c++: fix array cleanup with throwing temp dtor
[official-gcc.git] / gcc / gimple-range-gori.cc
blob8691abab4435455ba64a552bc60575a788efe5bb
1 /* Gimple range GORI functions.
2 Copyright (C) 2017-2021 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
4 and Aldy Hernandez <aldyh@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "gimple-range.h"
32 // Calculate what we can determine of the range of this unary
33 // statement's operand if the lhs of the expression has the range
34 // LHS_RANGE. Return false if nothing can be determined.
36 bool
37 gimple_range_calc_op1 (irange &r, const gimple *stmt, const irange &lhs_range)
39 gcc_checking_assert (gimple_num_ops (stmt) < 3);
40 // Give up on empty ranges.
41 if (lhs_range.undefined_p ())
42 return false;
44 // Unary operations require the type of the first operand in the
45 // second range position.
46 tree type = TREE_TYPE (gimple_range_operand1 (stmt));
47 int_range<2> type_range (type);
48 return gimple_range_handler (stmt)->op1_range (r, type, lhs_range,
49 type_range);
52 // Calculate what we can determine of the range of this statement's
53 // first operand if the lhs of the expression has the range LHS_RANGE
54 // and the second operand has the range OP2_RANGE. Return false if
55 // nothing can be determined.
57 bool
58 gimple_range_calc_op1 (irange &r, const gimple *stmt,
59 const irange &lhs_range, const irange &op2_range)
61 // Give up on empty ranges.
62 if (lhs_range.undefined_p ())
63 return false;
65 // Unary operation are allowed to pass a range in for second operand
66 // as there are often additional restrictions beyond the type which
67 // can be imposed. See operator_cast::op1_range().
68 tree type = TREE_TYPE (gimple_range_operand1 (stmt));
69 // If op2 is undefined, solve as if it is varying.
70 if (op2_range.undefined_p ())
72 // This is sometimes invoked on single operand stmts.
73 if (gimple_num_ops (stmt) < 3)
74 return false;
75 int_range<2> trange (TREE_TYPE (gimple_range_operand2 (stmt)));
76 return gimple_range_handler (stmt)->op1_range (r, type, lhs_range,
77 trange);
79 return gimple_range_handler (stmt)->op1_range (r, type, lhs_range,
80 op2_range);
83 // Calculate what we can determine of the range of this statement's
84 // second operand if the lhs of the expression has the range LHS_RANGE
85 // and the first operand has the range OP1_RANGE. Return false if
86 // nothing can be determined.
88 bool
89 gimple_range_calc_op2 (irange &r, const gimple *stmt,
90 const irange &lhs_range, const irange &op1_range)
92 // Give up on empty ranges.
93 if (lhs_range.undefined_p ())
94 return false;
96 tree type = TREE_TYPE (gimple_range_operand2 (stmt));
97 // If op1 is undefined, solve as if it is varying.
98 if (op1_range.undefined_p ())
100 int_range<2> trange (TREE_TYPE (gimple_range_operand1 (stmt)));
101 return gimple_range_handler (stmt)->op2_range (r, type, lhs_range,
102 trange);
104 return gimple_range_handler (stmt)->op2_range (r, type, lhs_range,
105 op1_range);
108 // Return TRUE if GS is a logical && or || expression.
110 static inline bool
111 is_gimple_logical_p (const gimple *gs)
113 // Look for boolean and/or condition.
114 if (is_gimple_assign (gs))
115 switch (gimple_expr_code (gs))
117 case TRUTH_AND_EXPR:
118 case TRUTH_OR_EXPR:
119 return true;
121 case BIT_AND_EXPR:
122 case BIT_IOR_EXPR:
123 // Bitwise operations on single bits are logical too.
124 if (types_compatible_p (TREE_TYPE (gimple_assign_rhs1 (gs)),
125 boolean_type_node))
126 return true;
127 break;
129 default:
130 break;
132 return false;
135 /* RANGE_DEF_CHAIN is used to determine which SSA names in a block can
136 have range information calculated for them, and what the
137 dependencies on each other are.
139 Information for a basic block is calculated once and stored. It is
140 only calculated the first time a query is made, so if no queries
141 are made, there is little overhead.
143 The def_chain bitmap is indexed by SSA_NAME_VERSION. Bits are set
144 within this bitmap to indicate SSA names that are defined in the
145 SAME block and used to calculate this SSA name.
148 <bb 2> :
149 _1 = x_4(D) + -2;
150 _2 = _1 * 4;
151 j_7 = foo ();
152 q_5 = _2 + 3;
153 if (q_5 <= 13)
155 _1 : x_4(D)
156 _2 : 1 x_4(D)
157 q_5 : _1 _2 x_4(D)
159 This dump indicates the bits set in the def_chain vector.
160 as well as demonstrates the def_chain bits for the related ssa_names.
162 Checking the chain for _2 indicates that _1 and x_4 are used in
163 its evaluation.
165 Def chains also only include statements which are valid gimple
166 so a def chain will only span statements for which the range
167 engine implements operations for. */
170 // Construct a range_def_chain.
172 range_def_chain::range_def_chain ()
174 bitmap_obstack_initialize (&m_bitmaps);
175 m_def_chain.create (0);
176 m_def_chain.safe_grow_cleared (num_ssa_names);
177 m_logical_depth = 0;
180 // Destruct a range_def_chain.
182 range_def_chain::~range_def_chain ()
184 m_def_chain.release ();
185 bitmap_obstack_release (&m_bitmaps);
188 // Return true if NAME is in the def chain of DEF. If BB is provided,
189 // only return true if the defining statement of DEF is in BB.
