
1127 set_immediate_dominator (CDI_DOMINATORS, jump, EDGE_PRED (jump, 0)->src);
1128 add_bb_to_loop (jump, loop);
1129 loop->latch = jump;
1132 /* Creates a pre-header for a LOOP. Returns newly created block. Unless
1133 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1134 entry; otherwise we also force preheader block to have only one successor.
1135 The function also updates dominators. */
1137 static basic_block
1138 create_preheader (struct loop *loop, int flags)
1140 edge e, fallthru;
1141 basic_block dummy;
1142 struct loop *cloop, *ploop;
1143 int nentry = 0;
1144 bool irred = false;
1145 bool latch_edge_was_fallthru;
1146 edge one_succ_pred = 0;
1147 edge_iterator ei;
1149 cloop = loop->outer;
1151 FOR_EACH_EDGE (e, ei, loop->header->preds)
1153 if (e->src == loop->latch)
1154 continue;
1155 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1156 nentry++;
1157 if (EDGE_COUNT (e->src->succs) == 1)
1158 one_succ_pred = e;
1160 gcc_assert (nentry);
1161 if (nentry == 1)
1163 /* Get an edge that is different from the one from loop->latch
1164 to loop->header. */
1165 e = EDGE_PRED (loop->header,
1166 EDGE_PRED (loop->header, 0)->src == loop->latch);
1168 if (!(flags & CP_SIMPLE_PREHEADERS) || EDGE_COUNT (e->src->succs) == 1)
1169 return NULL;
1172 mfb_kj_edge = loop_latch_edge (loop);
1173 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1174 fallthru = make_forwarder_block (loop->header, mfb_keep_just,
1175 mfb_update_loops);
1176 dummy = fallthru->src;
1177 loop->header = fallthru->dest;
1179 /* The header could be a latch of some superloop(s); due to design of
1180 split_block, it would now move to fallthru->dest. */
1181 for (ploop = loop; ploop; ploop = ploop->outer)
1182 if (ploop->latch == dummy)
1183 ploop->latch = fallthru->dest;
1185 /* Try to be clever in placing the newly created preheader. The idea is to
1186 avoid breaking any "fallthruness" relationship between blocks.
1188 The preheader was created just before the header and all incoming edges
1189 to the header were redirected to the preheader, except the latch edge.
1190 So the only problematic case is when this latch edge was a fallthru
1191 edge: it is not anymore after the preheader creation so we have broken
1192 the fallthruness. We're therefore going to look for a better place. */
1193 if (latch_edge_was_fallthru)
1195 if (one_succ_pred)
1196 e = one_succ_pred;
1197 else
1198 e = EDGE_PRED (dummy, 0);
1200 move_block_after (dummy, e->src);
1203 loop->header->loop_father = loop;
1204 add_bb_to_loop (dummy, cloop);
1206 if (irred)
1208 dummy->flags |= BB_IRREDUCIBLE_LOOP;
1209 EDGE_SUCC (dummy, 0)->flags |= EDGE_IRREDUCIBLE_LOOP;
1212 if (dump_file)
1213 fprintf (dump_file, "Created preheader block for loop %i\n",
1214 loop->num);
1216 return dummy;
1219 /* Create preheaders for each loop from loop tree stored in LOOPS; for meaning
1220 of FLAGS see create_preheader. */
1221 void
1222 create_preheaders (struct loops *loops, int flags)
1224 unsigned i;
1225 for (i = 1; i < loops->num; i++)
1226 create_preheader (loops->parray[i], flags);
1227 loops->state |= LOOPS_HAVE_PREHEADERS;
1230 /* Forces all loop latches of loops from loop tree LOOPS to have only single
1231 successor. */
1232 void
1233 force_single_succ_latches (struct loops *loops)
1235 unsigned i;
1236 struct loop *loop;
1237 edge e;
1239 for (i = 1; i < loops->num; i++)