191 bool
192 range_def_chain::in_chain_p (tree name, tree def)
194 gcc_checking_assert (gimple_range_ssa_p (def));
195 gcc_checking_assert (gimple_range_ssa_p (name));
197 // Get the defintion chain for DEF.
198 bitmap chain = get_def_chain (def);
200 if (chain == NULL)
201 return false;
202 return bitmap_bit_p (chain, SSA_NAME_VERSION (name));
205 // Add either IMP or the import list B to the import set of DATA.
207 void
208 range_def_chain::set_import (struct rdc &data, tree imp, bitmap b)
210 // If there are no imports, just return
211 if (imp == NULL_TREE && !b)
212 return;
213 if (!data.m_import)
214 data.m_import = BITMAP_ALLOC (&m_bitmaps);
215 if (imp != NULL_TREE)
216 bitmap_set_bit (data.m_import, SSA_NAME_VERSION (imp));
217 else
218 bitmap_ior_into (data.m_import, b);
221 // Return the import list for NAME.
223 bitmap
224 range_def_chain::get_imports (tree name)
226 if (!has_def_chain (name))
227 get_def_chain (name);
228 bitmap i = m_def_chain[SSA_NAME_VERSION (name)].m_import;
229 return i;
232 // Return true if IMPORT is an import to NAMEs def chain.
234 bool
235 range_def_chain::chain_import_p (tree name, tree import)
237 bitmap b = get_imports (name);
238 if (b)
239 return bitmap_bit_p (b, SSA_NAME_VERSION (import));
240 return false;
243 // Build def_chains for NAME if it is in BB. Copy the def chain into RESULT.
245 void
246 range_def_chain::register_dependency (tree name, tree dep, basic_block bb)
248 if (!gimple_range_ssa_p (dep))
249 return;
251 unsigned v = SSA_NAME_VERSION (name);
252 if (v >= m_def_chain.length ())
253 m_def_chain.safe_grow_cleared (num_ssa_names + 1);
254 struct rdc &src = m_def_chain[v];
255 gimple *def_stmt = SSA_NAME_DEF_STMT (dep);
256 unsigned dep_v = SSA_NAME_VERSION (dep);
257 bitmap b;
259 // Set the direct dependency cache entries.
260 if (!src.ssa1)
261 src.ssa1 = dep;
262 else if (!src.ssa2 && src.ssa1 != dep)
263 src.ssa2 = dep;
265 // Don't calculate imports or export/dep chains if BB is not provided.
266 // This is usually the case for when the temporal cache wants the direct
267 // dependencies of a stmt.
268 if (!bb)
269 return;
271 if (!src.bm)
272 src.bm = BITMAP_ALLOC (&m_bitmaps);
274 // Add this operand into the result.
275 bitmap_set_bit (src.bm, dep_v);
277 if (gimple_bb (def_stmt) == bb && !is_a<gphi *>(def_stmt))
279 // Get the def chain for the operand.
280 b = get_def_chain (dep);
281 // If there was one, copy it into result. Access def_chain directly
282 // as the get_def_chain request above could reallocate the vector.
283 if (b)
284 bitmap_ior_into (m_def_chain[v].bm, b);
285 // And copy the import list.
286 set_import (m_def_chain[v], NULL_TREE, get_imports (dep));
288 else
289 // Originated outside the block, so it is an import.
290 set_import (src, dep, NULL);
293 bool
294 range_def_chain::def_chain_in_bitmap_p (tree name, bitmap b)
296 bitmap a = get_def_chain (name);
297 if (a && b)
298 return bitmap_intersect_p (a, b);
299 return false;
302 void
303 range_def_chain::add_def_chain_to_bitmap (bitmap b, tree name)
305 bitmap r = get_def_chain (name);
306 if (r)
307 bitmap_ior_into (b, r);
311 // Return TRUE if NAME has been processed for a def_chain.
313 inline bool
314 range_def_chain::has_def_chain (tree name)
316 // Ensure there is an entry in the internal vector.
317 unsigned v = SSA_NAME_VERSION (name);
318 if (v >= m_def_chain.length ())
319 m_def_chain.safe_grow_cleared (num_ssa_names + 1);
320 return (m_def_chain[v].ssa1 != 0);
325 // Calculate the def chain for NAME and all of its dependent
326 // operands. Only using names in the same BB. Return the bitmap of
327 // all names in the m_def_chain. This only works for supported range
328 // statements.
330 bitmap
331 range_def_chain::get_def_chain (tree name)
333 tree ssa1, ssa2, ssa3;
334 unsigned v = SSA_NAME_VERSION (name);
336 // If it has already been processed, just return the cached value.
337 if (has_def_chain (name))
338 return m_def_chain[v].bm;
340 // No definition chain for default defs.
341 if (SSA_NAME_IS_DEFAULT_DEF (name))
343 // A Default def is always an import.
344 set_import (m_def_chain[v], name, NULL);
345 return NULL;
348 gimple *stmt = SSA_NAME_DEF_STMT (name);
349 if (gimple_range_handler (stmt))
351 ssa1 = gimple_range_ssa_p (gimple_range_operand1 (stmt));
352 ssa2 = gimple_range_ssa_p (gimple_range_operand2 (stmt));
353 ssa3 = NULL_TREE;
355 else if (is_a<gassign *> (stmt)
356 && gimple_assign_rhs_code (stmt) == COND_EXPR)
358 gassign *st = as_a<gassign *> (stmt);
359 ssa1 = gimple_range_ssa_p (gimple_assign_rhs1 (st));
360 ssa2 = gimple_range_ssa_p (gimple_assign_rhs2 (st));
361 ssa3 = gimple_range_ssa_p (gimple_assign_rhs3 (st));
363 else
365 // Stmts not understood are always imports.
366 set_import (m_def_chain[v], name, NULL);
367 return NULL;
370 // Terminate the def chains if we see too many cascading stmts.
371 if (m_logical_depth == param_ranger_logical_depth)
372 return NULL;
374 // Increase the depth if we have a pair of ssa-names.
375 if (ssa1 && ssa2)
376 m_logical_depth++;
378 register_dependency (name, ssa1, gimple_bb (stmt));
379 register_dependency (name, ssa2, gimple_bb (stmt));
380 register_dependency (name, ssa3, gimple_bb (stmt));
381 // Stmts with no understandable operands are also imports.
382 if (!ssa1 && !ssa2 & !ssa3)
383 set_import (m_def_chain[v], name, NULL);
385 if (ssa1 && ssa2)
386 m_logical_depth--;
388 return m_def_chain[v].bm;
391 // Dump what we know for basic block BB to file F.
393 void
394 range_def_chain::dump (FILE *f, basic_block bb, const char *prefix)
396 unsigned x, y;
397 bitmap_iterator bi;
399 // Dump the def chain for each SSA_NAME defined in BB.
400 for (x = 1; x < num_ssa_names; x++)
402 tree name = ssa_name (x);
403 if (!name)
404 continue;
405 gimple *stmt = SSA_NAME_DEF_STMT (name);
406 if (!stmt || (bb && gimple_bb (stmt) != bb))
407 continue;
408 bitmap chain = (has_def_chain (name) ? get_def_chain (name) : NULL);
409 if (chain && !bitmap_empty_p (chain))
411 fprintf (f, prefix);
412 print_generic_expr (f, name, TDF_SLIM);
413 fprintf (f, " : ");
415 bitmap imports = get_imports (name);
416 EXECUTE_IF_SET_IN_BITMAP (chain, 0, y, bi)
418 print_generic_expr (f, ssa_name (y), TDF_SLIM);
419 if (imports && bitmap_bit_p (imports, y))
420 fprintf (f, "(I)");
421 fprintf (f, " ");
423 fprintf (f, "\n");
429 // -------------------------------------------------------------------
431 /* GORI_MAP is used to accumulate what SSA names in a block can
432 generate range information, and provides tools for the block ranger
433 to enable it to efficiently calculate these ranges.
435 GORI stands for "Generates Outgoing Range Information."
437 It utilizes the range_def_chain class to contruct def_chains.
438 Information for a basic block is calculated once and stored. It is
439 only calculated the first time a query is made. If no queries are
440 made, there is little overhead.
442 one bitmap is maintained for each basic block:
443 m_outgoing : a set bit indicates a range can be generated for a name.
445 Generally speaking, the m_outgoing vector is the union of the
446 entire def_chain of all SSA names used in the last statement of the
447 block which generate ranges. */
450 // Initialize a gori-map structure.
452 gori_map::gori_map ()
454 m_outgoing.create (0);
455 m_outgoing.safe_grow_cleared (last_basic_block_for_fn (cfun));
456 m_incoming.create (0);
457 m_incoming.safe_grow_cleared (last_basic_block_for_fn (cfun));
458 m_maybe_variant = BITMAP_ALLOC (&m_bitmaps);
461 // Free any memory the GORI map allocated.
463 gori_map::~gori_map ()
465 m_incoming.release ();
466 m_outgoing.release ();
469 // Return the bitmap vector of all export from BB. Calculate if necessary.
471 bitmap
472 gori_map::exports (basic_block bb)
474 if (bb->index >= (signed int)m_outgoing.length () || !m_outgoing[bb->index])
475 calculate_gori (bb);
476 return m_outgoing[bb->index];
479 // Return the bitmap vector of all imports to BB. Calculate if necessary.
481 bitmap
482 gori_map::imports (basic_block bb)
484 if (bb->index >= (signed int)m_outgoing.length () || !m_outgoing[bb->index])
485 calculate_gori (bb);
486 return m_incoming[bb->index];
489 // Return true if NAME is can have ranges generated for it from basic
490 // block BB.
492 bool
493 gori_map::is_export_p (tree name, basic_block bb)
495 // If no BB is specified, test if it is exported anywhere in the IL.
496 if (!bb)
497 return bitmap_bit_p (m_maybe_variant, SSA_NAME_VERSION (name));
498 return bitmap_bit_p (exports (bb), SSA_NAME_VERSION (name));
501 // Clear the m_maybe_variant bit so ranges will not be tracked for NAME.
503 void
504 gori_map::set_range_invariant (tree name)
506 bitmap_clear_bit (m_maybe_variant, SSA_NAME_VERSION (name));
509 // Return true if NAME is an import to block BB.
511 bool
512 gori_map::is_import_p (tree name, basic_block bb)
514 // If no BB is specified, test if it is exported anywhere in the IL.
515 return bitmap_bit_p (imports (bb), SSA_NAME_VERSION (name));
518 // If NAME is non-NULL and defined in block BB, calculate the def
519 // chain and add it to m_outgoing.
521 void
522 gori_map::maybe_add_gori (tree name, basic_block bb)
524 if (name)
526 // Check if there is a def chain, regardless of the block.
527 add_def_chain_to_bitmap (m_outgoing[bb->index], name);
528 // Check for any imports.
529 bitmap imp = get_imports (name);
530 // If there were imports, add them so we can recompute
531 if (imp)
532 bitmap_ior_into (m_incoming[bb->index], imp);
533 // This name is always an import.