1241 loop = loops->parray[i];
1242 if (loop->latch != loop->header && EDGE_COUNT (loop->latch->succs) == 1)
1243 continue;
1245 e = find_edge (loop->latch, loop->header);
1247 loop_split_edge_with (e, NULL_RTX);
1249 loops->state |= LOOPS_HAVE_SIMPLE_LATCHES;
1252 /* A quite stupid function to put INSNS on edge E. They are supposed to form
1253 just one basic block. Jumps in INSNS are not handled, so cfg do not have to
1254 be ok after this function. The created block is placed on correct place
1255 in LOOPS structure and its dominator is set. */
1256 basic_block
1257 loop_split_edge_with (edge e, rtx insns)
1259 basic_block src, dest, new_bb;
1260 struct loop *loop_c;
1262 src = e->src;
1263 dest = e->dest;
1265 loop_c = find_common_loop (src->loop_father, dest->loop_father);
1267 /* Create basic block for it. */
1269 new_bb = split_edge (e);
1270 add_bb_to_loop (new_bb, loop_c);
1271 new_bb->flags |= (insns ? BB_SUPERBLOCK : 0);
1273 if (insns)
1274 emit_insn_after (insns, BB_END (new_bb));
1276 if (dest->loop_father->latch == src)
1277 dest->loop_father->latch = new_bb;
1279 return new_bb;
1282 /* Uses the natural loop discovery to recreate loop notes. */
1283 void
1284 create_loop_notes (void)
1286 rtx insn, head, end;
1287 struct loops loops;
1288 struct loop *loop;
1289 basic_block *first, *last, bb, pbb;
1290 struct loop **stack, **top;
1292 #ifdef ENABLE_CHECKING
1293 /* Verify that there really are no loop notes. */
1294 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1295 gcc_assert (!NOTE_P (insn) ||
1296 NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
1297 #endif
1299 flow_loops_find (&loops, LOOP_TREE);
1300 free_dominance_info (CDI_DOMINATORS);
1301 if (loops.num > 1)
1303 last = xcalloc (loops.num, sizeof (basic_block));
1305 FOR_EACH_BB (bb)
1307 for (loop = bb->loop_father; loop->outer; loop = loop->outer)
1308 last[loop->num] = bb;
1311 first = xcalloc (loops.num, sizeof (basic_block));
1312 stack = xcalloc (loops.num, sizeof (struct loop *));
1313 top = stack;
1315 FOR_EACH_BB (bb)
1317 for (loop = bb->loop_father; loop->outer; loop = loop->outer)
1319 if (!first[loop->num])
1321 *top++ = loop;
1322 first[loop->num] = bb;
1325 if (bb == last[loop->num])
1327 /* Prevent loops from overlapping. */
1328 while (*--top != loop)
1329 last[(*top)->num] = EXIT_BLOCK_PTR;
1331 /* If loop starts with jump into it, place the note in
1332 front of the jump. */
1333 insn = PREV_INSN (BB_HEAD (first[loop->num]));
1334 if (insn
1335 && BARRIER_P (insn))
1336 insn = PREV_INSN (insn);
1338 if (insn
1339 && JUMP_P (insn)
1340 && any_uncondjump_p (insn)
1341 && onlyjump_p (insn))
1343 pbb = BLOCK_FOR_INSN (insn);
1344 gcc_assert (pbb && EDGE_COUNT (pbb->succs) == 1);
1346 if (!flow_bb_inside_loop_p (loop, EDGE_SUCC (pbb, 0)->dest))
1347 insn = BB_HEAD (first[loop->num]);
1349 else
1350 insn = BB_HEAD (first[loop->num]);
1352 head = BB_HEAD (first[loop->num]);
1353 emit_note_before (NOTE_INSN_LOOP_BEG, insn);
1354 BB_HEAD (first[loop->num]) = head;
1356 /* Position the note correctly wrto barrier. */
1357 insn = BB_END (last[loop->num]);
1358 if (NEXT_INSN (insn)
1359 && BARRIER_P (NEXT_INSN (insn)))
1360 insn = NEXT_INSN (insn);
1362 end = BB_END (last[loop->num]);
1363 emit_note_after (NOTE_INSN_LOOP_END, insn);
1364 BB_END (last[loop->num]) = end;
1369 free (first);
1370 free (last);
1371 free (stack);
1373 flow_loops_free (&loops);