534 if (gimple_bb (SSA_NAME_DEF_STMT (name)) != bb)
535 bitmap_set_bit (m_incoming[bb->index], SSA_NAME_VERSION (name));
537 // Def chain doesn't include itself, and even if there isn't a
538 // def chain, this name should be added to exports.
539 bitmap_set_bit (m_outgoing[bb->index], SSA_NAME_VERSION (name));
543 // Calculate all the required information for BB.
545 void
546 gori_map::calculate_gori (basic_block bb)
548 tree name;
549 if (bb->index >= (signed int)m_outgoing.length ())
551 m_outgoing.safe_grow_cleared (last_basic_block_for_fn (cfun));
552 m_incoming.safe_grow_cleared (last_basic_block_for_fn (cfun));
554 gcc_checking_assert (m_outgoing[bb->index] == NULL);
555 m_outgoing[bb->index] = BITMAP_ALLOC (&m_bitmaps);
556 m_incoming[bb->index] = BITMAP_ALLOC (&m_bitmaps);
558 if (single_succ_p (bb))
559 return;
561 // If this block's last statement may generate range informaiton, go
562 // calculate it.
563 gimple *stmt = gimple_outgoing_range_stmt_p (bb);
564 if (!stmt)
565 return;
566 if (is_a<gcond *> (stmt))
568 gcond *gc = as_a<gcond *>(stmt);
569 name = gimple_range_ssa_p (gimple_cond_lhs (gc));
570 maybe_add_gori (name, gimple_bb (stmt));
572 name = gimple_range_ssa_p (gimple_cond_rhs (gc));
573 maybe_add_gori (name, gimple_bb (stmt));
575 else
577 // Do not process switches if they are too large.
578 if (EDGE_COUNT (bb->succs) > (unsigned)param_evrp_switch_limit)
579 return;
580 gswitch *gs = as_a<gswitch *>(stmt);
581 name = gimple_range_ssa_p (gimple_switch_index (gs));
582 maybe_add_gori (name, gimple_bb (stmt));
584 // Add this bitmap to the aggregate list of all outgoing names.
585 bitmap_ior_into (m_maybe_variant, m_outgoing[bb->index]);
588 // Dump the table information for BB to file F.
590 void
591 gori_map::dump (FILE *f, basic_block bb, bool verbose)
593 // BB was not processed.
594 if (!m_outgoing[bb->index] || bitmap_empty_p (m_outgoing[bb->index]))
595 return;
597 tree name;
599 bitmap imp = imports (bb);
600 if (!bitmap_empty_p (imp))
602 if (verbose)
603 fprintf (f, "bb<%u> Imports: ",bb->index);
604 else
605 fprintf (f, "Imports: ");
606 FOR_EACH_GORI_IMPORT_NAME (*this, bb, name)
608 print_generic_expr (f, name, TDF_SLIM);
609 fprintf (f, " ");
611 fputc ('\n', f);
614 if (verbose)
615 fprintf (f, "bb<%u> Exports: ",bb->index);
616 else
617 fprintf (f, "Exports: ");
618 // Dump the export vector.
619 FOR_EACH_GORI_EXPORT_NAME (*this, bb, name)
621 print_generic_expr (f, name, TDF_SLIM);
622 fprintf (f, " ");
624 fputc ('\n', f);
626 range_def_chain::dump (f, bb, " ");
629 // Dump the entire GORI map structure to file F.
631 void
632 gori_map::dump (FILE *f)
634 basic_block bb;
635 FOR_EACH_BB_FN (bb, cfun)
636 dump (f, bb);
639 DEBUG_FUNCTION void
640 debug (gori_map &g)
642 g.dump (stderr);
645 // -------------------------------------------------------------------
647 // Construct a gori_compute object.
649 gori_compute::gori_compute (int not_executable_flag)
650 : outgoing (param_evrp_switch_limit), tracer ("GORI ")
652 m_not_executable_flag = not_executable_flag;
653 // Create a boolean_type true and false range.
654 m_bool_zero = int_range<2> (boolean_false_node, boolean_false_node);
655 m_bool_one = int_range<2> (boolean_true_node, boolean_true_node);
656 if (dump_file && (param_ranger_debug & RANGER_DEBUG_GORI))
657 tracer.enable_trace ();
660 // Given the switch S, return an evaluation in R for NAME when the lhs
661 // evaluates to LHS. Returning false means the name being looked for
662 // was not resolvable.
664 bool
665 gori_compute::compute_operand_range_switch (irange &r, gswitch *s,
666 const irange &lhs,
667 tree name, fur_source &src)
669 tree op1 = gimple_switch_index (s);
671 // If name matches, the range is simply the range from the edge.
672 // Empty ranges are viral as they are on a path which isn't
673 // executable.
674 if (op1 == name || lhs.undefined_p ())
676 r = lhs;
677 return true;
680 // If op1 is in the defintion chain, pass lhs back.
681 if (gimple_range_ssa_p (op1) && in_chain_p (name, op1))
682 return compute_operand_range (r, SSA_NAME_DEF_STMT (op1), lhs, name, src);
684 return false;
688 // Return an evaluation for NAME as it would appear in STMT when the
689 // statement's lhs evaluates to LHS. If successful, return TRUE and
690 // store the evaluation in R, otherwise return FALSE.
692 bool
693 gori_compute::compute_operand_range (irange &r, gimple *stmt,
694 const irange &lhs, tree name,
695 fur_source &src)
697 // If the lhs doesn't tell us anything, neither will unwinding further.
698 if (lhs.varying_p ())
699 return false;
701 // Empty ranges are viral as they are on an unexecutable path.
702 if (lhs.undefined_p ())
704 r.set_undefined ();
705 return true;
707 if (is_a<gswitch *> (stmt))
708 return compute_operand_range_switch (r, as_a<gswitch *> (stmt), lhs, name,
709 src);
710 if (!gimple_range_handler (stmt))
711 return false;
713 tree op1 = gimple_range_ssa_p (gimple_range_operand1 (stmt));
714 tree op2 = gimple_range_ssa_p (gimple_range_operand2 (stmt));
716 // Handle end of lookup first.
717 if (op1 == name)
718 return compute_operand1_range (r, stmt, lhs, name, src);
719 if (op2 == name)
720 return compute_operand2_range (r, stmt, lhs, name, src);
722 // NAME is not in this stmt, but one of the names in it ought to be
723 // derived from it.
724 bool op1_in_chain = op1 && in_chain_p (name, op1);
725 bool op2_in_chain = op2 && in_chain_p (name, op2);
727 // If neither operand is derived, then this stmt tells us nothing.
728 if (!op1_in_chain && !op2_in_chain)
729 return false;
731 bool res;
732 // Process logicals as they have special handling.
733 if (is_gimple_logical_p (stmt))
735 unsigned idx;
736 if ((idx = tracer.header ("compute_operand ")))
738 print_generic_expr (dump_file, name, TDF_SLIM);
739 fprintf (dump_file, " with LHS = ");
740 lhs.dump (dump_file);
741 fprintf (dump_file, " at stmt ");
742 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
745 int_range_max op1_trange, op1_frange;
746 int_range_max op2_trange, op2_frange;
747 compute_logical_operands (op1_trange, op1_frange, stmt, lhs,
748 name, src, op1, op1_in_chain);
749 compute_logical_operands (op2_trange, op2_frange, stmt, lhs,
750 name, src, op2, op2_in_chain);
751 res = logical_combine (r, gimple_expr_code (stmt), lhs,
752 op1_trange, op1_frange, op2_trange, op2_frange);
753 if (idx)
754 tracer.trailer (idx, "compute_operand", res, name, r);
756 // Follow the appropriate operands now.
757 else if (op1_in_chain && op2_in_chain)
758 res = compute_operand1_and_operand2_range (r, stmt, lhs, name, src);
759 else if (op1_in_chain)
760 res = compute_operand1_range (r, stmt, lhs, name, src);
761 else if (op2_in_chain)
762 res = compute_operand2_range (r, stmt, lhs, name, src);
763 else
764 gcc_unreachable ();
766 // If neither operand is derived, this statement tells us nothing.
767 return res;
771 // Return TRUE if range R is either a true or false compatible range.
773 static bool
774 range_is_either_true_or_false (const irange &r)
776 if (r.undefined_p ())
777 return false;
779 // This is complicated by the fact that Ada has multi-bit booleans,
780 // so true can be ~[0, 0] (i.e. [1,MAX]).
781 tree type = r.type ();
782 gcc_checking_assert (range_compatible_p (type, boolean_type_node));
783 return (r.singleton_p () || !r.contains_p (build_zero_cst (type)));
786 // Evaluate a binary logical expression by combining the true and
787 // false ranges for each of the operands based on the result value in
788 // the LHS.
790 bool
791 gori_compute::logical_combine (irange &r, enum tree_code code,
792 const irange &lhs,
793 const irange &op1_true, const irange &op1_false,
794 const irange &op2_true, const irange &op2_false)
796 if (op1_true.varying_p () && op1_false.varying_p ()
797 && op2_true.varying_p () && op2_false.varying_p ())
798 return false;
800 unsigned idx;
801 if ((idx = tracer.header ("logical_combine")))
803 switch (code)
805 case TRUTH_OR_EXPR:
806 case BIT_IOR_EXPR:
807 fprintf (dump_file, " || ");
808 break;
809 case TRUTH_AND_EXPR:
810 case BIT_AND_EXPR:
811 fprintf (dump_file, " && ");
812 break;
813 default:
814 break;
816 fprintf (dump_file, " with LHS = ");
817 lhs.dump (dump_file);
818 fputc ('\n', dump_file);
820 tracer.print (idx, "op1_true = ");
821 op1_true.dump (dump_file);
822 fprintf (dump_file, " op1_false = ");
823 op1_false.dump (dump_file);
824 fputc ('\n', dump_file);
825 tracer.print (idx, "op2_true = ");
826 op2_true.dump (dump_file);
827 fprintf (dump_file, " op2_false = ");
828 op2_false.dump (dump_file);
829 fputc ('\n', dump_file);
832 // This is not a simple fold of a logical expression, rather it
833 // determines ranges which flow through the logical expression.
835 // Assuming x_8 is an unsigned char, and relational statements:
836 // b_1 = x_8 < 20
837 // b_2 = x_8 > 5
838 // consider the logical expression and branch:
839 // c_2 = b_1 && b_2
840 // if (c_2)
842 // To determine the range of x_8 on either edge of the branch, one
843 // must first determine what the range of x_8 is when the boolean
844 // values of b_1 and b_2 are both true and false.
845 // b_1 TRUE x_8 = [0, 19]
846 // b_1 FALSE x_8 = [20, 255]
847 // b_2 TRUE x_8 = [6, 255]
848 // b_2 FALSE x_8 = [0,5].
850 // These ranges are then combined based on the expected outcome of
851 // the branch. The range on the TRUE side of the branch must satisfy
852 // b_1 == true && b_2 == true
854 // In terms of x_8, that means both x_8 == [0, 19] and x_8 = [6, 255]
855 // must be true. The range of x_8 on the true side must be the
856 // intersection of both ranges since both must be true. Thus the
857 // range of x_8 on the true side is [6, 19].
859 // To determine the ranges on the FALSE side, all 3 combinations of
860 // failing ranges must be considered, and combined as any of them
861 // can cause the false result.
863 // If the LHS can be TRUE or FALSE, then evaluate both a TRUE and
864 // FALSE results and combine them. If we fell back to VARYING any
865 // range restrictions that have been discovered up to this point
866 // would be lost.
867 if (!range_is_either_true_or_false (lhs))
869 bool res;
870 int_range_max r1;
871 if (logical_combine (r1, code, m_bool_zero, op1_true, op1_false,
872 op2_true, op2_false)
873 && logical_combine (r, code, m_bool_one, op1_true, op1_false,
874 op2_true, op2_false))
876 r.union_ (r1);
877 res = true;
879 else
880 res = false;
881 if (idx)
882 tracer.trailer (idx, "logical_combine", res, NULL_TREE, r);
885 switch (code)
887 // A logical AND combines ranges from 2 boolean conditions.
888 // c_2 = b_1 && b_2
889 case TRUTH_AND_EXPR:
890 case BIT_AND_EXPR:
891 if (!lhs.zero_p ())
893 // The TRUE side is the intersection of the the 2 true ranges.
894 r = op1_true;
895 r.intersect (op2_true);
897 else
899 // The FALSE side is the union of the other 3 cases.
900 int_range_max ff (op1_false);
901 ff.intersect (op2_false);
902 int_range_max tf (op1_true);
903 tf.intersect (op2_false);
904 int_range_max ft (op1_false);
905 ft.intersect (op2_true);
906 r = ff;
907 r.union_ (tf);
908 r.union_ (ft);
910 break;
911 // A logical OR combines ranges from 2 boolean conditons.
912 // c_2 = b_1 || b_2
913 case TRUTH_OR_EXPR:
914 case BIT_IOR_EXPR:
915 if (lhs.zero_p ())
917 // An OR operation will only take the FALSE path if both
918 // operands are false simlulateously, which means they should
919 // be intersected. !(x || y) == !x && !y
920 r = op1_false;
921 r.intersect (op2_false);
923 else
925 // The TRUE side of an OR operation will be the union of
926 // the other three combinations.
927 int_range_max tt (op1_true);
928 tt.intersect (op2_true);
929 int_range_max tf (op1_true);
930 tf.intersect (op2_false);
931 int_range_max ft (op1_false);
932 ft.intersect (op2_true);
933 r = tt;
934 r.union_ (tf);
935 r.union_ (ft);
937 break;
938 default:
939 gcc_unreachable ();
942 if (idx)
943 tracer.trailer (idx, "logical_combine", true, NULL_TREE, r);
944 return true;
948 // Given a logical STMT, calculate true and false ranges for each
949 // potential path of NAME, assuming NAME came through the OP chain if
950 // OP_IN_CHAIN is true.
952 void
953 gori_compute::compute_logical_operands (irange &true_range, irange &false_range,
954 gimple *stmt,
955 const irange &lhs,
956 tree name, fur_source &src,
957 tree op, bool op_in_chain)
959 gimple *src_stmt = gimple_range_ssa_p (op) ? SSA_NAME_DEF_STMT (op) : NULL;
960 if (!op_in_chain || !src_stmt || chain_import_p (gimple_get_lhs (stmt), op))
962 // If op is not in the def chain, or defined in this block,
963 // use its known value on entry to the block.
964 src.get_operand (true_range, name);
965 false_range = true_range;
966 unsigned idx;
967 if ((idx = tracer.header ("logical_operand")))
969 print_generic_expr (dump_file, op, TDF_SLIM);
970 fprintf (dump_file, " not in computation chain. Queried.\n");
971 tracer.trailer (idx, "logical_operand", true, NULL_TREE, true_range);
973 return;
976 enum tree_code code = gimple_expr_code (stmt);
977 // Optimize [0 = x | y], since neither operand can ever be non-zero.
978 if ((code == BIT_IOR_EXPR || code == TRUTH_OR_EXPR) && lhs.zero_p ())
980 if (!compute_operand_range (false_range, src_stmt, m_bool_zero, name,
981 src))
982 src.get_operand (false_range, name);
983 true_range = false_range;
984 return;
987 // Optimize [1 = x & y], since neither operand can ever be zero.
988 if ((code == BIT_AND_EXPR || code == TRUTH_AND_EXPR) && lhs == m_bool_one)
990 if (!compute_operand_range (true_range, src_stmt, m_bool_one, name, src))
991 src.get_operand (true_range, name);
992 false_range = true_range;
993 return;
996 // Calculate ranges for true and false on both sides, since the false
997 // path is not always a simple inversion of the true side.
998 if (!compute_operand_range (true_range, src_stmt, m_bool_one, name, src))
999 src.get_operand (true_range, name);
1000 if (!compute_operand_range (false_range, src_stmt, m_bool_zero, name, src))
1001 src.get_operand (false_range, name);
1004 // Calculate a range for NAME from the operand 1 position of STMT
1005 // assuming the result of the statement is LHS. Return the range in
1006 // R, or false if no range could be calculated.
1008 bool
1009 gori_compute::compute_operand1_range (irange &r, gimple *stmt,
1010 const irange &lhs, tree name,
1011 fur_source &src)
1013 int_range_max op1_range, op2_range;
1014 tree op1 = gimple_range_operand1 (stmt);
1015 tree op2 = gimple_range_operand2 (stmt);
1017 // Fetch the known range for op1 in this block.
1018 src.get_operand (op1_range, op1);
1020 // Now range-op calcuate and put that result in r.
1021 if (op2)
1023 src.get_operand (op2_range, op2);
1024 if (!gimple_range_calc_op1 (r, stmt, lhs, op2_range))
1025 return false;
1027 else
1029 // We pass op1_range to the unary operation. Nomally it's a
1030 // hidden range_for_type parameter, but sometimes having the
1031 // actual range can result in better information.
1032 if (!gimple_range_calc_op1 (r, stmt, lhs, op1_range))
1033 return false;
1036 unsigned idx;
1037 if ((idx = tracer.header ("compute op 1 (")))
1039 print_generic_expr (dump_file, op1, TDF_SLIM);
1040 fprintf (dump_file, ") at ");
1041 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1042 tracer.print (idx, "LHS =");
1043 lhs.dump (dump_file);
1044 if (op2 && TREE_CODE (op2) == SSA_NAME)
1046 fprintf (dump_file, ", ");
1047 print_generic_expr (dump_file, op2, TDF_SLIM);
1048 fprintf (dump_file, " = ");
1049 op2_range.dump (dump_file);
1051 fprintf (dump_file, "\n");
1052 tracer.print (idx, "Computes ");
1053 print_generic_expr (dump_file, op1, TDF_SLIM);
1054 fprintf (dump_file, " = ");
1055 r.dump (dump_file);
1056 fprintf (dump_file, " intersect Known range : ");
1057 op1_range.dump (dump_file);
1058 fputc ('\n', dump_file);
1060 // Intersect the calculated result with the known result and return if done.
1061 if (op1 == name)
1063 r.intersect (op1_range);
1064 if (idx)
1065 tracer.trailer (idx, "produces ", true, name, r);
1066 return true;
1068 // If the calculation continues, we're using op1_range as the new LHS.
1069 op1_range.intersect (r);
1071 if (idx)
1072 tracer.trailer (idx, "produces ", true, op1, op1_range);
1073 gimple *src_stmt = SSA_NAME_DEF_STMT (op1);
1074 gcc_checking_assert (src_stmt);
1076 // Then feed this range back as the LHS of the defining statement.
1077 return compute_operand_range (r, src_stmt, op1_range, name, src);
1081 // Calculate a range for NAME from the operand 2 position of S
1082 // assuming the result of the statement is LHS. Return the range in
1083 // R, or false if no range could be calculated.
1085 bool
1086 gori_compute::compute_operand2_range (irange &r, gimple *stmt,
1087 const irange &lhs, tree name,
1088 fur_source &src)
1090 int_range_max op1_range, op2_range;
1091 tree op1 = gimple_range_operand1 (stmt);
1092 tree op2 = gimple_range_operand2 (stmt);
1094 src.get_operand (op1_range, op1);
1095 src.get_operand (op2_range, op2);
1097 // Intersect with range for op2 based on lhs and op1.
1098 if (!gimple_range_calc_op2 (r, stmt, lhs, op1_range))
1099 return false;
1101 unsigned idx;
1102 if ((idx = tracer.header ("compute op 2 (")))
1104 print_generic_expr (dump_file, op2, TDF_SLIM);
1105 fprintf (dump_file, ") at ");
1106 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1107 tracer.print (idx, "LHS = ");
1108 lhs.dump (dump_file);
1109 if (TREE_CODE (op1) == SSA_NAME)
1111 fprintf (dump_file, ", ");
1112 print_generic_expr (dump_file, op1, TDF_SLIM);
1113 fprintf (dump_file, " = ");
1114 op1_range.dump (dump_file);
1116 fprintf (dump_file, "\n");
1117 tracer.print (idx, "Computes ");
1118 print_generic_expr (dump_file, op2, TDF_SLIM);
1119 fprintf (dump_file, " = ");
1120 r.dump (dump_file);
1121 fprintf (dump_file, " intersect Known range : ");
1122 op2_range.dump (dump_file);
1123 fputc ('\n', dump_file);
1125 // Intersect the calculated result with the known result and return if done.
1126 if (op2 == name)
1128 r.intersect (op2_range);
1129 if (idx)
1130 tracer.trailer (idx, " produces ", true, NULL_TREE, r);
1131 return true;
1133 // If the calculation continues, we're using op2_range as the new LHS.
1134 op2_range.intersect (r);
1136 if (idx)
1137 tracer.trailer (idx, " produces ", true, op2, op2_range);
1138 gimple *src_stmt = SSA_NAME_DEF_STMT (op2);
1139 gcc_checking_assert (src_stmt);
1140 // gcc_checking_assert (!is_import_p (op2, find.bb));
1142 // Then feed this range back as the LHS of the defining statement.
1143 return compute_operand_range (r, src_stmt, op2_range, name, src);
1146 // Calculate a range for NAME from both operand positions of S
1147 // assuming the result of the statement is LHS. Return the range in
1148 // R, or false if no range could be calculated.
1150 bool
1151 gori_compute::compute_operand1_and_operand2_range (irange &r,
1152 gimple *stmt,
1153 const irange &lhs,
1154 tree name,
1155 fur_source &src)
1157 int_range_max op_range;
1159 // Calculate a good a range for op2. Since op1 == op2, this will
1160 // have already included whatever the actual range of name is.
1161 if (!compute_operand2_range (op_range, stmt, lhs, name, src))
1162 return false;
1164 // Now get the range thru op1.
1165 if (!compute_operand1_range (r, stmt, lhs, name, src))
1166 return false;
1168 // Both operands have to be simultaneously true, so perform an intersection.
1169 r.intersect (op_range);
1170 return true;
1173 // Return TRUE if NAME can be recomputed on any edge exiting BB. If any
1174 // direct dependant is exported, it may also change the computed value of NAME.
1176 bool
1177 gori_compute::may_recompute_p (tree name, basic_block bb)
1179 tree dep1 = depend1 (name);
1180 tree dep2 = depend2 (name);
1182 // If the first dependency is not set, there is no recompuation.
1183 if (!dep1)
1184 return false;
1186 // Don't recalculate PHIs or statements with side_effects.
1187 gimple *s = SSA_NAME_DEF_STMT (name);
1188 if (is_a<gphi *> (s) || gimple_has_side_effects (s))
1189 return false;
1191 // If edge is specified, check if NAME can be recalculated on that edge.
1192 if (bb)
1193 return ((is_export_p (dep1, bb))
1194 || (dep2 && is_export_p (dep2, bb)));
1196 return (is_export_p (dep1)) || (dep2 && is_export_p (dep2));
1199 // Return TRUE if NAME can be recomputed on edge E. If any direct dependant
1200 // is exported on edge E, it may change the computed value of NAME.
1202 bool
1203 gori_compute::may_recompute_p (tree name, edge e)
1205 gcc_checking_assert (e);
1206 return may_recompute_p (name, e->src);
1210 // Return TRUE if a range can be calculated or recomputed for NAME on any
1211 // edge exiting BB.
1213 bool
1214 gori_compute::has_edge_range_p (tree name, basic_block bb)
1216 // Check if NAME is an export or can be recomputed.
1217 if (bb)
1218 return is_export_p (name, bb) || may_recompute_p (name, bb);
1220 // If no block is specified, check for anywhere in the IL.
1221 return is_export_p (name) || may_recompute_p (name);
1224 // Return TRUE if a range can be calculated or recomputed for NAME on edge E.
1226 bool
1227 gori_compute::has_edge_range_p (tree name, edge e)
1229 gcc_checking_assert (e);
1230 return has_edge_range_p (name, e->src);
1233 // Calculate a range on edge E and return it in R. Try to evaluate a
1234 // range for NAME on this edge. Return FALSE if this is either not a
1235 // control edge or NAME is not defined by this edge.
1237 bool
1238 gori_compute::outgoing_edge_range_p (irange &r, edge e, tree name,
1239 range_query &q)
1241 int_range_max lhs;
1242 unsigned idx;
1244 if ((e->flags & m_not_executable_flag))
1246 r.set_undefined ();
1247 if (dump_file && (dump_flags & TDF_DETAILS))
1248 fprintf (dump_file, "Outgoing edge %d->%d unexecutable.\n",
1249 e->src->index, e->dest->index);
1250 return true;
1253 gcc_checking_assert (gimple_range_ssa_p (name));
1254 // Determine if there is an outgoing edge.
1255 gimple *stmt = outgoing.edge_range_p (lhs, e);
1256 if (!stmt)
1257 return false;
1259 fur_stmt src (stmt, &q);
1260 // If NAME can be calculated on the edge, use that.
1261 if (is_export_p (name, e->src))
1263 bool res;
1264 if ((idx = tracer.header ("outgoing_edge")))
1266 fprintf (dump_file, " for ");
1267 print_generic_expr (dump_file, name, TDF_SLIM);
1268 fprintf (dump_file, " on edge %d->%d\n",
1269 e->src->index, e->dest->index);
1271 if ((res = compute_operand_range (r, stmt, lhs, name, src)))
1273 // Sometimes compatible types get interchanged. See PR97360.
1274 // Make sure we are returning the type of the thing we asked for.
1275 if (!r.undefined_p () && r.type () != TREE_TYPE (name))
1277 gcc_checking_assert (range_compatible_p (r.type (),
1278 TREE_TYPE (name)));
1279 range_cast (r, TREE_TYPE (name));
1282 if (idx)
1283 tracer.trailer (idx, "outgoing_edge", res, name, r);
1284 return res;
1286 // If NAME isn't exported, check if it can be recomputed.
1287 else if (may_recompute_p (name, e))
1289 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
1291 if ((idx = tracer.header ("recomputation")))
1293 fprintf (dump_file, " attempt on edge %d->%d for ",
1294 e->src->index, e->dest->index);
1295 print_gimple_stmt (dump_file, def_stmt, 0, TDF_SLIM);
1297 // Simply calculate DEF_STMT on edge E using the range query Q.
1298 fold_range (r, def_stmt, e, &q);
1299 if (idx)
1300 tracer.trailer (idx, "recomputation", true, name, r);
1301 return true;
1303 return false;
1306 // Dump what is known to GORI computes to listing file F.
1308 void
1309 gori_compute::dump (FILE *f)
1311 gori_map::dump (f);
1314 // ------------------------------------------------------------------------
1315 // GORI iterator. Although we have bitmap iterators, don't expose that it
1316 // is currently a bitmap. Use an export iterator to hide future changes.
1318 // Construct a basic iterator over an export bitmap.
1320 gori_export_iterator::gori_export_iterator (bitmap b)
1322 bm = b;
1323 if (b)
1324 bmp_iter_set_init (&bi, b, 1, &y);
1328 // Move to the next export bitmap spot.
1330 void
1331 gori_export_iterator::next ()
1333 bmp_iter_next (&bi, &y);
1337 // Fetch the name of the next export in the export list. Return NULL if
1338 // iteration is done.
1340 tree
1341 gori_export_iterator::get_name ()
1343 if (!bm)
1344 return NULL_TREE;
1346 while (bmp_iter_set (&bi, &y))
1348 tree t = ssa_name (y);
1349 if (t)
1350 return t;
1351 next ();
1353 return NULL_TREE;